WO2011158792A1 - 超音波吸引システム及び超音波吸引方法 - Google Patents

超音波吸引システム及び超音波吸引方法 Download PDF

Info

Publication number
WO2011158792A1
WO2011158792A1 PCT/JP2011/063511 JP2011063511W WO2011158792A1 WO 2011158792 A1 WO2011158792 A1 WO 2011158792A1 JP 2011063511 W JP2011063511 W JP 2011063511W WO 2011158792 A1 WO2011158792 A1 WO 2011158792A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
unit
mist
observation
image
Prior art date
Application number
PCT/JP2011/063511
Other languages
English (en)
French (fr)
Inventor
之彦 沢田
典弘 山田
周作 築山
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201180009159.4A priority Critical patent/CN102762160B/zh
Priority to JP2011546358A priority patent/JP5006475B2/ja
Priority to EP11795697.9A priority patent/EP2508143B1/en
Priority to US13/286,522 priority patent/US20120116222A1/en
Publication of WO2011158792A1 publication Critical patent/WO2011158792A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention relates to an ultrasonic suction system and an ultrasonic suction method for performing suction using ultrasonic waves.
  • ultrasonic vibration energy is applied to the biological tissue to be treated, and fragile tissue is crushed and sucked by ultrasonic vibration, and highly elastic tissues such as blood vessels are crushed.
  • an ultrasonic suction device or an ultrasonic suction system that is exposed without exposure is used.
  • a fragile tissue is emulsified and fluid is supplied to the surface of the biological tissue to be treated so that the crushed tissue pieces can be smoothly sucked. Therefore, when ultrasonic vibration energy is applied to the biological tissue to be treated, the ultrasonic vibration energy is also applied to the fluid, so that the fluid becomes a mist and has an observation function from the observation window of the endoscope. There is a case of lowering.
  • the air supply and suction control system of Japanese Patent Application Laid-Open No. 11-155869 as a first prior example related to the deterioration of the observation function is based on the fact that smoke or mist generated by a high-frequency cautery device or an ultrasonic coagulation incision device
  • the suctioning by the suction means is controlled to be delayed for a predetermined time together with the pressurization based on the output stop signal from the high-frequency cautery device or the ultrasonic coagulation / cutting device. With this control, smoke and mist are sucked and removed even after the output of the high-frequency cautery device or the like is stopped.
  • Japanese Patent Application Laid-Open No. 2007-296002 as a second preceding example describes that the observation visual field deteriorates because smoke or mist generated by the high-frequency cautery adheres to the observation window at the distal end of the endoscope.
  • Supply pressurized gas to the window Then, by flowing CO 2 gas as the pressurized gas along the surface of the observation window, it is the disclosure of smoke or mist forms a fluid curtain so as not to reach the surface of the observation window.
  • smoke or mist is controlled so as not to reach the surface of the observation window by forming a fluid curtain.
  • the observation field is clear by the fluid curtain. It is not possible to ensure the correct state.
  • ultrasonic suction that can smoothly perform treatment by controlling the ultrasonic output or fluid according to the amount of mist generated A system and ultrasonic suction method are desired.
  • the present invention has been made in view of the above-described points.
  • An ultrasonic suction system and an ultrasonic system that can control ultrasonic output or fluid according to the amount of mist generated by an observation function of an endoscope and can support treatment by an operator.
  • An object is to provide a sonic suction method.
  • An ultrasonic suction system includes an ultrasonic drive signal generator that generates an ultrasonic drive signal, an ultrasonic generator that generates ultrasonic vibration energy by applying the ultrasonic drive signal, and the ultrasonic generator.
  • an ultrasonic drive signal generator that generates an ultrasonic drive signal
  • an ultrasonic generator that generates ultrasonic vibration energy by applying the ultrasonic drive signal
  • the ultrasonic generator By applying ultrasonic vibration energy generated by the sound wave generation unit from the distal end portion of the vibration transmission unit that transmits the treatment target biological tissue, the biological tissue is crushed and the crushed biological tissue piece is aspirated
  • An ultrasonic suction section provided with a suction section, an observation section having an observation function for observing the biological tissue facing the distal end side of the vibration transmission section, and a fluid supply section for supplying fluid to the surface of the biological tissue
  • an image acquisition unit for acquiring an observation image in a state where mist is generated from the surface of the living tissue in a state where the ultrasonic vibration energy is applied via the observation
  • the reference image corresponding to the state in which the mist is not generated from the time of application of ultrasonic energy to the tip of the vibration transmission unit until immediately after the application is compared with the observation image acquired by the image acquisition unit.
  • a control unit that controls at least one of the output of the ultrasonic drive signal and the supply of the fluid by the ultrasonic drive signal generation unit based on the comparison result.
  • An ultrasonic suction method includes an observation step by an observation unit for observing the surface of a biological tissue to be treated, and ultrasonic waves on the biological tissue to be treated in the observation state by the observation step.
  • a supply / aspiration step for aspirating the biomedical tissue piece together with the fluid from a suction port provided at a distal end of the ultrasonic aspiration unit; and the treatment target biological tissue in a state where the fluid is supplied
  • An image acquisition step for acquiring an observation image that may cause mist due to application of ultrasonic vibration energy, and at the time of application of the ultrasonic vibration energy
  • the observation image is an image including the occurrence of the mist based on a comparison result comparing a reference image corresponding to a state where the mist is not generated until immediately after the application and the observation image acquired in the image acquisition step.
  • the ultrasonic wave applied to the living tissue based on the determination step in which the determination unit determines whether or not the observation image is an image including the occurrence of the mist by the determination step. And a control step in which the control unit performs control to reduce at least one of the vibration energy amount and the fluid supply amount.
  • FIG. 1 is a diagram showing an entire configuration of an ultrasonic suction system according to a first embodiment of the present invention in a use state.
  • FIG. 2 is a block diagram showing a schematic configuration of the ultrasonic suction system.
  • FIG. 3A is a diagram illustrating an example of an observation image in a state where mist is not generated.
  • FIG. 3B is a diagram illustrating an example of an observation image in a state where mist is generated.
  • FIG. 3C is a diagram showing an example in which mist adheres to the outer surface of the objective lens.
  • FIG. 4 is a block diagram illustrating a specific configuration of a mist determination & determination signal generation unit.
  • FIG. 4 is a block diagram illustrating a specific configuration of a mist determination & determination signal generation unit.
  • FIG. 5A is a diagram showing a scanning line serving as a detection region for detecting occurrence of mist in an observation image.
  • FIG. 5B is a diagram illustrating an example of an image signal of a reference image and an image signal obtained by adding a threshold value.
  • FIG. 5C is a diagram illustrating an example of an image signal of an observation image when mist is generated.
  • FIG. 6 is a flowchart showing the procedure of the ultrasonic suction method according to the first embodiment.
  • FIG. 7 is a timing chart for explaining the operation of the main part in FIG. FIG.
  • FIG. 8 illustrates an example in which the maximum value of the reference image is used as a determination criterion, and a case where a value obtained by adding a threshold to the maximum value of the reference image is used as a determination criterion.
  • FIG. 9A is a block diagram illustrating a configuration example of an adhesion determination unit according to a first modification of the first embodiment.
  • FIG. 9B is an explanatory diagram in which the image area is divided into a plurality of small areas.
  • 10A to 10I are timing diagrams for explaining the operation of FIG. 9A, and FIGS. 10J to 10K are for explaining the operation of the second modified example of the first embodiment. Timing diagram.
  • FIG. 11 is a configuration diagram of a main part in a third modification of the first embodiment.
  • FIG. 12 is a timing diagram for explaining the operation of the third modified example.
  • FIG. 13A is a perspective view showing a configuration of a modification of the third modification.
  • FIG. 13B is a perspective view showing a configuration of another modified example of the third modified example.
  • FIG. 14A is a side view showing a schematic configuration of an ultrasonic suction probe according to the second embodiment of the present invention.
  • FIG. 14B is a side view showing a schematic configuration of the ultrasonic suction probe when the operation lever is operated in FIG. 14A.
  • FIG. 14C is a perspective view showing the configuration of the umbrella with the outer sheath removed.
  • FIG. 14D is a perspective view showing the configuration of the umbrella when the operation lever is operated in the state of FIG. 14C.
  • FIG. 14A is a perspective view showing a configuration of a modification of the third modification.
  • FIG. 13B is a perspective view showing a configuration of another modified example of the third modified example.
  • FIG. 14A is a side view
  • FIG. 15 is a diagram showing how treatment is performed in the second embodiment.
  • FIG. 16A is a side view showing the configuration of the distal end side of an ultrasonic suction probe according to the third embodiment of the present invention.
  • FIG. 16B is a perspective view showing the configuration of the distal end side of the ultrasonic suction probe in the third embodiment.
  • FIG. 17 is a diagram showing how treatment is performed in the third embodiment.
  • FIG. 18 is a block diagram showing a partial configuration of an ultrasonic suction system according to the fourth embodiment of the present invention.
  • FIG. 19A to FIG. 19I are timing diagrams for explaining the operation of the fourth embodiment.
  • the ultrasonic suction system 1 As shown in FIG. 1, the ultrasonic suction system 1 according to the first embodiment of the present invention applies ultrasonic vibration to a living tissue of an affected part 5 to be treated in, for example, the abdomen 4 of a patient 3 lying on a bed 2. Treatment is performed using energy (abbreviated as ultrasonic vibration).
  • the ultrasonic suction system 1 includes an ultrasonic drive signal generation unit 6 that generates an ultrasonic drive signal for generating ultrasonic vibration.
  • the ultrasonic drive signal generation unit 6 outputs the generated ultrasonic wave drive signal to an ultrasonic suction probe 8 as an ultrasonic suction unit via a signal cable 7.
  • the ultrasonic suction probe 8 is an ultrasonic generator that generates ultrasonic vibrations when an ultrasonic drive signal is applied from the ultrasonic drive signal generation unit 6 via the signal cable 7.
  • An ultrasonic transducer 9 is incorporated. The ultrasonic vibration generated by the ultrasonic vibrator 9 is transmitted to the distal end portion 11 of the ultrasonic suction probe 8 through a transmission tube 10 as a vibration transmission portion that transmits the ultrasonic vibration.
  • the surgeon brings the distal end portion 11 into contact with the surface of the living tissue of the affected part 5, so that ultrasonic vibration is applied to the living tissue of the affected part 5, and fragile living tissue parts such as adipose tissue in the living tissue are crushed.
  • the crushed biological tissue piece is emulsified in the presence of a fluid (specifically, physiological saline) supplied to the biological surface as described below.
  • the ultrasonic suction system 1 includes a water supply and suction unit 12 that constitutes a fluid supply unit so that the crushed biological tissue pieces can be smoothly removed by suction.
  • a water feeder 41 in the water feeding and suction unit 12 supplies (feeds) physiological saline (simply abbreviated as water) as a fluid via a water feeding tube 13 a provided in the ultrasonic suction probe 8. Then, the crushed biological tissue piece and water as an emulsion are sucked through the suction tube 13 b provided in the ultrasonic suction probe 8.
  • the ultrasonic suction system 1 includes an endoscope 14 that optically observes the affected part 5 and the distal end side of the ultrasonic suction probe 8, and an observation unit provided in the endoscope 14 (see FIG. 2).
  • a processor 17 that performs signal processing on the image sensor 16 constituting the imaging unit 15 and a light source unit 18 that illuminates an imaging range captured by the imaging unit 15 are shown.
  • the light guide cable 19 extended from the endoscope 14 is connected to the light source unit 18, and the signal cable 20 extended from the endoscope 14 is connected to the processor 17.
  • An image signal (video signal) generated by the image processing by the processor 17 is output to a monitor 21 as an image display means, and an image captured by the imaging unit 15 is displayed as an endoscopic image on the display surface of the monitor 21. Is displayed.
  • the endoscope 14 is inserted into the abdomen 4 via the trocar 22. Further, the ultrasonic suction probe 8 is also actually inserted into the abdomen 4 via a trocar. As shown in FIG. 2, the insufflation tube 23 connected to the trocar 22 is connected to the insufflation unit 24.
  • the insufflation unit 24 supplies insufflation gas (gas) into the abdomen 4 through the insufflation tube 23 by the insufflation & inhaler constituting the insufflation device 25, and the abdomen 4 is inflated with gas. Make it easy to observe and treat.
  • the insufflator 25 can also inhale the gas in the abdomen 4 through the insufflation tube 23. By inhaling, the inside of the abdomen 4 can be quickly set to a desired pressure.
  • the insufflation device 25 is controlled by an insufflation controller 26 to supply and inhale air.
  • the insufflator 25 includes a pressure sensor 25a so that the insufflator controller 26 can control the pressure. And the atmospheric pressure in the abdomen 4 can be kept constant by the pressure information from the pressure sensor 25a.
  • the ultrasonic suction system 1 is a user interface for a user such as an operator to perform an instruction operation on the ultrasonic drive signal generation unit 6, the air supply & suction unit 12, the light source unit 18, the insufflation unit 24 and the like.
  • a foot switch 28 is provided.
  • the foot switch 28 is provided with an ultrasonic switch 28a as an instruction operation switch for instructing the ultrasonic drive signal generation unit 6 to generate (ON) and stop (OFF) the ultrasonic drive signal.
  • an air supply and water supply operation is performed to turn on and off the air supply and water supply unit 55.
  • a switch an insufflation switch for performing ON / OFF instruction operation of insufflation (intake and intake) of the insufflation unit 24 may be provided.
  • FIG. 2 shows a main configuration of each part in FIG.
  • the ultrasonic suction probe 8 includes an elongated outer tube (or sheath) 31 and a transmission tube 10 that is inserted coaxially into the outer tube 31 and transmits ultrasonic waves.
  • a proximal end side of the outer tube 31 is provided with a grip portion 32 having an enlarged diameter, and the ultrasonic transducer 9 is disposed inside the grip portion 32.
  • the ultrasonic transducer 9 is provided in a ring shape near the rear end of the transmission tube 10, for example.
  • the ultrasonic vibration generated by the ultrasonic vibrator 9 is transmitted to the distal end portion 11 by the transmission tube 10, and the distal end portion 11 ultrasonically vibrates in the axial direction as indicated by an arrow in FIG.
  • the internal space of the transmission tube 10 forms a suction conduit, and the rear end of the transmission tube 10 is connected to the water supply / suction unit 12 via the suction tube 13b.
  • the water supply tube 13 a is connected to a first water supply pipe 33 a provided on the proximal end side of the ultrasonic suction probe 8, and the first water supply pipe 33 a is interposed between the transmission pipe 10 and the outer pipe 31 on the way. It communicates with the second water pipe 33b.
  • the outer tube 31 has a tapered tip that tapers and opens slightly behind the distal end of the transmission tube 10. Water is fed from the ring-shaped opening on the outside of the transmission tube 10 as indicated by an arrow.
  • pipe 31 is a taper shape, it is not limited to a taper shape.
  • the distal end side of the outer tube 31 has a circular tube shape.
  • the distal end opening of the transmission tube 10 serves as a suction port 10a, and as shown by the arrow from this suction port 10a, a crushed living tissue piece and the like are sucked. Also in FIG. 1, a circular enlarged view shows a state where treatment is performed on a living tissue.
  • the ultrasonic drive signal generation unit 6 includes an oscillator 36 that generates an alternating oscillation signal, an output circuit 37 that amplifies and insulates the oscillation signal of the oscillation signal, and outputs it as an ultrasonic drive signal.
  • An oscillation & output controller 38 for controlling oscillation stop and controlling output from the output circuit 37 is provided.
  • the ultrasonic drive signal is applied from the output circuit 37 to the ultrasonic transducer 9 of the ultrasonic suction probe 8 through the signal cable 7, and the ultrasonic transducer 9 generates ultrasonic waves or generates ultrasonic vibrations.
  • the output circuit 37 includes an amplifier or attenuator 37a that varies the current value of the ultrasonic drive signal output to the ultrasonic transducer 9, and the output controller of the oscillation & output controller 38 controls the amplifier or attenuator 37a. Then, control including reduction of the output of the ultrasonic drive signal is performed.
  • the control including the reduction of the output of the ultrasonic drive signal may be performed by changing the amplitude of the ultrasonic drive signal.
  • the foot switch 28 is connected to an oscillation & output controller 38, and the surgeon can operate the foot switch 28 to give an output instruction of an ultrasonic drive signal, an output stop (oscillation stop) instruction, and the like.
  • the water supply / suction unit 12 includes a water transmitter 41 that supplies water as described above, a suction device 42 that performs suction, and a water supply & suction controller 43 that controls operations of the water transmitter 41 and the suction device 42.
  • the water feeder 41 is connected to the water feeding tube 13a and feeds water to the water feeding tubes 33a and 33b side of the ultrasonic suction probe 8 through the water feeding tube 13a.
  • the suction device 42 is connected to the suction tube 13b, and sucks the tip of the transmission tube 10 via the transmission tube 10 that functions as a suction conduit for the ultrasonic suction probe 8 connected to the suction tube 13b. Aspirate from the mouth 10a.
  • the endoscope 14 has an elongated insertion portion 45 and a gripping portion 46 provided at the rear end of the insertion portion 45.
  • An illumination window and an observation window are provided at the distal end portion 47 of the insertion portion 45.
  • An illumination lens 48 is attached to the illumination window to form an illumination unit.
  • an objective lens 49 is attached to the observation window, and the imaging element 16 is arranged at the image forming position of the objective lens 49 to form the imaging unit 15 as an observation unit.
  • a nozzle 50 that the jet outlet desires is arranged so as to face the objective lens 49.
  • the illumination light from the light source unit 18 is transmitted by the light guide 51 inserted through the endoscope 14 and emitted from the end of the light guide 51 through the illumination lens 48.
  • An optical image of the affected part 5 or the like illuminated with the illumination light from the illumination lens 48 is connected to the image sensor 16 disposed at the imaging position by the objective lens 49.
  • the light source unit 18 collects the illumination light generated by the light source lamp 53 by the lens 54 and enters the base end of the light guide 51.
  • the light source unit 18 has an air supply / water supply unit 55 for supplying and supplying air, and the operation of the air supply & water supply unit 55 is controlled by an air supply & water supply controller (abbreviated as controller) 56.
  • controller air supply & water supply controller
  • the air / water supply unit 55 is connected to an air / water supply tube 58 provided in the endoscope 14 via an air / water supply tube 57.
  • the air / water supply unit 55 ejects gas and water from the nozzle 50 constituting the fluid ejection portion provided at the tip of the air / water supply tube 58 toward the outer surface of the objective lens 49 of the observation window. By this ejection operation, the adhering matter adhering to the outer surface is removed, so that the observation window can be kept clean, that is, a good observation visual field can be secured.
  • a fluid ejection part is comprised including the nozzle 50 and the air supply & water supply unit 55.
  • the processor 17 to which the signal cable 20 is connected has an image sensor drive circuit (abbreviated as drive circuit) 61 connected to the image sensor 16, and the drive circuit 61 applies a drive signal to the image sensor.
  • the imaging element 16 outputs an image signal obtained by photoelectrically converting an optical image formed on the imaging surface by applying a drive signal.
  • the image signal output from the image sensor 16 is color-separated into color component image signals by a color separation circuit 63 constituting an image processing unit 62 in the processor 17, and then converted into a digital color by an A / D converter 64. It is converted into a component image signal and temporarily recorded (stored) in the memory 65.
  • the color component image signal recorded by the memory 65 is further subjected to image processing such as gamma correction by the image processing circuit 66 to generate a standard image signal, which is output to the monitor 21.
  • image processing such as gamma correction by the image processing circuit 66 to generate a standard image signal, which is output to the monitor 21.
  • the surgeon performs treatment with the ultrasonic aspiration probe 8 while observing an endoscopic image displayed on the monitor 21 as an observation image.
  • the surgeon can efficiently aspirate water (emulsion) in which fragile biological tissue is crushed and the crushed biological tissue pieces are mixed with the ultrasonic aspiration probe 8 while performing water supply and suction.
  • water or an emulsion in which water and a biological tissue piece are mixed is scattered as mist due to ultrasonic vibration in the presence of water.
  • an image of the biological tissue portion indicated by reference numeral Ia can be observed favorably.
  • an observation image accompanied by a line-like mist with high brightness such as fireworks or rain in the observation image Ia as schematically shown in FIG. 3B.
  • the operator turns off the ultrasonic switch 28a to stop the ultrasonic vibration, and interrupts the treatment by the ultrasonic vibration. Then, after stopping the generation of mist or setting the generation of mist to a predetermined value or less and confirming the state of the living tissue, the ultrasonic switch 28a is turned ON again. Even after that, when the mist exceeding the predetermined value is generated, the operation for interrupting the treatment is repeated.
  • the scattered mist adheres to the outer surface of the objective lens 49 as a deposit.
  • the mist is scattered and adhered to the outer surface of the objective lens 49, for example, as shown in FIG. 3C.
  • the observation image shown in FIG. 3A becomes a blurred observation image due to the attached mist.
  • an observation image in a state where mist is not generated in advance (substantially) is acquired and a reference image serving as a reference is set in advance as described below.
  • a change greater than or equal to a predetermined value is detected in comparison with the observation image, it is determined that the observation image has generated a mist exceeding a predetermined value, and the mist determination corresponding to the occurrence of a mist exceeding the predetermined value is determined from the determination result
  • the signal is generated.
  • the image signal of the color component recorded in the memory 65 in the processor 17 is input to the image acquisition circuit 69 constituting the mist determination & determination signal generation unit 68.
  • the image acquisition circuit 69 may acquire an image signal of one color component or may acquire a plurality of image signals.
  • the luminance signal Y may be generated from the R, G, and B color signals, and the image acquisition circuit 69 may acquire the luminance signal Y.
  • the image acquisition circuit 69 generates a reference image (image signal thereof) for detecting occurrence of mist exceeding a predetermined value from the acquired image signal, and determines whether or not mist exceeding the predetermined value is generated.
  • the observation image of the object is acquired in time series.
  • the image acquisition circuit 69 extracts, for example, an image portion of a predetermined area from an observation image captured when the ultrasonic switch 28a is turned from OFF to ON (timing) from a state where mist is not generated, Recorded in the image memory 70 as a reference image.
  • the ultrasonic switch 28a In addition to the time when the ultrasonic switch 28a is turned on as the timing for recording (acquiring) the reference image as described below, it may be set at an arbitrary timing until it is turned on or immediately after it is turned on.
  • an ultrasonic drive signal is applied to the ultrasonic transducer 9, the ultrasonic transducer 9 is ultrasonically vibrated, and the ultrasonic vibration is transmitted through the transmission tube 10 to the ultrasonic probe 8.
  • an observation image or an image portion of the predetermined area captured in a state where mist from the time of application to immediately after application is not substantially generated may be used as a reference image.
  • ON timing corresponding to the grant will be mainly described.
  • the image acquisition circuit 69 extracts a part of the observation image of the same predetermined area from the memory 65 in a state where the ultrasonic switch 28 a after the acquisition of the reference image is turned on, and outputs it to the comparison circuit 71.
  • the comparison circuit 71 compares the reference image recorded in the reference image memory 70 with the observation image acquired by the image acquisition circuit 69 in a state where the ultrasonic switch 28a is turned on.
  • the comparison circuit 71 outputs the comparison result to the determination circuit 72.
  • the determination circuit 72 determines from the comparison result by the comparison circuit 71 whether or not there has been a change beyond a predetermined value, and outputs the determination result to the controller 73 constituting the control unit.
  • the determination circuit 72 determines that the mist exceeding the predetermined value is generated and determines the mist determination signal only when it is determined that the observation image has changed more than the predetermined value compared to the reference image. Output.
  • the controller 73 has at least a function of a control unit that controls operations of the ultrasonic drive signal generation unit 6 and the water supply / suction unit 12 according to the determination result by the determination circuit 72.
  • the controller 73 controls the ultrasonic drive signal generation unit 6 to stop or reduce the output of the ultrasonic drive signal and supplies water to the water supply & suction unit 12.
  • control is performed to stop the suction operation or reduce the operation function (water supply and suction).
  • the controller 73 controls each part in the processor 17, and each controller 38, 43 of the ultrasonic drive signal generating unit 6, the water supply & suction unit 12, the insufflation unit 24, and the light source unit 18 constituting the ultrasonic suction system 1. , 26 and 56, the operation of each unit can be controlled.
  • the operation of the ultrasonic drive signal generation unit 6, the water supply / suction unit 12, the insufflation unit 24, and the light source unit 18 is directly controlled by the control signal from the controller 73 without using the controllers 38, 43, 26, 56. It is also possible to employ a configuration in which central control is performed.
  • a setting unit 74 is provided for performing an operation mode setting operation for determining whether or not the observation field is in a proper state.
  • a user such as an operator can perform setting and selection of a reference image, selection of an operation mode, and the like from the setting unit 74.
  • a signal when set and selected from the setting unit 74 is input to the controller 73, and the controller 73 performs setting and selection of the reference image and control of the operation mode in response to this signal.
  • an output mode setting unit for selectively setting a continuous output mode for continuously outputting an ultrasonic drive signal and an intermittent output mode for intermittent output may be provided. And you may make it operate
  • FIG. 4 shows a more specific configuration example of the mist determination & determination signal generation unit 68.
  • the memory 65 reads an image signal of each frame based on an address signal based on the clock from the clock circuit 69a constituting the image acquisition circuit 69, and outputs the image signal to the image processing circuit 66, and also to the gate 69c via the counter 69b. Entered.
  • the gate 69c is opened for a period corresponding to a predetermined area corresponding to the set value set by the counter 69b, and an image signal in that period is stored as a reference image in the reference image memory 70 via the switch 69d.
  • a solid line in FIG. 5A indicates a scanning line Lh as a predetermined region. During the period Th corresponding to the scanning line Lh, the image signal passes through the gate 69a.
  • the solid line in FIG. 5A shows a predetermined area corresponding to one scanning line Lh, but a predetermined area may be set by a plurality of scanning lines Lh as indicated by dotted lines.
  • a predetermined area for performing mist determination may be set in the image portion on the diagonal line Ld, for example, as indicated by a two-dot chain line.
  • a predetermined area may be set along the vertical direction.
  • one or a plurality of small regions Rs may be divided into a plurality of small regions Rs and set as predetermined regions for performing mist determination.
  • a predetermined period may be set instead of the predetermined area.
  • the switch 69d selects the contact a in a state where the ultrasonic ON signal is not input by the ON operation of the ultrasonic switch 28a, and selects the contact b when the ultrasonic ON signal is input. Therefore, in a state where the contact a is selected, the reference image in the reference image memory 70 is sequentially updated to a new one. When the ultrasonic ON signal is generated, a part of the observation image acquired by the observation unit at the timing of the ultrasonic ON signal is frozen as a reference image in the reference image memory 70.
  • the image signal from the memory 65 is input to the comparison circuit 71 for a predetermined horizontal period when the gate 69c is opened.
  • the image signal of the reference image recorded in the reference image memory 70 is also input to the comparison circuit 71 in synchronization with the opening of the gate 69c.
  • the comparison circuit 71 compares two image signals input in synchronization with a predetermined period Th.
  • the comparison circuit 71 does not directly compare the luminance values of the two image signals, but compares whether or not the image signal of the observation image has a sufficiently high luminance value compared to the luminance value of the reference image.
  • the comparison circuit 71 includes a comparator 71a and a threshold setting device 71b (in FIG. 4, simply abbreviated as the stored threshold 71b). The same applies to the threshold setting device 72c described later.
  • the comparator 71a compares the luminance value obtained by adding the threshold value 71b (set by the threshold value setting unit 71b) with the image signal Ir of the reference image and the image signal of the observation image, and outputs the result to the determination circuit 72.
  • FIG. 5B shows the image signal Ira of the reference image set by adding the threshold value Vth to the image signal of the reference image shown by a solid line by a dotted line.
  • the image signal in a state where a mist exceeding a predetermined value is generated has a violent change in luminance value in a pulse (or line) form as shown in FIG. 5C.
  • the image signal Io is accompanied by the pulse P.
  • a mist exceeding a predetermined value is generated, a plurality of pulses P are frequently accompanied discretely on, for example, the scanning line Lh as a predetermined region.
  • the determination circuit 72 counts the output signal of the comparison circuit 71 by the counter 72b in synchronization with a predetermined clock by the clock circuit 72a having a predetermined period. As described above, since the mist is generated so that the luminance value increases in a pulse shape, the counter 72b uses the clock C (La> Lp) corresponding to the width La slightly longer than the average pulse width Lp. Count.
  • the comparison circuit 72d determines whether or not the count value of the counter 72b is larger than the threshold value 72c.
  • the comparison circuit 72d outputs a mist determination signal to the controller 73 via the AND circuit 72e. In this way, by the image processing based on the observation image, it is possible to effectively determine a pulsed image accompanied by the pulse P that is a feature of mist.
  • the AND circuit 72e receives, for example, an ultrasonic ON signal from the ultrasonic switch 28a of the foot switch 28, and the determination circuit 72 exceeds a predetermined value only when the ultrasonic ON signal is input. A mist determination signal for determining the occurrence of mist is generated.
  • the controller 73 When the mist determination signal is input, the controller 73 generates a suppression signal for suppressing the generation of mist.
  • the controller 73 performs control to stop or reduce the generation of the ultrasonic drive signal via the oscillation & output controller 38 of the ultrasonic drive signal generation unit 6 based on this suppression signal.
  • the controller 73 performs control to stop or reduce the water supply of the water feeder 41 via the controller 43 of the water supply & suction unit 12 by this suppression signal.
  • the ultrasonic drive signal By stopping the generation of the ultrasonic drive signal, the ultrasonic vibration by the ultrasonic vibrator 9 is quickly stopped. Therefore, when mist exceeding a predetermined value is generated, the generation of mist is rapidly reduced or stopped by stopping the ultrasonic vibration.
  • the generation of the ultrasonic drive signal may be stopped without stopping the water supply.
  • it is better to link the operations of water supply and suction that is, when the supply of water as a fluid is reduced or stopped, the suction is reduced or stopped). Only the operation may be stopped.
  • the output value of the ultrasonic drive signal may be controlled to be reduced.
  • the suction amount may be controlled to be reduced.
  • the ultrasonic suction system 1 having the above-described configuration generates ultrasonic vibration energy by applying an ultrasonic drive signal generation unit 6 as an ultrasonic drive signal generation unit that generates an ultrasonic drive signal and the ultrasonic drive signal.
  • the ultrasonic vibrator 9 as an ultrasonic wave generator and the ultrasonic vibration energy generated by the ultrasonic wave generator are transmitted to the tip part 11, and the ultrasonic vibration energy from the tip part 11 to the living tissue to be treated.
  • an ultrasonic suction probe 8 provided with a suction port 10a for aspirating the crushed biological tissue piece.
  • the ultrasonic suction system 1 includes an endoscope 14 in which an imaging unit 15 serving as an observation unit for optically observing the biological tissue is provided at the distal end portion 47 of the insertion unit 45, and a fluid on the surface of the biological tissue.
  • An observation image in which mist may be generated from the surface of the living tissue in a state where the ultrasonic vibration energy is applied, and the water supply unit 41 constituting the fluid supply unit for supplying the ultrasonic wave via the observation unit
  • an image acquisition circuit 69 as an image acquisition unit.
  • the ultrasonic suction system 1 is based on a comparison result comparing a reference image corresponding to a state in which the mist is not substantially generated and the observation image acquired by the image acquisition unit.
  • a controller 73 as a control unit that controls the output of the ultrasonic drive signal by the ultrasonic drive signal generation unit.
  • the operator sets the ultrasonic suction system 1 to a state of treatment as shown in FIG.
  • the surgeon connects the ultrasonic suction probe 8 to the ultrasonic drive signal generation unit 6 and the water supply & suction unit 12.
  • the surgeon inserts the insertion portion 45 of the endoscope 14 into the abdomen 4 of the patient 3 through the trocar 22, and observes the affected part 5 in the abdomen 4 by the observation unit of the endoscope 14. Make it ready.
  • the operator inserts the ultrasonic suction probe 8 into the abdomen 4 while observing with the endoscope 14, and opposes the distal end side of the ultrasonic suction probe 8 close to the living tissue of the affected part 5.
  • the surgeon sets the water supply / suction unit 12 to an operating state in which water is supplied and sucked, that is, a state of perfusion.
  • the ultrasonic drive signal generation unit 6 is in a state of generating an ultrasonic drive signal only when the ultrasonic switch 28a in the foot switch 28 is turned on.
  • step S5 the operator operates the ultrasonic switch 28a under the observation of the endoscope 14 to start treatment with the ultrasonic suction probe 8 on the living tissue of the affected part 5.
  • the operator performs an operation of stepping on the ultrasonic switch 28a with his / her foot or stops the stepping operation.
  • the ultrasonic switch 28a When the surgeon performs an operation of stepping on the ultrasonic switch 28a with his / her foot, the ultrasonic switch 28a generates an ultrasonic ON signal, and when the stepping operation is stopped, the generation of the ultrasonic ON signal is stopped (turns OFF). .
  • the ultrasonic transducer 9 vibrates ultrasonically as shown in step S8, and the surgeon moves the distal end portion of the ultrasonic suction probe 8 of the affected part 5 under observation with the endoscope 14. Treatment with ultrasonic vibration can be performed by contacting the living tissue.
  • the mist determination / determination signal generation unit 68 freezes the reference image in the reference image memory 69 at the timing of the ultrasonic ON signal as shown in step S9, and determines the reference image. Further, the mist determination & determination signal generation unit 68 acquires an observation image after the ultrasonic ON signal, and starts to determine the occurrence of mist exceeding a predetermined value compared with the reference image.
  • step S10 the determination unit of the mist determination & determination signal generation unit 68 determines whether or not mist exceeds a predetermined value, and outputs a determination result.
  • the controller 73 stops (or reduces) the ultrasonic drive signal for a short time and stops (or reduces) the water supply operation for a short time. Take control.
  • step S12 When the output of the ultrasonic drive signal is stopped and the mist exceeding the predetermined value is generated as shown in step S12, the generation of the mist can be stopped or suppressed. By setting the state where mist is not generated or suppressed, the surgeon can perform good observation with an observation image in which generation of mist is stopped or reduced.
  • step S11 when the mist determination signal is not output, the control as shown in step S11 is not performed. That is, when the mist determination signal is not output, as shown in step S13, the operator continues the treatment by the ultrasonic suction probe 8 in the output state of the ultrasonic drive signal and the water supply operation state while viewing the observation image. To do.
  • step S11 or S13 if the instruction operation for ending the treatment shown in step S14 is not performed, the process returns to step S6. Then, the processes after step S6 described above are repeated.
  • step S7 If no ultrasonic ON signal is generated in step S7, the mist determination & determination signal generation unit 68 performs a process of updating the reference image as shown in step 15, and after this process, the process of step S6 is performed. Return to.
  • FIGS. 7A and 7F are timing charts for explaining the operation of the main part in FIG.
  • step S4 in FIG. 6 the water supply and suction operations are started at time t1, for example, as shown in FIGS. 7A and 7B.
  • the ultrasonic switch 28a is turned on at time t2 after the time t1.
  • an ultrasonic ON signal is generated, and the ultrasonic drive signal generation unit 6 outputs the ultrasonic drive signal to the ultrasonic transducer 9 as shown in FIG. To do.
  • the ultrasonic transducer 9 vibrates ultrasonically, and the surgeon performs treatment with the ultrasonic aspiration probe 8 as shown in step S8 of FIG.
  • the mist determination & determination signal generation unit 68 starts a mist determination operation for determining whether or not mist is generated, as shown in FIG.
  • the determination circuit 72 of the mist determination & determination signal generator 68 outputs the determination result.
  • the distal end portion 11 of the ultrasonic suction probe 8 is brought into contact with the surface of the living tissue of the affected part 5 and ultrasonic vibration is applied to crush fragile fatty tissue and the like. It is possible to expose a blood vessel or the like having high elasticity.
  • the determination circuit 72 When a mist exceeding a predetermined value occurs, the determination circuit 72 outputs a mist determination signal as shown at time t3 as shown in FIG. 7 (F), for example. When the mist determination signal is output, the controller 73 immediately stops water supply and stops outputting the ultrasonic drive signal.
  • the distal end portion 11 of the ultrasonic suction probe 8 does not vibrate ultrasonically, the occurrence of mist stops or becomes sufficiently small at, for example, time t4 after a short time from time t3. Then, since the mist determination signal is not output, the stop of water supply is released and the output stop of the ultrasonic drive signal is released.
  • the controller 73 may stop the suction in conjunction with the stop of water supply. In this case, the suction stop is released at time t4.
  • treatment is performed by ultrasonic vibration while water is supplied and sucked.
  • the operation in this case is similar to the operation after time t2 described above. That is, the operation from time t4 to time t6 is a repetition of the operation from time t2 to time t4.
  • the operator turns off the ultrasonic switch 28a, for example, at time t7 when the treatment with the ultrasonic suction probe 8 is completed.
  • the surgeon also stops the water supply operation at time t8.
  • the surgeon 8 suppresses the generation of mist exceeding a predetermined value and uses the ultrasonic suction probe 8. Treatment can be performed efficiently.
  • the operator frequently performs an operation of turning off the ultrasonic switch 28a in order to stop the generation of mist that hinders observation. Need to do. And when generation
  • the occurrence of mist exceeding a predetermined value is monitored, and when the occurrence of mist exceeding a predetermined value is detected, the occurrence of mist is reduced or stopped.
  • the output of the ultrasonic drive signal is automatically stopped (or reduced), and the water supply operation is also stopped (or reduced).
  • the suction operation can also be linked to the water supply operation.
  • the output stop of the ultrasonic drive signal is automatically canceled and the stop of the operation such as water supply is also canceled. Therefore, according to the present embodiment, the surgeon can smoothly and efficiently perform the treatment with the ultrasonic aspiration probe 8 as described above in a state in which operability that does not require troublesome operations is good. it can.
  • the determination is made by comparing the reference image and the observation image
  • the determination is made by comparing the image signal Ira of the reference image to which the threshold value Vth is added and the image signal Io of the observation image.
  • the maximum value Vm in the image signal Ir of the reference image may be compared with the image signal Io of the observation image illustrated in FIG. 5C as illustrated in FIG. .
  • the maximum value Vmr of the image signal Ir of the reference image added with the threshold value Vth is set, and the determination is performed by comparing the maximum value Vmr with the image signal Io of the observation image. good.
  • a setting can be performed, for example, by a selection setting instruction operation by the setting unit 74.
  • the processor 17 is provided with the mist determination & determination signal generation unit 68 that determines whether or not mist is generated from the observation image.
  • the adhesion determination unit (or the blurring determination) further determines (detects) from the image signal of the observation image the phenomenon that the observation image becomes unclear due to the adhesion of the deposit due to the mist on the outer surface of the objective lens 49.
  • Part () 81 is provided.
  • the adhesion determination unit 81 outputs an adhesion determination signal to the controller 73 when determining that there is adhesion.
  • the controller 73 controls the air supply and water supply unit 55 provided in the light source unit 18 to perform the air supply and water supply operations.
  • FIG. 9A shows a schematic configuration of the adhesion determination unit 81.
  • the image signal in the memory 65 is stored in the reference memory 81b through a frequency / luminance analysis circuit 81a having a function of an image acquisition unit in accordance with a control signal from the controller 73.
  • the controller 73 outputs a control signal at the time when the first ultrasonic switch 28a is ON, for example. Although mist may occur after this time, the objective lens 49 of the observation window can be regarded as a clean state in which no mist is attached at the time of starting.
  • the frequency / luminance analysis circuit 81a takes in an image signal as a reference image for one frame in the memory 65, divides the image area for one frame into small areas, and the frequency in each small area. And analyzing the brightness, and storing the analysis data as reference analysis data in the reference memory 81b.
  • the reference analysis data in the reference memory 81b is output to the comparison circuit 81c.
  • the frequency / luminance analysis circuit 81a captures the image signal of the observation image for each frame after, for example, the ultrasonic switch 28a is turned off, and for each frame.
  • the image region is divided into small regions Rs as shown in FIG. 9B, the frequency and luminance are analyzed in each small region Rs, and the analysis data is output to the comparison circuit 81c.
  • the comparison circuit 81c compares the frequency data and the luminance distribution between the reference analysis data and the analysis data in each corresponding small region.
  • mist or the like adheres to the outer surface of the objective lens 49, the original imaging function of the objective lens 49 is reduced due to the attached matter. For this reason, the spatial frequency distribution of the acquired observation image has fewer high-frequency components and more low-frequency components than a state where there is no deposit.
  • the luminance component As compared with the state without the adhering matter, the number of unclear image components due to the adhering matter increases, and thus the difference between the maximum luminance value and the minimum luminance value becomes small. Also, such features or trends continue in time.
  • the analysis data side has a preset value compared to the high-frequency component of the frequency data of the reference analysis data and the difference value between the maximum and minimum luminance values, in other words, the contrast value.
  • the comparison circuit 81c outputs a comparison signal that there is a possibility of adhesion to the determination circuit 81d.
  • the determination circuit 81d outputs, to the controller 73, an adhesion determination signal that is determined to be present, for example, when the number of comparison signals input within a predetermined time is equal to or greater than the threshold value 81e.
  • the controller 73 controls the air supply and water supply unit 55 to perform the air supply and water supply operations. By this control, gas and water are ejected from the nozzle 50 serving as a fluid ejecting portion to the outer surface of the objective lens 49, and deposits such as mist scattered on the outer surface are removed, and the outer surface of the objective lens 49 is removed. The surface is set in a clean state.
  • the controller 73 When the adhesion determination signal is input, the controller 73 further controls the ultrasonic drive signal generation unit 6 to stop or reduce the output of the ultrasonic drive signal, and uses the water supply and suction unit 12 as a fluid supply unit. You may make it perform control which reduces or stops supply of fluid. In addition, the controller 73 may perform control to reduce or stop the suction operation in conjunction with the water supply operation.
  • FIG. 10A to 10G show examples of operations performed by the adhesion determination unit 81.
  • the ultrasonic drive signal shown in FIG. 10 (C) is synchronized with the ultrasonic ON signal by the ultrasonic switch 28a shown in FIG. 10 (B). Applied to the ultrasonic transducer 9 of the ultrasonic suction probe 8.
  • the mist determination operation by the mist determination & determination signal generation unit 68 is performed during the ON period of the ultrasonic switch 28a.
  • the reference analysis data of the reference image is generated and stored in the reference memory 81b as shown in FIG. 10 (E).
  • the adhesion determination unit 81 performs an adhesion determination operation.
  • the adhesion determination unit 81 acquires an observation image from the memory 65 during a period in which the ultrasonic switch 28a is turned off as shown in FIG. 10 (B). To generate analysis data. Furthermore, the adhesion determination unit 81 compares the reference analysis data with the analysis data, and starts an adhesion determination operation.
  • the air / water supply unit 55 controls the gas and water from the nozzle 50 as shown in FIG. To clean the outer surface of the objective lens 49.
  • the gas and the gas are automatically discharged from the nozzle 50. Water can be ejected to clean the outer surface of the objective lens 49.
  • the adhesion determination operation is described as an example in which the ultrasonic switch 28a is turned off as shown in FIG.
  • the adhesion determination operation may be performed during a period in which the ultrasonic switch 28a is turned off (not only in a period in which the ultrasonic switch 28a is turned on).
  • the gas and liquid as a fluid were ejected by the air supply & water feeder 55 as a fluid ejection part, and the deposit
  • This modified example further includes means for preventing adhesion so that the mist deposits do not adhere to the outer surface of the objective lens 49.
  • the air supply operation may be performed during the period when the ultrasonic switch 28a is turned off.
  • the intake operation is preferably linked.
  • This modification is provided with a means for heating on the distal end side of the endoscope 14 in the configuration shown in FIG. 1 and FIG. 2, and is combined with the above-described function by the fluid ejection portion and the like.
  • the adipose tissue contained in the mist is in a heated state, it becomes liquefied or easily removed (compared to a non-heated temperature).
  • a heating device 85a for heating the vicinity of the distal end portion 47 is provided in the vicinity of the distal end portion 47 of the insertion portion 45 of the endoscope.
  • the heating device 85a is formed in a cylindrical portion that forms the outer peripheral surface of the distal end portion 47, and a power supply circuit for heating provided in the light source unit 18 through a signal cable 85b inserted through the insertion portion 45. 85c.
  • the operation of the power supply circuit 85 c is controlled by the controller 56 or the controllers 56 and 73.
  • the heating device 85a is provided with a temperature sensor 85d, and this temperature sensor 85d is connected to the controller 56 in the light source unit 18 through a signal cable 85e.
  • the controller 56 controls the temperature heated by the heating device 85a from the power supply circuit 85 so as to maintain an appropriate temperature based on the temperature detection signal of the temperature sensor 85d.
  • a heater 55a for heating the gas to be supplied in the air supply & water supply 55 may be provided.
  • the gas heated by the heater 55a is supplied through the air supply / water supply tube 57, and the heated gas may be ejected from the nozzle 50 protruding from the distal end surface of the distal end portion 47. .
  • 12 (A) to 12 (D) are schematic operation explanatory diagrams in this modification.
  • heating is performed as shown in FIGS. 12 (A) and 12 (C) during a period of water supply and suction for performing treatment by ultrasonic vibration by the ultrasonic suction probe 8.
  • a warming operation by the device 85a and a warming gas supply operation by the warmer 55a are performed.
  • the controller 73 or 26 controls the inhalation operation so as to keep the abdomen 4 at a constant pressure.
  • a heating device may be provided inside the endoscope. In the case of such a configuration, there is a merit that a special addition is not required when used. Further, as a place for heating, for example, at least the outer surface of the objective lens 49 may be heated.
  • FIG. 13A shows an example in which an air supply port (or jet port) 86a is provided when it is different from the nozzle 50.
  • FIG. A semi-cylindrical air supply tube 86b is provided along the outer peripheral surface of the insertion portion 45, and the air supply tube 86b serves as an air supply port 86a that opens in a semi-cylindrical shape at the distal end surface of the distal end portion 47.
  • the air supply port 86a opens so as to face the front end surface, and the gas supplied is ejected along the front end surface as indicated by an arrow. Note that the objective lens 49 and the illumination lens 48 are exposed on the tip surface.
  • the deposits due to mist including adipose tissue adhering to the outer surfaces of the objective lens 49 and the illumination lens 48 are removed to the peripheral edge side opposite to the air supply port 86a. Make it easier.
  • the nozzle 50 is provided at the tip of the air / water supply tube 58 provided inside the insertion portion 45 of the endoscope 14, but the outer periphery of the insertion portion 45 as shown in FIG. 13B.
  • An air supply port (or nozzle) 86d may be provided at the tip of the air supply tube 86c provided along the surface.
  • the heated gas may be ejected or sent out from the air supply port 86d.
  • water repellent films 87a and 87b having a water repellent function may be provided on the outer surfaces of the objective lens 49 and the illumination lens 48.
  • the water-repellent films 87a and 87b it is possible to make it difficult for mist to adhere, and to remove it easily when it adheres.
  • FIG. 14A shows a configuration of an ultrasonic suction probe 8B according to the second embodiment of the present invention.
  • a means for preventing the scattering from reaching the good observation field of the endoscope 14 even when the mist is scattered are the same as those of the first embodiment, for example.
  • This ultrasonic suction probe 8B has an outer tube 31 of the ultrasonic suction probe 8B shown in FIG. 2 as an inner sheath 91a and an outer sheath 91b on the outer side thereof.
  • the distal end of the outer sheath 91b is located behind the distal end of the inner sheath 91a, and the distal end portion 11 of the ultrasonic suction probe 8B disposed inside the inner sheath 91a slightly protrudes from the distal end portion of the inner sheath 91a.
  • an umbrella 92a that can be opened and closed is disposed at the distal end portion between the inner sheath 91a and the outer sheath 91b so as to be movable in the axial direction.
  • an operating lever 92b that can move forward is provided in the grip portion 46 to which the rear end of the outer sheath 91b is fixed, and an operator performs an operation of moving (pushing) the operating lever 92b forward. Accordingly, the umbrella 92a that has been retracted in the distal end portion of the outer sheath 91b can be projected as shown in FIG. 14B.
  • the umbrella 92a is connected to the operation lever 92b via the slide bar 92c. Therefore, the umbrella 92a can be protruded as shown in FIGS. 14B and 14D when the surgeon performs an operation of moving the operation lever 92b forward as described above.
  • the umbrella 92a is arranged along the axial direction of the sheaths 91a and 91b so as to reinforce the transparent sheet 92e and the transparent sheet 92e formed in a substantially conical shape so that the distal end side is expanded compared to the proximal end side. It comprises a plurality of wire-like skeleton portions 92d provided.
  • the skeleton portion 92d is formed of a shape memory metal or the like so that the distal end side of the ring portion whose base end is fixed has a characteristic of expanding. It should be noted that dirt such as mist adhering to the umbrella 92a is periodically washed by irrigating water through the gap between the inner sheath 91a and the outer sheath 91b.
  • FIG. 15 shows a state in which a treatment by ultrasonic vibration is performed on the living tissue of the affected area 5 using the ultrasonic suction probe 8B having such a configuration.
  • the surgeon operates the operation lever 92b to set the umbrella 92a in an open state.
  • the umbrella 92a is formed of the transparent sheet 92e, the operator can observe the peripheral part of the affected part 5 through the transparent sheet 92e.
  • FIG. 16A and 16B show the configuration of the distal end side of an ultrasonic suction probe 8C according to the third embodiment of the present invention.
  • a bag 95a formed of, for example, a transparent member is detachably attached to the distal end side of the ultrasonic suction probe 8.
  • a sonic suction probe 8C is formed.
  • the bag 95a has a substantially hemispherical shape or a conical shape, and is detachably attached to the outer tube 31 of the ultrasonic suction probe 8 by a ring 95b having elasticity such as rubber at the base end thereof. Further, the front end side of the bag 95a is opened in a substantially circular shape.
  • FIG. 17 shows a state in which treatment using ultrasonic vibration is performed using the ultrasonic suction probe 8C in the present embodiment.
  • the periphery of the affected area 5 to be treated is set to be inside the bag 95a under the observation of the endoscope 14. Then, under the observation of the endoscope 14, the surgeon fixes a plurality of locations on the peripheral edge of the opening of the bag 95 a through the treatment tool (not shown) to the surface of the opposing biological tissue with the clip 96.
  • an output mode setting unit 74b may be provided in the setting unit 74, and the ultrasonic drive signal may be intermittently output by the selection setting of the output mode setting unit 74b.
  • FIG. 18 shows a configuration of the processor 17 and the ultrasonic drive signal generation unit 6 in the ultrasonic suction system according to the fourth embodiment of the present invention.
  • a clock generation circuit 101, a gate circuit 102, an image acquisition circuit 103, an image processing circuit 104, and a monitor 105 are further provided in the first embodiment.
  • the opening / closing of the gate circuit 102 in the ultrasonic drive signal generation unit 6 is controlled by the clock of the clock generation circuit 101 provided in the processor 17, An output signal of the oscillator 36 is intermittently output to the output circuit 37 by opening and closing the gate circuit 102.
  • the clock generation circuit 101 may use the clock circuit 69a shown in FIG.
  • the image signal in the memory 65 is output to the second monitor 105 via the second image acquisition circuit 103 that acquires an image in synchronization with the clock and the image processing circuit 104 that performs image processing.
  • the second image acquisition circuit 103 acquires the image signal from the memory 65 during the period in which the ultrasonic drive signal is OFF (see FIG. 19E), and the memory in the period in which the ultrasonic drive signal is ON. It is frozen and held at 103a (see FIG. 19F).
  • the image signal stored in the memory 103a is updated.
  • the output signal of the second image acquisition circuit 103 is converted into a standard image signal by the image processing circuit 104 and output to the monitor 105.
  • the observation image acquired by the second image acquisition circuit 103 is displayed on the monitor 105.
  • the image acquisition circuit 103 acquires a moving image from the memory 65 at a normal frame rate, and the moving image is displayed on the monitor 105.
  • the second image acquisition circuit 103 and the image processing circuit 104 are controlled by the controller 73. Further, the setting unit 74 is provided with an output mode setting unit 74b. Depending on the selection setting of the output mode setting unit 74b, a continuous output mode as in the first embodiment and an intermittent output mode described below are used. One output mode can be selected.
  • the gate circuit 102 is always open, and the operation is the same as that of the first embodiment.
  • FIGS. 19A to 19F are timing diagrams for explaining the operation when the intermittent output mode in the present embodiment is selected.
  • the ultrasonic switch 28a is turned on and off as shown in FIG. 19 (B), and treatment using ultrasonic vibration by the ultrasonic suction probe 8 is used. Is done.
  • the mist determination & determination signal generation unit 68 starts the mist determination operation during the period when the ultrasonic switch 28a is turned on as described in the first embodiment.
  • the second image acquisition circuit 103 acquires an observation image in a period in which the ultrasonic drive signal is OFF.
  • a standard image signal generated from this observation image is displayed on the monitor 105.
  • a moving image observation image is acquired at a predetermined frame rate (for example, 20 frames / sec or 30 frames / sec) as shown in FIG. To be acquired.
  • the acquired observation image is stored in the memory 103a as shown in FIG. Holds twice the period. Then, it is displayed on the monitor 105 as a moving image having a double cycle (in this example, the ON / OFF cycle of the ultrasonic drive signal).
  • the ON / OFF cycle of the ultrasonic drive signal may be variably set by the setting unit 74. Thereby, the operator may be able to select and set the period during which the ultrasonic drive signal in the intermittent output mode is turned on and the period during which the ultrasonic drive signal is turned off according to the treatment. Further, the duty of the period for turning on and the period for turning off may be variably set by the setting unit 74.
  • the average value is set to an observation image of one frame.
  • FIG. 19I described later, only an observation image of one frame or one field may be acquired.
  • an observation image is recorded in the memory 103a at a predetermined frame rate. In FIG. 19F, this recording operation is indicated by hatching.
  • an ultrasonic drive signal is intermittently output, and an observation image acquired during a period when the ultrasonic drive signal is not output is used as a display unit.
  • On the monitor 105 it is displayed as a moving image with a low frame rate that is 1 ⁇ 2 or less of the frame rate of a normal moving image.
  • an observation image is acquired and displayed during the period when ultrasonic vibration has stopped, so observation due to generation of mist exceeding a predetermined value is performed. It is possible to display an observation image on the monitor 105 in a state where at least reduction of an image that is difficult to observe is reduced.
  • the controller 73 When the mist determination & determination signal generation unit 68 outputs a mist determination signal that determines the occurrence of a mist exceeding a predetermined value, for example, as shown in FIG. As described above, the controller 73 reduces the ultrasonic output value output from the output circuit 37. Further, the controller 73 reduces the water supply and suction operations of the water supply & suction unit 12 shown in FIG.
  • FIG. 19 (H) an example in which the ultrasonic output value is reduced when a mist determination signal is output has been described. However, as shown in FIG. That is, the output of the ultrasonic drive signal may be stopped.
  • the period when the ultrasonic drive signal is OFF as shown in FIG. 19E instead of acquiring images of a plurality of frames or fields, the period when the ultrasonic drive signal is OFF as shown in FIG. Alternatively, an image of one frame or one field immediately before the ultrasonic driving signal at ON may be acquired.
  • This embodiment has the same effect as the first embodiment, and can display an observation image with little adverse effect due to the occurrence of mist exceeding a predetermined value on the second monitor 105. Therefore, the surgeon can smoothly perform treatment by ultrasonic vibration.
  • the ultrasonic drive signal is output in the continuous output mode as described in the first embodiment until the mist determination signal is generated, and intermittently after the mist determination signal is generated.
  • the operation for changing to the output mode may be selected or controlled.
  • the ultrasonic suction probe 8 is described as having an ultrasonic transducer 9 as an ultrasonic wave generation unit that generates ultrasonic vibrations. You may make it the structure which provided the ultrasonic wave generation part.
  • the controller 73 is shown as a separate structure from the mist determination & determination signal generation unit 68, for example, but the controller 73 may include the mist determination & determination signal generation unit 68. Further, the controller 73 may include the adhesion determination unit 81.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)

Abstract

 超音波吸引システム(1)は、超音波駆動信号発生部(6)により発生した超音波駆動信号を超音波発生部に印加して超音波振動エネルギーを振動伝達部(10)を介して先端部(11)に伝達し、観察部(14)による観察下で、処置対象の生体組織を超音波振動エネルギーにより破砕し、破砕された生体組織片を、生体組織の表面に供給した流体と共に吸引し、超音波振動エネルギーが付与された態における観察画像を画像取得部により取得し、基準画像との比較結果に基づいて、制御部(17)は超音波駆動信号の出力等を制御する。

Description

超音波吸引システム及び超音波吸引方法
 本発明は、超音波を用いて吸引を行う超音波吸引システム及び超音波吸引方法に関する。
 近年、患者に対する治療のための各種の処置が内視鏡を用いた内視鏡観察下で広く行われるようになっている。
 また、処置を行い易くするために、超音波振動エネルギーを処置対象の生体組織に与え、脆弱な組織を超音波振動によって破砕して、吸引すると共に、血管等の弾力性に富む組織を破砕せずに露出させる超音波吸引装置または超音波吸引システムが用いられる場合がある。
この場合、脆弱な組織を乳化し、破砕された組織片を円滑に吸引できるように処置対象の生体組織の表面に流体を供給する。そのため、超音波振動エネルギーを処置対象の生体組織に付与した場合、流体にも超音波振動エネルギーが付与されることになるため、流体がミストになって内視鏡の観察窓からの観察機能を低下させる場合が発生する。
 観察機能を低下に関連する第1の先行例としての日本国特開平11-155869号公報の送気吸引制御システムは、高周波焼灼装置や超音波凝固切開装置により発生した煙やミストが内視鏡による観察を妨げるため、高周波焼灼装置又は超音波凝固切開装置による出力の停止信号に基づいて、吸引手段による吸引を加圧と共に所定時間遅延させて行うように制御している。この制御により、高周波焼灼装置等の出力停止後にも煙やミストを吸引して除去する。
 また、第2の先行例としての日本国特開2007-296002号公報には、高周波焼灼装置により発生する煙やミストが内視鏡先端の観察窓に付着して観察視野を悪化するため、観察窓に加圧ガスを供給する。そして、観察窓の表面に沿って加圧ガスとしてのCOガスを流して、煙やミストが観察窓の表面に到達しないように流体カーテンを形成する内容が開示されている。
 しかしながら、第1の先行例は、煙やミストの発生量をモニタしていないため、ミストの発生量に適切に対応できない。
 また、第2の先行例は、流体カーテンを形成することにより、煙やミストが観察窓の表面に到達しないように制御するが、超音波吸引システムの場合には、流体カーテンにより観察視野を鮮明な状態を確保することができない。
 このため、流体を生体組織の表面に供給して超音波による破砕の処置を行う場合、ミストの発生量に応じて超音波出力又は流体を制御して円滑に処置を行うことができる超音波吸引システム及び超音波吸引方法が望まれる。
 本発明は上述した点に鑑みてなされたもので、内視鏡の観察機能によりミストの発生量に応じて超音波出力又は流体を制御でき、術者による処置を支援できる超音波吸引システム及び超音波吸引方法を提供することを目的とする。
 本発明の一態様に係る超音波吸引システムは、超音波駆動信号を発生する超音波駆動信号発生部と、前記超音波駆動信号の印加により超音波振動エネルギーを発生する超音波発生部及び該超音波発生部で発生した超音波振動エネルギーを処置対象の生体組織に伝達する振動伝達部の先端部から付与することによって、前記生体組織を破砕すると共に、破砕された生体組織片を吸引するための吸引部が設けられた超音波吸引部と、前記振動伝達部の先端部側に対向する前記生体組織を観察する観察機能を有する観察部と、前記生体組織の表面に流体を供給する流体供給部と、前記超音波振動エネルギーが付与された状態における前記生体組織の表面からミストが発生している状態の観察画像を、前記観察部を介して取得するための画像取得部と、前記振動伝達部の先端部への超音波エネルギーの付与時から付与直後までの前記ミストが発生していない状態に対応する基準画像と、前記画像取得部により取得された前記観察画像とを比較した比較結果に基づいて、前記超音波駆動信号発生部による前記超音波駆動信号の出力及び前記流体の供給の少なくとも一方を制御する制御部と、を有することを特徴とする。
 本発明の一態様に係る超音波吸引方法は、処置対象の生体組織の表面を観察するための観察部による観察ステップと、前記観察ステップによる観察状態において前記処置対象の生体組織に対して超音波吸引部の先端部から超音波振動エネルギーを付与して、前記生体組織を破砕する超音波振動付与ステップと、前記処置対象の生体組織に流体を供給すると共に、前記超音波振動エネルギーの付与により破砕された生体組織片を前記超音波吸引部の先端部に設けられた吸引口から前記流体と共に吸引するための供給/吸引ステップと、前記流体が供給された状態の前記処置対象の生体組織に前記超音波振動エネルギーの付与によるミストが発生する可能性のある観察画像を取得する画像取得ステップと、前記超音波振動エネルギーの付与時から付与直後までの前記ミストが発生していない状態に対応する基準画像と、前記画像取得ステップにより取得した観察画像とを比較した比較結果に基づき、前記観察画像が前記ミストの発生を含む画像であるか否かを判定部が判定する判定ステップと、前記判定ステップにより、前記観察画像が前記ミストの発生を含む画像であると判定した判定結果に基づいて、前記生体組織に付与される前記超音波振動エネルギー量及び前記流体の供給量の少なくとも一方を低減する制御を制御部が行う制御ステップと、を有することを特徴とする。
図1は本発明の第1の実施形態の超音波吸引システムの全体構成を使用状態で示す図。 図2は超音波吸引システムの概略の構成を示すブロック図。 図3Aはミストが発生しない状態の観察画像の例を示す図。 図3Bはミストが発生した状態の観察画像の例を示す図。 図3Cは対物レンズの外表面にミストが付着した例を示す図。 図4はミスト判定&判定信号生成部の具体的構成を示すブロック図。 図5Aは観察画像におけるミスト発生を検出するための検出領域となる走査線を示す図。 図5Bは基準画像の画像信号の例及び閾値を加算した画像信号を示す図。 図5Cはミストが発生した場合の観察画像の画像信号の例を示す図。 図6は第1の実施形態における超音波吸引方法の手順を示すフローチャート。 図7は図6における主要部の動作説明のタイミング図。 図8は基準画像の最大値を判定基準に用いる例と、基準画像の最大値に閾値を加算した値を判定基準にする場合の説明図。 図9Aは第1の実施形態の第1変形例における付着判定部の構成例を示すブロック図。 図9Bは画像領域を複数の小領域に分割した説明図。 図10(A)から図10(I)は図9Aの動作説明用のタイミング図を示し、図10(J)から図10(K)は第1の実施形態の第2変形例の動作説明用のタイミング図。 図11は第1の実施形態の第3変形例における主要部の構成図。 図12は第3変形例の動作説明用のタイミング図。 図13Aは第3変形例の変形例の構成を示す斜視図。 図13Bは第3変形例の他の変形例の構成を示す斜視図。 図14Aは本発明の第2の実施形態における超音波吸引プローブの概略の構成を示す側面図。 図14Bは図14Aにおいて操作レバーを操作した場合の超音波吸引プローブの概略の構成を示す側面図。 図14Cは外シースを除去して傘の構成を示す斜視図。 図14Dは図14Cの状態において操作レバーを操作した場合の傘の構成を示す斜視図。 図15は第2の実施形態における処置する様子を示す図。 図16Aは本発明の第3の実施形態における超音波吸引プローブの先端側の構成を示す側面図。 図16Bは第3の実施形態における超音波吸引プローブの先端側の構成を示す斜視図。 図17は第3の実施形態における処置する様子を示す図。 図18は本発明の第4の実施形態における超音波吸引システムの一部の構成を示すブロック図。 図19(A)から図19(I)は第4の実施形態の動作説明用のタイミング図。
 以下、図面を参照して、本発明の各実施形態を説明する。
(第1の実施形態)
 図1に示すように本発明の第1の実施形態の超音波吸引システム1は、ベッド2に横たわる患者3の例えば腹部4内の処置対象となる患部5の生体組織に対して、超音波振動エネルギー(超音波振動と略記)を利用して処置を行う。
 このため、超音波吸引システム1は、超音波振動を発生させるための超音波駆動信号を発生する超音波駆動信号発生ユニット6を有する。この超音波駆動信号発生ユニット6は、発生した超音波波駆動信号を信号ケーブル7を介して超音波吸引部としての超音波吸引プローブ8に出力する。
 図2に示すようにこの超音波吸引プローブ8は、超音波駆動信号発生ユニット6から信号ケーブル7を介して超音波駆動信号が印加されることにより超音波振動を発生する超音波発生部としての超音波振動子9を内蔵している。この超音波振動子9により、発生した超音波振動は、超音波振動を伝達する振動伝達部としての伝達管10を介して超音波吸引プローブ8の先端部11に伝達される。
 術者は、この先端部11を患部5の生体組織の表面に接触させることにより、超音波振動が患部5の生体組織に付与され、生体組織における脂肪組織等の脆弱な生体組織部分が破砕される。さらに、以下のような生体表面に供給される流体(具体的には生理的食塩水)の存在下で、破砕された生体組織片は、乳化される。
 破砕された生体組織片を円滑に吸引により除去できるように、超音波吸引システム1は、流体供給部を構成する送水&吸引ユニット12を有する。この送水&吸引ユニット12における送水器41は、超音波吸引プローブ8に設けた送水チューブ13aを介して流体としての生理的食塩水(単に水と略記)を供給(送水)し、吸引器42は、超音波吸引プローブ8に設けた吸引チューブ13bを介して乳化物としての破砕された生体組織片及び水を吸引する。
 また、超音波吸引システム1は、患部5及び超音波吸引プローブ8の先端側等を光学的に観察する内視鏡14と、この内視鏡14に設けられた観察部としての(図2に示す)撮像部15を構成する撮像素子16に対する信号処理を行うプロセッサ17と、撮像部15により撮像される撮像範囲を照明するための光源ユニット18とを有する。
 内視鏡14から延出されたライトガイドケーブル19は光源ユニット18に接続され、内視鏡14から延出された信号ケーブル20はプロセッサ17に接続される。
 このプロセッサ17による画像処理により生成された画像信号(映像信号)は、画像表示手段としてのモニタ21に出力され、モニタ21の表示面には撮像部15により撮像された画像が内視鏡画像として表示される。
 なお、図1に示すように内視鏡14は、トラカール22を介して腹部4内に挿入される。また、超音波吸引プローブ8も、実際にはトラカールを介して腹部4内に挿入される。図2に示すようにトラカール22に接続された気腹チューブ23は気腹ユニット24に接続される。
 この気腹ユニット24は、気腹器25を構成する送気&吸気器により気腹用ガス(気体)を気腹チューブ23を介して腹部4内に送気し、腹部4内を気体で膨らませ、観察や処置を行い易い状態にする。また、気腹器25は気腹チューブ23を介して腹部4内の気体を吸気することもできる。吸気することにより、速やかに腹部4内を所望の圧力に設定することができる。
 この気腹器25は、気腹コントローラ26により、送気及び吸気の動作が制御される。また、この気腹器25は、圧力センサ25aを備え、気腹コントローラ26により圧力制御を行うことができるようにしている。そして、この圧力センサ25aによる圧力情報によって、腹部4内の気圧を一定に保つことができるようにしている。
 また、この超音波吸引システム1は、術者等のユーザが超音波駆動信号発生ユニット6、送気&吸引ユニット12、光源ユニット18、気腹ユニット24等に対して指示操作を行うユーザインタフェースとしてフットスイッチ28が設けてある。
 フットスイッチ28には、超音波駆動信号発生ユニット6に対して、超音波駆動信号の発生(ON)及び停止(OFF)の指示操作を行う指示操作スイッチとしての超音波スイッチ28aが設けてある。
 なお、フットスイッチ28に、後述する流体噴出部としてのノズル50から流体を噴出させるために、送気&送水ユニット55に対して送気及び送水のON/OFFの指示操作を行う送気&送水スイッチ、気腹ユニット24の気腹(送気及び吸気)のON/OFFの指示操作を行う気腹スイッチ等を設けても良い。
 図2は、図1における各部の主要な構成を示す。超音波吸引プローブ8は、細長の外管(又はシース)31と、この外管31内に同軸状に挿通され、超音波を伝達する伝達管10とを備える。外管31における基端側は拡径にされた把持部32が設けられ、把持部32の内部に超音波振動子9が配置されている。
 この超音波振動子9は、例えば伝達管10の後端付近にリング形状に設けてある。超音波振動子9による超音波振動は、伝達管10により先端部11に伝達され、図2における矢印で示すように先端部11は、その軸方向に超音波振動する。
 また、伝達管10の内部空間は、吸引管路を形成し、この伝達管10の後端は、吸引チューブ13bを介して送水&吸引ユニット12に接続される。
 一方、送水チューブ13aは、超音波吸引プローブ8の基端側に設けた第1の送水管33aと接続され、この第1の送水管33aは途中で伝達管10と外管31との間の第2の送水管33bと連通する。この外管31の先端は、テーパ状に先細り形状となり、伝達管10の先端より少し後方で開口している。この伝達管10の外側のリング状の開口部分から矢印で示すように送水する。
 なお、図2においては、外管31の先端が先細り形状となっているが、先細り形状に限定されるものでない。例えば図14Aでは、外管31の先端側は円管形状である。
 一方、伝達管10の先端開口は吸引口10aとなり、この吸引口10aから矢印で示すように送水された水に混ざって破砕された生体組織片等を吸引する。なお、図1においても、円形の拡大図において、生体組織に対して処置している様子を示している。
 超音波駆動信号発生ユニット6は、交流の発振信号を発生する発振器36と、この発振信号の発振信号を増幅すると共に絶縁して超音波駆動信号として出力する出力回路37と、発振器36による発振及び発振停止の制御と、出力回路37からの出力制御を行う発振&出力コントローラ38とを有する。
 この出力回路37から信号ケーブル7を介して超音波吸引プローブ8の超音波振動子9に超音波駆動信号が印加され、超音波振動子9は超音波を発生、又は超音波振動を発生する。出力回路37は、超音波振動子9に出力する超音波駆動信号の電流値を可変するアンプ又は減衰器37aを内蔵し、発振&出力コントローラ38の出力コントローラはアンプ又は減衰器37aを制御して、超音波駆動信号の出力の低減を含む制御を行う。なお、超音波駆動信号の出力を可変する場合、超音波駆動信号の振幅を可変させることにより、超音波駆動信号の出力の低減を含む制御を行うようにしても良い。
 フットスイッチ28は、発振&出力コントローラ38と接続され、術者はこのフットスイッチ28を操作して、超音波駆動信号の出力指示と、出力停止(発振停止)指示等を行うことができる。
 送水&吸引ユニット12は、上記のように送水を行う送水器41と、吸引を行う吸引器42と、送水器41及び吸引器42の動作を制御する送水&吸引コントローラ43とを有する。
 送水器41は、送水チューブ13aと接続され、この送水チューブ13aを介して超音波吸引プローブ8の送水管33a、33b側に送水する。
 また、吸引器42は、吸引チューブ13bと接続され、この吸引チューブ13bと接続される超音波吸引プローブ8の吸引管路としての機能を持つ伝達管10を介して、伝達管10の先端の吸引口10aから吸引する。
 また、内視鏡14は、細長の挿入部45と、この挿入部45の後端に設けられた把持部46とを有する。挿入部45の先端部47には、照明窓と観察窓とが設けられている。照明窓には、照明レンズ48が取り付けられて照明部が形成される。また、観察窓には対物レンズ49が取り付けられており、この対物レンズ49の結像位置に撮像素子16が配置されて観察部としての撮像部15が形成されている。
 また、観察部による観察視野を形成する対物レンズ49の近傍には、この対物レンズ49に向かうように噴出口が望むノズル50が配置されている。
 光源ユニット18からの照明光は、内視鏡14内を挿通されたライトガイド51により伝送され、ライトガイド51の末端から照明レンズ48を介して出射される。照明レンズ48からの照明光で照明された患部5等の光学像が、対物レンズ49によりその結像位置に配置された撮像素子16に結ばれる。
 光源ユニット18は、光源ランプ53により発生した照明光をレンズ54により集光してライトガイド51の基端に入射する。また、光源ユニット18は、送気及び送水する送気&送水ユニット55を有し、送気&送水ユニット55による動作は送気&送水コントローラ(コントローラと略記)56により制御される。
 送気&送水ユニット55は、送気&送水チューブ57を介して内視鏡14内に設けられた送気&送水チューブ58と接続される。送気&送水ユニット55は、送気&送水チューブ58の先端に設けられた流体噴出部を構成するノズル50から、観察窓の対物レンズ49の外表面に向けて、気体及び水を噴出する。この噴出動作によって、この外表面に付着した付着物を除去して、観察窓を清浄な状態、つまり良好な観察視野を確保できるようにしている。なお、流体噴出部がノズル50と、送気&送水ユニット55とを含めて構成されると定義しても良い。
 信号ケーブル20が接続されるプロセッサ17は、撮像素子16と接続された撮像素子ドライブ回路(ドライブ回路と略記)61を有し、このドライブ回路61は撮像素子にドライブ信号を印加する。撮像素子16は、ドライブ信号の印加により、撮像面に結像された光学像を光電変換した画像信号を出力する。
 この撮像素子16から出力される画像信号は、プロセッサ17内の画像処理ユニット62を構成する色分離回路63により色成分の画像信号に色分離された後、A/D変換器64によりデジタルの色成分の画像信号に変換されてメモリ65に一時記録(記憶)される。
 このメモリ65により記録された色成分の画像信号は、さらに画像処理回路66によりガンマ補正等の画像処理が施されて標準の画像信号が生成され、モニタ21に出力される。術者は、モニタ21に表示される内視鏡画像を観察画像として観察しながら、超音波吸引プローブ8による処置を行う。
 上述したように、術者は、送水及び吸引を行いながら超音波吸引プローブ8によって、脆弱な生体組織を破砕し、破砕した生体組織片が混ざった水(乳化物)を効率良く吸引することができるが、水が存在している状態での超音波振動により、水又は水と生体組織片とが混ざった乳化物が、ミストとして飛散する現象が起こる場合がある。
 ミストが殆ど発生しない状態又は超音波振動を停止している状態においては、例えば図3Aに示すように、符号Iaで示す生体組織部分の画像を良好に観察することができる観察画像となる。図3Aの観察画像Iaの状態において、所定値を超えるミストが発生すると、図3Bに模式的に示すように観察画像Ia中に花火又は雨のように輝度が高いライン状のミストが伴う観察画像になってしまう。
 このようなライン状のミストが伴う観察画像になると、術者は処置対象の生体組織部分の観察画像Iaを、図3Aのように良好な観察状態で観察することが困難になってしまう。このような場合、術者は、超音波スイッチ28aをOFFにして超音波振動を停止させ、超音波振動による処置を中断する。そして、ミストの発生を停止ないしはミストの発生を所定値以下にして、生体組織の状態を確認した後、再び超音波スイッチ28aをONにする。その後においても、所定値を超えるミストが発生すると同様に処置を中断する作業が繰り返される。
 また、このような所定値を超えるミストが頻繁に発生すると、飛散したミストが対物レンズ49の外表面に付着物として付着する。ミストが飛散して対物レンズ49の外表面に付着すると、例えば図3Cに示すようになる。図3Cのように観察窓の外表面、つまり対物レンズ49の外表面にミストが付着すると、図3Aに示す観察画像は、付着したミストのために不鮮明な観察画像となってしまう。
 このため、本実施形態においては、以下のように予め(実質的に)ミストが発生していない状態での観察画像を取得して基準となる基準画像を設定し、以後の観察画像を基準の観察画像と比較して、所定以上の変化を検出した場合には、所定値を超えるミストが発生した観察画像であると判定し、その判定結果から所定値を超えるミストの発生に対応したミスト判定信号を生成する構成にしている。
 図2に示すようにプロセッサ17における、メモリ65に記録された色成分の画像信号は、ミスト判定&判定信号生成部68を構成する画像取得回路69に入力される。なお、この場合、画像取得回路69は、1つの色成分の画像信号を取得しても良いし、複数の画像信号を取得しても良い。また、例えばR,G,Bの色信号から、輝度信号Yを生成して、画像取得回路69は、輝度信号Yを取得しても良い。
 この画像取得回路69は、取得した画像信号から所定値を超えるミストの発生を検出するための基準画像(の画像信号)を生成すると共に、所定値を超えるミストが発生しているか否かの判定対象の観察画像を時系列に取得する。
 この画像取得回路69は、ミストが発生していない状態から超音波スイッチ28aがOFFからONにされた時(タイミング)に撮像された観察画像から例えば所定の領域の画像部分を抽出して、基準画像メモリ70に基準画像として記録する。
 なお、以下のように基準画像を記録(取得)するタイミングとして超音波スイッチ28aがONされた時の他に、ON時ないしはON直後までの任意のタイミングのもので設定するようにしても良い。
 ON時ないしはON直後までの状態は、超音波駆動信号が超音波振動子9に印加され、超音波振動子9が超音波振動し、その超音波振動が伝達管10を介して超音波プローブ8の先端部11に付与された付与時ないしは付与直後の状態に相当する。このように付与時から付与直後までのミストが実質的に発生していない状態で撮像された観察画像(又はその所定の領域の画像部分)を基準画像にしても良い。以下の説明では主に付与時に相当するON時のタイミングの場合で説明する。
 また、この画像取得回路69は、基準画像の取得以後の超音波スイッチ28aがONされた状態で、メモリ65から同じ所定の領域の観察画像の一部を抽出し、比較回路71に出力する。
 比較回路71は、基準画像メモリ70に記録された基準画像と、超音波スイッチ28aがONされた状態において画像取得回路69により取得された観察画像とを比較する。
 比較回路71は、比較結果を判定回路72に出力する。判定回路72は、比較回路71による比較結果から、所定値以上に変化にあったか否かを判定し、判定結果を制御部を構成するコントローラ73に出力する。判定回路72は、基準画像に比較して、観察画像が所定値以上に変化があったと判定した場合のみ、所定値を超えるミストが発生している状態であると判定して、ミスト判定信号を出力する。
 このコントローラ73は、判定回路72による判定結果に応じて、少なくとも超音波駆動信号発生ユニット6と、送水&吸引ユニット12の動作を制御する制御部の機能を持つ。コントローラ73は、ミスト判定信号が入力された場合には、超音波駆動信号発生ユニット6に対して超音波駆動信号の出力停止又は出力低減させる制御を行うと共に、送水&吸引ユニット12に対して送水及び吸引の動作を停止、又は(送水及び吸引の)動作機能を低減させる制御を行う。
 コントローラ73は、プロセッサ17内の各部を制御すると共に、超音波吸引システム1を構成する超音波駆動信号発生ユニット6、送水&吸引ユニット12、気腹ユニット24、光源ユニット18の各コントローラ38,43,26,56に制御信号を送ることにより各ユニットの動作を制御することができる。
 なお、コントローラ73による制御信号により、各コントローラ38,43,26,56を介することなく、直接的に超音波駆動信号発生ユニット6、送水&吸引ユニット12、気腹ユニット24、光源ユニット18の動作を集中制御する構成にしても良い。
 また、プロセッサ17には、基準画像を設定したり、所定値を超えるミストの発生の判定の他に、後述するように対物レンズ49の外表面にミストの飛散による付着物が付着して、不鮮明な観察視野の状態になったか否かを判定する動作モードの設定操作を行う設定部74が設けてある。術者等のユーザは、この設定部74から基準画像の設定、選択や、動作モードの選択等を行うことができる。
 設定部74から設定、選択した場合の信号は、コントローラ73に入力され、コントローラ73は、この信号に対応して、基準画像の設定、選択や、動作モードの制御を行う。
 なお、超音波スイッチ28aがONされた場合、超音波駆動信号を連続的に出力する連続出力モードと、間欠的に出力する間欠出力モードとを選択設定する出力モード設定部を設けても良い。そして、後述する第4の実施形態において図示するように間欠出力モードで動作させるようにしても良い。
 図4はミスト判定&判定信号生成部68のより具体的な構成例を示す。
 メモリ65は、画像取得回路69を構成するクロック回路69aからのクロックに基づくアドレス信号により各フレームの画像信号が読み出され、画像処理回路66に出力されると共に、カウンタ69bを介してゲート69cに入力される。
 ゲート69cは、カウンタ69bにより設定された設定値に対応した所定の領域に対応した期間、開となり、その期間の画像信号がスイッチ69dを介して基準画像メモリ70に基準画像として格納される。図5Aの実線は、所定の領域としての走査線Lhを示す。走査線Lhに対応した期間Th、画像信号がゲート69aを通過する。
 図5Aの実線では、1本の走査線Lhに対応した所定の領域を示しているが、点線で示すように複数の走査線Lhにより所定の領域を設定してもよい。
 また、水平方向の走査線Lhに限らず、2点鎖線で示すように例えば対角線Ld上の画像部分においてミスト判定を行う所定の領域を設定するようにしても良い。この他に、垂直方向に沿って所定の領域を設定しても良い。
 また、例えば図9Bに示すように複数の小領域Rsに分割して、1つ或いは複数の小領域Rsをミスト判定を行う所定の領域に設定しても良い。また、所定の領域の代わりに所定の期間を設定しても良い。
 なお、スイッチ69dは、超音波スイッチ28aのON操作による超音波ON信号が入力されない状態においては接点aが選択され、超音波ON信号が入力されると接点bが選択される。このため、接点aが選択された状態においては、基準画像メモリ70の基準画像は、新しいものに順次更新される。そして、超音波ON信号が発生すると、この超音波ON信号のタイミングおいて観察部により取得された観察画像の一部が基準画像メモリ70に基準画像としてフリーズされる。
 接点bが選択されると、メモリ65からの画像信号がゲート69cの開となる所定の水平期間、比較回路71に入力される。この場合、基準画像メモリ70に記録された基準画像の画像信号も、ゲート69cの開と同期して比較回路71に入力される。
 そして、比較回路71は所定の期間Thにそれぞれ同期して入力される2つの画像信号を比較する。比較回路71は、両画像信号の輝度値を直接比較するのでなく、基準画像の輝度値に比較して観察画像の画像信号が十分に高い輝度値を有しているか否かの比較を行う。
 このような比較を行うため、比較回路71は、比較器71aと閾値設定器71b(図4では単に、格納されている閾値71bで略記)とを有する。なお、後述する閾値設定器72cに関しても同様である。
 比較器71aは、基準画像の画像信号Irに(閾値設定器71bで設定された)閾値71bを加算した輝度値と、観察画像の画像信号とを比較して判定回路72に出力する。
 図5Bは実線で示す基準画像の画像信号に閾値Vthを加算して設定された基準画像の画像信号Iraを点線で示す。ミストが発生していない状態においては、画像信号の輝度値はほぼ連続的に変化し、短い期間内ではその変化量はあまり大きくない。
 これに対して、所定値を超えるミストが発生した状態での画像信号は、図5Cに示すように(照明光がミストで反射されるため)パルス(又はライン)状に輝度値が激しく変化するパルスPが伴う画像信号Ioとなる。所定値を超えるミストが発生した場合、所定の領域としての例えば走査線Lh上に離散的に複数のパルスPが伴うことが頻繁に起こる。
 図5Bに示す画像信号Iraと、図5Cに示す画像信号Ioとの輝度値を比較することにより、所定値を超えるミストの発生を有効に判定することができる。
 また、判定回路72は、比較回路71の出力信号を、所定の周期のクロック回路72aによる所定のクロックに同期してカウンタ72bで計数する。上記のようにミストは輝度値がパルス状に高くなるように発生するため、その平均的なパルス幅Lpよりも若干長い幅Laに対応するクロックC(La>Lp)を用いて、カウンタ72bにより計数する。
 そして、カウンタ72bの計数値が閾値72cよりも大きいか否かを比較回路72dにより判定する。比較回路72dはカウンタ72bの計数値が閾値72cよりも大きい場合には、アンド回路72eを介してミスト判定信号をコントローラ73に出力する。このようにして観察画像に基づく画像処理により、ミストの特徴となるパルスPを伴うパルス状画像を有効に判定することができる。
 なお、アンド回路72eには、例えばフットスイッチ28の超音波スイッチ28aからの超音波ON信号が入力され、この超音波ON信号が入力されている状態においてのみ、判定回路72は、所定値を超えるミストの発生を判定したミスト判定信号を発生する。
 コントローラ73は、このミスト判定信号が入力されると、ミストの発生を抑制するための抑制信号を発生する。コントローラ73は、この抑制信号により超音波駆動信号発生ユニット6の発振&出力コントローラ38を介して超音波駆動信号の発生を停止または低減させる制御を行う。
 また、コントローラ73は、この抑制信号により送水&吸引ユニット12のコントローラ43を介して送水器41の送水を停止又は低減させる制御を行う。超音波駆動信号の発生を停止させることにより、超音波振動子9による超音波振動が速やかに停止する。従って、所定値を超えるミストが発生していた場合、超音波振動の停止によりミストの発生が速やかに低減ないしは停止する。
 一方、送水器41の送水を停止しても、超音波吸引プローブ8の先端部11付近から実際に送水が停止するには、時間的な遅延が発生する。このため、所定値を超えるミストの発生を応答性良く、かつ短い期間で低減ないしは停止させる場合には、送水を停止しないで、超音波駆動信号の発生を停止させるのみでも良い。また、送水と吸引との動作は連動させる(つまり、流体としての送水の供給を低減または停止する場合には、吸引を低減又は停止するように連動させる)方が良いが、短い期間においては送水の動作のみを停止させるようにしても良い。
 また、超音波駆動信号の発生を完全に停止させる代わりに、超音波駆動信号の出力値を低減させるように制御しても良い。また送水の動作を停止させる代わりに、送水量を低減するように制御しても良い。また、吸引の動作を停止させる代わりに、吸引量を低減するように制御しても良い。
 上述した構成の超音波吸引システム1は、超音波駆動信号を発生する超音波駆動信号発生部としての超音波駆動信号発生ユニット6と、前記超音波駆動信号の印加により超音波振動エネルギーを発生する超音波発生部としての超音波振動子9及び該超音波発生部で発生した超音波振動エネルギーを先端部11に伝達し、処置対象の生体組織に対して、前記先端部11から超音波振動エネルギーを付与し、前記生体組織を破砕すると共に、破砕された生体組織片を吸引するための吸引口10aが設けられた超音波吸引プローブ8とを有する。
 また、超音波吸引システム1は、前記生体組織を光学的に観察する観察部としての撮像部15が挿入部45の先端部47に設けられた内視鏡14と、前記生体組織の表面に流体を供給する流体供給部を構成する送水器41と、前記超音波振動エネルギーが付与された状態における前記生体組織の表面からミストが発生する可能性のある観察画像を、前記観察部を介して取得するための画像取得部としての画像取得回路69とを有する。また、超音波吸引システム1は、前記ミストが(実質的に)発生していない状態に対応する基準画像と、前記画像取得部により取得された前記観察画像とを比較した比較結果に基づいて、前記超音波駆動信号発生部による前記超音波駆動信号の出力を制御する制御部としてのコントローラ73と、を有することを特徴とする。
 次に図6を参照して、本実施形態による超音波吸引プローブ8を用いて患部5の生体組織に対する処置を行う場合の超音波吸引方法の手順を説明する。
 最初のステップS1において術者は、図1に示すように超音波吸引システム1を処置する状態に設定する。また、術者は、超音波吸引プローブ8を超音波駆動信号発生ユニット6及び送水&吸引ユニット12に接続する。
 次のステップS2において術者は、患者3の腹部4内にトラカール22を介して内視鏡14の挿入部45を挿入し、内視鏡14の観察部により腹部4内の患部5等を観察できる状態にする。
 次のステップS3において術者は、内視鏡14による観察下で、超音波吸引プローブ8を腹部4内に挿入し、超音波吸引プローブ8の先端部側を患部5の生体組織の近くに対向するように設定する。
 次のステップS4において術者は、送水&吸引ユニット12を送水及び吸引する動作状態、つまり灌流させる状態に設定する。なお、超音波駆動信号発生ユニット6は、フットスイッチ28における超音波スイッチ28aがONされた場合のみ超音波駆動信号を発生する状態となる。
 次のステップS5において術者は、内視鏡14の観察下で、超音波スイッチ28aを操作して、患部5の生体組織に対して超音波吸引プローブ8による処置を開始する。
 ステップS6、7に示すように術者は超音波スイッチ28aを足で踏む操作を行ったり、踏む操作を停止する。術者が足で超音波スイッチ28aを踏む操作を行った場合は、超音波スイッチ28aは、超音波ON信号を発生し、踏む操作を停止すると超音波ON信号は発生停止する(OFFとなる)。
 超音波ON信号が発生すると、ステップS8に示すように超音波振動子9が超音波振動し、術者は、内視鏡14による観察下で、超音波吸引プローブ8の先端部を患部5の生体組織に接触させることにより超音波振動による処置を行うことができる。
 また、超音波ON信号が発生すると、ステップS9に示すようにミスト判定&判定信号生成部68は、基準画像メモリ69に超音波ON信号のタイミングで基準画像をフリーズし、基準画像を確定する。また、ミスト判定&判定信号生成部68は、超音波ON信号以後の観察画像を取得し、基準画像と比較して所定値を超えるミストの発生の判定を開始する。
 次のステップS10においてミスト判定&判定信号生成部68の判定部は、所定値を超えるミストの発生の有無を判定し、判定結果を出力する。そして、ミスト判定信号が出力された場合には、ステップS11に示すようにコントローラ73は超音波駆動信号を短い時間、出力停止(又は低減)と、送水動作を短い時間、停止(又は低減)させる制御を行う。
 超音波駆動信号の出力停止により、ステップS12に示すように所定値を超えるミストが発生している場合、そのミストの発生を停止ないしは抑制することができる。ミストが発生しない又は抑制された状態に設定することにより、術者はミストの発生が停止又は低減した観察画像により良好な観察ができる。
 一方、ミスト判定信号が出力されない場合には、ステップS11に示すような制御を行わない。つまり、ミスト判定信号が出力されない場合には、ステップS13に示すように、術者は観察画像を見ながら、超音波駆動信号の出力状態及び送水動作状態で、超音波吸引プローブ8による処置を続行する。
 ステップS11又はS13の処理の後、ステップS14に示す処置を終了する指示操作がされていないと、ステップS6の処理に戻る。そして、上述したステップS6以降の処理を繰り返す。
 なお、ステップS7において超音波ON信号が発生しない場合には、ステップ15に示すようにミスト判定&判定信号生成部68は、基準画像を更新する処理を行い、この処理の後、ステップS6の処理に戻る。
 このようにして患部5の生体組織に対する処置が終了した場合には、ステップS16に示すように超音波吸引プローブ8による処置を終了する。
 図7(A)~図7(F)は、図6における主要部の動作説明のタイミング図を示す。図6のステップS4により、図7(A)及び図7(B)に示すように例えば時間t1で送水及び吸引の動作が開始する。その時間t1よりも後の時間t2において図7(C)に示すように超音波スイッチ28aがONされる。そして、この超音波スイッチ28aがONされると、超音波ON信号が発生し、超音波駆動信号発生ユニット6は図7(D)に示すように超音波駆動信号を超音波振動子9に出力する。超音波振動子9は超音波振動し、術者は、図6のステップS8に示すように超音波吸引プローブ8により処置を行う。
 また、超音波スイッチ28aがONされると、図7(E)に示すようにミスト判定&判定信号生成部68はミストの発生の有無を判定するミスト判定動作を開始する。ミスト判定&判定信号生成部68の判定回路72は、判定結果を出力する。
 図1の拡大図に示すように患部5の生体組織の表面に対して超音波吸引プローブ8の先端部11を接触させて、超音波振動を付与することにより、脆弱な脂肪組織などを破砕することができ、弾力性に富む血管等を露出させることができる。
 また、この先端部11の近傍から送水及び吸引することにより破砕した生体組織片を送水した水と共に、乳化状態で効率良く吸引して、除去する(又は回収する)ことができる。
 しかし、表面付近に送水された状態において生体組織に超音波振動を付与すると、超音波振動により表面付近の水が、破砕された生体組織片を含むミストとなって、周囲に飛び散る現象が発生する。
 そして、所定値を超えるミストが発生すると、判定回路72は、図7(F)に示すように例えば時間t3に示すようにミスト判定信号を出力する。ミスト判定信号が出力されると、コントローラ73は、直ちに送水を停止させると共に、超音波駆動信号の出力を停止させる。
 超音波吸引プローブ8の先端部11は超音波振動しなくなるので、時間t3から短い時間後の例えば時間t4になるとミストの発生が停止又は十分に小さくなる。すると、ミスト判定信号が出力されなくなるので、送水の停止が解除されると共に、超音波駆動信号の出力停止が解除される。
 なお、図7(B)の点線で示すようにコントローラ73は、送水の停止に連動して吸引を停止させるようにしても良い。この場合には時間t4において吸引の停止が解除される。
 そして、送水及び吸引された状態で、超音波振動により処置が行われる。この場合の動作は、上述した時間t2以後の動作に類似した動作となる。つまり、時間t4から時間t6までの動作は、時間t2から時間t4までの動作の繰り返しとなる。
 術者は、超音波吸引プローブ8による処置を終了した場合には、超音波スイッチ28aを例えば時間t7でOFFにする。また、術者は、送水の動作も時間t8で停止させる。
 このようにして、患部5の生体組織に対する超音波吸引プローブ8による処置が終了する。
 このように動作する本実施形態は、超音波吸引プローブ8による超音波振動を利用して、患部5の生体組織における脆弱な脂肪組織を破砕して除去する処置を行った場合、観察画像に対する画像処理により、所定値を超えるミストの発生を検出(判定)する。そして、ミスト発生の判定結果により、直ちに超音波駆動信号の出力停止又は低減を行うようにしているので、所定値を超えるミストが発生した場合、そのミストを停止又は低減して、良好な観察状態に設定できる。
 従って、術者は、内視鏡14の観察下で、ミストが発生する可能性がある環境で処置を行った場合にも、所定値を超えるミストの発生を抑制して超音波吸引プローブ8による処置を効率良く行うことができる。
 なお、このように制御していないと、図3Bを参照して説明したように術者は観察の妨げとなるミストの発生を停止させるために、超音波スイッチ28aをOFFにする操作を頻繁に行うことが必要になる。そして、ミストの発生が低減ないしは停止した場合、再び超音波スイッチ28aをONにする操作が必要になる。
 これに対して、本実施形態によれば、所定値を超えるミストの発生を監視し、所定値を超えるミストの発生を検出した場合には、ミストの発生が低減ないしは停止する状態となるように自動的に超音波駆動信号の出力を停止(又は低減)し、かつ送水動作も停止(又は低減)する。なお、吸引動作も送水動作に連動させることができる。
 そして、本実施形態は、ミストの発生量が所定値以下の状態を検出すると、自動的に超音波駆動信号の出力停止を解除すると共に、送水等の動作の停止も解除する。従って、本実施形態によれば、術者は、煩わしい操作を行うことを必要としない操作性が良い状態で、上述したように超音波吸引プローブ8による処置を円滑に、かつ効率良く行うことができる。
 なお、上述した説明において、基準画像と観察画像とを比較して判定を行う場合、閾値Vthを加算した基準画像の画像信号Iraと観察画像の画像信号Ioとを比較して判定を行っていた。このような判定を行う代わりに、図8に示すように基準画像の画像信号Irにおける最大値Vmと、図5Cに示す観察画像の画像信号Ioとを比較して判定を行うようにしても良い。
 あるいは、図8に示すように閾値Vthを加算した基準画像の画像信号Irの最大値Vmrを設定し、この最大値Vmrと観察画像の画像信号Ioとを比較して判定を行うようにしても良い。このような設定は、例えば設定部74による選択設定の指示操作により行うことができる。
 次に本実施形態の第1変形例における機能を説明する。上述した第1の実施形態が備える基本の機能においては、プロセッサ17には観察画像からミストの発生の有無を判定するミスト判定&判定信号生成部68を設けていた。
 本変形例は、さらに対物レンズ49の外表面がミストに起因する付着物の付着により、観察画像が不鮮明になる現象を、観察画像の画像信号から判定(検出)する付着判定部(又は不鮮明判定部)81を設けている。
 付着判定部81は、付着有りと判定した場合には、付着判定信号をコントローラ73に出力する。コントローラ73は、付着判定信号が入力されると、光源ユニット18内に設けた送気&送水ユニット55による送気及び送水動作を行うように制御する。
 図9Aは、付着判定部81の概略の構成を示す。メモリ65の画像信号は、コントローラ73からの制御信号により、画像取得部の機能を持つ周波数/輝度分析回路81aを介して基準メモリ81bに格納される。
 コントローラ73は、例えば最初の超音波スイッチ28aのON時の時間に、制御信号を出力する。この時間以降においてミストが発生する可能性があるが、始動時においては観察窓の対物レンズ49はミストが付着していない清浄な状態と見なすことができる。
 この時間において、周波数/輝度分析回路81aは、メモリ65の1フレーム分の基準画像となる画像信号を取り込み、かつ1フレーム分の画像領域を小領域に分割して、それぞれの小領域での周波数と輝度の分析を行い、その分析データを基準メモリ81bに基準分析データとして格納する。
 この基準メモリ81bの基準分析データは、比較回路81cに出力される。また、この基準分析データの格納後においては、周波数/輝度分析回路81aは、例えば超音波スイッチ28aがOFFにされた後から各1フレーム分の観察画像の画像信号を取り込み、各1フレーム分の画像領域を図9Bに示すように小領域Rsに分割して、それぞれの小領域Rsでの周波数と輝度の分析を行い、その分析データを比較回路81cに出力する。
 比較回路81cは、対応する各小領域において基準分析データと、分析データとで周波数データ及び輝度分布の比較を行う。対物レンズ49の外表面にミスト等が付着すると、付着物のために対物レンズ49による本来の結像機能が低下する。このため、取得された観察画像の空間周波数の分布は、付着物の無い状態と比較すると、高周波成分が少なく、低周波成分が多くなる。
 また、同様に、輝度成分に関しても、付着物の無い状態と比較すると、付着物のために不鮮明な画像成分が多くなるため、最大輝度値と最低輝度値の差が小さくなる。また、このような特徴又は傾向は、時間的に継続する。
 このような特徴を考慮して、基準分析データの周波数データの高周波成分と、輝度の最大値と最小値間の差分値、換言するとコントラスト値とに比較して、分析データ側が予め設定された値以下に小さい場合には、比較回路81cは、付着有りの可能性があるとの比較信号を、判定回路81dに出力する。
 判定回路81dは、例えば所定時間内に入力された比較信号の数が、閾値81e以上の場合には付着有りと判定した付着判定信号をコントローラ73に出力する。付着判定信号が入力されると、コントローラ73は、送気&送水ユニット55による送気及び送水動作を行うように制御する。この制御により、対物レンズ49の外表面には、流体噴出部としてのノズル50から気体及び水が噴出され、外表面に付着したミストの飛散物等の付着物が除去されて、対物レンズの外表面は清浄な状態に設定される。
 なお、付着判定信号が入力された場合、コントローラ73は、さらに超音波駆動信号発生ユニット6による前記超音波駆動信号の出力停止又は出力低減させる制御と共に、流体供給部としての送水&吸引ユニット12による流体の供給を低減または停止させる制御を行うようにしても良い。また、コントローラ73は、吸引の動作を送水の動作に連動して、吸引を低減または停止させる制御を行うようにしても良い。
 また、上記の説明においては、例えば1フレームの観察画像を複数の領域に分割した例で説明したが、付着有りか否かを判定する所定領域として、1フレーム分の観察画像で行うようにしても良い。
 上記付着判定部81による動作例を図10(A)~図10(G)に示す。図10(A)に示すように送水器41による送水動作後、図10(B)に示す超音波スイッチ28aによる超音波ON信号に同期して、図10(C)に示す超音波駆動信号が超音波吸引プローブ8の超音波振動子9に印加される。
 また、図10(D)に示すように超音波スイッチ28aのON期間、ミスト判定&判定信号生成部68によるミスト判定動作が行われる。
 また、上記超音波スイッチ28aによる超音波ON信号に同期して、図10(E)に示すように基準画像の基準分析データが生成され、基準メモリ81bに格納される。
 図10(F)に示すように超音波スイッチ28aがOFFにされた期間、付着判定部81は付着判定の動作を行う。
 つまり、付着判定部81は、図10(E)で基準分析データを確定した後、図10(B)に示すように超音波スイッチ28aがOFFにされた期間においてメモリ65から観察画像を取得して、分析データを生成する。さらに、付着判定部81は、基準分析データと分析データを比較して、付着判定の動作を開始する。
 そして、例えば図10(G)のように判定回路81dが付着判定信号を発生すると、コントローラ73の制御により、図10(H)のように送気&送水ユニット55は、ノズル50から気体及び水を噴出して、対物レンズ49の外表面を清浄な状態にする。
 本変形例によれば、ミストの発生により、ミストが飛散して対物レンズ49の外表面に付着して、鮮明な観察画像が得られないような状態になると、自動的にノズル50から気体及び水を噴出して、対物レンズ49の外表面を清浄な状態にすることができる。
 なお、上述の説明においては、付着判定の動作を図10(F)に示すように超音波スイッチ28aがOFFにされた期間行う例で説明した。
 このような場合に限定されるものでなく、例えば図10(I)に示すように超音波スイッチ28aがONにされた期間に、行うようにしても良い。この場合には、付着判定とミスト判定&判定信号生成部68の動作とが同時に行われる。
 また、図10(I)の点線で示すように超音波スイッチ28aが(ONにされた期間だけでなく)OFFにされた期間も付着判定の動作を行うようにしても良い。
 次に本実施形態における第2変形例の機能を説明する。
 第1変形例においては、対物レンズ49の外表面にミストが付着したか否かを観察画像から判定する。そして、付着している判定結果の場合には流体噴出部としての送気&送水器55により、流体としての気体や液体を噴出し、付着物を除去するようにしていた。
 本変形例は、さらに対物レンズ49の外表面にミストによる付着物が付着しないように付着を防止する手段を備える。
 具体的には、超音波吸引プローブ8による超音波振動によりミストが発生する可能性があるため、図10(J)に示すように超音波スイッチ28aがONされた期間と同期して送気&送水器55から送気する動作をさせる。
 送気することにより、ノズル50から対物レンズ49の外表面に向けて気体を噴出し、対物レンズの外表面にミストが付着するのを防止する。
 また、この場合、腹部4内の気圧が高くなるので、図10(K)に示すように気腹ユニット24における気腹器24により吸気して、腹部4内の気圧を一定に保つように圧力制御する。
 本変形例によれば、ミストに起因する観察視野が低下することを防止することができる。なお、この場合にも図10(J)の点線で示すように超音波スイッチ28aがOFFにされた期間にも送気動作を行うようにしても良い。また、この場合には、吸気動作も連動させると良い。
 次に本実施形態の第3変形例を説明する。本変形例は、図1,図2に示した構成において、さらに内視鏡14の先端側に加温する手段を設け、上述した流体噴出部等による機能と組み合わせる。ミストに含まれる脂肪組織は、加温された状態になると、液状化したり、(加温されていない温度の場合に比較して)除去し易い状態になる。
 このため、図11に示すように内視鏡14の挿入部45の先端部47付近には、先端部47付近を加温する加温装置85aが設けられている。この加温装置85aは、先端部47の外周面を形成する円筒部分に形成され、挿入部45内を挿通された信号ケーブル85bを介して、光源ユニット18内に設けた加温用の電源回路85cに接続される。この電源回路85cは、コントローラ56又はコントローラ56及び73によりその動作が制御される。
 また、加温装置85aには温度センサ85dが設けられ、この温度センサ85dは信号ケーブル85eを介して光源ユニット18内のコントローラ56に接続されている。コントローラ56は、この温度センサ85dの温度検知信号により、電源回路85から加温装置85aによる加温する温度を適切な温度を保つように制御する。
 例えば、コントローラ56は、加温装置85aが体温よりも若干高い所定の温度T(例えばT=37°C~40°C程度)となるように温度制御する。なお、温度センサ85dの温度検知信号によって、直接的に電源回路85cによる電源供給の制御して所定の温度を維持するようにしても良い。
 また、送気&送水器55内における例えば送気する気体を加温する加温器55aを設けるようにしても良い。この加温器55aにより加温した気体を送気&送水チューブ57を介して送気し、先端部47の先端面から突出するノズル50から、加温された気体を噴出するようにしても良い。
 図12(A)~図12(D)は本変形例における概略の動作説明図を示す。
 図12(A)に示すように超音波吸引プローブ8による超音波振動による処置を行うために送水及び吸引を行っている期間、図12(B)及び図12(C)に示すように加温装置85aによる加温動作と、加温器55aによる加温した気体の送気動作を行う。
 また、図12(D)に示すように、例えばコントローラ73又は26の制御により、腹部4内を一定圧力に保つように吸気の動作も行うように制御する。
 このような動作を行うことにより、対物レンズ49に、超音波振動によるミストが付着することを防止できると共に、付着した場合にも、ミストに含まれる脂肪組織を先端部47付近の加温により、液状化又は除去し易い状態に設定でき、対物レンズ49による観察視野を清浄な状態に維持できる。
 なお、加温器55aにより、加温する気体を送気する動作と共に、加温された水も送水するようにしても良い。また、加温装置を内視鏡内部に設けるようにしても良い。このような構成にした場合には、使用する場合に特別な付加物を必要としないメリットを有する。また、加温する場所として、例えば対物レンズ49の少なくとも外表面を加温できるようにすると良い。
 また、上述の説明においては先端部47の先端面から1箇所で突出するノズル50を用いて加温された気体などを送気することを説明したが、このノズル50を用いた構成の場合に限定されない。
 図13Aはノズル50とは異なる場合の送気口(又は噴出口)86aを設けた例を示す。挿入部45の外周面に沿って、例えば半円筒形状の送気管86bが設けられ、この送気管86bは、先端部47の先端面において半円筒状に開口する送気口86aとなる。
 この送気口86aは、先端面に対向するように開口し、送気された気体は矢印で示すように先端面に沿って噴出される。なお、この先端面には対物レンズ49と照明レンズ48が露呈する。
 従って、加温された気体を噴出させることにより、対物レンズ49及び照明レンズ48の外表面等に付着した脂肪組織を含むミストによる付着物を送気口86aと反対側の周縁部側に排除し易くする。
 また、図2等においては、内視鏡14の挿入部45の内部に設けた送気&送水チューブ58の先端部にノズル50を設けていたが、図13Bに示すように挿入部45の外周面に沿って設けた送気管86cの先端部に送気口(又はノズル)86dを設ける構成にしても良い。
 そして、この送気口86dから加温された気体を噴出又は送出しても良い。
 また、図13A及び図13Bに示すように、対物レンズ49及び照明レンズ48の外表面に撥水機能を有する撥水膜87a、87bを設けるようにしても良い。撥水膜87a、87bを設けることにより、ミストが付着し難くできると共に、付着した場合にも簡単に除去することができる。
(第2の実施形態)
 図14Aは本発明の第2の実施形態に係る超音波吸引プローブ8Bの構成を示す。本実施形態は、ミストが飛散するような場合においても、その飛散が内視鏡14の良好な観察視野に及ばないような手段を備えた構成にしている。その他の構成は、例えば第1の実施形態と同様である。
 この超音波吸引プローブ8Bは、図2に示した超音波吸引プローブ8Bの外管31を内シース91aとして、その外側に外シース91bを設けている。
 外シース91bの先端は、内シース91aの先端よりも後方側に位置し、この内シース91aの内側に配置された超音波吸引プローブ8Bの先端部11が、内シース91aの先端部から若干突出するように配置されている。
 また、内シ-ス91aと外シース91bとの間における先端側部分には開閉自在となる傘92aが、軸方向に移動自在に配置されている。
 また、外シース91bの後端が固定された把持部46には、前方に移動可能な操作レバー92bが設けられ、術者がこの操作レバー92bを前方側に移動する(押す)操作を行うことにより、外シース91bの先端部内に待避していた傘92aを、図14Bに示すように突出させることができる。
 図14Cに示すように外シース91bを外した構造から分かるように傘92aは、スライド棒92cを介して操作レバー92bと連結されている。従って、上記のように術者が操作レバー92bを前方側に移動する操作を行うことにより、図14Bや図14Dに示すように傘92aを突出させることができる。
 なお、傘92aは、基端側に比べて先端側が拡開するように略円錐形状に形成された透明シート92eと、この透明シート92eを補強するようにシース91a、91bの軸方向に沿って設けられた複数本のワイヤ状の骨格部92dとからなる。骨格部92dは、例えばその基端は固定されたリング部において、先端側が拡開する特性を持つように形状記憶金属等で形成されている。なお、内シース91aと外シース91bとの隙間に水を灌流させることにより、傘92aに付着したミスト等の汚れを定期的に洗浄する。
 図15は、このような構成の超音波吸引プローブ8Bを用いて患部5の生体組織に対して超音波振動による処置を行う様子を示す。術者は、操作レバー92bを操作して、傘92aを開いた状態に設定しておく。また、傘92aは、透明シート92eにより形成されているので、術者は透明シート92eを透過して患部5周辺部を観察することができる。
 超音波吸引プローブ8Bの先端部11により生体組織に超音波振動を付与した場合、生体組織の表面には水が送水されているため、超音波振動の付与により、破砕された生体組織片も水に混じってミストとなって周囲に飛散する。なお、図15においては、飛散するミストを矢印で示している。
 ミストが飛散しても傘92aにより、内視鏡14の観察視野側に飛び散ることを防止できる。従って、術者は、この内視鏡14の観察下で、超音波吸引プローブ8Bによる処置を円滑に行うことができる。
 また、上記のように内シース91aと外シース91bとの隙間に定期的に水を灌流させることにより、傘92aの内側がミストで汚れた状態になっても、その汚れを除去して傘92aの透明シート92eを通して内視鏡14により観察し易い状態を維持できる。
(第3の実施形態)
 図16A及び図16Bは本発明の第3の実施形態に係る超音波吸引プローブ8Cの先端側の構成を示す。
 本実施形態においては、例えば第1の実施形態における図1及び図2に示した超音波吸引プローブ8において、その先端側に例えば透明な部材により形成された袋95aを着脱自在に取り付けることにより超音波吸引プローブ8C形成されるようにしている。
 この袋95aは、略半球形状ないしは円錐形状であり、その基端にはゴム等の弾性を有するリング95bによって、超音波吸引プローブ8の外管31に着脱自在に取り付けられるようにしている。また、この袋95aの先端側は、略円形に開口している。
 また、図17は、本実施形態における超音波吸引プローブ8Cを用いて超音波振動を利用した処置を行う様子を示す。
 本実施形態においては、内視鏡14の観察下で、処置対象の患部5周辺部を袋95aの内側となるように設定する。そして、内視鏡14の観察下で、術者は図示しない処置具を介して袋95aの開口する周縁における複数箇所を対向する生体組織の表面にクリップ96により固定する。
 その後、上述した実施形態の場合と同様に超音波吸引プローブ8Cにより処置を行う。本実施形態の場合においてはミストが飛散しても、袋95aの内部から外部に飛散することを有効に防止できる。また、内視鏡14により、この透明な袋95aを透過して患部5周辺部を観察することができる。
 従って、内視鏡14による観察下で超音波吸引プローブ8Cによる処置を円滑に行うことができる。
 なお、上述した実施形態又は変形例を変形した構成又は変形した方法を採用しても良い。
 例えば第1実施形態の第1変形例の説明においては、図10(A)から図10(C)に示すように、超音波スイッチ28aがONされた場合、超音波駆動信号が連続的に出力される場合で説明した。
 これに対して、設定部74に出力モード設定部74bを設け、出力モード設定部74bの選択設定により、超音波駆動信号を間欠的に出力させるようにしても良い。
 (第4の実施形態)
 図18は、本発明の第4の実施形態の超音波吸引システムにおけるプロセッサ17及び超音波駆動信号発生ユニット6の構成を示す。本実施形態は、第1の実施形態において、さらに図18に示すようにクロック発生回路101、ゲート回路102、画像取得回路103,画像処理回路104,モニタ105を設けている。
 本実施形態においては、超音波スイッチ28aがONされた場合には、プロセッサ17内に設けたクロック発生回路101のクロックにより、超音波駆動信号発生ユニット6内のゲート回路102の開閉が制御され、発振器36の出力信号はゲート回路102の開閉によって出力回路37に間欠的に出力される。なお、クロック発生回路101は、図4に示したクロック回路69aを用いても良い。
 また、メモリ65の画像信号は、クロックに同期して画像を取得する第2の画像取得回路103及び画像処理を行う画像処理回路104を介して、第2のモニタ105に出力される。
 この第2の画像取得回路103は、超音波駆動信号がOFFとなる期間において、メモリ65からの画像信号を取得(図19(E)参照)し、超音波駆動信号がONとなる期間、メモリ103aでフリーズして保持する(図19(F)参照)。
 そして、次の超音波駆動信号がOFFとなる期間において取得した画像信号が入力されると、メモリ103aに格納されている画像信号は、更新される。第2の画像取得回路103の出力信号は、画像処理回路104により標準的な画像信号に変換されてモニタ105に出力される。
 モニタ105には第2の画像取得回路103により取得された観察画像が表示される。なお、超音波スイッチ28aがONされていない場合には、画像取得回路103は、通常のフレームレートでメモリ65から動画を取得し、その動画がモニタ105で表示される。
 また、第2の画像取得回路103及び画像処理回路104はコントローラ73により制御される。また、設定部74には、出力モード設定部74bが設けてあり、出力モード設定部74bの選択設定によって、第1の実施形態のように連続出力モードと、以下に説明する間欠出力モードとから一方の出力モードを選択することができる。
 なお、連続出力モードが選択された場合には、ゲート回路102は常時開となり、第1の実施形態と同様の動作となる。
 その他の構成は図2に示した第1の実施形態と同様の構成である。図19(A)から図19(F)は本実施形態における間欠出力モードが選択された場合の動作説明用のタイミング図を示す。
 図19(A)に示すように送水&吸引動作が開始した後、図19(B)に示すように超音波スイッチ28aがON及びOFFされて超音波吸引プローブ8による超音波振動を利用した処置が行われる。
 本実施形態においては、超音波スイッチ28aがONされた場合には、クロックに同期して、図19(C)に示すように超音波駆動信号が間欠的に出力される。また、図19(D)に示すようにミスト判定&判定信号生成部68は、第1の実施形態で説明したように超音波スイッチ28aがONされた期間、ミスト判定動作を開始する。
 また、図19(E)に示すように間欠的に出力される超音波駆動信号に同期して、第2の画像取得回路103は、超音波駆動信号がOFFの期間において観察画像を取得する。そして、この観察画像により生成した標準の画像信号は、モニタ105に表示される。なお、超音波スイッチ28aがOFFの期間においては、図19(E)に示すように所定のフレームレート(例えば20フレーム/sec又は30フレーム/sec)で動画の観察画像が取得、つまり通常動画が取得される。
 図19(E)において、間欠的に取得された観察画像をA,B,C,…,F,Gとすると、メモリ103aには図19(F)で示すように例えば、取得した観察画像が2倍の周期、保持される。そして、モニタ105には、2倍の周期(この例では、超音波駆動信号のON/OFFの周期)の動画として表示される。
 超音波駆動信号のON/OFFの周期を設定部74により、可変設定できるようにしても良い。これにより、間欠出力モードにおける超音波駆動信号をONにする期間とOFFにする期間を処置に応じて術者が選択設定できるようにしても良い。また、ONにする期間とOFFにする期間のヂューティを設定部74により可変設定できるようにしても良い。
 なお、図19(E)における間欠的に取得される観察画像A等が、それぞれ複数フレームとなる場合には、その平均値が1フレームの観察画像に設定される。後述する図19(I)に示すように1フレーム又は1フィールドの観察画像のみを取得するようにしても良い。また、図19(F)において通常画像の場合には、メモリ103aには所定のフレームレートで観察画像が記録される。図19(F)ではこの記録の動作を斜線で示している。
 本実施形態においては、超音波スイッチ28aがONされた場合には、超音波駆動信号を間欠的に出力し、かつ超音波駆動信号が出力されていない期間において取得した観察画像を表示手段としてのモニタ105で、通常の動画のフレームレートの1/2以下となる低いフレームレートの動画として表示する。
 従って、超音波振動によりミストが発生する可能性がある条件下においても、超音波振動が停止した期間において観察画像を取得して表示するようにしているので、所定値を超えるミストの発生による観察画像が観察しにくい画像になる事を少なくとも低減した状態の観察画像をモニタ105に表示することができる。
 また、ミスト判定&判定信号生成部68により、例えば図19(G)に示すように所定値を超えるミストの発生を判定したミスト判定信号が出力された場合には、図19(H)に示すようにコントローラ73は、出力回路37から出力される超音波出力値を低減する。また、コントローラ73は、図19(A)に示す送水&吸引ユニット12の送水及び吸引の動作を低減する。
 そして、第1の実施形態のようにモニタ21側に表示される観察画像の品質を維持する。図19(H)においては、ミスト判定信号が出力された場合に、超音波出力値を低減する例で説明しているが、図7(D)に示したように超音波出力値を0,つまり超音波駆動信号の出力を停止させるようにしても良い。
 なお、図19(E)のように超音波駆動信号がOFFの期間に、複数フレーム又は複数フィールドの画像を取得する代わりに、図19(I)に示すように超音波駆動信号がOFFの期間における超音波駆動信号がONする直前の1フレーム又は1フィールドの画像を取得するようにしても良い。
 このようにすると、超音波振動によりミストが発生するような条件下においても、所定値を超えるミストの発生による観察画像が観察し難くなることを低減した観察画像を取得してモニタ105に表示することができる。
 本実施形態は、第1の実施形態と同様の効果を有する他に、第2のモニタ105には所定値を超えるミストの発生による悪影響の少ない観察画像を表示できる。従って、術者は、超音波振動による処置を円滑に行うことができる。
 なお、本実施形態の変形例として、ミスト判定信号が発生するまでは、第1の実施形態で説明したように超音波駆動信号を連続出力モードで出力させ、ミスト判定信号が発生後は、間欠出力モードに変更させるような動作を選択又は制御するようにしても良い。
 なお、上述した実施形態においては、超音波吸引プローブ8内に超音波振動を発生する超音波発生部としての超音波振動子9を備えた構成で説明したが、超音波吸引プローブ8の外部に超音波発生部を設けた構成にしても良い。また、図2等において、コントローラ73は、例えばミスト判定&判定信号生成部68と別体の構成で示しているが、コントローラ73がミスト判定&判定信号生成部68を含む構成にしても良い。また、コントローラ73が付着判定部81を含む構成にしても良い。
 また、上述した各実施形態等を部分的に組み合わせして異なる実施形態を形成しても良いし、変形例を構成しても良い。
 本出願は、2010年6月17日に米国に仮出願された61/355,646号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (21)

  1.  超音波駆動信号を発生する超音波駆動信号発生部と、
     前記超音波駆動信号の印加により超音波振動エネルギーを発生する超音波発生部及び該超音波発生部で発生した超音波振動エネルギーを処置対象の生体組織に伝達する振動伝達部の先端部から付与することによって、前記生体組織を破砕すると共に、破砕された生体組織片を吸引するための吸引部が設けられた超音波吸引部と、
     前記振動伝達部の先端部側に対向する前記生体組織を観察する観察機能を有する観察部と、
     前記生体組織の表面に流体を供給する流体供給部と、
     前記超音波振動エネルギーが付与された状態における前記生体組織の表面からミストが発生している状態の観察画像を、前記観察部を介して取得するための画像取得部と、
     前記振動伝達部の先端部への超音波エネルギーの付与時から付与直後までの前記ミストが発生していない状態に対応する基準画像と、前記画像取得部により取得された前記観察画像とを比較した比較結果に基づいて、前記超音波駆動信号発生部による前記超音波駆動信号の出力及び前記流体の供給の少なくとも一方を制御する制御部と、
     を有することを特徴とする超音波吸引システム。
  2.  さらに、前記比較結果に基づいて前記観察画像が前記基準画像から所定値以上に変化したミストが発生している状態の観察画像であるか否かの判定部を有し、所定値以上に変化している判定結果の場合には前記制御部は、前記超音波駆動信号発生部による前記超音波駆動信号の出力停止又は出力低減させる制御と共に、前記流体供給部による流体の供給を低減または停止させる制御を行うことを特徴とする請求項1に記載の超音波吸引システム。
  3.  さらに、前記吸気口に連通する吸引管路を介して前記生体組織の表面に供給された前記流体と共に、破砕された前記生体組織片を吸引する吸引デバイスを有し、
     前記基準画像と前記観察画像との比較結果に基づいて前記観察画像が前記基準画像から所定値以上に変化している判定結果の場合には、前記制御部は前記吸引デバイスによる吸引の動作を低減または停止させる制御を行うことを特徴とする請求項2に記載の超音波吸引システム。
  4.  前記観察部が、挿入部の先端部に設けられた内視鏡を含むことを特徴とする請求項1に記載の超音波吸引システム。
  5.  前記画像取得部は、前記超音波駆動信号が実質的に発生していない状態において前記観察部から取得した観察画像を前記基準画像に設定し、前記判定部は、該基準画像に対して、前記超音波駆動信号が発生している状態において前記観察部から取得された前記観察画像がミストの特徴に対応したパルス状画像を含むか否かの判定を行うことにより、前記ミストの発生の有無を判定することを特徴とする請求項2に記載の超音波吸引システム。
  6.  前記判定部は、前記基準画像に比較して、前記観察画像が予め設定された閾値以上の輝度値を含む画像であるか否かの判定により、前記ミストの発生の有無を判定することを特徴とする請求項5に記載の超音波吸引システム。
  7.  前記判定部は、前記基準画像に比較して、前記観察画像が、所定領域中に前記閾値以上の輝度値を離散的に所定数以上含むか否かを判定し、所定数以上含む場合に、前記判定結果として前記ミストの発生と判定したミスト判定信号を生成することを特徴とする請求項6に記載の超音波吸引システム。
  8.  さらに、前記観察部の先端部の外表面に、前記ミストの飛散に伴う付着物が付着しているか否かを、前記観察画像から判定する付着判定部を有し、前記付着判定部は、前記付着物が付着していると判定した場合には判定信号を発生することを特徴とする請求項5に記載の超音波吸引システム。
  9.  前記制御部は、前記判定信号の発生に基づいて、前記振動伝達部の先端部に設けた流体噴出部から、前記観察部の先端部の外表面に向けて流体を噴出させる制御を行うことを特徴とする請求項8に記載の超音波吸引システム。
  10.  前記付着判定部は、前記観察画像における輝度値の最大値と最小値との差が所定値以下となる判定結果の場合に前記判定信号を発生することを特徴とする請求項9に記載の超音波吸引システム。
  11.  前記付着判定部は、前記観察画像における空間周波数分布を分析する分析部を有し、前記空間周波数の高周波成分が所定値以下となる判定結果の場合に前記判定信号を発生することを特徴とする請求項9に記載の超音波吸引システム。
  12.  さらに前記制御部は、少なくとも前記超音波駆動信号が発生している期間、前記振動伝達部の先端部に設けた気体噴出部から、前記観察部の先端部の外表面に向けて気体を噴出させる制御を行うことを特徴とする請求項5に記載の超音波吸引システム。
  13.  さらに前記振動伝達部の少なくとも先端側が挿入される体腔内に気体を送気及び吸気する気腹ユニットを有し、
     前記制御部は、前記体腔内の前記気体の圧力情報に基づいて、前記気腹ユニットにおける少なくとも吸気の動作を制御することを特徴とする請求項12に記載の超音波吸引システム。
  14.  前記超音波吸引部の先端部に設けられ、該先端部付近を加温する加温デバイスと、該加温デバイスに加温する電源を供給する電源部とを有することを特徴とする請求項2に記載の超音波吸引システム。
  15.  前記判定信号が発生した場合に前記制御部は、前記超音波駆動信号発生部による前記超音波駆動信号の出力停止又は出力低減させる制御と共に、前記流体供給部による流体の供給を低減または停止させる制御を行うことを特徴とする請求項10に記載の超音波吸引システム。
  16.  さらに、前記超音波吸引部の先端側の外套シースの内側に、突出及び退避可能に透明な傘を設け、該傘は突出された場合、超音波吸引プローブの先端部の周囲を略円錐形状の透明シートで覆うことを特徴とする請求項2に記載の超音波吸引システム。
  17.  さらに、前記超音波吸引部の先端側に、その基端が着脱自在に設けられ、先端側が開口する透明な袋を有し、該袋は開口する周縁を前記超音波吸引部の先端部の周囲における生体組織にクリップにて固定可能であることを特徴とする請求項2に記載の超音波吸引システム。
  18.  前記超音波駆動信号発生部は、発生した前記超音波駆動信号を連続的に出力する連続出力モードと、ON期間とOFF期間からなる所定の周期で前記超音波駆動信号を間欠的に出力する間欠出力モードを有することを特徴とする請求項2に記載の超音波吸引システム。
  19.  前記制御部は、前記超音波駆動信号発生部による前記超音波駆動信号の出力電流値を制御することにより、前記超音波駆動信号の出力低減を含む制御を行うことを特徴とする請求項2に記載の超音波吸引システム。
  20.  処置対象の生体組織の表面を観察するための観察部による観察ステップと、
     前記観察ステップによる観察状態において前記処置対象の生体組織に対して超音波吸引部の先端部から超音波振動エネルギーを付与して、前記生体組織を破砕する超音波振動付与ステップと、
     前記処置対象の生体組織に流体を供給すると共に、前記超音波振動エネルギーの付与により破砕された生体組織片を前記超音波吸引部の先端部に設けられた吸引口から前記流体と共に吸引するための供給/吸引ステップと、
     前記流体が供給された状態の前記処置対象の生体組織に前記超音波振動エネルギーの付与によるミストが発生する可能性のある観察画像を取得する画像取得ステップと、
     前記超音波振動エネルギーの付与時から付与直後までの前記ミストが発生していない状態に対応する基準画像と、前記画像取得ステップにより取得した観察画像とを比較した比較結果に基づき、前記観察画像が前記ミストの発生を含む画像であるか否かを判定部が判定する判定ステップと、
     前記判定ステップにより、前記観察画像が前記ミストの発生を含む画像であると判定した判定結果に基づいて、前記生体組織に付与される前記超音波振動エネルギー量及び前記流体の供給量の少なくとも一方を低減する制御を制御部が行う制御ステップと、
     を有することを特徴とする超音波吸引方法。
  21.   前記判定ステップは、前記基準画像に比較して、前記観察画像が、所定領域中に前記閾値以上の輝度値を離散的に所定数以上含むか否かを判定し、所定数以上含む場合に、前記ミストの発生と判定したミスト判定信号を発生し、
     前記ミスト判定信号に基づいて前記制御ステップは超音波駆動信号の出力停止又は出力低減させる制御と共に、
     前記供給/吸引ステップにおける前記流体供給部による流体の供給を低減または停止させ、かつ前記超音波吸引部による吸引を低減または停止させる制御を行うことを特徴とする請求項20に記載の超音波吸引方法。
     
PCT/JP2011/063511 2010-06-17 2011-06-13 超音波吸引システム及び超音波吸引方法 WO2011158792A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180009159.4A CN102762160B (zh) 2010-06-17 2011-06-13 超声波处置***和超声波处置***的动作方法
JP2011546358A JP5006475B2 (ja) 2010-06-17 2011-06-13 超音波処置システム及び超音波処置システムの作動方法
EP11795697.9A EP2508143B1 (en) 2010-06-17 2011-06-13 Ultrasound suction system
US13/286,522 US20120116222A1 (en) 2010-06-17 2011-11-01 Ultrasound treatment system and method of actuating the ultrasound treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35564610P 2010-06-17 2010-06-17
US61/355,646 2010-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/286,522 Continuation US20120116222A1 (en) 2010-06-17 2011-11-01 Ultrasound treatment system and method of actuating the ultrasound treatment system

Publications (1)

Publication Number Publication Date
WO2011158792A1 true WO2011158792A1 (ja) 2011-12-22

Family

ID=45348191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063511 WO2011158792A1 (ja) 2010-06-17 2011-06-13 超音波吸引システム及び超音波吸引方法

Country Status (5)

Country Link
US (1) US20120116222A1 (ja)
EP (1) EP2508143B1 (ja)
JP (1) JP5006475B2 (ja)
CN (1) CN102762160B (ja)
WO (1) WO2011158792A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013813A1 (ja) * 2015-07-23 2017-01-26 オリンパス株式会社 超音波処置具及び超音波処置アッセンブリ
JP2017023604A (ja) * 2015-07-27 2017-02-02 オリンパス株式会社 内視鏡システム
JPWO2016140039A1 (ja) * 2015-03-04 2017-04-27 オリンパス株式会社 医療処置システム
WO2022234641A1 (ja) * 2021-05-07 2022-11-10 オリンパス株式会社 制御装置、内視鏡システム及び制御方法
WO2023170982A1 (ja) * 2022-03-11 2023-09-14 オリンパス株式会社 処置システムおよび処置システムの作動方法

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US20060079879A1 (en) 2004-10-08 2006-04-13 Faller Craig N Actuation mechanism for use with an ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
CA2701962C (en) 2007-10-05 2016-05-31 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8956349B2 (en) 2009-10-09 2015-02-17 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8709035B2 (en) 2010-04-12 2014-04-29 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9314292B2 (en) 2011-10-24 2016-04-19 Ethicon Endo-Surgery, Llc Trigger lockout mechanism
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
CN104302240B (zh) * 2012-09-21 2017-03-01 奥林巴斯株式会社 手术装置
BR112015007010B1 (pt) 2012-09-28 2022-05-31 Ethicon Endo-Surgery, Inc Atuador de extremidade
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US20150080876A1 (en) * 2013-09-16 2015-03-19 Ethoicon Endo-Surgery, Inc Integrated systems for electrosurgical steam or smoke control
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
WO2015053387A1 (ja) * 2013-10-11 2015-04-16 オリンパスメディカルシステムズ株式会社 内視鏡システム
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
EP3066973B8 (en) * 2013-12-26 2019-09-11 Olympus Corporation Pneumoperitoneum apparatus
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US9805472B2 (en) * 2015-02-18 2017-10-31 Sony Corporation System and method for smoke detection during anatomical surgery
CN106456131B (zh) * 2015-03-04 2019-06-28 奥林巴斯株式会社 超声波观察用吸引力调整装置和超声波内窥镜
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
WO2016207701A1 (en) * 2015-06-26 2016-12-29 B-K Medical Aps Ultrasound imaging probe with an instrument channel
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245096B2 (en) * 2016-05-25 2019-04-02 Covidien Lp Pressure relief system for use with gas-assisted minimally invasive surgical devices
JP6257850B1 (ja) * 2016-07-11 2018-01-10 オリンパス株式会社 エネルギー処置システム及び、そのエネルギー処置システムにおけるエネルギー発生装置
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
CN107157549B (zh) * 2017-05-26 2024-01-05 上海益超医疗器械有限公司 一种组织粉碎吸引装置
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
CN109171888B (zh) * 2018-08-30 2019-05-21 重庆市肿瘤研究所 一种用于肝胆外科的可视超声刀以及远程超声手术***
CN109077757B (zh) * 2018-09-15 2020-07-14 山西省人民医院 一种腔镜手术使用的气腹控制装置及方法
CN109946132B (zh) * 2019-03-16 2021-08-17 张俊平 一种组织切片摊片一体机
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196358A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes biasing support
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196362A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical end effectors with thermally insulative and thermally conductive portions
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11272834B2 (en) * 2020-04-13 2022-03-15 AIMIC Corp. Imaging system and method for quality and dosage control of anesthetics applied by a spray nozzle
WO2022031417A1 (en) * 2020-08-07 2022-02-10 Covidien Lp Computer vision based control of an energy generator
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11974829B2 (en) 2021-06-30 2024-05-07 Cilag Gmbh International Link-driven articulation device for a surgical device
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155869A (ja) 1997-11-28 1999-06-15 Olympus Optical Co Ltd 送気吸引制御装置
JP2007296002A (ja) 2006-04-28 2007-11-15 Fujinon Corp 内視鏡システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722539B2 (en) * 1998-09-18 2010-05-25 University Of Washington Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
JP2002085417A (ja) * 2000-09-11 2002-03-26 Olympus Optical Co Ltd 超音波処置装置
US20050283074A1 (en) * 2004-06-22 2005-12-22 Siemens Medical Solutions Usa, Inc. Ultrasound feedback for tissue ablation procedures
JP4481922B2 (ja) * 2005-05-13 2010-06-16 オリンパスメディカルシステムズ株式会社 医療用処置具
JP2007029451A (ja) * 2005-07-27 2007-02-08 Olympus Medical Systems Corp 医療用フットスイッチ
CN102170938B (zh) * 2008-09-30 2015-01-14 皇家飞利浦电子股份有限公司 用于超声治疗处置的***和方法
EP2352558B1 (en) * 2008-11-04 2014-07-02 Koninklijke Philips N.V. System for ultrasound therapy
US20100137751A1 (en) * 2008-12-02 2010-06-03 Yusuke Tadami Ultrasonic operation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155869A (ja) 1997-11-28 1999-06-15 Olympus Optical Co Ltd 送気吸引制御装置
JP2007296002A (ja) 2006-04-28 2007-11-15 Fujinon Corp 内視鏡システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016140039A1 (ja) * 2015-03-04 2017-04-27 オリンパス株式会社 医療処置システム
WO2017013813A1 (ja) * 2015-07-23 2017-01-26 オリンパス株式会社 超音波処置具及び超音波処置アッセンブリ
US10905455B2 (en) 2015-07-23 2021-02-02 Olympus Corporation Ultrasonic probe
JP2017023604A (ja) * 2015-07-27 2017-02-02 オリンパス株式会社 内視鏡システム
WO2022234641A1 (ja) * 2021-05-07 2022-11-10 オリンパス株式会社 制御装置、内視鏡システム及び制御方法
WO2023170982A1 (ja) * 2022-03-11 2023-09-14 オリンパス株式会社 処置システムおよび処置システムの作動方法

Also Published As

Publication number Publication date
JP5006475B2 (ja) 2012-08-22
EP2508143A4 (en) 2013-01-09
JPWO2011158792A1 (ja) 2013-08-19
US20120116222A1 (en) 2012-05-10
EP2508143A1 (en) 2012-10-10
CN102762160A (zh) 2012-10-31
EP2508143B1 (en) 2014-02-26
CN102762160B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5006475B2 (ja) 超音波処置システム及び超音波処置システムの作動方法
US12016626B2 (en) Endoscope unclogging system and method
US8353860B2 (en) Device for obstruction removal with specific tip structure
JP2022097660A (ja) 内視鏡器具を洗浄するシステム及び方法
WO2010140462A1 (ja) 超音波手術装置、超音波手術システム及びキャビテーション抑制方法
JP2011520567A (ja) 流体清浄化機能を備える内視鏡式装置
JP6099380B2 (ja) 気腹システム
JP6947697B2 (ja) 超音波診断装置、及び、超音波診断装置の作動方法
JP2009189496A (ja) 内視鏡装置、内視鏡の観察窓表面に付着した汚れ及び曇りを除去する内視鏡装置の制御方法。
JP5602798B2 (ja) 処置具挿通用チューブ、内視鏡フード及び内視鏡キャップ
JPH11318909A (ja) 煙除去システム
JP2007296164A (ja) 内視鏡システム
JP2005253873A (ja) 内視鏡用フード
JP2006314630A (ja) 超音波処置装置
JPH11318810A (ja) 内視鏡曇り除去システム
KR20100091319A (ko) 지방흡입 수술용 로봇
JP2020525060A (ja) 医療撮像システム、方法およびコンピュータプログラム
JP6987029B2 (ja) 超音波診断装置、及び、超音波診断装置の作動方法
JP2005118295A (ja) 外科用切除装置および外科用処置システム
JP2008062041A (ja) 内視鏡、内視鏡フード、処置具挿通用チューブ及び内視鏡キャップ
JP2000254146A (ja) 内視鏡治療装置及びその高周波処置具
JP7301114B2 (ja) 超音波診断装置、及び、超音波診断装置の作動方法
US20160360955A1 (en) Laparoscopic eye wiper
JP3190731B2 (ja) 内視鏡
US20230414242A1 (en) Treatment system, control device, and method of operating the treatment system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009159.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011546358

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011795697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE