WO2011158882A1 - ハイブリッド車両用駆動装置 - Google Patents

ハイブリッド車両用駆動装置 Download PDF

Info

Publication number
WO2011158882A1
WO2011158882A1 PCT/JP2011/063744 JP2011063744W WO2011158882A1 WO 2011158882 A1 WO2011158882 A1 WO 2011158882A1 JP 2011063744 W JP2011063744 W JP 2011063744W WO 2011158882 A1 WO2011158882 A1 WO 2011158882A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
driving force
engine
cylinder operation
Prior art date
Application number
PCT/JP2011/063744
Other languages
English (en)
French (fr)
Inventor
黒田 恵隆
敦 萩原
浩行 伊勢川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201180029137.4A priority Critical patent/CN102939214B/zh
Priority to BR112012031741A priority patent/BR112012031741A2/pt
Priority to US13/704,202 priority patent/US9073546B2/en
Priority to JP2012520482A priority patent/JP5696143B2/ja
Priority to RU2013101599/11A priority patent/RU2534465C2/ru
Priority to DE112011102037T priority patent/DE112011102037T5/de
Publication of WO2011158882A1 publication Critical patent/WO2011158882A1/ja
Priority to US14/729,833 priority patent/US9919701B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0633Inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle drive device.
  • a vehicle drive device including an internal combustion engine, an electric motor, first connection / disconnection means, and second connection / disconnection means is known (see, for example, Patent Document 1).
  • the vehicle drive device 200 of Patent Document 1 is connected to an electric motor 210 and is selectively connected to an internal combustion engine output shaft 204 by a first connecting / disconnecting means 205.
  • the second input shaft 202b selectively connected to the internal combustion engine output shaft 204 by the second connecting / disconnecting means 206, the output shaft 203 for outputting power to the driven part, and the first input shaft 202a are arranged on the first input shaft 202a.
  • a first gear group composed of a plurality of gears selectively connected to the first input shaft 202a via the first synchronization device 230, 231 and a second synchronization device 216, 217 disposed on the second input shaft 202b.
  • a second gear group comprising a plurality of gears selectively connected to the second input shaft 202b, and a plurality of gears disposed on the output shaft 203 and meshing with the gears of the first gear group and the second gear group.
  • 3rd gi Having a twin clutch type transmission having a group, the.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a hybrid vehicle drive device that can achieve both quick response and improved fuel efficiency.
  • an invention according to claim 1 is an internal combustion engine capable of switching between all-cylinder operation in which all cylinders are operated and rest-in-cylinder operation in which at least some cylinders are deactivated (for example, An accumulator (for example, an embodiment described later) that is used in a hybrid vehicle having an engine 6) in an embodiment described later and an electric motor (for example, a motor 7 in an embodiment described later) as drive sources and supplies electric power to the motor.
  • An accumulator for example, an embodiment described later
  • an electric motor for example, a motor 7 in an embodiment described later
  • first input shaft for example, a first main shaft 11 in an embodiment described later
  • gear positions for example, a third speed gear pair 23 and a fifth speed gear pair 25 in an embodiment described later
  • first transmission mechanism The mechanical power from the output shaft of the internal combustion engine is received by a second input shaft (for example, the second intermediate shaft 16 of the embodiment described later), and a plurality of shift speeds (for example, for the second speed of the embodiment described later).
  • a second speed change mechanism capable of engaging one of the gear pair 22 and the fourth speed gear pair 24) with the second input shaft and the drive wheel; and an output shaft of the internal combustion engine.
  • a first connecting / disconnecting portion (for example, a first clutch 41 in an embodiment described later) capable of engaging with the first input shaft, an output shaft of the internal combustion engine, and the second input shaft.
  • a hybrid vehicle drive device including a transmission (for example, a transmission 20 of an embodiment described later) having a second connecting / disconnecting portion (for example, a second clutch 42 of an embodiment described later) that can be combined.
  • a cylinder deactivation operation necessity determination unit (for example, a cylinder deactivation operation necessity determination unit) that determines whether or not the cylinder deactivation operation of the internal combustion engine is necessary when the vehicle is capable of traveling and the required driving force of the vehicle is smaller than the driving force in the cylinder deactivation operation of the internal combustion engine
  • An ECU 5 according to an embodiment to be described later, and when the idle cylinder operation necessity determination unit determines that the idle cylinder operation is unnecessary, the first connecting / disconnecting portion and the second connecting / disconnecting portion are disconnected to perform EV mode.
  • the idle cylinder operation necessity determination unit determines that the idle cylinder operation is necessary, the internal combustion engine is idled, and the first and second connection parts are connected to each other. At least one of them is connected.
  • the cylinder deactivation operation necessity determination unit determines that the cylinder deactivation operation is necessary when the paddle shift is selected. It is characterized by.
  • the non-cylinder driving necessity determination unit determines that the cylinder-free driving is necessary when the sport mode is selected. It is characterized by.
  • the deactivation operation necessity determination unit determines that the regenerative power generation is performed. It is characterized by determining that driving is necessary.
  • the non-cylinder driving necessity determination unit determines that the cylinder is idle when the vehicle is cruising. It is characterized by determining that driving is necessary.
  • the non-cylinder operation necessity determination unit determines that the cylinder is idle when the vehicle is traveling inertially. It is characterized by determining that driving is necessary.
  • the internal combustion engine is idled while the first connecting / disconnecting portion is connected, and in the EV mode.
  • pre-shifting to the second input shaft is performed, and switching from the first connecting / disconnecting portion to the second connecting / disconnecting portion is performed.
  • the invention according to claim 8 is the hybrid vehicle drive device according to claim 1, further comprising a traveling state prediction unit (for example, an ECU 5 in an embodiment to be described later) linked with the car navigation system, and whether or not the idle cylinder operation is necessary.
  • the determination unit determines that the cylinder rest operation is necessary when the travel state prediction unit predicts switching from the EV mode to another travel mode.
  • the invention according to claim 9 is the hybrid vehicle drive device according to claim 1, further comprising an electronically controlled throttle (for example, an electronically controlled throttle 66 of an embodiment described later) capable of controlling the intake air amount of the internal combustion engine,
  • an electronically controlled throttle for example, an electronically controlled throttle 66 of an embodiment described later
  • the required driving force of the vehicle is smaller than the driving force in the idle cylinder operation of the internal combustion engine
  • the internal combustion engine is operated in the idle cylinder operation and the electronic control throttle is opened according to the increase in the required driving force.
  • the required driving force of the vehicle is larger than the driving force in the cylinder-free operation of the internal combustion engine and can be output by the motor and the driving force in the cylinder-free operation of the internal combustion engine.
  • the internal combustion engine is operated in a cylinderless operation, and the motor is controlled to output a difference between the required driving force and the driving force in the cylinder idle operation of the internal combustion engine.
  • the required driving force of the vehicle is greater than the sum of the driving force of the internal combustion engine in the idle cylinder operation and the driving force that can be output by the electric motor, the internal combustion engine is switched from the idle cylinder operation to the all cylinder operation.
  • the opening degree of the electronic control throttle is controlled to be changed to the opening degree in the all cylinder operation.
  • the idle cylinder operation includes a partially idle cylinder operation in which only some cylinders are deactivated and an idle cylinder operation.
  • the required driving force of the vehicle is smaller than the driving force in the all cylinder operation of the internal combustion engine, and the BSFC bottom operation can be performed by the partial cylinder operation of the internal combustion engine.
  • the required driving force of the vehicle is smaller than the driving force of the internal combustion engine in the full cylinder operation, and the difference is not less than a predetermined value.
  • the vehicle is controlled to run in an EV mode or to make the internal combustion engine perform a full cylinder resting operation.
  • the internal combustion engine when the required driving force of the vehicle is smaller than the driving force of the internal combustion engine during the idle cylinder operation, the internal combustion engine can be idled as necessary, thereby improving the fuel consumption. In addition, when the driving force of the internal combustion engine becomes necessary, the internal combustion engine can be driven quickly.
  • the internal combustion engine can be re-driven promptly when selecting the paddle shift that requires quick response.
  • the internal combustion engine can be re-driven promptly when a sports mode is selected that requires quick response.
  • the internal combustion engine can be re-driven at the next shift speed.
  • the internal combustion engine when the switching from the EV mode to another travel mode can be predicted at an early stage by the navigation system, the internal combustion engine is subjected to the cylinder resting operation, so that the driving force of the internal combustion engine is actually required. Even in this case, the internal combustion engine can be redriven quickly.
  • the operating state of the internal combustion engine can be switched according to the required driving force, so that the fuel consumption can be further improved.
  • FIG. 1stEV mode is shown, (a) is a speed diagram, (b) is a figure which shows the transmission condition of torque. It is a figure which shows the drive device for hybrid vehicles in 1st EV mode 1st all cylinder rest operation. It is a figure which shows the drive device for hybrid vehicles in 1stEV mode 2nd all cylinder rest operation. It is a flowchart which shows operation
  • FIG. 1 is a schematic diagram of a vehicle drive device of Patent Document 1.
  • the hybrid vehicle drive device 1 of the present embodiment is for driving drive wheels DW and DW (driven parts) via drive shafts 9 and 9 of a vehicle (not shown).
  • the engine 6 is, for example, a SOHC V-type 6-cylinder engine.
  • a crankshaft 6 a of the engine 6 is connected to a first clutch (first connecting / disconnecting portion) 41 and a second clutch (second connecting / disconnecting portion) of the transmission 20. Part) 42 is provided.
  • the engine 6 may include a VTEC (registered trademark: variable valve mechanism), and the cylinder arrangement may be in-line or horizontal. Further, the number of cylinders of the engine 6 is not limited to 6, and can be appropriately selected according to horsepower and the like.
  • the motor 7 is a three-phase brushless DC motor, and includes a stator 71 composed of 3n armatures 71a, and a rotor 72 arranged to face the stator 71.
  • Each armature 71a includes an iron core 71b and a coil 71c wound around the iron core 71b.
  • the armature 71a is fixed to a casing (not shown) and is arranged at substantially equal intervals in the circumferential direction around the rotation axis. Yes.
  • the 3n coils 71c constitute n sets of U-phase, V-phase, and W-phase three-phase coils.
  • the rotor 72 has an iron core 72a and n permanent magnets 72b arranged at almost equal intervals around the rotation axis, and the polarities of two adjacent permanent magnets 72b are different from each other.
  • the fixing portion 72c for fixing the iron core 72a has a hollow cylindrical shape, is disposed on the outer peripheral side of the ring gear 35 of the planetary gear mechanism 30 described later, and is connected to the sun gear 32 of the planetary gear mechanism 30. Accordingly, the rotor 72 is configured to rotate integrally with the sun gear 32 of the planetary gear mechanism 30.
  • the planetary gear mechanism 30 includes a sun gear 32, a ring gear 35 that is arranged coaxially with the sun gear 32 and that surrounds the sun gear 32, and a planetary gear 34 that meshes with the sun gear 32 and the ring gear 35. And a carrier 36 that supports the planetary gear 34 so as to be capable of rotating and revolving. In this way, the sun gear 32, the ring gear 35, and the carrier 36 are configured to be differentially rotatable with respect to each other.
  • the ring gear 35 is provided with a brake mechanism 61 configured to be able to stop (lock) the rotation of the ring gear 35.
  • a synchro mechanism may be used instead of the brake mechanism 61.
  • the transmission 20 is a so-called dual clutch transmission that includes the first clutch 41 and the second clutch 42, the planetary gear mechanism 30, and a plurality of transmission gear groups described later.
  • the transmission 20 includes a first main shaft 11 (first input shaft) disposed on the same axis (rotation axis A1) as the crank shaft 6a of the engine 6, a second main shaft 12, and a connecting shaft 13.
  • a counter shaft 14 output shaft rotatable around a rotation axis B1 arranged in parallel with the rotation axis A1, and a first intermediate rotatable around a rotation axis C1 arranged in parallel with the rotation axis A1.
  • a second intermediate shaft 16 (second input shaft) rotatable around a rotation axis D1 arranged in parallel with the rotation axis A1, and a rotation axis E1 arranged in parallel with the rotation axis A1 Is provided with a rotatable reverse shaft 17.
  • the first main shaft 11 is provided with a first clutch 41 on the engine 6 side, and a sun gear 32 of the planetary gear mechanism 30 and a rotor 72 of the motor 7 are attached to the opposite side of the engine 6 side. Accordingly, the first main shaft 11 is selectively connected to the crankshaft 6 a of the engine 6 by the first clutch 41 and directly connected to the motor 7 so that the power of the engine 6 and / or the motor 7 is transmitted to the sun gear 32. It is configured.
  • the second main shaft 12 is configured to be shorter and hollow than the first main shaft 11, and is disposed so as to be relatively rotatable so as to cover the periphery of the first main shaft 11 on the engine 6 side.
  • the second main shaft 12 is provided with a second clutch 42 on the engine 6 side, and an idle drive gear 27a is integrally attached to the opposite side to the engine 6 side. Accordingly, the second main shaft 12 is selectively connected to the crankshaft 6a of the engine 6 by the second clutch 42, and the power of the engine 6 is transmitted to the idle drive gear 27a.
  • the connecting shaft 13 is configured to be shorter and hollow than the first main shaft 11, and is disposed so as to be relatively rotatable so as to cover the periphery of the first main shaft 11 on the side opposite to the engine 6 side. Further, a third speed drive gear 23 a is integrally attached to the connecting shaft 13 on the engine 6 side, and a carrier 36 of the planetary gear mechanism 30 is integrally attached to the opposite side of the engine 6 side. Therefore, the carrier 36 attached to the connecting shaft 13 and the third-speed drive gear 23a are configured to rotate integrally by the revolution of the planetary gear 34.
  • first main shaft 11 is rotatable relative to the first main shaft 11 between a third speed drive gear 23 a attached to the connecting shaft 13 and an idle drive gear 27 a attached to the second main shaft 12.
  • a fifth driven gear 25a is provided, and a reverse driven gear 28b that rotates integrally with the first main shaft 11 is attached.
  • a first main shaft 11 and a third speed drive gear 23a or a fifth speed drive gear 25a are connected or released between the third speed drive gear 23a and the fifth speed drive gear 25a.
  • a shift shifter 51 is provided. When the first speed-shifting shifter 51 is in-gear at the third speed connection position, the first main shaft 11 and the third speed drive gear 23a are connected to rotate integrally and in-gear at the fifth speed connection position.
  • the first main shaft 11 and the fifth speed drive gear 25a rotate integrally, and when the first speed change shifter 51 is in the neutral position, the first main shaft 11 has the third speed drive gear 23a and the fifth speed drive gear 25a. It rotates relative to the drive gear 25a.
  • the sun gear 32 attached to the first main shaft 11 and the carrier 36 connected to the third speed drive gear 23a by the connecting shaft 13 are provided.
  • the ring gear 35 While rotating integrally, the ring gear 35 also rotates together, and the planetary gear mechanism 30 is united.
  • a first idle driven gear 27b that meshes with an idle drive gear 27a attached to the second main shaft 12 is integrally attached to the first intermediate shaft 15.
  • the second intermediate shaft 16 is integrally attached with a second idle driven gear 27c that meshes with the first idle driven gear 27b attached to the first intermediate shaft 15.
  • the second idle driven gear 27c constitutes the first idle gear train 27A together with the idle drive gear 27a and the first idle driven gear 27b described above.
  • the second intermediate shaft 16 is rotatable relative to the second intermediate shaft 16 at positions corresponding to the third speed drive gear 23a and the fifth speed drive gear 25a provided around the first main shaft 11, respectively.
  • a second speed drive gear 22a and a fourth speed drive gear 24a are provided.
  • the second intermediate shaft 16 includes a second intermediate shaft 16 and a second speed drive gear 22a or a fourth speed drive gear 24a between the second speed drive gear 22a and the fourth speed drive gear 24a.
  • a second shifter 52 for shifting or connecting the two.
  • the second shifter 52 shifts in-gear at the second speed connection position
  • the second intermediate shaft 16 and the second speed drive gear 22a rotate together
  • the second shifter 52 shifts to the fourth speed.
  • the second intermediate shaft 16 and the fourth-speed drive gear 24a rotate together.
  • the second shifter shifter 52 is in the neutral position
  • the second intermediate shaft 16 moves to the second speed.
  • the drive gear 22a and the fourth speed drive gear 24a rotate relative to each other.
  • a first shared driven gear 23b, a second shared driven gear 24b, a parking gear 21, and a final gear 26a are integrally attached to the counter shaft 14 in order from the side opposite to the engine 6 side.
  • the first shared driven gear 23b meshes with the third speed drive gear 23a attached to the connecting shaft 13 to form the third speed gear pair 23 together with the third speed drive gear 23a
  • the second speed gear pair 22 is configured together with the second speed drive gear 22a by meshing with the second speed drive gear 22a provided on the intermediate shaft 16.
  • the second shared driven gear 24b meshes with the fifth speed drive gear 25a provided on the first main shaft 11 to form the fifth speed gear pair 25 together with the fifth speed drive gear 25a, and the second intermediate shaft.
  • a third idle driven gear 27d that meshes with the first idle driven gear 27b attached to the first intermediate shaft 15 is integrally attached to the reverse shaft 17.
  • the third idle driven gear 27d constitutes a second idle gear train 27B together with the above-described idle drive gear 27a and first idle driven gear 27b.
  • the reverse shaft 17 is provided with a reverse drive gear 28 a that meshes with a reverse driven gear 28 b attached to the first main shaft 11 so as to be rotatable relative to the reverse shaft 17.
  • the reverse drive gear 28a constitutes the reverse gear train 28 together with the reverse driven gear 28b.
  • a reverse shifter 53 for connecting or releasing the reverse shaft 17 and the reverse drive gear 28a is provided on the opposite side of the reverse drive gear 28a from the engine 6 side.
  • the first shifter 51, the second shifter 52, and the reverse shifter 53 use a clutch mechanism having a synchronizing mechanism (synchronizer mechanism) that matches the rotational speed of the shaft to be connected with the gear.
  • a synchronizing mechanism synchronizer mechanism
  • the transmission 20 configured as described above has an odd-numbered gear group consisting of a third speed drive gear 23a and a fifth speed drive gear 25a on the first main shaft 11, which is one of the two transmission shafts.
  • a first gear group) and an even-stage gear group (first gear group) composed of a second-speed drive gear 22a and a fourth-speed drive gear 24a on the second intermediate shaft 16, which is the other of the two transmission shafts. 2 gear groups) are provided.
  • the hybrid vehicle driving apparatus 1 is further provided with an air conditioner compressor 112 and an oil pump 122, and the oil pump 122 is arranged on the oil pump auxiliary machine shaft 19 arranged in parallel with the rotation axis A1 to E1. It is attached to the pump auxiliary machine shaft 19 so as to be integrally rotatable.
  • An oil pump driven gear 28c meshing with the reverse drive gear 28a and an air conditioner drive gear 29a are attached to the oil pump auxiliary shaft 19 so as to be integrally rotatable, and the engine 6 that rotates the first main shaft 11 and // The power of the motor 7 is transmitted.
  • the air conditioner compressor 112 is provided on the air conditioner auxiliary shaft 18 arranged in parallel with the rotation axes A1 to E1 via the air conditioner clutch 121.
  • An air conditioner driven gear 29b to which power is transmitted from an air conditioner drive gear 29a via a chain 29c is attached to the air conditioner auxiliary shaft 18 so as to be integrally rotatable with the air conditioner auxiliary shaft 18, and an oil pump auxiliary shaft 19 is provided.
  • the power of the engine 6 and / or the motor 7 is transmitted through an air conditioner transmission mechanism 29 including an air conditioner drive gear 29a, a chain 29c, and an air conditioner driven gear 29b.
  • the air conditioner compressor 112 is configured such that power transmission can be interrupted by connecting and disconnecting the air conditioner clutch 121 by an air conditioner operating solenoid (not shown).
  • the hybrid vehicle drive device 1 of the present embodiment has the following first to fifth transmission paths.
  • the crankshaft 6a of the engine 6 includes the first main shaft 11, the planetary gear mechanism 30, the connecting shaft 13, and the third speed gear pair 23 (third speed drive gear 23a, first common use).
  • This is a transmission path connected to the drive wheels DW and DW via the driven gear 23b), the counter shaft 14, the final gear 26a, the differential gear mechanism 8, and the drive shafts 9 and 9.
  • the reduction gear ratio of the planetary gear mechanism 30 is set so that the engine torque transmitted to the drive wheels DW and DW via the first transmission path corresponds to the first speed. That is, the reduction ratio obtained by multiplying the reduction ratio of the planetary gear mechanism 30 and the reduction ratio of the third speed gear pair 23 is set to be equivalent to the first speed.
  • the crankshaft 6a of the engine 6 has the second main shaft 12, the first idle gear train 27A (the idle drive gear 27a, the first idle driven gear 27b, the second idle driven gear 27c), the second 2 intermediate shaft 16, second speed gear pair 22 (second speed drive gear 22a, first shared driven gear 23b) or fourth speed gear pair 24 (fourth speed drive gear 24a, second shared driven gear) 24b), a transmission path connected to the drive wheels DW and DW via the counter shaft 14, the final gear 26a, the differential gear mechanism 8, and the drive shafts 9 and 9.
  • the first idle gear train 27A the idle drive gear 27a, the first idle driven gear 27b, the second idle driven gear 27c
  • the second 2 intermediate shaft 16 second speed gear pair 22 (second speed drive gear 22a, first shared driven gear 23b) or fourth speed gear pair 24 (fourth speed drive gear 24a, second shared driven gear) 24b
  • a transmission path connected to the drive wheels DW and DW via the counter shaft 14, the final gear 26a, the differential gear mechanism 8, and the drive shafts 9 and
  • the crankshaft 6a of the engine 6 is used for the first main shaft 11, the third speed gear pair 23 (the third speed drive gear 23a, the first shared driven gear 23b) or the fifth speed.
  • the gear pair 25 (the fifth speed drive gear 25a and the second shared driven gear 24b)
  • the counter shaft 14 the final gear 26a, the differential gear mechanism 8, and the drive shafts 9 and 9, without the planetary gear mechanism 30.
  • the motor 7 is connected to the planetary gear mechanism 30 or the third speed gear pair 23 (third speed drive gear 23a, first shared driven gear 23b) or fifth speed gear pair 25 ( 5th speed drive gear 25a, second shared driven gear 24b), counter shaft 14, final gear 26a, differential gear mechanism 8, and drive shafts 9 and 9 are connected to drive wheels DW and DW. It is.
  • crankshaft 6a of the engine 6 is connected to the second main shaft 12, the second idle gear train 27B (idle drive gear 27a, first idle driven gear 27b, third idle driven gear 27d), reverse Shaft 17, reverse gear train 28 (reverse drive gear 28a, reverse driven gear 28b), planetary gear mechanism 30, connecting shaft 13, third speed gear pair 23 (third speed drive gear 23a, first common use)
  • This is a transmission path connected to the drive wheels DW and DW via the driven gear 23b), the counter shaft 14, the final gear 26a, the differential gear mechanism 8, and the drive shafts 9 and 9.
  • the motor 7 is connected to a power control unit (hereinafter referred to as PDU) 2 that controls the operation thereof.
  • PDU 2 is connected to a battery 3 that supplies power to the motor 7 or charges power from the motor 7.
  • the motor 7 is driven by electric power supplied from the battery 3 via the PDU 2. Further, the motor 7 can perform regenerative power generation by rotation of the drive wheels DW and DW during deceleration traveling and power of the engine 6 to charge the battery 3 (energy recovery).
  • the PDU 2 is connected to an electric control unit (hereinafter referred to as ECU) 5.
  • ECU electric control unit
  • An electronically controlled throttle (ETCS: Electronic Throttle Control System) 66 that electronically controls a throttle valve (not shown) is connected to the engine 6, and the throttle valve is directly controlled according to the throttle opening calculated by the ECU 5.
  • the intake air amount of the engine 6 is controlled electronically.
  • the ECU 5 is a control device for performing various controls of the entire vehicle, and is connected to a mode detection unit 55 and an accelerator pedal opening detection unit (AP) 56.
  • AP accelerator pedal opening detection unit
  • the ECU 5 includes an acceleration request, a braking request, an engine speed, a motor speed, a remaining capacity (SOC: StateSOof Charge) of the battery 3 and a temperature, information from the mode detector 55, an accelerator pedal opening detector The accelerator pedal opening information detected by 56, the rotational speeds of the first and second main shafts 11 and 12, the rotational speed of the counter shaft 14, etc., the vehicle speed, the gear position, the shift position, and the like are input.
  • a signal for controlling the engine 6 a signal for controlling the PDU 2, a signal for controlling the motor 7, a signal indicating the power generation state / charge state / discharge state of the battery 3, the first and second shift shifters 51. 52, a signal for controlling the reverse shifter 53, a signal for controlling the engagement (lock) and release (neutral) of the brake mechanism 61, an output signal for controlling the engagement and release of the air conditioner clutch 121, and the like.
  • the ECU 5 has a control map (Map) as shown in FIG. 3 in order to determine whether various controls can be performed according to the SOC of the battery 3, and basically based on this control map. , ENG start, idle stop, deceleration regeneration, ENG separation, running in EV mode, and whether or not the MOT rotation speed can be adjusted are determined.
  • Map control map
  • ENG start, idle stop, deceleration regeneration, ENG separation, running in EV mode, and whether or not the MOT rotation speed can be adjusted are determined.
  • executable
  • is prohibited
  • is conditional.
  • the SOC is classified into four zones, C zone, B zone, A zone, and D zone, from the smallest to the largest, and the A zone is further divided into the AL zone, from the smallest SOC to the largest. It is classified into three zones, AM zone and AH zone, and it is divided into 6 zones in total. And in the D zone close to the maximum charge amount, deceleration regeneration and ENG disconnection are allowed under certain conditions, EV travel and idle stop are prohibited in the B zone and C zone, and the AM zone is controlled as the target charge amount. Yes.
  • the hybrid vehicle drive device 1 configured as described above controls the connection and disconnection of the first and second clutches 41 and 42, and the first shifter 51, the second shifter 52, the brake mechanism 61, and the reverse drive By controlling the engagement position of the shifter 53, the engine 6 can perform the first to fifth speed traveling and the reverse traveling.
  • the first clutch 41 In the first speed running, the first clutch 41 is engaged and the brake mechanism 61 is engaged, so that the driving force is transmitted to the drive wheels DW and DW via the first transmission path. In the second speed traveling, the driving force is transmitted to the drive wheels DW and DW via the second transmission path by engaging the second clutch 42 and in-gearing the second shifter shifter 52 at the second speed connection position. In the third speed running, the first clutch 41 is engaged and the first shifter 51 is in-geared at the third speed connection position, whereby the driving force is transmitted to the drive wheels DW and DW via the third transmission path. Is done.
  • the driving force is transmitted to the drive wheels DW and DW through the second transmission path by in-gearing the second shifter shifter 52 at the fourth speed connecting position, and the fifth speed traveling is performed.
  • the driving force is transmitted to the drive wheels DW and DW via the second transmission path by in-gearing the first shifter 51 at the fifth speed connection position.
  • the second clutch 42 is engaged and the reverse shifter 53 is connected, whereby reverse travel is performed via the fifth transmission path.
  • shift speeds are determined based on the required driving force of the vehicle calculated according to the accelerator opening detected by the accelerator pedal opening detector 56, the driving mode detected by the mode detector 55, the shift position, the vehicle speed, and the like. Based on this, it is switched by the ECU 5.
  • the operating state of the engine 6 can be switched based on the required driving force of the vehicle.
  • the engine 6 in the hybrid vehicle drive device 1 of the present embodiment is a V-type 6-cylinder engine and includes a variable valve timing mechanism (VT) 65 capable of cylinder deactivation operation.
  • VT variable valve timing mechanism
  • Each of the six cylinders has a structure that can be kept closed by the variable valve timing mechanism 65.
  • a cam lift rocker arm (not shown) and a valve drive rocker arm that are driven integrally during operation for cylinders that the variable valve timing mechanism 65 deactivates in response to a command from the ECU 5.
  • the intake valve and the exhaust valve (not shown) of the cylinder are maintained in a closed state.
  • variable valve timing mechanism 65 controls the rocker arm for each cylinder according to the command from the ECU 5 based on the required driving force of the vehicle derived from the driver's operation of the accelerator pedal and the traveling state of the vehicle. By doing so, it is possible to switch between all-cylinder operation in which all six cylinders are deactivated, partially-cylinder operation in which some cylinders are deactivated, and all-cylinder operation in which all six cylinders are driven. Will be.
  • the opening degree of the electronically controlled throttle is set based on the command of the ECU 5.
  • the engine travel can be performed in a state in which the engine 6 is partially rested by the variable valve timing mechanism 65 by changing to the opening degree in the partially resting operation.
  • the pumping loss can be reduced and the fuel consumption can be reduced, and the fuel consumption can be improved.
  • the engine 6 is controlled to be partially rested and the opening degree of the electronically controlled throttle is increased as the required driving force increases. do it.
  • the engine 6 is assisted by the output of the motor 7, The part-cylinder operation can be continued. Therefore, when the required driving force of the vehicle is smaller than the sum of the output when the engine 6 is partially cylinder-capped and the output of the motor 7, the ECU 5 causes the engine 6 to partially idle and the engine 6 Control is performed so that the motor 7 outputs the difference between the output when the cylinder 6 is partially rested and the required driving force.
  • the engine 6 When the required driving force of the vehicle exceeds the sum of the output when the engine 6 is partially cylinder-capped and the output of the motor 7, the engine 6 is switched to all-cylinder operation and the electronic control throttle is opened. The degree is changed to the opening degree in all cylinder operation.
  • the operating state of the engine 6 can be appropriately switched according to the required driving force of the vehicle, and the fuel efficiency can be improved.
  • the engine 6 may be temporarily partially or fully deactivated. You can also.
  • energy is not consumed by driving the engine 6 and friction can be reduced, so that a regenerative loss of energy can be reduced, so that more energy can be obtained by power generation.
  • fuel consumption can be further improved, and quick braking force can be obtained.
  • the first shifter 51 for shifting is in-geared with the third-speed drive gear 23a, for example.
  • the rotor 72 is rotated to perform regenerative power generation. If the engine 6 is in a cylinder resting operation at this time, energy is not consumed by driving the engine 6, so that fuel efficiency can be improved, and more rapid braking force can be obtained.
  • regenerative power generation can be performed while the second clutch 42 is engaged, it is possible to quickly return to the second speed travel when accelerating again.
  • the motor 7 assists or regenerates by engaging the brake mechanism 61 while the engine is running or by preshifting the first and second shifter shifters 51 and 52.
  • the engine 6 can be started by the motor 7 and the battery 3 can be charged even during idling. Further, the first and second clutches 41 and 42 can be disconnected and the EV 7 can be driven by the motor 7.
  • the first speed EV travel mode in which the brake mechanism 61 is engaged to travel through the fourth transmission path and the first shifter 51 for shifting are in-gear at the third speed connection position.
  • the third speed EV traveling mode that travels through the fourth transmission path, and the fifth speed EV that travels through the fourth transmission path by in-gearing the first shifter 51 at the fifth speed connection position is a driving mode.
  • first speed EV traveling (1st EV mode) will be described with reference to FIG.
  • the brake mechanism 61 is locked from the initial state (OWC lock ON).
  • the sun gear 32 of the planetary gear mechanism 31 connected to the rotor 72 is rotated in the forward direction as shown in FIG.
  • the first and second clutches 41 and 42 are disengaged, the power transmitted to the sun gear 32 is transmitted from the first main shaft 11 to the crankshaft 6a of the engine 6. It will never be done.
  • the reverse travel in the 1st EV mode can be performed by driving the motor 7 in the reverse direction and applying the motor torque in the reverse direction.
  • the first and second clutches 41 and 42 are normally disconnected, and the engine 6 is simply idling or stopped.
  • the engine 6 is simply idling or stopped.
  • the first clutch 41 or the second clutch 42 is engaged, and the first main shaft 11 or the second main shaft 12 and the crank shaft 6a It is necessary to adjust the rotation speed.
  • the engine 6 is stopped, it is necessary to start the engine 6 in addition to fastening the first clutch 41 or the second clutch 42.
  • the hybrid vehicle drive device 1 of the present embodiment when the driver requires quick responsiveness, it is possible to quickly switch from the EV mode to another travel mode that uses the driving force of the engine 6.
  • the engine 6 is allowed to travel in the EV mode by performing all-cylinder operation while the first clutch 41 or the second clutch 42 is engaged.
  • the traveling mode can be quickly switched only by switching the operation state of the engine 6 to the all-cylinder operation or the partially-cylinder operation. .
  • FIG. 5 shows the case where the engine 6 is running in the 1st EV mode and the engine 6 is made to perform all cylinder resting operation with the first clutch 41 engaged.
  • torque is transmitted from the sun gear 32 to the carrier 36 as the sun gear 32 of the planetary gear mechanism 31 rotates in the forward rotation direction by driving the motor 7, and the third speed It is transmitted to the drive wheels DW and DW via the fourth transmission path passing through the gear pair 23 for use.
  • the sun gear 32 is directly connected to the crankshaft 6 a of the engine 6 via the first main shaft 11, and the crankshaft 6 a rotates together with the first main shaft 11.
  • variable valve timing mechanism 65 causes the cam lift rocker arm (not shown) and the valve drive rocker arm. (Not shown) may be controlled to move together. According to the said structure, since the control of the rotation speed adjustment of the 1st main shaft 11 and the crankshaft 6a required when the 1st clutch 41 is fastened is unnecessary, the engine 6 can be driven rapidly.
  • the hybrid vehicle drive device 1 of the present embodiment it is possible to quickly shift from the EV mode to the travel mode in which the engine 6 is driven, and to satisfy the driver's demand for responsiveness. . Further, in addition to the case where the quick response described above is required, stable traveling can be performed by quickly shifting from the EV mode to the traveling mode for driving the engine 6 in the following cases.
  • FIG. 6 shows a case where the vehicle travels in the first EV mode, the second clutch 42 is engaged, and the engine 6 is fully cylinder-removed at the second speed.
  • torque is transmitted from the sun gear 32 to the carrier 36 as the sun gear 32 of the planetary gear mechanism 31 rotates in the forward rotation direction by driving the motor 7, and the third speed It is transmitted to the drive wheels DW and DW via the fourth transmission path passing through the gear pair 23 for use.
  • the second shifter shifter 52 is in-geared at the second-speed connection position (pre-shifted to the second speed), so that the second-speed drive gear 22a is accompanied by the rotation of the sun gear 32.
  • the second intermediate shaft 16 rotate together.
  • the second main shaft 12 rotates from the second idle driven gear 27c attached to the second intermediate shaft 16 via the first idle driven gear 27b and the idle drive gear 27a.
  • the crankshaft 6 a rotates with the second main shaft 12.
  • variable valve timing mechanism 65 causes the cam lift rocker arm (not shown) and the valve drive rocker arm. (Not shown) may be controlled to move together. According to this configuration, since it is not necessary to control the rotation speed adjustment of the second main shaft 12 and the crankshaft 6a that is required when the second clutch 42 is engaged, the engine 6 can be driven promptly at the next shift stage. Can do.
  • FIG. 7 is a flowchart for explaining the operation of the hybrid vehicle drive device 1 of the present embodiment.
  • the ECU 5 determines whether or not the required output D of the vehicle is smaller than the output Pr of the engine 6 when the engine 6 is partially cylinder-capped (step S11). If it is determined in step S11 that the required output D is less than the engine output Pr at the time of partial cylinder resting operation, then the ECU 5 is currently traveling in the EV mode or is capable of traveling in the EV mode. Is determined (step S12). Whether the vehicle can travel in the EV mode is determined by the ECU 5 based on the required output D of the vehicle, the SOC of the battery 3, the temperature, and the like. If it is determined in step S12 that the vehicle is currently traveling in the EV mode or is capable of traveling in the EV mode, the ECU 5 performs an EV mode cylinder deactivation determination (step S13).
  • FIG. 8 is a flowchart for explaining EV mode cylinder deactivation determination processing.
  • the ECU 5 determines whether or not the sport mode is currently selected (step S21). When it is determined in step S21 that the sport mode is not selected, the ECU 5 next determines whether or not the paddle shift is currently selected (step S22). If it is determined in step S22 that the paddle shift is not selected, the ECU 5 determines whether or not the vehicle is currently in regenerative travel (step S23). When it is determined in step S23 that the vehicle is not regeneratively traveling, the ECU 5 determines whether the vehicle is currently traveling (cruising traveling) with the accelerator pedal being depressed (step S24). If it is determined in step S24 that the vehicle is not cruising, the ECU 5 determines whether the vehicle is currently traveling (inertia traveling) only by the inertia of the vehicle without stepping on the accelerator pedal (step S25). .
  • step S25 If it is determined in step S25 that the vehicle is not traveling inertia, the ECU 5 determines that the cylinder deactivation is not necessary, disconnects the first and second clutches 41 and 42, and uses the driving force of the motor 7 to drive the EV mode. (Step S26), and the process ends.
  • step S27 If it is determined that any one of the determinations in steps S21 to S26 is applicable, it is considered that the responsiveness of the engine 6 is required. Therefore, the ECU 5 determines that the cylinder deactivation is necessary, and The engine 6 is fully cylinder-cleaved while the first clutch 41 or the second clutch 42 is engaged, and is controlled to run in the EV mode by the driving force of the motor 7 (step S27), and the process ends.
  • step S12 when it is determined in step S12 that the vehicle is not traveling in the EV mode and is not capable of traveling in the EV mode, the ECU 5 controls the engine 6 to perform a part-cylinder operation. (Step S14), the process ends.
  • step S11 If it is determined in step S11 that the required output D is equal to or greater than the engine output Pr during partial cylinder resting operation, that is, if it is determined that D ⁇ Pr, the ECU 5 next requests It is determined whether or not the output D is smaller than the sum of the engine output Pr at the time of partial cylinder rest operation and the Pm of the motor 7, that is, whether D ⁇ Pr + Pm is satisfied (step S15). If it is determined in step S15 that D ⁇ Pr + Pm, the ECU 5 controls the engine 6 so as to perform a partial cylinder rest operation, and calculates a difference between the requested output and the output of the engine 6 in the partial cylinder rest operation. Control is performed so that the motor 7 outputs the signal (step S16), and the process ends. Therefore, in this case, the engine 6 that is partially rested is assisted by the motor 7 and travels.
  • step S15 If it is determined in step S15 that the required output D is greater than or equal to the sum of the engine output Pr and the motor 7 during partial cylinder resting operation, that is, if it is determined that D ⁇ Pr + Pm, The ECU 5 controls the engine 6 to operate all cylinders (step S17), and the process ends.
  • the hybrid vehicle drive device 1 of the present embodiment when the required drive force of the vehicle is smaller than the drive force of the engine 6 in the cylinderless operation, the engine 6 is turned on as necessary. Since the cylinder can be rested, the fuel consumption can be improved and the engine 6 can be driven quickly when the driving force of the engine 6 is required. In particular, when selecting a paddle shift or a sport mode that requires fast responsiveness, the engine 6 can be re-driven quickly. Further, even when kickdown gear shifting or tip-in gear shifting is performed, stable running can be performed with good responsiveness without causing a shock. Further, since the energy regeneration loss can be reduced, the fuel consumption can be further improved, and the engine 6 can be re-driven quickly. Furthermore, since the operating state of the engine 6 can be switched according to the required driving force, the fuel consumption can be further improved.
  • determining whether or not cylinder deactivation is necessary in addition to considering the above-described conditions, information such as road conditions obtained from a navigation system (not shown) may be considered. If it is predicted that the engine 6 needs to be started early based on these pieces of information, it can be determined that cylinder deactivation is necessary. According to such a configuration, even if it becomes necessary to actually drive the engine 6 and travel after that, the engine 6 can be re-driven promptly.
  • the gear position can be changed as follows. For example, if the engine 6 is fully cylinder-removed and the vehicle speed is increased while traveling in the EV mode, a pre-shift is performed to an even number above the current gear and the second clutch 42 is engaged. Next, when the engine 6 is driven, control is performed so that the engine 6 can be operated at the upper gear. As a result, the engine 6 can be re-driven at the next shift speed.
  • the rotational speed of the motor 7 may increase.
  • the gear is shifted to the upper even gear.
  • all cylinder resting operation is being performed and the required driving force is large, after switching to an even number and then shifting to an odd number, or once releasing torque with an AMT shift, for example from 3rd to 5th And shift.
  • the motor 7 is switched to an even number in order to reduce the rotation speed, and after waiting for an odd number of rotations to be allowed, the speed is changed to an odd number again. This can prevent the motor 7 from over-rotating.
  • the BSFC (Net Fuel Consumption) bottom operation output during all cylinder operation or partial cylinder operation is considered.
  • the BSFC bottom operation output during all-cylinder operation or partial rest-cylinder operation means output at an operating point at which the fuel consumption is minimized during all-cylinder operation or part-cylinder operation. .
  • FIG. 9 is a flowchart for explaining the operation of the hybrid vehicle drive device 1 according to this modification.
  • the ECU 5 compares the BSFC bottom operation output Pb during all-cylinder operation with the required output D of the vehicle (step S51). If it is determined in step S51 that D> Pb, the ECU 5 determines the current SOC of the battery 3 (step S52). If it is determined in step S52 that the SOC of the battery 3 indicates a value equal to or greater than the A zone (see FIG. 3), the ECU 5 controls the engine 6 to operate all cylinders, The difference from the BSFC bottom operation output Pb during the cylinder operation is controlled to be output by the motor 7 (step S53), and the process ends.
  • the all-cylinder engine 6 is assisted by the motor 7 and travels.
  • the engine 6 is operated at an operating point at which the fuel consumption is minimized, so that the fuel consumption is minimized and the fuel consumption is reduced. Can be improved. If it is determined in step S52 that the SOC of the battery 3 indicates a value less than the A zone (see FIG. 3), the ECU 5 controls the engine 6 to operate all cylinders (step S54). finish.
  • step S51 If it is determined in step S51 that D ⁇ Pb, the ECU 5 compares the BSFC bottom operation output Pb during all-cylinder operation with the required output D of the vehicle again (step S55). If it is determined in step S55 that the difference between the BSFC bottom operation output Pb during all-cylinder operation and the required output D of the vehicle is less than the first predetermined value, that is, the required output D and the BSFC bottom during all-cylinder operation.
  • the engine 6 is controlled to operate in all cylinders (step S56), and the process ends. In this case, since the engine 6 is operated at an operating point where the fuel consumption is minimized, the fuel consumption can be minimized and the fuel consumption can be improved.
  • step S55 If it is determined in step S55 that the difference between the BSFC bottom operation output Pb during all-cylinder operation and the required output D of the vehicle is equal to or greater than the first predetermined value and D ⁇ Pb, the ECU 5 The BSFC bottom operation output Pb is further compared with the required output D of the vehicle (step S57). Specifically, in step S57, whether or not the difference between the BSFC bottom operation output Pb during the all-cylinder operation and the required output D of the vehicle is greater than or equal to a second predetermined value that is greater than the first predetermined value, that is, D ⁇ Whether or not Pb is determined.
  • D ⁇ Pb is when the required output of the vehicle is extremely low and nearly zero, or when a braking force is required by stepping on a brake (not shown).
  • step S57 it is determined that the difference between the BSFC bottom operation output Pb during all-cylinder operation and the required output D of the vehicle is equal to or greater than a second predetermined value that is greater than the first predetermined value, and D ⁇ Pb. If so, the ECU 5 determines the current SOC of the battery 3 (step S58).
  • step S58 If it is determined in step S58 that the SOC of the battery 3 indicates a value equal to or higher than the A zone, it is possible to travel in the EV mode (see FIG. 3), so the ECU 5 performs the EV mode cylinder deactivation determination. (Step S59), the process ends. Since each process in the EV mode cylinder deactivation determination is the same as each process (FIG. 8) in the first embodiment, the description is omitted here.
  • step S58 If it is determined in step S58 that the SOC of the battery 3 is less than the A zone, the vehicle cannot travel in the EV mode (see FIG. 3). In this case, the ECU 5 determines whether the responsiveness of the engine 6 is requested (step S60).
  • the case where the responsiveness of the engine 6 is required is, for example, the case where the paddle shift is selected or the case where the sport mode is selected.
  • step S60 If it is determined in step S60 that the responsiveness of the engine 6 is required, the ECU 5 controls the engine 6 to perform a cruising travel (cruise traveling) or an inertial traveling with all cylinders rested (step S61). The process ends. Thereby, braking force can be obtained.
  • step S60 the ECU 5 disconnects the engine 6 by disconnecting the first and second clutches 41 and 42 and performs regenerative power generation with the motor 7. (Step S61), and the process ends. As a result, the battery 3 can be charged and a braking force can be obtained.
  • step S57 If it is determined in step S57 that the difference between the BSFC bottom operation output Pb during all-cylinder operation and the required output D of the vehicle is greater than or equal to the first predetermined value and less than the second predetermined value, that is, D ⁇ Pb.
  • the ECU 5 determines the current SOC of the battery 3 (step S63). If it is determined in step S63 that the SOC of the battery 3 shows a value equal to or higher than the A zone, it is possible to travel in the EV mode (see FIG. 3), so the ECU 5 performs the EV mode cylinder deactivation determination. (Step S59), the process ends. Since each process in the EV mode cylinder deactivation determination is the same as each process (FIG. 8) in the first embodiment, the description is omitted here.
  • step S63 When it is determined in step S63 that the SOC of the battery 3 is less than the A zone, the vehicle cannot travel in the EV mode (see FIG. 3).
  • the ECU 5 compares the BSFC bottom operation output Prb during the partial cylinder rest operation with the requested output D of the vehicle (step S64). If it is determined in step S64 that the difference between the BSFC bottom operation output Prb and the vehicle required output D during the partially rested operation is less than the first predetermined value, that is, the requested output D and the partially rested operation If it is determined that the BSFC bottom operation output Prb at the time is substantially equal (D ⁇ Prb), the engine 6 is controlled so as to be partially cylinder-removed (step S65), and the process ends. In this case, the engine 6 is partially rested at the operating point at which the fuel consumption is minimized, so that the fuel consumption can be improved by minimizing the fuel consumption.
  • step S64 If it is determined in step S64 that the difference between the BSFC bottom operation output Prb during the partially rested operation and the required output D of the vehicle is equal to or greater than the first predetermined value and D ⁇ Prb is not satisfied, the ECU 5 Control is performed so as to travel by all-cylinder operation (step S66), and the process ends.
  • an odd-numbered stage gear is arranged on the first main shaft 11 that is the input shaft to which the motor 7 of the dual clutch transmission is connected, and the input shaft to which the motor 7 is not connected is used.
  • the even-numbered gear is arranged on a certain second intermediate shaft 16
  • the present invention is not limited to this, and the even-numbered gear is arranged on the first main shaft 11, which is the input shaft to which the motor 7 is connected, and the motor 7 is not connected.
  • An odd-numbered gear may be arranged on the second intermediate shaft 16 that is the input shaft.
  • gears may be provided as sixth, eighth,...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 本発明は、早い応答性と燃費の向上を両立できるハイブリッド車両用駆動装置を提供する。本発明のハイブリッド車両用駆動装置1は、車両の要求駆動力がエンジン6の休筒運転での駆動力よりも小さい場合にエンジン6の休筒運転の要否を判断する休筒運転要否判断部を備える。休筒運転要否判断部により休筒運転が不要と判断された場合、第1クラッチ42および第2クラッチ42を切断してEV走行で走行可能であり、休筒運転要否判断部により休筒運転が必要と判断された場合、エンジン6を休筒運転で運転すると共に、第1クラッチ42および第2クラッチ42の少なくとも一方を接続する。

Description

ハイブリッド車両用駆動装置
 本発明は、ハイブリッド車両用駆動装置に関する。
 従来、内燃機関と、電動機と、第1断接手段と、第2断接手段と、を備える車両用駆動装置が知られている(例えば、特許文献1参照)。
 特許文献1の車両用駆動装置200は、図10に示すように、電動機210に接続されるとともに第1断接手段205によって選択的に内燃機関出力軸204と連結される第1入力軸202aと、第2断接手段206によって選択的に内燃機関出力軸204に連結される第2入力軸202bと、被駆動部に動力を出力する出力軸203と、第1入力軸202a上に配置され第1同期装置230、231を介して第1入力軸202aに選択的に連結される複数のギヤよりなる第1ギヤ群と、第2入力軸202b上に配置され第2同期装置216、217を介して第2入力軸202bに選択的に連結される複数のギヤよりなる第2ギヤ群と、出力軸203上に配置され第1ギヤ群のギヤと第2ギヤ群のギヤと噛合する複数のギヤよりなる第3ギヤ群と、を備えたツインクラッチ式変速機を有する。
日本国特開2007-307995号公報
 このように複数の断接手段を有する変速機を用いて、断接手段により駆動軸を内燃機関から切り離し、電動機のみの動力によってEVモードで走行することが知られている。しかしながら、断接手段により内燃機関を切り離して走行している際に要求駆動力が増加した場合、内燃機関を再度始動させるには断接手段を再接続する必要があるが、このような制御によって応答性が悪くなってしまうおそれがある。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、早い応答性と燃費の向上を両立できるハイブリッド車両用駆動装置を提供することである。
 上記目的を達成するために、請求項1に係る発明は、全ての気筒を運転する全筒運転と少なくとも一部の気筒を休止して運転する休筒運転とを切替可能な内燃機関(例えば、後述の実施形態におけるエンジン6)と、電動機(例えば、後述の実施形態におけるモータ7)と、を駆動源とするハイブリッド車両に用いられ、前記電動機に電力を供給する蓄電器(例えば、後述の実施形態におけるバッテリ3)と、前記内燃機関の出力軸及び前記電動機からの機械的動力を、前記電動機と係合する第1入力軸(例えば、後述の実施形態の第1主軸11)で受け、複数の変速段(例えば、後述の実施形態の第3速用ギヤ対23、第5速用ギヤ対25)のいずれかを係合状態にして前記第1入力軸と駆動輪とを係合させることが可能な第1変速機構と、前記内燃機関の出力軸からの機械的動力を第2入力軸(例えば、後述の実施形態の第2中間軸16)で受け、複数の変速段(例えば、後述の実施形態の第2速用ギヤ対22、第4速用ギヤ対24)のいずれかを係合状態にして前記第2入力軸と駆動輪とを係合させることが可能な第2変速機構と、前記内燃機関の出力軸と前記第1入力軸とを係合させることが可能な第1断接部(例えば、後述の実施形態の第1クラッチ41)と、前記内燃機関の出力軸と前記第2入力軸とを係合させることが可能な第2断接部(例えば、後述の実施形態の第2クラッチ42)と、を有する変速機(例えば、後述の実施形態の変速機20)を備えるハイブリッド車両用駆動装置であって、前記電動機の駆動力のみにより前記第1入力軸を介してEVモードで走行可能であり、車両の要求駆動力が前記内燃機関の休筒運転での駆動力よりも小さい場合に前記内燃機関の休筒運転の要否を判断する休筒運転要否判断部(例えば、後述の実施形態のECU5)をさらに備え、前記休筒運転要否判断部により休筒運転が不要と判断された場合、前記第1断接部および前記第2断接部を切断してEVモードで走行可能であり、前記休筒運転要否判断部により休筒運転が必要と判断された場合、前記内燃機関を休筒運転すると共に、前記第1断接部および前記第2断接部の少なくとも一方を接続することを特徴とする。
 請求項2に係る発明は、請求項1に記載のハイブリッド車両用駆動装置において、前記休筒運転要否判断部は、パドルシフトが選択されている場合に、休筒運転が必要と判断することを特徴とする。
 請求項3に係る発明は、請求項1に記載のハイブリッド車両用駆動装置において、前記休筒運転要否判断部は、スポーツモードが選択されている場合に、休筒運転が必要と判断することを特徴とする。
 請求項4に係る発明は、請求項1から3のいずれか1項に記載のハイブリッド車両用駆動装置において、前記休筒運転要否判断部は、前記電動機により回生発電を行う場合に、休筒運転が必要と判断することを特徴とする。
 請求項5に係る発明は、請求項1から3のいずれか1項に記載のハイブリッド車両用駆動装置において、前記休筒運転要否判断部は、車両が巡航走行している場合に、休筒運転が必要と判断することを特徴とする。
 請求項6に係る発明は、請求項1から5のいずれか1項に記載のハイブリッド車両用駆動装置において、前記休筒運転要否判断部は、車両が慣性走行している場合に、休筒運転が必要と判断することを特徴とする。
 請求項7に係る発明は、請求項1から6のいずれか1項に記載のハイブリッド車両用駆動装置において、前記第1断接部を接続したまま前記内燃機関を休筒運転すると共にEVモードで走行している時に、前記第2入力軸へのプレシフトを行うと共に前記第1断接部から前記第2断接部への切替を行うことを特徴とする。
 請求項8に係る発明は、請求項1に記載のハイブリッド車両用駆動装置において、カーナビゲーションシステムと連動する走行状態予測部(例えば、後述の実施形態のECU5)を備え、前記休筒運転要否判断部は、前記走行状態予測部によりEVモードから他の走行モードへの切替が予測される場合に、休筒運転が必要と判断することを特徴とする。
 請求項9に係る発明は、請求項1に記載のハイブリッド車両用駆動装置において、前記内燃機関の吸気量を制御可能な電子制御スロットル(例えば、後述の実施形態の電子制御スロットル66)を備え、車両の要求駆動力が前記内燃機関の休筒運転での駆動力よりも小さい場合には、前記内燃機関を休筒運転で運転すると共に、要求駆動力の増大に応じて前記電子制御スロットルの開度を増加させる制御を行い、車両の要求駆動力が、前記内燃機関の休筒運転での駆動力よりも大きく、且つ、前記内燃機関の休筒運転での駆動力と前記電動機により出力可能な駆動力との和より小さい場合には、前記内燃機関を休筒運転で運転すると共に、前記電動機に前記要求駆動力と前記内燃機関の休筒運転での駆動力との差分を出力させる制御を行い、車両の要求駆動力が、前記内燃機関の休筒運転での駆動力と前記電動機により出力可能な駆動力との和より大きい場合には、前記内燃機関を休筒運転から全筒運転に切り替えると共に、前記電子制御スロットルの開度を全筒運転における開度に変更するよう制御することを特徴とする。
 請求項10に係る発明は、請求項1に記載のハイブリッド車両用駆動装置において、前記休筒運転は、一部の気筒のみを休止して運転する一部休筒運転と、全ての気筒を休止して運転する全休筒運転と、を含み、車両の要求駆動力が前記内燃機関の全筒運転での駆動力よりも小さく、前記内燃機関の一部休筒運転によりBSFCボトム運転が可能である場合には、前記内燃機関を一部休筒運転するよう制御し、車両の要求駆動力が前記内燃機関の全筒運転での駆動力よりも小さく、その差が所定値以上である場合には、前記蓄電器の残容量および前記要求駆動力に応じて、EVモードで走行するか、前記内燃機関を全休筒運転するよう制御することを特徴とする。
 請求項1の発明によれば、車両の要求駆動力が内燃機関の休筒運転での駆動力より小さい場合には、必要に応じて内燃機関を休筒運転することができるので、燃費を向上することができると共に、内燃機関の駆動力が必要となった場合に内燃機関を速やかに駆動させることができる。
 請求項2の発明によれば、早い応答性を要求されるパドルシフト選択時に、内燃機関の再駆動を速やかに行うことができる。
 請求項3の発明によれば、早い応答性が要求されるスポーツモード選択時に、内燃機関の再駆動を速やかに行うことができる。
 請求項4の発明によれば、エネルギーの回生ロスを低減できるため、さらに燃費を向上することができると共に内燃機関の再駆動を速やかに行うことができる。
 請求項5の発明によれば、キックダウン変速を行なう場合でも、ショックを生じさせることなく、安定した走行を応答性よく行うことができる。
 請求項6の発明によれば、チップ-イン変速を行う場合でも、ショックを生じさせることなく、安定した走行を応答性よく行うことができる。
 請求項7の発明によれば、次の変速段での内燃機関の再駆動を速やかに行うことができる。
 請求項8の発明によれば、ナビゲーションシステムによって早期にEVモードから他の走行モードへの切り替えが予測できる場合に内燃機関を休筒運転するので、実際に内燃機関の駆動力が必要となった場合にも内燃機関の再駆動を速やかに行うことができる。
 請求項9、10の発明によれば、要求駆動力に応じて内燃機関の運転状態を切り替えることができるので、燃費をさらに向上することができる。
本発明のハイブリッド車両用駆動装置の一概略構成図である。 図1のハイブリッド車両用駆動装置の制御系の概略構成図である。 標準制御マップの説明図である。 1stEVモードにおけるハイブリッド車両用駆動装置を示し、(a)は速度線図であり、(b)はトルクの伝達状況を示す図である。 1stEVモード 1st全休筒運転におけるハイブリッド車両用駆動装置を示す図である。 1stEVモード 2nd全休筒運転におけるハイブリッド車両用駆動装置を示す図である。 第1実施形態のハイブリッド車両用駆動装置の動作を示すフローチャートである。 EVモード気筒休止判断の処理を示すフローチャートである。 第1実施形態の変形例のハイブリッド車両用駆動装置の動作を示すフローチャートである。 特許文献1の車両用駆動装置の概略図である。
 以下、本発明のハイブリッド車両用駆動装置の一実施形態ついて図1を参照しながら説明する。
 本実施形態のハイブリッド車両用駆動装置1は、図1に示すように、車両(図示せず)の駆動軸9,9を介して駆動輪DW,DW(被駆動部)を駆動するためのものであり、駆動源である内燃機関(以下「エンジン」という)6と、電動機(以下「モータ」という)7と、動力を駆動輪DW,DWに伝達するための変速機20と、を備えている。
 エンジン6は、例えばSOHCのV型6気筒エンジンであって、このエンジン6のクランク軸6aには、変速機20の第1クラッチ(第1断接部)41と第2クラッチ(第2断接部)42が設けられている。尚、エンジン6はVTEC(登録商標:可変バルブ機構)を備えていてもよく、気筒配置は直列や水平でもよい。また、エンジン6の気筒数は6に限られず、馬力等に応じて適宜選択できる。
 モータ7は、3相ブラシレスDCモータであり3n個の電機子71aで構成されたステータ71と、このステータ71に対向するように配置されたロータ72とを有している。各電機子71aは、鉄芯71bと、この鉄芯71bに巻き回されたコイル71cで構成されており、不図示のケーシングに固定され、回転軸を中心に周方向にほぼ等間隔で並んでいる。3n個のコイル71cは、n組のU相、V相、W相の3相コイルを構成している。
 ロータ72は、鉄芯72aと、回転軸を中心にほぼ等間隔で並んだn個の永久磁石72bを有しており、隣り合う各2つの永久磁石72bの極性は、互いに異なっている。鉄芯72aを固定する固定部72cは、中空円筒状を有し、後述する遊星歯車機構30のリングギヤ35の外周側に配置され、遊星歯車機構30のサンギヤ32に連結されている。これにより、ロータ72は、遊星歯車機構30のサンギヤ32と一体に回転するように構成されている。
 遊星歯車機構30は、サンギヤ32と、このサンギヤ32と同軸上に配置され、かつ、このサンギヤ32の周囲を取り囲むように配置されたリングギヤ35と、サンギヤ32とリングギヤ35に噛合されたプラネタリギヤ34と、このプラネタリギヤ34を自転可能、かつ、公転可能に支持するキャリア36とを有している。このようにして、サンギヤ32とリングギヤ35とキャリア36が、相互に差動回転自在に構成されている。
 リングギヤ35には、リングギヤ35の回転を停止(ロック)可能に構成されたブレーキ機構61が設けられている。なお、ブレーキ機構61の代わりにシンクロ機構を用いてもよい。
 変速機20は、前述した第1クラッチ41と第2クラッチ42と、遊星歯車機構30と、後述する複数の変速ギヤ群を備えた、いわゆるデュアルクラッチ式変速機である。
 より具体的に、変速機20は、エンジン6のクランク軸6aと同軸(回転軸線A1)上に配置された第1主軸11(第1の入力軸)と、第2主軸12と、連結軸13と、回転軸線A1と平行に配置された回転軸線B1を中心として回転自在なカウンタ軸14(出力軸)と、回転軸線A1と平行に配置された回転軸線C1を中心として回転自在な第1中間軸15と、回転軸線A1と平行に配置された回転軸線D1を中心として回転自在な第2中間軸16(第2の入力軸)と、回転軸線A1と平行に配置された回転軸線E1を中心として回転自在なリバース軸17を備えている。
 第1主軸11には、エンジン6側に第1クラッチ41が設けられ、エンジン6側とは反対側に遊星歯車機構30のサンギヤ32とモータ7のロータ72が取り付けられている。従って、第1主軸11は、第1クラッチ41によって選択的にエンジン6のクランク軸6aと連結されるとともにモータ7と直結され、エンジン6及び/又はモータ7の動力がサンギヤ32に伝達されるように構成されている。
 第2主軸12は、第1主軸11より短く中空に構成されており、第1主軸11のエンジン6側の周囲を覆うように相対回転自在に配置されている。また、第2主軸12には、エンジン6側に第2クラッチ42が設けられ、エンジン6側とは反対側にアイドル駆動ギヤ27aが一体に取り付けられている。従って、第2主軸12は、第2クラッチ42によって選択的にエンジン6のクランク軸6aと連結され、エンジン6の動力がアイドル駆動ギヤ27aへ伝達されるように構成されている。
 連結軸13は、第1主軸11より短く中空に構成されており、第1主軸11のエンジン6側とは反対側の周囲を覆うように相対回転自在に配置されている。また、連結軸13には、エンジン6側に第3速用駆動ギヤ23aが一体に取り付けられ、エンジン6側とは反対側に遊星歯車機構30のキャリア36が一体に取り付けられている。従って、プラネタリギヤ34の公転により連結軸13に取り付けられたキャリア36と第3速用駆動ギヤ23aが一体に回転するように構成されている。
 さらに、第1主軸11には、連結軸13に取り付けられた第3速用駆動ギヤ23aと第2主軸12に取り付けられたアイドル駆動ギヤ27aとの間に、第1主軸11と相対回転自在に第5速用駆動ギヤ25aが設けられるとともに第1主軸11と一体に回転するリバース従動ギヤ28bが取り付けられている。さらに第3速用駆動ギヤ23aと第5速用駆動ギヤ25aとの間には、第1主軸11と第3速用駆動ギヤ23a又は第5速用駆動ギヤ25aとを連結又は開放する第1変速用シフター51が設けられている。そして、第1変速用シフター51が第3速用接続位置でインギヤするときには、第1主軸11と第3速用駆動ギヤ23aが連結して一体に回転し、第5速用接続位置でインギヤするときには、第1主軸11と第5速用駆動ギヤ25aが一体に回転し、第1変速用シフター51がニュートラル位置にあるときには、第1主軸11は第3速用駆動ギヤ23aと第5速用駆動ギヤ25aに対し相対回転する。なお、第1主軸11と第3速用駆動ギヤ23aが一体に回転するとき、第1主軸11に取り付けられたサンギヤ32と第3速用駆動ギヤ23aに連結軸13で連結されたキャリア36が一体に回転するとともに、リングギヤ35も一体に回転し、遊星歯車機構30が一体となる。
 第1中間軸15には、第2主軸12に取り付けられたアイドル駆動ギヤ27aと噛合する第1アイドル従動ギヤ27bが一体に取り付けられている。
 第2中間軸16には、第1中間軸15に取り付けられた第1アイドル従動ギヤ27bと噛合する第2アイドル従動ギヤ27cが一体に取り付けられている。第2アイドル従動ギヤ27cは、前述したアイドル駆動ギヤ27aと第1アイドル従動ギヤ27bとともに第1アイドルギヤ列27Aを構成している。また、第2中間軸16には、第1主軸11周りに設けられた第3速用駆動ギヤ23aと第5速用駆動ギヤ25aと対応する位置にそれぞれ第2中間軸16と相対回転可能な第2速用駆動ギヤ22aと第4速用駆動ギヤ24aとが設けられている。さらに第2中間軸16には、第2速用駆動ギヤ22aと第4速用駆動ギヤ24aとの間に、第2中間軸16と第2速用駆動ギヤ22a又は第4速用駆動ギヤ24aとを連結又は開放する第2変速用シフター52が設けられている。そして、第2変速用シフター52が第2速用接続位置でインギヤするときには、第2中間軸16と第2速用駆動ギヤ22aとが一体に回転し、第2変速用シフター52が第4速用接続位置でインギヤするときには、第2中間軸16と第4速用駆動ギヤ24aとが一体に回転し、第2変速用シフター52がニュートラル位置にあるときには、第2中間軸16は第2速用駆動ギヤ22aと第4速用駆動ギヤ24aに対し相対回転する。
 カウンタ軸14には、エンジン6側とは反対側から順に第1共用従動ギヤ23bと、第2共用従動ギヤ24bと、パーキングギヤ21と、ファイナルギヤ26aとが一体に取り付けられている。
 ここで、第1共用従動ギヤ23bは、連結軸13に取り付けられた第3速用駆動ギヤ23aと噛合して第3速用駆動ギヤ23aと共に第3速用ギヤ対23を構成し、第2中間軸16に設けられた第2速用駆動ギヤ22aと噛合して第2速用駆動ギヤ22aと共に第2速用ギヤ対22を構成する。
 第2共用従動ギヤ24bは、第1主軸11に設けられた第5速用駆動ギヤ25aと噛合して第5速用駆動ギヤ25aと共に第5速用ギヤ対25を構成し、第2中間軸16に設けられた第4速用駆動ギヤ24aと噛合して第4速用駆動ギヤ24aと共に第4速用ギヤ対24を構成する。
 ファイナルギヤ26aは差動ギヤ機構8と噛合して、差動ギヤ機構8は、駆動軸9,9を介して駆動輪DW,DWに連結されている。従って、カウンタ軸14に伝達された動力はファイナルギヤ26aから差動ギヤ機構8、駆動軸9,9、駆動輪DW,DWへと出力される。
 リバース軸17には、第1中間軸15に取り付けられた第1アイドル従動ギヤ27bと噛合する第3アイドル従動ギヤ27dが一体に取り付けられている。第3アイドル従動ギヤ27dは、前述したアイドル駆動ギヤ27aと第1アイドル従動ギヤ27bとともに第2アイドルギヤ列27Bを構成している。また、リバース軸17には、第1主軸11に取り付けられた後進用従動ギヤ28bと噛合する後進用駆動ギヤ28aがリバース軸17と相対回転自在に設けられている。後進用駆動ギヤ28aは、後進用従動ギヤ28bとともに後進用ギヤ列28を構成している。さらに後進用駆動ギヤ28aのエンジン6側とは反対側にリバース軸17と後進用駆動ギヤ28aとを連結又は開放する後進用シフター53が設けられている。そして、後進用シフター53が後進用接続位置でインギヤするときには、リバース軸17と後進用駆動ギヤ28aとが一体に回転し、後進用シフター53がニュートラル位置にあるときには、リバース軸17と後進用駆動ギヤ28aとが相対回転する。
 なお、第1変速用シフター51、第2変速用シフター52、後進用シフター53は、接続する軸とギヤの回転数を一致させる同期機構(シンクロナイザー機構)を有するクラッチ機構を用いている。
 このように構成された変速機20は、2つの変速軸の一方の変速軸である第1主軸11上に第3速用駆動ギヤ23aと第5速用駆動ギヤ25aからなる奇数段ギヤ群(第1ギヤ群)が設けられ、2つの変速軸の他方の変速軸である第2中間軸16上に第2速用駆動ギヤ22aと第4速用駆動ギヤ24aからなる偶数段ギヤ群(第2ギヤ群)が設けられる。
 また、ハイブリッド車両用駆動装置1には、さらにエアコン用コンプレッサ112とオイルポンプ122とが設けられ、オイルポンプ122は、回転軸線A1~E1と平行に配置されたオイルポンプ用補機軸19上にオイルポンプ用補機軸19と一体回転可能に取り付けられている。オイルポンプ用補機軸19には、後進用駆動ギヤ28aと噛合するオイルポンプ用従動ギヤ28cと、エアコン用駆動ギヤ29aとが一体回転可能に取り付けられて、第1主軸11を回転させるエンジン6及び/又はモータ7の動力が伝達される。
 また、エアコン用コンプレッサ112は、回転軸線A1~E1と平行に配置されたエアコン用補機軸18上にエアコン用クラッチ121を介して設けられている。エアコン用補機軸18には、エアコン用駆動ギヤ29aからチェーン29cを介して動力が伝達されるエアコン用従動ギヤ29bがエアコン用補機軸18と一体回転可能に取り付けられて、オイルポンプ用補機軸19からエンジン6及び/又はモータ7の動力がエアコン用駆動ギヤ29a、チェーン29c及びエアコン用従動ギヤ29bで構成されるエアコン用伝達機構29を介して伝達される。なお、エアコン用コンプレッサ112は、不図示のエアコン作動用ソレノイドによりエアコン用クラッチ121を断接することで、動力の伝達が遮断することができるように構成される。
 以上の構成により、本実施形態のハイブリッド車両用駆動装置1は、以下の第1~第5の伝達経路を有している。
(1)第1伝達経路は、エンジン6のクランク軸6aが、第1主軸11、遊星歯車機構30、連結軸13、第3速用ギヤ対23(第3速用駆動ギヤ23a、第1共用従動ギヤ23b)、カウンタ軸14、ファイナルギヤ26a、差動ギヤ機構8、駆動軸9,9を介して、駆動輪DW,DWに連結される伝達経路である。ここで、遊星歯車機構30の減速比は、第1伝達経路を介して駆動輪DW,DWに伝達されるエンジントルクが第1速相当となるように設定されている。即ち、遊星歯車機構30の減速比と第3速用ギヤ対23の減速比をかけ合わせた減速比が第1速相当となるように設定されている。
(2)第2伝達経路は、エンジン6のクランク軸6aが、第2主軸12、第1アイドルギヤ列27A(アイドル駆動ギヤ27a、第1アイドル従動ギヤ27b、第2アイドル従動ギヤ27c)、第2中間軸16、第2速用ギヤ対22(第2速用駆動ギヤ22a、第1共用従動ギヤ23b)又は第4速用ギヤ対24(第4速用駆動ギヤ24a、第2共用従動ギヤ24b)、カウンタ軸14、ファイナルギヤ26a、差動ギヤ機構8、駆動軸9,9を介して、駆動輪DW,DWに連結される伝達経路である。
(3)第3伝達経路は、エンジン6のクランク軸6aが、第1主軸11、第3速用ギヤ対23(第3速用駆動ギヤ23a、第1共用従動ギヤ23b)又は第5速用ギヤ対25(第5速用駆動ギヤ25a、第2共用従動ギヤ24b)、カウンタ軸14、ファイナルギヤ26a、差動ギヤ機構8、駆動軸9,9を介して、遊星歯車機構30を介さずに、駆動輪DW,DWに連結される伝達経路である。
(4)第4伝達経路は、モータ7が、遊星歯車機構30又は第3速用ギヤ対23(第3速用駆動ギヤ23a、第1共用従動ギヤ23b)又は第5速用ギヤ対25(第5速用駆動ギヤ25a、第2共用従動ギヤ24b)、カウンタ軸14、ファイナルギヤ26a、差動ギヤ機構8、駆動軸9,9を介して、駆動輪DW,DWに連結される伝達経路である。
(5)第5伝達経路は、エンジン6のクランク軸6aが、第2主軸12、第2アイドルギヤ列27B(アイドル駆動ギヤ27a、第1アイドル従動ギヤ27b、第3アイドル従動ギヤ27d)、リバース軸17、後進用ギヤ列28(後進用駆動ギヤ28a、後進用従動ギヤ28b)、遊星歯車機構30、連結軸13、第3速用ギヤ対23(第3速用駆動ギヤ23a、第1共用従動ギヤ23b)、カウンタ軸14、ファイナルギヤ26a、差動ギヤ機構8、駆動軸9,9を介して、駆動輪DW,DWに連結される伝達経路である。
 また、図2に示すように、本実施形態のハイブリッド車両用駆動装置1において、モータ7は、その動作を制御するパワーコントロールユニット(以下、PDUという。)2に接続されている。PDU2は、モータ7へ電力を供給またはモータ7からの電力を充電するバッテリ3に接続されている。モータ7は、バッテリ3からPDU2を介して供給された電力によって駆動される。また、モータ7は、減速走行時における駆動輪DW,DWの回転やエンジン6の動力により回生発電を行って、バッテリ3の充電(エネルギー回収)を行うことが可能である。さらに、PDU2は、電気制御ユニット(以下、ECUという。)5に接続されている。エンジン6には、スロットルバルブ(不図示)を電子制御する電子制御スロットル(ETCS:Electronic Throttle Control System)66が接続されており、ECU5にて算出されるスロットル開度に応じてスロットルバルブを直接的に電子制御し、エンジン6の吸気量を制御する。ECU5は、車両全体の各種制御をするための制御装置であり、モード検出部55やアクセルペダル開度検出部(AP)56と接続されている。
 ECU5には、加速要求、制動要求、エンジン回転数、モータ回転数、バッテリ3の残容量(SOC:State of Charge)や温度等の状態、モード検出部55からの情報、アクセルペダル開度検出部56により検出されたアクセルペダル開度情報、第1,第2主軸11、12の回転数、カウンタ軸14等の回転数、車速、変速段、シフトポジションなどが入力される。一方、ECU5からは、エンジン6を制御する信号、PDU2を制御する信号、モータ7を制御する信号、バッテリ3における発電状態・充電状態・放電状態などを示す信号、第1,第2変速シフター51、52、後進用シフター53を制御する信号、ブレーキ機構61の締結(ロック)と開放(ニュートラル)を制御する信号、エアコン用クラッチ121の締結と開放を制御する出力信号などが出力される。
 また、ECU5は、バッテリ3のSOCに応じて各種制御の実施可否を判断するために、図3に示すような制御マップ(Map)を有しており、基本的にはこの制御マップに基づいて、ENG始動、アイドルストップ、減速回生、ENG切離し、EVモードでの走行、MOT回転数合わせの可否が判断される。なお、図3中、○は実施可能、×は禁止、△は条件付実施可能となっている。
 この制御マップMapでは、SOCを少ない方から多い方にCゾーン、Bゾーン、Aゾーン、Dゾーンの4つに分類するとともに、さらにAゾーンをSOCの少ない方から多い方にA-Lゾーン、A-Mゾーン、A-Hゾーンの3つに分類し、トータルで6つのゾーンに区分けしている。そして、最大充電量に近いDゾーンでは、減速回生やENG切離しを条件付で許容し、BゾーンとCゾーンではEV走行やアイドルストップを禁止し、A-Mゾーンを目標充電量として制御している。
 このように構成されたハイブリッド車両用駆動装置1は、第1,第2クラッチ41、42の断接を制御するとともに第1変速用シフター51、第2変速用シフター52、ブレーキ機構61および後進用シフター53の係合位置を制御することにより、エンジン6で第1~第5速走行および後進走行を行うことができる。
 第1速走行は、第1クラッチ41を締結しブレーキ機構61を係合することで第1伝達経路を介して駆動力が駆動輪DW,DWに伝達される。第2速走行は、第2クラッチ42を締結して第2変速用シフター52を第2速用接続位置でインギヤすることで第2伝達経路を介して駆動力が駆動輪DW,DWに伝達され、第3速走行は、第1クラッチ41を締結して第1変速用シフター51を第3速用接続位置でインギヤすることで第3伝達経路を介して駆動力が駆動輪DW,DWに伝達される。
 また、第4速走行は、第2変速用シフター52を第4速用接続位置でインギヤすることで第2伝達経路を介して駆動力が駆動輪DW,DWに伝達され、第5速走行は、第1変速用シフター51を第5速用接続位置でインギヤすることで第2伝達経路を介して駆動力が駆動輪DW,DWに伝達される。さらに、第2クラッチ42を締結して後進用シフター53を接続することで、第5伝達経路を介して後進走行がなされる。
 これらの変速段は、アクセルペダル開度検出部56が検出したアクセル開度に応じて算出される車両の要求駆動力や、モード検出部55により検出される走行のモード、シフトポジション、車速等に基づき、ECU5によって切り替えられる。これに加え、本実施形態のハイブリッド車両用駆動装置1においては、車両の要求駆動力に基づき、エンジン6の運転状態を切り替えることが可能である。
 ここで、前述したように、本実施形態のハイブリッド車両用駆動装置1におけるエンジン6は、V型6気筒エンジンであり、気筒休止運転可能な可変バルブタイミング機構(VT)65を備える。6つの気筒はそれぞれ可変バルブタイミング機構65により閉状態を維持できるような構造となっている。具体的には、ECU5からの指令に応じて、可変バルブタイミング機構65が休止させる気筒について、運転中には一体となって駆動されるカムリフト用ロッカーアーム(図示せず)と弁駆動用ロッカーアーム(図示せず)とを分離することにより、気筒の吸気弁と排気弁(図示せず)とが閉状態で維持される。このように、運転者のアクセルペダルの操作に基づいて導出される車両の要求駆動力や車両の走行状態に基づき、ECU5からの指令に応じて可変バルブタイミング機構65が気筒ごとにロッカーアームを制御することにより、6つの気筒の全てが休止した状態の全休筒運転と、気筒の一部が休止した状態の一部休筒運転と、6つの気筒の全てが駆動される全筒運転とが切り換えられることとなる。
 従って、車両の要求駆動力があまり大きくない場合、例えばエンジン6を一部休筒運転した場合に出力可能な出力よりも小さい場合には、ECU5の指令に基づいて、電子制御スロットルの開度を一部休筒運転における開度に変更し、可変バルブタイミング機構65によりエンジン6を一部休筒運転した状態でエンジン走行を行うことができる。エンジン6を一部休筒運転した状態で走行すすることにより、ポンピングロスを低減することができると共に燃料消費量を削減することができ、燃費の向上が可能となる。車両の要求駆動力が一部休筒運転における出力よりも小さい限りは、エンジン6を一部休筒運転させると共に、要求駆動力の増大に応じて電子制御スロットルの開度を増加させるように制御すればよい。
 また、車両の要求駆動力が、エンジン6を一部休筒運転した場合に出力可能な出力よりも大きい場合であっても、モータ7の出力によりエンジン6をアシストすることによって、エンジン6の一部休筒運転を継続することができる。従って、車両の要求駆動力がエンジン6を一部休筒運転した場合の出力とモータ7の出力との和よりも小さい場合には、ECU5は、エンジン6を一部休筒運転させると共に、エンジン6を一部休筒運転した場合の出力と要求駆動力との差分をモータ7により出力するように制御する。
 そして、車両の要求駆動力がエンジン6を一部休筒運転した場合の出力とモータ7の出力との和を超えた場合には、エンジン6を全筒運転に切り替えると共に、電子制御スロットルの開度を全筒運転における開度に変更する。このように、本実施形態のハイブリッド車両用駆動装置1によれば、車両の要求駆動力に応じてエンジン6の運転状態を適切に切り替えることができ、燃費を向上することが可能となる。
 また、エンジン6が全筒運転を行っている場合であっても、車両の減速等により回生発電が行われる場合には、一時的にエンジン6を一部休筒運転または全休筒運転を行うこともできる。回生発電中にエンジン6を休筒運転すると、エンジン6の駆動によってエネルギーを消費せず、摩擦を低減することができるためにエネルギーの回生ロスを低減できるので、発電によってより多くのエネルギーを得ることができ、さらに燃費を向上することができ、早急な制動力を得ることも可能となる。
 特に第2クラッチ42を締結し、偶数段で、例えば第2速走行を行っている際に減速する場合には、例えば第1変速用シフター51を第3速用駆動ギヤ23aにインギヤすることによってロータ72を回転させ、回生発電を行う。この時エンジン6を休筒運転していれば、エンジン6の駆動によってエネルギーを消費しないために燃費を向上することができ、さらに早急な制動力を得ることも可能となる。また、第2クラッチ42を締結したままで回生発電を行うことができるので、再び加速を行う際には第2速走行に速やかに復帰することができる。
 ところで、本実施形態のハイブリッド車両用駆動装置1においては、エンジン走行中にブレーキ機構61を係合したり、第1,第2変速用シフター51、52をプレシフトすることによりモータ7でアシストまたは回生したり、さらにアイドリング中であってもモータ7でエンジン6を始動したりバッテリ3を充電することもできる。さらに、第1及び第2クラッチ41、42を切断してモータ7でEV走行を行うこともできる。
 EV走行の走行モードとしては、ブレーキ機構61を係合することで第4伝達経路を介して走行する第1速EV走行モードと、第1変速用シフター51を第3速用接続位置でインギヤすることで第4伝達経路を介して走行する第3速EV走行モードと、第1変速用シフター51を第5速用接続位置でインギヤすることで第4伝達経路を介して走行する第5速EV走行モードとが存在する。
 ここで、EV走行の一例として第1速EV走行(1st EVモード)について図4を参照して説明する。
 1st EVモードでは、初期状態からブレーキ機構61をロック状態(OWC ロックON)にすることによりなされる。この状態で、モータ7を駆動(正転方向にトルクを印加)すると、図4(a)に示すように、ロータ72に接続された遊星歯車機構31のサンギヤ32が正転方向に回転する。このとき、図4(b)に示すように、第1及び第2クラッチ41、42が切断されているため、サンギヤ32に伝達された動力は第1主軸11からエンジン6のクランク軸6aに伝達されることはない。そして、ブレーキ機構61のロックがなされているため、モータトルクがサンギヤ32からキャリア36に減速して伝達され、第3速用ギヤ対23を通る第4伝達経路を介して駆動輪DW,DWに伝達される。
 また、この1st EVモードでの後進走行は、モータ7を逆転方向に駆動し、逆転方向にモータトルクを印加することで行うことができる。
 このようにEVモードで走行する場合、通常第1,第2クラッチ41,42は切断されており、エンジン6は単にアイドリングするか、または停止している。ところで、EVモードで走行している場合に車両の要求駆動力が増大した場合には、EVモードからエンジン6の駆動力を用いて走行するモード(エンジン走行、アシスト走行等)へと切り替える必要が生じる。この切り替えの際、EVモードで走行中にエンジン6がアイドリングしている場合には、第1クラッチ41または第2クラッチ42を締結すると共に、第1主軸11または第2主軸12とクランク軸6aの回転数を合わせる必要がある。また、エンジン6が停止している場合には、第1クラッチ41または第2クラッチ42を締結させることに加え、エンジン6を始動させる必要もある。
 ところで、スポーツモードやパドルシフトが選択されている場合などには、運転者の操作に対する早い応答性が要求されていると考えられる。このように早い応答性が要求されている場合、EVモードから走行モードを切り替えるために種々の制御を行わなければならないのでは、運転者の要求を満たすことができないおそれがある。
 そこで、本実施形態のハイブリッド車両用駆動装置1において、運転者が早い応答性を要求するような場合には、EVモードからエンジン6の駆動力を用いる他の走行モードへと迅速に切り替えできるように、第1クラッチ41または第2クラッチ42を締結したままでエンジン6を全休筒運転させてEVモードで走行できるようにする。これにより、エンジン6を駆動させる必要が生じた場合であっても、エンジン6の運転状態を全筒運転または一部休筒運転に切り替えることのみによって、迅速に走行モードを切り替えることが可能となる。
 図5は、1st EVモードで走行すると共に、第1クラッチ41を締結したままでエンジン6を全休筒運転させている場合を示す。図4と同様に、1st EVモードでは、モータ7の駆動により、遊星歯車機構31のサンギヤ32が正転方向に回転するのに応じて、トルクがサンギヤ32からキャリア36に伝達され、第3速用ギヤ対23を通る第4伝達経路を介して駆動輪DW,DWに伝達される。また、第1クラッチ41が締結されているため、サンギヤ32は第1主軸11を介してエンジン6のクランク軸6aと直結されており、クランク軸6aが第1主軸11と共に回転する。
 この状態からエンジン6の駆動力を利用できる状態にするには、第1クラッチ41が既に締結されているため、可変バルブタイミング機構65によってカムリフト用ロッカーアーム(図示せず)と弁駆動用ロッカーアーム(図示せず)とを一体で動かすように制御すればよい。当該構成によれば、第1クラッチ41を締結した際に必要となる第1主軸11およびクランク軸6aの回転数合わせの制御が必要ないので、エンジン6を速やかに駆動させることができる。
 このように、本実施形態のハイブリッド車両用駆動装置1によれば、EVモードからエンジン6を駆動する走行モードへと迅速に移行でき、運転者の応答性への要求を満たすことが可能となる。さらに、上記した早い応答性が要求される場合のほか、次のような場合にも、EVモードからエンジン6を駆動する走行モードへと迅速に移行できることによって、安定した走行が可能となる。
 例えば、オートマチック車において、運転者がアクセルペダルを一定に踏み込むことによって一定の速度で走行している場合、すなわち車両が巡航走行(クルーズ走行)を行っている場合に、運転者がアクセルペダルを急激に踏み込むと、ECU5は強制的にシフトダウンを行い(キックダウン)、急加速を行なう。EVモードで走行中に当該現象が生じた場合に、エンジン6を駆動させるのに時間がかかると、車両にショックが生じてしまうおそれがある。しかしながら、本実施形態では、EVモードからエンジン6を駆動する走行モードへと迅速に移行できることによって、キックダウンした場合にもエンジン6を駆動してスムーズに加速を行うことができるので、安定した走行を継続することが可能となる。従って、EVモードで巡航走行を行っている場合にも、第1クラッチ41または第2クラッチ42を締結したままでエンジン6を全休筒運転させておくことが好ましい。
 また、運転者がアクセルペダルを踏み込まず、車両が慣性のみにより走行している場合、すなわちアクセルペダルがアイドリングした状態で車両が慣性走行を行っている場合に、運転者がアクセルペダルを踏み込む(チップ-イン)と、瞬間的にトルクが増大する。EVモードで走行中に当該現象が生じた場合に、エンジン6を駆動させるのに時間がかかると、車両にショックが生じてしまうおそれがある。しかしながら、本実施形態では、EVモードからエンジン6を駆動する走行モードへと迅速に移行できることによって、チップ-インに応じてエンジン6の駆動力を増大させてスムーズに加速を行うことができ、安定した走行を継続することが可能となる。従って、EVモードで慣性走行を行っている場合にも、第1クラッチ41または第2クラッチ42を締結したままでエンジン6を全休筒運転させておくことが好ましい。
 さらに、減速中に回生発電を行う際にエンジン6が全休筒運転を行っている場合には、エンジン6の駆動によってエネルギーを消費しないためにエネルギーの回生ロスを低減しできるので、発電によってより多くのエネルギーを得ることができ、さらに燃費を向上することができる。従って、EVモードで走行中に回生発電を行う際にも、エンジン6を全休筒運転させておくことが好ましい。
 また、EVモードで走行している際に車速が高くなった場合等には、エンジン6を駆動する際に次の変速段で運転できるように、次の変速段にプレシフトしてから第2クラッチ42を締結することも可能である。図6は、1st EVモードで走行すると共に第2クラッチ42を締結し、第2速でエンジン6を全休筒運転させている場合を示す。図4と同様に、1st EVモードでは、モータ7の駆動により、遊星歯車機構31のサンギヤ32が正転方向に回転するのに応じて、トルクがサンギヤ32からキャリア36に伝達され、第3速用ギヤ対23を通る第4伝達経路を介して駆動輪DW,DWに伝達される。そして、1st EVモードで走行中に、第2変速用シフター52を第2速用接続位置でインギヤする(第2速にプレシフトする)ので、サンギヤ32の回転に伴い、第2速用駆動ギヤ22aと第2中間軸16とが一体となって回転する。第2中間軸16が回転することにより、第2中間軸16に取り付けられた第2アイドル従動ギヤ27cから第1アイドル従動ギヤ27b、アイドル駆動ギヤ27aを介して、第2主軸12が回転する。この状態で第2クラッチ42を締結することにより、クランク軸6aが第2主軸12と共に回転する。
 この状態からエンジン6の駆動力を利用できる状態にするには、第2クラッチ42が既に締結されているため、可変バルブタイミング機構65によってカムリフト用ロッカーアーム(図示せず)と弁駆動用ロッカーアーム(図示せず)とを一体で動かすように制御すればよい。当該構成によれば、第2クラッチ42を締結した際に必要となる第2主軸12およびクランク軸6aの回転数合わせの制御が必要ないので、エンジン6を次の変速段で速やかに駆動させることができる。
 図7は、本実施形態のハイブリッド車両用駆動装置1の動作を説明するフローチャートである。まず、ECU5は、車両の要求出力Dが、エンジン6を一部休筒運転した際のエンジン6の出力Prよりも小さいかどうかを判断する(ステップS11)。ステップS11において、要求出力D<一部休筒運転時のエンジン出力Prであると判断された場合、次にECU5は、現在車両がEVモードで走行しているか、またはEVモードでの走行が可能であるかどうかを判断する(ステップS12)。EVモードでの走行が可能であるかどうかは、車両の要求出力Dと、バッテリ3のSOC、温度等に基づき、ECU5によって判断される。ステップS12で、現在車両がEVモードで走行中か、またはEVモード走行可能であると判断された場合、ECU5はEVモード気筒休止判断を行う(ステップS13)。
 図8は、EVモード気筒休止判断の処理を説明するフローチャートである。まず、ECU5は、現在スポーツモードが選択されているかどうかを判断する(ステップS21)。ステップS21でスポーツモードが選択されていないと判断された場合、次にECU5は、現在パドルシフトが選択されているかどうかを判断する(ステップS22)。ステップS22でパドルシフトが選択されていないと判断された場合、ECU5は、現在回生走行中であるかどうかを判断する(ステップS23)。ステップS23で回生走行中でないと判断された場合、ECU5は、現在車両が、アクセルペダルを一定に踏み込んだ状態で走行中(巡航走行中)かどうかを判断する(ステップS24)。ステップS24で巡航走行中でないと判断された場合、ECU5は、現在車両が、アクセルペダルを踏み込まずに、車両の慣性のみによって走行中(慣性走行中)であるかどうかを判断する(ステップS25)。
 ステップS25で慣性走行中でないと判断された場合には、ECU5は、気筒休止は不要であると判断するとともに、第1,第2クラッチ41,42を切断し、モータ7の駆動力によってEVモードで走行するように制御し(ステップS26)、処理が終了する。
 ステップS21~ステップS26の判断のうち1つでも該当すると判断された場合にはエンジン6の応答性が要求されていると考えられるので、ECU5は、気筒休止が必要であると判断するとともに、第1クラッチ41または第2クラッチ42を締結したままエンジン6を全休筒運転するとともに、モータ7の駆動力によってEVモードで走行するように制御し(ステップS27)、処理が終了する。
 図7に戻って、ステップS12において、車両がEVモードで走行中ではなく、且つEVモードで走行可能でないと判断された場合には、ECU5は、エンジン6を一部休筒運転するよう制御し(ステップS14)、処理が終了する。
 また、ステップS11において、要求出力Dが一部休筒運転時のエンジン出力Pr以上であると判断された場合、すなわち、D≧Prであると判断された場合には、ECU5は次に、要求出力Dが、一部休筒運転時のエンジン出力Prとモータ7のPmとの和よりも小さいかどうか、すなわち、D<Pr+Pmであるかどうかを判断する(ステップS15)。ステップS15で、D<Pr+Pmであると判断された場合、ECU5は、エンジン6を一部休筒運転するように制御すると共に、要求出力と一部休筒運転におけるエンジン6の出力との差分をモータ7により出力するように制御し(ステップS16)、処理が終了する。従ってこの場合、一部休筒運転するエンジン6をモータ7によりアシストして走行することとなる。
 ステップS15において要求出力Dが、一部休筒運転時のエンジン出力Prとモータ7のPmとの和以上であると判断された場合、すなわち、D≧Pr+Pmであると判断された場合には、ECU5はエンジン6を全筒運転するよう制御し(ステップS17)、処理が終了する。
 以上説明したように、本実施形態に係るハイブリッド車両用駆動装置1によれば、車両の要求駆動力がエンジン6の休筒運転での駆動力より小さい場合には、必要に応じてエンジン6を休筒運転することができるので、燃費を向上することができると共に、エンジン6の駆動力が必要となった場合にエンジン6を速やかに駆動させることができる。特に、早い応答性を要求されるパドルシフト選択時やスポーツモード選択時に、エンジン6の再駆動を速やかに行うことができる。また、キックダウン変速やチップ-イン変速を行なう場合でも、ショックを生じさせることなく、安定した走行を応答性よく行うことができる。また、エネルギーの回生ロスを低減できるため、さらに燃費を向上することができると共に、エンジン6の再駆動を速やかに行うことができる。さらに、要求駆動力に応じてエンジン6の運転状態を切り替えることができるので、燃費をさらに向上することができる。
 尚、気筒休止の要否を判断するにあたっては、上記した諸条件を考慮することに加え、不図示のナビゲーションシステムから得られる道路状況等の情報を考慮してもよい。これらの情報に基づいてエンジン6の始動が早期に必要となることが予測される場合には、気筒休止が必要であると判断することができる。このような構成によれば、その後実際にエンジン6を駆動させて走行する必要が生じた場合にも、エンジン6の再駆動を速やかに行うことができる。
 また、エンジン6の全休筒運転または一部休筒運転中に変速が必要となった場合には、次のようにして変速段を変えることができる。
 例えば、エンジン6を全休筒運転すると共にEVモードで走行中、車速が高くなった場合には、現在の変速段よりも上の偶数段へとプレシフトを行うと共に第2クラッチ42を締結することにより、次にエンジン6を駆動する際に上の変速段で運転できるように制御する。これにより、次の変速段でのエンジン6の再駆動を速やかに行うことができる。
 また、例えば、減速時にはモータ7の回転数が低くなるが、モータ7の回転数が低くなりすぎると回生発電が困難になる。そこで、このような場合には、モータ7の回転数が高くなりすぎるのを防ぐために、現在の変速段よりも下の変速段へと変速するよう制御する。これにより、モータ7が過少回転になるのを防止し、効率よく回生発電を行うことができる。
 また、例えば、EVモードで登坂路を走行する場合などには、モータ7の回転数が高くなることがある。このような場合には、モータ7の回転数が高くなりすぎるのを防ぐために、現在の変速段よりも上の変速段へと変速する必要がある。このような場合に、一部休筒運転を行なっている場合には、上の偶数段へと変速する。また、全休筒運転を行っていると共に要求駆動力が大きい時は、一旦偶数段に切り替えてから奇数段に変速を行うか、AMT変速で一旦トルクを抜いてから、例えば3速から5速へと変速を行う。要求駆動力が小さい時は、モータ7の回転数を下げるため偶数段に切り替えを行い、奇数段の許容回転数になるのを待ってから再度奇数段へと変速を行う。これにより、モータ7が過回転になるのを防止することができる。
(変形例)
 本発明の変形例について、図9を参照して以下説明する。本変形例の構成に関し、上述した実施形態と同様の部分についてはその説明を省略する。
 本変形例においては、走行モードを決定する際に、全筒運転時または一部休筒運転時のBSFC(正味燃料消費率:Brake Specific Fuel Consumption)ボトム運転出力を考慮する。ここで、全筒運転時または一部休筒運転時のBSFCボトム運転出力とは、全筒運転時または一部休筒運転時に燃料消費量が最少となるような運転点での出力を意味する。これにより、本変形例では、エンジン6を運転する際の燃料消費量を最少にするよう制御することが可能となる。
 図9は、本変形例におけるハイブリッド車両用駆動装置1の動作を説明するフローチャートである。まず、ECU5は、全筒運転時のBSFCボトム運転出力Pbと、車両の要求出力Dとを比較する(ステップS51)。ステップS51で、D>Pbであると判断された場合、ECU5は、バッテリ3の現在のSOCについて判断を行う(ステップS52)。ステップS52で、バッテリ3のSOCがAゾーン(図3参照)以上の値を示すと判断される場合には、ECU5は、エンジン6を全筒運転するように制御すると共に、要求出力Dと全筒運転時のBSFCボトム運転出力Pbとの差分をモータ7により出力するように制御し(ステップS53)、処理が終了する。従ってこの場合、全筒運転するエンジン6をモータ7によりアシストして走行することとなり、エンジン6は燃料消費量が最少となるような運転点で運転されるので、燃料消費量を最少にして燃費を向上することが可能となる。
 ステップS52で、バッテリ3のSOCがAゾーン(図3参照)未満の値を示すと判断される場合には、ECU5は、エンジン6を全筒運転するように制御し(ステップS54)、処理が終了する。
 ステップS51で、D≦Pbであると判断された場合、ECU5は、全筒運転時のBSFCボトム運転出力Pbと、車両の要求出力Dとを再び比較する(ステップS55)。ステップS55で、全筒運転時のBSFCボトム運転出力Pbと車両の要求出力Dとの差が第1所定値未満であると判断された場合、すなわち、要求出力Dと全筒運転時のBSFCボトム運転出力Pbとが略等しい(D≒Pb)と判断された場合には、エンジン6を全筒運転するように制御し(ステップS56)、処理が終了する。この場合、エンジン6は燃料消費量が最少となるような運転点で運転されるので、燃料消費量を最少にして燃費を向上することが可能となる。
 ステップS55で、全筒運転時のBSFCボトム運転出力Pbと車両の要求出力Dとの差が第1所定値以上であり、D≒Pbでないと判断された場合、ECU5は、全筒運転時のBSFCボトム運転出力Pbと、車両の要求出力Dとをさらに比較する(ステップS57)。具体的には、ステップS57では、全筒運転時のBSFCボトム運転出力Pbと車両の要求出力Dとの差が、第1所定値よりも大きい第2所定値以上かどうか、すなわち、D<<Pbであるかどうかが判断される。尚、ここで、D<<Pbであるときとは、車両の要求出力が極めて低くほぼゼロに近い場合や、ブレーキ(不図示)が踏まれて制動力が必要な場合などである。
 ステップS57で、全筒運転時のBSFCボトム運転出力Pbと車両の要求出力Dとの差が、第1所定値よりも大きい第2所定値以上であり、D<<Pbであると判断された場合、ECU5は、バッテリ3の現在のSOCについて判断を行う(ステップS58)。
 ステップS58で、バッテリ3のSOCがAゾーン以上の値を示すと判断される場合には、EVモードで走行することが可能(図3参照)であるので、ECU5はEVモード気筒休止判断を行い(ステップS59)、処理が終了する。EVモード気筒休止判断における各処理は、第1実施形態での各処理(図8)と同様であるため、ここでは説明を省略する。
 ステップS58で、バッテリ3のSOCがAゾーン未満の値であると判断された場合には、EVモードで走行することができない(図3参照)。この場合、ECU5は、エンジン6の応答性が要求されているかどうかを判断する(ステップS60)。ここで、エンジン6の応答性が要求されている場合とは、例えばパドルシフトが選択されている場合や、スポーツモードが選択されている場合である。
 ステップS60で、エンジン6の応答性が要求されていると判断される場合、ECU5は、エンジン6を全休筒運転して巡航走行(クルーズ走行)または慣性走行を行うよう制御し(ステップS61)、処理が終了する。これにより、制動力を得ることができる。
 ステップS60で、エンジン6の応答性が要求されていないと判断された場合、ECU5は、第1,第2クラッチ41,42を切断することによりエンジン6を切り離すとともに、モータ7で回生発電を行うよう制御し(ステップS61)、処理が終了する。これにより、バッテリ3の充電を行うことが可能となるとともに、制動力を得ることができる。
 ステップS57で、全筒運転時のBSFCボトム運転出力Pbと車両の要求出力Dとの差が第1所定値以上第2所定値未満であると判断された場合、すなわち、D<PbではあるがD<<Pbではないと判断された場合、ECU5は、バッテリ3の現在のSOCを判断する(ステップS63)。ステップS63で、バッテリ3のSOCがAゾーン以上の値を示すと判断される場合には、EVモードで走行することが可能(図3参照)であるので、ECU5はEVモード気筒休止判断を行い(ステップS59)、処理が終了する。EVモード気筒休止判断における各処理は、第1実施形態での各処理(図8)と同様であるため、ここでは説明を省略する。
 ステップS63で、バッテリ3のSOCがAゾーン未満の値であると判断された場合には、EVモードで走行することができない(図3参照)。この場合、ECU5は、一部休筒運転時のBSFCボトム運転出力Prbと、車両の要求出力Dとを比較する(ステップS64)。ステップS64で、一部休筒運転時のBSFCボトム運転出力Prbと車両の要求出力Dとの差が第1所定値未満であると判断された場合、すなわち、要求出力Dと一部休筒運転時のBSFCボトム運転出力Prbとが略等しい(D≒Prb)と判断された場合には、エンジン6を一部休筒運転するように制御し(ステップS65)、処理が終了する。この場合、エンジン6は燃料消費量が最少となるような運転点で一部休筒運転されるので、燃費消費量を最少にして燃費を向上することが可能となる。
 ステップS64で、一部休筒運転時のBSFCボトム運転出力Prbと車両の要求出力Dとの差が第1所定値以上であり、D≒Prbでないと判断された場合、ECU5は、エンジン6の全筒運転によって走行するよう制御し(ステップS66)、処理が終了する。
 本発明は、前述した実施形態および変形例に限定されるものではなく、適宜、変形、改良等が可能である。
 例えば、前述した実施形態および変形例においては、デュアルクラッチ式変速機のモータ7が接続された入力軸である第1主軸11に奇数段ギヤを配置し、モータ7が接続されていない入力軸である第2中間軸16に偶数段ギヤを配置したが、これに限定されず、モータ7が接続された入力軸である第1主軸11に偶数段ギヤを配置し、モータ7が接続されていない入力軸である第2中間軸16に奇数段ギヤを配置してもよい。
 また、奇数段の変速段として第1速用駆動ギヤとしての遊星歯車機構30と、第3速用駆動ギヤ23aと第5速用駆動ギヤ25aに加えて、第7、9・・速用駆動ギヤを、偶数段の変速段として第2速用駆動ギヤ22aと第4速用駆動ギヤ24aに加えて、第6、8・・速用駆動ギヤを設けてもよい。
 なお、本発明は、2010年06月15日出願の日本特許出願2010-136541に基づくものであり、その内容はここに参照として取り込まれる。
1     ハイブリッド車両用駆動装置
3     バッテリ(蓄電器)
5     ECU
6     エンジン(内燃機関)
7     モータ(電動機)
11    第1主軸(第1入力軸)
14    カウンタ軸(出力軸)
16    第2中間軸(第2入力軸)
41    第1クラッチ(第1断接部)
42    第2クラッチ(第2断接部)
51    第1変速用シフター
52    第2変速用シフター
20    変速機

Claims (10)

  1.  全ての気筒を運転する全筒運転と少なくとも一部の気筒を休止して運転する休筒運転とを切替可能な内燃機関と、電動機と、を駆動源とするハイブリッド車両に用いられ、
     前記電動機に電力を供給する蓄電器と、
     前記内燃機関の出力軸及び前記電動機からの機械的動力を、前記電動機と係合する第1入力軸で受け、複数の変速段のいずれかを係合状態にして前記第1入力軸と駆動輪とを係合させることが可能な第1変速機構と、
     前記内燃機関の出力軸からの機械的動力を第2入力軸で受け、複数の変速段のいずれかを係合状態にして前記第2入力軸と駆動輪とを係合させることが可能な第2変速機構と、
     前記内燃機関の出力軸と前記第1入力軸とを係合させることが可能な第1断接部と、
     前記内燃機関の出力軸と前記第2入力軸とを係合させることが可能な第2断接部と、を有する変速機を備えるハイブリッド車両用駆動装置であって、
     前記電動機の駆動力のみにより前記第1入力軸を介してEVモードで走行可能であり、
     車両の要求駆動力が前記内燃機関の休筒運転での駆動力よりも小さい場合に前記内燃機関の休筒運転の要否を判断する休筒運転要否判断部をさらに備え、
     前記休筒運転要否判断部により休筒運転が不要と判断された場合、前記第1断接部および前記第2断接部を切断してEVモードで走行可能であり、
     前記休筒運転要否判断部により休筒運転が必要と判断された場合、前記内燃機関を休筒運転すると共に、前記第1断接部および前記第2断接部の少なくとも一方を接続することを特徴とするハイブリッド車両用駆動装置。
  2.  前記休筒運転要否判断部は、パドルシフトが選択されている場合に、休筒運転が必要と判断することを特徴とする請求項1に記載のハイブリット車両用駆動装置。
  3.  前記休筒運転要否判断部は、スポーツモードが選択されている場合に、休筒運転が必要と判断することを特徴とする請求項1に記載のハイブリット車両用駆動装置。
  4.  前記休筒運転要否判断部は、前記電動機により回生発電を行う場合に、休筒運転が必要と判断することを特徴とする請求項1から3のいずれか1項に記載のハイブリット車両用駆動装置。
  5.  前記休筒運転要否判断部は、車両が巡航走行している場合に、休筒運転が必要と判断することを特徴とする請求項1から3のいずれか1項に記載のハイブリット車両用駆動装置。
  6.  前記休筒運転要否判断部は、車両が慣性走行している場合に、休筒運転が必要と判断することを特徴とする請求項1から5のいずれか1項に記載のハイブリッド車両用駆動装置。
  7.  前記第1断接部を接続したまま前記内燃機関を休筒運転すると共にEVモードで走行している時に、前記第2入力軸へのプレシフトを行うと共に前記第1断接部から前記第2断接部への切替を行うことを特徴とする請求項1から6のいずれか1項に記載のハイブリッド車両用駆動装置。
  8.  カーナビゲーションシステムと連動する走行状態予測部を備え、
     前記休筒運転要否判断部は、前記走行状態予測部によりEVモードから他の走行モードへの切替が予測される場合に、休筒運転が必要と判断することを特徴とする請求項1に記載のハイブリッド車両用駆動装置。
  9.  前記内燃機関の吸気量を制御可能な電子制御スロットルを備え、
     車両の要求駆動力が前記内燃機関の休筒運転での駆動力よりも小さい場合には、前記内燃機関を休筒運転で運転すると共に、要求駆動力の増大に応じて前記電子制御スロットルの開度を増加させる制御を行い、
     車両の要求駆動力が、前記内燃機関の休筒運転での駆動力よりも大きく、且つ、前記内燃機関の休筒運転での駆動力と前記電動機により出力可能な駆動力との和より小さい場合には、前記内燃機関を休筒運転で運転すると共に、前記電動機に前記要求駆動力と前記内燃機関の休筒運転での駆動力との差分を出力させる制御を行い、
     車両の要求駆動力が、前記内燃機関の休筒運転での駆動力と前記電動機により出力可能な駆動力との和より大きい場合には、前記内燃機関を休筒運転から全筒運転に切り替えると共に、前記電子制御スロットルの開度を全筒運転における開度に変更するよう制御を行うことを特徴とする請求項1に記載のハイブリッド車両用駆動装置。
  10.  前記休筒運転は、一部の気筒のみを休止して運転する一部休筒運転と、全ての気筒を休止して運転する全休筒運転と、を含み、
     車両の要求駆動力が前記内燃機関の全筒運転での駆動力よりも小さく、前記内燃機関の一部休筒運転によりBSFCボトム運転が可能である場合には、前記内燃機関を一部休筒運転するよう制御し、
     車両の要求駆動力が前記内燃機関の全筒運転での駆動力よりも小さく、その差が所定値以上である場合には、前記蓄電器の残容量および前記要求駆動力に応じて、EVモードで走行するか、前記内燃機関を全休筒運転するよう制御することを特徴とする請求項1に記載のハイブリッド車両用駆動装置。
PCT/JP2011/063744 2010-06-15 2011-06-15 ハイブリッド車両用駆動装置 WO2011158882A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180029137.4A CN102939214B (zh) 2010-06-15 2011-06-15 混合动力车辆用驱动装置
BR112012031741A BR112012031741A2 (pt) 2010-06-15 2011-06-15 sistema de acionamento de veículos híbridos
US13/704,202 US9073546B2 (en) 2010-06-15 2011-06-15 Hybrid vehicle driving system
JP2012520482A JP5696143B2 (ja) 2010-06-15 2011-06-15 ハイブリッド車両用駆動装置
RU2013101599/11A RU2534465C2 (ru) 2010-06-15 2011-06-15 Приводная система гибридного транспортного средства
DE112011102037T DE112011102037T5 (de) 2010-06-15 2011-06-15 Hybridfahrzeugantriebssystem
US14/729,833 US9919701B2 (en) 2010-06-15 2015-06-03 Hybrid vehicle driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010136541 2010-06-15
JP2010-136541 2010-06-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/704,202 A-371-Of-International US9073546B2 (en) 2010-06-15 2011-06-15 Hybrid vehicle driving system
US14/729,833 Continuation US9919701B2 (en) 2010-06-15 2015-06-03 Hybrid vehicle driving system

Publications (1)

Publication Number Publication Date
WO2011158882A1 true WO2011158882A1 (ja) 2011-12-22

Family

ID=45348279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063744 WO2011158882A1 (ja) 2010-06-15 2011-06-15 ハイブリッド車両用駆動装置

Country Status (7)

Country Link
US (2) US9073546B2 (ja)
JP (2) JP5696143B2 (ja)
CN (1) CN102939214B (ja)
BR (1) BR112012031741A2 (ja)
DE (1) DE112011102037T5 (ja)
RU (1) RU2534465C2 (ja)
WO (1) WO2011158882A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241066A (ja) * 2012-05-18 2013-12-05 Honda Motor Co Ltd ハイブリッド車両の制御装置及び制御方法
CN103863306A (zh) * 2012-12-18 2014-06-18 丰田自动车株式会社 混合动力车辆及其控制方法
JP2014201308A (ja) * 2013-04-03 2014-10-27 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft 内燃機関と電気機械とを有するハイブリッド車
US9809106B2 (en) 2013-04-03 2017-11-07 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Hybrid vehicle with internal combustion engine and electric machine
DE112012006606B4 (de) 2012-06-27 2018-06-07 Toyota Jidosha Kabushiki Kaisha Fahrzeug-Steuerungssystem

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221329B2 (en) * 2010-03-31 2015-12-29 Honda Motor Co., Ltd Hybrid vehicle
WO2011136235A1 (ja) * 2010-04-30 2011-11-03 本田技研工業株式会社 ハイブリッド車両用駆動装置
JP2014054886A (ja) * 2012-09-11 2014-03-27 Toyota Motor Corp 車両用の制御装置
DE112012007079B4 (de) * 2012-10-31 2017-08-17 Toyota Jidosha Kabushiki Kaisha Fahrzeugfahrsteuervorrichtung
JP6052096B2 (ja) * 2013-08-09 2016-12-27 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101601077B1 (ko) 2013-12-18 2016-03-08 현대자동차주식회사 차량의 변속장치
KR101601081B1 (ko) * 2013-12-18 2016-03-21 현대자동차주식회사 차량의 변속장치
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE537897C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramprodukt innefattande programkod
SE538735C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539294C2 (sv) * 2014-09-29 2017-06-20 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon som innefattar en sådan hybriddrivlina, datorprogram för att styra ensådan hybriddrivlina, samt en datorprogramprodukt innefatta nde programkod
WO2016053171A1 (en) 2014-09-29 2016-04-07 Scania Cv Ab Hybrid powertrain, method for controlling such a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program for controlling such a hybrid power- train, and a computer program product comprising program code
SE539295C2 (sv) 2014-09-29 2017-06-20 Scania Cv Ab Hybriddrivlina innefattande en rangeväxel och ett fordon meden sådan hybriddrivlina
SE540406C2 (sv) 2014-09-29 2018-09-11 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539232C2 (sv) 2014-09-29 2017-05-23 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, dator-program för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539293C2 (sv) * 2014-09-29 2017-06-20 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon som innefattar en sådan hybriddrivlina, datorprogram för att styra ensådan hybriddrivlina, samt en datorprogramprodukt innefatta nde programkod
KR101703576B1 (ko) * 2014-12-15 2017-02-07 현대자동차 주식회사 차량의 변속장치
US9664594B2 (en) * 2015-02-19 2017-05-30 Ford Global Technologies, Llc Ambient humidity detection transmission shifts
MX365481B (es) * 2015-03-19 2019-06-05 Nissan Motor Dispositivo de control para vehículo híbrido y método de control.
GB2542171B (en) * 2015-09-10 2018-05-09 Ford Global Tech Llc Improvements in or relating to creep torque
US9771066B2 (en) * 2015-09-25 2017-09-26 Hyundai Motor Company Backward driving control method of hybrid vehicle
DE102015221499A1 (de) 2015-11-03 2017-05-04 Zf Friedrichshafen Ag Antriebsanordnung für ein Hybridfahrzeug und Antriebsstrang mit einer solchen Antriebsanordnung
EP3165389B1 (de) 2015-11-03 2018-12-26 ZF Friedrichshafen AG Getriebe für ein kraftfahrzeug und antriebsstrang damit
EP3165388B1 (de) 2015-11-03 2018-12-26 ZF Friedrichshafen AG Verfahren zur synchronisierung der vorgelegewellendrehzahl im direktgang
DE102015221514A1 (de) 2015-11-03 2017-05-04 Zf Friedrichshafen Ag Getriebe für ein Hybridfahrzeug, Antriebsstrang mit einem solchen Getriebe und Verfahren zum Betreiben desselben
DE102015221493A1 (de) 2015-11-03 2017-05-04 Zf Friedrichshafen Ag Verfahren zum zugkraftunterbrechungsfreien Umschalten einer Bereichsgruppe
DE102015226251A1 (de) * 2015-12-21 2017-06-22 Zf Friedrichshafen Ag Getriebe eines Kraftfahrzeugs und Verfahren zum Betreiben eines Kraftfahrzeugs
JP6458768B2 (ja) * 2016-05-18 2019-01-30 トヨタ自動車株式会社 ハイブリッド自動車
CA2978930A1 (en) * 2016-09-09 2018-03-09 Terex Usa, Llc System and method for idle mitigation on a utility truck with an electrically isolated hydraulically controlled aerial work platform
KR101916073B1 (ko) * 2016-10-21 2018-11-07 현대자동차 주식회사 하이브리드 전기자동차의 동력전달장치
DE102016223265A1 (de) * 2016-11-24 2018-05-24 Zf Friedrichshafen Ag Anbindung einer Ölpumpe an einem Hybridgetriebe eines Kraftfahrzeugs mit einer achsparallel zu einer Antriebswelle angeordneten elektrischen Maschine
KR101876881B1 (ko) * 2016-12-12 2018-07-11 현대오트론 주식회사 마일드 하이브리드 차량의 배터리 충전 제어방법 및 이에 의해 제어되는 차량
JP6551381B2 (ja) * 2016-12-20 2019-07-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102016125607A1 (de) * 2016-12-23 2018-06-28 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Antriebssystems, Antriebssystem und Kraftfahrzeug
KR102496252B1 (ko) * 2017-12-04 2023-02-08 현대자동차주식회사 하이브리드 차량용 다단 dct
JP6891794B2 (ja) * 2017-12-20 2021-06-18 トヨタ自動車株式会社 車両の駆動力制御装置
US10569635B2 (en) * 2018-01-25 2020-02-25 Zhihui Duan Hybrid electric drive train of a motor vehicle
US10780772B2 (en) * 2018-10-23 2020-09-22 Ge Global Sourcing Llc Vehicle engine assist system
DE102019107772A1 (de) * 2018-12-04 2020-06-04 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Hybridantriebs
KR20200129284A (ko) * 2019-05-08 2020-11-18 현대자동차주식회사 하이브리드 차량용 동력전달장치
US11383696B2 (en) * 2019-06-12 2022-07-12 GM Global Technology Operations LLC Method and apparatus for controlling a powertrain system
US11078854B2 (en) 2019-08-12 2021-08-03 Cummins Inc. Systems and methods for utilizing cylinder deactivation when a vehicle is in a reverse operating mode
CN113799762A (zh) * 2020-06-17 2021-12-17 北京福田康明斯发动机有限公司 一种混动车辆控制方法、装置、存储介质及混动车辆
US11597374B2 (en) * 2020-09-10 2023-03-07 Ford Global Technologies, Llc Methods and system for arbitrating fuel cut out for a hybrid vehicle
US11225242B1 (en) * 2020-09-29 2022-01-18 Ford Global Technologies, Llc Hybrid vehicle control with rate-limited energy management torque
JP2022149906A (ja) * 2021-03-25 2022-10-07 本田技研工業株式会社 車両制御装置
US11745579B2 (en) * 2021-04-05 2023-09-05 Eaton Cummins Automated Transmission Technologies Llc Full power-shift hybrid transmission and hybrid torquefill in automated manual transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089594A (ja) * 2000-07-18 2002-03-27 Luk Lamellen & Kupplungsbau Beteiligungs Kg 伝動装置
JP2004068759A (ja) * 2002-08-08 2004-03-04 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2008261346A (ja) * 2008-07-14 2008-10-30 Toyota Motor Corp 車両の制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564818Y2 (ja) * 1977-10-26 1981-02-02
JPH0579364A (ja) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd 可変気筒制御装置
US6116363A (en) * 1995-05-31 2000-09-12 Frank Transportation Technology, Llc Fuel consumption control for charge depletion hybrid electric vehicles
DE19546549C5 (de) * 1995-12-13 2006-11-16 Daimlerchrysler Ag Verfahren zum Ab- und Zuschalten einzelner Zylinder
EP0845618B1 (de) * 1996-11-30 2003-05-14 Volkswagen Aktiengesellschaft Kontinuierlich verstellbares Stufenwechselgetriebe
JP3911313B2 (ja) * 1997-01-22 2007-05-09 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
RU2132784C1 (ru) * 1998-09-25 1999-07-10 Конюхов Виталий Алексеевич Транспортное средство с гибридной силовой установкой
US6691807B1 (en) * 2000-04-11 2004-02-17 Ford Global Technologies Llc Hybrid electric vehicle with variable displacement engine
JP2002161775A (ja) * 2000-11-24 2002-06-07 Toyota Motor Corp 車両の駆動力制御装置
DE10290628D2 (de) 2001-02-23 2004-04-15 Luk Lamellen & Kupplungsbau Getriebe
JP3574120B2 (ja) * 2002-05-23 2004-10-06 本田技研工業株式会社 ハイブリッド車両
US7077223B2 (en) * 2002-05-29 2006-07-18 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
US7108087B2 (en) * 2003-06-12 2006-09-19 Honda Motor Co., Ltd. Power transmitting apparatus for hybrid vehicle
KR100634589B1 (ko) 2003-12-24 2006-10-13 현대자동차주식회사 하이브리드 전기자동차용 이중 클러치 변속기 및 그모드별 작동방법
US7563196B2 (en) * 2004-04-27 2009-07-21 Denso Corporation Controller for automatic transmission
US7246673B2 (en) * 2004-05-21 2007-07-24 General Motors Corporation Hybrid powertrain with engine valve deactivation
JP4005069B2 (ja) * 2004-09-03 2007-11-07 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2006112356A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd エンジンの吸気制御装置
CN101316748B (zh) 2005-11-24 2011-05-18 丰田自动车株式会社 混合动力车辆
JP4506721B2 (ja) 2006-05-18 2010-07-21 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008001258A (ja) * 2006-06-23 2008-01-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2008105639A (ja) * 2006-10-27 2008-05-08 Toyota Motor Corp ハイブリッド車両の制御装置
US20080185194A1 (en) * 2007-02-02 2008-08-07 Ford Global Technologies, Llc Hybrid Vehicle With Engine Power Cylinder Deactivation
JP2010127074A (ja) * 2008-11-25 2010-06-10 Hitachi Automotive Systems Ltd 車両制御装置
JP2010125936A (ja) * 2008-11-26 2010-06-10 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2010136541A (ja) 2008-12-05 2010-06-17 Minebea Co Ltd 直流モータ
US8401779B2 (en) * 2009-06-08 2013-03-19 Lear Corporation SEG (smart energy gateway) for optimized energy flow control
US8298118B2 (en) * 2009-07-27 2012-10-30 GM Global Technology Operations LLC Motor-assist shift control in a hybrid vehicle transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089594A (ja) * 2000-07-18 2002-03-27 Luk Lamellen & Kupplungsbau Beteiligungs Kg 伝動装置
JP2004068759A (ja) * 2002-08-08 2004-03-04 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2008261346A (ja) * 2008-07-14 2008-10-30 Toyota Motor Corp 車両の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241066A (ja) * 2012-05-18 2013-12-05 Honda Motor Co Ltd ハイブリッド車両の制御装置及び制御方法
DE112012006606B4 (de) 2012-06-27 2018-06-07 Toyota Jidosha Kabushiki Kaisha Fahrzeug-Steuerungssystem
DE112012006606B8 (de) 2012-06-27 2018-07-26 Toyota Jidosha Kabushiki Kaisha Fahrzeug-Steuerungssystem
CN103863306A (zh) * 2012-12-18 2014-06-18 丰田自动车株式会社 混合动力车辆及其控制方法
JP2014201308A (ja) * 2013-04-03 2014-10-27 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft 内燃機関と電気機械とを有するハイブリッド車
US9809106B2 (en) 2013-04-03 2017-11-07 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Hybrid vehicle with internal combustion engine and electric machine

Also Published As

Publication number Publication date
DE112011102037T5 (de) 2013-05-02
BR112012031741A2 (pt) 2016-11-01
US20130096761A1 (en) 2013-04-18
US20150336561A1 (en) 2015-11-26
JPWO2011158882A1 (ja) 2013-08-19
US9919701B2 (en) 2018-03-20
CN102939214A (zh) 2013-02-20
CN102939214B (zh) 2015-08-19
JP5696143B2 (ja) 2015-04-08
JP2015155296A (ja) 2015-08-27
RU2013101599A (ru) 2014-07-20
US9073546B2 (en) 2015-07-07
RU2534465C2 (ru) 2014-11-27
JP6101718B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6101718B2 (ja) ハイブリッド車両
JP5703294B2 (ja) ハイブリッド車両用駆動装置
WO2011021517A1 (ja) ハイブリッド車両のエンジン始動制御装置
NO346107B1 (en) Transmission
KR20170128545A (ko) 전동 차량의 발진 제어 장치
JP5414444B2 (ja) 車両用駆動装置
JP2011213166A (ja) ハイブリッド車両用駆動装置
WO2013150964A1 (ja) ハイブリッド電気自動車の制御装置
JP5732457B2 (ja) 車両の制御装置及び制御方法
KR101849897B1 (ko) 하이브리드 차량의 발진 제어 장치
JP5656440B2 (ja) 車両用駆動装置の制御装置
WO2015034025A1 (ja) ハイブリッド車両用駆動装置
JP5203312B2 (ja) 動力出力装置の制御装置
JP2011230741A (ja) ハイブリッド車両用駆動装置
JP5740494B2 (ja) ハイブリッド車両用駆動装置
JP2017043206A (ja) ハイブリッド車両の制御装置
JP2011213165A (ja) 車両用駆動装置の制御装置
JP2011235706A (ja) 車両用駆動装置の制御装置及び制御方法
JP2011213162A (ja) 車両用駆動装置の制御装置
JP2024008563A (ja) ハイブリッド車両の制御装置
JP2014201126A (ja) ハイブリッド車両の制御装置
WO2012101792A1 (ja) ハイブリッド車両の制御装置
JP2011213161A (ja) 車両用駆動装置の制御装置
JP2014020505A (ja) 車両駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029137.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520482

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10342/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13704202

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111020376

Country of ref document: DE

Ref document number: 112011102037

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013101599

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11795786

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012031741

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012031741

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121212