WO2011155576A1 - Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2011155576A1
WO2011155576A1 PCT/JP2011/063288 JP2011063288W WO2011155576A1 WO 2011155576 A1 WO2011155576 A1 WO 2011155576A1 JP 2011063288 W JP2011063288 W JP 2011063288W WO 2011155576 A1 WO2011155576 A1 WO 2011155576A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
polyimide
crystal alignment
Prior art date
Application number
PCT/JP2011/063288
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 園山
悟志 南
徳俊 三木
雅章 片山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012519431A priority Critical patent/JP5998930B2/en
Priority to KR1020137000633A priority patent/KR101823714B1/en
Priority to CN201180037578.9A priority patent/CN103038704B/en
Publication of WO2011155576A1 publication Critical patent/WO2011155576A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a diamine compound, a polymer such as a polyimide precursor or polyimide obtained using the diamine compound, a liquid crystal alignment treatment agent containing the polymer, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and the liquid crystal alignment
  • the present invention relates to a liquid crystal display element using a film.
  • the liquid crystal alignment film is a constituent member of a liquid crystal display element widely used as a display device, and plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film used industrially is formed from a liquid crystal alignment treatment agent comprising a polyamic acid (also referred to as polyamic acid) which is a polyimide precursor or a polyimide solution.
  • a liquid crystal alignment treatment agent comprising a polyamic acid (also referred to as polyamic acid) which is a polyimide precursor or a polyimide solution.
  • an alignment treatment for aligning the liquid crystal in parallel or with respect to the substrate surface is performed.
  • the alignment treatment include surface stretching treatment by rubbing, but in addition to this, alignment treatment using an anisotropic optical reaction such as irradiation with polarized ultraviolet rays has been proposed.
  • the liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction. Furthermore, in recent years, liquid crystal display elements have become highly functional, and the range of use has been expanded, and the liquid crystal alignment film has performance and reliability for realizing high display quality by suppressing display defects of the liquid crystal display elements. Is required.
  • Patent Document 1 describes that a polyimide-based liquid crystal aligning agent contains a compound having two or more epoxy groups in a molecule for the purpose of improving rubbing resistance.
  • the liquid crystal alignment film is washed with water or an organic solvent in order to remove a small amount of scraps generated during the rubbing process and impurities attached to the liquid crystal alignment film during baking. There is a process. In this case, it is necessary that the liquid crystal alignment film does not dissolve in these cleaning liquids, particularly organic solvents, that is, the solvent resistance is high. When the liquid crystal alignment film is dissolved in the cleaning liquid, a liquid crystal alignment film having a predetermined film thickness cannot be obtained, and it is difficult to achieve high display quality in the liquid crystal display element.
  • liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • a backlight with a large calorific value may be used.
  • high stability with respect to light from the backlight is required.
  • the voltage holding ratio which is one of the electrical characteristics, decreases due to light irradiation from the backlight, a seizure defect (linear seizure) that is one of the display defects of the liquid crystal display element is likely to occur.
  • a highly reliable liquid crystal display element cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, there is a demand for characteristics in which, for example, the voltage holding ratio is not easily lowered even after being exposed to light irradiation for a long time.
  • An object of the present invention is to provide a liquid crystal alignment film having the above characteristics. That is, an object of the present invention is to provide a liquid crystal alignment film that has sufficient solvent resistance in a cleaning step during the manufacturing process of a liquid crystal panel and that suppresses a decrease in voltage holding ratio even when exposed to light irradiation, and the liquid crystal alignment Another object is to provide a liquid crystal aligning agent capable of obtaining a film, and a liquid crystal display element having excellent display quality using the liquid crystal aligning agent.
  • an object of the present invention is to provide a polyimide precursor, a polyimide, and a diamine compound for obtaining the polyimide precursor and the polyimide constituting the liquid crystal aligning agent.
  • the inventor has obtained the following knowledge and completed the present invention. That is, by using a diamine compound having a specific structure, a polyimide precursor having a characteristic structure is obtained, and it is found that a polyimide having a characteristic structure can be obtained by imidizing this polyimide precursor. It was. And the liquid crystal aligning agent comprised including at least one of these polyimide precursors and polyimide is suitable for forming a liquid crystal aligning film, and the obtained liquid crystal aligning film is the above-mentioned present invention. It was found to be extremely effective in achieving the purpose.
  • the diamine compound having the specific structure described above includes a novel compound that has not been published in the literature.
  • the present invention has the following gist.
  • a liquid crystal aligning agent comprising a polyimide precursor having a cyclocarbonate group and at least one polymer selected from the group consisting of polyimides obtained by imidizing the polyimide precursor.
  • 2. The liquid crystal aligning agent according to 1 above, wherein the cyclocarbonate group is present at an end of a side chain of the polyimide precursor and the polyimide.
  • 3. The liquid-crystal aligning agent of said 1 or 2 with which the side chain which has the said cyclocarbonate group is represented by following formula [1].
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—
  • X 2 is an alkylene group having 1 to 5 carbon atoms
  • X 3 has a structure represented by the following formula [1a].
  • liquid crystal aligning agent according to any one of 1 to 3 above, wherein the polyimide precursor and the polyimide are polymers made from a diamine compound represented by the following formula [2].
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—
  • X 2 is an alkylene group having 1 to 5 carbon atoms
  • X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.
  • the liquid crystal aligning agent according to any one of the above 1 to 4 further comprising a base having a primary amino group and a nitrogen-containing heterocyclic ring in the molecular structure. 6).
  • the liquid crystal alignment treatment agent according to any one of the above 1 to 6 comprising an organic solvent that dissolves the polyimide precursor and the polyimide, and the organic solvent contains 5 to 80% by mass of a poor solvent in the liquid crystal alignment treatment agent. . 8).
  • a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 9.
  • the liquid crystal alignment film as described in 8 above which is used in a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage therebetween. 10.
  • a liquid crystal composition comprising a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film and polymerizing at least one of active energy rays and heat between the pair of substrates.
  • the liquid crystal display device as described in 10 above which is produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes. 12
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—
  • X 2 is an alkylene group having 1 to 5 carbon atoms
  • X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, and —OCO—.
  • Y 2 is a divalent organic group
  • Y 2 is a single bond or a divalent organic group selected from (CH 2 ) b — (b is an integer of 1 to 10)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), a divalent organic group selected from the group consisting of —O—, —CH 2 O—, —COO—, and —OCO—.
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number
  • An alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or fluorine Is a divalent organic group selected from an organic group having a carbon number of 12-25 with substituted by 2 may be a monovalent organic group, or steroid skeleton atom .
  • Y 5 is cyclohexyl ring a benzene ring, cyclohexane And a cyclic group selected from the group consisting of heterocyclic rings, wherein any hydrogen atom on the cyclic group is an alkyl group having
  • Y 6 is a carbon number
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and has a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.
  • Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring.
  • Z 6 and Z 7 are And each independently represents a hydrogen atom or a methyl group.
  • the liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent of the present invention has sufficient solvent resistance in the washing step during the liquid crystal panel manufacturing process, and the voltage holding ratio is reduced even when exposed to light irradiation. It is suppressed. Furthermore, the liquid crystal display element having this liquid crystal alignment film has excellent display quality. Moreover, according to this invention, the novel diamine compound which is a raw material of the said liquid-crystal aligning agent is provided, and the polyimide precursor and polyimide which are manufactured from a diamine compound are also provided.
  • the liquid crystal aligning agent of the present invention contains at least one of a polyimide precursor having a cyclocarbonate group and a polyimide obtained by dehydrating and ring-closing this polyimide precursor.
  • the cyclocarbonate group is preferably located at each side chain end of the polyimide precursor and the polyimide.
  • the liquid crystal aligning agent of the present invention contains at least one of a polyimide precursor having a side chain of the following formula [1] and a polyimide obtained by dehydrating and ring-closing this polyimide precursor. is there.
  • X 1 represents —O— (ether bond), —NH— (amino bond), —N (CH 3 ) — (methylated amino bond), —CONH— (amide bond), —NHCO. -(Reverse amide bond), -CH 2 O- (methylene ether bond), -COO- (ester bond), -OCO- (reverse ester bond), -CON (CH 3 )-(N-methylated amide bond) And a linking group selected from the group consisting of N (CH 3 ) CO— (N-methylated reverse amide bond).
  • X 1 is —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, —CH 2 O—, — since the synthesis of the raw materials is easy and relatively easy to obtain.
  • COO- or OCO- is preferred. More preferred is —O—, —CONH—, —CON (CH 3 ) —, —CH 2 O— or COO—.
  • X 2 is an alkylene group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • X 3 represents a cyclocarbonate group. Specifically, X 3 is preferably a structure represented by the following formula [1a].
  • the cyclocarbonate group present at the end of the side chain in the formula [1] reacts with at least one of a carboxyl group and a hydroxyl group under heating to form a crosslinked structure of the polymer.
  • it can be set as the liquid crystal aligning film excellent in solvent tolerance, and also excellent in stability with respect to light irradiation, such as a backlight.
  • a liquid crystal alignment film having a high crosslink density and high elongation and toughness can be obtained.
  • the stretchability of the polymer is hardly inhibited during rubbing, high rubbing resistance can be realized.
  • the cyclocarbonate group at the end of the side chain can efficiently promote the crosslinking reaction, even when a crosslinkable compound is added, unreacted liquid crystal display device characteristics are deteriorated. Residual crosslinkable compounds can also be reduced.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent is excellent in solvent resistance in the manufacturing process of the liquid crystal panel, and the voltage holding ratio is not greatly reduced due to the influence of light irradiation by the backlight. Furthermore, since the rubbing resistance is also excellent, a liquid crystal display element having excellent display quality can be obtained by applying this liquid crystal alignment film.
  • the liquid crystal alignment treatment agent of the present invention can contain other components in addition to the polyimide precursor and polyimide, and preferably includes a basic compound as a base, other diamine compounds, and the like.
  • the liquid-crystal aligning agent of this invention is a polyimide precursor obtained by reaction of a diamine component and tetracarboxylic dianhydride, and a polyimide obtained by dehydrating and ring-closing this polyimide precursor (in the present specification, these are generically referred to). May be referred to as a specific polymer).
  • the diamine component preferably contains a diamine compound represented by the following formula [2] (also referred to herein as a specific diamine compound).
  • X 1 , X 2 , and X 3 have the same definition as in the above formula [1].
  • n is an integer of 1 to 4, preferably n is an integer of 1 to 2, and more preferably n is 1.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [2] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, from the viewpoint of reactivity at the time of synthesizing the polyamic acid, the 2,4 position, the 2,5 position, and the 3,5 position are preferable.
  • the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the following formula [2A], further reducing the nitro group and converting it to an amino group.
  • the method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina or platinum sulfide carbon is used as a catalyst, and ethyl acetate, toluene, tetrahydrofuran, dioxane or There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
  • X 1 , X 2 , X 3 and n in the formula [2A] are the same as defined in the formula [2] in the specific diamine compound described above.
  • X 1 and X 3 are bonded via X 2 and then bonded to the dinitro moiety via X 1 , as well as the dinitro moiety and X via the linking moiety X 1. by binding and 2, then, it can be obtained by a method of bonding with X 3.
  • linking groups can be formed by appropriately selecting and using known methods in organic synthesis.
  • X 1 is an ether or methylene ether bond
  • a method for forming it there is a method in which a corresponding dinitro group-containing halogen derivative and a hydroxyl group derivative containing X 2 and X 3 are reacted in the presence of an alkali.
  • X 1 is the opposite case an amide bond, and the corresponding dinitro group-containing amino group substituents, a method of reacting an acid chloride containing the X 2 and X 3 in the presence of alkalis.
  • X 1 is the case of reverse ester bond, and the corresponding dinitro group-containing hydroxyl derivative, a method of reacting an acid chloride containing the X 2 and X 3 in the presence of alkalis.
  • dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol or 2,4- And dinitrophenylacetic acid. In consideration of the method of obtaining the raw materials, easiness and reactivity, one or more of them can be selected and used.
  • the liquid crystal aligning agent of the present invention preferably contains a basic compound as a base for the purpose of advancing the crosslinking reaction of the cyclocarbonate group of the polyimide precursor or polyimide.
  • the type of the basic compound is not particularly limited as long as it has sufficient basicity to advance the crosslinking reaction of the cyclocarbonate group.
  • alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide
  • inorganic amine compounds such as ammonia
  • organic amine compounds such as pyridine and triethylamine.
  • organic amine compounds are preferred from the viewpoint of the electrical characteristics of the liquid crystal alignment film.
  • examples of the organic amine compound include nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156]. These amine compounds may be added directly to the solution of the specific polymer, but may be added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. preferable.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer of the present invention.
  • More preferable organic amine compounds include M6, M7, M16, M17, M20, M35, M36, M40, M49, M50, M60 to M62, M69, M70, M76, M118 to M121, M135, or M140. Further preferred are M6, M16, M17, M35, M36, M40, M49, M50, M60, M61, M118, M120, M121, or M140. Most preferred is M6, M17, M35, M40, M61 or M118.
  • the basic compound contained in the liquid-crystal aligning agent of this invention may be one type, and may combine two or more types.
  • the content of the basic compound is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the specific polymer, and the carboxylic acid contained in the polyamic acid or polyimide
  • the amount is more preferably 0.1 to 50 parts by mass, particularly 1 to 30 parts by mass.
  • the specific polymer is at least one polymer selected from the group consisting of a polyimide precursor and polyimide.
  • the specific polymer is relatively easily obtained by polycondensing a diamine component represented by the following formula [A] and a tetracarboxylic dianhydride component represented by the following formula [B].
  • a polyamic acid having a repeating unit represented by the formula [C]] and a polyimide obtained by imidizing this polyamic acid are preferred.
  • R 1 represents a divalent organic group
  • R 2 represents a tetravalent organic group
  • R 1 and R 2 have the same meanings as defined in the formula [A] and the formula [B], and R 1 and R 2 are different even if each is one kind.
  • a combination of a plurality of species may be used, and n represents a positive integer.
  • the polyimide precursor and polyimide of this invention are obtained using the diamine component and acid dianhydride component containing the said specific diamine compound.
  • Such a diamine component can contain a diamine compound represented by the following formula [3] (also referred to as a specific side chain diamine compound in the present specification).
  • Y 1 is selected from a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. It is a divalent organic group.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, or COO— is preferable because a side chain structure can be easily synthesized. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
  • Y 2 is a single bond or a divalent organic group selected from (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. It is a divalent organic group.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. It may be substituted with a group selected from the group consisting of an alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, and a fluorine atom.
  • an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexyl ring or a steroid skeleton is preferable.
  • Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. It may be substituted with an alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. It is a divalent organic group. Among these, a benzene ring or a cyclohexyl ring is preferable.
  • Y 6 represents an alkyl group having 1 to 18, preferably 1 to 12, more preferably 1 to 9 carbon atoms, 1 to 18 carbon atoms, preferably 1 to 12, more preferably 1 to 9 carbon atoms.
  • n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
  • M is an integer of 1 to 4. Preferably, it is an integer of 1 to 2.
  • the specific side chain diamine compound represented by the formula [3] has a structure represented by the following formulas [3-1] to [3-31].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 2 Is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2-
  • R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — Represents CH 2 — or O—
  • R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 represents a 1,4-cyclohexylene group or 1,4-phenylene.
  • a 2 is an oxygen atom or COO- * (where a bond marked with “*” is bonded to A 3 )
  • a 1 is an oxygen atom or COO— * (where “ Bonds marked with “*” bind to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3 ′ -Dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4
  • diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, or those having a macrocyclic substituent composed of these. it can.
  • diamines represented by the following formulas [DA1] to [DA12] can be exemplified.
  • a 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • a 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—.
  • 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • p is an integer of 1 to 10.
  • diamine compounds represented by the following formulas [DA13] to [DA20] can also be used as long as the effects of the present invention are not impaired.
  • n is an integer of 1 to 5.
  • a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
  • m 1 is an integer of 1 to 4.
  • a 4 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —. , —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—.
  • m 2 and m 3 each represent an integer of 0 to 4, and m 2 + m 3 represents an integer of 1 to 4.
  • m 4 and m 5 are each an integer of 1 to 5.
  • a 5 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m 6 is 1. An integer of ⁇ 5.
  • a 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—.
  • —CO— —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
  • the polyimide precursor in this invention is obtained by reaction of a diamine component and a tetracarboxylic acid component.
  • a tetracarboxylic-acid component is given.
  • a tetracarboxylic dianhydride represented by the following formula [4] (also referred to as a specific tetracarboxylic dianhydride in this specification) is used as a part of the raw material. It is preferable to use it.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms, and has a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms, preferably 4 to 6 carbon atoms.
  • Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom and a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 particularly preferred structure of Z 1 is the formula [4a], the formula [4c], the formula [4d], the formula [4e], the formula [4f] or the formula because of the polymerization reactivity and the ease of synthesis. [4 g].
  • tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride can be used as long as the effects of the present invention are not impaired.
  • Other tetracarboxylic dianhydrides include tetracarboxylic dianhydrides of the following tetracarboxylic acids. Specific examples thereof include, for example, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid.
  • one or more kinds of tetracarboxylic dianhydrides can be selected and used from the above-mentioned tetracarboxylic dianhydrides in consideration of characteristics such as liquid crystal orientation, voltage holding characteristics, and accumulated charges.
  • the liquid crystal aligning agent of this invention contains at least one of the polyimide precursor which has a cyclocarbonate group, and the polyimide which imidated this polyimide precursor.
  • the polyimide precursor and the polyimide may be collectively referred to as a specific polymer.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different
  • n represents a positive integer
  • R 1 and R 2 are as defined in formula [A]).
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method for obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component a method for obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide
  • a method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
  • polyamic acid alkyl ester a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group and a diamine component, a polycondensation of a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a diamine component.
  • a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyimide a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the properties of the liquid crystal alignment film obtained by using the liquid crystal aligning agent containing the specific polymer become better. Specifically, the solvent resistance in the liquid crystal panel manufacturing process is excellent, and the rubbing resistance is also good. Furthermore, a decrease in voltage holding ratio is suppressed even when light is emitted from the backlight.
  • the specific diamine compound When a cyclocarbonate group is introduced into a specific polymer using a specific diamine compound, the specific diamine compound is 1 mol% or more of the diamine component, and more % Or more, more preferably 10 mol% or more. Moreover, 100 mol% of a diamine component can also be a specific diamine compound. However, the amount of the specific diamine compound used is preferably 80 mol% or less of the diamine component, more preferably 40 mol% or less, from the viewpoint of maintaining uniform coating properties when applying the liquid crystal aligning agent.
  • a known synthesis method can be used. For example, it is possible to use a method in which a diamine component and a tetracarboxylic acid component are reacted in an organic solvent. This method is preferable in that the reaction proceeds relatively efficiently in an organic solvent and generation of by-products is small.
  • the organic solvent used for the reaction between the diamine component and the tetracarboxylic acid component is not particularly limited as long as the produced polyamic acid is soluble. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl
  • the diamine component or tetracarboxylic acid component when the diamine component or tetracarboxylic acid component is composed of a plurality of types of compounds, they may be reacted in a premixed state, individually reacted sequentially, and further mixed individually with low molecular weight substances. It is good also as a high molecular weight body by making it react.
  • the temperature at which the diamine component and the tetracarboxylic acid component are reacted can be arbitrarily selected within the range of ⁇ 20 to 150 ° C., but in view of the reaction efficiency, it may be set within the range of ⁇ 5 to 100 ° C. preferable.
  • reaction can be performed by arbitrary density
  • the ratio between the total number of moles of the diamine component and the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced. Therefore, it is possible to determine the total molar ratio by appropriately selecting depending on the case.
  • the polyimide of the present invention is obtained by dehydrating and ring-closing the above polyimide precursor. This polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the polyimide precursor is not necessarily 100%, and can be adjusted within a range of 45 to 85%, for example, depending on the application and purpose. .
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the reaction system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable in that it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained by using this, the workability during coating film formation, and the uniformity of the coating film, GPC (Gel Permeation Chromatography).
  • the weight average molecular weight measured by the above method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution obtained by dissolving the resin component for forming the resin film which is a liquid crystal aligning film in an organic solvent.
  • This resin component contains at least one polymer selected from the specific polymers described above.
  • the content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
  • all of the resin components contained in the liquid crystal aligning agent may be a specific polymer.
  • a polymer other than a polyimide precursor and polyimide specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or the like can be given.
  • the content of the other specific polymer can be 0.5 to 15% by mass, and preferably 1 to 10% by mass.
  • the content of the organic solvent is preferably 70 to 99% by mass, more preferably 80 to 99% by mass from the viewpoint of forming a uniform thin film by coating. . This content can be appropriately changed depending on the film thickness of the liquid crystal alignment film.
  • the organic solvent in that case will not be specifically limited if it is an organic solvent in which the specific polymer mentioned above is dissolved.
  • the liquid crystal aligning agent of the present invention has at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and a hydroxyl group and an alkoxyl group, as long as the effects of the present invention are not impaired. It is also possible to introduce a crosslinkable compound having a kind of substituent, in addition to a crosslinkable compound having a polymerizable unsaturated bond.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • crosslinkable compound having an oxetane group examples include a crosslinkable compound having at least two oxetane groups represented by the following formula [5].
  • crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group examples include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • an amino resin having a hydroxyl group or an alkoxyl group such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin examples include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • this crosslinkable compound for example, a melamine derivative in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both, a benzoguanamine derivative or glycoluril can be used.
  • the melamine derivative and the benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight-substituted MW-30 (from Sanwa Chemical Co., Ltd.), methoxymethylated melamines such as Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzogu
  • benzene having a hydroxyl group or an alkoxyl group, or phenolic compounds examples include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, and 1,4-bis. (Sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like. More specifically, it is a crosslinkable compound represented by the following formulas [6-1] to [6-48].
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate,
  • a 1 is a group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring
  • a 2 is the following: A group selected from the formula [7a] or the formula [7b], and n is an integer of 1 to 4.
  • crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may combine two or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the resin component in the liquid crystal aligning agent, the crosslinking reaction proceeds, and the desired effect is exhibited.
  • the amount is more preferably 0.1 to 100 parts by mass, particularly 1 to 50 parts by mass.
  • a nitrogen-containing heterocyclic amine compound represented by the following formulas [M1] to [M156] is added as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the liquid crystal cell using the liquid crystal alignment film.
  • the amine compound may be added directly to the polymer solution, but it is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described polymer.
  • the liquid crystal aligning agent of the present invention is also referred to as an organic solvent (poor solvent) that improves film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired.
  • organic solvent poor solvent
  • a compound, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like can be used.
  • poor solvents that improve film thickness uniformity and surface smoothness include the following.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount of the compound added is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the solvent can be evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate to form a coating film. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • the liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a process of polymerizing a polymerizable compound by arranging at least one of active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the above-mentioned liquid crystal display element controls the pretilt angle of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt angle of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt angle of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. .
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt angle by the rubbing process.
  • a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is obtained by at least one of ultraviolet irradiation and heating.
  • the orientation of the liquid crystal molecules can be controlled by polymerizing.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment film on which spacers are dispersed and then the substrate is attached and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating with heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal display element of the present invention can be obtained through the steps exemplified above. Since these liquid crystal display elements use the alignment film of the present invention as the liquid crystal alignment film, they have excellent reliability and can be suitably used for large-screen and high-definition liquid crystal televisions.
  • ⁇ Tetracarboxylic dianhydride> A-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride A-2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • B-2 3,5-diaminobenzoic acid
  • B-3 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
  • 1 H-NMR means a nuclear magnetic resonance spectrum of an intramolecular hydrogen atom, and shows spectrum data of the obtained compound.
  • the diamine compound (B-1) was synthesized according to the above synthesis scheme. Specifically, a solution of compound (302) (21.51 g, 182.2 mmol) and triethylamine (18.44 g, 182.2 mmol) in tetrahydrofuran (400 g) was cooled to 10 ° C. or lower, and the compound ( 301) (40.00 g, 173.5 mmol) in tetrahydrofuran (200 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed.
  • Example 2 ⁇ Synthesis 1 of polyamic acid> A-2 (7.86 g, 31.4 mmol), B-3 (5.62 g, 12.9 mmol), B-2 (1.96 g, 12.9 mmol), and B-1 (2.79 g, 11. 0 mmol) was mixed in NMP (57.1 g) and reacted at 80 ° C. for 5 hours, and then A-1 (1.05 g, 5.51 mmol) and NMP (20.1 g) were added. It was made to react for a time and the solution (concentration 20.0 mass%) of the polyamic acid (A) was obtained. The number average molecular weight of this polyamic acid (A) was 25,528, and the weight average molecular weight was 97,025.
  • Example 3 ⁇ Synthesis of polyimide 1> After adding NMP to the polyamic acid (A) solution (25.0 g) obtained in Example 2 and diluting to 6% by mass, acetic anhydride (4.88 g) and pyridine (1.51 g) were used as imidization catalysts. ) Was added and reacted at 100 ° C. for 2 hours. The reaction solution was poured into methanol (314 g), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (B) powder. The imidation ratio of this polyimide (B) was 77%, the number average molecular weight was 18,898 and the weight average molecular weight was 102,005.
  • Example 4 ⁇ Preparation 1 of liquid crystal aligning agent> To the polyimide (B) solution obtained in Example 3, NMP, an NMP solution of C-1 and BCS were added and stirred at 50 ° C. for 20 hours. The polyimide was 6% by mass and C-1 was 0.3% by mass. %, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • 84 mmol) was mixed in NMP (58.8 g) and reacted at 80 ° C. for 5 hours, and then A-1 (1.14 g, 5.81 mmol) and NMP (20.3 g) were added. It was made to react for a time and the solution (concentration 20.0 mass%) of the polyamic acid (C) was obtained.
  • the number average molecular weight of this polyamic acid (C) was 24,325, and the weight average molecular weight was 82,359.
  • Example 6 Polyimide synthesis 2>
  • NMP was added to the polyamic acid (C) solution (25.0 g) obtained in Example 5 to dilute to a concentration of 6% by mass, and then acetic anhydride (5 0.02 g) and pyridine (1.55 g) were added and reacted at 100 ° C. for 2 hours.
  • the reaction solution was poured into methanol (314 g), and the produced precipitate was separated by filtration.
  • the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (D) powder.
  • the imidation ratio of this polyimide (D) was 77%, the number average molecular weight was 20,405 and the weight average molecular weight was 82,988.
  • Example 7 ⁇ Preparation 2 of liquid crystal aligning agent>
  • NMP NMP
  • an NMP solution of C-1 and BCS were added to the polyimide (D) solution obtained in Example 6, and the mixture was stirred at 50 ° C. for 20 hours.
  • -1 0.3% by mass
  • NMP was 48.7% by mass
  • BCS was 45% by mass.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Example 8 FIG. ⁇ Preparation 3 of liquid crystal aligning agent>
  • NMP polyimide
  • NMP NMP solution of C-2 and BCS were added and stirred at 50 ° C. for 15 hours.
  • the polyimide was 6% by mass, and C-1 was 0.3% by mass.
  • % NMP was 48.7% by mass, and BCS was 45% by mass.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Example 10 ⁇ Preparation 5 of liquid crystal aligning agent> NMP and BCS were added to the polyimide solution (B) solution obtained in Example 3 and stirred to prepare 6% by mass of polyimide, 48.7% by mass of NMP, and 45% by mass of BCS.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Example 11 Preparation 6 of liquid crystal aligning agent> To the polyamic acid (A) solution obtained in Example 2, NMP, an NMP solution of C-2 and BCS were added and stirred, and 6% by mass of polyimide, 0.3% by mass of C-2, and NMP were added. It was prepared so that 48.7 mass% and BCS might be 45 mass%.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Example 12 ⁇ Preparation 7 of liquid crystal aligning agent> To the polyamic acid (C) solution obtained in Example 5, NMP, an NMP solution of C-2 and BCS were added and stirred, and the polyamic acid (C) was 6% by mass and C-2 was 0.3% by mass. , NMP was 48.7% by mass and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Example 13 ⁇ Preparation 8 of liquid crystal aligning agent> NMP and BCS were added to the polyamic acid (A) solution obtained in Example 2 and stirred to prepare a polyimide content of 6 mass%, an NMP content of 48.7 mass%, and a BCS content of 45 mass%.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • NMP56.6g was added to the polyimide (F) powder 11.6g, and it stirred for 30 hours and was made to melt
  • Comparative Example 3 In the same manner as in Example 4, NMP, an NMP solution of C-1 and BCS were added to the polyimide (F) solution obtained in Comparative Example 2, and the mixture was stirred at 50 ° C. for 20 hours. C-1 was 0.3% by mass, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Comparative Example 4 NMP, C-2 NMP solution and BCS were added to the polyimide (F) solution obtained in Comparative Example 2, and the mixture was stirred at 50 ° C. for 20 hours.
  • the polyimide was 6% by mass, and C-2 was 0.3% by mass.
  • %, NMP was 48.7% by mass, and BCS was 45% by mass.
  • a liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Comparative Example 6 To the polyamic acid (E) solution obtained in Comparative Example 1, NMP, an NMP solution of C-2 and BCS were added and stirred, and polyimide was 6% by mass, C-2 was 0.3% by mass, and NMP was 48%. 0.7% by mass and BCS 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Comparative Example 7 NMP and BCS are added to the polyamic acid (E) solution obtained in Comparative Example 1 and stirred so that the polyamic acid (E) is 6% by mass, NMP is 48.7% by mass, and BCS is 45% by mass. Prepared. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 ⁇ m.
  • Table 44 shows liquid crystal aligning agents as examples and liquid crystal aligning agents as comparative examples.
  • ⁇ Evaluation of solvent resistance> The solvent resistance was evaluated by examining the remaining film rate after immersion in the solvent. Specifically, a liquid crystal alignment treatment agent is spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a film thickness of 100 nm. The coating film was formed. This substrate with a liquid crystal alignment film was immersed in NMP at 23 ° C. for 1 minute, and the remaining film ratio was determined according to the following formula. In Equation (2), a is the film thickness after immersion, and b is the film thickness before immersion.
  • a liquid crystal aligning agent is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100
  • a substrate with a liquid crystal alignment film was obtained.
  • Two substrates with the liquid crystal alignment film were prepared, and a 6 ⁇ m spacer was sprayed on one liquid crystal alignment film surface, and then a sealant was printed thereon. Subsequently, after bonding together so that the other board
  • Liquid crystal MLC-6608 manufactured by Merck Japan
  • the voltage of 1V was applied to the above liquid crystal cell at a temperature of 80 ° C. for 60 ⁇ s, the voltage after 50 ms was measured, and how much the voltage was held was calculated as the voltage holding ratio. Further, the liquid crystal cell after the voltage holding ratio measurement was irradiated with UV light (ultraviolet light), and the voltage holding ratio was measured again in the same manner as described above. The irradiation energy was calculated based on the irradiation intensity at 350 nm. The evaluation results are summarized in Table 45.
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples all show a high residual film ratio and excellent solvent resistance in the above-mentioned residual film ratio evaluation. I understood.
  • the liquid crystal alignment films obtained from the liquid crystal aligning agent as a comparative example all showed a low residual film ratio, and it was found that the solvent resistance was remarkably inferior compared to the examples.
  • the residual film ratio of the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example was 100%. Further, the remaining film ratios of the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 3 to 5 were 100%. On the other hand, the remaining film ratio of the liquid crystal alignment film of Comparative Example 6 was 30%, and the remaining film ratio of the liquid crystal alignment film of Comparative Example 7 was 5%.
  • liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples have very excellent solvent resistance, and their superiority over the prior art is clearly clear especially for solvents with high solubility. It can be seen that it is demonstrated.
  • liquid crystal cells using the liquid crystal alignment treatment agents of the examples all have a high voltage holding ratio exceeding 90% and are excellent in electrical characteristics.
  • the voltage holding ratio of the liquid crystal cell using the liquid crystal aligning agents of Examples 11 to 13 is a high value exceeding 79% even after UV irradiation. In the example, a very high voltage holding ratio exceeding 90% is shown.
  • the liquid crystal cell having the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example has excellent electrical characteristics and UV resistance.
  • the voltage holding ratio of the liquid crystal cell after UV irradiation is 70.8% in comparative example 6 and 74.6% in comparative example 7. . It can also be seen that in any of the comparative examples, when the 50 J UV light is irradiated, the voltage holding ratio does not show a high value exceeding 90%.
  • the liquid crystal alignment film obtained by using the liquid crystal aligning agent from the polyamic acid and polyimide obtained by using the diamine compound of the present invention is excellent in solvent resistance, and the voltage holding ratio is reduced by light irradiation. It can be seen that it can be suppressed.
  • the liquid crystal alignment film of the present invention has sufficient solvent resistance in the washing step during the manufacturing process of the liquid crystal panel, and also has a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation.
  • the liquid crystal display element has excellent display quality and can be suitably used for a large-screen high-definition liquid crystal television.

Abstract

Disclosed is a liquid crystal alignment film which has a satisfactory level of solvent resistance and in which the reduction in a voltage holding ratio can be prevented even when exposed to irradiation with light. The liquid crystal alignment film is produced using a diamine compound represented by formula [2]. In the formula, X1 represents -O-, -NH-, -N(CH3)-, -CONH-, -NHCO-, -CH2O-, -COO-, -OCO-, -CON(CH3)- or N(CH3)CO-; X2 represents an alkylene group having 1 to 5 carbon atoms; X3 represents a structure represented by formula [1a]; and n represents an integer of 1 to 4.

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、ジアミン化合物、このジアミン化合物を用いて得られるポリイミド前駆体やポリイミドなどの重合体、この重合体を含む液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a diamine compound, a polymer such as a polyimide precursor or polyimide obtained using the diamine compound, a liquid crystal alignment treatment agent containing the polymer, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and the liquid crystal alignment The present invention relates to a liquid crystal display element using a film.
 液晶配向膜は、表示デバイスとして広く使用されている液晶表示素子の構成部材であり、液晶を一定の方向に配向させるという役割を担っている。現在、工業的に使用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸とも言う。)又はポリイミドの溶液からなる液晶配向処理剤から形成される。具体的には、基板に液晶配向処理剤を塗布して加熱した後、基板面に対し液晶を平行又は傾斜させて配向させるための配向処理が施される。配向処理としては、ラビングによる表面延伸処理が挙げられるが、この他にも、偏光紫外線照射などによる異方性光学反応を利用した配向処理が提案されている。 The liquid crystal alignment film is a constituent member of a liquid crystal display element widely used as a display device, and plays a role of aligning liquid crystals in a certain direction. Currently, the main liquid crystal alignment film used industrially is formed from a liquid crystal alignment treatment agent comprising a polyamic acid (also referred to as polyamic acid) which is a polyimide precursor or a polyimide solution. Specifically, after a liquid crystal alignment treatment agent is applied to the substrate and heated, an alignment treatment for aligning the liquid crystal in parallel or with respect to the substrate surface is performed. Examples of the alignment treatment include surface stretching treatment by rubbing, but in addition to this, alignment treatment using an anisotropic optical reaction such as irradiation with polarized ultraviolet rays has been proposed.
 液晶配向膜には、液晶を一定の方向に配向させるという役割以外にも、液晶のプレチルト角を制御するという役割がある。さらに、近年、液晶表示素子が高機能化し、その使用範囲が益々拡大する中で、液晶配向膜には、液晶表示素子の表示不良を抑制して高い表示品位を実現するための性能や信頼性が求められている。 The liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction. Furthermore, in recent years, liquid crystal display elements have become highly functional, and the range of use has been expanded, and the liquid crystal alignment film has performance and reliability for realizing high display quality by suppressing display defects of the liquid crystal display elements. Is required.
 例えば、上述したラビング処理は、液晶配向膜の表面を布で擦ることにより行われるが、異物対策などの点から、液晶配向膜には、ラビング処理による削れの程度が軽微であること、すなわち、ラビング耐性が高い(機械的強度が高い)ことが求められている。特許文献1には、ラビング耐性の向上を目的として、分子内に2個以上のエポキシ基を有する化合物をポリイミド系の液晶配向処理剤に含有させることが記載されている。 For example, the rubbing process described above is performed by rubbing the surface of the liquid crystal alignment film with a cloth. From the standpoint of measures against foreign matters, the liquid crystal alignment film has a slight degree of scraping due to the rubbing process. There is a demand for high rubbing resistance (high mechanical strength). Patent Document 1 describes that a polyimide-based liquid crystal aligning agent contains a compound having two or more epoxy groups in a molecule for the purpose of improving rubbing resistance.
日本特開平9-146100号公報Japanese Unexamined Patent Publication No. 9-146100
 液晶表示素子を構成する液晶パネルの製造プロセスでは、ラビング処理で発生した微量の削れカスや、焼成時に液晶配向膜に付着した不純物を取り除くために、液晶配向膜を水や有機溶媒で洗浄する洗浄プロセスがある。この場合、これら洗浄液、特に有機溶媒に対して液晶配向膜が溶解しないこと、すなわち、溶剤耐性が高いことが必要となる。洗浄液に液晶配向膜が溶解すると、所定の膜厚の液晶配向膜が得られなくなり、液晶表示素子における高い表示品位を実現することが困難である。 In the manufacturing process of the liquid crystal panel constituting the liquid crystal display element, the liquid crystal alignment film is washed with water or an organic solvent in order to remove a small amount of scraps generated during the rubbing process and impurities attached to the liquid crystal alignment film during baking. There is a process. In this case, it is necessary that the liquid crystal alignment film does not dissolve in these cleaning liquids, particularly organic solvents, that is, the solvent resistance is high. When the liquid crystal alignment film is dissolved in the cleaning liquid, a liquid crystal alignment film having a predetermined film thickness cannot be obtained, and it is difficult to achieve high display quality in the liquid crystal display element.
 また、近年の液晶表示素子の高性能化に伴って、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、高輝度を得るために、発熱量の大きいバックライトを使用する場合がある。この場合、バックライトからの光に対する高い安定性が要求されるようになっている。特に、電気特性の1つである電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼付き不良(線焼付き)が発生しやすくなってしまい、信頼性の高い液晶表示素子を得ることができなくなる。したがって、液晶配向膜においては、初期特性が良好なことに加え、例えば、光照射に長時間曝された後であっても、電圧保持率が低下しにくい特性が求められている。 Also, along with the recent improvement in performance of liquid crystal display elements, liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels. In such applications, in order to obtain high luminance, a backlight with a large calorific value may be used. In this case, high stability with respect to light from the backlight is required. In particular, if the voltage holding ratio, which is one of the electrical characteristics, decreases due to light irradiation from the backlight, a seizure defect (linear seizure) that is one of the display defects of the liquid crystal display element is likely to occur. As a result, a highly reliable liquid crystal display element cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, there is a demand for characteristics in which, for example, the voltage holding ratio is not easily lowered even after being exposed to light irradiation for a long time.
 本発明は、上記特性を兼ね備えた液晶配向膜を提供することを目的とする。すなわち、本発明の目的は、液晶パネル製造プロセス中の洗浄工程で十分な溶剤耐性を有し、かつ光の照射に曝されても電圧保持率の低下が抑制された液晶配向膜、該液晶配向膜を得ることのできる液晶配向処理剤、さらには、該液晶配向処理剤を使用した優れた表示品位を備えた液晶表示素子を提供することにある。 An object of the present invention is to provide a liquid crystal alignment film having the above characteristics. That is, an object of the present invention is to provide a liquid crystal alignment film that has sufficient solvent resistance in a cleaning step during the manufacturing process of a liquid crystal panel and that suppresses a decrease in voltage holding ratio even when exposed to light irradiation, and the liquid crystal alignment Another object is to provide a liquid crystal aligning agent capable of obtaining a film, and a liquid crystal display element having excellent display quality using the liquid crystal aligning agent.
 また、本発明の目的は、上記の液晶配向処理剤を構成するポリイミド前駆体、ポリイミド、及び、これらポリイミド前駆体やポリイミドを得るためのジアミン化合物を提供することにもある。 Also, an object of the present invention is to provide a polyimide precursor, a polyimide, and a diamine compound for obtaining the polyimide precursor and the polyimide constituting the liquid crystal aligning agent.
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。すなわち、特定構造のジアミン化合物を用いることにより、特徴的な構造を有するポリイミド前駆体が得られ、また、このポリイミド前駆体をイミド化することで特徴的な構造を有するポリイミドが得られることを見出した。
 そして、これらのポリイミド前駆体及びポリイミドの内の少なくとも一方を含んで構成された液晶配向処理剤は、液晶配向膜を形成するのに好適であり、得られた液晶配向膜は、上記した本発明の目的を達成するのに極めて有効であることを見出した。上記した特定構造のジアミン化合物は、文献未掲載の新規化合物を含む。
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention. That is, by using a diamine compound having a specific structure, a polyimide precursor having a characteristic structure is obtained, and it is found that a polyimide having a characteristic structure can be obtained by imidizing this polyimide precursor. It was.
And the liquid crystal aligning agent comprised including at least one of these polyimide precursors and polyimide is suitable for forming a liquid crystal aligning film, and the obtained liquid crystal aligning film is the above-mentioned present invention. It was found to be extremely effective in achieving the purpose. The diamine compound having the specific structure described above includes a novel compound that has not been published in the literature.
 本発明は、以下の要旨を有するものである。
1.シクロカーボネート基を有するポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向処理剤。
2.前記シクロカーボネート基は、前記ポリイミド前駆体及び前記ポリイミドの側鎖の末
端に存在する上記1に記載の液晶配向処理剤。
3.前記シクロカーボネート基を有する側鎖が、下記式[1]で表わされる上記1又は2に記載の液晶配向処理剤。
The present invention has the following gist.
1. A liquid crystal aligning agent comprising a polyimide precursor having a cyclocarbonate group and at least one polymer selected from the group consisting of polyimides obtained by imidizing the polyimide precursor.
2. 2. The liquid crystal aligning agent according to 1 above, wherein the cyclocarbonate group is present at an end of a side chain of the polyimide precursor and the polyimide.
3. The liquid-crystal aligning agent of said 1 or 2 with which the side chain which has the said cyclocarbonate group is represented by following formula [1].
Figure JPOXMLDOC01-appb-C000010
(Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造である。)
Figure JPOXMLDOC01-appb-C000010
(X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, and X 3 has a structure represented by the following formula [1a].)
Figure JPOXMLDOC01-appb-C000011
4.前記ポリイミド前駆体及び前記ポリイミドは、下記式[2]で表わされるジアミン化合物を原料とする重合体である上記1~3の何れかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000011
4). 4. The liquid crystal aligning agent according to any one of 1 to 3 above, wherein the polyimide precursor and the polyimide are polymers made from a diamine compound represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000012
(Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造であり、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000012
(X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.)
Figure JPOXMLDOC01-appb-C000013
5.さらに、1級アミノ基と窒素含有複素環とを分子構造中に有する塩基を含有することを特徴とする上記1~4の何れかに記載の液晶配向処理剤。
6.前記塩基は、3-アミノプロピルイミダゾール及び3-ピコリルアミンからなる群から選ばれる少なくとも一つの化合物である上記5に記載の液晶配向処理剤。
7.前記ポリイミド前駆体及びポリイミドを溶解する有機溶媒を含有し、該有機溶媒が液晶配向処理剤中に5~80質量%の貧溶媒を含有する上記1~6の何れかに記載の液晶配向処理剤。
8.上記1~7の何れかに記載の液晶配向処理剤から得られる液晶配向膜。
9.電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる上記8に記載の液晶配向膜。
10.上記9に記載の液晶配向膜を有する液晶表示素子。
11.電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方で重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される上記10に記載の液晶表示素子。
12.下記式[2]で表されることを特徴とするジアミン化合物。
Figure JPOXMLDOC01-appb-C000013
5. 5. The liquid crystal aligning agent according to any one of the above 1 to 4, further comprising a base having a primary amino group and a nitrogen-containing heterocyclic ring in the molecular structure.
6). 6. The liquid crystal aligning agent according to 5 above, wherein the base is at least one compound selected from the group consisting of 3-aminopropylimidazole and 3-picolylamine.
7). 7. The liquid crystal alignment treatment agent according to any one of the above 1 to 6, comprising an organic solvent that dissolves the polyimide precursor and the polyimide, and the organic solvent contains 5 to 80% by mass of a poor solvent in the liquid crystal alignment treatment agent. .
8). 8. A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of 1 to 7 above.
9. A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 9. The liquid crystal alignment film as described in 8 above, which is used in a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage therebetween.
10. 10. A liquid crystal display device having the liquid crystal alignment film as described in 9 above.
11. A liquid crystal composition comprising a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film and polymerizing at least one of active energy rays and heat between the pair of substrates. 11. The liquid crystal display device as described in 10 above, which is produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
12 A diamine compound represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000014
(Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造であり、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000014
(X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.)
Figure JPOXMLDOC01-appb-C000015
13.上記12に記載のジアミン化合物を含有するジアミン成分と酸二無水物成分とを反応させて得られるポリイミド前駆体。
14.前記ジアミン成分が、さらに、下記式[3]で表されるジアミン化合物を含有する上記13に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000015
13. A polyimide precursor obtained by reacting a diamine component containing the diamine compound described in 12 above and an acid dianhydride component.
14 The polyimide precursor according to 13 above, wherein the diamine component further contains a diamine compound represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000016
(Yは単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-、-COO-、及び-OCO-からなる群から選ばれる2価の有機基である。Yは単結合、又は(CH-(bは1~10の整数である)より選ばれる2価の有機基であり、Yは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、及び-OCO-からなる群から選ばれる2価の有機基である。Yは、ベンゼン環、シクロへキシル環及び複素環からなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい2価の有機基、又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である。Yは、ベンゼン環、シクロへキシル環及び複素環からなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい2価の有機基であり、nは0~4の整数である。Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基であり、mは1~4の整数である。)
15.前記酸二無水物成分が、下記式[4]で表されるテトラカルボン酸二無水物である上記13又は14に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000016
(Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, and —OCO—. Y 2 is a divalent organic group, Y 2 is a single bond or a divalent organic group selected from (CH 2 ) b — (b is an integer of 1 to 10), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), a divalent organic group selected from the group consisting of —O—, —CH 2 O—, —COO—, and —OCO—. Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number An alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or fluorine Is a divalent organic group selected from an organic group having a carbon number of 12-25 with substituted by 2 may be a monovalent organic group, or steroid skeleton atom .Y 5 is cyclohexyl ring a benzene ring, cyclohexane And a cyclic group selected from the group consisting of heterocyclic rings, wherein any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. A fluorine-containing alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a divalent organic group which may be substituted with a fluorine atom, n is an integer of 0 to 4. Y 6 is a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, and m is an integer of 1 to 4. .)
15. The polyimide precursor according to the above 13 or 14, wherein the acid dianhydride component is a tetracarboxylic dianhydride represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000017
(Zは、炭素数4~13の4価の有機基であり、且つ炭素数4~10の非芳香族環状炭化水素基を有する。)
16.前記テトラカルボン酸二無水物中のZが、下記の式[4a]~式[4j]のいずれかの構造の有機基である上記15に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000017
(Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and has a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.)
16. 16. The liquid crystal aligning agent according to 15, wherein Z 1 in the tetracarboxylic dianhydride is an organic group having a structure of any one of the following formulas [4a] to [4j].
Figure JPOXMLDOC01-appb-C000018
(式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子、又はベンゼン環から選ばれる基であり、式[4g]中、Z、Zは、それぞれ独立して、水素原子、又はメチル基である。)
17.上記13~15の何れかに記載のポリイミド前駆体を脱水閉環させて得られるポリイミド。
Figure JPOXMLDOC01-appb-C000018
(In Formula [4a], Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring. In Formula [4g], Z 6 and Z 7 are And each independently represents a hydrogen atom or a methyl group.)
17. A polyimide obtained by dehydrating and ring-closing the polyimide precursor according to any one of the above 13 to 15.
 本発明の液晶配向処理剤を用いて得られる液晶配向膜は、液晶パネル製造プロセス中の洗浄工程で十分な溶剤耐性を有し、また、光の照射に曝されても電圧保持率の低下が抑制される。さらに、この液晶配向膜を有する液晶表示素子は優れた表示品位を有する。
 また、本発明によれば上記液晶配向処理剤の原料である新規なジアミン化合物が提供され、また、ジアミン化合物から製造されるポリイミド前駆体及びポリイミドもが提供される。
The liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent of the present invention has sufficient solvent resistance in the washing step during the liquid crystal panel manufacturing process, and the voltage holding ratio is reduced even when exposed to light irradiation. It is suppressed. Furthermore, the liquid crystal display element having this liquid crystal alignment film has excellent display quality.
Moreover, according to this invention, the novel diamine compound which is a raw material of the said liquid-crystal aligning agent is provided, and the polyimide precursor and polyimide which are manufactured from a diamine compound are also provided.
 本発明の液晶配向処理剤は、シクロカーボネート基を有するポリイミド前駆体及びこのポリイミド前駆体を脱水閉環させて得られるポリイミドの内の少なくとも一方を含有する。ここで、シクロカーボネート基は、ポリイミド前駆体及びポリイミドのそれぞれ側鎖末端に位置するのが好ましい。 The liquid crystal aligning agent of the present invention contains at least one of a polyimide precursor having a cyclocarbonate group and a polyimide obtained by dehydrating and ring-closing this polyimide precursor. Here, the cyclocarbonate group is preferably located at each side chain end of the polyimide precursor and the polyimide.
 具体的には、本発明の液晶配向処理剤は、下記式[1]の側鎖を有するポリイミド前駆体及びこのポリイミド前駆体を脱水閉環させて得られるポリイミドの内の少なくとも一方を含有するものである。 Specifically, the liquid crystal aligning agent of the present invention contains at least one of a polyimide precursor having a side chain of the following formula [1] and a polyimide obtained by dehydrating and ring-closing this polyimide precursor. is there.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式[1]中、Xは、-O-(エーテル結合)、-NH-(アミノ結合)、-N(CH)-(メチル化アミノ結合)、-CONH-(アミド結合)、-NHCO-(逆アミド結合)、-CHO-(メチレンエーテル結合)、-COO-(エステル結合)、-OCO-(逆エステル結合)、-CON(CH)-(N-メチル化アミド結合)及びN(CH)CO-(N-メチル化逆アミド結合)よりなる群から選ばれる結合基である。原料の合成が容易で入手が比較的容易なことから、Xは、-O-、-NH-、-CONH-、-NHCO-、-CON(CH)-、-CHO-、-COO-又はOCO-であることが好ましい。より好ましくは、-O-、-CONH-、-CON(CH)-、-CHO-又はCOO-である。 In the formula [1], X 1 represents —O— (ether bond), —NH— (amino bond), —N (CH 3 ) — (methylated amino bond), —CONH— (amide bond), —NHCO. -(Reverse amide bond), -CH 2 O- (methylene ether bond), -COO- (ester bond), -OCO- (reverse ester bond), -CON (CH 3 )-(N-methylated amide bond) And a linking group selected from the group consisting of N (CH 3 ) CO— (N-methylated reverse amide bond). X 1 is —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, —CH 2 O—, — since the synthesis of the raw materials is easy and relatively easy to obtain. COO- or OCO- is preferred. More preferred is —O—, —CONH—, —CON (CH 3 ) —, —CH 2 O— or COO—.
 式[1]中、Xは炭素数1~5、好ましくは1~3のアルキレン基である。 In the formula [1], X 2 is an alkylene group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
 式[1]中、Xはシクロカーボネート基を表す。具体的には、Xは下記の式[1a]で示される構造であることが好ましい。 In the formula [1], X 3 represents a cyclocarbonate group. Specifically, X 3 is preferably a structure represented by the following formula [1a].
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式[1]中の側鎖の端部に存在するシクロカーボネート基は、加熱下でカルボキシル基及び水酸基の内の少なくとも一方と反応して、重合体が架橋した構造を形成する。これにより、溶剤耐性に優れ、また、バックライトなどの光照射に対する安定性にも優れた液晶配向膜とすることができる。 The cyclocarbonate group present at the end of the side chain in the formula [1] reacts with at least one of a carboxyl group and a hydroxyl group under heating to form a crosslinked structure of the polymer. Thereby, it can be set as the liquid crystal aligning film excellent in solvent tolerance, and also excellent in stability with respect to light irradiation, such as a backlight.
 また、シクロカーボネート基が式[1]の側鎖端部に位置する場合、架橋密度の高い構造とともに、高い伸びや靭性を有する液晶配向膜が得られる。これにより、ラビングの際に重合体の延伸性が阻害され難くなるので、高いラビング耐性の実現が可能である。さらに、側鎖端部にあるシクロカーボネート基は、架橋反応を効率的に進行させることができるので、架橋性化合物を添加した場合であっても、液晶表示素子の特性低下などをもたらす未反応の架橋性化合物の残留を低減することもできる。 Also, when the cyclocarbonate group is located at the end of the side chain of the formula [1], a liquid crystal alignment film having a high crosslink density and high elongation and toughness can be obtained. Thereby, since the stretchability of the polymer is hardly inhibited during rubbing, high rubbing resistance can be realized. Furthermore, since the cyclocarbonate group at the end of the side chain can efficiently promote the crosslinking reaction, even when a crosslinkable compound is added, unreacted liquid crystal display device characteristics are deteriorated. Residual crosslinkable compounds can also be reduced.
 このように、上記液晶配向処理剤から得られる液晶配向膜は、液晶パネルの製造プロセスでの溶剤耐性に優れ、また、バックライトによる光照射の影響で電圧保持率が大きく低減することもない。さらに、ラビング耐性にも優れることから、この液晶配向膜を適用することで、表示品位に優れた液晶表示素子が得られる。 Thus, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent is excellent in solvent resistance in the manufacturing process of the liquid crystal panel, and the voltage holding ratio is not greatly reduced due to the influence of light irradiation by the backlight. Furthermore, since the rubbing resistance is also excellent, a liquid crystal display element having excellent display quality can be obtained by applying this liquid crystal alignment film.
 以下では、本発明の液晶配向処理剤に使用される特定構造のジアミン化合物について詳しく説明する。本発明の液晶配向処理剤は、ポリイミド前駆体やポリイミドに加えて、その他の成分を含むことが可能であり、好ましくは、塩基としての塩基性化合物や、その他のジアミン化合物などを含んで構成される。 Hereinafter, the diamine compound having a specific structure used in the liquid crystal aligning agent of the present invention will be described in detail. The liquid crystal alignment treatment agent of the present invention can contain other components in addition to the polyimide precursor and polyimide, and preferably includes a basic compound as a base, other diamine compounds, and the like. The
<特定ジアミン化合物>
 本発明の液晶配向処理剤は、ジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリイミド前駆体及びこのポリイミド前駆体を脱水閉環させて得られるポリイミド(本明細書では、これらを総称して特定重合体と言うことがある。)を含有する。ジアミン成分には、下記の式[2]で示されるジアミン化合物(本明細書では、特定ジアミン化合物ともいう。)が含まれることが好ましい。
<Specific diamine compound>
The liquid-crystal aligning agent of this invention is a polyimide precursor obtained by reaction of a diamine component and tetracarboxylic dianhydride, and a polyimide obtained by dehydrating and ring-closing this polyimide precursor (in the present specification, these are generically referred to). May be referred to as a specific polymer). The diamine component preferably contains a diamine compound represented by the following formula [2] (also referred to herein as a specific diamine compound).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式[2]中、X、X、及びXは、上記式[1]における場合と同じ定義を有する。式[2]中、nは1~4の整数であり、好ましくは、nは1~2の整数であり、より好ましくは、nは1である。 In the formula [2], X 1 , X 2 , and X 3 have the same definition as in the above formula [1]. In the formula [2], n is an integer of 1 to 4, preferably n is an integer of 1 to 2, and more preferably n is 1.
 式[2]における2つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。中でも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、3,5の位置が好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [2] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, from the viewpoint of reactivity at the time of synthesizing the polyamic acid, the 2,4 position, the 2,5 position, and the 3,5 position are preferable.
 式[2]における好ましいX、X、X及びnの好ましい組み合わせは、表1に示す組合せ番号(2-1)~(2-15)に示す通りである。 Preferred combinations of X 1 , X 2 , X 3 and n in the formula [2] are as shown in combination numbers (2-1) to (2-15) shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<特定ジアミン化合物の合成方法>
 式[2]で示される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、以下に示すものが挙げられる。
<Method for synthesizing specific diamine compound>
Although the method to manufacture the specific diamine compound shown by Formula [2] is not specifically limited, What is shown below is mentioned as a preferable method.
 一例として、本発明の特定ジアミン化合物は、下記式[2A]で示すジニトロ体を合成し、さらにニトロ基を還元してアミノ基に変換することで得られる。 As an example, the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the following formula [2A], further reducing the nitro group and converting it to an amino group.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 ジニトロ基を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ又は硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン又はアルコール系溶剤などの溶媒中において、水素ガス、ヒドラジン又は塩化水素などによって行う方法がある。尚、式[2A]中のX、X、X及びnは、上記した特定ジアミン化合物における式[2]中の定義と同じである。 The method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina or platinum sulfide carbon is used as a catalyst, and ethyl acetate, toluene, tetrahydrofuran, dioxane or There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent. X 1 , X 2 , X 3 and n in the formula [2A] are the same as defined in the formula [2] in the specific diamine compound described above.
 式[2A]のジニトロ体は、Xを介してX及びXを結合させ、その後、Xを介してジニトロ部と結合させる方法のほか、連結部Xを介してジニトロ部とXとを結合させ、その後、Xと結合させる方法などで得ることができる。 In the dinitro compound of the formula [2A], X 1 and X 3 are bonded via X 2 and then bonded to the dinitro moiety via X 1 , as well as the dinitro moiety and X via the linking moiety X 1. by binding and 2, then, it can be obtained by a method of bonding with X 3.
 これらの結合基は、有機合成における公知の手法を適宜選択して用い、形成することができる。例えば、Xがエーテル又はメチレンエーテル結合の場合、それを形成する方法としては、対応するジニトロ基含有ハロゲン誘導体と、X及びXを含む水酸基誘導体とをアルカリ存在下で反応させる方法の他、ジニトロ基含有水酸基誘導体と、X及びXを含むハロゲン置換誘導体とをアルカリ存在下で反応させる方法などが挙げられる。 These linking groups can be formed by appropriately selecting and using known methods in organic synthesis. For example, when X 1 is an ether or methylene ether bond, as a method for forming it, there is a method in which a corresponding dinitro group-containing halogen derivative and a hydroxyl group derivative containing X 2 and X 3 are reacted in the presence of an alkali. And a method of reacting a dinitro group-containing hydroxyl group derivative with a halogen-substituted derivative containing X 2 and X 3 in the presence of an alkali.
 また、Xがアミノ結合の場合は、対応するジニトロ基含有ハロゲン誘導体と、X及びXを含むアミノ基置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。 In addition, when X 1 is an amino bond, a method of reacting a corresponding dinitro group-containing halogen derivative with an amino group-substituted derivative containing X 2 and X 3 in the presence of an alkali can be mentioned.
 また、Xがアミド結合の場合は、対応するジニトロ基含有酸クロリド体と、X及びXを含むアミノ基置換体とをアルカリ存在下で反応させる方法が挙げられる。 In addition, when X 1 is an amide bond, a method of reacting a corresponding dinitro group-containing acid chloride and an amino group-substituted product containing X 2 and X 3 in the presence of an alkali can be mentioned.
 また、Xが逆アミド結合の場合は、対応するジニトロ基含有アミノ基置換体と、X及びXを含む酸クロリド体とをアルカリ存在下で反応させる方法が挙げられる。 Moreover, X 1 is the opposite case an amide bond, and the corresponding dinitro group-containing amino group substituents, a method of reacting an acid chloride containing the X 2 and X 3 in the presence of alkalis.
 また、Xがエステル結合の場合は、対応するジニトロ基含有酸クロリド体と、X及びXを含む水酸基置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。 In addition, when X 1 is an ester bond, a method in which a corresponding dinitro group-containing acid chloride is reacted with a hydroxyl group-substituted derivative containing X 2 and X 3 in the presence of an alkali can be mentioned.
 また、Xが逆エステル結合の場合は、対応するジニトロ基含有水酸基誘導体と、X及びXを含む酸クロリド体とをアルカリ存在下で反応させる方法が挙げられる。 Moreover, X 1 is the case of reverse ester bond, and the corresponding dinitro group-containing hydroxyl derivative, a method of reacting an acid chloride containing the X 2 and X 3 in the presence of alkalis.
 ジニトロ基含有ハロゲン誘導体及びジニトロ基含有誘導体の具体例としては、3,5-ジニトロクロロベンゼン、2,4-ジニトロクロロベンゼン、2,4-ジニトロフルオロベンゼン、3,5-ジニトロ安息香酸クロリド、3,5-ジニトロ安息香酸、2,4-ジニトロ安息香酸クロリド、2,4-ジニトロ安息香酸、3,5-ジニトロベンジルクロリド、2,4-ジニトロベンジルクロリド、3,5-ジニトロベンジルアルコール、2,4-ジニトロベンジルアルコール、2,4-ジニトロアニリン、3,5-ジニトロアニリン、2,6-ジニトロアニリン、2,4-ジニトロフェノール、2,5-ジニトロフェノール、2,6-ジニトロフェノール又は2,4-ジニトロフェニル酢酸などが挙げられる。原料の入手の方法と容易性及び反応性などの点を考慮して、これらの内から1種又は複数種を選択して用いることができる。 Specific examples of dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol or 2,4- And dinitrophenylacetic acid. In consideration of the method of obtaining the raw materials, easiness and reactivity, one or more of them can be selected and used.
<塩基性化合物>
 本発明の液晶配向処理剤は、ポリイミド前駆体やポリイミドが有するシクロカーボネート基の架橋反応を進行させる目的で、塩基として塩基性化合物を含有していることが好ましい。塩基性化合物の種類については、シクロカーボネート基の架橋反応を進行させるために十分な塩基性があれば特に限定されない。
<Basic compound>
The liquid crystal aligning agent of the present invention preferably contains a basic compound as a base for the purpose of advancing the crosslinking reaction of the cyclocarbonate group of the polyimide precursor or polyimide. The type of the basic compound is not particularly limited as long as it has sufficient basicity to advance the crosslinking reaction of the cyclocarbonate group.
 具体的には、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属又はアルカリ土類金属の水酸化物、アンモニアなどの無機アミン化合物、ピリジンやトリエチルアミンなどの有機アミン化合物等が挙げられる。なかでも、液晶配向膜の電気特性の点から、有機アミン化合物が好ましい。 Specific examples include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, inorganic amine compounds such as ammonia, and organic amine compounds such as pyridine and triethylamine. Of these, organic amine compounds are preferred from the viewpoint of the electrical characteristics of the liquid crystal alignment film.
 有機アミン化合物の例としては、より具体的に、下記の式[M1]~式[M156]で示される窒素含有複素環アミン化合物を挙げることができる。
 これらのアミン化合物は、特定重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、本発明の特定重合体を溶解させる有機溶媒であれば特に限定されない。
More specifically, examples of the organic amine compound include nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156].
These amine compounds may be added directly to the solution of the specific polymer, but may be added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer of the present invention.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 より好ましい有機アミン化合物としては、M6、M7、M16、M17、M20、M35、M36、M40、M49、M50、M60~M62、M69、M70、M76、M118~M121、M135、又はM140が挙げられる。さらに好ましいのは、M6、M16、M17、M35、M36、M40、M49、M50、M60、M61、M118、M120、M121、又はM140である。最も好ましいのは、M6、M17、M35、M40、M61、又はM118である。 More preferable organic amine compounds include M6, M7, M16, M17, M20, M35, M36, M40, M49, M50, M60 to M62, M69, M70, M76, M118 to M121, M135, or M140. Further preferred are M6, M16, M17, M35, M36, M40, M49, M50, M60, M61, M118, M120, M121, or M140. Most preferred is M6, M17, M35, M40, M61 or M118.
 本発明の液晶配向処理剤に含有される塩基性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の液晶配向処理剤における、塩基性化合物の含有量は、特定重合体100質量部に対して、0.1~100質量部であることが好ましく、ポリアミド酸やポリイミド中に含まれるカルボン酸基や水酸基と反応を促進させ、かつ液晶の配向性を低下させないために、より好ましくは0.1~50質量部であり、特には、1~30質量部である。
The basic compound contained in the liquid-crystal aligning agent of this invention may be one type, and may combine two or more types.
In the liquid crystal aligning agent of the present invention, the content of the basic compound is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the specific polymer, and the carboxylic acid contained in the polyamic acid or polyimide In order to promote the reaction with the group or the hydroxyl group and not to deteriorate the orientation of the liquid crystal, the amount is more preferably 0.1 to 50 parts by mass, particularly 1 to 30 parts by mass.
 <ポリイミド前駆体及びポリイミド>
 本発明において、特定重合体は、ポリイミド前駆体、及びポリイミドからなる群より選ばれる少なくとも一種の重合体である。
 特定重合体は、下記の式[A]で示されるジアミン成分と下記の式[B]で示されるテトラカルボン酸二無水物成分とを縮重合させることで比較的簡便に得られことから、下記の式[C]で示される繰り返し単位を有するポリアミド酸、さらには、このポリアミド酸をイミド化させたポリイミドが好ましい。
<Polyimide precursor and polyimide>
In the present invention, the specific polymer is at least one polymer selected from the group consisting of a polyimide precursor and polyimide.
The specific polymer is relatively easily obtained by polycondensing a diamine component represented by the following formula [A] and a tetracarboxylic dianhydride component represented by the following formula [B]. A polyamic acid having a repeating unit represented by the formula [C], and a polyimide obtained by imidizing this polyamic acid are preferred.
Figure JPOXMLDOC01-appb-C000030
式[B]中、Rは2価の有機基であり、Rは4価の有機基を示す。
Figure JPOXMLDOC01-appb-C000030
In the formula [B], R 1 represents a divalent organic group, and R 2 represents a tetravalent organic group.
Figure JPOXMLDOC01-appb-C000031
 式[C]中、R、Rは、式[A]、及び式[B]で定義したものと同意義であり、R、Rは、それぞれ1種類でもあっても、異なった複数種を組み合わせたものでも良く、nは正の整数を示す。
 本発明のポリイミド前駆体及びポリイミドは、上記特定のジアミン化合物を含有するジアミン成分と酸二無水物成分とを用いて得られる。かかるジアミン成分は、下記式[3]で表されるジアミン化合物(本明細書では、特定側鎖型ジアミン化合物ともいう。)を含有することができる。
Figure JPOXMLDOC01-appb-C000031
In the formula [C], R 1 and R 2 have the same meanings as defined in the formula [A] and the formula [B], and R 1 and R 2 are different even if each is one kind. A combination of a plurality of species may be used, and n represents a positive integer.
The polyimide precursor and polyimide of this invention are obtained using the diamine component and acid dianhydride component containing the said specific diamine compound. Such a diamine component can contain a diamine compound represented by the following formula [3] (also referred to as a specific side chain diamine compound in the present specification).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式[3]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-より選ばれる2価の有機基である。中でも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又はCOO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又はCOO-である。 In the formula [3], Y 1 is selected from a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. It is a divalent organic group. Among these, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, or COO— is preferable because a side chain structure can be easily synthesized. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
 式[3]中、Yは単結合又は(CH-(bは1~15の整数である)より選ばれる2価の有機基である。中でも、単結合又は(CH-(bは1~10の整数である)が好ましい。 In the formula [3], Y 2 is a single bond or a divalent organic group selected from (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[3]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-より選ばれる2価の有機基である。中でも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-は、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又はOCO-である。 In the formula [3], Y 3 is selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. It is a divalent organic group. Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO—.
 式[3]中、Yは、ベンゼン環、シクロへキシル環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基及びフッ素原子よりなる群から選ばれる基で置換されていてもよい2価の有機基、又は、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である。中でも、ベンゼン環、シクロへキシル環又はステロイド骨格を有する炭素数12~25の有機基が好ましい。 In the formula [3], Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. It may be substituted with a group selected from the group consisting of an alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, and a fluorine atom. It is a divalent organic group or a divalent organic group selected from a C 12-25 organic group having a steroid skeleton. Among these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexyl ring or a steroid skeleton is preferable.
 式[3]中、Yは、ベンゼン環、シクロへキシル環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基及びフッ素原子よりなる群から選ばれるもので置換されていてもよい2価の有機基である。中でも、ベンゼン環又はシクロへキシル環が好ましい。 In the formula [3], Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. It may be substituted with an alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. It is a divalent organic group. Among these, a benzene ring or a cyclohexyl ring is preferable.
 式[3]中、Yは、炭素数1~18、好ましくは1~12、より好ましくは1~9のアルキル基、炭素数1~18、好ましくは1~12、より好ましくは1~9のフッ素含有アルキル基、炭素数1~18、好ましくは1~12、より好ましくは1~9のアルコキシル基、又は炭素数1~18、好ましくは1~12、より好ましくは1~9のフッ素含有アルコキシル基である。 In the formula [3], Y 6 represents an alkyl group having 1 to 18, preferably 1 to 12, more preferably 1 to 9 carbon atoms, 1 to 18 carbon atoms, preferably 1 to 12, more preferably 1 to 9 carbon atoms. A fluorine-containing alkyl group, an alkoxyl group having 1 to 18, preferably 1 to 12, more preferably 1 to 9 carbon atoms, or a fluorine containing group having 1 to 18, preferably 1 to 12, more preferably 1 to 9 carbon atoms An alkoxyl group;
 式[3]中、nは0~4の整数である。好ましくは、0~2の整数である。また、mは1~4の整数である。好ましくは、1~2の整数である。 In the formula [3], n is an integer of 0 to 4. Preferably, it is an integer of 0-2. M is an integer of 1 to 4. Preferably, it is an integer of 1 to 2.
 式[3]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせは、表2~表43に示す通りである。 Preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [3] are as shown in Tables 2 to 43.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 式[3]で表わされる特定側鎖型ジアミン化合物は、より具体的には、下記の式[3-1]~式[3-31]で示される構造である。 More specifically, the specific side chain diamine compound represented by the formula [3] has a structure represented by the following formulas [3-1] to [3-31].
Figure JPOXMLDOC01-appb-C000075
 式[3-1]~式[3-3]中、Rは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは、炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。
Figure JPOXMLDOC01-appb-C000075
In the formulas [3-1] to [3-3], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 2 Is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000076
 式[3-4]~式[3-6]中、Rは、-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又はCH-を示し、Rは、炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。
Figure JPOXMLDOC01-appb-C000076
In the formulas [3-4] to [3-6], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2- , and R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000077
 式[3-7]及び式[3-8]中、Rは、-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又はO-を示し、Rは、フッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。
Figure JPOXMLDOC01-appb-C000077
In the formulas [3-7] and [3-8], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — Represents CH 2 — or O—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000078
 式[3-9]及び式[3-10]中、Rは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000078
In the formulas [3-9] and [3-10], R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000079
 式[3-11]及び式[3-12]中、Rは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000079
In the formulas [3-11] and [3-12], R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000080
 式[3-13]中、Aは、フッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Aは、1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは、酸素原子又はCOO-*(但し、「*」を付した結合手がAと結合する。)であり、Aは、酸素原子又はCOO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。また、aは、0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である)。
Figure JPOXMLDOC01-appb-C000080
In the formula [3-13], A 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 represents a 1,4-cyclohexylene group or 1,4-phenylene. A 2 is an oxygen atom or COO- * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO— * (where “ Bonds marked with “*” bind to (CH 2 ) a 2 ). ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
<その他のジアミン化合物>
 本発明のポリイミド前駆体は、式[2]で表される特定ジアミン化合物を用いて得ることができるが、本発明の効果を損なわない限りにおいて、上記式[3]で表される特定側鎖型ジアミン化合物とともに、その他のジアミン化合物を併用できる。かかるその他のジアミン化合物の具体例を以下に挙げる。
<Other diamine compounds>
Although the polyimide precursor of this invention can be obtained using the specific diamine compound represented by Formula [2], unless the effect of this invention is impaired, the specific side chain represented by the said Formula [3] Other diamine compounds can be used in combination with the type diamine compound. Specific examples of such other diamine compounds are listed below.
 例えば、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン及び1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン及びビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン及び1,12-ジアミノドデカンなどの脂肪族ジアミンなどが挙げられる。 For example, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3 ′ -Dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobi Enyl, 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2, , 2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3 '-Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'- Sulfonyl dianiline, 3,3'-sulfonyl dianiline Bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3 '-Thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4 4′-diaminodiphenyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzofe Non, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1, 6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2- Bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1, 4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl) -4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3 -Bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylenebis (methylene) )] Dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3- Phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phen Renbis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [ (3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1, 3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N , N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1, 3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide) ), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N '-Bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylsulfone, 2,2'-bis [4- ( 4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-amino) Phenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4 -Aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5- Diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3 -Aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-amino) Enoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis ( 4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4 Aromatic diamines such as -aminophenoxy) dodecane and 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane and bis (4-Amino-3-methylcyclohexyl) alicyclic diamine such as methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7 And aliphatic diamines such as -diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane.
 また、その他のジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環若しくは複素環を有するもの、又は、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記の式[DA1]~式[DA12]で示されるジアミンを例示することができる。 Examples of other diamine compounds include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, or those having a macrocyclic substituent composed of these. it can. Specifically, diamines represented by the following formulas [DA1] to [DA12] can be exemplified.
Figure JPOXMLDOC01-appb-C000086
 式[DA1]~式[DA5]中、Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基である。
Figure JPOXMLDOC01-appb-C000086
In the formulas [DA1] to [DA5], A 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000087
 式[DA6]~式[DA11]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-を示し、Aは、炭素数1~22のアルキル基若しくはフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000087
In the formulas [DA6] to [DA11], A 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—. 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000088
 式[DA12]中、pは1~10の整数である。加えて、本発明の効果を損なわない限りにおいて、下記の式[DA13]~式[DA20]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000088
In the formula [DA12], p is an integer of 1 to 10. In addition, diamine compounds represented by the following formulas [DA13] to [DA20] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000089
 式[DA17]中、mは0~3の整数であり、式[DA20]中、nは1~5の整数である。
Figure JPOXMLDOC01-appb-C000089
In the formula [DA17], m is an integer of 0 to 3, and in the formula [DA20], n is an integer of 1 to 5.
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA21]~式[DA24]で示される分子内にカルボキシル基を有するジアミン化合物を用いることもできる。 Furthermore, as long as the effects of the present invention are not impaired, a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
Figure JPOXMLDOC01-appb-C000090
 式[DA21]中、mは1~4の整数であり、式[DA22]中、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-である。m及びmはそれぞれ0~4の整数を示し且つm+mは1~4の整数を示す。式[DA23]中、m及びmはそれぞれ1~5の整数であり、式[DA24]中、Aは、炭素数1~5の直鎖又は分岐アルキル基であり、mは1~5の整数である。式[DA25]中、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、mは1~4の整数である。
Figure JPOXMLDOC01-appb-C000090
In the formula [DA21], m 1 is an integer of 1 to 4. In the formula [DA22], A 4 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —. , —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—. m 2 and m 3 each represent an integer of 0 to 4, and m 2 + m 3 represents an integer of 1 to 4. In the formula [DA23], m 4 and m 5 are each an integer of 1 to 5. In the formula [DA24], A 5 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m 6 is 1. An integer of ~ 5. In the formula [DA25], A 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, —O—. , —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
 上記の特定側鎖型ジアミン化合物、及びその他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned specific side chain type diamine compound and other diamine compounds are used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio, accumulated charge, etc. You can also
 <テトラカルボン酸二無水物>
 本発明におけるポリイミド前駆体は、ジアミン成分とテトラカルボン酸成分との反応によって得られる。以下では、テトラカルボン酸成分の具体例を挙げる。
<Tetracarboxylic dianhydride>
The polyimide precursor in this invention is obtained by reaction of a diamine component and a tetracarboxylic acid component. Below, the specific example of a tetracarboxylic-acid component is given.
 本発明の特定重合体を得るためには、下記の式[4]で示されるテトラカルボン酸二無水物(本明細書では、特定テトラカルボン酸二無水物ともいう。)を原料の一部に用いることが好ましい。 In order to obtain the specific polymer of the present invention, a tetracarboxylic dianhydride represented by the following formula [4] (also referred to as a specific tetracarboxylic dianhydride in this specification) is used as a part of the raw material. It is preferable to use it.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 式[4]中、Zは、炭素数4~13の4価の有機基であり、且つ炭素数4~10、好ましくは4~6の非芳香族環状炭化水素基を有する。 In the formula [4], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms, and has a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms, preferably 4 to 6 carbon atoms.
 Z1の好ましい具体例は、下記の式[4a]~式[4j]で示される。 Preferred specific examples of Z 1 are shown by the following formulas [4a] to [4j].
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 式[4a]中、Z~Zは水素原子、メチル基、塩素原子及びベンゼン環から選ばれる基であり、それぞれ同じであっても異なってもよい。 In the formula [4a], Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom and a benzene ring, and may be the same or different.
 式[4g]中、Z、Zは水素原子又はメチル基であり、それぞれ同じであっても異なってもよい。 In the formula [4g], Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
 式[4]中、Zの特に好ましい構造は、重合反応性や合成の容易性から、式[4a]、式[4c]、式[4d]、式[4e]、式[4f]又は式[4g]である。 In the formula [4], particularly preferred structure of Z 1 is the formula [4a], the formula [4c], the formula [4d], the formula [4e], the formula [4f] or the formula because of the polymerization reactivity and the ease of synthesis. [4 g].
 本発明においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物を用いることができる。その他テトラカルボン酸二無水物としては、以下に示すテトラカルボン酸のテトラカルボン酸二無水物が挙げられる。その具体例としては、例えば、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸又は1,2,4,5-シクロヘキサンテトラカルボン酸などが挙げられる。 In the present invention, other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride can be used as long as the effects of the present invention are not impaired. Other tetracarboxylic dianhydrides include tetracarboxylic dianhydrides of the following tetracarboxylic acids. Specific examples thereof include, for example, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid. 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4 -Biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4 -Dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4) Carboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis ( 3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3 , 4-cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5- Cyclohexanetetracarboxylic acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl 1,2,3,4-cyclobutanetetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3, 4,5-tetrahydrofurantetracarboxylic acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro -1-naphthalene succinic acid, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid Bicyclo [4,4,0] decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3 0.0. 0 <2,6>] undecane-3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl)- 1,2,3,4-tetrahydraphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2, 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0,2,7] dodeca-4,5,9,10 -Tetracarboxylic acid, 3,5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid or 1,2,4,5-cyclohexanetetracarboxylic acid.
 本発明においては、上記のテトラカルボン酸二無水物の中から、液晶配向性、電圧保持特性、蓄積電荷などの特性を考慮して、1種類又は2種類以上を選択して用いることができる。 In the present invention, one or more kinds of tetracarboxylic dianhydrides can be selected and used from the above-mentioned tetracarboxylic dianhydrides in consideration of characteristics such as liquid crystal orientation, voltage holding characteristics, and accumulated charges.
<特定重合体>
 本発明の液晶配向処理剤は、シクロカーボネート基を有するポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドの内の少なくとも一方を含有する。本発明では、ポリイミド前駆体及びポリイミドを総称して特定重合体と言うことがある。
 ポリイミド前駆体は、下記の式[A]で示される構造である。
<Specific polymer>
The liquid crystal aligning agent of this invention contains at least one of the polyimide precursor which has a cyclocarbonate group, and the polyimide which imidated this polyimide precursor. In the present invention, the polyimide precursor and the polyimide may be collectively referred to as a specific polymer.
The polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000093
(式[A]中、Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基であり、それぞれ同じであっても異なってもよく、nは正の整数を示す)。
 本発明の特定重合体は、下記の式[B]で示されるジアミン成分と下記の式[C]で示されるテトラカルボン酸二無水物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸または該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000093
(In the formula [A], R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different, and n represents a positive integer).
The reason why the specific polymer of the present invention can be obtained relatively easily by using a diamine component represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. Therefore, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000094
(式[B]および式[C]中、RおよびRは式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000094
(In formula [B] and formula [C], R 1 and R 2 are as defined in formula [A]).
Figure JPOXMLDOC01-appb-C000095
 本発明において、特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドとジアミン成分とを重縮合させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
Figure JPOXMLDOC01-appb-C000095
In the present invention, the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. Specifically, a method for obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component, a method for obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide A method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
To obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group and a diamine component, a polycondensation of a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a diamine component. A method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 特定重合体中のシクロカーボネート基の割合が多くなるほど、この特定重合体を含有して構成された液晶配向処理剤を使用して得られる液晶配向膜の特性は良好なものとなる。具体的には、液晶パネル製造プロセスにおける溶剤耐性に優れ、ラビング耐性も良好になる。さらに、バックライトによる光の照射に対しても電圧保持率の低下が抑制されるようになる。 As the ratio of the cyclocarbonate group in the specific polymer increases, the properties of the liquid crystal alignment film obtained by using the liquid crystal aligning agent containing the specific polymer become better. Specifically, the solvent resistance in the liquid crystal panel manufacturing process is excellent, and the rubbing resistance is also good. Furthermore, a decrease in voltage holding ratio is suppressed even when light is emitted from the backlight.
 特定ジアミン化合物を用いてシクロカーボネート基を特定重合体に導入する場合、上記した溶剤耐性などの特性を高める点からは、特定ジアミン化合物は、ジアミン成分の内の1モル%以上、さらには、モル%以上、より好ましくは10モル%以上使用される。また、ジアミン成分の100モル%が特定ジアミン化合物であることも可能である。しかしながら、液晶配向処理剤を塗布する際の均一な塗布性を維持する観点から、特定ジアミン化合物の使用量はジアミン成分の80モル%以下が好ましく、より好ましくは40モル%以下である。 When a cyclocarbonate group is introduced into a specific polymer using a specific diamine compound, the specific diamine compound is 1 mol% or more of the diamine component, and more % Or more, more preferably 10 mol% or more. Moreover, 100 mol% of a diamine component can also be a specific diamine compound. However, the amount of the specific diamine compound used is preferably 80 mol% or less of the diamine component, more preferably 40 mol% or less, from the viewpoint of maintaining uniform coating properties when applying the liquid crystal aligning agent.
 ジアミン成分とテトラカルボン酸成分との反応により、本発明のポリイミド前駆体を得るにあたっては、公知の合成手法を用いることができる。例えば、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる方法の使用が可能である。この方法は、有機溶媒中で比較的効率よく反応が進行するとともに、副生成物の発生が少ない点で好ましい。 In obtaining the polyimide precursor of the present invention by the reaction of the diamine component and the tetracarboxylic acid component, a known synthesis method can be used. For example, it is possible to use a method in which a diamine component and a tetracarboxylic acid component are reacted in an organic solvent. This method is preferable in that the reaction proceeds relatively efficiently in an organic solvent and generation of by-products is small.
 ジアミン成分とテトラカルボン酸成分との反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム又は4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは、単独で使用してもよく、混合して使用してもよい。また、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲であれば、上記溶媒に混合して使用することもできる。尚、有機溶媒中の水分は、重合反応を阻害し、生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は、脱水乾燥させたものを用いることが好ましい。 The organic solvent used for the reaction between the diamine component and the tetracarboxylic acid component is not particularly limited as long as the produced polyamic acid is soluble. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol , Ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol Monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol Methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3- Tokishipuropion acid, 3-methoxy propionic acid propyl, 3-methoxy propionic acid butyl, and the like diglyme or 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Moreover, even if it is a solvent which does not melt | dissolve a polyimide precursor, if it is the range which the produced | generated polyamic acid does not precipitate, it can also be mixed and used for the said solvent. In addition, since the water | moisture content in an organic solvent inhibits a polymerization reaction and causes the produced | generated polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散又は溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は、有機溶媒に分散若しくは溶解させて、添加する方法を用いることが可能である。また、逆に、テトラカルボン酸成分を有機溶媒に分散又は溶解させた溶液にジアミン成分を添加する方法や、テトラカルボン酸成分とジアミン成分とを交互に添加する方法なども挙げることができる。本発明においては、これらの何れの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させて高分子量体としてもよい。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. Thus, it is possible to use a method of adding. Conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like can also be mentioned. Any of these methods may be used in the present invention. In addition, when the diamine component or tetracarboxylic acid component is composed of a plurality of types of compounds, they may be reacted in a premixed state, individually reacted sequentially, and further mixed individually with low molecular weight substances. It is good also as a high molecular weight body by making it react.
 ジアミン成分とテトラカルボン酸成分とを反応させる温度は、-20~150℃の範囲内で任意に選択することができるが、反応効率を考慮して、-5~100℃の範囲とすることが好ましい。また、反応は、任意の濃度で行うことができる。但し、濃度が低すぎると、高分子量のポリイミド前駆体を得ることが難しくなる。一方、濃度が高すぎると、反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。したがって、好ましくは1~50質量%、より好ましくは5~30質量%である。尚、反応初期は高濃度で行い、その後に有機溶媒を追加することも可能である。 The temperature at which the diamine component and the tetracarboxylic acid component are reacted can be arbitrarily selected within the range of −20 to 150 ° C., but in view of the reaction efficiency, it may be set within the range of −5 to 100 ° C. preferable. Moreover, reaction can be performed by arbitrary density | concentrations. However, if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor. On the other hand, if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. It is also possible to carry out the reaction at a high concentration at the beginning of the reaction and then add an organic solvent.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数と、テトラカルボン酸成分の合計モル数との比が、0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成する重合体の分子量は大きくなる。したがって、場合に応じて適宜選択して合計モル比を決めることが可能である。 In the polymerization reaction of the polyimide precursor, the ratio between the total number of moles of the diamine component and the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced. Therefore, it is possible to determine the total molar ratio by appropriately selecting depending on the case.
 本発明のポリイミドは、上記したポリイミド前駆体を脱水閉環させて得られる。このポリイミドは、液晶配向膜を得るための重合体として有用である。 The polyimide of the present invention is obtained by dehydrating and ring-closing the above polyimide precursor. This polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
 本発明のポリイミドにおいて、ポリイミド前駆体の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて、例えば、45~85%の範囲で調整することができる。 In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the polyimide precursor is not necessarily 100%, and can be adjusted within a range of 45 to 85%, for example, depending on the application and purpose. .
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、ポリイミド前駆体の溶液に触媒を添加する触媒イミド化などが挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を反応系外に除きながら行うことが好ましい。 The temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the reaction system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つ点で好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸は反応終了後の精製が容易となる点で好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することで制御可能である。 Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable in that it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because purification after completion of the reaction is easy. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン又は水などを挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒としては、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、精製の効率がより一層上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の液晶配向処理剤に含有される重合体の分子量は、これを用いて得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮し、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained by using this, the workability during coating film formation, and the uniformity of the coating film, GPC (Gel Permeation Chromatography). The weight average molecular weight measured by the above method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 <液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、液晶配向膜である樹脂被膜を形成するための樹脂成分を有機溶媒に溶解させて得られた溶液である。この樹脂成分は、上記した特定重合体から選ばれる少なくとも1種の重合体を含む。液晶配向処理剤中の樹脂成分の含有量は、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution obtained by dissolving the resin component for forming the resin film which is a liquid crystal aligning film in an organic solvent. This resin component contains at least one polymer selected from the specific polymers described above. The content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
 本発明においては、液晶配向処理剤に含まれる樹脂成分の全てが特定重合体であってもよい。また、特定重合体に加えて、シクロカーボネート基を有しないその他のポリイミド前駆体又はポリイミドを使用してもよい。さらには、ポリイミド前駆体およびポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン又はポリアミドなどが挙げられる。その他の特定重合体の含有量は、0.5~15質量%とすることができ、好ましくは1~10質量%である。 In the present invention, all of the resin components contained in the liquid crystal aligning agent may be a specific polymer. Moreover, in addition to a specific polymer, you may use the other polyimide precursor or polyimide which does not have a cyclocarbonate group. Furthermore, a polymer other than a polyimide precursor and polyimide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or the like can be given. The content of the other specific polymer can be 0.5 to 15% by mass, and preferably 1 to 10% by mass.
 本発明の液晶配向処理剤に有機溶媒を含有させる場合は、塗布により均一な薄膜を形成するという観点から、有機溶媒の含有量が70~99質量%が好ましく、80~99質量%がより好ましい。この含有量は、液晶配向膜の膜厚によって適宜変更することができる。その際の有機溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム又は4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。 When the liquid crystal aligning agent of the present invention contains an organic solvent, the content of the organic solvent is preferably 70 to 99% by mass, more preferably 80 to 99% by mass from the viewpoint of forming a uniform thin film by coating. . This content can be appropriately changed depending on the film thickness of the liquid crystal alignment film. The organic solvent in that case will not be specifically limited if it is an organic solvent in which the specific polymer mentioned above is dissolved. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, Dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, Examples thereof include ethylene carbonate, propylene carbonate, diglyme and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
 本発明の液晶配向処理剤には、本発明の効果を損なわない限りにおいて、エポキシ基、イソシアネート基又はオキセタン基を有する架橋性化合物、さらには、ヒドロキシル基及びアルコキシル基からなら群より選ばれる少なくとも1種の置換基を有する架橋性化合物、加えて、重合性不飽和結合を有する架橋性化合物を導入することもできる。 The liquid crystal aligning agent of the present invention has at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and a hydroxyl group and an alkoxyl group, as long as the effects of the present invention are not impaired. It is also possible to introduce a crosslinkable compound having a kind of substituent, in addition to a crosslinkable compound having a polymerizable unsaturated bond.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシフェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxyphenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物としては、下記の式[5]で示すオキセタン基を少なくとも2個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having an oxetane group include a crosslinkable compound having at least two oxetane groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 具体的には、下記の式[5-1]~式[5-11]で示される架橋性化合物である。 Specifically, it is a crosslinkable compound represented by the following formulas [5-1] to [5-11].
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin.
 この架橋性化合物としては、例えば、アミノ基の水素原子がメチロール基又はアルコキシメチル基若しくはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体又はグリコールウリルなどを用いることができる。このとき、メラミン誘導体及びベンゾグアナミン誘導体は、二量体又は三量体として存在することも可能である。これらは、トリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものであることが好ましい。 As this crosslinkable compound, for example, a melamine derivative in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both, a benzoguanamine derivative or glycoluril can be used. At this time, the melamine derivative and the benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル製)や、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド製)などが挙げられる。また、グリコールウリルの例としては、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリルなどが挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (from Sanwa Chemical Co., Ltd.), methoxymethylated melamines such as Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 より具体的には、下記の式[6-1]~式[6-48]で示される架橋性化合物である。
Examples of benzene having a hydroxyl group or an alkoxyl group, or phenolic compounds include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, and 1,4-bis. (Sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
More specifically, it is a crosslinkable compound represented by the following formulas [6-1] to [6-48].
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 重合性不飽和結合を有する架橋性化合物としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物などが挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl ester phthalate di (meth) acrylate, neopentyl glycol dihydroxypivalate Crosslinkable compounds having two polymerizable unsaturated groups in the molecule such as (meth) acrylate, in addition to 2-hydroxyethyl (meth) acrylate, 2-hydro Cypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl Crosslinkable compounds having one polymerizable unsaturated group in the molecule such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester, N-methylol (meth) acrylamide, etc. Can be mentioned.
 加えて、下記の式[7]で示される化合物を用いることもできる。 In addition, a compound represented by the following formula [7] can also be used.
Figure JPOXMLDOC01-appb-C000105
 式[7]中、Aは、シクロヘキシル環、ビシクロヘキシル環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環から選ばれる基であり、Aは、下記の式[7a]、又は式[7b]から選ばれる基であり、nは1~4の整数である。
Figure JPOXMLDOC01-appb-C000105
In the formula [7], A 1 is a group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring, and A 2 is the following: A group selected from the formula [7a] or the formula [7b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 上記の化合物は、架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に含有される架橋性化合物は、1種類であってもよく、2種類以上を組み合わせてもよい。 The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may combine two or more types.
 架橋性化合物の含有量は、液晶配向処理剤中の樹脂成分100質量部に対して、0.1~150質量部であることが好ましく、架橋反応が進行し、目的の効果を発現し、且つ液晶の配向性を低下させないために、より好ましくは0.1~100質量部であり、特には1~50質量部である。 The content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the resin component in the liquid crystal aligning agent, the crosslinking reaction proceeds, and the desired effect is exhibited. In order not to lower the orientation of the liquid crystal, the amount is more preferably 0.1 to 100 parts by mass, particularly 1 to 50 parts by mass.
 液晶配向膜中の電荷移動を促進し、液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、下記の式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した重合体を溶解させる有機溶媒であれば特に限定されない。 A nitrogen-containing heterocyclic amine compound represented by the following formulas [M1] to [M156] is added as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the liquid crystal cell using the liquid crystal alignment film. You can also The amine compound may be added directly to the polymer solution, but it is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. The solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described polymer.
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 さらに、本発明の液晶配向処理剤は、本発明の効果を損なわない限りにおいて、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる有機溶媒(貧溶媒とも言われる。)や化合物、液晶配向膜と基板との密着性を向上させる化合物などを用いることができる。 Furthermore, the liquid crystal aligning agent of the present invention is also referred to as an organic solvent (poor solvent) that improves film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. ), A compound, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like can be used.
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例としては次のものが挙げられる。例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル又は乳酸イソアミルエステルなどの低表面張力を有する溶媒などである。これらの貧溶媒は、1種類で用いてもよく、複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合、その添加量は、液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 Specific examples of poor solvents that improve film thickness uniformity and surface smoothness include the following. For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, n-hexane, n-pentane, n-octane, diethyl ether Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy- 2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether Low surface tension such as ter-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester or lactate isoamyl ester Such as a solvent. These poor solvents may be used alone or in combination. When the above poor solvent is used, the amount added is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤又はノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物であるものが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン又はN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、この化合物の添加量は、液晶配向処理剤に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves the adhesion to the substrate is used, the amount of the compound added is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
 <液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコータ、スリットコータ、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて塗膜とすることができる。焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又又は偏光紫外線照射などで処理する。 After applying the liquid crystal aligning agent on the substrate, the solvent can be evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate to form a coating film. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。 As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
 本発明の液晶配向膜は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。 The liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a process of polymerizing a polymerizable compound by arranging at least one of active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルト角を制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルト角を制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルト角を調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルト角を制御することが難しい垂直配向型の液晶層の形成に適している。 The above-mentioned liquid crystal display element controls the pretilt angle of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt angle of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt angle of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. . The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt angle by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。 That is, in the liquid crystal display element of the present invention, a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is obtained by at least one of ultraviolet irradiation and heating. The orientation of the liquid crystal molecules can be controlled by polymerizing.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment film on which spacers are dispersed and then the substrate is attached and sealed.
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。 In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating with heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 以上例示した工程を経ることにより、本発明の液晶表示素子が得られる。これらの液晶表示素子は、液晶配向膜として本発明の配向膜を使用していることから、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。 The liquid crystal display element of the present invention can be obtained through the steps exemplified above. Since these liquid crystal display elements use the alignment film of the present invention as the liquid crystal alignment film, they have excellent reliability and can be suitably used for large-screen and high-definition liquid crystal televisions.
 以下に実施例を挙げて説明する。尚、本発明はこれらに限定して解釈されるものではない。 Hereinafter, an example will be given and described. The present invention is not construed as being limited to these.
 実施例及び比較例で用いる略語は、以下の通りである。 The abbreviations used in Examples and Comparative Examples are as follows.
<テトラカルボン酸二無水物>
 A-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 A-2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
<Tetracarboxylic dianhydride>
A-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride A-2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
<特定ジアミン化合物>
 B-1:実施例1で合成したジアミン化合物
<Specific diamine compound>
B-1: Diamine compound synthesized in Example 1
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
<その他のジアミン化合物>
 B-2:3,5-ジアミノ安息香酸
 B-3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
<Other diamine compounds>
B-2: 3,5-diaminobenzoic acid B-3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
<塩基>
 C-1:3アミノプロピルイミダゾール
 C-2:3アミノピリジン
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 PGME:プロピレングリコールモノメチルエーテル
 IPA:イソプロピルアルコール
 DMSO:ジメチルスルホキシド
<Base>
C-1: 3 aminopropylimidazole C-2: 3 aminopyridine <organic solvent>
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve PGMEA: Propylene glycol monomethyl ether acetate PGME: Propylene glycol monomethyl ether IPA: Isopropyl alcohol DMSO: Dimethyl sulfoxide
 実施例において、ポリアミド酸やポリイミドに関する分子量やイミド化率等の物性は、次のようにして評価した。 In the examples, physical properties such as molecular weight and imidization rate regarding polyamic acid and polyimide were evaluated as follows.
<ポリアミド酸、ポリイミドの分子量測定>
 ポリアミド酸及びポリイミドの分子量には、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用いた。測定条件は、以下の通りである。
<Molecular weight measurement of polyamic acid and polyimide>
As the molecular weight of the polyamic acid and polyimide, a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex were used. The measurement conditions are as follows.
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤:臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (additive: lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製、NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液について、日本電子データム社製NMR測定器(JNW-ECA500)を用いて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い、以下の数式(1)によって求めた。
<Measurement of imidization ratio>
Add 20 mg of polyimide powder to an NMR sample tube (Kusano Kagaku, NMR sampling tube standard φ5), and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) Then, it was completely dissolved by applying ultrasonic waves. With respect to this solution, proton NMR at 500 MHz was measured using an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated | required by the following Numerical formula (1) using the integrated value.

 イミド化率(%)=(1-α・x/y)×100  ・・・(1)

Imidation ratio (%) = (1−α · x / y) × 100 (1)
 上記式(1)において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula (1), x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
 次に、本発明の特定ジアミン化合物の合成例を示す。尚、合成例中、H-NMRとは、分子内水素原子の核磁気共鳴スペクトルを意味し、得られた化合物のスペクトルデータを示す。 Next, a synthesis example of the specific diamine compound of the present invention is shown. In the synthesis examples, 1 H-NMR means a nuclear magnetic resonance spectrum of an intramolecular hydrogen atom, and shows spectrum data of the obtained compound.
実施例1.
(ジアミン化合物の合成)
Example 1.
(Synthesis of diamine compounds)
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 ジアミン化合物(B-1)の合成は、上記合成スキームにしたがって行った。具体的には、化合物(302)(21.51g、182.2mmol)、及びトリエチルアミン(18.44g、182.2mmol)のテトラヒドロフラン(400g)溶液を10℃以下に冷却し、これに対して化合物(301)(40.00g、173.5mmol)のテトラヒドロフラン(200g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応の終了を確認した後、蒸留水(4.8L)に反応液を注入し、析出した固体を濾過し水洗した後、メタノール(324g)で分散洗浄して化合物(303)を得た(得量:48.65g、収率:90%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.03(1H, t), 8.87(2H, d), 5.24-5.19(1H, m), 4.67-4.57(3H, m), 4.47(1H, dd).
The diamine compound (B-1) was synthesized according to the above synthesis scheme. Specifically, a solution of compound (302) (21.51 g, 182.2 mmol) and triethylamine (18.44 g, 182.2 mmol) in tetrahydrofuran (400 g) was cooled to 10 ° C. or lower, and the compound ( 301) (40.00 g, 173.5 mmol) in tetrahydrofuran (200 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (high performance liquid chromatograph), the reaction solution was poured into distilled water (4.8 L), the precipitated solid was filtered and washed with water, and then dispersed and washed with methanol (324 g). Compound (303) was obtained (amount obtained: 48.65 g, yield: 90%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.03 (1H, t), 8.87 (2H, d), 5.24-5.19 (1H, m), 4.67-4.57 (3H, m), 4.47 (1H, dd).
 化合物(303)(40.00g、128.1mmol)、5%パラジウムカーボン(含水型、4.0g、10wt%)、及び1,4-ジオキサン(600g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、触媒をセライトにて濾過した後、エバポレータにて溶媒を留去し、オイル状の粗生物を得た。得られた粗生物に酢酸エチル(200g)を加え、加熱撹拌を行いながら結晶化させた後、濾過、乾燥を行い、白色固体として、ジアミン化合物(B-1)を得た(得量:17.45g、収率:54%)。
 1H-NMR(400MHz, DMSO-d6, δppm):6.42(2H, d), 6.04(1H, t), 5.14-5.09(1H, m), 5.03(4H, br s), 4.62(1H, t), 4.50(1H, dd), 4.39-4.32(2H, m).
A mixture of compound (303) (40.00 g, 128.1 mmol), 5% palladium carbon (hydrous type, 4.0 g, 10 wt%), and 1,4-dioxane (600 g) was added in the presence of hydrogen in the presence of 23 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain an oily crude product. Ethyl acetate (200 g) was added to the resulting crude product, and the mixture was crystallized while stirring with heating, followed by filtration and drying to obtain the diamine compound (B-1) as a white solid (yield: 17). .45 g, yield: 54%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 6.42 (2H, d), 6.04 (1H, t), 5.14-5.09 (1H, m), 5.03 (4H, br s), 4.62 (1H, t ), 4.50 (1H, dd), 4.39-4.32 (2H, m).
実施例2.
<ポリアミド酸の合成1>
 A-2(7.86g、31.4mmol)、B-3(5.62g、12.9mmol)、B-2(1.96g、12.9mmol)、及びB-1(2.79g、11.0mmol)をNMP(57.1g)中で混合し、80℃で5時間反応させた後、A-1(1.05g、5.51mmol)とNMP(20.1g)を加え、55℃で6時間反応させて、ポリアミド酸(A)の溶液(濃度20.0質量%)を得た。このポリアミド酸(A)の数平均分子量は25,528、重量平均分子量は97,025であった。
Example 2
<Synthesis 1 of polyamic acid>
A-2 (7.86 g, 31.4 mmol), B-3 (5.62 g, 12.9 mmol), B-2 (1.96 g, 12.9 mmol), and B-1 (2.79 g, 11. 0 mmol) was mixed in NMP (57.1 g) and reacted at 80 ° C. for 5 hours, and then A-1 (1.05 g, 5.51 mmol) and NMP (20.1 g) were added. It was made to react for a time and the solution (concentration 20.0 mass%) of the polyamic acid (A) was obtained. The number average molecular weight of this polyamic acid (A) was 25,528, and the weight average molecular weight was 97,025.
実施例3.
<ポリイミドの合成1>
 実施例2で得られたポリアミド酸(A)の溶液(25.0g)にNMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(4.88g)、及びピリジン(1.51g)を加え、100℃で2時間反応させた。この反応溶液をメタノール(314g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド(B)の粉末を得た。このポリイミド(B)のイミド化率は77%であり、数平均分子量は18,898、重量平均分子量は102,005であった。
Example 3
<Synthesis of polyimide 1>
After adding NMP to the polyamic acid (A) solution (25.0 g) obtained in Example 2 and diluting to 6% by mass, acetic anhydride (4.88 g) and pyridine (1.51 g) were used as imidization catalysts. ) Was added and reacted at 100 ° C. for 2 hours. The reaction solution was poured into methanol (314 g), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (B) powder. The imidation ratio of this polyimide (B) was 77%, the number average molecular weight was 18,898 and the weight average molecular weight was 102,005.
 ポリイミド(B)の粉末3.85gにNMP18.8gを加えて、70℃にて30時間攪拌して溶解させ、ポリイミド(B)溶液を得た。 18.8 g of NMP was added to 3.85 g of polyimide (B) powder and dissolved by stirring at 70 ° C. for 30 hours to obtain a polyimide (B) solution.
実施例4.
<液晶配向処理剤の調製1>
 実施例3で得られたポリイミド(B)溶液に、NMP、C-1のNMP溶液及びBCSを加え、50℃にて20時間攪拌し、ポリイミドが6質量%、C-1が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 4
<Preparation 1 of liquid crystal aligning agent>
To the polyimide (B) solution obtained in Example 3, NMP, an NMP solution of C-1 and BCS were added and stirred at 50 ° C. for 20 hours. The polyimide was 6% by mass and C-1 was 0.3% by mass. %, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例5.
<ポリアミド酸の合成2>
 A-2(8.29g、33.0mmol)、B-3(5.93g、13.6mmol)、B-2(2.96g、19.4mmol)、及びB-1(1.47g、5.84mmol)をNMP(58.8g)中で混合し、80℃で5時間反応させた後、A-1(1.14g、5.81mmol)とNMP(20.3g)を加え、55℃で6時間反応させて、ポリアミド酸(C)の溶液(濃度20.0質量%)を得た。このポリアミド酸(C)の数平均分子量は24,325、重量平均分子量は82,359であった。
Embodiment 5 FIG.
<Synthesis 2 of polyamic acid>
A-2 (8.29 g, 33.0 mmol), B-3 (5.93 g, 13.6 mmol), B-2 (2.96 g, 19.4 mmol), and B-1 (1.47 g, 5.3 mmol). 84 mmol) was mixed in NMP (58.8 g) and reacted at 80 ° C. for 5 hours, and then A-1 (1.14 g, 5.81 mmol) and NMP (20.3 g) were added. It was made to react for a time and the solution (concentration 20.0 mass%) of the polyamic acid (C) was obtained. The number average molecular weight of this polyamic acid (C) was 24,325, and the weight average molecular weight was 82,359.
実施例6.
<ポリイミドの合成2>
 実施例3と同様にして、実施例5で得られたポリアミド酸(C)の溶液(25.0g)に、NMPを加えて濃度6質量%に希釈した後、イミド化触媒として無水酢酸(5.02g)、及びピリジン(1.55g)を加え、100℃で2時間反応させた。この反応溶液をメタノール(314g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(D)の粉末を得た。このポリイミド(D)のイミド化率は77%であり、数平均分子量は20,405、重量平均分子量は82,988であった。
Example 6
<Polyimide synthesis 2>
In the same manner as in Example 3, NMP was added to the polyamic acid (C) solution (25.0 g) obtained in Example 5 to dilute to a concentration of 6% by mass, and then acetic anhydride (5 0.02 g) and pyridine (1.55 g) were added and reacted at 100 ° C. for 2 hours. The reaction solution was poured into methanol (314 g), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (D) powder. The imidation ratio of this polyimide (D) was 77%, the number average molecular weight was 20,405 and the weight average molecular weight was 82,988.
 ポリイミド(D)の粉末3.82gにNMP18.6gを加えて、70℃にて30時間攪拌して溶解させ、ポリイミド(D)溶液を得た。 18.6 g of NMP was added to 3.82 g of polyimide (D) powder and dissolved by stirring at 70 ° C. for 30 hours to obtain a polyimide (D) solution.
実施例7.
<液晶配向処理剤の調製2>
 実施例4と同様にして、実施例6で得られたポリイミド(D)溶液にNMP、C-1のNMP溶液及びBCSを加え、50℃にて20時間攪拌し、ポリイミドが6質量%、C-1が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 7
<Preparation 2 of liquid crystal aligning agent>
In the same manner as in Example 4, NMP, an NMP solution of C-1 and BCS were added to the polyimide (D) solution obtained in Example 6, and the mixture was stirred at 50 ° C. for 20 hours. -1 was 0.3% by mass, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例8.
<液晶配向処理剤の調製3>
 実施例3で得られたポリイミド(B)溶液に、NMP、C-2のNMP溶液及びBCSを加え、50℃にて15時間攪拌し、ポリイミドが6質量%、C-1が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 8 FIG.
<Preparation 3 of liquid crystal aligning agent>
To the polyimide (B) solution obtained in Example 3, NMP, an NMP solution of C-2 and BCS were added and stirred at 50 ° C. for 15 hours. The polyimide was 6% by mass, and C-1 was 0.3% by mass. %, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例9.
<液晶配向処理剤の調製4>
 実施例6で得られたポリイミド(D)溶液に、NMP、C-2のNMP溶液及びBCSを加え、50℃にて20時間攪拌し、ポリイミドが6質量%、C-1が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 9
<Preparation 4 of liquid crystal aligning agent>
To the polyimide (D) solution obtained in Example 6, NMP, an NMP solution of C-2 and BCS were added and stirred at 50 ° C. for 20 hours. The polyimide was 6% by mass, and C-1 was 0.3% by mass. %, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例10.
<液晶配向処理剤の調製5>
 実施例3で得られたポリイミド溶液(B)溶液に、NMP及びBCSを加えて攪拌し、ポリイミドが6質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 10
<Preparation 5 of liquid crystal aligning agent>
NMP and BCS were added to the polyimide solution (B) solution obtained in Example 3 and stirred to prepare 6% by mass of polyimide, 48.7% by mass of NMP, and 45% by mass of BCS. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例11.
<液晶配向処理剤の調製6>
 実施例2で得られたポリアミド酸(A)の溶液に、NMP、C-2のNMP溶液及びBCSを加えて攪拌し、ポリイミドが6質量%、C-2が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 11
<Preparation 6 of liquid crystal aligning agent>
To the polyamic acid (A) solution obtained in Example 2, NMP, an NMP solution of C-2 and BCS were added and stirred, and 6% by mass of polyimide, 0.3% by mass of C-2, and NMP were added. It was prepared so that 48.7 mass% and BCS might be 45 mass%. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例12.
<液晶配向処理剤の調製7>
 実施例5で得られたポリアミド酸(C)溶液に、NMP、C-2のNMP溶液及びBCSを加えて攪拌し、ポリアミド酸(C)が6質量%、C-2が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 12
<Preparation 7 of liquid crystal aligning agent>
To the polyamic acid (C) solution obtained in Example 5, NMP, an NMP solution of C-2 and BCS were added and stirred, and the polyamic acid (C) was 6% by mass and C-2 was 0.3% by mass. , NMP was 48.7% by mass and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
実施例13.
<液晶配向処理剤の調製8>
 実施例2で得られたポリアミド酸(A)の溶液に、NMP及びBCSを加えて攪拌し、ポリイミドが6質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Example 13
<Preparation 8 of liquid crystal aligning agent>
NMP and BCS were added to the polyamic acid (A) solution obtained in Example 2 and stirred to prepare a polyimide content of 6 mass%, an NMP content of 48.7 mass%, and a BCS content of 45 mass%. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
 以下では、比較例としてのポリアミド酸、ポリイミド及び液晶配向処理剤を示す。
比較例1.
 A-2(41.7g,166mmol)、B-3(29.7g,68.3mmol)及びB-2(19.4g、12.7mmol)をNMP(290g)中で混合し、80℃で5時間反応させた後、A-1(5.57g,28.4mmol)とNMP(93.0g)を加え、55℃で6時間反応させて、ポリアミド酸(E)の溶液(濃度20.0質量%)を得た。このポリアミド酸(E)の数平均分子量は24,513、重量平均分子量は79,705であった。
Below, the polyamic acid, polyimide, and liquid-crystal aligning agent as a comparative example are shown.
Comparative Example 1
A-2 (41.7 g, 166 mmol), B-3 (29.7 g, 68.3 mmol) and B-2 (19.4 g, 12.7 mmol) were mixed in NMP (290 g) and mixed at 80 ° C. with 5 After reacting for a period of time, A-1 (5.57 g, 28.4 mmol) and NMP (93.0 g) were added and reacted at 55 ° C. for 6 hours to obtain a polyamic acid (E) solution (concentration 20.0 mass). %). This polyamic acid (E) had a number average molecular weight of 24,513 and a weight average molecular weight of 79,705.
比較例2.
 実施例3と同様にして、比較例1で得られたポリアミド酸(E)の溶液(75.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(15.55g)、及びピリジン(4.82g)を加え、100℃で2時間反応させた。この反応溶液をメタノール(946g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(F)の粉末を得た。このポリイミド(F)のイミド化率は77%であり、数平均分子量は19,377、重量平均分子量は53,171であった。
Comparative Example 2
In the same manner as in Example 3, NMP was added to the polyamic acid (E) solution (75.0 g) obtained in Comparative Example 1 to dilute it to 6% by mass, and then acetic anhydride (15. 55 g) and pyridine (4.82 g) were added and reacted at 100 ° C. for 2 hours. The reaction solution was poured into methanol (946 g), and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (F) powder. The imidation ratio of this polyimide (F) was 77%, the number average molecular weight was 19,377 and the weight average molecular weight was 53,171.
 ポリイミド(F)の粉末11.6gにNMP56.6gを加えて、70℃にて30時間攪拌して溶解させてポリイミド(F)溶液を得た。 NMP56.6g was added to the polyimide (F) powder 11.6g, and it stirred for 30 hours and was made to melt | dissolve at 70 degreeC, and the polyimide (F) solution was obtained.
比較例3.
 実施例4と同様にして、比較例2で得られたポリイミド(F)溶液に、NMP、C-1のNMP溶液及びBCSを加え、50℃にて20時間攪拌し、ポリイミドが6質量%、C-1が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Comparative Example 3
In the same manner as in Example 4, NMP, an NMP solution of C-1 and BCS were added to the polyimide (F) solution obtained in Comparative Example 2, and the mixture was stirred at 50 ° C. for 20 hours. C-1 was 0.3% by mass, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
比較例4.
 比較例2で得られたポリイミド(F)溶液に、NMP、C-2のNMP溶液及びBCSを加え、50℃にて20時間攪拌し、ポリイミドが6質量%、C-2が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Comparative Example 4
NMP, C-2 NMP solution and BCS were added to the polyimide (F) solution obtained in Comparative Example 2, and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was 6% by mass, and C-2 was 0.3% by mass. %, NMP was 48.7% by mass, and BCS was 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
比較例5.
 比較例2で得られたポリイミド(F)溶液に、NMP及びBCSを加えて攪拌し、ポリイミドが6質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Comparative Example 5
NMP and BCS were added to the polyimide (F) solution obtained in Comparative Example 2, and the mixture was stirred to prepare 6% by mass of polyimide, 48.7% by mass of NMP, and 45% by mass of BCS. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
比較例6.
 比較例1で得られたポリアミド酸(E)溶液に、NMP、C-2のNMP溶液及びBCSを加えて攪拌し、ポリイミドが6質量%、C-2が0.3質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Comparative Example 6
To the polyamic acid (E) solution obtained in Comparative Example 1, NMP, an NMP solution of C-2 and BCS were added and stirred, and polyimide was 6% by mass, C-2 was 0.3% by mass, and NMP was 48%. 0.7% by mass and BCS 45% by mass. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
比較例7.
 比較例1で得られたポリアミド酸(E)溶液に、NMP及びBCSを加えて攪拌し、ポリアミド酸(E)が6質量%、NMPが48.7質量%、BCSが45質量%になるよう調製した。細孔径1μmのメンブランフィルタで加圧濾過して液晶配向処理剤を得た。
Comparative Example 7
NMP and BCS are added to the polyamic acid (E) solution obtained in Comparative Example 1 and stirred so that the polyamic acid (E) is 6% by mass, NMP is 48.7% by mass, and BCS is 45% by mass. Prepared. A liquid crystal aligning agent was obtained by pressure filtration through a membrane filter having a pore diameter of 1 μm.
 実施例である液晶配向処理剤と、比較例の液晶配向処理剤とを表44に示す。 Table 44 shows liquid crystal aligning agents as examples and liquid crystal aligning agents as comparative examples.
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
 次に、上記した実施例の液晶配向処理剤について、比較例と対比しながら評価を行った。まず、評価の方法について説明する。 Next, the liquid crystal alignment treatment agents of the above-described examples were evaluated while being compared with the comparative examples. First, the evaluation method will be described.
<溶剤耐性の評価>
 溶剤耐性は、溶剤浸漬後の残膜率を調べることによって評価した。具体的には、液晶配向処理剤をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥した後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成した。この液晶配向膜付基板を23℃のNMPに1分間浸漬し、残膜率を以下の式にしたがって求めた。尚、数式(2)において、aは浸漬後の膜厚、bは浸漬前の膜厚である。
<Evaluation of solvent resistance>
The solvent resistance was evaluated by examining the remaining film rate after immersion in the solvent. Specifically, a liquid crystal alignment treatment agent is spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a film thickness of 100 nm. The coating film was formed. This substrate with a liquid crystal alignment film was immersed in NMP at 23 ° C. for 1 minute, and the remaining film ratio was determined according to the following formula. In Equation (2), a is the film thickness after immersion, and b is the film thickness before immersion.

残膜率(%)=(a/b)×100  ・・・(2)

Remaining film ratio (%) = (a / b) × 100 (2)
<電気特性及びUV耐性の評価>
 液晶配向処理剤をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100の塗膜を形成して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、一方の液晶配向膜面上に6μmのスペーサを散布した後、この上からシール剤を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を硬化して空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、注入口を封止して垂直配向の液晶セルを得た。
<Evaluation of electrical characteristics and UV resistance>
A liquid crystal aligning agent is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 Thus, a substrate with a liquid crystal alignment film was obtained. Two substrates with the liquid crystal alignment film were prepared, and a 6 μm spacer was sprayed on one liquid crystal alignment film surface, and then a sealant was printed thereon. Subsequently, after bonding together so that the other board | substrate and the liquid crystal aligning film surface might face each other, the sealing compound was hardened and the empty cell was produced. Liquid crystal MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a vertically aligned liquid crystal cell.
 上記の液晶セルに80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定して電圧がどのくらい保持できているかを電圧保持率として計算した。さらに、電圧保持率測定後の液晶セルにUV光(紫外光)を照射し、上記と同様にして電圧保持率の測定を再度行った。照射エネルギーは350nmにおける照射強度を基に算出した。評価結果を表45にまとめて示す。 The voltage of 1V was applied to the above liquid crystal cell at a temperature of 80 ° C. for 60 μs, the voltage after 50 ms was measured, and how much the voltage was held was calculated as the voltage holding ratio. Further, the liquid crystal cell after the voltage holding ratio measurement was irradiated with UV light (ultraviolet light), and the voltage holding ratio was measured again in the same manner as described above. The irradiation energy was calculated based on the irradiation intensity at 350 nm. The evaluation results are summarized in Table 45.
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
 表45の評価結果に示すように、実施例の液晶配向処理剤から得られた液晶配向膜は、上記残膜率評価において、何れも高い残膜率を示し、溶剤耐性に優れていることが分かった。一方、比較例である液晶配向処理剤から得られた液晶配向膜は、何れも低い残膜率を示し、実施例と比較して溶剤耐性が著しく劣ることが分かった。 As shown in the evaluation results of Table 45, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples all show a high residual film ratio and excellent solvent resistance in the above-mentioned residual film ratio evaluation. I understood. On the other hand, the liquid crystal alignment films obtained from the liquid crystal aligning agent as a comparative example all showed a low residual film ratio, and it was found that the solvent resistance was remarkably inferior compared to the examples.
 溶剤耐性の評価をNMP以外の溶剤を使用して行った結果についても示す。溶剤にIPAを用いて、上記したNMPを使用した残膜率評価と同様の評価と、PGMEAを用いて上記したNMPを使用した残膜率評価と同様の評価を行ったところ、実施例の液晶配向処理剤から得られた液晶配向膜の残膜率は、何れの場合にも100%であった。一方、比較例の液晶配向処理剤から得られた液晶配向膜の残膜率は何れの場合にも100%であった。 The results of solvent resistance evaluation using solvents other than NMP are also shown. When the same evaluation as the remaining film rate evaluation using NMP described above using IPA as a solvent and the same evaluation as the remaining film rate evaluation using NMP described above using PGMEA were performed, the liquid crystal of Example The remaining film ratio of the liquid crystal alignment film obtained from the alignment treatment agent was 100% in any case. On the other hand, the remaining film ratio of the liquid crystal alignment film obtained from the liquid crystal aligning agent of the comparative example was 100% in any case.
 PGMEを用いて、上記したNMPを使用した残膜率評価と同様の評価を行った場合、実施例の液晶配向処理剤から得られた液晶配向膜の残膜率は100%であった。また、比較例3~5の液晶配向処理剤から得られた液晶配向膜の各残膜率も100%であった。これに対して、比較例6の液晶配向膜の残膜率は30%であり、比較例7の液晶配向膜の残膜率は5%であった。 When the same evaluation as the above-described residual film ratio evaluation using NMP was performed using PGME, the residual film ratio of the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example was 100%. Further, the remaining film ratios of the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 3 to 5 were 100%. On the other hand, the remaining film ratio of the liquid crystal alignment film of Comparative Example 6 was 30%, and the remaining film ratio of the liquid crystal alignment film of Comparative Example 7 was 5%.
 比較例6、7は、ポリアミド酸を含有する液晶配向処理剤であり、実施例11~13も、ポリアミド酸を含有する液晶配向処理剤である。実施例11~13の液晶配向処理剤から得られた液晶配向膜について、PGMEを用いて、上記したNMPを使用した残膜率評価と同様の評価を行った場合、残膜率は100%であって、高い値を示す。したがって、実施例では、ポリアミド酸を含有して液晶配向処理剤を構成しても高い溶剤耐性を示すことが分かる。 Comparative Examples 6 and 7 are liquid crystal aligning agents containing polyamic acid, and Examples 11 to 13 are also liquid crystal aligning agents containing polyamic acid. When the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 11 to 13 were evaluated using PGME in the same manner as the remaining film ratio evaluation using NMP described above, the remaining film ratio was 100%. It shows a high value. Therefore, in an Example, even if it comprises a polyamic acid and comprises a liquid-crystal aligning agent, it turns out that high solvent tolerance is shown.
 以上の評価結果から、実施例の液晶配向処理剤から得られた液晶配向膜は、非常に優れた溶剤耐性を有し、その従来技術に対する優位性は、特に溶解度の高い溶剤に対して明確に発揮されることが分かる。 From the above evaluation results, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples have very excellent solvent resistance, and their superiority over the prior art is clearly clear especially for solvents with high solubility. It can be seen that it is demonstrated.
 次に、電気特性について述べる。実施例の液晶配向処理剤を用いた液晶セルは、何れも90%を超える高い電圧保持率を示し、電機特性に優れることが分かる。 Next, electrical characteristics will be described. It can be seen that the liquid crystal cells using the liquid crystal alignment treatment agents of the examples all have a high voltage holding ratio exceeding 90% and are excellent in electrical characteristics.
 UV耐性については、実施例11~13の液晶配向処理剤を用いた液晶セルの電圧保持率は、UV照射後においても79%を超える高い値となっており、また、これら以外の他の実施例においては、90%を超える非常に高い電圧保持率を示す。 Regarding the UV resistance, the voltage holding ratio of the liquid crystal cell using the liquid crystal aligning agents of Examples 11 to 13 is a high value exceeding 79% even after UV irradiation. In the example, a very high voltage holding ratio exceeding 90% is shown.
 以上より、実施例の液晶配向処理剤から得られた液晶配向膜を有する液晶セルは、優れた電気特性とUV耐性を有することが分かる。 From the above, it can be seen that the liquid crystal cell having the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example has excellent electrical characteristics and UV resistance.
 一方、比較例である液晶配向処理剤の場合、比較例6ではUV照射後の液晶セルの電圧保持率が70.8%で、比較例7では74.6%と低い値であることが分かる。また、何れの比較例においても、50JのUV光を照射した場合、電圧保持率が90%を超える高い値を示さないことも分かる。 On the other hand, in the case of the liquid crystal aligning agent as a comparative example, it can be seen that the voltage holding ratio of the liquid crystal cell after UV irradiation is 70.8% in comparative example 6 and 74.6% in comparative example 7. . It can also be seen that in any of the comparative examples, when the 50 J UV light is irradiated, the voltage holding ratio does not show a high value exceeding 90%.
 以上の評価結果から、本発明のジアミン化合物を用いて得られるポリアミド酸及びポリイミドから液晶配向処理剤を用いて得られる液晶配向膜は、溶剤耐性に優れ、且つ、光照射による電圧保持率の低下を抑制できることが分かる。 From the above evaluation results, the liquid crystal alignment film obtained by using the liquid crystal aligning agent from the polyamic acid and polyimide obtained by using the diamine compound of the present invention is excellent in solvent resistance, and the voltage holding ratio is reduced by light irradiation. It can be seen that it can be suppressed.
 本発明の液晶配向膜は、液晶パネル製造プロセス中の洗浄工程で十分な溶剤耐性を有し、また、光の照射に曝されても電圧保持率の低下が抑制され、この液晶配向膜を有する液晶表示素子は優れた表示品位を有し、大画面で高精細の液晶テレビなどに好適に利用可能である。
 なお、2010年6月10日に出願された日本特許出願2010-133337号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示の一部とする。
The liquid crystal alignment film of the present invention has sufficient solvent resistance in the washing step during the manufacturing process of the liquid crystal panel, and also has a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation. The liquid crystal display element has excellent display quality and can be suitably used for a large-screen high-definition liquid crystal television.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-133337 filed on June 10, 2010 are incorporated herein by reference. Part.

Claims (17)

  1.  シクロカーボネート基を有するポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向処理剤。 A liquid crystal aligning agent comprising a polyimide precursor having a cyclocarbonate group and at least one polymer selected from the group consisting of polyimides obtained by imidizing the polyimide precursor.
  2.  前記シクロカーボネート基は、前記ポリイミド前駆体及び前記ポリイミドの側鎖末端に存在する請求項1に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 1, wherein the cyclocarbonate group is present at a side chain terminal of the polyimide precursor and the polyimide.
  3.  前記シクロカーボネート基を有する側鎖が、下記式[1]で表わされる請求項1又は2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造である。)
    Figure JPOXMLDOC01-appb-C000002
    The liquid-crystal aligning agent of Claim 1 or 2 with which the side chain which has the said cyclocarbonate group is represented by following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, and X 3 has a structure represented by the following formula [1a].)
    Figure JPOXMLDOC01-appb-C000002
  4.  前記ポリイミド前駆体及び前記ポリイミドは、下記式[2]で表わされるジアミン化合物を原料とする重合体である請求項1~3の何れか1項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造であり、nは1~4の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the polyimide precursor and the polyimide are polymers made from a diamine compound represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000003
    (X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.)
    Figure JPOXMLDOC01-appb-C000004
  5.  さらに、1級アミノ基と窒素含有複素環とを分子構造中に有する塩基を含有することを特徴とする請求項1~4の何れか1項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, further comprising a base having a primary amino group and a nitrogen-containing heterocyclic ring in the molecular structure.
  6.  前記塩基は、3-アミノプロピルイミダゾール及び3-ピコリルアミンからなる群から選ばれる少なくとも一つの化合物である請求項5に記載の液晶配向処理剤。 6. The liquid crystal aligning agent according to claim 5, wherein the base is at least one compound selected from the group consisting of 3-aminopropylimidazole and 3-picolylamine.
  7.  前記ポリイミド前駆体及びポリイミドを溶解する有機溶媒を含有し、該有機溶媒が液晶配向処理剤中に5~80質量%の貧溶媒を含有する請求項1~6の何れか1項に記載の液晶配向処理剤。 7. The liquid crystal according to claim 1, further comprising an organic solvent that dissolves the polyimide precursor and the polyimide, and the organic solvent contains 5 to 80% by mass of a poor solvent in the liquid crystal alignment treatment agent. Alignment treatment agent.
  8.  請求項1~7の何れか1項に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of claims 1 to 7.
  9.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる請求項8に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal aligning film of Claim 8 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric compound, applying a voltage in between.
  10.  請求項9に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 9.
  11.  電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方で重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される請求項10に記載の液晶表示素子。 A liquid crystal composition comprising a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film and polymerizing at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element according to claim 10, wherein the liquid crystal display element is manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
  12.  下記式[2]で表されることを特徴とするジアミン化合物。
    Figure JPOXMLDOC01-appb-C000005
    (Xは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、Xは、炭素数1~5のアルキレン基であり、Xは、下記の式[1a]に示す構造であり、nは1~4の整数である。)
    Figure JPOXMLDOC01-appb-C000006
    A diamine compound represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000005
    (X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — Or N (CH 3 ) CO—, X 2 is an alkylene group having 1 to 5 carbon atoms, X 3 is a structure represented by the following formula [1a], and n is an integer of 1 to 4 is there.)
    Figure JPOXMLDOC01-appb-C000006
  13.  請求項12に記載のジアミン化合物を含有するジアミン成分と酸二無水物成分とを反応させて得られるポリイミド前駆体。 A polyimide precursor obtained by reacting the diamine component containing the diamine compound according to claim 12 and an acid dianhydride component.
  14.  前記ジアミン成分が、さらに、下記式[3]で表されるジアミン化合物を含有する請求項13に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000007
    (Yは単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-、-COO-、及び-OCO-からなる群から選ばれる2価の有機基である。Yは単結合、又は(CH-(bは1~10の整数である)より選ばれる2価の有機基であり、Yは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、及び-OCO-からなる群から選ばれる2価の有機基である。Yは、ベンゼン環、シクロへキシル環及び複素環からなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい2価の有機基、又はステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である。Yは、ベンゼン環、シクロへキシル環及び複素環からなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい2価の有機基であり、nは0~4の整数である。Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基であり、mは1~4の整数である。)
    The polyimide precursor according to claim 13, wherein the diamine component further contains a diamine compound represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000007
    (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, and —OCO—. Y 2 is a divalent organic group, Y 2 is a single bond or a divalent organic group selected from (CH 2 ) b — (b is an integer of 1 to 10), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), a divalent organic group selected from the group consisting of —O—, —CH 2 O—, —COO—, and —OCO—. Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number An alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or fluorine Is a divalent organic group selected from an organic group having a carbon number of 12-25 with substituted by 2 may be a monovalent organic group, or steroid skeleton atom .Y 5 is cyclohexyl ring a benzene ring, cyclohexane And a cyclic group selected from the group consisting of heterocyclic rings, wherein any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. A fluorine-containing alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a divalent organic group which may be substituted with a fluorine atom, n is an integer of 0 to 4. Y 6 is a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, and m is an integer of 1 to 4. .)
  15.  前記酸二無水物成分が、下記式[4]で表されるテトラカルボン酸二無水物である請求項13又は14に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000008
    (Zは、炭素数4~13の4価の有機基であり、且つ炭素数4~10の非芳香族環状炭化水素基を有する。)
    The polyimide precursor according to claim 13 or 14, wherein the acid dianhydride component is a tetracarboxylic dianhydride represented by the following formula [4].
    Figure JPOXMLDOC01-appb-C000008
    (Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and has a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.)
  16.  前記テトラカルボン酸二無水物中のZが、下記の式[4a]~式[4j]のいずれかの構造の有機基である請求項15に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000009
    (式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子、又はベンゼン環から選ばれる基であり、式[4g]中、Z、Zは、それぞれ独立して、水素原子、又はメチル基である。)
    16. The liquid crystal aligning agent according to claim 15, wherein Z 1 in the tetracarboxylic dianhydride is an organic group having a structure of any one of the following formulas [4a] to [4j].
    Figure JPOXMLDOC01-appb-C000009
    (In Formula [4a], Z 2 to Z 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring. In Formula [4g], Z 6 and Z 7 are And each independently represents a hydrogen atom or a methyl group.)
  17.  請求項13~15の何れか一項に記載のポリイミド前駆体を脱水閉環させて得られるポリイミド。 A polyimide obtained by dehydrating and ring-closing the polyimide precursor according to any one of claims 13 to 15.
PCT/JP2011/063288 2010-06-10 2011-06-09 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element WO2011155576A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012519431A JP5998930B2 (en) 2010-06-10 2011-06-09 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR1020137000633A KR101823714B1 (en) 2010-06-10 2011-06-09 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN201180037578.9A CN103038704B (en) 2010-06-10 2011-06-09 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133337 2010-06-10
JP2010-133337 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155576A1 true WO2011155576A1 (en) 2011-12-15

Family

ID=45098180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063288 WO2011155576A1 (en) 2010-06-10 2011-06-09 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP5998930B2 (en)
KR (1) KR101823714B1 (en)
CN (1) CN103038704B (en)
TW (1) TWI504637B (en)
WO (1) WO2011155576A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150115858A (en) * 2013-02-01 2015-10-14 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7421159B2 (en) 2019-11-18 2024-01-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523169B2 (en) * 2013-07-24 2019-05-29 日産化学株式会社 Polymer, polymer composition and liquid crystal alignment film for horizontal electric field drive type liquid crystal display device
KR102202738B1 (en) * 2013-08-14 2021-01-12 닛산 가가쿠 가부시키가이샤 Liquid crystal display element
CN109073935B (en) * 2016-01-07 2021-06-25 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
TWI666232B (en) * 2016-06-04 2019-07-21 奇美實業股份有限公司 Liquid crystal alignment agent and production method thereof, liquid crystal alignment film and production method thereof, and liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030961A (en) * 2004-06-18 2006-02-02 Jsr Corp Vertical liquid crystal orientation agent and vertical liquid crystal display element
JP2008299317A (en) * 2007-05-02 2008-12-11 Jsr Corp Vertical alignment type liquid crystal aligning agent and liquid crystal display element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426129A1 (en) * 1994-07-22 1996-01-25 Bayer Ag Di (meth) acrylates with cyclic carbonate groups
JP3289271B2 (en) * 1995-02-13 2002-06-04 日産化学工業株式会社 Liquid crystal alignment agent and liquid crystal device using the same
JPH10121049A (en) * 1996-10-16 1998-05-12 Hitachi Ltd Composition for liquid crystal alignment layer
DE69929040T2 (en) * 1998-03-20 2006-08-24 Rolic Ag LIQUID CRYSTAL ORIENTATION LAYER
US20020039628A1 (en) * 1999-01-26 2002-04-04 Kazufumi Ogawa Liquid crystal alignment film, method of producing the same, liquid crystal display made by using the film, and method of producing the same
GB0130651D0 (en) * 2001-12-21 2002-02-06 Ici Plc Aqueous compositions containing polyurethane-acrylic hybrid polymer dispersions
JP2004070347A (en) * 2002-07-26 2004-03-04 Teijin Ltd Polycarbonate-based oriented film and phase difference film
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
KR100834801B1 (en) * 2004-06-18 2008-06-05 제이에스알 가부시끼가이샤 Vertical liquid crystal alignment agent and vertical liquid crystal display
KR101257437B1 (en) 2006-02-22 2013-04-23 주식회사 동진쎄미켐 Alignment material for liquid crystal display device of vertical alignment mode and a preparing method of same
CN101144942A (en) * 2006-09-11 2008-03-19 Jsr株式会社 Liquid crystal orientating agent, liquid crystal orientating film and liquid crystal displaying element
JP5158351B2 (en) 2008-01-29 2013-03-06 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2009275183A (en) * 2008-05-16 2009-11-26 Asahi Kasei E-Materials Corp Polyamic acid varnish composition and metal polyimide complex using the same
WO2009139086A1 (en) * 2008-05-16 2009-11-19 旭化成イーマテリアルズ株式会社 Polyester-imide precursor and polyester-imide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030961A (en) * 2004-06-18 2006-02-02 Jsr Corp Vertical liquid crystal orientation agent and vertical liquid crystal display element
JP2008299317A (en) * 2007-05-02 2008-12-11 Jsr Corp Vertical alignment type liquid crystal aligning agent and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150115858A (en) * 2013-02-01 2015-10-14 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102170065B1 (en) * 2013-02-01 2020-10-26 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7421159B2 (en) 2019-11-18 2024-01-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
TW201221552A (en) 2012-06-01
JP6065074B2 (en) 2017-01-25
CN103038704B (en) 2015-07-29
JP5998930B2 (en) 2016-09-28
KR20130109095A (en) 2013-10-07
JPWO2011155576A1 (en) 2013-08-15
KR101823714B1 (en) 2018-01-30
CN103038704A (en) 2013-04-10
JP2016026162A (en) 2016-02-12
TWI504637B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5936000B2 (en) Manufacturing method of liquid crystal display element
JP5257548B2 (en) Liquid crystal display element and liquid crystal aligning agent
JP5651953B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
WO2009093709A1 (en) Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013047693A1 (en) Liquid crystal orientation treatment agent, liquid crystal orientation membrane, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5874646B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5998931B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6075286B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2018025872A1 (en) Liquid crystal display element equipped with liquid crystal panel having curved surface and liquid crystal aligning agent for same
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014133043A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037578.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519431

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000633

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11792533

Country of ref document: EP

Kind code of ref document: A1