WO2011155467A1 - 基地局間連携mimo伝送方法及び基地局装置 - Google Patents

基地局間連携mimo伝送方法及び基地局装置 Download PDF

Info

Publication number
WO2011155467A1
WO2011155467A1 PCT/JP2011/062983 JP2011062983W WO2011155467A1 WO 2011155467 A1 WO2011155467 A1 WO 2011155467A1 JP 2011062983 W JP2011062983 W JP 2011062983W WO 2011155467 A1 WO2011155467 A1 WO 2011155467A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile station
station apparatus
signal
transmission
Prior art date
Application number
PCT/JP2011/062983
Other languages
English (en)
French (fr)
Inventor
哲士 阿部
健一 樋口
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/702,316 priority Critical patent/US20130156121A1/en
Publication of WO2011155467A1 publication Critical patent/WO2011155467A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to an inter-base station cooperative MIMO transmission method and a base station apparatus that perform MIMO transmission to a plurality of mobile station apparatuses in cooperation between a plurality of base station apparatuses.
  • UMTS Universal Mobile Telecommunications System
  • WSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • LTE-A LTE Advanced
  • a MIMO (Multi Input Multi Output) system has been proposed as a wireless communication technology that improves data rate (frequency utilization efficiency) by transmitting and receiving data with a plurality of antennas (for example, non-patented).
  • Reference 1 a space division multiplexing (SDM) technique is used that transmits a plurality of different transmission information sequences at the same time and the same frequency using a plurality of transmission / reception antennas.
  • SDM space division multiplexing
  • a high transmission capacity is obtained due to the effect of SDM for a mobile station device located in the center of a cell having a high signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • the effect of SDM cannot be fully exhibited due to the influence of a decrease in SNR and an increase in interference from other cells.
  • the transmission capacity in the SDM can be increased.
  • there is a limit to the number of antennas that can be installed in the base station apparatus or mobile station apparatus and there is a limit to the increase in transmission capacity as the number of antennas increases.
  • base station cooperative MIMO that performs MIMO transmission in cooperation between base station apparatuses, and transmission information sequences from different transmission antennas are transmitted to different users.
  • Multi-user MIMO is under consideration. For example, in downlink inter-base station cooperation multi-user MIMO, pre-coding based on block diagonalization is performed based on channel state information (CSI) indicating instantaneous complex fading fluctuation in the base station apparatus. In this way, interference between mobile station apparatuses can be eliminated (nulling).
  • CSI channel state information
  • Precoding based on block diagonalization in downlink inter-base station cooperation multi-user MIMO is realized by each mobile station apparatus feeding back CSI to all the cooperating base station apparatuses.
  • CSI is not fed back to all the base station devices that cooperate.
  • the present invention has been made in view of such circumstances, and a base capable of suppressing a reduction in transmission capacity even when channel state information is not fed back from a mobile station apparatus to all the base station apparatuses that cooperate with each other.
  • An object is to provide an inter-station cooperative MIMO transmission method and a base station apparatus.
  • the inter-base station cooperative MIMO transmission method of the present invention is an inter-base station cooperative MIMO transmission method for performing MIMO transmission to a plurality of mobile station devices in cooperation between a plurality of base station devices, from the plurality of mobile station devices.
  • a step of acquiring channel state information to the plurality of base station devices, and a mobile station device to be linked and a specific base station for transmitting signals in cooperation with the plurality of base station devices according to the presence or absence of the channel state information Determining a non-cooperation target mobile station apparatus that transmits a signal from the apparatus; generating precoding weights for signals to be transmitted to the cooperation target and non-cooperation target mobile station apparatuses based on the channel state information; It is characterized by comprising.
  • the mobile station device to be linked and unlinked is determined according to the presence / absence of channel state information acquired from the mobile station device, and transmissions to these linked and unlinked target mobile station devices are performed. Since the precoding weight for the signal is generated based on the channel state information, it is possible to control the presence / absence of signal transmission to the cooperation target and non-cooperation target mobile station devices and the interference state between these signals, and transmit accordingly Since the capacity can be improved, it is possible to suppress a reduction in transmission capacity even when channel state information is not fed back from all the mobile station apparatuses to all the linked base station apparatuses.
  • a base station apparatus of the present invention is a base station apparatus that performs MIMO transmission to a plurality of mobile station apparatuses in cooperation with other base station apparatuses, and a receiving unit that receives channel state information from the plurality of mobile station apparatuses;
  • the mobile station device to be linked that transmits a signal in cooperation with the other base station device and the mobile station device that is not to be linked to transmit a signal from a specific base station device are determined according to the presence or absence of the channel state information.
  • a weight generation unit that generates precoding weights for signals to be transmitted to the cooperation target and non-cooperation target mobile station devices based on the channel state information.
  • the mobile station device to be linked and the non-cooperative target is determined according to the presence / absence of channel state information acquired from the mobile station device, and the transmission to the mobile station device to be linked and non-cooperated is transmitted. Since the precoding weight for the signal is generated based on the channel state information, it is possible to control the presence / absence of signal transmission to the cooperation target and non-cooperation target mobile station devices and the interference state between these signals, and transmit accordingly Since the capacity can be improved, it is possible to suppress a reduction in transmission capacity even when channel state information is not fed back from all the mobile station apparatuses to all the linked base station apparatuses.
  • the present invention it is possible to suppress a reduction in transmission capacity even when channel state information is not fed back from a mobile station device to all the linked base station devices.
  • FIG. 1 is an explanatory diagram of a mobile communication system to which an inter-base station cooperative MIMO transmission method according to an embodiment of the present invention is applied.
  • base station apparatuses BS (BS1, BS2) installed in two cells C (C1, C2) adjacent to each other, and mobile station apparatuses located in the cells C1, C2 MS (MS1, MS2).
  • MIMO transmission inter-base station cooperative multi-user MIMO transmission
  • the mobile station apparatuses MS1 and MS2 have a function of measuring channel state information (CSI) indicating instantaneous complex fading fluctuation and feeding back the CSI to the base station apparatuses BS1 and BS2.
  • CSI channel state information
  • the base station apparatuses BS1 and BS2 remove interference between the mobile station apparatuses MS1 and MS2 by performing precoding based on block diagonalization based on CSI fed back from the mobile station apparatuses MS1 and MS2 (nulling). ) While transmitting information.
  • FIG. 1 shows a case where such a situation occurs between the mobile station apparatus MS1 and the base station apparatus BS2. That is, in FIG. 1, the mobile station apparatus MS1 is located in the vicinity of the base station apparatus BS1 that manages the cell C1, and the distance from the base station apparatus BS2 is very large. For this reason, it is difficult for the mobile station apparatus MS1 to accurately measure and feedback the CSI. In this case, although the mobile station apparatus MS1 can feed back the average path loss to the base station apparatus BS2, it is assumed that the CSI cannot be fed back.
  • the movement of the cooperation target that transmits signals in cooperation with a plurality of base station apparatuses BS according to the presence or absence of CSI fed back from the plurality of mobile station apparatuses MS is determined, and the precoding weights for the transmission signals addressed to the cooperating target and the non-cooperation target mobile station device MS are set as CSI Generate based on As a result, it is possible to control the presence / absence of signal transmission to the cooperation target and non-cooperation target mobile station apparatus MS and the interference state between these signals, and the transmission capacity can be improved accordingly. Even when CSI is not fed back to all the base station apparatuses BS that cooperate, it is possible to suppress a reduction in transmission capacity.
  • interference between some mobile station apparatuses MS to which CSI is not fed back by controlling the presence / absence of signal transmission to and the interference state between these signals with respect to the mobile station apparatuses MS that are the cooperation target and the non-cooperation target.
  • interference between mobile station apparatuses MS to which CSI is fed back is removed by precoding based on block diagonalization (hereinafter referred to as “precoding based on partial non-orthogonal block diagonalization” as appropriate).
  • precoding based on block diagonalization hereinafter referred to as “precoding based on partial non-orthogonal block diagonalization” as appropriate.
  • the inter-base station cooperative MIMO transmission method according to the present invention will be described using an arrangement example of the base station apparatus BS and the mobile station apparatus MS shown in the mobile communication system shown in FIG.
  • the mobile station apparatus MS1 located near the base station apparatus BS1 and capable of feeding back CSI only to the base station apparatus BS1 is referred to as “cell internal MS” as appropriate
  • cell edges of the cells C1 and C2 The mobile station apparatus MS2 located in the vicinity and capable of feeding back CSI to the base station apparatuses BS1 and BS2 will be referred to as “cell edge MS” as appropriate.
  • these cell internal MSs constitute the above-described non-cooperation target mobile station apparatus MS
  • the cell end MS constitutes the above-described cooperation target mobile station apparatus MS.
  • FIG. 1 one cell interior MS and one cell edge MS are shown, but these are shown as representatives of a plurality of cell interior MSs and cell edge MSs.
  • the channel matrix in the mobile communication system shown in FIG. 1 can be expressed as (Equation 1). (Formula 1)
  • H L, 1 (1) is a channel matrix having a size of N rx ⁇ N tx between the first cell internal MS and the base station apparatus BS1, and “H L, others (1) ” is The size between the cell MS other than the first cell and the base station apparatus BS1 is a channel matrix of (N L ⁇ N C ) N rx ⁇ N tx .
  • a precoding matrix (precoding weight) is determined based on the following three guidelines. (1) Allow interference from the base station apparatus BS2 to the cell internal MS. (2) The interference between mobile station apparatuses MS other than the cell internal MS corresponding to the guideline (1) is removed by block diagonalization. (3) Since the base station apparatus BS2 cannot determine precoding for the cell internal MS, a signal for the cell internal MS is transmitted only from the base station apparatus BS1.
  • a precoding matrix ML , 1 having a size of 2N tx ⁇ N rx in the first cell internal MS is defined as (Equation 2). (Formula 2)
  • “ML , 1 (2) ” is transmitted from only the base station apparatus BS1 (guideline (3))
  • (Expression 3) is It holds. (Formula 3)
  • precoding matrices for all cell internal MSs are determined.
  • precoding matrix for all the cell internal MSs is determined.
  • a precoding matrix MC , 1 having a size of 2N tx ⁇ N rx at the first cell edge MS is defined as in (Equation 5). (Formula 5)
  • “MC , 1 (1) ” is transmitted from the base station apparatus BS1 to the first cell edge MS according to the guideline (2). It is determined that the signal does not interfere with the cell internal MS. That is, “M C, 1 (1) ” is determined by a null space obtained by performing singular value decomposition on “H ( ⁇ ) C, 1 (1) ” shown in (Expression 6). (Formula 6)
  • M C, 1 (1) is determined based on (Expression 6)
  • “M C, 1 (2) ” is determined.
  • “M C, 1 (2) ” is obtained by (Equation 7) so as to eliminate interference between cell edge MSs from (Guideline 2).
  • “(HC , others (2) ) ⁇ ” is a Moore-Penrose general inverse matrix of “HC , others (2) ”.
  • precoding matrices for all cell edge MSs are determined.
  • the cell edge MS does not interfere with the transmission signal for the cell internal MS, while removing the interference between the cell edge MSs. It becomes possible to perform signal transmission from the base station apparatuses BS1 and BS2.
  • FIG. 2 is a block diagram showing a configuration of mobile station apparatus 10 according to the present embodiment.
  • FIG. 3 is a block diagram showing a configuration of base station apparatus 20 according to the present embodiment. Note that the configurations of the mobile station device 10 and the base station device 20 shown in FIGS. 2 and 3 are simplified to explain the present invention, and the configurations of the normal mobile station device and the base station device are respectively It shall be provided.
  • the mobile station apparatus 10 shown in FIG. 2 corresponds to the cell internal MS (MS1) and the cell edge MS (MS2) shown in FIG.
  • the transmission signal transmitted from the base station apparatus 20 is received by the antennas RX # 1 to RX # N and is transmitted to the transmission path by the duplexers 101 # 1 to 101 # N. After being electrically separated from the reception path, it is output to the RF reception circuits 102 # 1 to 102 # N.
  • the RF receiving circuits 102 # 1 to 102 # N perform a frequency conversion process for converting a radio frequency signal into a baseband signal, and then a Fourier transform is performed by a fast Fourier transform unit (FFT unit) (not shown).
  • FFT unit fast Fourier transform unit
  • the time series signal is converted into a frequency domain signal.
  • the received signal converted into the frequency domain signal is output to data channel signal demodulation section 103.
  • the data channel signal demodulating unit 103 separates the received signal input from the FFT unit by, for example, a maximum likelihood detection (MLD) signal separation method.
  • MLD maximum likelihood detection
  • the channel estimation unit 104 estimates a channel state from the reference signal included in the reception signal output from the FFT unit, and notifies the data channel signal demodulation unit 103 and a channel information measurement unit 107 (to be described later) of the estimated channel state.
  • Data channel signal demodulating section 103 separates the received signal by the above-described MLD signal separation method based on the notified channel state.
  • the control channel signal demodulator 105 demodulates the control channel signal (PDCCH) output from the FFT unit. Then, the control information included in the control channel signal is notified to the data channel signal demodulation unit 103.
  • Data channel signal demodulator 103 demodulates the extracted received signal for user k based on the notification content from control channel signal demodulator 105. Note that prior to the demodulation processing by the data channel signal demodulating unit 103, the extracted received signal regarding the user k is demapped by a subcarrier demapping unit (not shown) and returned to a time-series signal. .
  • the received signal relating to user k demodulated by data channel signal demodulating section 103 is output to channel decoding section 106. Then, the channel decoding unit 106 performs channel decoding processing to reproduce the transmission signal #k.
  • the channel information measurement unit 107 measures channel information from the channel state notified from the channel estimation unit 104. Specifically, channel information measurement section 107 measures CSI based on the channel state notified from channel estimation section 104 and notifies this to feedback control signal generation section 108. In addition, when the CSI cannot be accurately measured with the specific base station apparatus 20, the channel information measurement unit 107 notifies the feedback control signal generation unit 108 to that effect.
  • the base station apparatus 20 that cannot measure CSI may be configured to notify the mobile station apparatus 10 from the base station apparatus 20 in advance so as not to measure CSI.
  • the feedback control signal generation unit 108 generates a control signal (for example, PUCCH) for feeding them back to the base station apparatus 20 based on the CSI notified from the channel information measurement unit 107. Further, when receiving a notification that the CSI cannot be measured, a control signal may be generated that does not provide feedback or that feeds back an average path loss for a specific base station apparatus 20.
  • the control signal generated by the feedback control signal generation unit 108 is output to the multiplexer (MUX) 109.
  • MUX multiplexer
  • transmission data #k related to user #k sent from the upper layer is channel-encoded by channel encoder 110 and then data-modulated by data modulator 111.
  • Transmission data #k data-modulated by data modulator 111 is inverse Fourier transformed by a discrete Fourier transform unit (not shown), converted from a time-series signal to a frequency domain signal, and output to subcarrier mapping unit 112.
  • the subcarrier mapping unit 112 maps the transmission data #k to subcarriers according to the schedule information instructed from the base station apparatus 20. At this time, subcarrier mapping section 112 maps (multiplexes) reference signal #k generated by a reference signal generation section (not shown) to subcarriers together with transmission data #k. Transmission data #k mapped to subcarriers in this way is output to precoding multiplication section 113.
  • Precoding multiplication section 113 shifts the phase and / or amplitude of transmission data #k for each of reception antennas RX # 1 to RX # N based on the precoding weight corresponding to CSI measured by channel information measurement section 107. .
  • the transmission data #k phase-shifted and / or amplitude-shifted by the precoding multiplier 113 is output to the multiplexer (MUX) 109.
  • the transmission data #k shifted in phase and / or amplitude is combined with the control signal generated by the feedback control signal generation unit 108, and each of the reception antennas RX # 1 to RX # N is combined.
  • a transmission signal is generated.
  • the transmission signal generated by the multiplexer (MUX) 109 is subjected to inverse fast Fourier transform by an inverse fast Fourier transform unit (not shown) and converted from a frequency domain signal to a time domain signal, and then the RF transmission circuit 114 # 1. To 114 # N.
  • the antennas RX # 1 to RX # N are passed through the duplexers 101 # 1 to 101 # N. And is transmitted from the receiving antennas RX # 1 to RX # N to the base station apparatus 20 in the uplink.
  • a control signal including the measured CSI is transmitted to both base station apparatuses BS1 and BS2.
  • the control signal including the measured CSI is transmitted to the base station apparatus BS1, while the base station apparatus BS2 is transmitted. Then, a control signal including the average path loss is transmitted.
  • FIG. 3 shows the base station device 20A and the base station device 20B that cooperate with each other.
  • Base station apparatuses 20A and 20B shown in FIG. 3 correspond to base station apparatuses BS1 and BS2 shown in FIG. 1, respectively.
  • these base station apparatuses 20A and 20B have a common configuration. For this reason, below, the structure is demonstrated using 20 A of base station apparatuses, and description of the base station apparatus 20B is abbreviate
  • scheduler 201 provides channel estimation values given from channel estimation sections 213 # 1 to 213 # k described later and channel information reproduction sections 216 # 1 to 216 # k described later.
  • the number of users to be multiplexed is determined on the basis of the channel state information (CSI).
  • CSI channel state information
  • uplink / downlink resource allocation contents (scheduling information) for each user are determined, and transmission data # 1 to #k for users # 1 to #k are transmitted to corresponding channel coding sections 202 # 1 to 202 # k. .
  • Transmission data # 1 to #k are channel-encoded by channel encoders 202 # 1 to 202 # k, and then output to data modulators 203 # 1 to 203 # k for data modulation. At this time, channel coding and data modulation are performed based on channel coding rates and modulation schemes provided from channel information reproducing units 216 # 1 to 216 # k described later. Transmission data # 1 to #k data-modulated by data modulators 203 # 1 to 203 # k are subjected to inverse Fourier transform by a discrete Fourier transform unit (not shown), and converted from a time-series signal to a frequency domain signal. It is output to the subcarrier mapping unit 204.
  • Reference signal generators 205 # 1 to 205 # k generate individual reference signals (UE-specific RS) for data channel demodulation for user # 1 to user #k.
  • the individual reference signals generated by reference signal generation sections 205 # 1 to 205 # k are output to subcarrier mapping section 204.
  • the subcarrier mapping unit 204 maps the transmission data # 1 to #k to subcarriers according to the schedule information given from the scheduler 201. Transmission data # 1 to #k mapped to subcarriers in this way are output to precoding multiplication sections 206 # 1 to 206 # k.
  • Precoding multipliers 206 # 1 to 206 # k change transmission data # 1 to #k for each antenna TX # 1 to #N based on a precoding weight given from a precoding weight generation unit 217 described later. / Or amplitude shift (weighting of antennas TX # 1 to #N by precoding). Transmission data # 1 to #k whose phases and / or amplitudes are shifted by precoding multipliers 206 # 1 to 206 # k are output to multiplexer (MUX) 207.
  • MUX multiplexer
  • the control signal generators 208 # 1 to 208 # k generate a control signal (PDCCH) based on the number of multiplexed users from the scheduler 201.
  • PDCCH control signal
  • Each PDCCH generated by control signal generation sections 208 # 1 to 208 #k is output to multiplexer (MUX) 207.
  • the multiplexer (MUX) 207 combines the transmission data # 1 to #k shifted in phase and / or amplitude and the PDCCHs generated by the control signal generators 208 # 1 to 208 # k, and transmits the transmission antenna TX.
  • a transmission signal is generated for each of # 1 to TX # N.
  • the transmission signal generated by the multiplexer (MUX) 207 is subjected to inverse fast Fourier transform by an unillustrated inverse fast Fourier transform unit and converted from a frequency domain signal to a time domain signal, and then the RF transmission circuit 209 # 1. To 209 # N.
  • the transmission antennas TX # 1 to TX # are transmitted via the duplexers 210 # 1 to 210 # N.
  • N is transmitted to the mobile station apparatus 10 via the downlink from the antennas TX # 1 to #N.
  • transmission signals transmitted from the mobile station apparatus 10 in the uplink are received by the antennas TX # 1 to #N, and are electrically transmitted to the transmission path and the reception path by the duplexers 210 # 1 to 210 # N.
  • the RF receiving circuits 211 # 1 to 211 # N are subjected to frequency conversion processing for converting a radio frequency signal into a baseband signal, and then subjected to Fourier transform in a fast Fourier transform unit (FFT unit) (not shown).
  • FFT unit fast Fourier transform unit
  • the time series signal is converted into a frequency domain signal.
  • the received signals converted into these frequency domain signals are output to data channel signal demultiplexing sections 212 # 1 to 212 # k.
  • the data channel signal demultiplexing units 212 # 1 to 212 # k demultiplex the received signals input from the FFT unit by, for example, a maximum likelihood detection (MLD) signal demultiplexing method.
  • MLD maximum likelihood detection
  • Channel estimation sections 213 # 1 to 213 # k estimate the channel state from the reference signal included in the received signal output from the FFT section, and determine the estimated channel state as data channel signal separation sections 212 # 1 to 212 # k and Notify control channel signal demodulation sections 214 # 1 to 214 # k.
  • Data channel signal separation sections 212 # 1 to 212 # k separate received signals by the MLD signal separation method described above based on the notified channel state.
  • the received signals related to user # 1 to user #k separated by data channel signal demultiplexing sections 212 # 1 to 212 # k are demapped by a subcarrier demapping section (not shown) and returned to a time-series signal. Thereafter, the data is demodulated by a data demodulator (not shown).
  • Channel decoding sections 215 # 1 to 215 # k perform channel decoding processing to reproduce transmission signals # 1 to #k.
  • Control channel signal demodulation sections 214 # 1 to 214 # k demodulate control channel signals (for example, PDCCH) included in the received signal input from the FFT section. At this time, control channel signal demodulation sections 214 # 1 to 214 # k demodulate control channel signals corresponding to users # 1 to #k, respectively. At this time, control channel signal demodulation sections 214 # 1 to 214 # k demodulate the control channel signal based on the channel state notified from channel estimation sections 213 # 1 to 213 # k. The control channel signals demodulated by control channel signal demodulation sections 214 # 1 to 214 # k are output to channel information reproduction sections 216 # 1 to 216 # k.
  • control channel signal demodulation sections 214 # 1 to 214 # k demodulate control channel signals (for example, PDCCH) included in the received signal input from the FFT section. At this time, control channel signal demodulation sections 214 # 1 to 214 # k demodulate control channel signals corresponding to users # 1
  • Channel information reproducing sections 216 # 1 to 216 # k receive information about channels (channel information) from information included in each control channel signal (for example, PUCCH) input from control channel signal demodulation sections 214 # 1 to 214 # k. Play.
  • the channel information includes, for example, feedback information such as CSI notified by PDCCH.
  • the CSI reproduced by the channel information reproducing units 216 # 1 to 216 # k is output to the precoding weight generating unit 217 and the scheduler 201. Further, the channel coding rate and modulation scheme specified based on this CSI are output to data modulation sections 203 # 1 to 203 # k and channel coding sections 202 # 1 to 202 # k, respectively.
  • a reception sequence including a channel information reproducing unit 216 that processes a control channel signal including feedback information such as CSI constitutes a reception unit that receives channel state information from a plurality of mobile station apparatuses 10.
  • Precoding weight generation section 217 converts CSI input from channel information reproduction sections 216 # 1 to 216 # k and CSI input from precoding weight generation section 217 of linked base station apparatus 20B or weight information. Based on this, a precoding weight indicating the phase and / or amplitude shift amount for the transmission data # 1 to #k is generated. Each precoding weight generated by precoding weight generation section 217 is output to precoding multiplication sections 206 # 1 to 206 # k and used for precoding transmission data # 1 to transmission data #k.
  • the precoding weight generation unit 217 generates a precoding weight (determines a precoding matrix) in accordance with the guidelines (1) to (3) described above. Specifically, in the mobile station apparatus 10 that is a cell edge MS that transmits a signal in cooperation with another base station apparatus 20B according to the presence or absence of CSI, and the cell internal MS that transmits a signal from a specific base station apparatus 20 A certain mobile station device 10 is determined.
  • interference between the mobile station apparatuses 10 other than the cell internal MS is removed, while for the mobile station apparatus 10 that is the cell edge MS, A precoding weight is generated that does not interfere with the mobile station apparatus 10 that is the MS and that eliminates interference between the mobile station apparatuses 10 that are the cell edges MS.
  • the precoding weight generation unit 217 constitutes a determination unit that determines the cell edge MS and the cell internal MS according to the presence / absence of CSI, and also precodes transmission signals addressed to the cell edge MS and the cell internal MS.
  • a weight generation unit that generates weights is configured.
  • precoding weight generation section 217 of base station apparatus 20B receives CSI input from channel information reproduction sections 216 # 1 to 216 # k and CSI input from precoding weight generation section 217 of base station apparatus 20A.
  • the interference between the mobile station apparatuses 10 other than the cell internal MS is removed, while for the mobile station apparatus 10 that is the cell edge MS, Then, a precoding weight is generated that does not interfere with the mobile station apparatus 10 that is the cell internal MS and that eliminates the interference between the mobile station apparatuses 10 that are the cell edges MS.
  • the base station apparatuses 20A and 20B share the CSI coming from the mobile station apparatus 10 and generate desired precoding weights for the transmission data # 1 to #k based on these CSIs.
  • the mobile station device 10 that is an internal MS it is possible to perform signal transmission only from the base station device 20A (BS1) while removing interference between the mobile station devices 10 other than the cell internal MS.
  • BS1 base station apparatus 20A
  • BS2 base station apparatus 20B
  • the transmission capacity of the cell internal MS cannot be accurately estimated in the base station apparatus 20 due to the influence of interference.
  • “ ⁇ L, 1, l ” and “p L, 1, l ” (1 ⁇ l ⁇ N rx ) are respectively used for the l-th stream of the equivalent channel matrix B L, 1 in the first cell internal MS.
  • the transmission capacity of the cell internal MS is estimated by (Equation 11).
  • G L, 1 (2) indicates the average path loss between the base station apparatus BS2 and the first cell internal MS
  • P C (2) The total transmission power for the cell edge MS is shown.
  • FIG. 4 is a diagram showing a transmission system model used for comparing the transmission capacity of mobile station apparatus MS in the inter-base station cooperative MIMO transmission method according to the present embodiment with the transmission capacity of mobile station apparatus MS in other transmission methods. It is.
  • the number of MSs in the cell is 1 and the number of cell edge MSs is 3.
  • the number of transmission antennas was 8, and the number of reception antennas was 2.
  • the cell edge MS is fixed to the cell edge that is equidistant from both base station apparatuses BS, and the cell internal MS is arranged at a position shifted by ⁇ in a direction close to the base station apparatus BS1. Note that ⁇ is a value normalized by the cell radius.
  • the distance attenuation based on the ⁇ 3.76 power law was defined as an average path loss. Furthermore, independent Rayleigh fluctuations are assumed as fading between all transmitting and receiving antennas. Further, the transmission power is normalized with a value at which an average SNR (Signal-to-Noise Ratio) at the cell edge becomes 0 dB when transmitting and receiving one antenna.
  • SNR Signal-to-Noise Ratio
  • non-orthogonal SDM inter-base station cooperative MIMO transmission method according to the present invention
  • TDM Time Division Multiplexing
  • Non-orthogonal SDM Partial non-orthogonal: In this case, all the mobile station devices MS are always transmitted from both base station devices BS1 and BS2 using the precoding based on the partial non-orthogonal block diagonalization described above. Is transmitted.
  • channel state is assumed to be constant within the two time slots and to change independently between the two time slots. Further, in addition to the above three transmission methods, inter-base station cooperative multi-user MIMO transmission to which block diagonalization is applied when the CSI of all mobile station apparatuses MS is completely fed back (Perfect shown in FIG. 5). CSI) was also evaluated.
  • the characteristics when the above three transmission methods were adaptively switched depending on the channel state were evaluated.
  • a standard for switching transmission methods a standard for maximizing the total capacity when given transmission power and a standard for minimizing the total transmission power required for each mobile station apparatus MS to obtain a required transmission capacity Using.
  • FIG. 6 shows the average total capacity of each transmission method with respect to ⁇
  • FIG. 7 shows the average transmission capacity per mobile station apparatus MS of each transmission method with respect to ⁇ at this time.
  • the transmission power uses a value at which the average SNR at the cell edge becomes 0 dB when transmitting and receiving one antenna. It can be seen that the total capacity without cooperation is degraded compared to all other transmission methods. This is due to a decrease in the degree of freedom of the MIMO channel by not linking the base station apparatus BS.
  • Non-orthogonal SDM can increase the total capacity when ⁇ is less than 0.4 and greater than 0.6 compared to TDM.
  • the transmission capacity of the cell edge MS is constant regardless of the value of ⁇ , but the transmission capacity of the cell edge MS of the non-orthogonal SDM has four transmissions in a region where ⁇ is small. The biggest in the way. This is because the non-orthogonal SDM increases the degree of freedom of the MIMO channel by allowing interference with the cell internal MS, and thus obtains the maximum diversity gain. Note that the transmission capacity of the cell edge MS deteriorates as ⁇ increases because the transmission power allocated to the cell edge MS decreases.
  • the transmission capacity of the cell internal MS in non-orthogonal SDM is degraded as compared with TDM when ⁇ is small. This is because the transmission signal addressed to the cell edge MS from the base station apparatus BS2 becomes interference with the cell internal MS, which deteriorates the transmission quality of the cell internal MS.
  • increases, non-orthogonal SDM increases the transmission capacity of the cell internal MS compared to TDM.
  • the TDM transmits a signal to the cell internal MS using one time slot
  • the non-orthogonal SDM always transmits a signal to all the mobile station apparatuses MS
  • the interference between the MSs from the cell edge MS to the cell internal MS in the non-orthogonal SDM is sufficiently suppressed due to an increase in the path loss between the base station apparatus BS2 and the cell internal MS.
  • the non-orthogonal SDM when ⁇ is small, the total gain increases because the diversity gain due to the cell edge MS is larger than that of the TDM.
  • is sufficiently large, it is considered that the total capacity increases because deterioration of the transmission capacity of the cell internal MS due to interference between the mobile station apparatuses MS is reduced by an increase in path loss.
  • FIG. 8 shows the selection probability for ⁇ when the transmission method is adaptively switched in the standard for maximizing the total capacity. From FIG. 8, it can be confirmed that the selection probability between the non-orthogonal SDM and the TDM is approximately the same when ⁇ is between 0.3 and 0.7.
  • each mobile station apparatus MS compares the required average total transmission power for obtaining the required transmission capacity.
  • the required transmission capacity is common to all mobile station apparatuses MS, and is set to 1 b / s / Hz.
  • FIG. 9 shows the required average total transmission power of each transmission method for ⁇
  • FIG. 10 shows the required average total transmission power per mobile station apparatus MS of each transmission method for ⁇ at this time.
  • the required transmission power when not cooperating is greatly increased compared to other transmission methods. This is because the degree of freedom of the MIMO channel is reduced by not linking the base station apparatuses BS.
  • the required transmission power is increased when ⁇ is smaller than 0.4 compared to the TDM. This is because the required transmission power of the cell internal MS increases due to interference from the cell edge MS to the cell internal MS. This is apparent when looking at the region where ⁇ in FIG. 10 is small.
  • the non-orthogonal SDM can reduce the total required transmission power compared to TDM. This is because the non-orthogonal SDM increases the degree of freedom of the MIMO channel due to the allowance of interference with the cell internal MS, so that the maximum diversity gain is obtained. For this reason, as shown in FIG. 10, the required transmission power of the cell edge MS can be reduced. Moreover, when ⁇ increases, the non-orthogonal SDM can significantly reduce the required transmission power of the cell internal MS. This is because interference between the mobile station apparatuses MS from the cell edge MS to the cell internal MS in the non-orthogonal SDM is sufficiently suppressed due to an increase in path loss between the base station apparatus BS2 and the cell internal MS.
  • non-orthogonal SDM effectively reduces the required total transmission power over TDM due to suppression of interference between mobile station apparatuses MS in the cell MS due to diversity gain and path loss for cell edge MS. it can.
  • is larger than 0.4
  • the non-orthogonal SDM can reduce the required total transmission power as compared with the transmission method to which block diagonalization is applied in the case of having complete CSI. This is because the non-orthogonal SDM has reduced interference restriction between the mobile station apparatuses MS compared to block diagonalization in the case of having complete CSI. In other words, this is because the degree of freedom in selecting precoding to increase the received signal power has increased.
  • FIG. 11 shows the selection probability for ⁇ when the transmission method is adaptively switched in the standard for minimizing the total required transmission power. From FIG. 11, it can be seen that the non-orthogonal SDM has the maximum selection probability among the three transmission methods when ⁇ is larger than 0.35. Actually, since it is considered that instantaneous CSI feedback may not be performed when ⁇ is large, non-orthogonal SDM can be said to be a useful transmission method in a realistic situation.
  • the inter-base station cooperative MIMO transmission method according to the present embodiment can improve the system performance as compared with the case of ensuring complete orthogonality because the degree of freedom of the MIMO channel can be further utilized. it can. Actually, since it is considered that instantaneous CSI feedback may not be performed when ⁇ is large, this is an extremely useful transmission method.
  • the precoding weight generation unit 217 of both the base station apparatuses 20A and 20B generates precoding weights for the cell internal MS and the cell edge MS.
  • the configuration of 20 is not limited to this, and can be changed as appropriate.
  • only a specific base station device 20 for example, the base station device 20A
  • precoding weights for other base station devices 20 for example, the base station device 20B

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 移動局装置から連携する全ての基地局装置にCSIがフィードバックされない場合においても、伝送容量の低減を抑制すること。基地局装置(BS2)は、複数の移動局装置(MS(MS1、MS2))からフィードバックされるCSIの有無に応じて他の基地局装置(BS1)と連携して信号を送信する連携対象の移動局装置(MS2)及び特定の基地局装置(BS1)から信号を送信する非連携対象の移動局装置(MS1)を判定し、上記チャネル状態情報に基づいて連携対象及び非連携対象の移動局装置(MS)に送信する信号に対するプリコーディングウェイトを生成することを特徴とする。

Description

基地局間連携MIMO伝送方法及び基地局装置
 本発明は、複数の基地局装置間で連携して複数の移動局装置にMIMO伝送を行う基地局間連携MIMO伝送方法及び基地局装置に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステムにおいては、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。例えば、LTE-Aにおいては、LTE仕様の最大システム帯域である20MHzを、100MHz程度まで拡張することが予定されている。また、LTE仕様の最大送信アンテナ数である4アンテナを、8アンテナまで拡張することが予定されている。
 また、LTE方式のシステムにおいては、複数のアンテナでデータを送受信し、データレート(周波数利用効率)を向上させる無線通信技術としてMIMO(Multi Input Multi Output)システムが提案されている(例えば、非特許文献1参照)。MIMOシステムにおいては、複数の送受信アンテナを用いて、複数の異なる送信情報系列を同一時刻・同一周波数において送信する空間分割多重(SDM:Space Division Multiplexing)技術が利用されている。受信機側で送信/受信アンテナ間で異なるフェージング変動が生じることを利用して、同時に送信された情報系列を分離して検出することにより、データレート(周波数利用効率)を増大することが可能である。
 このようなMIMOシステムが適用されたセルラーシステムにおいては、信号雑音電力比(SNR:Signal-to-Noise Ratio)の高いセル中心部分に位置する移動局装置に対してはSDMの効果により高い伝送容量を実現できる。しかしながら、セルエッジにおいては、SNRの低下や他セルからの干渉の増加などの影響によりSDMの効果を十分に発揮することができない。一方、送受信アンテナの数が増大すればSDMにおける伝送容量を増大することができる。しかしながら、基地局装置や移動局装置に設置できるアンテナ数には限界があり、アンテナ数の増加に伴う伝送容量の増大にも限界がある。
 LTE-A方式のシステムにおいては、このような問題を解決する技術として、基地局装置間で連携してMIMO伝送を行う基地局連携MIMOや、異なる送信アンテナからの送信情報系列を異なるユーザに送信するマルチユーザMIMOが検討されている。例えば、下りリンクの基地局間連携マルチユーザMIMOにおいては、基地局装置で瞬時の複素フェージング変動を示すチャネル状態情報(CSI:Channel State Information)に基づいて、ブロック対角化に基づくプリコーディングを行うことで移動局装置間の干渉を除去(ヌリング)することができる。
 下りリンクの基地局間連携マルチユーザMIMOにおけるブロック対角化に基づくプリコーディングは、それぞれの移動局装置が、連携する全ての基地局装置に対してCSIをフィードバックすることで実現される。しかしながら、セル内の移動局装置の位置によっては、CSIが連携する全ての基地局装置にフィードバックされない事態が発生し得る。このようにCSIが全ての基地局装置にフィードバックされない場合には、適切に移動局装置間の干渉を除去することができず、伝送容量が低減されてしまうという問題がある。
 本発明は、このような実情に鑑みてなされたものであり、移動局装置から連携する全ての基地局装置にチャネル状態情報がフィードバックされない場合においても、伝送容量の低減を抑制することができる基地局間連携MIMO伝送方法及び基地局装置を提供することを目的とする。
 本発明の基地局間連携MIMO伝送方法は、複数の基地局装置間で連携して複数の移動局装置にMIMO伝送を行う基地局間連携MIMO伝送方法であって、前記複数の移動局装置からチャネル状態情報を前記複数の基地局装置に取得するステップと、前記チャネル状態情報の有無に応じて前記複数の基地局装置で連携して信号を送信する連携対象の移動局装置及び特定の基地局装置から信号を送信する非連携対象の移動局装置を判定するステップと、前記チャネル状態情報に基づいて前記連携対象及び非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトを生成するステップとを具備することを特徴とする。
 この方法によれば、移動局装置から取得されるチャネル状態情報の有無に応じて連携対象及び非連携対象の移動局装置が判定され、これらの連携対象及び非連携対象の移動局装置宛ての送信信号に対するプリコーディングウェイトがチャネル状態情報に基づいて生成されることから、連携対象及び非連携対象の移動局装置に対する信号送信の有無及びこれらの信号間の干渉状態を制御でき、これに応じて伝送容量を改善することができるので、移動局装置から連携する全ての基地局装置にチャネル状態情報がフィードバックされない場合においても、伝送容量の低減を抑制することが可能となる。
 本発明の基地局装置は、他の基地局装置と連携して複数の移動局装置にMIMO伝送を行う基地局装置であって、前記複数の移動局装置からチャネル状態情報を受信する受信部と、前記チャネル状態情報の有無に応じて前記他の基地局装置と連携して信号を送信する連携対象の移動局装置及び特定の基地局装置から信号を送信する非連携対象の移動局装置を判定する判定部と、前記チャネル状態情報に基づいて前記連携対象及び非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトを生成するウェイト生成部とを具備することを特徴とする。
 この構成によれば、移動局装置から取得されるチャネル状態情報の有無に応じて連携対象及び非連携対象の移動局装置が判定され、これらの連携対象及び非連携対象の移動局装置宛ての送信信号に対するプリコーディングウェイトがチャネル状態情報に基づいて生成されることから、連携対象及び非連携対象の移動局装置に対する信号送信の有無及びこれらの信号間の干渉状態を制御でき、これに応じて伝送容量を改善することができるので、移動局装置から連携する全ての基地局装置にチャネル状態情報がフィードバックされない場合においても、伝送容量の低減を抑制することが可能となる。
 本発明によれば、移動局装置から連携する全ての基地局装置にチャネル状態情報がフィードバックされない場合においても、伝送容量の低減を抑制することが可能となる。
本発明の一実施の形態に係る基地局間連携MIMO伝送方法が適用される移動通信システムの説明図である。 上記実施の形態に係る移動通信システムの移動局装置の構成を示すブロック図である。 上記実施の形態に係る移動通信システムの基地局装置の構成を示すブロック図である。 上記実施の形態に係る基地局間連携MIMO伝送方法における移動局装置の伝送容量と、その他の伝送方法における移動局装置の伝送容量との比較に用いる伝送系モデルを示す図である。 上記実施の形態に係る基地局間連携MIMO伝送方法と比較した伝送方法を示す図である。 ある送信電力が与えられた時に合計容量を最大化した場合の各伝送方法の平均合計容量を示す図である。 ある送信電力が与えられた時に合計容量を最大化した場合の各伝送方法の1移動局装置当たりの平均伝送容量を示す図である。 合計容量を最大にする規範における、伝送方法を適応的に切り替えた際の選択確率を示す図である。 各移動局装置が所要の伝送容量を得るための各伝送方法のΔに対する所要平均総送信電力を示す図である。 図9に示すΔに対する各伝送方法の1移動局装置当たりの所要平均総送信電力を示す図である。 所要総送信電力を最小にする規範における、伝送方法を適応的に切り替えた際のΔに対する選択確率を示す図である。
 以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。まず、本発明に係る基地局間連携MIMO伝送方法が適用される移動通信システムについて説明する。図1は、本発明の一実施の形態に係る基地局間連携MIMO伝送方法が適用される移動通信システムの説明図である。なお、図1に示す移動通信システムにおいては、互いに隣接する2つのセルC(C1、C2)に設置された基地局装置BS(BS1、BS2)と、セルC1、C2内に位置する移動局装置MS(MS1、MS2)とを示している。
 図1に示す移動通信システム1においては、基地局装置BS1と、基地局装置BS2との間で連携して移動局装置MS1、MS2に対するMIMO伝送(基地局間連携マルチユーザMIMO伝送)が可能に構成されている。移動局装置MS1、MS2は、瞬時の複素フェージング変動を示すチャネル状態情報(CSI)を測定し、このCSIを基地局装置BS1、BS2に対してフィードバックする機能を有する。一方、基地局装置BS1、BS2は、移動局装置MS1、MS2からフィードバックされるCSIに基づいて、ブロック対角化に基づくプリコーディングを行うことで移動局装置MS1、MS2間の干渉を除去(ヌリング)しながら情報伝送を行う機能を有する。
 しかしながら、移動局装置MSと基地局装置BSとの距離が大きい場合、移動局装置MSにおいては、CSIを正確に測定することができず、CSIを基地局装置BSにフィードバックすることができない事態が発生し得る。図1においては、移動局装置MS1と基地局装置BS2との間でこのような事態が発生する場合について示している。すなわち、図1において、移動局装置MS1は、セルC1を管理する基地局装置BS1付近に位置しており、基地局装置BS2との距離が非常に大きくなっている。このため、移動局装置MS1は、正確なCSIの測定及びフィードバックが困難となる。この場合、移動局装置MS1は、基地局装置BS2に対して平均パスロスをフィードバックし得るものの、CSIをフィードバックできない事態が想定される。
 このような状況において、ブロック対角化に基づくプリコーディングを適用するためには、正確にCSIがフィードバックされている基地局装置BS1のみを用いて情報伝送を行うことが考えられる。しかしながら、基地局装置BS1のみを用いて情報伝送を行う場合には、MIMOチャネルの自由度が減少してしまい、基地局装置BS1、BS2を用いて情報伝送を行う場合よりも極端に伝送容量が低減されてしまう。本発明者は、このように基地局間連携マルチユーザMIMOにおいて、一部の移動局装置MSからのCSIがフィードバックされない場合にMIMOチャネルの自由度が減少し、伝送容量が低減されてしまう点に着目し、本発明をするに至ったものである。
 すなわち、本発明に係る基地局間連携MIMO伝送方法においては、複数の移動局装置MSからフィードバックされるCSIの有無に応じて複数の基地局装置BSで連携して信号を送信する連携対象の移動局装置MS及び特定の基地局装置BSから信号を送信する非連携対象の移動局装置MSを判定し、これらの連携対象及び非連携対象の移動局装置MS宛ての送信信号に対するプリコーディングウェイトをCSIに基づいて生成する。これにより、連携対象及び非連携対象の移動局装置MSに対する信号送信の有無及びこれらの信号間の干渉状態を制御でき、これに応じて伝送容量を改善することができるので、移動局装置MSから連携する全ての基地局装置BSにCSIがフィードバックされない場合においても、伝送容量の低減を抑制することが可能となる。
 より具体的には、連携対象及び非連携対象の移動局装置MSに対する信号送信の有無及びこれらの信号間の干渉状態を制御することで、CSIがフィードバックされない一部の移動局装置MS間の干渉を許容する一方、CSIがフィードバックされた移動局装置MS間の干渉をブロック対角化に基づくプリコーディング(以下、適宜「部分的非直交ブロック対角化に基づくプリコ-ディング」という)により除去する。これにより、上述したように、CSIがフィードバックされている基地局装置BS1のみを用いて情報伝送を行う場合と比較して、MIMOチャネルの自由度を確保することができ、伝送容量の低減を抑制することが可能となる。
 以下、図1に示す移動通信システムに示す基地局装置BS及び移動局装置MSの配置例を用いて、本発明に係る基地局間連携MIMO伝送方法について説明する。なお、以下においては、説明の便宜上、基地局装置BS1付近に位置して基地局装置BS1のみにCSIをフィードバックできた移動局装置MS1を適宜「セル内部MS」と呼び、セルC1、C2のセルエッジ付近に位置して基地局装置BS1、BS2にCSIをフィードバックできた移動局装置MS2を適宜「セル端MS」と呼ぶものとする。なお、これらのセル内部MSは、上述した非連携対象の移動局装置MSを構成し、セル端MSは、上述した連携対象の移動局装置MSを構成する。図1においては、セル内部MS及びセル端MSをそれぞれ1つずつ示しているが、これらは複数のセル内部MS及びセル端MSの代表として示している。
 図1に示す移動通信システムにおいて、セル内部MSの数を「N」とし、セル端MSの数を「N」とする。また、各基地局装置BS当たりの送信アンテナ数を「Ntx」とし、各移動局装置MS当たりの受信アンテナ数を「Nrx」とする。このように定義した場合、図1に示す移動通信システムにおけるチャネル行列は、(式1)のように表せる。
 (式1)
Figure JPOXMLDOC01-appb-I000001
 ここで、「?」の行列成分は、CSIのフィードバックができなかった部分を示す。また、「HL,1 (1)」は、1番目のセル内部MSと基地局装置BS1間における大きさがNrx×Ntxのチャネル行列であり、「HL,others (1)」は、1番目以外のセル内部MSと基地局装置BS1間における大きさが(N-N)Nrx×Ntxのチャネル行列である。さらに、「HC,1 (b)」は、1番目のセル端MSと基地局装置BSb(b=1,2)間における大きさがNrx×Ntxのチャネル行列であり、「HC,others (b)」は、1番目以外のセル端MSと基地局装置BSb(b=1,2)間における大きさが(N-1)Nrx×Ntxのチャネル行列である。
 このようなチャネル行列で示されるMIMOチャネルに対して、本発明に係る基地局間連携MIMO伝送方法においては、以下に示す3つの指針に基づき、プリコーディング行列(プリコーディングウェイト)を定める。
(1)基地局装置BS2からセル内部MSに対する干渉を許容する。
(2)上記指針(1)に該当するセル内部MS以外の移動局装置MS間の干渉をブロック対角化により除去する。
(3)基地局装置BS2は、セル内部MSに対するプリコーディングを定めることができないため、セル内部MSに対する信号は基地局装置BS1のみから送信する。
 まず、本発明の基地局間連携MIMO伝送方法におけるセル内部MSに対するプリコーディング行列の生成法について説明する。ここで、1番目のセル内部MSにおける大きさが2Ntx×Nrxのプリコーディング行列ML,1を(式2)のように定義する。
 (式2)
Figure JPOXMLDOC01-appb-I000002
 (式2)において、「ML,1 (b)」は、基地局装置BSb(b=1,2)が1番目のセル内部MSに用いる、大きさがNtx×Nrxのプリコーディング行列である。この場合、本発明の基地局間連携MIMO伝送方法において、「ML,1 (2)」については、基地局装置BS1のみから信号送信を行うため(指針(3))、(式3)が成り立つ。
 (式3)
Figure JPOXMLDOC01-appb-I000003
 一方、「ML,1 (1)」については、セル内部MS以外の移動局装置MS間の干渉をブロック対角化により除去するため(指針2)、(式4)に示す「H(~)L,1 (1)」を特異値分解することにより得られるヌルスペースにより決定される。
 (式4)
Figure JPOXMLDOC01-appb-I000004
 このような処理を他のセル内部MS(図1に不図示)にも適用することで、全てのセル内部MSに対するプリコーディング行列が決定される。このように全てのセル内部MSに対するプリコーディング行列を決定することにより、セル内部MSに対しては、当該セル内部MS以外の移動局装置MS(すなわち、セル端MS)への干渉を除去しつつ、基地局装置BS1のみから信号送信を行うことが可能となる。
 次に、本発明の基地局間連携MIMO伝送方法におけるセル端MSに対するプリコーディング行列の生成法について説明する。ここで、1番目のセル端MSにおける大きさが2Ntx×Nrxのプリコーディング行列MC,1を(式5)のように定義する。
 (式5)
Figure JPOXMLDOC01-appb-I000005
 (式5)において、「MC,1 (b)」は、基地局装置BSb(b=1,2)が1番目のセル端MSに用いる、大きさがNtx×Nrxのプリコーディング行列である。この場合、本発明の基地局間連携MIMO伝送方法において、「MC,1 (1)」については、指針(2)より,基地局装置BS1から送信される1番目のセル端MS宛の送信信号がセル内部MSに干渉を与えないように決定される。つまり、「MC,1 (1)」は、(式6)に示す「H(~)C,1 (1)」を特異値分解することにより得られるヌルスペースにより決定される。
 (式6)
Figure JPOXMLDOC01-appb-I000006
 (式6)に基づいて、「MC,1 (1)」が決定された後、「MC,1 (2)」が決定される。本発明の基地局間連携MIMO伝送方法において、「MC,1 (2)」については、(指針2)よりセル端MS間の干渉を除去するように(式7)により求められる。
 (式7)
Figure JPOXMLDOC01-appb-I000007
 ここで、「(HC,others (2)」は、「HC,others (2)」のムーア・ペンローズの一般逆行列である。
 このような処理を他のセル端MS(図1に不図示)にも適用することで、全てのセル端MSに対するプリコーディング行列が決定される。このように全てのセル端MSに対するプリコーディング行列を決定することにより、セル端MSに対しては、セル内部MSに対する送信信号に干渉を与えず、且つ、セル端MS間の干渉を除去しながら、基地局装置BS1、BS2から信号送信を行うことが可能となる。
 これらのように決定したプリコーディング行列に基づいてセル内部MS及びセル端MSに対して送信信号を送信する場合には、基地局装置BS2からセル内部MSに対する干渉は発生するものの、セル内部MSに対しては基地局装置BS1から信号が送信され、セル端MSに対しては基地局装置BS1、BS2から信号が送信されることから、CSIがフィードバックされている基地局装置BS1のみを用いて情報伝送を行う場合と比較して、MIMOチャネルの自由度を確保することができ、伝送容量の低減を抑制することが可能となる。
 しかも、セル内部MSに対して基地局装置BS1から信号送信を行う際には、セル端MSへの干渉が除去されており、セル端MSに対して基地局装置BS1、BS2から信号送信を行う際には、セル内部MSに対する送信信号に干渉を与えず、且つ、セル端MS間の干渉が除去されている。このため、これらの送信信号間の干渉に起因する伝送容量の低減を効果的に抑制することが可能となる。
 次に、図2、図3を参照しながら、移動通信システム1が有する移動局装置(MS)10及び基地局装置(BS)20の構成について説明する。図2は、本実施の形態に係る移動局装置10の構成を示すブロック図である。図3は、本実施の形態に係る基地局装置20の構成を示すブロック図である。なお、図2及び図3に示す移動局装置10及び基地局装置20の構成は、本発明を説明するために簡略化したものであり、それぞれ通常の移動局装置及び基地局装置が有する構成は備えているものとする。
 まず、図2を参照しながら、移動局装置10の構成について説明する。図2に示す移動局装置10は、図1に示すセル内部MS(MS1)及びセル端MS(MS2)に対応するものである。
 図2に示す移動局装置10において、基地局装置20から送出された送信信号は、アンテナRX#1~RX#Nにより受信され、デュプレクサ(Duplexer)101#1~101#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路102#1~102#Nに出力される。そして、RF受信回路102#1~102#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施された後、不図示の高速フーリエ変換部(FFT部)にてフーリエ変換され、時系列の信号から周波数領域の信号に変換される。周波数領域の信号に変換された受信信号は、データチャネル信号復調部103に出力される。
 データチャネル信号復調部103は、FFT部から入力された受信信号を、例えば、最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、基地局装置20から到来した受信信号は、ユーザ#1~ユーザ#kに関する受信信号に分離され、移動局装置10のユーザ(ここでは、ユーザkとする)に関する受信信号が抽出される。チャネル推定部104は、FFT部から出力された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態をデータチャネル信号復調部103及び後述するチャネル情報測定部107に通知する。データチャネル信号復調部103においては、通知されたチャネル状態に基づいて、受信信号を上述したMLD信号分離法により分離する。
 制御チャネル信号復調部105は、FFT部から出力された制御チャネル信号(PDCCH)を復調する。そして、その制御チャネル信号に含まれる制御情報をデータチャネル信号復調部103に通知する。データチャネル信号復調部103においては、制御チャネル信号復調部105からの通知内容に基づいて、抽出されたユーザkに関する受信信号を復調する。なお、データチャネル信号復調部103による復調処理に先だって、抽出されたユーザkに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻されているものとする。データチャネル信号復調部103で復調されたユーザkに関する受信信号は、チャネル復号部106に出力される。そして、チャネル復号部106にてチャネル復号処理が施されることで送信信号#kが再生される。
 チャネル情報測定部107は、チャネル推定部104から通知されたチャネル状態からチャネル情報を測定する。具体的には、チャネル情報測定部107は、チャネル推定部104から通知されたチャネル状態に基づいてCSIを測定し、これをフィードバック制御信号生成部108に通知する。また、チャネル情報測定部107は、特定の基地局装置20との間でCSIを正確に測定できない場合には、その旨をフィードバック制御信号生成部108に通知する。なお、ここでは移動局装置10のチャネル情報測定部107からCSIを正確に測定できない旨を通知する場合について説明するが、CSIを測定できない場合の処理についてはこれに限定されるものではない。例えば、CSIが測定できない基地局装置20に対しては予めCSIを測定しないように基地局装置20から移動局装置10に通知するような構成としても良い。
 フィードバック制御信号生成部108においては、チャネル情報測定部107から通知されたCSIに基づいて、これらを基地局装置20にフィードバックする制御信号(例えば、PUCCH)を生成する。また、CSIを測定できなかった旨の通知を受けた場合には、フィードバックしないか、特定の基地局装置20に対する平均パスロスをフィードバックする制御信号を生成してもよい。フィードバック制御信号生成部108で生成された制御信号は、マルチプレクサ(MUX)109に出力される。
 一方、上位レイヤから送出されたユーザ#kに関する送信データ#kは、チャネル符号化部110によりチャネル符号化された後、データ変調部111にてデータ変調される。データ変調部111にてデータ変調された送信データ#kは、不図示の離散フーリエ変換部で逆フーリエ変換され、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部112に出力される。
 サブキャリアマッピング部112においては、送信データ#kを、基地局装置20から指示されたスケジュール情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部112は、不図示の参照信号生成部により生成された参照信号#kを、送信データ#kと共にサブキャリアにマッピング(多重)する。このようにしてサブキャリアにマッピングされた送信データ#kがプリコーディング乗算部113に出力される。
 プリコーディング乗算部113は、チャネル情報測定部107で測定されたCSIに対応するプリコーディングウェイトに基づいて、受信アンテナRX#1~RX#N毎に送信データ#kを位相及び/又は振幅シフトする。プリコーディング乗算部113により位相及び/又は振幅シフトされた送信データ#kは、マルチプレクサ(MUX)109に出力される。
 マルチプレクサ(MUX)109においては、位相及び/又は振幅シフトされた送信データ#kと、フィードバック制御信号生成部108により生成された制御信号とを合成し、受信アンテナRX#1~RX#N毎の送信信号を生成する。マルチプレクサ(MUX)109により生成された送信信号は、不図示の逆高速フーリエ変換部にて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換された後、RF送信回路114#1~114#Nへ出力される。そして、RF送信回路114#1~114#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)101#1~101#Nを介してアンテナRX#1~RX#Nに出力され、受信アンテナRX#1~RX#Nから上りリンクで基地局装置20に送出される。
 図2に示す移動局装置10が図1に示すセル端MSである場合には、双方の基地局装置BS1、BS2に対して測定したCSIを含む制御信号が送信されることとなる。一方、図2に示す移動局装置10が図1に示すセル内部MSである場合には、基地局装置BS1に対して測定したCSIを含む制御信号を送信する一方、基地局装置BS2に対して、平均パスロスを含む制御信号が送信されることとなる。
 次に、図3を参照しながら、基地局装置20の構成について説明する。図3においては、互いに連携する基地局装置20A、基地局装置20Bを示している。図3に示す基地局装置20A、20Bは、それぞれ図1に示す基地局装置BS1、BS2に対応するものである。なお、これらの基地局装置20A、20Bは、共通する構成を有している。このため、以下においては、基地局装置20Aを用いてその構成を説明し、基地局装置20Bの説明を省略する。
 図3に示す基地局装置20Aにおいて、スケジューラ201は、後述するチャネル推定部213#1~213#kから与えられるチャネル推定値、並びに、後述するチャネル情報再生部216#1~216#kから与えられるチャネル状態情報(CSI)に基づいて多重するユーザ数(多重ユーザ数)を決定する。そして、各ユーザに対する上下リンクのリソース割り当て内容(スケジューリング情報)を決定し、ユーザ#1~#kに対する送信データ#1~#kを対応するチャネル符号化部202#1~202#kに送出する。
 送信データ#1~#kは、チャネル符号化部202#1~202#kでチャネル符号化された後、データ変調部203#1~203#kに出力され、データ変調される。この際、チャネル符号化及びデータ変調は、後述するチャネル情報再生部216#1~216#kから与えられるチャネル符号化率及び変調方式に基づいて行われる。データ変調部203#1~203#kでデータ変調された送信データ#1~#kは、不図示の離散フーリエ変換部で逆フーリエ変換され、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部204に出力される。
 参照信号生成部205#1~205#kは、ユーザ#1~ユーザ#k用のデータチャネル復調用の個別参照信号(UE specific RS)を生成する。参照信号生成部205#1~205#kにより生成された個別参照信号は、サブキャリアマッピング部204に出力される。
 サブキャリアマッピング部204においては、送信データ#1~#kを、スケジューラ201から与えられるスケジュール情報に応じてサブキャリアにマッピングする。このようにしてサブキャリアにマッピングされた送信データ#1~#kがプリコーディング乗算部206#1~206#kに出力される。
 プリコーディング乗算部206#1~206#kは、後述するプリコーディングウェイト生成部217から与えられるプリコーディングウェイトに基づいて、アンテナTX#1~#N毎に送信データ#1~#kを位相及び/又は振幅シフトする(プリコーディングによるアンテナTX#1~#Nの重み付け)。プリコーディング乗算部206#1~206#kにより位相及び/又は振幅シフトされた送信データ#1~#kは、マルチプレクサ(MUX)207に出力される。
 制御信号生成部208#1~208#kは、スケジューラ201からの多重ユーザ数に基づいて制御信号(PDCCH)を生成する。制御信号生成部208#1~208#kにより生成された各PDCCHは、マルチプレクサ(MUX)207に出力される。
 マルチプレクサ(MUX)207においては、位相及び/又は振幅シフトされた送信データ#1~#kと、制御信号生成部208#1~208#kにより生成された各PDCCHとを合成し、送信アンテナTX#1~TX#N毎の送信信号を生成する。マルチプレクサ(MUX)207により生成された送信信号は、不図示の逆高速フーリエ変換部にて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換された後、RF送信回路209#1~209#Nへ出力される。そして、RF送信回路209#1~209#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)210#1~210#Nを介して送信アンテナTX#1~TX#Nに出力され、アンテナTX#1~#Nから下りリンクで移動局装置10に送出される。
 一方、移動局装置10から上りリンクで送出された送信信号は、アンテナTX#1~#Nにより受信され、デュプレクサ(Duplexer)210#1~210#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路211#1~211#Nに出力される。そして、RF受信回路211#1~211#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施された後、不図示の高速フーリエ変換部(FFT部)にてフーリエ変換され、時系列の信号から周波数領域の信号に変換される。これらの周波数領域の信号に変換された受信信号は、データチャネル信号分離部212#1~212#kに出力される。
 データチャネル信号分離部212#1~212#kは、FFT部から入力された受信信号を、例えば、最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、移動局装置10から到来した受信信号は、ユーザ#1~ユーザ#kに関する受信信号に分離される。チャネル推定部213#1~213#kは、FFT部から出力された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態をデータチャネル信号分離部212#1~212#k及び制御チャネル信号復調部214#1~214#kに通知する。データチャネル信号分離部212#1~212#kにおいては、通知されたチャネル状態に基づいて、受信信号を上述したMLD信号分離法により分離する。
 データチャネル信号分離部212#1~212#kにより分離されたユーザ#1~ユーザ#kに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、不図示のデータ復調部でデータ復調される。そして、チャネル復号部215#1~215#kにてチャネル復号処理が施されることで送信信号#1~送信信号#kが再生される。
 制御チャネル信号復調部214#1~214#kは、FFT部から入力された受信信号に含まれる制御チャネル信号(例えば、PDCCH)を復調する。この際、制御チャネル信号復調部214#1~214#kは、それぞれユーザ#1~ユーザ#kに対応する制御チャネル信号を復調する。この際、制御チャネル信号復調部214#1~214#kにおいては、チャネル推定部213#1~213#kから通知されたチャネル状態に基づいて制御チャネル信号を復調する。制御チャネル信号復調部214#1~214#kにより復調された各制御チャネル信号は、チャネル情報再生部216#1~216#kに出力される。
 チャネル情報再生部216#1~216#kは、制御チャネル信号復調部214#1~214#kから入力された各制御チャネル信号(例えば、PUCCH)に含まれる情報からチャネルに関する情報(チャネル情報)を再生する。チャネル情報には、例えば、PDCCHで通知されるCSIなどのフィードバック情報が含まれる。チャネル情報再生部216#1~216#kにより再生されたCSIは、プリコーディングウェイト生成部217及びスケジューラ201に出力される。さらに、このCSIに基づいて特定されるチャネル符号化率及び変調方式が、それぞれデータ変調部203#1~203#k、チャネル符号化部202#1~202#kに出力される。なお、CSIなどのフィードバック情報を含む制御チャネル信号を処理するチャネル情報再生部216を含む受信系列は、複数の移動局装置10からチャネル状態情報を受信する受信部を構成する。
 プリコーディングウェイト生成部217は、チャネル情報再生部216#1~216#kから入力されたCSIと、連携する基地局装置20Bのプリコーディングウェイト生成部217から入力されるCSI、あるいはウェイト情報とに基づいて、送信データ#1~#kに対する位相及び/又は振幅シフト量を示すプリコーディングウェイトを生成する。プリコーディングウェイト生成部217で生成された各プリコーディングウェイトは、プリコーディング乗算部206#1~206#kに出力され、送信データ#1~送信データ#kのプリコーディングに利用される。
 この場合、プリコーディングウェイト生成部217は、上述した(1)~(3)の指針に従ってプリコーディングウェイトを生成する(プリコーディング行列を決定する)。具体的には、CSIの有無に応じて他の基地局装置20Bと連携して信号を送信するセル端MSである移動局装置10及び特定の基地局装置20から信号を送信するセル内部MSである移動局装置10を判定する。そして、セル内部MSである移動局装置10に対しては、当該セル内部MS以外の移動局装置10間の干渉を除去する一方、セル端MSである移動局装置10に対しては、セル内部MSである移動局装置10に干渉を与えず、且つ、セル端MSである移動局装置10間の干渉を除去するプリコーディングウェイトを生成する。
 なお、このプリコーディングウェイト生成部217は、CSIの有無に応じてセル端MS及びセル内部MSを判定する判定部を構成すると共に、これらのセル端MS及びセル内部MS宛ての送信信号に対するプリコーディングウェイトを生成するウェイト生成部を構成する。
 同様に、基地局装置20Bのプリコーディングウェイト生成部217は、チャネル情報再生部216#1~216#kから入力されたCSIと、基地局装置20Aのプリコーディングウェイト生成部217から入力されるCSIとに基づいて、セル内部MSである移動局装置10に対しては、当該セル内部MS以外の移動局装置10間の干渉を除去する一方、セル端MSである移動局装置10に対しては、セル内部MSである移動局装置10に干渉を与えず、且つ、セル端MSである移動局装置10間の干渉を除去するプリコーディングウェイトを生成する。
 このように基地局装置20A、20Bにおいては、移動局装置10から到来するCSIを共用し、これらのCSIに基づいて送信データ#1~#kに対する所望のプリコーディングウェイトを生成することから、セル内部MSである移動局装置10に対しては、当該セル内部MS以外の移動局装置10間の干渉を除去しつつ、基地局装置20A(BS1)のみから信号送信を行うことが可能となる。一方、セル端MSである移動局装置10に対しては、セル内部MSである移動局装置10に干渉を与えず、且つ、セル端MSである移動局装置10間の干渉を除去しながら、基地局装置20A(BS1)、基地局装置20B(BS2)から信号送信を行うことが可能となる。この結果、基地局装置BS2からセル内部MSに対する干渉は発生するものの、セル内部MSに対しては基地局装置BS1から信号が送信され、セル端MSに対しては基地局装置BS1、BS2から信号が送信されることから、CSIがフィードバックされている基地局装置BS1のみを用いて情報伝送を行う場合と比較して、MIMOチャネルの自由度を確保することができ、伝送容量の低減を抑制することが可能となる。
 (実施例)
 次に、本実施の形態に係る基地局間連携MIMO伝送方法における移動局装置MS(セル内部MS、セル端MS)の伝送容量と、その他の伝送方法における移動局装置MS(セル内部MS、セル端MS)の伝送容量との比較結果について説明する。以下においては、説明の便宜上、図1に示す移動局装置MS(セル内部MS、セル端MS)、基地局装置BS(BS1、BS2)の例を用いて説明する。ここで、上述したように決定される1番目のセル内部MS、1番目のセル端MSに対するプリコーディング行列を含む等価チャネル行列「BL,1」、「BC,1」は、それぞれ(式8)、(式9)で表わされる。
 (式8)
Figure JPOXMLDOC01-appb-I000008
 (式9)
Figure JPOXMLDOC01-appb-I000009
 この場合において、「λC,1,l」、「pC,1,l」(1≦l≦Nrx)を、それぞれ1番目のセル端MSにおける等価チャネル行列BC,1のl番目のストリームの特異値及び割り当て電力とすると、セル端MSの伝送容量は、(式10)により表わされる。
 (式10)
Figure JPOXMLDOC01-appb-I000010
 ここで、「N」は、雑音電力を示している。このようにセル端MSの伝送容量CC,1については、干渉等の影響を受けないことから、(式10)に基づいて、基地局装置20において正確に推定することができる。
 一方、セル内部MSの伝送容量は、干渉の影響により基地局装置20において正確には推定することができない。しかしながら、「λL,1,l」、「pL,1,l」(1≦l≦Nrx)を、それぞれ1番目のセル内部MSにおける等価チャネル行列BL,1のl番目のストリームの特異値及び割り当て電力とすると、セル内部MSの伝送容量は、(式11)により推定される。
 (式11)
Figure JPOXMLDOC01-appb-I000011
 ここで、「GL,1 (2)」は、基地局装置BS2と1番目のセル内部MSとの間の平均パスロスを示し、「P (2)」は、基地局装置BS2から全てのセル端MSに対する合計送信電力を示している。
 以下に示す比較結果おいては、(式10)、(式11)を用いて、注水定理に基づく電力割り当てを行った。なお、(式10)は、基地局装置BSにおける注水定理の時のみに使用し、セル内部MSの実際の伝送容量は、セル内部MSと基地局装置BSとの間のチャネル行列を用いて正確に測定した。
 図4は、本実施の形態に係る基地局間連携MIMO伝送方法における移動局装置MSの伝送容量と、その他の伝送方法における移動局装置MSの伝送容量との比較に用いる伝送系モデルを示す図である。図4に示す伝送系モデルにおいては、セル内部MS数を1、セル端MS数を3とした。また、送信アンテナ数を8、受信アンテナ数を2とした。さらに、セル端MSを、双方の基地局装置BSから等距離の位置であるセル端に固定し、セル内部MSを、基地局装置BS1に近い方向にΔだけずれた位置に配置した。なお、Δには、セル半径で正規化した値を用いている。さらに、距離の-3.76乗則に基づく距離減衰を平均的なパスロスとした。さらに、全送受信アンテナ間のフェージングとして、独立なレイリー変動を仮定している。さらに、送信電力は、1アンテナ送受信時にセル端での平均SNR(Signal-to-Noise Ratio)が0dBとなる値で正規化している。
 ここでは、本発明に係る基地局間連携MIMO伝送方法(以下、適宜「非直交SDM」という)と、図5に示す他の3つの伝送方法とを比較している。
(1)連携なし(No cooperation):この場合、常に基地局装置BS1のみを用いて全ての移動局装置MSに対してブロック対角化を用いたMIMO伝送を行う。
(2)TDM(Time Division Multiplexing):この場合、1つ目の時間スロットでは双方の基地局装置BS1、BS2から全てのセル端MSに対してブロック対角化を用いた連携MIMO伝送を行う。2つ目の時間スロットでは基地局装置BS1からのみ全てのセル内部MSに対してブロック対角化を用いたMIMO伝送を行う。従って、2つの時間スロット間で他の伝送方法と同様に全ての移動局装置MSに対して伝送を行うことになる。
(3)非直交SDM(Partial non-orthogonal):この場合、上述した部分的非直交ブロック対角化に基づくプリコ-ディングを用いて常に双方の基地局装置BS1、BS2から全ての移動局装置MSに対して伝送を行う。
 なお、チャネル状態は、2つの時間スロット内では一定であり、2時間スロット間では独立に変化するものと仮定した。また、上述した3つの伝送方法に加えて、全ての移動局装置MSのCSIが完全にフィードバックされた場合における、ブロック対角化を適用した基地局間連携マルチユーザMIMO伝送(図5に示すPerfect CSI)も併せて評価した。
 また、チャネル状態により上述した3つの伝送方法を適応的に切り替えた場合の特性も評価した。伝送方法を切り替える規範として、ある送信電力が与えられた時の合計容量を最大にする規範と、各移動局装置MSが所要の伝送容量を得るための所要総送信電力を最小にする規範とを用いた。
 まず、ある送信電力が与えられた時に合計容量を最大化した場合の各伝送方法の比較結果について説明する。図6にΔに対する各伝送方法の平均合計容量を示し、図7にこのときのΔに対する各伝送方法の1移動局装置MS当たりの平均伝送容量を示す。送信電力は、1アンテナ送受信時にセル端での平均SNRが0dBとなる値を用いている。連携を行わない場合の合計容量は、他の全伝送方法に比較して劣化していることが分かる。これは、基地局装置BSを連携しないことによるMIMOチャネルの自由度の減少によるものである。非直交SDMは、TDMに比較して、Δが0.4より小さいとき及び0.6より大きいときに合計容量を増大できている。
 この理由を図7から考察する。図7に示すように、TDMの場合、セル端MSの伝送容量は、Δの値によらず一定であるが、非直交SDMのセル端MSの伝送容量は、Δが小さい領域において4つの伝送方法の中で最大である。これは、非直交SDMはセル内部MSに対する干渉の許容によりMIMOチャネルの自由度が増大するため、最大のダイバーシチ利得を得るからである。なお、Δが増大するに従ってセル端MSの伝送容量が劣化するのは、セル端MSに割り当てられる送信電力の減少によるものである。
 一方、非直交SDMにおけるセル内部MSの伝送容量は、Δが小さいときにTDMと比較して劣化している。これは、基地局装置BS2からのセル端MS宛の送信信号がセル内部MSへの干渉となり、これがセル内部MSの伝送品質を劣化させているためである。しかし、Δが増大するにつれて、非直交SDMは、TDMと比較してセル内部MSの伝送容量が増大している。これは、TDMが1つの時間スロットを用いてセル内部MSに対して信号を送信しているのに対し、非直交SDMが常に全ての移動局装置MSに対して信号を送信しており、また、基地局装置BS2とセル内部MSとの間のパスロスの増大により、非直交SDMにおけるセル端MSからセル内部MSへのMS間の干渉が十分に抑圧されるためである。その結果、非直交SDMは、Δが小さいときはTDMよりもセル端MSによるダイバーシチ利得が大きいため合計容量が増大する。一方、Δが十分大きいときは移動局装置MS間の干渉によるセル内部MSの伝送容量の劣化がパスロスの増大により軽減されるため合計容量が増大すると考えられる。
 また、Δが0.2から0.8において伝送方法の適応的な切り替えによりさらなる伝送容量の増大がみられる。これは、この範囲では非直交SDMとTDMとは比較的に同程度の平均合計容量を達成しているため、瞬時のチャネル状態に応じて伝送方法を切り替えることにより伝送方式間のダイバーシチが働くためと考えられる。図8に合計容量を最大にする規範における、伝送方法を適応的に切り替えた際のΔに対する選択確率を示す。図8より、Δが0.3から0.7の間において非直交SDMとTDMとの選択確率が同程度であることが確認できる。
 次に、各移動局装置MSが所要の伝送容量を得るための所要平均総送信電力を比較する。所要の伝送容量は、全ての移動局装置MSで共通とし、1b/s/Hzに設定した。図9にΔに対する各伝送方法の所要平均総送信電力を、図10にこのときのΔに対する各伝送方法の1移動局装置MS当たりの所要平均総送信電力を示す。連携を行わない場合の所要送信電力は、他の伝送方法と比較して大幅に増大している。これは、基地局装置BSを連携しないことにより、MIMOチャネルの自由度が減少しているためである。非直交SDMは、TDMと比較してΔが0.4より小さいときに所要送信電力が増大している。これは、セル端MSからセル内部MSへの干渉によりセル内部MSの所要送信電力が増加しているからである。このことは図10のΔが小さい領域を見れば明らかである。
 しかし、Δが増加すると、非直交SDMは、TDMに比較して所要総送信電力が低減できている。これは、非直交SDMは、セル内部MSに対する干渉の許容によりMIMOチャネルの自由度が増大するため、最大のダイバーシチ利得を得るためである。このため、図10に示すように、セル端MSの所要送信電力が低減できる。また、Δが増加すると、非直交SDMは、セル内部MSの所要送信電力が大幅に低減できている。これは、基地局装置BS2とセル内部MSとの間のパスロスの増大により、非直交SDMにおけるセル端MSからセル内部MSへの移動局装置MS間の干渉は十分に抑圧されるためである。つまり、Δが増加するにつれて、セル端MSに対するダイバーシチ利得とパスロスの増加によるセル内部MSの移動局装置MS間の干渉の抑圧により、非直交SDMはTDMよりも所要総送信電力を効果的に低減できる。また、Δが0.4よりも大きいとき、非直交SDMは、完全なCSIを有する場合におけるブロック対角化を適用した伝送方法よりも所要総送信電力を低減できている。これは、非直交SDMは完全なCSIを有する場合のブロック対角化と比較して、移動局装置MS間の干渉制限が軽減されているためである。つまり、受信信号電力を増大させるようにプリコーディングを選択する自由度が増大したためである。
 図11に所要総送信電力を最小にする規範における、伝送方法を適応的に切り替えた際のΔに対する選択確率を示す。図11より、非直交SDMは、Δが0.35よりも大きいときに、3つの伝送方法の中で選択確率が最大となることが分かる。実際には、Δが大きいときに瞬時CSIのフィードバックが行えない場合があると考えられるため、非直交SDMは、現実的な状況において有用な伝送方法であるといえる。
 以上説明したように、本実施の形態に係る基地局間連携MIMO伝送方法においては、CSIの一部が不明な移動局装置MS間の干渉を許容し、その他の移動局装置MS間の干渉はブロック対角化を用いて除去(ヌリング)することで、MIMOチャネルの自由度を増大させている。上述した比較結果から、本実施の形態に係る基地局間連携MIMO伝送方法は、MIMOチャネルの自由度をより活用できるため、完全直交性を確保する場合に比較してシステム性能を改善することができる。実際には、Δが大きいときに瞬時CSIのフィードバックが行えない場合があると考えられるため、極めて有用な伝送方法である。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 例えば、上記実施の形態においては、基地局装置20A、20Bの双方のプリコーディングウェイト生成部217でセル内部MS及びセル端MSに対するプリコーディングウェイトを生成する場合について説明しているが、基地局装置20の構成についてはこれに限定されるものではなく適宜変更が可能である。例えば、特定の基地局装置20(例えば、基地局装置20A)のみにプリコーディングウェイトを生成する機能を持たせ、他の基地局装置20(例えば、基地局装置20B)におけるプリコーディングウェイトを生成し、これを通知するようにしても良い。
 本出願は、2010年6月9日出願の特願2010-132353に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  複数の基地局装置間で連携して複数の移動局装置にMIMO伝送を行う基地局間連携MIMO伝送方法であって、
     前記複数の移動局装置からチャネル状態情報を前記複数の基地局装置で取得するステップと、前記チャネル状態情報の有無に応じて前記複数の基地局装置で連携して信号を送信する連携対象の移動局装置及び特定の基地局装置から信号を送信する非連携対象の移動局装置を判定するステップと、前記チャネル状態情報に基づいて前記連携対象及び非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトを生成するステップとを具備することを特徴とする基地局間連携MIMO伝送方法。
  2.  前記非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトとして、前記特定の基地局装置のみから前記非連携対象の移動局装置に信号を送信すると共に、前記連携対象の移動局装置に送信する信号への干渉を除去するプリコーディングウェイトを生成することを特徴とする請求項1記載の基地局間連携MIMO伝送方法。
  3.  前記連携対象の移動局装置に送信する信号への干渉をブロック対角化により除去することを特徴とする請求項2記載の基地局間連携MIMO伝送方法。
  4.  前記連携対象の移動局装置に送信する信号に対するプリコーディングウェイトとして、前記特定の基地局装置から前記非連携対象の移動局装置に送信する信号への干渉を除去すると共に、前記特定の基地局装置以外の基地局装置から前記連携対象の移動局装置に送信する信号間の干渉を除去するプリコーディングウェイトを生成することを特徴とする請求項2記載の基地局間連携MIMO伝送方法。
  5.  前記非連携対象の移動局装置に送信する信号への干渉をブロック対角化により除去すると共に、前記連携対象の移動局装置に送信する信号間の干渉をムーアペンローズ逆行列を用いて除去することを特徴とする請求項4記載の基地局間連携MIMO伝送方法。
  6.  前記複数の基地局装置の全てに前記チャネル状態情報をフィードバックする移動局装置を前記連携対象の移動局装置と判定する一方、前記特定の基地局装置のみに前記チャネル状態情報をフィードバックする移動局装置を前記非連携対象の移動局装置と判定することを特徴とする請求項1記載の基地局間連携MIMO伝送方法。
  7.  他の基地局装置と連携して複数の移動局装置にMIMO伝送を行う基地局装置であって、
     前記複数の移動局装置からチャネル状態情報を受信する受信部と、前記チャネル状態情報の有無に応じて前記他の基地局装置と連携して信号を送信する連携対象の移動局装置及び特定の基地局装置から信号を送信する非連携対象の移動局装置を判定する判定部と、前記チャネル状態情報に基づいて前記連携対象及び非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトを生成するウェイト生成部とを具備することを特徴とする基地局装置。
  8.  前記ウェイト生成部は、前記非連携対象の移動局装置に送信する信号に対するプリコーディングウェイトとして、前記特定の基地局装置のみから前記非連携対象の移動局装置に信号を送信すると共に、前記連携対象の移動局装置に送信する信号への干渉を除去するプリコーディングウェイトを生成することを特徴とする請求項7記載の基地局装置。
  9.  前記ウェイト生成部は、前記連携対象の移動局装置に送信する信号に対するプリコーディングウェイトとして、前記特定の基地局装置から前記連携対象の移動局装置に送信する信号への干渉を除去すると共に、前記特定の基地局装置以外の基地局装置から前記連携対象の移動局装置に送信する信号間の干渉を除去するプリコーディングウェイトを生成することを特徴とする請求項7記載の基地局装置。
PCT/JP2011/062983 2010-06-09 2011-06-06 基地局間連携mimo伝送方法及び基地局装置 WO2011155467A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/702,316 US20130156121A1 (en) 2010-06-09 2011-06-06 Inter-base-station cooperated mimo transmitting method and base station apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132353A JP2011259241A (ja) 2010-06-09 2010-06-09 基地局間連携mimo伝送方法及び基地局装置
JP2010-132353 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155467A1 true WO2011155467A1 (ja) 2011-12-15

Family

ID=45098073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062983 WO2011155467A1 (ja) 2010-06-09 2011-06-06 基地局間連携mimo伝送方法及び基地局装置

Country Status (3)

Country Link
US (1) US20130156121A1 (ja)
JP (1) JP2011259241A (ja)
WO (1) WO2011155467A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945555B (zh) * 2013-01-21 2018-03-20 电信科学技术研究院 多点协作传输下的资源调度方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026348A1 (en) * 2001-06-07 2003-02-06 National University Of Singapore Wireless communication apparatus and method
US8654815B1 (en) * 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US8787302B2 (en) * 2008-09-18 2014-07-22 Alcatel Lucent Architecture to support network-wide multiple-in-multiple-out wireless communication over a downlink
CN101373998B (zh) * 2007-08-20 2012-07-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
US8218422B2 (en) * 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US8600308B2 (en) * 2009-06-17 2013-12-03 Futurewei Technologies, Inc. Channel state information feedback for coordinated multiple points transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIRO WATANABE ET AL.: "A Study on Block Diagonalization-based Cooperative MIMO Transmission with Partial Channel Information", PROCEEDINGS OF THE 2010 IEICE GENERAL CONFERENCE, TSUSHIN 1, 19 March 2010 (2010-03-19), pages 535 *
YUKI TAJIKA ET AL.: "Partially Non-Orthogonal Block Diagonalization-Based Precoding in Multiuser MIMO with Limited Channel State Information Feedbacks", 2010 IEEE 21ST INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 30 September 2010 (2010-09-30), pages 449 - 454 *

Also Published As

Publication number Publication date
JP2011259241A (ja) 2011-12-22
US20130156121A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5296004B2 (ja) フィードバック情報送信方法、移動局装置及び基地局装置
JP5039110B2 (ja) 基地局装置、移動局装置及び送信電力制御方法
US9350478B2 (en) Wireless communication system, wireless communication device, and wireless communication method
US8873666B2 (en) Communication control method, base station apparatus and mobile station apparatus
JP5388356B2 (ja) プリコーディングウェイト生成方法、移動局装置及び基地局装置
WO2014122994A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
US20120088458A1 (en) Transmission device, receiving device, communication system, and communication method
US8725186B2 (en) Base station apparatus, user equipment and precoding method
WO2012128141A1 (ja) 基地局、端末、通信システム、通信方法、および集積回路
JP5346970B2 (ja) 移動端末装置、無線基地局装置及び無線通信方法
JP5291664B2 (ja) データ送信方法、基地局装置及び移動局装置
KR101388577B1 (ko) 이동단말장치, 무선기지국장치 및 무선통신방법
WO2013084693A1 (ja) 無線基地局装置、無線通信システム及び無線通信方法
JP5396306B2 (ja) プリコーディングウェイト生成方法及び制御装置
WO2011125994A1 (ja) 通信制御方法、移動局装置及び基地局装置
JP5666871B2 (ja) 無線通信システム、基地局装置、無線通信方法
JP2011259257A (ja) 基地局装置、端末装置、通信システム、および、通信方法
WO2011090105A1 (ja) 移動局装置、チャネル情報フィードバック方法
JP6989368B2 (ja) 基地局、端末、及び無線通信方法
Zhao et al. Multi-cell interference management scheme for next-generation cellular networks
JP6523377B2 (ja) ユーザ端末、無線基地局、及び無線通信方法
WO2011155467A1 (ja) 基地局間連携mimo伝送方法及び基地局装置
WO2013089191A1 (ja) 移動端末、無線通信システム、および無線通信方法
JP6084768B2 (ja) 移動端末、無線通信システム、および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3833/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13702316

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11792424

Country of ref document: EP

Kind code of ref document: A1