WO2011155415A1 - Solid-liquid separating device - Google Patents

Solid-liquid separating device Download PDF

Info

Publication number
WO2011155415A1
WO2011155415A1 PCT/JP2011/062840 JP2011062840W WO2011155415A1 WO 2011155415 A1 WO2011155415 A1 WO 2011155415A1 JP 2011062840 W JP2011062840 W JP 2011062840W WO 2011155415 A1 WO2011155415 A1 WO 2011155415A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
pressure
filter cloth
filter
space
Prior art date
Application number
PCT/JP2011/062840
Other languages
French (fr)
Japanese (ja)
Inventor
正 國谷
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to JP2012519361A priority Critical patent/JP5985984B2/en
Publication of WO2011155415A1 publication Critical patent/WO2011155415A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/23Supported filter elements arranged for outward flow filtration

Definitions

  • the present invention relates to a solid-liquid separator, and more particularly to a solid-liquid separator capable of concentrating sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
  • water for drinking is produced by removing solids from the raw water taken using a method such as coagulation sedimentation. At this time, the solid content in the raw water is discharged as sludge having a solid content concentration of about 0.1 to 1.0% by mass.
  • the sludge having a solid content concentration of about 0.1% by mass is concentrated by natural sedimentation to a solid content concentration of about 1 to 2% by mass.
  • the high-concentration sludge thus obtained was discarded or reused.
  • the sludge concentrated to a solid content concentration of about 1 to 2% by mass is concentrated to a solid content concentration of about 3 to 5% by mass using a siphon type filtration concentration device or the like (see, for example, Patent Document 1).
  • the obtained concentrated sludge was concentrated to a solid content concentration of 40% by mass or more by a pressure dehydrator or the like (for example, see Patent Document 2).
  • the pressure dehydration apparatus and the like deteriorates as the raw water concentration decreases.
  • the filtration rate (the amount of dry solids per unit time) is when the raw water concentration is 5%. Is about one third of the filtration rate.
  • the performance becomes extremely low, making the treatment difficult.
  • a drying method such as incineration
  • the energy required for combustion increases, leading to an increase in cost and an increase in the amount of exhaust gas. Therefore, it is common to perform dehydration and drying after adjusting to an appropriate concentration using a filtration concentrator or the like. That is, conventionally, it was not realistic to treat 1% or less of sludge with a pressure dehydrator.
  • the filter cloth used in the filtration device has a large opening formed by a monofilament,
  • the filter cloth used in the dehydrator had a small opening diameter formed by multifilaments.
  • a high pressure is applied when dewatering sludge with a dehydrator using a filter cloth formed of monofilament made of nylon or the like.
  • a filter cloth formed from a multifilament made of polyester or the like has been used from the viewpoints of improvement in solid content capture efficiency, improvement in strength, improvement in durability, and the like.
  • the filtration device is a device that performs solid-liquid separation at a pressure of 1.0 MPa or less (pressure in the primary space) using a filter cloth, and the dehydrator uses a filter cloth. It is an apparatus that performs solid-liquid separation at a pressure exceeding 1.0 MPa (pressure in the primary side space).
  • the types of filter cloth that can be used differ between the filtration device and the dehydration device. If the filter cloth used in the filtration device is used in the dehydration device, the filter cloth is formed of monofilament. Therefore, in the dehydration device that performs dehydration at a high pressure, the solid content is removed when the dehydration is performed. The problem of passing through arises. Also, if the filter cloth used in the dehydrator is used in the filter apparatus, the filter cloth is formed of multifilaments, so the filter cloth is likely to be clogged during filtration, and further adheres to the filter cloth. There arises a problem that the concentrated sludge is difficult to peel off.
  • This invention is made
  • the present invention provides the following solid-liquid separation device.
  • a filter cloth and a filter body having an interior partitioned by the filter cloth, and a secondary side space that is a space on one side of the filter cloth and a space where filtrate is discharged;
  • a filter in which a primary side space which is a space on the other surface side of the filter cloth and to which sludge is supplied is formed, a decompression means capable of decompressing the secondary side space, and the primary Sludge supplying means capable of supplying sludge to the side space, sludge pressurizing means capable of pressurizing the sludge supplied to the primary side space, and sludge supplied to the primary side space comprising the filter cloth And a sludge squeezing means capable of squeezing the concentrated sludge adhering to the primary side surface of the filter cloth when filtered by the filter cloth, wherein the filter cloth is a monofilament
  • the solid-liquid separator which is the filter cloth formed by.
  • the filter body of the filter has two filtrate discharge tanks, the interior of which is the secondary space, and the filtrate discharge layer is disposed at an interval. And a concentrating tank that is disposed so as to be sandwiched between the two filtrate discharge tanks and that has a primary space inside, and the filter is a boundary between each of the two filtrate discharge tanks and the concentration tank.
  • the filter cloth is provided one by one and two filtrate discharge tanks are provided with a filtrate permeable member so as to support the filter cloth, the sludge squeezing means, and the two filtrate discharge tanks are connected to the primary side.
  • the filter cloth is a monofilament, the sludge having a solid content of about 1% by mass is concentrated using one solid-liquid separator (the solid-liquid separator of the present invention).
  • the solid content is 40% by mass or more of sludge (pressed sludge)
  • the solid content (pressed sludge) collected by the filter cloth (attached to the filter cloth) can be easily peeled off.
  • the pressure reduction means which can depressurize secondary side space
  • the sludge supply means which can supply sludge to primary side space
  • the sludge pressurization which can pressurize the sludge supplied to primary side space
  • a sludge squeezing means capable of squeezing the concentrated sludge adhering to the primary side surface of the filter cloth, the sludge is filtered while reducing the secondary side space, and the primary side of the filter cloth
  • Concentrated sludge is further adhered (pressure filtration process), and a new adhesion layer is formed by pressurizing in stages, while the old adhesion layer (adhesion layer generated in the suction filtration process and the previous pressure was formed)
  • the adhesive layer) is compressed and
  • the sludge (concentrated sludge) is attached to the filter cloth formed from the monofilament by suction filtration in this way, and the concentrated sludge is further attached by pressure filtration from above the “concentrated sludge attached to the filter cloth”. Therefore, sludge can be filtered while applying pressure to the primary space in a state where a filter cloth formed from a monofilament is used (pressure filtration step). This is because the concentrated sludge adhering to the filter cloth has a function of collecting solids in the sludge together with the filter cloth. Thereby, the sludge (pressed sludge) with a solid content of 40% by mass or more can be obtained from the sludge with a solid content of about 1% by mass.
  • FIG. 1 It is a schematic diagram which shows the state in which the sludge has adhered to the surface of the primary side of a filter cloth in a pressure filtration process while showing the cross section of the filter in one Embodiment of the solid-liquid separation apparatus of this invention. While showing the cross section of the filter in one embodiment of the solid-liquid separator of this invention, it is a schematic diagram which shows the state by which concentrated sludge is squeezed in a pressing process. It is a schematic diagram which shows a mode that the compressed sludge is discharged
  • FIG. 1 is a schematic diagram showing a cross section of a filter used in Example 1.
  • Solid-liquid separator As shown in FIG. 1, one embodiment of the solid-liquid separation device of the present invention has a “filter cloth 1 and a“ filter body 2 partitioned inside by the filter cloth 1 ”. And the space on the other side of the filter cloth 1 and the sludge 16 are supplied.
  • FIG. 1 is a schematic diagram (flow diagram) showing one embodiment of the solid-liquid separation device of the present invention.
  • the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through.
  • the filter 3 is expressed so that a cross section may be shown.
  • the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
  • the solid-liquid separation apparatus 100 of this embodiment can peel easily the solid content (pressed sludge) collected by the filter cloth (attached to the filter cloth). it can.
  • the sludge storage tank 12a and the concentration tank 62 of the filter 3 are connected by piping, and the filtrate discharge tank 61 and the filtrate storage tank 14 of the filter 3 are connected by piping.
  • Each pipe and device is preferably equipped with valves and instruments as necessary.
  • the pressure reducing means 11 that can depressurize the secondary side space 5 of the filter 3, the sludge supplying means 12 that can supply the sludge 16 to the primary side space 4, and the primary side space 4 are supplied.
  • the secondary side space 5 is provided. The sludge 16 is filtered while reducing the pressure, and the concentrated sludge is attached to the primary side surface 6 of the filter cloth 1 (suction filtration step), and then the sludge in the primary side space (supplied to the primary side space).
  • Concentrated sludge is further adhered from above the “concentrated sludge adhering to the primary side surface 6 of the filter cloth 1” by pressurizing the sludge (pressure sludge process), and finally the filter cloth. Squeezing the concentrated sludge adhering to the primary side surface 6 of 1 to obtain a compressed sludge (squeezing step) It can be. In this way, sludge (concentrated sludge) is attached to the filter cloth 1 formed from monofilament by suction filtration, and the concentrated sludge is further filtered by pressure filtration from above the “concentrated sludge attached to the filter cloth 1”.
  • sludge 16 can be filtered (pressure filtration process) while pressurizing primary side space 4 in the state using filter cloth 1 formed from monofilament. This is because the concentrated sludge adhering to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1. Thereby, the sludge (pressed sludge) with a solid content of 40% by mass or more can be obtained from the sludge with a solid content of about 1% by mass.
  • the filter 3 includes a filter cloth 1 and a “filter body 2 whose interior is partitioned by the filter cloth 1”, as shown in FIGS. 1, 2A and 2B. Is. The space on one side of the filter cloth 1 and the space on the other side of the filter cloth 1 and the space 5 on which the filtrate 19 is discharged and the space on which the sludge 16 is supplied. A primary side space 4 that is (a space into which the sludge 16 flows) is formed.
  • the filter 3 in the solid-liquid separation device 100 of the present embodiment includes the filter body 2 having two filtrate discharge tanks 61 and 61 in which the inside becomes the secondary space 5, and the filtrate discharge layer 61, 61 is disposed at an interval, and the filter body 2 has a concentrating tank 62 which is disposed so as to be sandwiched between two filtrate discharge tanks 61 and 61 and whose inside is the primary space 4. is there.
  • the filter 3 includes one filter cloth 1 at the boundary between each of the two filtrate discharge tanks 61 and 61 and the concentration tank 62, and at the same time, the filter cloth 1 1 are provided with filtrate permeating members 63 and 63 so as to support 1.
  • FIG. 2A is a schematic view showing a cross section of the filter 3 in one embodiment of the solid-liquid separation device of the present invention.
  • FIG. 2B is a side view schematically showing the filter 3 in one embodiment of the solid-liquid separation device of the present invention.
  • the two filtrate discharge tanks 61 and 61 are square column (tubular) tanks having openings 65a and 65a formed in the walls 65 and 65 facing each other and hollow inside, and the openings 65a. , 65a are provided with filter cloths 1 and 1 so as to block them.
  • the concentration tank 62 is composed of “the walls 65 and 65 and the filter cloths 1 and 1 facing each other of the two filtrate discharge tanks 61 and 61” and “the space between the two filtrate discharge tanks 61 and 61 (primary side).
  • the body portion 64 is formed so as to surround the space 4) along the outer edge of “the two opposite walls 65, 65 of the two filtrate discharge tanks 61, 61”.
  • the opposing walls 65 and 65 and the filter cloths 1 and 1 of the two filtrate discharge tanks 61 and 61 are also part of the concentration tank 62.
  • the concentration tank 62 is formed with an inlet 71 for allowing the sludge 16 to flow inside, and the inlet 71 is provided with an inlet nozzle 71a.
  • the filtrate discharge tank 61 is formed with an outlet 72 for allowing the filtrate 19 to flow outside.
  • the outlet 72 is provided with an outlet nozzle 72a.
  • the filtrate permeable member 63 disposed in the filtrate discharge tank 61 is a structure through which the filtrate passes.
  • the filtrate permeable member 63 is capable of allowing the filtrate to pass through easily while having a rigidity that does not cause a large deformation with respect to pressure.
  • a metal mesh formed three-dimensionally with a metal wire such as stainless steel, a plate formed of “ceramic, synthetic resin, etc.” and “formed with a plurality of through holes in the thickness direction”, etc. can be used.
  • the body part 64 forming the outer periphery of the concentration tank 62 is formed in a cylindrical shape, and one end part is joined to the “opposing wall 65” of one filtrate discharge tank 61, and the other end part is The primary space 4 is formed inside by joining to the “facing wall 65” of the other filtrate discharge tank 61. Further, the body portion 64 is formed to be extendable so that the two filtrate discharge tanks 61 and 61 can be moved closer to each other and the two filtrate discharge tanks 61 and 61 can be moved away from each other. ing. Further, as shown in FIGS.
  • An opening / closing part 73 is formed on the lower side in the vertical direction of the body portion 64 when the filter 3 is arranged so that the central axis of the cylindrical body portion 64 faces the horizontal direction.
  • the opening / closing part 73 is in a closed state in the suction filtration process, the pressure filtration process and the compression process, but in the discharge process, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64. It is the part that opens when In the discharging step, the compressed sludge is discharged from the “opening / closing portion 73”.
  • the opening / closing part 73 is preferably a “cut” formed in the body part 64.
  • the sludge 16 flows into the concentration tank 62 (primary space 4) from the inlet 71, the sludge 16 is filtered by the filter cloth 1, and the filtrate 19 is discharged from the filtrate.
  • the solid (concentrated sludge) flows into the tank 61 (secondary space 5), adheres to the primary surface 6 of the filter cloth 1, and flows into the filtrate discharge tank 61 (secondary space 5).
  • the filtrate 19 thus discharged flows out from the outlet 72.
  • the sludge to be subjected to solid-liquid separation is sludge that is discharged when producing clean water (tap water) in a water purification plant, and preferably has a solid content concentration of 0.7 to 2.0% by mass.
  • the filter cloth 1 is preferably a filter cloth formed of monofilaments of polyamide resin, more preferably a filter cloth formed of nylon monofilaments, and nylon.
  • a filter cloth formed by 6 monofilaments is particularly preferred.
  • the air permeability of the filter cloth is preferably 20 to 90 (cm 3 / (cm 2 ⁇ sec)). If the air permeability is smaller than 20 (cm 3 / (cm 2 ⁇ sec)), the filtrate may not easily permeate. If the air permeability is greater than 90 (cm 3 / (cm 2 ⁇ sec)), the solid content in the sludge may easily pass.
  • the air permeability of the filter cloth is a value obtained by measuring the amount of air per unit area and unit time passing through the filter cloth from the primary side to the secondary side.
  • the method of knitting the filter cloth 1 is not particularly limited, for example, satin weave is preferable. By using a satin weave, the peelability of the compressed sludge is improved, and clogging can be suppressed.
  • size of the filter 3 which comprises the solid-liquid separation apparatus 100 of this embodiment shown by FIG. 2A and FIG. 2B is not specifically limited, In the case of industrial use, the processing amount in a water purification plant or a sewage treatment plant It is preferable that the size corresponds to.
  • the material of the filtrate discharge tank 61 is not specifically limited, Stainless steel etc. can be used suitably.
  • the material of the body portion 64 of the concentration tank 62 is preferably a stretchable material, and specifically, rubber, synthetic resin, metal, and the like are preferable.
  • the two filter cloths arranged in the two filtrate discharge layers include one filter cloth in a “state in which the two filter cloths are connected” or “the two filter cloths (configuration)
  • a bag-like "filter cloth” may be used, and a part or all of the body portion may be formed by a part of the filter cloth.
  • the filter 3 is a pressure
  • the two filtrate discharge tanks 61 are provided, but one filtrate discharge tank may be provided.
  • one of the two filtrate discharge tanks 61 is a pressing plate that can press the filter cloth 1 of the other filtrate discharge tank 61. Is preferred.
  • the filter cloth 1 is also a single sheet.
  • the decompression means 11 can decompress the secondary space, and uses a vacuum pump 11a as shown in FIG.
  • a device for decompressing using a siphon principle such as a siphon tube can be exemplified.
  • the decompression means 11 is connected to the filtrate storage tank 14 and decompresses the secondary side space 5 of the filter 3 via the filtrate storage tank 14. It is configured as follows.
  • the secondary space 5 of the filter 3 can be reduced to a pressure of ⁇ 0.08 to ⁇ 0.02 MPa (gauge pressure) by the pressure reducing means 11.
  • a siphon tube 74 as shown in FIG. 8 may be used as the decompression means.
  • the filter 3a shown in FIG. 8 uses a siphon tube 74 as the pressure reducing means 11, and depressurizes the secondary space 5 of the filter 3a according to the principle of siphon.
  • the pressure reducing means two vacuum pumps and siphon tubes may be provided, and they may be used properly (more preferably used) according to each step.
  • FIG. 8 is a schematic view showing a cross section of the filter 3a and the decompression means 11 (siphon tube 74) used in another embodiment of the solid-liquid separation device of the present invention.
  • (1-3) Sludge supply means As shown in FIG. 1, in the solid-liquid separation device 100 of this embodiment, the sludge supply means 12 can supply sludge to the primary side space 4. And the sludge supply means 12 is the sludge storage tank 12a arrange
  • the sludge supply means may be the “sludge storage tank 12a disposed above the filter 3 in the vertical direction” as shown in FIG. 1, but the “sludge storage tank 12a” and the sludge storage tank. It is more preferable that the sludge in 12a is composed of a “pump or the like” for sending the sludge to the filter 3.
  • the sludge supply means is composed of “sludge storage tank 12 a” and “a“ pump or the like ”for feeding the sludge in the sludge storage tank 12 a to the filter 3”, a pump or the like from the sludge storage tank 12 a
  • the sludge can be supplied to the filter 3 using At this time, it is preferable to supply the filter 3 while pressurizing sludge using a pressure pump.
  • the sludge supply means is composed of a sludge storage tank 12a and a sludge pressurizing means 13 described later.
  • the sludge pressurizing means 13 is a sludge pressurizing means and a part of the sludge supply means.
  • the sludge pressurizing means 13 pressurizes the sludge storage tank 12a (sludge in the sludge storage tank 12a) at an appropriate pressure, and the sludge pressurizing means 13 pressurizes the sludge in the sludge storage tank 12a through the filter. 3 can be supplied.
  • the size of the sludge storage tank 12a is not particularly limited, and can be appropriately determined depending on the amount of sludge to be processed. Moreover, although the material of the sludge storage tank 12a is not specifically limited, Stainless steel, vinyl chloride, etc. can be used suitably. In the case where the sludge supply means is “the sludge storage tank 12a disposed vertically above the filter 3” and “the sludge supply tank 12a and the sludge pressurizing means 13 are configured”, the sludge discharge The pipe connected to the outlet 12c is directly connected to the filter 3.
  • the sludge supply means is constituted by “sludge storage tank 12a” and “a pump or the like for feeding the sludge in the sludge storage tank 12a to the filter 3”, it is connected to the sludge discharge port 12c.
  • the pipe is connected to the filter 3 via a “pump or the like”.
  • sludge is supplied from the sludge receiving port 12b.
  • the sludge storage tank 12a is a pressure
  • the pressure-resistant structure is a structure that can withstand the pressure when supplying the stock solution (sludge) to the filter 3.
  • the sludge pressurizing means 13 can pressurize the sludge supplied to the primary side space 4.
  • air a cylinder such as “inert gas such as nitrogen”, an air compressor (compressor), or the like can be used.
  • the sludge pressurizing means 13 When supplying the sludge 16 into the primary space 4 of the filter 3, the sludge pressurizing means 13 performs filtration (pressure filtration) while supplying the sludge 16 into the primary space 4 in a pressurized state. It is used for performing.
  • the pressurizing means 13 As shown in FIG. 1, the inside of the sludge storage tank 12a is pressurized by pressurizing the "sludge storage tank 12a in which sludge is stored" by the pressurizing means 13. It is preferable to pressurize the sludge 16.
  • the pressurized “pressurizing medium such as air or nitrogen” is sent from the pressurizing means 13 to the sludge storage tank 12a, whereby the sludge storage tank 12a (sludge in the sludge storage tank 12a) Pressurized.
  • the pressure adjusting means 13 a performs sludge removal. It is preferable to increase the pressure stepwise.
  • An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the pressurization means 13 and the sludge storage tank 12a. Further, the pressure adjusting means 13a is provided on the downstream side of the pressurizing means 13 so that the pressure of the gas supplied to the sludge storage tank 12a can be increased stepwise (such as an adjusting valve). Is preferred.
  • the sludge squeezing means is “a primary side that is a surface on the primary side space side of the filter cloth when the sludge supplied to the primary side space is filtered by the filter cloth. It is possible to squeeze the concentrated sludge attached to the surface.
  • the sludge squeezing means moves so that the two filtrate discharge tanks 61 and 61 are close to each other by narrowing the primary side space 4. It is a means (mechanism) which squeezes the concentrated sludge adhering to each primary side surface 6, 6 by sandwiching it between two filtrate discharge tanks 61, 61.
  • Compressed sludge having a solid content concentration of 40 to 45% by mass can be obtained from the concentrated sludge having a solid content concentration of 9 to 16% by mass.
  • the concentrated sludge adhering to the filter cloth 1 is sandwiched and compressed between two “filter cloths 1 whose secondary surface 7 side is supported by the filtrate permeable member 63”.
  • the filtrate discharged by pressing the concentrated sludge passes through the filter cloth 1 and flows into the primary space 4 and is discharged from the outlet 72.
  • the concentrated sludge from which water (filtrate) is squeezed out between the two filter cloths 1 and 1 becomes the compressed sludge 18 (see FIG. 5).
  • the filter 3 preferably has a structure for moving the filtrate discharge tank 61.
  • a structure for moving the filtrate discharge tank 61 for example, as shown in FIG. 7, a support part 77 disposed in each filtrate discharge tank 61 and a guide part 76 to which the tip of the support part 77 is movably attached.
  • a moving mechanism 75 comprising: The number and the mounting position of the moving mechanism 75 are not particularly limited, but it is preferable that the number and the position can stably support each filtrate discharge tank 61. As shown in FIG. 7, it is also a preferable aspect that two support portions 77 are attached to each of the filtrate discharge tanks 61 on opposing walls (two walls sandwiching the secondary space).
  • FIG. 7 is a schematic view showing a cross section of the filter 53 in one embodiment of the solid-liquid separation device of the present invention.
  • the shape of the support portion 77 is not particularly limited, and examples thereof include a member in which a wheel is disposed at the tip of a rod-like or plate-like member.
  • the material of the support part 77 is not specifically limited, Stainless steel etc. can be mentioned.
  • the shape of the guide part 76 is not specifically limited, When the wheel is arrange
  • the pressing means may be a “roller” that moves on the sludge surface (filter cloth surface) while pressurizing the sludge.
  • a discharging means for “peeling and discharging the squeezed sludge from the filter cloth”.
  • FIG. 6 is a schematic view showing a cross section of the filter 3 in one embodiment of the solid-liquid separation device of the present invention and showing how the compressed sludge is discharged in the discharging step.
  • the filter in the solid-liquid separator of the present invention the filter 83 shown in FIG. 10 used in the following examples can be used.
  • Solid-liquid separation method Next, a solid-liquid separation method, which is a method for solid-liquid separation of sludge using one embodiment of the solid-liquid separation apparatus of the present invention, will be described.
  • the solid-liquid separation method using one embodiment of the solid-liquid separation device of the present invention is a method of performing solid-liquid separation using the solid-liquid separation device 100 shown in FIGS.
  • Sludge is supplied to the primary side space 4 which is the space on the other side of the filter cloth 1 while the secondary side space 5 which is the space on the one side (secondary side surface 7) side is decompressed.
  • Filtering the sludge with the filter cloth 1 and attaching the concentrated sludge (initial concentrated sludge) to the primary side surface 6, which is the “other surface” of the filter cloth 1.
  • the sludge While reducing the pressure of the secondary space 5, supplying and pressurizing the sludge to the primary space 6, the sludge is filtered by the filter cloth 1 and attached to the primary surface 6 of the filter cloth 1. Pressurize and supply more sludge from the concentrated sludge (initial concentrated sludge), and apply the concentrated sludge (second layer concentrated sludge) to the surface of the initial concentrated sludge.
  • “Supplying sludge to the primary side space and pressurizing” means “suppressing sludge while pressurizing” or “pressurizing sludge after supplying sludge” to the primary side space. Means. Moreover, in the case of “supplying sludge while pressurizing” and “pressing sludge after supplying sludge”, the pressure in the primary side is pressurized, and the filtrate passes through the filter cloth by the pressure. It will be pushed out to the secondary space.
  • the concentrated sludge is attached to the primary side surface 6 of the filter cloth 1, and in the pressure filtration step, the “concentrated sludge attached to the primary side surface of the filter cloth 1”
  • the sludge having a solid content of about 1% by mass can be concentrated to obtain a sludge having a solid content of 40% by mass or more.
  • a solid-liquid separation method using one embodiment of the solid-liquid separation apparatus of the present invention (solid-liquid separation apparatus 100 (see FIG. 1)) will be described step by step.
  • (2-1) Suction filtration step As shown in FIGS. 1 to 3, the suction filtration process is performed while reducing the pressure of the secondary side space 5, which is the space on one side (secondary side surface 7) of the filter cloth 1. Sludge is supplied to the primary side space 4 which is the space on the other side, and the sludge is filtered by the filter cloth 1, and the primary side face 6 which is the “other side” of the filter cloth 1 is filtered. It is preferable to be a step of “attaching concentrated sludge (initial concentrated sludge)”. In the suction filtration process, as shown in FIG.
  • the sludge 16 is supplied to the sludge supply means 12, and the sludge 16 is supplied from the sludge supply means 12 to the primary space 4 of the filter 3.
  • the secondary space 5 of the filter 3 is decompressed by the decompression means 11 via the filtrate storage tank 14.
  • the solid content in the sludge 16 is collected as the concentrated sludge 17 by the filter cloth 1, and the filtrate 19 that has passed through the filter cloth 1 passes through the secondary side space 5 and is sent to the filtrate storage tank 14.
  • the filtrate 19 that has passed through the filter cloth 1 is discharged from the outlet 72, sent to the filtrate storage tank 14 through the outflow nozzle 72 a and the piping, and stored in the filtrate storage tank 14.
  • FIG 3 shows a cross section of the filter 3 in one embodiment of the solid-liquid separator of the present invention, and sludge (initial concentrated sludge) on the primary surface 6 of the filter cloth 1 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
  • the initial concentrated sludge 17a is attached to the primary side surface 6 of the filter cloth 1 in the suction filtration step. Therefore, in the next pressure filtration step, even if the sludge is supplied to the primary space 4 of the filter 3 “pressurizing the filter cloth 1”, the solid content in the sludge permeates the filter cloth 1. Leakage into the secondary space 5 can be suppressed. This is because the initial concentrated sludge 17a attached to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1.
  • the apparatus (filter 3) provided with "the filter cloth formed by the monofilament" normally used in the suction filtration process is used, the apparatus (filter 3) used in the suction filtration process.
  • the suction filtration step it is preferable to start the pressure filtration step when the solid content concentration of the filtrate flowing out to the secondary space 5 reaches 0.02 to 0.04 mass%. If it is lower than 0.02% by mass, the initial concentrated sludge 17a is not sufficiently formed, and the initial concentrated sludge 17a itself passes through the filter cloth 1 and leaks into the secondary space 5 due to the applied pressure in the pressure filtration process. May be issued. If it is higher than 0.04% by mass, the time for the suction filtration process becomes longer, and therefore the total time for solid-liquid separation of sludge may become longer.
  • the filtration time in the suction filtration process is too short, the initial concentrated sludge 17a does not sufficiently adhere to the filter cloth 1, and the initial concentrated sludge 17a itself passes through the filter cloth 1 due to the applied pressure in the pressure filtration process, and the secondary side. May flow into space 5.
  • the time for filtering the sludge with the filter cloth 1 is long, the entire filtration time is extended.
  • the pressure when the secondary side space 5 is depressurized (the pressure of the depressurized secondary side space 5) is ⁇ 0.08 to ⁇ 0.02 MPa when the sludge of the water purification plant is used as a raw material. Gauge pressure) is preferable. If it is lower than ⁇ 0.08 MPa, the solid content passes through without remaining on the filter cloth surface and flows into the secondary space 5, and the initial concentrated sludge 17 a may not adhere to the primary surface 6 of the filter cloth 1. is there. If it is higher than ⁇ 0.02 MPa, the suction filtration process may take a long time.
  • the “gauge pressure” is a pressure displayed on a pressure gauge with the atmospheric pressure set to “0 MPa”.
  • a vacuum pump or the like can be used as the decompression means 11 that decompresses the secondary space 5 of the filter 3.
  • a means for decompressing the secondary side space 5 of the filter 3 according to the principle of siphon is also a preferable aspect.
  • the decompression means 11 for decompressing the secondary side space 5 of the filter 3 see FIG. 1
  • the decompression means for decompressing 5 it is preferable to use the decompression means 11 used in the suction filtration step.
  • a vacuum pump can be used in the pressure filtration step even if the pressure reducing means based on the principle of siphon is used. In the pressing process, it is preferable to use a vacuum pump.
  • (2-2) pressure filtration step In the pressure filtration step, as shown in FIGS. 1 and 4, the secondary side space 5 is depressurized and the sludge 16 is supplied to the primary side space 4 while “pressurizing”. Is a step of further filtering.
  • the secondary space 5 is preferably decompressed, but may not be decompressed.
  • the pressure filtration step is a step for ensuring the processing flow rate of the filtrate by applying pressure.
  • the concentrated sludge 17 (second-layer concentrated sludge 17b) is further adhered on the concentrated sludge 17 (initial concentrated sludge 17a) adhering to the primary side surface 6 of the filter cloth 1, It is also a step of compressing the initial concentrated sludge 17a to increase its density (densify) and enhance the filtration function with the filter cloth and the concentrated sludge adhering thereto.
  • the filtrate 19 that has passed through the filter cloth 1 is discharged from the discharge port 24 a, sent to the filtrate storage tank 14 through the discharge nozzle 24 b and the piping, and stored in the filtrate storage tank 14.
  • FIG. 4 shows a cross-section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and in the pressure filtration step, sludge (concentrated sludge 17 ( It is a schematic diagram which shows the state to which the initial concentration sludge 17a and the 2nd layer concentration sludge 17b) are adhering.
  • the filter cloth 1 is pressurized with sludge and the initial concentrated sludge 17a is compressed in order to filter the sludge under pressure with the initial concentrated sludge 17a attached to the filter cloth 1.
  • the filter cloth 1 performs a filtering function according to the degree of densification of the initial concentrated sludge 17a.
  • pressure filtration can be performed while preventing leakage of solid contents.
  • concentrated sludge having a solid content concentration of 9 to 16% by mass can be obtained.
  • the concentrated sludge formed on the filter cloth surface is filtered. It may flow out into the secondary space through the cloth. In that case, the solid content is not sufficiently recovered, and solid-liquid separation by concentrated sludge cannot be performed sufficiently. Therefore, when the sludge is filtered under pressure with the initial concentrated sludge 17a attached to the filter cloth 1, it is preferable to reduce the pressure change in one pressurization and increase the pressure several times stepwise.
  • the concentrated sludge adhering to the filter cloth 1 can be densified while preventing the solid content from leaking into the secondary side space, and finally it is possible to perform filtration at a high pressure. And since it is possible to densify concentrated sludge, the solid content density
  • the pressure for pressurizing the sludge is from 0.2 to 0.4 MPa (gauge pressure) (minimum filtration pressure) to 0.6 to 1.5 MPa (gauge pressure) (maximum filtration pressure). It is preferable to raise it intermittently. Thereby, it can prevent more effectively that solid content in sludge permeate
  • the “minimum filtration pressure” is the first (first stage) pressure and the lowest pressure when the sludge is pressurized in the pressure filtration step.
  • the “maximum filtration pressure” is the last (last stage) pressure and the highest pressure when the sludge is pressurized.
  • the minimum filtration pressure is lower than 0.2 MPa, the time required for solid-liquid separation may become longer.
  • the minimum filtration pressure is higher than 0.4 MPa, solid content may easily pass through the filter cloth when performing pressure filtration.
  • the maximum filtration pressure is lower than 0.6 MPa, the time required for solid-liquid separation may become longer.
  • the maximum filtration pressure is higher than 1.5 MPa, the solid content may easily pass through the filter cloth.
  • “To increase the pressure to pressurize the sludge intermittently” means to increase the pressure to pressurize the sludge in a stepped manner, and to “Pressure constant (maintain constant pressure)” and “Pressure increase” It is to raise the pressure which pressurizes sludge, repeating "state (pressure
  • the sludge pressure fills the primary space 4 of the filter 3 and the sludge pressure in the primary space (pressure in the primary space). Is preferably set to the predetermined pressure. Therefore, it is preferable to supply the sludge to the primary space 4 of the filter 3 at the predetermined pressure.
  • the pressure filtration step when the pressure in the primary side space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased by a single pressure increase (pressure increase operation).
  • the pressure is preferably 0.2 to 0.7 MPa (rising range), and more preferably 0.2 to 0.4 MPa. Thereby, the concentrated sludge adhering to the filter cloth can be densified more effectively, and solid content leakage from the filter cloth can be suppressed. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is greater than 0.7 MPa, the solid content may easily leak from the filter cloth.
  • the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage.
  • the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable.
  • As the pressure increase rate for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
  • the pressure filtration step when the pressure in the primary space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased from the “constant pressure state”. Switching to “state” is performed after confirming the state of the filtrate.
  • the turbidity of the filtrate increases. This turbidity decreases with time. This decrease in turbidity is caused by densification of the initial concentrated sludge 17a and formation of a new layer of concentrated sludge (second layer concentrated sludge 17b) on the initial concentrated sludge 17a. And the second-layer concentrated sludge 17b "has achieved a filtration function together with the filter cloth 1, and is in a state suitable for sludge filtration so that the sludge can be satisfactorily filtered even at a new (high) pressure. Show. Therefore, it can be determined that the initial concentrated sludge 17a is densified and a new concentrated sludge layer is formed on the initial concentrated sludge 17a due to the decrease in turbidity.
  • the time for densification of the initial concentrated sludge 17a after pressurization and the formation of a new concentrated sludge layer depends on the composition and concentration of the sludge to be treated. Different. Accordingly, whether the initial concentrated sludge 17a is densified or whether a new concentrated sludge layer is sufficiently formed is determined by measuring the turbidity and concentration of the filtrate. Alternatively, the turbidity may be measured with a turbidimeter, and the above determination may be made when the turbidity is below a certain value.
  • the flow rate of the filtrate immediately after pressurization changes with the densification of the initial concentrated sludge 17a and the formation of a new concentrated sludge layer. It is also possible to determine that a sludge layer has been formed. For these determinations, the filtrate may be temporarily taken out of the filtrate storage tank 14. Moreover, since the time when a filtrate with high turbidity is generated is short and the amount of the filtrate with high turbidity is very small when viewed from the whole filtrate, it may be allowed to flow into the filtrate storage tank 14 as it is.
  • the step-by-step pressure increase of the pressure filtration process of the present invention allows the sludge treatment amount to be secured while functioning the adhering concentrated sludge as a part of the filter cloth.
  • a predetermined amount of sludge can be concentrated in a shorter time.
  • filtration is performed while the sludge is pressurized, so that the new sludge is attached to the filter cloth surface first while maintaining the state where the sludge is supplied to the filter cloth.
  • Filtration is performed while the “sludge adhering first” is compressed, while adhering onto the “sludge”.
  • maintaining the state in which the sludge is supplied to the filter cloth means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure) without the sludge being supplied to the filter cloth.
  • it is different from the “squeezing process” in which the moisture in the concentrated sludge is squeezed.
  • the pressure filtration step it is preferable to pressurize the primary space 4 (pressurize the filtrate in the primary space 4) and depressurize the secondary space 5, but depressurize the secondary space 5.
  • the pressure pressure in the reduced secondary space 5) is preferably ⁇ 0.08 to ⁇ 0.02 MPa (gauge pressure). If it is higher than -0.02 MPa, the concentration of the finally obtained compressed sludge may be less than 40% by mass, and it takes a long time to increase the concentration of the compressed sludge to 40% by mass or more. There is.
  • the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13 as shown in FIG.
  • the sludge pressurizing means 13 a method using air, a cylinder such as “inert gas such as nitrogen”, an air compression device (compressor) or the like, or a mechanical pressurization method in which sludge is compressed directly with a piston by hydraulic pressure or the like. Can be adopted.
  • the sludge pressurizing means 13 combining a pump and a pressure relief valve can be considered.
  • the sludge in the “sludge storage tank 12 a storing sludge” is pressurized and pressurized by the sludge pressurizing means 13. It is preferable to send the sludge in the sludge storage tank 12 a to the primary side space 4 of the filter 3. In this case, the pressurized “pressurizing medium such as air and nitrogen” is sent from the sludge pressurizing means 13 to the sludge storage tank 12a, whereby the inside of the sludge storage tank 12a is pressurized.
  • the pressurized “pressurizing medium such as air and nitrogen”
  • the pressure adjusting means 13 a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
  • the pressing step is a step of obtaining the compressed sludge 18 by pressing the concentrated sludge (initial concentrated sludge and second-layer concentrated sludge) attached to the primary-side surface 6 of the filter cloth 1.
  • the pressure filtration operation pressure filtration step
  • the sludge remaining in the filter is removed, and then the concentrated sludge is squeezed (squeezing step).
  • the two filtrate discharge tanks 61, 61 are moved away from each other, the opening / closing part 73 of the body part 64 of the concentration tank 62 is opened, and the It is preferable to discharge from the opened opening / closing part 73.
  • FIG. 5 is a schematic diagram which shows the state by which concentrated sludge is squeezed in the pressing process while showing the cross section of the filter in one Embodiment of the solid-liquid separation apparatus of this invention.
  • the sludge squeezing mechanism used in the squeezing process moves so that the two filtrate discharge tanks 61, 61 narrow the primary side space 4 and approach each other, and the two filter cloths 1, 1
  • the concentrated sludge is sandwiched and pressed between two sheets of “filter cloth 1 whose secondary surface 7 is supported by the filtrate permeable member 63”.
  • the filtrate discharged by pressing the concentrated sludge passes through the filter cloth 1 and flows into the primary space 4 and is discharged from the outlet 72. Further, the concentrated sludge from which the water (filtrate) has been squeezed between the two filter cloths 1 and 1 becomes the compressed sludge 18.
  • “squeezing the concentrated sludge” means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure, or the structure without supplying the sludge to the filter cloth). It means that the moisture in the concentrated sludge is squeezed out.
  • the pressure when pressing the concentrated sludge is preferably 0.2 to 1.8 MPa (gauge pressure). Furthermore, in the said pressure range, it is preferable to squeeze concentrated sludge, raising the pressure when squeezing concentrated sludge intermittently. When the pressure is intermittently increased, it is preferable to start the pressure increase from a pressure higher than the “maximum filtration pressure” in the pressure filtration step. When the pressure at the time of pressing concentrated sludge is lower than 0.2 MPa, the solid content concentration of the compressed sludge may not increase, and the pressing process may take a long time.
  • the pressure applied to the concentrated sludge is intermittently increased as described above in the pressing process, from a pressure (minimum pressing pressure) that is 0.2 to 0.4 MPa higher than the “maximum filtering pressure” in the pressure filtering process.
  • the pressure is preferably intermittently increased to a pressure (maximum pressing pressure) higher by 0.7 to 1.0 MPa than the “maximum filtration pressure” in the pressure filtration step.
  • the “minimum pressing pressure” is the first (first stage) pressure and the lowest pressure when the concentrated sludge is pressurized in the pressing step.
  • the “maximum squeezing pressure” is the last (last stage) pressure and the highest pressure when the concentrated sludge is pressurized.
  • the minimum squeezing pressure is higher than “a pressure higher by 0.4 MPa than the maximum filtration pressure in the pressure filtration step”
  • the filter 3 is a pressure
  • the pressure finally applied to the concentrated sludge is 1.5 to 1.8 MPa.
  • the pressure to be increased in one pressurization is 0.2 to 0.4 MPa (increase) Width).
  • the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased.
  • the pressure raised by one pressurization is larger than 0.4 MPa, the solid content may easily leak from the filter cloth.
  • the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage.
  • the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable.
  • As the pressure increase rate for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
  • the pressing step it is preferable to pressurize the concentrated sludge and depressurize the secondary space 5. Since the filtrate 19 near the surface of the compressed sludge (particularly the surface in contact with the filter cloth) is quickly discharged by pressurizing the concentrated sludge and depressurizing the secondary space 5, the surface is more dry. Thus, when the compressed sludge is peeled off from the filter cloth, it can be peeled off more easily.
  • the pressure when the secondary side space 5 is decompressed (the pressure of the decompressed secondary side space 5) is preferably ⁇ 0.08 to ⁇ 0.02 MPa (gauge pressure). When the pressure is higher than ⁇ 0.02 MPa, particularly when the secondary space 5 is not decompressed, the surface of the compressed sludge may be difficult to dry.
  • the solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass.
  • the load on the combustion furnace may be increased when the compressed sludge is burned and discarded.
  • the upper limit is about 45% by mass.
  • the discharging step is a step of peeling the compressed sludge 18 from the filter cloth 1, and the compressed sludge 18 peeled from the filter cloth 1 is discharged from the filter 3.
  • the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64, and the concentration tank 62
  • the opening / closing part 73 formed on the lower side in the vertical direction of the body part 64 is opened, and the compressed sludge 18 is discharged from the “opening opening / closing part 73”.
  • the opening / closing part 73 is preferably a “cut” formed in the body part 64.
  • the discharging step it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 1) and to peel the compressed sludge 18 from the filter cloth 1 by the compressed air.
  • Example 1 In the solid-liquid separation apparatus 100 shown in FIG. 1, “a filter 83 as shown in FIG. 10 was used as a filter” to produce a solid-liquid separation apparatus.
  • the filter 83 has a first frame 82a (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88a and a second frame 82b (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88b.
  • a bag-like filter cloth 81 sandwiched between the filter body 82, "the surface of the first frame 82a on which the recess 88a is formed” and "the surface of the second frame 82b on which the recess 88b is formed”. are provided.
  • the outer periphery (outer edge) of the bag-shaped filter cloth 81 has a “surface of the first frame 82a on which the recess 88a is formed (outer edge)” and a “surface of the second frame 82b on which the recess 88b is formed ( A closed space is formed in the central portion (in addition, gas and liquid can move through the filter cloth).
  • the shape of the opening part of the recessed part 88a of the 1st frame 82a and the shape of the opening part of the recessed part 88b of the 2nd frame 82b were made into the same size circle.
  • the first frame 82a and the second frame are formed such that the circular shape of the opening of the recess 88a of the first frame 82a and the circular shape of the opening of the recess 88b of the second frame 82b overlap without being displaced.
  • the body 82b is arranged.
  • the diameter of the opening of the recess 88a of the first frame 82a was 180 mm
  • the diameter of the opening of the recess 88b of the second frame 82b was 180 mm.
  • FIG. 10 is a schematic diagram illustrating a cross section of the filter 83 used in the first embodiment.
  • tube 12 which the sludge introduction pipe
  • the sludge supplied from the inlet C flows into the sludge introduction pipe 87 from the inlet C, and is supplied to the bag-like filter cloth 1 through the sludge introduction pipe 87.
  • sludge pressurization in the pressure filtration process is performed.
  • a rubber film 86 for squeezing is disposed in the recess 88b of the second frame 82b, and the rubber film 86 for squeezing allows a space by the recess 88b to be separated into a space 88ba on the bottom side of the recess 88b and a recess 88b. Is divided into a space 88bb on the opening side (surface side on which the recess 88b is formed).
  • the filter 83 is a space formed by the filter cloth 81 and the recess 88a of the first frame 82a and a space 88bb on the opening side of the filter cloth 81 and the recess 88b of the second frame 82b. Is the secondary space 85. Further, the space in the bag of the bag-shaped filter cloth 81 becomes the primary space 84.
  • the filter 83 was used by being arranged so that the joint surface between the first frame body 82a and the second frame body 82b was orthogonal to the horizontal plane.
  • the filter 83 in order to depressurize the “space formed by the filter cloth 81 and the concave portion 88a of the first frame 82a (primary side space 85)” and discharge the filtrate,
  • An “outlet A” is formed on the lower side in the vertical direction of the first frame 82a to allow the primary space 85 and the outside to pass through.
  • the second frame 82b is vertically below.
  • an “outlet B” is formed through the primary space 85 and the outside.
  • the outlet A and the outlet B are connected to the filtrate storage tank 14 (see FIG. 1).
  • the “pressurizing port D” for introducing the pressurized gas into the space 88ba on the bottom side of the recess 88b of the second frame 82b is the second. It is formed above the frame body 82b in the vertical direction.
  • a pressurized gas is introduced into the space 88ba on the bottom side of the recess 88b from the pressure port D of the second frame 82b, and the inside of the space 88ba on the bottom side of the recess 88b is pressurized to compress the rubber film 86 for pressing.
  • the filter cloth 81 containing sludge is pressed by the rubber film 86 for squeezing and the sludge is squeezed.
  • the pressurizing port D is connected to the sludge pressurizing means 13 (see FIG. 1).
  • sludge pressurizing means 13 As the sludge pressurizing means 13 (see FIG. 1), a nitrogen cylinder was used. A pressure reducing valve was used as the pressure adjusting means 13a (see FIG. 1). As the sludge storage tank 12a (see FIG. 1), a 25 liter tank formed of iron was used. The filtrate discharge tank 61 was made of iron. As the filter cloth 81, a filter cloth formed by satin weaving nylon monofilament was used. As the filtrate storage tank 14, a tank made of transparent vinyl chloride was used. A vacuum pump was used as the decompression means 11 (see FIG. 1) for decompressing the filtrate storage tank 14.
  • solid-liquid separation was performed using sludge having a solid content of 0.74% by mass discharged at the water purification plant.
  • sludge was supplied to the primary space for 60 minutes while reducing the secondary space at “ ⁇ 0.033 MPa (gauge pressure)” (suction filtration was performed for 60 minutes).
  • sludge was pressurized at 0.4 MPa (gauge pressure) while the secondary side space was depressurized at “ ⁇ 0.033 MPa (gauge pressure)”, and supplied to the primary side space for 10 minutes. This step-up operation was performed once.
  • sludge pressurizing means is applied from the pressurizing port D of the second frame 82b to the space 88ba on the bottom side of the recess 88b while reducing the secondary side space at “ ⁇ 0.033 MPa (gauge pressure)”.
  • Pressurized gas from 13 was introduced.
  • the inside of the space 88ba on the bottom side of the concave portion 88b of the second frame 82b is pressurized with the introduced pressurized gas to swell the rubber film 86 for squeezing outward, and the sludge is sludged by the rubber film 86 for squeezing.
  • the filter cloth 81 containing was pressed and sludge was squeezed.
  • the pressing pressure was 1.5 MPa (gauge pressure), and the pressing time was 10 minutes.
  • the first frame 82a and the second frame 82b are separated, the filter cloth 81 having the compressed sludge in the filter body 82 is taken out, and the compressed sludge is peeled off from the filter cloth and taken out. .
  • the solid content concentration of the obtained compressed sludge was measured by the following method. The results are shown in Table 1.
  • the “pressure” column of the “suction filtration step” indicates the pressure of the secondary space being depressurized, and the “time” column indicates the time of vacuum filtration.
  • the “pressure” column indicates the pressure in the primary space being pressurized, and the “time” column indicates the pressure filtration time.
  • the “pressure” column of the “squeezing step” indicates the pressure applied to the concentrated sludge when the concentrated sludge is compressed, and the “time” column indicates the time of pressing.
  • the column of "solid content concentration” shows the solid content concentration of pressing sludge.
  • the column “Solid Concentration” in Comparative Example 1 indicates the solid concentration of the concentrated sludge obtained by the suction filtration process.
  • Solid content concentration Measure the mass (mass before drying) of the measurement object (pressed sludge or concentrated sludge) before drying, measure the mass (mass after drying) of the measurement object after drying with a dryer, A value obtained by dividing the value obtained by subtracting the mass after drying by the mass before drying is 100 times the solid content concentration (% by mass).
  • the measurement object was dried at 110 ° C. for 8 hours.
  • Example 2 Sludge was separated into solid and liquid in the same manner as in Example 1 except that the “pressure (gauge pressure)” and “time” in the pressure filtration step and the pressing step were changed as shown in Table 1.
  • the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
  • “0.2-0.8” in the “Pressure” column of “Pressure filtration step” is a pressure increase from ⁇ 0.033 MPa to 0.2 MPa in 1 minute, and is held at 0.2 MPa for 9 minutes.
  • the pressure was increased from 0.2 MPa to 0.4 MPa in 1 minute, held at 0.4 MPa for 9 minutes, then increased from 0.4 MPa to 0.6 MPa in 1 minute, then at 0.6 MPa for 4 minutes, and then 0 It shows that the primary space was continuously pressurized in a pressure increasing pattern in which the pressure was increased from 6 MPa to 0.8 MPa in 1 minute and held at 0.8 MPa for 4 minutes. Then, “30” in the “time” column of the “pressure filtration step” indicates that the time for pressurizing the primary space (time for performing pressure filtration) is 30 minutes in total.
  • “1.5-1.8” in the “Pressure” column of the “Pressing step” is a pressure increase from 0.8 MPa to 1.5 MPa in 1 minute, and is held at 1.5 MPa for 4 minutes. It shows that the concentrated sludge was continuously squeezed (pressurized) in a pressure increasing pattern in which the pressure was increased from 5 MPa to 1.8 MPa in 1 minute and held at 1.8 MPa for 5 minutes. And “10" of the column of "time” of a “squeezing process” shows that the time which squeezes the said concentrated sludge is 10 minutes in total.
  • Example 1 Sludge was subjected to solid-liquid separation in the same manner as in Example 1 except that the pressure filtration step and the pressing step were not performed. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
  • the solid-liquid separation method of Example 1 from Table 1, using one solid-liquid separation device, the solid content concentration of 0.74% by mass (about 1% by mass) from the sludge with a solid content concentration of 45% by mass is obtained. It turns out that sludge was obtained.
  • the suction filtration time in the suction filtration process was shortened to 10 minutes, and each “pressure” was increased step by step in the pressure filtration process and the compression process. It can be seen that the total time for liquid separation was significantly reduced.
  • concentration of concentrated sludge does not rise so much only by the suction filtration process by the solid-liquid separation method of the comparative example 1.
  • Example 3 The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed.
  • the pressure in the secondary space was set to “ ⁇ 0.025 MPa (gauge pressure)” and the filtration time was set to 10 minutes (conditions of the suction filtration step).
  • the pressure in the secondary space is maintained at “ ⁇ 0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.20 MPa (gauge pressure)” for 30 minutes.
  • FIG. 9 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
  • FIG. 9 is a graph showing the relationship between the filtration time and the filtrate amount in the solid-liquid separation methods of Examples 3 and 4.
  • Example 4 The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed.
  • the pressure in the secondary space was set to “ ⁇ 0.025 MPa (gauge pressure)”, and the filtration time was set to 90 minutes (conditions of the suction filtration step).
  • the pressure in the secondary space is maintained at “ ⁇ 0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.39 MPa (gauge pressure)” for 10 minutes ( Pressure filtration process conditions).
  • FIG. 9 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
  • Example 3 From FIG. 9, in the solid-liquid separation method of Example 3, 3.5 kg of filtrate was discharged in about 70 minutes, whereas in the solid-liquid separation method of Example 4, 3.5 kg was discharged in about 110 minutes. It can be seen that the filtrate is discharged. From this, in the solid-liquid separation method of this invention, it turns out that solid-liquid separation of sludge can be performed in a short time by shortening a suction filtration process to about 10 minutes and switching to a pressure filtration process. The difference between Example 3 and Example 4 is that in Example 3, when the pressure filtration for 40 minutes was performed after the suction filtration for 10 minutes (total of 50 minutes), the amount of filtrate reached 3 kg.
  • Example 4 the amount of the filtrate reached 3 kg after suction filtration for 90 minutes. That is, rather than continuing the suction filtration process for a long time, the filtration time can be significantly shortened by ending the suction filtration process in a short time and switching to the pressure filtration process.
  • the solid-liquid separation device of the present invention can be suitably used for treating sludge having a solid content concentration of about 1% by mass discharged from a water purification plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)

Abstract

The disclosed solid-liquid separating device (100) is provided with a filter (3) that comprises a filter fabric (1) and a main filter body (2), the interior of which is partitioned by the filter fabric (1) and wherein a primary space (4) that is the space on one side of the filter fabric (1) and is the space where sludge is supplied and a secondary space (5) that is the space on the other side of the filter fabric (1) and is the space where the filtrate is discharged, are formed; a pressure-reducing means (11) that can de-pressurize the secondary space (5); a sludge-supplying means (12) that can supply sludge to the primary space (4); a sludge-pressurizing means (13) that can pressurize the sludge supplied to the primary space (4); and a sludge-compressing means that can compress concentrated sludge that adheres to the primary side surface (6) that is the surface of the filter fabric (1) on the side of the primary space (4) when the sludge supplied to the primary space (4) is filtered by filter fabric (1). The filter fabric (1) is a filter fabric formed from monofilaments. The disclosed solid-liquid separating device is capable of concentrating sludge of about 1 mass% solids to form sludge of more than 40 mass% solids.

Description

固液分離装置Solid-liquid separator
 本発明は、固液分離装置に関し、さらに詳しくは、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能な固液分離装置に関する。 The present invention relates to a solid-liquid separator, and more particularly to a solid-liquid separator capable of concentrating sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
 浄水場では、凝集沈殿等の方法を用いて、取水した原水から固形分を除去して飲料用水等を製造している。このとき、原水中の固形分は、固形分濃度0.1~1.0質量%程度の汚泥として排出される。 In water purification plants, water for drinking is produced by removing solids from the raw water taken using a method such as coagulation sedimentation. At this time, the solid content in the raw water is discharged as sludge having a solid content concentration of about 0.1 to 1.0% by mass.
 従来、この固形分濃度0.1質量%程度の汚泥を、自然沈降等により固形分濃度1~2質量%程度に濃縮し、その後、濾過装置及び脱水装置を用いて固形分濃度40質量%以上に濃縮し、得られた高濃度の汚泥を廃棄又は再利用していた。更に具体的には、固形分濃度1~2質量%程度に濃縮された汚泥を、サイホン式濾過濃縮装置等(例えば、特許文献1を参照)により固形分濃度3~5質量%程度に濃縮し、得られた濃縮汚泥を、加圧脱水装置等(例えば、特許文献2を参照)により固形分濃度40質量%以上に濃縮していた。 Conventionally, the sludge having a solid content concentration of about 0.1% by mass is concentrated by natural sedimentation to a solid content concentration of about 1 to 2% by mass. The high-concentration sludge thus obtained was discarded or reused. More specifically, the sludge concentrated to a solid content concentration of about 1 to 2% by mass is concentrated to a solid content concentration of about 3 to 5% by mass using a siphon type filtration concentration device or the like (see, for example, Patent Document 1). The obtained concentrated sludge was concentrated to a solid content concentration of 40% by mass or more by a pressure dehydrator or the like (for example, see Patent Document 2).
特公昭61-57043号公報Japanese Examined Patent Publication No. 61-57043 特開平7-124412号公報Japanese Patent Laid-Open No. 7-124212
 一般的に、加圧脱水装置等は原水濃度が低くなるにつれて処理性能が悪化し、例えば、原水濃度2%の場合の濾過速度(単位時間当たりの乾燥固形分量)は、原水濃度5%の場合の濾過速度の3分の1程度である。更に、原水濃度1%以下の場合は、性能が著しく低いため処理が困難となる。また、焼却などの乾燥方式等の場合は、原水濃度が低くなるにつれて燃焼に必要なエネルギーが増加し、コスト増や排ガス量増加を招く。そこで濾過濃縮装置等を用いて適正な濃度に調整した後に脱水、乾燥を行うことが一般的であった。つまり、従来は1%以下の汚泥を加圧脱水機で処理するというのは現実的ではなかった。 In general, the pressure dehydration apparatus and the like deteriorates as the raw water concentration decreases. For example, when the raw water concentration is 2%, the filtration rate (the amount of dry solids per unit time) is when the raw water concentration is 5%. Is about one third of the filtration rate. Furthermore, when the raw water concentration is 1% or less, the performance becomes extremely low, making the treatment difficult. Further, in the case of a drying method such as incineration, as the raw water concentration decreases, the energy required for combustion increases, leading to an increase in cost and an increase in the amount of exhaust gas. Therefore, it is common to perform dehydration and drying after adjusting to an appropriate concentration using a filtration concentrator or the like. That is, conventionally, it was not realistic to treat 1% or less of sludge with a pressure dehydrator.
 このため、従来の汚泥の処理方法においては、固形分濃度1質量%程度の汚泥を、固形分濃度40質量%以上に濃縮するためには、濾過装置と脱水装置の2つの装置を必要としていた。つまり、固形分濃度1質量%程度の汚泥を、1つの装置によって固形分濃度40質量%以上に濃縮することはできなかった。 For this reason, in the conventional sludge treatment method, in order to concentrate the sludge having a solid content concentration of about 1% by mass to a solid content concentration of 40% by mass or more, two devices of a filtration device and a dehydration device are required. . In other words, sludge having a solid content concentration of about 1% by mass could not be concentrated to a solid content concentration of 40% by mass or more with one apparatus.
 更に詳細に説明すると、従来の、濾過装置と脱水装置との2つの装置を用いて行う汚泥の処理方法においては、濾過装置で用いる濾布はモノフィラメントによって形成された開口径の大きなものであり、脱水装置で用いる濾布はマルチフィラメントによって形成された開口径の小さなものであった。特に、濾過装置においては、目詰まり防止、剥離性の向上等の観点から、ナイロン等から作製されたモノフィラメントによって形成された濾布を使用し、脱水装置によって汚泥を脱水する際には、高い圧力で脱水を行うため、固形分の捕捉効率の向上、強度の向上、耐久性の向上等の観点から、ポリエステル等から作製されたマルチフィラメントによって形成された濾布を使用していた。尚、濾過装置を用いて汚泥の濾過を行う場合には、濾布に付着した濃縮汚泥の固形分濃度が低いため、付着した濃縮汚泥の剥離性が低下する傾向にあるが、モノフィラメントによって形成された濾布を使用することにより、濃縮汚泥の剥離性を向上させることができる。ここで、本明細書において、濾過装置は、濾布を用いて1.0MPa以下の圧力(1次側空間の圧力)で固液分離を行う装置であり、脱水装置は、濾布を用いて1.0MPaを超える圧力(1次側空間の圧力)で固液分離を行う装置である。 More specifically, in the conventional sludge treatment method using two devices, a filtration device and a dewatering device, the filter cloth used in the filtration device has a large opening formed by a monofilament, The filter cloth used in the dehydrator had a small opening diameter formed by multifilaments. In particular, in the filtration device, from the viewpoint of prevention of clogging, improvement of peelability, etc., a high pressure is applied when dewatering sludge with a dehydrator using a filter cloth formed of monofilament made of nylon or the like. In order to perform dehydration, a filter cloth formed from a multifilament made of polyester or the like has been used from the viewpoints of improvement in solid content capture efficiency, improvement in strength, improvement in durability, and the like. Note that when sludge is filtered using a filtration device, the concentration of the concentrated sludge adhering to the filter cloth is low, and the peelability of the adhering concentrated sludge tends to decrease. By using the filter cloth, the peelability of the concentrated sludge can be improved. Here, in this specification, the filtration device is a device that performs solid-liquid separation at a pressure of 1.0 MPa or less (pressure in the primary space) using a filter cloth, and the dehydrator uses a filter cloth. It is an apparatus that performs solid-liquid separation at a pressure exceeding 1.0 MPa (pressure in the primary side space).
 このように、濾過装置と脱水装置とでは、使用できる濾布の種類が異なる。仮に、濾過装置に使用される濾布を脱水装置に使用すると、当該濾布がモノフィラメントで形成されているため、高い圧力で脱水を行う脱水装置では、脱水を行う際に固形分が濾布を通過するという問題が生じる。また、仮に、脱水装置に使用される濾布を濾過装置に使用すると、当該濾布がマルチフィラメントで形成されているため、濾過を行う際に濾布が目詰まりし易く、更に濾布に付着した濃縮汚泥が剥離し難くなるという問題が生じる。 Thus, the types of filter cloth that can be used differ between the filtration device and the dehydration device. If the filter cloth used in the filtration device is used in the dehydration device, the filter cloth is formed of monofilament. Therefore, in the dehydration device that performs dehydration at a high pressure, the solid content is removed when the dehydration is performed. The problem of passing through arises. Also, if the filter cloth used in the dehydrator is used in the filter apparatus, the filter cloth is formed of multifilaments, so the filter cloth is likely to be clogged during filtration, and further adheres to the filter cloth. There arises a problem that the concentrated sludge is difficult to peel off.
 上記のように、濾過装置と脱水装置とでは、異なる濾布を使用する必要があるため、汚泥を濃縮する際には、濾過装置と脱水装置という2つの装置を使用することが一般的であった。このため、二つの装置を設置するためのスペースが必要となるだけでなく、両装置間の汚泥移動作業なども必要となっていた。また、両装置では脱水速度が異なるため、連続作業が困難であった。つまり、脱水装置による脱水時間が、濾過装置による濾過時間より短いため、脱水、濾過工程全体の時間が、濾過装置による濾過時間によって、制約されていた。さらには、両装置間で時間調整のために、汚泥一時保管場所が必要となっていた。 As described above, since it is necessary to use different filter cloths for the filtration device and the dehydration device, it is common to use two devices, a filtration device and a dehydration device, when concentrating sludge. It was. For this reason, not only a space for installing the two devices is required, but also a sludge transfer operation between the two devices is required. Moreover, since the dehydration speed is different between the two apparatuses, continuous work is difficult. That is, since the dehydration time by the dehydrator is shorter than the filtration time by the filter device, the entire time of the dehydration and filtration process is limited by the filtration time by the filter device. Furthermore, in order to adjust the time between the two devices, a temporary sludge storage place is required.
 本発明は、上述した問題に鑑みてなされたものであり、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能な固液分離装置を提供することを目的とする。 This invention is made | formed in view of the problem mentioned above, and provides the solid-liquid separation apparatus which can concentrate the sludge of about 1 mass% of solid content, and can be made into the sludge of 40 mass% or more of solid content. For the purpose.
 上述の課題を解決するため、本発明は、以下の固液分離装置を提供する。 In order to solve the above-described problems, the present invention provides the following solid-liquid separation device.
[1] 濾布、及び前記濾布によって内部が仕切られた濾過器本体を有し、前記濾布の一方の面側の空間であるとともに濾液が排出される空間である2次側空間及び前記濾布の他方の面側の空間であるとともに汚泥が供給される空間である1次側空間が形成された濾過器と、前記2次側空間を減圧することができる減圧手段と、前記1次側空間に汚泥を供給することができる汚泥供給手段と、前記1次側空間に供給する汚泥を加圧することができる汚泥加圧手段と、前記1次側空間に供給された汚泥が前記濾布によって濾過されたときに前記濾布の前記1次側空間側の面である1次側の面に付着した濃縮汚泥を、圧搾することができる汚泥圧搾手段とを備え、前記濾布が、モノフィラメントにより形成された濾布である固液分離装置。 [1] A filter cloth and a filter body having an interior partitioned by the filter cloth, and a secondary side space that is a space on one side of the filter cloth and a space where filtrate is discharged; A filter in which a primary side space which is a space on the other surface side of the filter cloth and to which sludge is supplied is formed, a decompression means capable of decompressing the secondary side space, and the primary Sludge supplying means capable of supplying sludge to the side space, sludge pressurizing means capable of pressurizing the sludge supplied to the primary side space, and sludge supplied to the primary side space comprising the filter cloth And a sludge squeezing means capable of squeezing the concentrated sludge adhering to the primary side surface of the filter cloth when filtered by the filter cloth, wherein the filter cloth is a monofilament The solid-liquid separator which is the filter cloth formed by.
[2] 前記濾布が、ポリアミド樹脂のモノフィラメントにより形成された濾布である[1]に記載の固液分離装置。 [2] The solid-liquid separator according to [1], wherein the filter cloth is a filter cloth formed of monofilaments of polyamide resin.
[3] 前記濾過器の前記濾過器本体は、内部が前記2次側空間となる2つの濾液排出槽を有し、前記濾液排出層が間隔を開けて配置され、更に、前記濾過器本体は、前記2つの濾液排出槽に挟まれるように配置されるとともに内部が1次側空間となる濃縮槽を有し、前記濾過器が、2つの前記濾液排出槽のそれぞれと前記濃縮槽との境界に前記濾布を1枚ずつ備えるとともに、2つの前記濾液排出槽内に、前記濾布を支えるように濾液透過部材を備え、前記汚泥圧搾手段が、前記2つの濾液排出槽が前記1次側空間を狭めて互いに近づくように移動し、前記2枚の濾布のそれぞれの前記1次側の面に付着した濃縮汚泥を、前記2つの濾液排出槽の間に挟んで圧搾する手段である[1]又は[2]に記載の固液分離装置。 [3] The filter body of the filter has two filtrate discharge tanks, the interior of which is the secondary space, and the filtrate discharge layer is disposed at an interval. And a concentrating tank that is disposed so as to be sandwiched between the two filtrate discharge tanks and that has a primary space inside, and the filter is a boundary between each of the two filtrate discharge tanks and the concentration tank. The filter cloth is provided one by one and two filtrate discharge tanks are provided with a filtrate permeable member so as to support the filter cloth, the sludge squeezing means, and the two filtrate discharge tanks are connected to the primary side. It is a means for narrowing the space and moving so as to approach each other, and squeezing the concentrated sludge adhering to the primary side surface of each of the two filter cloths between the two filtrate discharge tanks [ The solid-liquid separation device according to [1] or [2].
 本発明の固液分離装置によれば、濾布がモノフィラメントであるため、1つの固液分離装置(本発明の固液分離装置)を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥(圧搾汚泥)としたときに、濾布によって捕集した(濾布に付着した)固形分(圧搾汚泥)を、容易に剥離させることができる。 According to the solid-liquid separator of the present invention, since the filter cloth is a monofilament, the sludge having a solid content of about 1% by mass is concentrated using one solid-liquid separator (the solid-liquid separator of the present invention). When the solid content is 40% by mass or more of sludge (pressed sludge), the solid content (pressed sludge) collected by the filter cloth (attached to the filter cloth) can be easily peeled off.
 また、2次側空間を減圧することができる減圧手段と、1次側空間に汚泥を供給することができる汚泥供給手段と、1次側空間に供給する汚泥を加圧することができる汚泥加圧手段と、濾布の1次側の面に付着した濃縮汚泥を圧搾することができる汚泥圧搾手段とを備えるため、2次側空間を減圧しながら汚泥を濾過して、濾布の1次側の面に濃縮汚泥を付着させ(吸引濾過工程)、その後、1次側空間内の汚泥を加圧しながら濾過することにより、上記「濾布の1次側の面に付着した濃縮汚泥」の上から更に濃縮汚泥を付着させ(加圧濾過工程)、段階的に加圧することにより新たな付着層を形成しながら旧付着層(吸引濾過工程において生成した付着層及び先の加圧により形成された付着層)を圧縮して緻密化し、最後に、濾布の1次側の面に付着した濃縮汚泥を圧搾して圧搾汚泥を得る(圧搾工程)ことができる。そして、このように、モノフィラメントから形成された濾布に、吸引濾過により汚泥(濃縮汚泥)を付着させ、当該「濾布に付着した濃縮汚泥」の上から更に加圧濾過により濃縮汚泥を付着させる(加圧濾過工程)ため、モノフィラメントから形成された濾布を用いた状態で、1次側空間を加圧しながら汚泥の濾過を行う(加圧濾過工程)ことができる。これは、濾布に付着した濃縮汚泥が、濾布と共に、汚泥中の固形分を捕集する機能を有するためである。これにより、固形分1質量%程度の汚泥から、固形分40質量%以上の汚泥(圧搾汚泥)を得ることができる。 Moreover, the pressure reduction means which can depressurize secondary side space, the sludge supply means which can supply sludge to primary side space, and the sludge pressurization which can pressurize the sludge supplied to primary side space And a sludge squeezing means capable of squeezing the concentrated sludge adhering to the primary side surface of the filter cloth, the sludge is filtered while reducing the secondary side space, and the primary side of the filter cloth By attaching the concentrated sludge to the surface of the filter (suction filtration process) and then filtering the sludge in the primary space while applying pressure, the above "concentrated sludge adhering to the surface of the primary side of the filter cloth" Concentrated sludge is further adhered (pressure filtration process), and a new adhesion layer is formed by pressurizing in stages, while the old adhesion layer (adhesion layer generated in the suction filtration process and the previous pressure was formed) The adhesive layer) is compressed and densified, and finally the primary of the filter cloth It is to squeeze the concentrated sludge adhering to the surface to obtain a compressed sludge (pressing step). Then, the sludge (concentrated sludge) is attached to the filter cloth formed from the monofilament by suction filtration in this way, and the concentrated sludge is further attached by pressure filtration from above the “concentrated sludge attached to the filter cloth”. Therefore, sludge can be filtered while applying pressure to the primary space in a state where a filter cloth formed from a monofilament is used (pressure filtration step). This is because the concentrated sludge adhering to the filter cloth has a function of collecting solids in the sludge together with the filter cloth. Thereby, the sludge (pressed sludge) with a solid content of 40% by mass or more can be obtained from the sludge with a solid content of about 1% by mass.
本発明の固液分離装置の一の実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the solid-liquid separation device of the present invention. 本発明の固液分離装置の一の実施形態における濾過器の断面を示す模式図である。It is a mimetic diagram showing the section of the filter in one embodiment of the solid-liquid separation device of the present invention. 本発明の固液分離装置の一の実施形態における濾過器を模式的に示す側面図である。It is a side view which shows typically the filter in one Embodiment of the solid-liquid separation apparatus of this invention. 本発明の固液分離装置の一の実施形態における濾過器の断面を示すとともに、吸引濾過工程において、濾布の1次側の面に汚泥が付着している状態を示す模式図である。It is a mimetic diagram showing the state where sludge has adhered to the primary side surface of a filter cloth in the suction filtration process while showing the section of the filter in one embodiment of the solid-liquid separation device of the present invention. 本発明の固液分離装置の一の実施形態における濾過器の断面を示すとともに、加圧濾過工程において、濾布の1次側の面に汚泥が付着している状態を示す模式図である。It is a schematic diagram which shows the state in which the sludge has adhered to the surface of the primary side of a filter cloth in a pressure filtration process while showing the cross section of the filter in one Embodiment of the solid-liquid separation apparatus of this invention. 本発明の固液分離装置の一の実施形態における濾過器の断面を示すとともに、圧搾工程において、濃縮汚泥が圧搾される状態を示す模式図である。While showing the cross section of the filter in one embodiment of the solid-liquid separator of this invention, it is a schematic diagram which shows the state by which concentrated sludge is squeezed in a pressing process. 本発明の固液分離装置の一の実施形態における濾過器の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。It is a schematic diagram which shows a mode that the compressed sludge is discharged | emitted in a discharge process while showing the cross section of the filter in one Embodiment of the solid-liquid separation apparatus of this invention. 本発明の固液分離装置の一の実施形態における濾過器の断面を示す模式図である。It is a mimetic diagram showing the section of the filter in one embodiment of the solid-liquid separation device of the present invention. 本発明の固液分離装置の他の実施形態における濾過器及び減圧手段の断面を示す模式図である。It is a schematic diagram which shows the cross section of the filter and pressure reduction means in other embodiment of the solid-liquid separation apparatus of this invention. 実施例3,4の固液分離方法における、濾過時間と濾液量との関係を示すグラフである。It is a graph which shows the relationship between the filtration time and the amount of filtrates in the solid-liquid separation method of Examples 3 and 4. 実施例1で用いられる濾過器の断面を示す模式図である。1 is a schematic diagram showing a cross section of a filter used in Example 1. FIG.
 次に本発明を実施するための形態を図面を参照しながら詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be understood that design changes, improvements, and the like can be made as appropriate based on ordinary knowledge.
(1)固液分離装置:
 本発明の固液分離装置の一の実施形態は、図1に示すように、「濾布1及び「濾布1によって内部が仕切られた濾過器本体2」を有し、濾布1の一方の面(2次側の面7)側の空間であるとともに濾液19が排出される空間である2次側空間5及び濾布1の他方の面側の空間であるとともに汚泥16が供給される空間である1次側空間4が形成された」濾過器3と、「2次側空間5を減圧することができる」減圧手段11と、「1次側空間4に汚泥16を供給することができる」汚泥供給手段12と、「1次側空間4に供給する汚泥16を加圧することができる」汚泥加圧手段13と、「1次側空間4に供給された汚泥16が濾布1によって濾過されたときに濾布1の1次側空間4側の面である1次側の面6に付着した濃縮汚泥を、圧搾することができる」汚泥圧搾手段とを備えるものであり、濾布1は、モノフィラメントにより形成された濾布である。図1は、本発明の固液分離装置の一の実施形態を示す模式図(フロー図)である。尚、図1において、汚泥貯留槽12aは、内部に貯留されている汚泥16が透けて見えるように表現されている。また、濾過器3は、断面を示すように表現されている。また、濾液貯留槽14は、内部に貯留されている濾液19が透けて見えるように表現されている。
(1) Solid-liquid separator:
As shown in FIG. 1, one embodiment of the solid-liquid separation device of the present invention has a “filter cloth 1 and a“ filter body 2 partitioned inside by the filter cloth 1 ”. And the space on the other side of the filter cloth 1 and the sludge 16 are supplied. A filter 3 in which a primary side space 4 that is a space is formed, a decompression unit 11 that can depressurize the secondary side space 5, and a method of supplying the sludge 16 to the primary side space 4. The sludge supplying means 12, the sludge pressurizing means 13 that can pressurize the sludge 16 supplied to the primary side space 4, and the sludge 16 supplied to the primary side space 4 are When filtered, the concentrated sludge adhering to the primary side surface 6 which is the primary side space 4 side surface of the filter cloth 1 is squeezed. DOO can "is intended and a sludge squeezing unit, the filter cloth 1 is a filter cloth which is formed by monofilaments. FIG. 1 is a schematic diagram (flow diagram) showing one embodiment of the solid-liquid separation device of the present invention. In addition, in FIG. 1, the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through. Moreover, the filter 3 is expressed so that a cross section may be shown. Moreover, the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
 このように、本実施形態の固液分離装置100は、濾布がモノフィラメントであるため、濾布によって捕集した(濾布に付着した)固形分(圧搾汚泥)を、容易に剥離させることができる。 Thus, since the filter cloth is a monofilament, the solid-liquid separation apparatus 100 of this embodiment can peel easily the solid content (pressed sludge) collected by the filter cloth (attached to the filter cloth). it can.
 尚、汚泥貯留槽12aと濾過器3の濃縮槽62とが配管で繋がれ、濾過器3の濾液排出槽61と濾液貯留槽14とが配管で繋がれている。各配管及び装置には、必要に応じて、バルブ、計器類が装備されていることが好ましい。 In addition, the sludge storage tank 12a and the concentration tank 62 of the filter 3 are connected by piping, and the filtrate discharge tank 61 and the filtrate storage tank 14 of the filter 3 are connected by piping. Each pipe and device is preferably equipped with valves and instruments as necessary.
 また、濾過器3の2次側空間5を減圧することができる減圧手段11と、1次側空間4に汚泥16を供給することができる汚泥供給手段12と、1次側空間4に供給する汚泥16を加圧することができる汚泥加圧手段13と、濾布1の1次側の面6に付着した濃縮汚泥を圧搾することができる汚泥圧搾手段とを備えるため、2次側空間5を減圧しながら汚泥16を濾過して、濾布1の1次側の面6に濃縮汚泥を付着させ(吸引濾過工程)、その後、1次側空間内の汚泥(1次側空間に供給された汚泥)を加圧しながら濾過することにより、上記「濾布1の1次側の面6に付着した濃縮汚泥」の上から更に濃縮汚泥を付着させ(加圧濾過工程)、最後に、濾布1の1次側の面6に付着した濃縮汚泥を圧搾して圧搾汚泥を得る(圧搾工程)ことができる。そして、このように、モノフィラメントから形成された濾布1に、吸引濾過により汚泥(濃縮汚泥)を付着させ、当該「濾布1に付着した濃縮汚泥」の上から更に加圧濾過により濃縮汚泥を付着させる(加圧濾過工程)ため、モノフィラメントから形成された濾布1を用いた状態で、1次側空間4を加圧しながら汚泥16の濾過を行う(加圧濾過工程)ことができる。これは、濾布1に付着した濃縮汚泥が、濾布1と共に、汚泥中の固形分を捕集する機能を有するためである。これにより、固形分1質量%程度の汚泥から、固形分40質量%以上の汚泥(圧搾汚泥)を得ることができる。 Further, the pressure reducing means 11 that can depressurize the secondary side space 5 of the filter 3, the sludge supplying means 12 that can supply the sludge 16 to the primary side space 4, and the primary side space 4 are supplied. In order to provide the sludge pressurizing means 13 that can pressurize the sludge 16 and the sludge pressing means that can squeeze the concentrated sludge adhering to the primary side surface 6 of the filter cloth 1, the secondary side space 5 is provided. The sludge 16 is filtered while reducing the pressure, and the concentrated sludge is attached to the primary side surface 6 of the filter cloth 1 (suction filtration step), and then the sludge in the primary side space (supplied to the primary side space). Concentrated sludge is further adhered from above the “concentrated sludge adhering to the primary side surface 6 of the filter cloth 1” by pressurizing the sludge (pressure sludge process), and finally the filter cloth. Squeezing the concentrated sludge adhering to the primary side surface 6 of 1 to obtain a compressed sludge (squeezing step) It can be. In this way, sludge (concentrated sludge) is attached to the filter cloth 1 formed from monofilament by suction filtration, and the concentrated sludge is further filtered by pressure filtration from above the “concentrated sludge attached to the filter cloth 1”. In order to make it adhere (pressure filtration process), sludge 16 can be filtered (pressure filtration process) while pressurizing primary side space 4 in the state using filter cloth 1 formed from monofilament. This is because the concentrated sludge adhering to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1. Thereby, the sludge (pressed sludge) with a solid content of 40% by mass or more can be obtained from the sludge with a solid content of about 1% by mass.
(1-1)濾過器;
 本実施形態の固液分離装置100において、濾過器3は、図1、図2A及び図2Bに示すように、濾布1及び「濾布1によって内部が仕切られた濾過器本体2」を有するものである。そして、濾布1の一方の面側の空間であるとともに濾液19が排出される空間である2次側空間5及び濾布1の他方の面側の空間であるとともに汚泥16が供給される空間(汚泥16が流入する空間)である1次側空間4が形成されている。更に、本実施形態の固液分離装置100における濾過器3は、濾過器本体2が、内部が2次側空間5となる2つの濾液排出槽61,61を有し、前記濾液排出層61,61が間隔を開けて配置され、更に、濾過器本体2は、2つの濾液排出槽61,61に挟まれるように配置されるとともに内部が1次側空間4となる濃縮槽62を有するものである。そして、濾過器3は、2つの濾液排出槽61,61のそれぞれと濃縮槽62との境界に濾布1を1枚ずつ備えるとともに、2つの濾液排出槽61,61内に、濾布1,1を支えるように濾液透過部材63,63を備えるものである。図2Aは、本発明の固液分離装置の一の実施形態における濾過器3の断面を示す模式図である。図2Bは、本発明の固液分離装置の一の実施形態における濾過器3を模式的に示す側面図である。
(1-1) Filter;
In the solid-liquid separation device 100 of the present embodiment, the filter 3 includes a filter cloth 1 and a “filter body 2 whose interior is partitioned by the filter cloth 1”, as shown in FIGS. 1, 2A and 2B. Is. The space on one side of the filter cloth 1 and the space on the other side of the filter cloth 1 and the space 5 on which the filtrate 19 is discharged and the space on which the sludge 16 is supplied. A primary side space 4 that is (a space into which the sludge 16 flows) is formed. Furthermore, the filter 3 in the solid-liquid separation device 100 of the present embodiment includes the filter body 2 having two filtrate discharge tanks 61 and 61 in which the inside becomes the secondary space 5, and the filtrate discharge layer 61, 61 is disposed at an interval, and the filter body 2 has a concentrating tank 62 which is disposed so as to be sandwiched between two filtrate discharge tanks 61 and 61 and whose inside is the primary space 4. is there. The filter 3 includes one filter cloth 1 at the boundary between each of the two filtrate discharge tanks 61 and 61 and the concentration tank 62, and at the same time, the filter cloth 1 1 are provided with filtrate permeating members 63 and 63 so as to support 1. FIG. 2A is a schematic view showing a cross section of the filter 3 in one embodiment of the solid-liquid separation device of the present invention. FIG. 2B is a side view schematically showing the filter 3 in one embodiment of the solid-liquid separation device of the present invention.
 2つの濾液排出槽61,61は、互いに対向する壁65,65に開口部65a,65aが形成されるとともに内部が中空に形成された四角柱(筒)状の槽であり、当該開口部65a,65aを塞ぐように濾布1,1が配設されたものである。そして、濃縮槽62は、「2つの濾液排出槽61,61の互いに対向する壁65,65及び濾布1,1」と、「2つの濾液排出槽61,61の間の空間(1次側空間4)を囲むように「2つの濾液排出槽61,61の互いに対向する壁65,65」の外縁に沿って配設された胴体部64」とにより形成されている。従って、2つの濾液排出槽61,61の互いに対向する壁65,65及び濾布1,1は、濃縮槽62の一部にもなっている。また、濃縮槽62には、汚泥16を内部に流入させるための流入口71が形成され、流入口71には流入ノズル71aが配設されている。そして、濾液排出槽61には、濾液19を外部に流出させるための流出口72が形成されて、流出口72には流出ノズル72aが配設されている。 The two filtrate discharge tanks 61 and 61 are square column (tubular) tanks having openings 65a and 65a formed in the walls 65 and 65 facing each other and hollow inside, and the openings 65a. , 65a are provided with filter cloths 1 and 1 so as to block them. Then, the concentration tank 62 is composed of “the walls 65 and 65 and the filter cloths 1 and 1 facing each other of the two filtrate discharge tanks 61 and 61” and “the space between the two filtrate discharge tanks 61 and 61 (primary side). The body portion 64 is formed so as to surround the space 4) along the outer edge of “the two opposite walls 65, 65 of the two filtrate discharge tanks 61, 61”. Accordingly, the opposing walls 65 and 65 and the filter cloths 1 and 1 of the two filtrate discharge tanks 61 and 61 are also part of the concentration tank 62. The concentration tank 62 is formed with an inlet 71 for allowing the sludge 16 to flow inside, and the inlet 71 is provided with an inlet nozzle 71a. The filtrate discharge tank 61 is formed with an outlet 72 for allowing the filtrate 19 to flow outside. The outlet 72 is provided with an outlet nozzle 72a.
 濾液排出槽61内に配設されている濾液透過部材63は、内部を濾液が透過する構造物である。濾液透過部材63は、加圧に対して大きな変形を生じることが無い程度の剛性を有しつつ、濾液を容易に通過させることができるものである。濾液透過部材63としては、ステンレス鋼等の金属線により3次元的に形成された金網、「セラミック、合成樹脂等」から形成され「厚さ方向に複数の貫通孔が形成された」板など、を用いることができる。 The filtrate permeable member 63 disposed in the filtrate discharge tank 61 is a structure through which the filtrate passes. The filtrate permeable member 63 is capable of allowing the filtrate to pass through easily while having a rigidity that does not cause a large deformation with respect to pressure. As the filtrate permeable member 63, a metal mesh formed three-dimensionally with a metal wire such as stainless steel, a plate formed of “ceramic, synthetic resin, etc.” and “formed with a plurality of through holes in the thickness direction”, etc. Can be used.
 また、濃縮槽62の外周を形成する胴体部64は筒状に形成されており、一方の端部が一方の濾液排出槽61の上記「対向する壁65」に接合され、他方の端部が他方の濾液排出槽61の上記「対向する壁65」に接合されて、内部に1次側空間4が形成されている。更に、胴体部64は、2つの濾液排出槽61,61を近づけるように移動させたり、2つの濾液排出槽61,61を遠ざけるように移動させたりすることができるように、伸縮可能に形成されている。また、図2A、図2Bに示すように、筒状の胴体部64の中心軸が水平方向を向くようにして、濾過器3が配置された場合における、胴体部64の鉛直方向下側に、開閉部73が形成されている。開閉部73は、吸引濾過工程、加圧濾過工程及び圧搾工程においては、閉じた状態であるが、排出工程において、2つの濾液排出槽61,61を遠ざけるように移動させて胴体部64を伸ばしたときに、開口する部分である。そして、排出工程において、圧搾汚泥が「開口した開閉部73」より排出される。開閉部73は、胴体部64に形成された「切り込み」であることが好ましい。 Further, the body part 64 forming the outer periphery of the concentration tank 62 is formed in a cylindrical shape, and one end part is joined to the “opposing wall 65” of one filtrate discharge tank 61, and the other end part is The primary space 4 is formed inside by joining to the “facing wall 65” of the other filtrate discharge tank 61. Further, the body portion 64 is formed to be extendable so that the two filtrate discharge tanks 61 and 61 can be moved closer to each other and the two filtrate discharge tanks 61 and 61 can be moved away from each other. ing. Further, as shown in FIGS. 2A and 2B, on the lower side in the vertical direction of the body portion 64 when the filter 3 is arranged so that the central axis of the cylindrical body portion 64 faces the horizontal direction, An opening / closing part 73 is formed. The opening / closing part 73 is in a closed state in the suction filtration process, the pressure filtration process and the compression process, but in the discharge process, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64. It is the part that opens when In the discharging step, the compressed sludge is discharged from the “opening / closing portion 73”. The opening / closing part 73 is preferably a “cut” formed in the body part 64.
 本実施形態の固液分離装置100においては、流入口71から汚泥16が濃縮槽62内(1次側空間4)に流入し、汚泥16が濾布1によって濾過されて、濾液19が濾液排出槽61内(2次側空間5)に流入し、固形分(濃縮汚泥)は、濾布1の1次側の面6に付着し、濾液排出槽61内(2次側空間5)に流入した濾液19は、流出口72から外部に流出する。固液分離を行う汚泥は、浄水場において上水(水道水)を作製する時に排出される汚泥であって、固形分濃度が0.7~2.0質量%であることが好ましい。 In the solid-liquid separator 100 of this embodiment, the sludge 16 flows into the concentration tank 62 (primary space 4) from the inlet 71, the sludge 16 is filtered by the filter cloth 1, and the filtrate 19 is discharged from the filtrate. The solid (concentrated sludge) flows into the tank 61 (secondary space 5), adheres to the primary surface 6 of the filter cloth 1, and flows into the filtrate discharge tank 61 (secondary space 5). The filtrate 19 thus discharged flows out from the outlet 72. The sludge to be subjected to solid-liquid separation is sludge that is discharged when producing clean water (tap water) in a water purification plant, and preferably has a solid content concentration of 0.7 to 2.0% by mass.
 本実施形態の固液分離装置100においては、濾布1が、ポリアミド樹脂のモノフィラメントにより形成された濾布であることが好ましく、ナイロンのモノフィラメントにより形成された濾布であることが更に好ましく、ナイロン6のモノフィラメントにより形成された濾布であることが特に好ましい。濾布1を、ポリアミド樹脂のモノフィラメントにより形成されたものとすることにより、圧搾汚泥の剥離性が良好になり、目詰まりを抑制することができる。 In the solid-liquid separation device 100 of this embodiment, the filter cloth 1 is preferably a filter cloth formed of monofilaments of polyamide resin, more preferably a filter cloth formed of nylon monofilaments, and nylon. A filter cloth formed by 6 monofilaments is particularly preferred. When the filter cloth 1 is formed of a monofilament of polyamide resin, the peelability of the compressed sludge becomes good and clogging can be suppressed.
 また、濾布の通気度は、20~90(cm/(cm・秒))であることが好ましい。通気度が、20(cm/(cm・秒))より小さいと、濾液が透過し難くなることがある。通気度が、90(cm/(cm・秒))より大きいと、汚泥中の固形分が通過し易くなることがある。濾布の通気度は1次側から2次側に向かって濾布を通過する、単位面積、単位時間当りの空気量を測定した値である。濾布1の編み方は、特に限定されないが、例えば、朱子織が好ましい。朱子織にすることにより、圧搾汚泥の剥離性が良好になり、目詰まりを抑制することができる。 The air permeability of the filter cloth is preferably 20 to 90 (cm 3 / (cm 2 · sec)). If the air permeability is smaller than 20 (cm 3 / (cm 2 · sec)), the filtrate may not easily permeate. If the air permeability is greater than 90 (cm 3 / (cm 2 · sec)), the solid content in the sludge may easily pass. The air permeability of the filter cloth is a value obtained by measuring the amount of air per unit area and unit time passing through the filter cloth from the primary side to the secondary side. Although the method of knitting the filter cloth 1 is not particularly limited, for example, satin weave is preferable. By using a satin weave, the peelability of the compressed sludge is improved, and clogging can be suppressed.
 図2A、図2Bに示される、本実施形態の固液分離装置100を構成する濾過器3の大きさは、特に限定されず、工業的な使用に際しては、浄水場や下水処理場における処理量に対応する大きさであることが好ましい。また、濾液排出槽61の材質は特に限定されず、ステンレス鋼等を好適に用いることができる。濃縮槽62の胴体部64の材質は、伸縮可能な材質であることが好ましく、具体的には、ゴム、合成樹脂、金属等が好ましい。また、2つの濾液排出層に配設された2枚の濾布を、「当該2枚の濾布が繋げられた状態」の1枚の濾布又は「当該2枚の濾布を含む(構成要素とする)袋状」の濾布とし、当該濾布の一部によって、胴体部の一部又は全部が形成されるようにしてもよい。また、濾過器3は、耐圧構造であることが好ましい。 The magnitude | size of the filter 3 which comprises the solid-liquid separation apparatus 100 of this embodiment shown by FIG. 2A and FIG. 2B is not specifically limited, In the case of industrial use, the processing amount in a water purification plant or a sewage treatment plant It is preferable that the size corresponds to. Moreover, the material of the filtrate discharge tank 61 is not specifically limited, Stainless steel etc. can be used suitably. The material of the body portion 64 of the concentration tank 62 is preferably a stretchable material, and specifically, rubber, synthetic resin, metal, and the like are preferable. Further, the two filter cloths arranged in the two filtrate discharge layers include one filter cloth in a “state in which the two filter cloths are connected” or “the two filter cloths (configuration) A bag-like "filter cloth" may be used, and a part or all of the body portion may be formed by a part of the filter cloth. Moreover, it is preferable that the filter 3 is a pressure | voltage resistant structure.
 本実施形態の固液分離装置100においては、2つの濾液排出槽61を有するが、濾液排出槽は1つであってもよい。その場合、図2Aに示す濾過器3の構造としては、例えば、2つの濾液排出槽61の一方が、他方の濾液排出槽61の濾布1を押圧することができる圧搾用の板であることが好ましい。そして、この場合、濾布1も一枚になる。 In the solid-liquid separation device 100 of the present embodiment, the two filtrate discharge tanks 61 are provided, but one filtrate discharge tank may be provided. In that case, as a structure of the filter 3 shown in FIG. 2A, for example, one of the two filtrate discharge tanks 61 is a pressing plate that can press the filter cloth 1 of the other filtrate discharge tank 61. Is preferred. In this case, the filter cloth 1 is also a single sheet.
(1-2)減圧手段;
 本実施形態の固液分離装置100において、減圧手段11は、2次側空間を減圧することができるものであり、図1に示すように、真空ポンプ11aを用いている。減圧手段としては、真空ポンプ以外に、サイホン管等のサイホンの原理を用いて減圧する装置等を挙げることができる。
(1-2) Pressure reducing means;
In the solid-liquid separation device 100 of the present embodiment, the decompression means 11 can decompress the secondary space, and uses a vacuum pump 11a as shown in FIG. As the decompression means, in addition to the vacuum pump, a device for decompressing using a siphon principle such as a siphon tube can be exemplified.
 本実施形態の固液分離装置100においては、図1に示すように、減圧手段11は濾液貯留槽14に接続され、濾液貯留槽14を介して濾過器3の2次側空間5を減圧するように構成されている。 In the solid-liquid separation device 100 of the present embodiment, as shown in FIG. 1, the decompression means 11 is connected to the filtrate storage tank 14 and decompresses the secondary side space 5 of the filter 3 via the filtrate storage tank 14. It is configured as follows.
 減圧手段11によって、濾過器3の2次側空間5は、-0.08~-0.02MPa(ゲージ圧)の圧力に減圧できることが好ましい。 It is preferable that the secondary space 5 of the filter 3 can be reduced to a pressure of −0.08 to −0.02 MPa (gauge pressure) by the pressure reducing means 11.
 減圧手段としては、図8に示されるような、サイホン管74を用いてもよい。図8に示される濾過器3aは、減圧手段11としてサイホン管74を用い、サイホンの原理によって、濾過器3aの2次側空間5を減圧するものである。また、減圧手段として、真空ポンプとサイホン管の2つを備え、各工程に合わせて、使い分ける(より好ましいものを使用する)ようにしてもよい。図8は、本発明の固液分離装置の他の実施形態に用いる濾過器3a及び減圧手段11(サイホン管74)の断面を示す模式図である。 As the decompression means, a siphon tube 74 as shown in FIG. 8 may be used. The filter 3a shown in FIG. 8 uses a siphon tube 74 as the pressure reducing means 11, and depressurizes the secondary space 5 of the filter 3a according to the principle of siphon. Further, as the pressure reducing means, two vacuum pumps and siphon tubes may be provided, and they may be used properly (more preferably used) according to each step. FIG. 8 is a schematic view showing a cross section of the filter 3a and the decompression means 11 (siphon tube 74) used in another embodiment of the solid-liquid separation device of the present invention.
(1-3)汚泥供給手段;
 図1に示すように、本実施形態の固液分離装置100において、汚泥供給手段12は、1次側空間4に汚泥を供給することができるものである。そして、汚泥供給手段12は、濾過器3の鉛直方向上方に配置された汚泥貯留槽12aである。これは、濾過器3の鉛直方向上方に汚泥貯留槽12aを配置することにより、重力により汚泥貯留槽12aから濾過器3に汚泥16を供給するものである。
(1-3) Sludge supply means;
As shown in FIG. 1, in the solid-liquid separation device 100 of this embodiment, the sludge supply means 12 can supply sludge to the primary side space 4. And the sludge supply means 12 is the sludge storage tank 12a arrange | positioned in the vertical direction upper direction of the filter 3. FIG. This is to supply the sludge 16 from the sludge storage tank 12a to the filter 3 by gravity by disposing the sludge storage tank 12a above the filter 3 in the vertical direction.
 また、汚泥供給手段は、図1に示すような、上記「濾過器3の鉛直方向上方に配置された汚泥貯留槽12a」であってもよいが、「汚泥貯留槽12a」と、汚泥貯留槽12a内の汚泥を濾過器3に送液するための「ポンプ等」とから構成されるものであることが、より好ましい。汚泥供給手段が、「汚泥貯留槽12a」と、「汚泥貯留槽12a内の汚泥を濾過器3に送液するための「ポンプ等」」とから構成される場合、汚泥貯留槽12aからポンプ等を用いて汚泥を濾過器3に供給することができる。このとき、加圧ポンプを用いて、汚泥を加圧しながら濾過器3に供給することが好ましい。 Further, the sludge supply means may be the “sludge storage tank 12a disposed above the filter 3 in the vertical direction” as shown in FIG. 1, but the “sludge storage tank 12a” and the sludge storage tank. It is more preferable that the sludge in 12a is composed of a “pump or the like” for sending the sludge to the filter 3. When the sludge supply means is composed of “sludge storage tank 12 a” and “a“ pump or the like ”for feeding the sludge in the sludge storage tank 12 a to the filter 3”, a pump or the like from the sludge storage tank 12 a The sludge can be supplied to the filter 3 using At this time, it is preferable to supply the filter 3 while pressurizing sludge using a pressure pump.
 また、汚泥供給手段は、汚泥貯留槽12aと後述する汚泥加圧手段13とから構成されるものであることも好ましい態様である。この場合、汚泥加圧手段13は、汚泥加圧手段であるとともに、汚泥供給手段の一部でもあることになる。これにより、汚泥加圧手段13によって汚泥貯留槽12a内(汚泥貯留槽12a内の汚泥)を適当な圧力で加圧し、汚泥加圧手段13の加圧によって汚泥貯留槽12a内の汚泥を濾過器3に供給することができる。 It is also a preferred aspect that the sludge supply means is composed of a sludge storage tank 12a and a sludge pressurizing means 13 described later. In this case, the sludge pressurizing means 13 is a sludge pressurizing means and a part of the sludge supply means. Thus, the sludge pressurizing means 13 pressurizes the sludge storage tank 12a (sludge in the sludge storage tank 12a) at an appropriate pressure, and the sludge pressurizing means 13 pressurizes the sludge in the sludge storage tank 12a through the filter. 3 can be supplied.
 汚泥貯留槽12aの大きさは、特に限定されず、処理すべき汚泥の量等によって、適宜決定することができる。また、汚泥貯留槽12aの材質は、特に限定されないが、ステンレス鋼、塩化ビニル等を好適に用いることができる。汚泥供給手段が、「濾過器3の鉛直方向上方に配置された汚泥貯留槽12aである場合」、及び「汚泥貯留槽12aと汚泥加圧手段13とから構成される場合」には、汚泥排出口12cに接続された配管が、直接、濾過器3に接続されることになる。また、汚泥供給手段が、「汚泥貯留槽12a」と、「汚泥貯留槽12a内の汚泥を濾過器3に送液するためのポンプ等」とから構成される場合、汚泥排出口12cに接続された配管が、「ポンプ等」を介して濾過器3に接続されることになる。尚、汚泥貯留槽12a内に汚泥を供給する際には、汚泥は、汚泥受入口12bから供給されることが好ましい。また、汚泥貯留槽12aは、耐圧構造であり、気密性が高いことが好ましい。これにより、汚泥貯留槽12a内を加圧して、汚泥を濾過器3に供給することができる。ここで、耐圧構造とは、原液(汚泥)を濾過器3に供給する際の圧力に耐え得る構造のことである。 The size of the sludge storage tank 12a is not particularly limited, and can be appropriately determined depending on the amount of sludge to be processed. Moreover, although the material of the sludge storage tank 12a is not specifically limited, Stainless steel, vinyl chloride, etc. can be used suitably. In the case where the sludge supply means is “the sludge storage tank 12a disposed vertically above the filter 3” and “the sludge supply tank 12a and the sludge pressurizing means 13 are configured”, the sludge discharge The pipe connected to the outlet 12c is directly connected to the filter 3. Further, when the sludge supply means is constituted by “sludge storage tank 12a” and “a pump or the like for feeding the sludge in the sludge storage tank 12a to the filter 3”, it is connected to the sludge discharge port 12c. The pipe is connected to the filter 3 via a “pump or the like”. In addition, when supplying sludge in the sludge storage tank 12a, it is preferable that sludge is supplied from the sludge receiving port 12b. Moreover, the sludge storage tank 12a is a pressure | voltage resistant structure, and it is preferable that airtightness is high. Thereby, the inside of the sludge storage tank 12a can be pressurized, and sludge can be supplied to the filter 3. FIG. Here, the pressure-resistant structure is a structure that can withstand the pressure when supplying the stock solution (sludge) to the filter 3.
(1-4)汚泥加圧手段;
 図1に示すように、本実施形態の固液分離装置100において、汚泥加圧手段13は、1次側空間4に供給する汚泥を加圧することができるものである。汚泥加圧手段13としては、空気、「窒素等の不活性ガス」等のボンベ、空気圧縮装置(コンプレッサー)等を用いることができる。
(1-4) Sludge pressurizing means;
As shown in FIG. 1, in the solid-liquid separation device 100 of the present embodiment, the sludge pressurizing means 13 can pressurize the sludge supplied to the primary side space 4. As the sludge pressurizing means 13, air, a cylinder such as “inert gas such as nitrogen”, an air compressor (compressor), or the like can be used.
 汚泥加圧手段13は、汚泥16を濾過器3の1次側空間4内に供給する際に、汚泥16を加圧した状態で1次側空間4内に供給しながら濾過(加圧濾過)を行うために用いるものである。汚泥16を加圧手段13により加圧する際には、図1に示すように、加圧手段13によって「汚泥が貯留された汚泥貯留槽12a」内を加圧することにより、汚泥貯留槽12a内の汚泥16を加圧することが好ましい。この場合、加圧手段13から、加圧された「空気、窒素等の加圧媒体」が、汚泥貯留槽12aに送られることにより、汚泥貯留槽12a内(汚泥貯留槽12a内の汚泥)が加圧される。 When supplying the sludge 16 into the primary space 4 of the filter 3, the sludge pressurizing means 13 performs filtration (pressure filtration) while supplying the sludge 16 into the primary space 4 in a pressurized state. It is used for performing. When pressurizing the sludge 16 by the pressurizing means 13, as shown in FIG. 1, the inside of the sludge storage tank 12a is pressurized by pressurizing the "sludge storage tank 12a in which sludge is stored" by the pressurizing means 13. It is preferable to pressurize the sludge 16. In this case, the pressurized “pressurizing medium such as air or nitrogen” is sent from the pressurizing means 13 to the sludge storage tank 12a, whereby the sludge storage tank 12a (sludge in the sludge storage tank 12a) Pressurized.
 加圧濾過工程においては、図1に示すように、「加圧手段13によって、濾過器3の1次側空間4に供給する汚泥16を加圧する」際に、圧力調整手段13aによって、汚泥の圧力を段階的に上昇させることが好ましい。圧力調整手段13aとしては、圧力調整弁を挙げることができる。圧力調整手段13aは、加圧手段13と汚泥貯留槽12aとを繋ぐ、配管に設けられていることが好ましい。また、圧力調整手段13aは、加圧手段13の下流側に設けることにより、汚泥貯留槽12aに供給されるガスの圧力を、段階的に加圧することができるもの(調整弁等)であることが好ましい。 In the pressure filtration step, as shown in FIG. 1, when the “sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the pressurizing means 13”, the pressure adjusting means 13 a performs sludge removal. It is preferable to increase the pressure stepwise. An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the pressurization means 13 and the sludge storage tank 12a. Further, the pressure adjusting means 13a is provided on the downstream side of the pressurizing means 13 so that the pressure of the gas supplied to the sludge storage tank 12a can be increased stepwise (such as an adjusting valve). Is preferred.
(1-5)圧搾手段;
 本実施形態の固液分離装置100において、汚泥圧搾手段は、「1次側空間に供給された汚泥が濾布によって濾過されたときに濾布の1次側空間側の面である1次側の面に付着した」濃縮汚泥を、圧搾することができるものである。本実施形態の固液分離装置100においては、汚泥圧搾手段は、2つの濾液排出槽61,61が1次側空間4を狭めて互いに近づくように移動し、2枚の濾布1,1のそれぞれの1次側の面6,6に付着した濃縮汚泥を、2つの濾液排出槽61,61の間に挟んで圧搾する手段(機構)である。
(1-5) pressing means;
In the solid-liquid separator 100 of the present embodiment, the sludge squeezing means is “a primary side that is a surface on the primary side space side of the filter cloth when the sludge supplied to the primary side space is filtered by the filter cloth. It is possible to squeeze the concentrated sludge attached to the surface. In the solid-liquid separation device 100 of the present embodiment, the sludge squeezing means moves so that the two filtrate discharge tanks 61 and 61 are close to each other by narrowing the primary side space 4. It is a means (mechanism) which squeezes the concentrated sludge adhering to each primary side surface 6, 6 by sandwiching it between two filtrate discharge tanks 61, 61.
 圧搾手段により、固形分濃度9~16質量%の濃縮汚泥から、固形分濃度40~45質量%の圧搾汚泥を得ることができる。 Compressed sludge having a solid content concentration of 40 to 45% by mass can be obtained from the concentrated sludge having a solid content concentration of 9 to 16% by mass.
 濾布1に付着した濃縮汚泥は、2枚の、「2次側の面7側が濾液透過部材63で支えられた濾布1」に、挟まれて圧搾される。濃縮汚泥の圧搾により排出される濾液は、濾布1を透過して1次側空間4に流入し、流出口72から排出される。また、2枚の濾布1,1に挟まれて水分(濾液)が搾り出された濃縮汚泥は、圧搾汚泥18(図5参照)になる。 The concentrated sludge adhering to the filter cloth 1 is sandwiched and compressed between two “filter cloths 1 whose secondary surface 7 side is supported by the filtrate permeable member 63”. The filtrate discharged by pressing the concentrated sludge passes through the filter cloth 1 and flows into the primary space 4 and is discharged from the outlet 72. Moreover, the concentrated sludge from which water (filtrate) is squeezed out between the two filter cloths 1 and 1 becomes the compressed sludge 18 (see FIG. 5).
 本実施形態の固液分離装置100においては、濾過器3は、濾液排出槽61を移動させる構造を有していることが好ましい。濾液排出槽61を移動させる構造としては、例えば、図7に示すように、各濾液排出槽61に配設された支持部77と、支持部77の先端が移動可能に取り付けられたガイド部76とを備える移動機構75を挙げることができる。移動機構75の個数及び取り付け位置は、特に限定されないが、各濾液排出槽61を安定して支えることができる本数及び位置であることが好ましい。図7に示すように、各濾液排出槽61に2本ずつの支持部77を、それぞれ対向する壁(2次側空間を間に挟む2つの壁)に取り付けることも好ましい態様である。また、支持部77を取り付ける「対向する壁」は、鉛直方向上側の壁と、鉛直方向下側の壁であることが好ましい。濾液排出層61に、上記のような移動機構75が配設されていると、支持部77の先端がガイド部76に沿って移動することにより、支持部77が取り付けられた濾液排出層61は支持部77と共に移動することができる。図7は、本発明の固液分離装置の一の実施形態における濾過器53の断面を示す模式図である。 In the solid-liquid separation device 100 of the present embodiment, the filter 3 preferably has a structure for moving the filtrate discharge tank 61. As a structure for moving the filtrate discharge tank 61, for example, as shown in FIG. 7, a support part 77 disposed in each filtrate discharge tank 61 and a guide part 76 to which the tip of the support part 77 is movably attached. And a moving mechanism 75 comprising: The number and the mounting position of the moving mechanism 75 are not particularly limited, but it is preferable that the number and the position can stably support each filtrate discharge tank 61. As shown in FIG. 7, it is also a preferable aspect that two support portions 77 are attached to each of the filtrate discharge tanks 61 on opposing walls (two walls sandwiching the secondary space). Moreover, it is preferable that the “facing walls” to which the support portion 77 is attached are a wall on the upper side in the vertical direction and a wall on the lower side in the vertical direction. When the moving mechanism 75 as described above is provided in the filtrate discharge layer 61, the tip of the support part 77 moves along the guide part 76, so that the filtrate discharge layer 61 to which the support part 77 is attached is It can move together with the support part 77. FIG. 7 is a schematic view showing a cross section of the filter 53 in one embodiment of the solid-liquid separation device of the present invention.
 支持部77の形状は、特に限定されないが、例えば、棒状又は板状の部材の先端に車輪が配設されたもの等を挙げることができる。支持部77の材質は、特に限定されないが、ステンレス鋼等挙げることができる。ガイド部76の形状は、特に限定されないが、支持部77の先端に車輪が配設されている場合、当該車輪によって支持部77が移動できるようなレールを有する形状であることが好ましい。 The shape of the support portion 77 is not particularly limited, and examples thereof include a member in which a wheel is disposed at the tip of a rod-like or plate-like member. Although the material of the support part 77 is not specifically limited, Stainless steel etc. can be mentioned. Although the shape of the guide part 76 is not specifically limited, When the wheel is arrange | positioned at the front-end | tip of the support part 77, it is preferable that it is a shape which has a rail which the support part 77 can move with the said wheel.
 また、圧搾手段は、汚泥を加圧しながら、汚泥表面(濾布表面)上を移動する「ローラー」であってもよい。 Further, the pressing means may be a “roller” that moves on the sludge surface (filter cloth surface) while pressurizing the sludge.
 尚、圧搾手段により濃縮汚泥を圧搾して圧搾汚泥を形成した後に、「圧搾汚泥を濾布から剥がして排出する」、排出手段を有していることが好ましい。本実施形態の固液分離装置100においては、濾過器3の濾液排出層61を図6に示すように、互いに離れる方向に移動させる機構が排出手段となる。濾液排出層61を図6に示すように、互いに離れる方向に移動させることにより、圧搾汚泥が、濾布から剥れて、開口した開閉部73から外部に排出される。このような排出手段を用いて、圧搾汚泥を濾過器3の外部に排出する工程を排出工程と称する。また、濾液排出層61を互いに離れる方向に移動させた後に(及び/又は、移動させながら)、2次側空間から1次側空間に向かって(濾布1を通過するように)圧縮空気を流し、当該圧縮空気によって圧搾汚泥18を濾布1から剥離させることも好ましい態様である。そのため、本発明の固液分離装置は、ボンベ、コンプレッサ等により、圧縮空気を、2次側空間に供給できるように構成されていることが好ましい。図6は、本発明の固液分離装置の一の実施形態における濾過器3の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。 In addition, after squeezing the concentrated sludge by the squeezing means to form the squeezed sludge, it is preferable to have a discharging means for “peeling and discharging the squeezed sludge from the filter cloth”. In the solid-liquid separation device 100 of the present embodiment, a mechanism for moving the filtrate discharge layer 61 of the filter 3 in directions away from each other as shown in FIG. As shown in FIG. 6, the filtrate discharge layer 61 is moved away from each other, so that the compressed sludge is peeled off from the filter cloth and discharged to the outside from the openable opening / closing part 73. A process of discharging the compressed sludge to the outside of the filter 3 using such a discharge means is referred to as a discharge process. In addition, after the filtrate discharge layer 61 is moved in the direction away from each other (and / or moved), compressed air is moved from the secondary side space toward the primary side space (so as to pass through the filter cloth 1). It is also a preferable aspect that the compressed sludge 18 is peeled off from the filter cloth 1 with the compressed air. Therefore, the solid-liquid separation device of the present invention is preferably configured so that compressed air can be supplied to the secondary space by a cylinder, a compressor, or the like. FIG. 6 is a schematic view showing a cross section of the filter 3 in one embodiment of the solid-liquid separation device of the present invention and showing how the compressed sludge is discharged in the discharging step.
 また、本発明の固液分離装置における濾過器としては、下記実施例において使用した、図10に示す濾過器83を用いることができる。 Further, as the filter in the solid-liquid separator of the present invention, the filter 83 shown in FIG. 10 used in the following examples can be used.
(2)固液分離方法:
 次に、上記本発明の固液分離装置の一の実施形態を用いて汚泥を固液分離する方法である、固液分離方法について説明する。
(2) Solid-liquid separation method:
Next, a solid-liquid separation method, which is a method for solid-liquid separation of sludge using one embodiment of the solid-liquid separation apparatus of the present invention, will be described.
 本発明の固液分離装置の一の実施形態を用いた固液分離方法は、図1~2Bに示される固液分離装置100を用いて固液分離を行う方法であり、「濾布1の一方の面(2次側の面7)側の空間である2次側空間5を減圧しながら、上記濾布1の他方の面側の空間である1次側空間4に汚泥を供給して、上記濾布1によって汚泥を濾過し、上記濾布1の上記「他方の面」である1次側の面6に濃縮汚泥(初期濃縮汚泥)を付着させる」吸引濾過工程と、「上記2次側空間5を減圧するとともに、上記1次側空間6に、汚泥を供給するとともに加圧して、上記濾布1によって汚泥を濾過し、上記濾布1の1次側の面6に付着した濃縮汚泥(初期濃縮汚泥)の上から更に汚泥を加圧供給して、初期濃縮汚泥の表面に濃縮汚泥(2層目濃縮汚泥)を付着させる」加圧濾過工程と、「上記濾布1の1次側の面6に付着した濃縮汚泥を圧搾して圧搾汚泥を得る」圧搾工程と、「圧搾汚泥を上記濾布1から剥離させる」排出工程とを有するものであることが好ましい。尚、「1次側空間に、汚泥を供給するとともに加圧する」とは、1次側空間に、「汚泥を加圧しながら供給する」か、又は「汚泥を供給した後に汚泥を加圧する」ことを意味する。また、「汚泥を加圧しながら供給する」場合も、「汚泥を供給した後に汚泥を加圧する」場合も、1次側空間内が加圧され、その圧力により濾液が濾布を通過して2次側空間に押し出される状態となる。 The solid-liquid separation method using one embodiment of the solid-liquid separation device of the present invention is a method of performing solid-liquid separation using the solid-liquid separation device 100 shown in FIGS. Sludge is supplied to the primary side space 4 which is the space on the other side of the filter cloth 1 while the secondary side space 5 which is the space on the one side (secondary side surface 7) side is decompressed. , Filtering the sludge with the filter cloth 1, and attaching the concentrated sludge (initial concentrated sludge) to the primary side surface 6, which is the “other surface” of the filter cloth 1. While reducing the pressure of the secondary space 5, supplying and pressurizing the sludge to the primary space 6, the sludge is filtered by the filter cloth 1 and attached to the primary surface 6 of the filter cloth 1. Pressurize and supply more sludge from the concentrated sludge (initial concentrated sludge), and apply the concentrated sludge (second layer concentrated sludge) to the surface of the initial concentrated sludge. A pressure filtration step of “attaching”, a “pressing of the concentrated sludge adhering to the primary side surface 6 of the filter cloth 1 to obtain a compressed sludge”, and a “peeling the sludge from the filter cloth 1” It is preferable to have a discharge step. “Supplying sludge to the primary side space and pressurizing” means “suppressing sludge while pressurizing” or “pressurizing sludge after supplying sludge” to the primary side space. Means. Moreover, in the case of “supplying sludge while pressurizing” and “pressing sludge after supplying sludge”, the pressure in the primary side is pressurized, and the filtrate passes through the filter cloth by the pressure. It will be pushed out to the secondary space.
 このように、吸引濾過工程において、濾布1の1次側の面6に濃縮汚泥を付着させ、加圧濾過工程において、上記「濾布1の1次側の面に付着した濃縮汚泥」の上から更に濃縮汚泥を付着させ、最後に、圧搾工程において、濾布1の1次側の面6に付着した濃縮汚泥を圧搾して圧搾汚泥を得るため、1つの固液分離装置を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能である。 Thus, in the suction filtration step, the concentrated sludge is attached to the primary side surface 6 of the filter cloth 1, and in the pressure filtration step, the “concentrated sludge attached to the primary side surface of the filter cloth 1” In order to obtain the compressed sludge by pressing the concentrated sludge adhered to the primary side surface 6 of the filter cloth 1 in the pressing step, and finally, using one solid-liquid separator. The sludge having a solid content of about 1% by mass can be concentrated to obtain a sludge having a solid content of 40% by mass or more.
 本発明の固液分離装置の一の実施形態(固液分離装置100(図1参照))を用いた固液分離方法について、工程毎に説明する。 A solid-liquid separation method using one embodiment of the solid-liquid separation apparatus of the present invention (solid-liquid separation apparatus 100 (see FIG. 1)) will be described step by step.
(2-1)吸引濾過工程;
 吸引濾過工程は、図1~3に示すように、「濾布1の一方の面(2次側の面7)側の空間である2次側空間5を減圧しながら、上記濾布1の他方の面側の空間である1次側空間4に汚泥を供給して、上記濾布1によって汚泥を濾過し、上記濾布1の上記「他方の面」である1次側の面6に濃縮汚泥(初期濃縮汚泥)を付着させる」工程であることが好ましい。吸引濾過工程においては、図1に示すように、汚泥16を汚泥供給手段12に供給し、汚泥供給手段12から濾過器3の1次側空間4に汚泥16を供給している。そして、濾過器3の2次側空間5は、濾液貯留槽14を介して減圧手段11によって減圧されている。これにより、濾布1によって、汚泥16中の固形分が濃縮汚泥17として捕集され、濾布1を透過した濾液19が、2次側空間5を通過して、濾液貯留槽14に送られて貯留される。更に具体的には、濾布1を透過した濾液19は、流出口72から排出され、流出ノズル72a及び配管を通じて、濾液貯留槽14に送られ、濾液貯留槽14に貯留される。ここで、図3は、本発明の固液分離装置の一の実施形態における濾過器3の断面を示すとともに、吸引濾過工程において、濾布1の1次側の面6に汚泥(初期濃縮汚泥17a)が付着している状態を示す模式図である。
(2-1) Suction filtration step;
As shown in FIGS. 1 to 3, the suction filtration process is performed while reducing the pressure of the secondary side space 5, which is the space on one side (secondary side surface 7) of the filter cloth 1. Sludge is supplied to the primary side space 4 which is the space on the other side, and the sludge is filtered by the filter cloth 1, and the primary side face 6 which is the “other side” of the filter cloth 1 is filtered. It is preferable to be a step of “attaching concentrated sludge (initial concentrated sludge)”. In the suction filtration process, as shown in FIG. 1, the sludge 16 is supplied to the sludge supply means 12, and the sludge 16 is supplied from the sludge supply means 12 to the primary space 4 of the filter 3. The secondary space 5 of the filter 3 is decompressed by the decompression means 11 via the filtrate storage tank 14. Thereby, the solid content in the sludge 16 is collected as the concentrated sludge 17 by the filter cloth 1, and the filtrate 19 that has passed through the filter cloth 1 passes through the secondary side space 5 and is sent to the filtrate storage tank 14. Stored. More specifically, the filtrate 19 that has passed through the filter cloth 1 is discharged from the outlet 72, sent to the filtrate storage tank 14 through the outflow nozzle 72 a and the piping, and stored in the filtrate storage tank 14. Here, FIG. 3 shows a cross section of the filter 3 in one embodiment of the solid-liquid separator of the present invention, and sludge (initial concentrated sludge) on the primary surface 6 of the filter cloth 1 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
 このように、本発明の固液分離装置の一の実施形態を用いた固液分離方法は、まず、吸引濾過工程において、濾布1の1次側の面6に、初期濃縮汚泥17aを付着させるため、次の加圧濾過工程において、濾過器3の1次側空間4に「濾布1を加圧しながら」汚泥を供給しても、汚泥中の固形分が濾布1を透過して2次側空間5に漏れ出すことを抑制することができる。これは、濾布1に付着した初期濃縮汚泥17aが、濾布1と共に、汚泥中の固形分を捕集する機能を有するためである。これにより、吸引濾過工程において、通常使用される、「モノフィラメントによって形成された濾布」を備えた装置(濾過器3)を使用した場合においても、吸引濾過工程において使用した当該装置(濾過器3)を用いて、加圧濾過工程における加圧濾過を行うことができる。つまり、吸引濾過と加圧濾過とを、1つの濾過器3(固液分離装置100)で行うことができる。 Thus, in the solid-liquid separation method using one embodiment of the solid-liquid separation device of the present invention, first, the initial concentrated sludge 17a is attached to the primary side surface 6 of the filter cloth 1 in the suction filtration step. Therefore, in the next pressure filtration step, even if the sludge is supplied to the primary space 4 of the filter 3 “pressurizing the filter cloth 1”, the solid content in the sludge permeates the filter cloth 1. Leakage into the secondary space 5 can be suppressed. This is because the initial concentrated sludge 17a attached to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1. Thereby, even when the apparatus (filter 3) provided with "the filter cloth formed by the monofilament" normally used in the suction filtration process is used, the apparatus (filter 3) used in the suction filtration process. ) Can be used for pressure filtration in the pressure filtration step. That is, suction filtration and pressure filtration can be performed by one filter 3 (solid-liquid separation device 100).
 吸引濾過工程において、2次側空間5に流出する濾液の固形分濃度が、0.02~0.04質量%なったところで、加圧濾過工程を開始することが好ましい。0.02質量%より低いと、初期濃縮汚泥17aが十分に形成されず、加圧濾過工程における加圧力によって、初期濃縮汚泥17a自体が、濾布1を通過して2次側空間5に漏れ出すことがある。0.04質量%より高いと、吸引濾過工程の時間が長くなるため、汚泥を固液分離する全体時間が長くなることがある。 In the suction filtration step, it is preferable to start the pressure filtration step when the solid content concentration of the filtrate flowing out to the secondary space 5 reaches 0.02 to 0.04 mass%. If it is lower than 0.02% by mass, the initial concentrated sludge 17a is not sufficiently formed, and the initial concentrated sludge 17a itself passes through the filter cloth 1 and leaks into the secondary space 5 due to the applied pressure in the pressure filtration process. May be issued. If it is higher than 0.04% by mass, the time for the suction filtration process becomes longer, and therefore the total time for solid-liquid separation of sludge may become longer.
 吸引濾過工程における濾過時間が短すぎると、初期濃縮汚泥17aが十分に濾布1に付着せず、加圧濾過工程における加圧力によって初期濃縮汚泥17a自体が濾布1を通過して2次側空間5に流れ出ることがある。濾布1によって汚泥を濾過する時間が長いと、濾過時間全体が延びるという不具合を生じる。 If the filtration time in the suction filtration process is too short, the initial concentrated sludge 17a does not sufficiently adhere to the filter cloth 1, and the initial concentrated sludge 17a itself passes through the filter cloth 1 due to the applied pressure in the pressure filtration process, and the secondary side. May flow into space 5. When the time for filtering the sludge with the filter cloth 1 is long, the entire filtration time is extended.
 吸引濾過工程において、2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、浄水場の汚泥を原料とする場合、-0.08~-0.02MPa(ゲージ圧)であることが好ましい。-0.08MPaより低いと、固形分が濾布面で留まること無く通過して2次側空間5に流出し、濾布1の1次側の面6に初期濃縮汚泥17aが付着しない場合がある。-0.02MPaより高いと、吸引濾過工程に長時間を要することがある。尚、「ゲージ圧」とは、大気圧を「0MPa」とした圧力計に表示される圧力である。 In the suction filtration step, the pressure when the secondary side space 5 is depressurized (the pressure of the depressurized secondary side space 5) is −0.08 to −0.02 MPa when the sludge of the water purification plant is used as a raw material. Gauge pressure) is preferable. If it is lower than −0.08 MPa, the solid content passes through without remaining on the filter cloth surface and flows into the secondary space 5, and the initial concentrated sludge 17 a may not adhere to the primary surface 6 of the filter cloth 1. is there. If it is higher than −0.02 MPa, the suction filtration process may take a long time. The “gauge pressure” is a pressure displayed on a pressure gauge with the atmospheric pressure set to “0 MPa”.
 吸引濾過工程において、濾過器3の2次側空間5を減圧する減圧手段11としては、真空ポンプ等を用いることができる。また、減圧手段11としては、サイホンの原理によって濾過器3の2次側空間5を減圧する手段も好ましい態様である。尚、濾過器3の2次側空間5を減圧する減圧手段11として真空ポンプを用いた場合には(図1参照)、加圧濾過工程及び圧搾工程においても、濾過器3の2次側空間5を減圧するための減圧手段としては、吸引濾過工程において用いた減圧手段11を用いることが好ましい。また、濾過器3の2次側空間5を減圧する減圧手段11としてサイホンの原理による減圧手段を用いた場合には、加圧濾過工程においては、サイホンの原理による減圧手段を用いても真空ポンプを用いてもよく、圧搾工程においては、真空ポンプを用いることが好ましい。 In the suction filtration step, a vacuum pump or the like can be used as the decompression means 11 that decompresses the secondary space 5 of the filter 3. Further, as the decompression means 11, a means for decompressing the secondary side space 5 of the filter 3 according to the principle of siphon is also a preferable aspect. In addition, when a vacuum pump is used as the decompression means 11 for decompressing the secondary side space 5 of the filter 3 (see FIG. 1), the secondary side space of the filter 3 is also used in the pressure filtration process and the squeezing process. As the decompression means for decompressing 5, it is preferable to use the decompression means 11 used in the suction filtration step. Further, when a pressure reducing means based on the principle of siphon is used as the pressure reducing means 11 for reducing the pressure on the secondary space 5 of the filter 3, a vacuum pump can be used in the pressure filtration step even if the pressure reducing means based on the principle of siphon is used. In the pressing process, it is preferable to use a vacuum pump.
(2-2)加圧濾過工程;
 加圧濾過工程は、図1、図4に示すように、2次側空間5を減圧するとともに、1次側空間4に、汚泥16を「加圧しながら」供給し、濾布1によって汚泥16をさらに濾過する工程である。2次側空間5は、減圧することが好ましいが、減圧しなくてもよい。本工程の前段の吸引濾過工程において、濾布上に濃縮汚泥が付着するため、濾液の濁度は低下するが、濾液の流量は減少することとなる。そこで、加圧濾過工程は、加圧して濾液の処理流量を確保するための工程である。これに加えて本工程では、濾布1の1次側の面6に付着した濃縮汚泥17(初期濃縮汚泥17a)の上から更に濃縮汚泥17(2層目濃縮汚泥17b)を付着させるとともに、初期濃縮汚泥17aを圧縮してその密度を高めて(緻密化して)、濾布とこれに付着した濃縮汚泥により濾過機能を高める工程でもある。濾布1を透過した濾液19は、排出口24aから排出され、排出ノズル24b及び配管を通じて、濾液貯留槽14に送られ、濾液貯留槽14に貯留される。1次側空間4に、汚泥を「加圧しながら」供給する際には、汚泥16によって濾布1の「1次側の面6」の全面を加圧することが好ましい。図4は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面を示すとともに、加圧濾過工程において、濾布1の1次側の面6に汚泥(濃縮汚泥17(初期濃縮汚泥17a及び2層目濃縮汚泥17b))が付着している状態を示す模式図である。
(2-2) pressure filtration step;
In the pressure filtration step, as shown in FIGS. 1 and 4, the secondary side space 5 is depressurized and the sludge 16 is supplied to the primary side space 4 while “pressurizing”. Is a step of further filtering. The secondary space 5 is preferably decompressed, but may not be decompressed. In the suction filtration step preceding this step, concentrated sludge adheres on the filter cloth, so that the turbidity of the filtrate is reduced, but the flow rate of the filtrate is reduced. Therefore, the pressure filtration step is a step for ensuring the processing flow rate of the filtrate by applying pressure. In addition to this, in this step, the concentrated sludge 17 (second-layer concentrated sludge 17b) is further adhered on the concentrated sludge 17 (initial concentrated sludge 17a) adhering to the primary side surface 6 of the filter cloth 1, It is also a step of compressing the initial concentrated sludge 17a to increase its density (densify) and enhance the filtration function with the filter cloth and the concentrated sludge adhering thereto. The filtrate 19 that has passed through the filter cloth 1 is discharged from the discharge port 24 a, sent to the filtrate storage tank 14 through the discharge nozzle 24 b and the piping, and stored in the filtrate storage tank 14. When supplying the sludge to the primary side space 4 while “pressurizing”, it is preferable to pressurize the entire “primary side surface 6” of the filter cloth 1 with the sludge 16. FIG. 4 shows a cross-section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and in the pressure filtration step, sludge (concentrated sludge 17 ( It is a schematic diagram which shows the state to which the initial concentration sludge 17a and the 2nd layer concentration sludge 17b) are adhering.
 このように、加圧濾過工程は、濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過するため、濾布1が汚泥によって加圧されるとともに、初期濃縮汚泥17aも圧縮されて、初期濃縮汚泥17aの緻密化の程度に応じた濾過機能を果たす。これにより、濾布1がモノフィラメントであっても、固形分の漏れを防止しながら加圧濾過を行うことが可能となる。また、加圧濾過工程において、例えば、2次側空間5を減圧した場合には、固形分濃度9~16質量%の濃縮汚泥を得ることができる。 Thus, in the pressure filtration step, the filter cloth 1 is pressurized with sludge and the initial concentrated sludge 17a is compressed in order to filter the sludge under pressure with the initial concentrated sludge 17a attached to the filter cloth 1. Thus, it performs a filtering function according to the degree of densification of the initial concentrated sludge 17a. Thereby, even if the filter cloth 1 is a monofilament, pressure filtration can be performed while preventing leakage of solid contents. Further, in the pressure filtration step, for example, when the secondary space 5 is depressurized, concentrated sludge having a solid content concentration of 9 to 16% by mass can be obtained.
 濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過する際に、供給する汚泥の圧力が急激に変化する(上昇する)と、濾布表面に形成された濃縮汚泥が濾布を通過して2次側空間に流出することがある。その場合、固形分の回収が不十分になるとともに、濃縮汚泥による固液分離が十分に行えなくなる。そのため、濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過する際には、一回の昇圧における圧力変化を小さくし、段階的に複数回昇圧することが好ましい。これにより、固形分が2次側空間に漏れだすことを防止しながら、濾布1に付着した濃縮汚泥を緻密化することができ、最終的に高い圧力で濾過を行うことが可能となる。そして、濃縮汚泥を緻密化することが可能であるため、最終的に得られる(排出する)濃縮汚泥の固形分濃度を高くすることができる。 When the sludge is supplied under pressure with the initial concentrated sludge 17a attached to the filter cloth 1 and the pressure of the supplied sludge changes (rises) rapidly, the concentrated sludge formed on the filter cloth surface is filtered. It may flow out into the secondary space through the cloth. In that case, the solid content is not sufficiently recovered, and solid-liquid separation by concentrated sludge cannot be performed sufficiently. Therefore, when the sludge is filtered under pressure with the initial concentrated sludge 17a attached to the filter cloth 1, it is preferable to reduce the pressure change in one pressurization and increase the pressure several times stepwise. Thereby, the concentrated sludge adhering to the filter cloth 1 can be densified while preventing the solid content from leaking into the secondary side space, and finally it is possible to perform filtration at a high pressure. And since it is possible to densify concentrated sludge, the solid content density | concentration of the concentrated sludge finally obtained (discharged) can be made high.
 加圧濾過工程においては、汚泥を加圧する圧力を、0.2~0.4MPa(ゲージ圧)(最小濾過圧力)から、0.6~1.5MPa(ゲージ圧)(最大濾過圧力)まで、断続的に上げていくことが好ましい。これにより、汚泥中の固形分が濾布を透過して濾液側に流出することを、より効果的に防止することができる。ここで、「最小濾過圧力」とは、加圧濾過工程において、汚泥を加圧するときの、最初(最初の段階)の圧力であって最も低い圧力のことである。「最大濾過圧力」とは、汚泥を加圧するときの、最後(最後の段階)の圧力であって最も高い圧力のことである。最小濾過圧力が、0.2MPaより低いと、固液分離にかかる時間が長くなることがある。最小濾過圧力が、0.4MPaより高いと、加圧濾過を行う際に、固形分が濾布を透過し易くなることがある。また、最大濾過圧力が、0.6MPaより低いと、固液分離にかかる時間が長くなることがある。最大濾過圧力が、1.5MPaより高いと、固形分が濾布を透過し易くなることがある。尚、「汚泥を加圧する圧力を断続的に上げる」とは、汚泥を加圧する圧力を階段状に上昇させることであり、「一定圧力の状態(一定圧力の維持)」と「昇圧している状態(昇圧操作)」とを交互に繰り返しながら汚泥を加圧する圧力を上げることである。また、加圧濾過工程においては、汚泥によって濾布を加圧するため、汚泥で濾過器3の1次側空間4を満たし、1次側空間内の汚泥の圧力(1次側空間内の圧力)を上記所定の圧力とすることが好ましい。従って、汚泥を、上記所定の圧力で、濾過器3の1次側空間4に供給することが好ましい。 In the pressure filtration step, the pressure for pressurizing the sludge is from 0.2 to 0.4 MPa (gauge pressure) (minimum filtration pressure) to 0.6 to 1.5 MPa (gauge pressure) (maximum filtration pressure). It is preferable to raise it intermittently. Thereby, it can prevent more effectively that solid content in sludge permeate | transmits a filter cloth, and flows out into the filtrate side. Here, the “minimum filtration pressure” is the first (first stage) pressure and the lowest pressure when the sludge is pressurized in the pressure filtration step. The “maximum filtration pressure” is the last (last stage) pressure and the highest pressure when the sludge is pressurized. If the minimum filtration pressure is lower than 0.2 MPa, the time required for solid-liquid separation may become longer. When the minimum filtration pressure is higher than 0.4 MPa, solid content may easily pass through the filter cloth when performing pressure filtration. Moreover, when the maximum filtration pressure is lower than 0.6 MPa, the time required for solid-liquid separation may become longer. When the maximum filtration pressure is higher than 1.5 MPa, the solid content may easily pass through the filter cloth. “To increase the pressure to pressurize the sludge intermittently” means to increase the pressure to pressurize the sludge in a stepped manner, and to “Pressure constant (maintain constant pressure)” and “Pressure increase” It is to raise the pressure which pressurizes sludge, repeating "state (pressure | voltage rise operation)" alternately. Moreover, in the pressure filtration process, since the filter cloth is pressurized with sludge, the sludge pressure fills the primary space 4 of the filter 3 and the sludge pressure in the primary space (pressure in the primary space). Is preferably set to the predetermined pressure. Therefore, it is preferable to supply the sludge to the primary space 4 of the filter 3 at the predetermined pressure.
 また、加圧濾過工程において、1次側空間内の圧力(汚泥を加圧する圧力)を、最小濾過圧力から最大濾過圧力まで断続的に昇圧する場合、一回の昇圧(昇圧操作)において上昇させる圧力は、0.2~0.7MPa(上昇幅)であることが好ましく、0.2~0.4MPaであることが更に好ましい。これにより、より効果的に、濾布に付着した濃縮汚泥を緻密化し、濾布からの固形分の漏れを抑制することができる。一回の昇圧で上昇させる圧力が、0.2MPaより小さいと、固液分離に要する時間が長くなることがある。一回の昇圧で上昇させる圧力が、0.7MPaより大きいと、固形分が、濾布から漏れ易くなることがある。また、一回の昇圧で上昇させる圧力は、一定の値であってもよいし、昇圧の段階によって異なってもよい。また、昇圧操作における昇圧速度(MPa/分)は、特に限定されないが、濾液に固形分が混入しない程度の速度とすることが好ましい。昇圧速度を速くし過ぎると、濾液に固形分が混入することがあり、また、濾布に付着した濃縮汚泥の層が崩れる可能性もあるため、好ましくない。昇圧速度としては、例えば、0.5~2分が好ましい。このような昇圧速度の範囲内において、「濾液に固形分が混入したり、濾布に付着した濃縮汚泥の層が崩れたり」することがないように、適宜、昇圧速度を調整することが好ましい。 Further, in the pressure filtration step, when the pressure in the primary side space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased by a single pressure increase (pressure increase operation). The pressure is preferably 0.2 to 0.7 MPa (rising range), and more preferably 0.2 to 0.4 MPa. Thereby, the concentrated sludge adhering to the filter cloth can be densified more effectively, and solid content leakage from the filter cloth can be suppressed. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is greater than 0.7 MPa, the solid content may easily leak from the filter cloth. Further, the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage. Further, the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable. As the pressure increase rate, for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
 そして、加圧濾過工程において、1次側空間内の圧力(汚泥を加圧する圧力)を、最小濾過圧力から最大濾過圧力まで断続的に上げる場合、「一定圧力の状態」から「昇圧している状態」への切り替えは、濾液の状況を確認して行うこととなる。 In the pressure filtration step, when the pressure in the primary space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased from the “constant pressure state”. Switching to “state” is performed after confirming the state of the filtrate.
 具体的には、昇圧直後、濾液の濁度は上昇する。この濁度は時間経過とともに減少していく。この濁度低下は、初期濃縮汚泥17aの緻密化および、初期濃縮汚泥17aの上に新たな濃縮汚泥の層(2層目濃縮汚泥17b)が形成されることにより、これらの「初期濃縮汚泥17a及び2層目濃縮汚泥17b」が濾布1とともに濾過機能を果たし、新たな(高い)圧力においても汚泥を良好に濾過することができるような、汚泥の濾過に適した状態になったことを示す。したがって、この濁度低下により、初期濃縮汚泥17aの緻密化および、初期濃縮汚泥17aの上に新たな濃縮汚泥の層が形成されたと判断することができる。 Specifically, immediately after pressurization, the turbidity of the filtrate increases. This turbidity decreases with time. This decrease in turbidity is caused by densification of the initial concentrated sludge 17a and formation of a new layer of concentrated sludge (second layer concentrated sludge 17b) on the initial concentrated sludge 17a. And the second-layer concentrated sludge 17b "has achieved a filtration function together with the filter cloth 1, and is in a state suitable for sludge filtration so that the sludge can be satisfactorily filtered even at a new (high) pressure. Show. Therefore, it can be determined that the initial concentrated sludge 17a is densified and a new concentrated sludge layer is formed on the initial concentrated sludge 17a due to the decrease in turbidity.
 昇圧後の初期濃縮汚泥17aの緻密化および、新たな濃縮汚泥の層の形成のための時間、すなわち濁度が所定の値に低下するまでの時間は、処理すべき汚泥の組成や濃度などによって異なる。したがって、初期濃縮汚泥17aの緻密化状況や、新たな濃縮汚泥の層形成が十分であるか否かの判断は、濾液の濁度、濃度を計測して判断する。また、濁度計により濁度を計測し、濁度が一定値以下になった場合に上記判断を下してもよい。 The time for densification of the initial concentrated sludge 17a after pressurization and the formation of a new concentrated sludge layer, that is, the time until the turbidity is lowered to a predetermined value depends on the composition and concentration of the sludge to be treated. Different. Accordingly, whether the initial concentrated sludge 17a is densified or whether a new concentrated sludge layer is sufficiently formed is determined by measuring the turbidity and concentration of the filtrate. Alternatively, the turbidity may be measured with a turbidimeter, and the above determination may be made when the turbidity is below a certain value.
 また、初期濃縮汚泥17aの緻密化および、新たな濃縮汚泥の層の形成に伴い、昇圧直後の濾液流量も変化するため、この流量変化により、初期濃縮汚泥17aの緻密化状況や、新たな濃縮汚泥の層が形成されたことの判断を行うことも可能である。これらの判断のために、一時的に濾液を濾液貯留槽14の槽外に取り出すようにしても良い。また、濁度が高い濾液が発生する時間は短く、当該濁度が高い濾液の量は、濾液全体から見ると微量であるためそのまま濾液貯留槽14に流入させても良い。 In addition, the flow rate of the filtrate immediately after pressurization changes with the densification of the initial concentrated sludge 17a and the formation of a new concentrated sludge layer. It is also possible to determine that a sludge layer has been formed. For these determinations, the filtrate may be temporarily taken out of the filtrate storage tank 14. Moreover, since the time when a filtrate with high turbidity is generated is short and the amount of the filtrate with high turbidity is very small when viewed from the whole filtrate, it may be allowed to flow into the filtrate storage tank 14 as it is.
 また、通常の吸引濾過においては、濾過の進行に伴い濾布面への汚泥の付着が進み、濾過流量が低下し、汚泥の処理量が減少する。しかし、本発明の加圧濾過工程の段階的な昇圧により、付着した濃縮汚泥を濾布の一部として機能させつつ、汚泥処理量を確保できるため、従来の吸引濾過を主体とした濾過濃縮工程より短時間で所定量の汚泥を濃縮することができる。 Also, in normal suction filtration, as the filtration proceeds, the sludge adheres to the filter cloth surface, the filtration flow rate decreases, and the amount of sludge treatment decreases. However, the step-by-step pressure increase of the pressure filtration process of the present invention allows the sludge treatment amount to be secured while functioning the adhering concentrated sludge as a part of the filter cloth. A predetermined amount of sludge can be concentrated in a shorter time.
 また、本発明における加圧濾過工程においては、汚泥を加圧しながら濾過を行うため、汚泥が濾布に供給される状態を維持しつつ、新な汚泥を、「濾布面に先に付着している汚泥」上に付着するとともに、「先に付着している汚泥」が圧縮されながら、濾過が行なわれる。特に、汚泥が濾布に供給される状態を維持することは、汚泥が濾布に供給されずに、濾布に付着した濃縮汚泥を機械的に加圧(構造物を押し付けて加圧)して、濃縮汚泥中の水分を搾り取る「圧搾工程」とは異なる点である。 Further, in the pressure filtration step in the present invention, filtration is performed while the sludge is pressurized, so that the new sludge is attached to the filter cloth surface first while maintaining the state where the sludge is supplied to the filter cloth. Filtration is performed while the “sludge adhering first” is compressed, while adhering onto the “sludge”. In particular, maintaining the state in which the sludge is supplied to the filter cloth means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure) without the sludge being supplied to the filter cloth. Thus, it is different from the “squeezing process” in which the moisture in the concentrated sludge is squeezed.
 加圧濾過工程においては、1次側空間4を加圧する(1次側空間4内の濾液を加圧する)とともに、2次側空間5を減圧することが好ましいが、2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、-0.08~-0.02MPa(ゲージ圧)が好ましい。-0.02MPaより高いと、最終的に得られる圧搾汚泥の濃度が40質量%未満となることがあり、また、圧搾汚泥の濃度を40質量%以上に上げようとすると、長時間を要することがある。 In the pressure filtration step, it is preferable to pressurize the primary space 4 (pressurize the filtrate in the primary space 4) and depressurize the secondary space 5, but depressurize the secondary space 5. The pressure (pressure in the reduced secondary space 5) is preferably −0.08 to −0.02 MPa (gauge pressure). If it is higher than -0.02 MPa, the concentration of the finally obtained compressed sludge may be less than 40% by mass, and it takes a long time to increase the concentration of the compressed sludge to 40% by mass or more. There is.
 加圧濾過工程においては、図1に示すように、濾過器3の1次側空間4に供給する汚泥16を、汚泥加圧手段13によって加圧する。汚泥加圧手段13としては、空気、「窒素等の不活性ガス」等のボンベ、空気圧縮装置(コンプレッサー)等を用いる方式や、油圧等によりピストンで直接汚泥を圧縮する機械的な加圧方式を採用することができる。さらに、ポンプと圧力逃し弁などを組み合わせた汚泥加圧手段13も考えられえる。汚泥16を汚泥加圧手段13により加圧する際には、図1に示すように、汚泥加圧手段13によって「汚泥が貯留された汚泥貯留槽12a」内の汚泥を加圧し、加圧された汚泥貯留槽12a内の汚泥を濾過器3の1次側空間4に送ることが好ましい。この場合、汚泥加圧手段13から、加圧された「空気、窒素等の加圧媒体」が、汚泥貯留槽12aに送られることにより、汚泥貯留槽12a内が加圧される。 In the pressure filtration step, the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13 as shown in FIG. As the sludge pressurizing means 13, a method using air, a cylinder such as “inert gas such as nitrogen”, an air compression device (compressor) or the like, or a mechanical pressurization method in which sludge is compressed directly with a piston by hydraulic pressure or the like. Can be adopted. Furthermore, the sludge pressurizing means 13 combining a pump and a pressure relief valve can be considered. When the sludge 16 is pressurized by the sludge pressurizing means 13, as shown in FIG. 1, the sludge in the “sludge storage tank 12 a storing sludge” is pressurized and pressurized by the sludge pressurizing means 13. It is preferable to send the sludge in the sludge storage tank 12 a to the primary side space 4 of the filter 3. In this case, the pressurized “pressurizing medium such as air and nitrogen” is sent from the sludge pressurizing means 13 to the sludge storage tank 12a, whereby the inside of the sludge storage tank 12a is pressurized.
 加圧濾過工程においては、図1に示すように、汚泥加圧手段13によって、濾過器3の1次側空間4に供給する汚泥16を加圧する際に、圧力調整手段13aによって、汚泥の圧力を調整することが好ましい。圧力調整手段13aとしては、圧力調整弁を挙げることができる。圧力調整手段13aは、汚泥加圧手段13と汚泥貯留槽12aとを繋ぐ、配管に設けられていることが好ましい。 In the pressure filtration step, as shown in FIG. 1, when the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13, the pressure of the sludge is adjusted by the pressure adjusting means 13 a. Is preferably adjusted. An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
(2-3)圧搾工程;
 圧搾工程は、図5に示すように、濾布1の1次側の面6に付着した濃縮汚泥(初期濃縮汚泥及び2層目濃縮汚泥)を圧搾して圧搾汚泥18を得る工程である。加圧濾過の操作(加圧濾過工程)が終了した後、濾過器内に残留する汚泥を除去した後に濃縮汚泥の圧搾(圧搾工程)を行う。1次側空間4に残留する汚泥を排出する際には、2つの濾液排出槽61,61を、互いに遠ざける方向に移動させ、濃縮槽62の胴体部64の開閉部73を開口させて、当該開口した開閉部73から排出することが好ましい。濾過器内に残留する汚泥を除去した際には、濾過器から取り出した汚泥は、再度汚泥貯留槽に戻し、固液分離を行うことが好ましい。図5は、本発明の固液分離装置の一の実施形態における濾過器の断面を示すとともに、圧搾工程において、濃縮汚泥が圧搾される状態を示す模式図である。
(2-3) pressing process;
As shown in FIG. 5, the pressing step is a step of obtaining the compressed sludge 18 by pressing the concentrated sludge (initial concentrated sludge and second-layer concentrated sludge) attached to the primary-side surface 6 of the filter cloth 1. After the pressure filtration operation (pressure filtration step) is completed, the sludge remaining in the filter is removed, and then the concentrated sludge is squeezed (squeezing step). When discharging the sludge remaining in the primary space 4, the two filtrate discharge tanks 61, 61 are moved away from each other, the opening / closing part 73 of the body part 64 of the concentration tank 62 is opened, and the It is preferable to discharge from the opened opening / closing part 73. When the sludge remaining in the filter is removed, the sludge taken out from the filter is preferably returned to the sludge storage tank and subjected to solid-liquid separation. FIG. 5: is a schematic diagram which shows the state by which concentrated sludge is squeezed in the pressing process while showing the cross section of the filter in one Embodiment of the solid-liquid separation apparatus of this invention.
 また、加圧濾過の操作(加圧濾過工程)により、汚泥が濾過器内に残留しない状態になる場合には、加圧濾過工程を完了させた後に、残留する汚泥を除去する操作等を行わずに、圧搾工程を開始することができる。 Also, if the sludge does not remain in the filter by the pressure filtration operation (pressure filtration step), after the pressure filtration step is completed, an operation to remove the remaining sludge is performed. Without squeezing, the pressing process can be started.
 図5に示すように、圧搾工程において用いられる汚泥圧搾機構は、2つの濾液排出槽61,61が1次側空間4を狭めて互いに近づくように移動し、2枚の濾布1,1のそれぞれの1次側の面6,6に付着した濃縮汚泥を、2つの濾液排出槽61,61の間に挟んで圧搾する機構である。濃縮汚泥は、2枚の、「2次側の面7側が濾液透過部材63で支えられた濾布1」に、挟まれて圧搾される。濃縮汚泥の圧搾により排出される濾液は、濾布1を透過して1次側空間4に流入し、流出口72から排出される。また、2枚の濾布1,1に挟まれて水分(濾液)が搾り出された濃縮汚泥は、圧搾汚泥18になる。 As shown in FIG. 5, the sludge squeezing mechanism used in the squeezing process moves so that the two filtrate discharge tanks 61, 61 narrow the primary side space 4 and approach each other, and the two filter cloths 1, 1 This is a mechanism that squeezes the concentrated sludge adhering to the respective primary- side surfaces 6 and 6 between two filtrate discharge tanks 61 and 61. The concentrated sludge is sandwiched and pressed between two sheets of “filter cloth 1 whose secondary surface 7 is supported by the filtrate permeable member 63”. The filtrate discharged by pressing the concentrated sludge passes through the filter cloth 1 and flows into the primary space 4 and is discharged from the outlet 72. Further, the concentrated sludge from which the water (filtrate) has been squeezed between the two filter cloths 1 and 1 becomes the compressed sludge 18.
 圧搾工程において、「濃縮汚泥を圧搾する」とは、汚泥を濾布に供給せずに、濾布に付着した濃縮汚泥を機械的に加圧(構造物を押し付けて加圧、又は構造物で挟んで加圧)して、濃縮汚泥中の水分を搾り取ることを意味する。 In the pressing process, “squeezing the concentrated sludge” means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure, or the structure without supplying the sludge to the filter cloth). It means that the moisture in the concentrated sludge is squeezed out.
 圧搾工程においては、濃縮汚泥を圧搾するときの圧力は、0.2~1.8MPa(ゲージ圧)であることが好ましい。更に、上記圧力範囲内において、濃縮汚泥を圧搾するときの圧力を断続的に上げながら濃縮汚泥を圧搾することが好ましい。断続的に昇圧する際には、加圧濾過工程における「最大濾過圧力」より高い圧力から昇圧を開始することが好ましい。濃縮汚泥を圧搾するときの圧力が、0.2MPaより低いと、圧搾汚泥の固形分濃度が高くならないことがあり、圧搾工程に長時間を要することがある。濃縮汚泥を圧搾するときの圧力が、1.8MPaより高いと、濃縮汚泥(又は圧搾汚泥)の一部が、濾布を透過することがある。ここで、「濃縮汚泥を圧搾するときの圧力を断続的に上げる」とは、濃縮汚泥を圧搾する圧力を階段状に上昇させることであり、「一定圧力の状態(一定圧力の維持)」と「昇圧している状態(昇圧操作)」とを交互に繰り返しながら、濃縮汚泥を圧搾する圧力を上げることである。 In the pressing step, the pressure when pressing the concentrated sludge is preferably 0.2 to 1.8 MPa (gauge pressure). Furthermore, in the said pressure range, it is preferable to squeeze concentrated sludge, raising the pressure when squeezing concentrated sludge intermittently. When the pressure is intermittently increased, it is preferable to start the pressure increase from a pressure higher than the “maximum filtration pressure” in the pressure filtration step. When the pressure at the time of pressing concentrated sludge is lower than 0.2 MPa, the solid content concentration of the compressed sludge may not increase, and the pressing process may take a long time. When the pressure at the time of pressing concentrated sludge is higher than 1.8 MPa, a part of concentrated sludge (or compressed sludge) may permeate | transmit a filter cloth. Here, “intermittently increasing the pressure when squeezing the concentrated sludge” means increasing the pressure for squeezing the concentrated sludge in a stepped manner, and “constant pressure state (maintenance of constant pressure)” This is to increase the pressure at which the concentrated sludge is squeezed while alternately repeating the “pressure increasing state (pressure increasing operation)”.
 また、圧搾工程において、濃縮汚泥にかける圧力を、上記のように断続的に上げる場合、加圧濾過工程における「最大濾過圧力」より0.2~0.4MPaだけ高い圧力(最小圧搾圧力)から、加圧濾過工程における「最大濾過圧力」より0.7~1.0MPaだけ高い圧力(最大圧搾圧力)まで、断続的に上げていくことが好ましい。これにより、濾布1に付着した濃縮汚泥の層を壊すことなく、それらを濾過膜として機能させた脱水を行うことが可能となる。すなわち濃縮汚泥中の固形分が濾布を透過して濾液側に流出することを、より効果的に防止することができる。ここで、「最小圧搾圧力」とは、圧搾工程において、濃縮汚泥を加圧するときの、最初(最初の段階)の圧力であって最も低い圧力のことである。「最大圧搾圧力」とは、濃縮汚泥を加圧するときの、最後(最後の段階)の圧力であって最も高い圧力のことである。最小圧搾圧力が、「加圧濾過工程における最大濾過圧力より0.4MPaだけ高い圧力」より高いと、濃縮汚泥を加圧する際に、固形分が濾布を透過し易くなることがある。また、本実施形態の固液分離方法においては、圧搾工程において濾過器3を上記のような高い圧力にまで昇圧するため、濾過器3は、耐圧構造であることが好ましい。また、圧搾工程において、最終的に濃縮汚泥にかける圧力を、1.5~1.8MPaとすることが、好ましい態様である。 In addition, when the pressure applied to the concentrated sludge is intermittently increased as described above in the pressing process, from a pressure (minimum pressing pressure) that is 0.2 to 0.4 MPa higher than the “maximum filtering pressure” in the pressure filtering process. The pressure is preferably intermittently increased to a pressure (maximum pressing pressure) higher by 0.7 to 1.0 MPa than the “maximum filtration pressure” in the pressure filtration step. Thereby, it becomes possible to perform dehydration by causing them to function as a filtration membrane without breaking the layer of concentrated sludge adhering to the filter cloth 1. That is, it is possible to more effectively prevent the solid content in the concentrated sludge from passing through the filter cloth and flowing out to the filtrate side. Here, the “minimum pressing pressure” is the first (first stage) pressure and the lowest pressure when the concentrated sludge is pressurized in the pressing step. The “maximum squeezing pressure” is the last (last stage) pressure and the highest pressure when the concentrated sludge is pressurized. When the minimum squeezing pressure is higher than “a pressure higher by 0.4 MPa than the maximum filtration pressure in the pressure filtration step”, the solid content may easily pass through the filter cloth when the concentrated sludge is pressurized. Moreover, in the solid-liquid separation method of this embodiment, in order to pressurize the filter 3 to the above high pressure in a pressing process, it is preferable that the filter 3 is a pressure | voltage resistant structure. In the pressing step, it is preferable that the pressure finally applied to the concentrated sludge is 1.5 to 1.8 MPa.
 また、圧搾工程において、濃縮汚泥にかける圧力を、最小圧搾圧力から最大圧搾圧力まで断続的に上げる場合、一回の昇圧(昇圧操作)において上昇させる圧力は、0.2~0.4MPa(上昇幅)であることが好ましい。これにより、より効果的に、濾布からの固形分の漏れを抑制しながら、固形分濃度の高い圧搾汚泥を得ることができる。一回の昇圧で上昇させる圧力が、0.2MPaより小さいと、固液分離に要する時間が長くなることがある。一回の昇圧で上昇させる圧力が、0.4MPaより大きいと、固形分が、濾布から漏れ易くなることがある。また、一回の昇圧で上昇させる圧力は、一定の値であってもよいし、昇圧の段階によって異なってもよい。また、昇圧操作における昇圧速度(MPa/分)は、特に限定されないが、濾液に固形分が混入しない程度の速度とすることが好ましい。昇圧速度を速くし過ぎると、濾液に固形分が混入することがあり、また、濾布に付着した濃縮汚泥の層が崩れる可能性もあるため、好ましくない。昇圧速度としては、例えば、0.5~2分が好ましい。このような昇圧速度の範囲内において、「濾液に固形分が混入したり、濾布に付着した濃縮汚泥の層が崩れたり」することがないように、適宜、昇圧速度を調整することが好ましい。 In the pressing process, when the pressure applied to the concentrated sludge is intermittently increased from the minimum pressing pressure to the maximum pressing pressure, the pressure to be increased in one pressurization (pressure increasing operation) is 0.2 to 0.4 MPa (increase) Width). Thereby, pressing sludge with high solid content concentration can be obtained, suppressing the leakage of solid content from a filter cloth more effectively. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is larger than 0.4 MPa, the solid content may easily leak from the filter cloth. Further, the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage. Further, the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable. As the pressure increase rate, for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
 そして、圧搾工程において、濃縮汚泥にかける圧力を、最小圧搾圧力から最大圧搾圧力まで断続的に上げる場合、「一定圧力の状態」から「昇圧している状態」への切り替えは、濾液の流量が、「一定圧力の状態」における初期の流量に対して15~25%となったときに行うことが好ましい。 In the pressing process, when the pressure applied to the concentrated sludge is intermittently increased from the minimum pressing pressure to the maximum pressing pressure, switching from the “constant pressure state” to the “pressurizing state” requires that the flow rate of the filtrate be It is preferably performed when the flow rate is 15 to 25% of the initial flow rate in the “constant pressure state”.
 圧搾工程においては、濃縮汚泥を加圧するとともに、2次側空間5を減圧することが好ましい。濃縮汚泥を加圧するとともに、2次側空間5を減圧することにより、圧搾汚泥の表面(特に、濾布に接する面)付近の濾液19が迅速に排出されるため、その表面がより乾燥した状態となり、圧搾汚泥を濾布から剥離させるときに、より容易に剥離させることができるようになる。2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、-0.08~-0.02MPa(ゲージ圧)が好ましい。-0.02MPaより高い場合、特に、2次側空間5を減圧していない場合には、圧搾汚泥の表面が乾燥し難いことがある。 In the pressing step, it is preferable to pressurize the concentrated sludge and depressurize the secondary space 5. Since the filtrate 19 near the surface of the compressed sludge (particularly the surface in contact with the filter cloth) is quickly discharged by pressurizing the concentrated sludge and depressurizing the secondary space 5, the surface is more dry. Thus, when the compressed sludge is peeled off from the filter cloth, it can be peeled off more easily. The pressure when the secondary side space 5 is decompressed (the pressure of the decompressed secondary side space 5) is preferably −0.08 to −0.02 MPa (gauge pressure). When the pressure is higher than −0.02 MPa, particularly when the secondary space 5 is not decompressed, the surface of the compressed sludge may be difficult to dry.
 圧搾工程おいて得られる圧搾汚泥の固形分濃度は、40~45質量%であることが好ましい。圧搾汚泥の固形分濃度が、40質量%より低いと、圧搾汚泥を燃焼廃棄するときに、燃焼炉の負荷が大きくなることがある。圧搾汚泥の固形分濃度は高いほど好ましいが、本実施形態の固液分離方法では、45質量%程度が上限となる。 The solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass. When the solid content concentration of the compressed sludge is lower than 40% by mass, the load on the combustion furnace may be increased when the compressed sludge is burned and discarded. The higher the solid content concentration of the compressed sludge, the better. However, in the solid-liquid separation method of the present embodiment, the upper limit is about 45% by mass.
(2-4)排出工程;
 排出工程は、図6に示すように、圧搾汚泥18を濾布1から剥離させる工程であり、濾布1から剥離させた圧搾汚泥18は、濾過器3から排出される。
(2-4) Discharging process;
As shown in FIG. 6, the discharging step is a step of peeling the compressed sludge 18 from the filter cloth 1, and the compressed sludge 18 peeled from the filter cloth 1 is discharged from the filter 3.
 本発明の固液分離装置の一の実施形態を用いた固液分離方法における排出工程においては、2つの濾液排出槽61,61を遠ざけるように移動させて胴体部64を伸ばし、濃縮槽62の胴体部64の鉛直方向下側に形成された開閉部73を開口させ、当該「開口した開閉部73」から圧搾汚泥18を排出する。開閉部73は、胴体部64に形成された「切り込み」であることが好ましい。 In the discharge step in the solid-liquid separation method using one embodiment of the solid-liquid separation device of the present invention, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64, and the concentration tank 62 The opening / closing part 73 formed on the lower side in the vertical direction of the body part 64 is opened, and the compressed sludge 18 is discharged from the “opening opening / closing part 73”. The opening / closing part 73 is preferably a “cut” formed in the body part 64.
 排出工程においては、2次側空間から1次側空間に向かって(濾布1を通過するように)圧縮空気を流し、当該圧縮空気によって圧搾汚泥18を濾布1から剥離させることが好ましい。 In the discharging step, it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 1) and to peel the compressed sludge 18 from the filter cloth 1 by the compressed air.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
 図1に示される固液分離装置100において「濾過器として図10に示すような濾過器83を用いた」、固液分離装置を作製した。濾過器83は、凹部88aが形成された第1枠体82a(直方体に凹部が形成された形状)及び凹部88bが形成された第2枠体82b(直方体に凹部が形成された形状)を有する濾過器本体82と、「第1枠体82aの、凹部88aが形成された面」と「第2枠体82bの、凹部88bが形成された面」とにより挟まれた袋状の濾布81と、を備えるものである。袋状の濾布81は、外周(外縁)が、「第1枠体82aの、凹部88aが形成された面(外縁)」と「第2枠体82bの、凹部88bが形成された面(外縁)」とにより挟まれることにより、中央部に閉じた空間を形成している(尚、気体及び液体が濾布を通過して移動することは可能である)。また、第1枠体82aの凹部88aの開口部の形状、及び第2枠体82bの凹部88bの開口部の形状は、同じ大きさの円形とした。そして、第1枠体82aの凹部88aの開口部の円形と、第2枠体82bの凹部88bの開口部の円形とが、ずれずに重なり合うようにして、第1枠体82aと第2枠体82bとが配置されるようにした。第1枠体82aの凹部88aの開口部の直径を180mmとし、第2枠体82bの凹部88bの開口部の直径を180mmとした。また、第1枠体82aの凹部88aの深さ(最も深い位置の深さ)を、50mmとし、第2枠体82bの凹部88bの深さ(圧搾用ゴム膜86までの深さ)を、50mmとした。図10は、実施例1で用いられる濾過器83の断面を示す模式図である。
Example 1
In the solid-liquid separation apparatus 100 shown in FIG. 1, “a filter 83 as shown in FIG. 10 was used as a filter” to produce a solid-liquid separation apparatus. The filter 83 has a first frame 82a (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88a and a second frame 82b (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88b. A bag-like filter cloth 81 sandwiched between the filter body 82, "the surface of the first frame 82a on which the recess 88a is formed" and "the surface of the second frame 82b on which the recess 88b is formed". Are provided. The outer periphery (outer edge) of the bag-shaped filter cloth 81 has a “surface of the first frame 82a on which the recess 88a is formed (outer edge)” and a “surface of the second frame 82b on which the recess 88b is formed ( A closed space is formed in the central portion (in addition, gas and liquid can move through the filter cloth). Moreover, the shape of the opening part of the recessed part 88a of the 1st frame 82a and the shape of the opening part of the recessed part 88b of the 2nd frame 82b were made into the same size circle. Then, the first frame 82a and the second frame are formed such that the circular shape of the opening of the recess 88a of the first frame 82a and the circular shape of the opening of the recess 88b of the second frame 82b overlap without being displaced. The body 82b is arranged. The diameter of the opening of the recess 88a of the first frame 82a was 180 mm, and the diameter of the opening of the recess 88b of the second frame 82b was 180 mm. Moreover, the depth (depth of the deepest position) of the recessed part 88a of the 1st frame 82a shall be 50 mm, and the depth (depth to the rubber film 86 for pressing) of the recessed part 88b of the 2nd frame 82b, 50 mm. FIG. 10 is a schematic diagram illustrating a cross section of the filter 83 used in the first embodiment.
 そして、第1枠体82aには、汚泥導入管87が配設され、汚泥加圧手段13(図1参照)と圧力調整手段13a(図1参照)を有する汚泥供給手段12(図1参照)から供給された汚泥が、流入口Cから汚泥導入管87内に流入し、汚泥導入管87を通って袋状の濾布1内に供給されるように形成されている。この供給圧力を増加させて、汚泥を加圧することにより、加圧濾過工程における汚泥加圧が行われる。 And the sludge supply pipe | tube 12 (refer FIG. 1) which the sludge introduction pipe | tube 87 is arrange | positioned by the 1st frame 82a, and has the sludge pressurization means 13 (refer FIG. 1) and the pressure adjustment means 13a (refer FIG. 1). The sludge supplied from the inlet C flows into the sludge introduction pipe 87 from the inlet C, and is supplied to the bag-like filter cloth 1 through the sludge introduction pipe 87. By increasing the supply pressure and pressurizing sludge, sludge pressurization in the pressure filtration process is performed.
 また、第2枠体82bの凹部88b内には、圧搾用ゴム膜86が配設され、圧搾用ゴム膜86によって、凹部88bによる空間を、凹部88bの凹部底側の空間88baと、凹部88bの開口部側(凹部88bが形成される面側)の空間88bbとに分割した状態になっている。 In addition, a rubber film 86 for squeezing is disposed in the recess 88b of the second frame 82b, and the rubber film 86 for squeezing allows a space by the recess 88b to be separated into a space 88ba on the bottom side of the recess 88b and a recess 88b. Is divided into a space 88bb on the opening side (surface side on which the recess 88b is formed).
 濾過器83は、濾布81と第1枠体82aの凹部88aとにより形成される空間と、濾布81と第2枠体82bの凹部88bの開口部側の空間88bbとにより形成される空間とが、2次側空間85となる。また、袋状の濾布81の袋内の空間が1次側空間84となる。 The filter 83 is a space formed by the filter cloth 81 and the recess 88a of the first frame 82a and a space 88bb on the opening side of the filter cloth 81 and the recess 88b of the second frame 82b. Is the secondary space 85. Further, the space in the bag of the bag-shaped filter cloth 81 becomes the primary space 84.
 また、濾過器83は、第1枠体82aと第2枠体82bとの接合面が、水平面に対して直交するように配置して使用した。濾過器83をこのように配置したときに、「濾布81と第1枠体82aの凹部88aとにより形成される空間(1次側空間85)」を減圧し、濾液を排出するために、第1枠体82aの鉛直方向下側に、1次側空間85と外部とを通じさせる「流出口A」が形成されている。更に、「濾布81と第2枠体82bの凹部88bの開口部側の空間88bb(1次側空間85)」を減圧し、濾液を排出するために、第2枠体82bの鉛直方向下側に、1次側空間85と外部とを通じさせる「流出口B」が形成されている。流出口A及び流出口Bは、濾液貯留槽14(図1参照)に繋がっている。 Further, the filter 83 was used by being arranged so that the joint surface between the first frame body 82a and the second frame body 82b was orthogonal to the horizontal plane. When the filter 83 is arranged in this way, in order to depressurize the “space formed by the filter cloth 81 and the concave portion 88a of the first frame 82a (primary side space 85)” and discharge the filtrate, An “outlet A” is formed on the lower side in the vertical direction of the first frame 82a to allow the primary space 85 and the outside to pass through. Furthermore, in order to depressurize “the space 88bb (primary space 85) on the opening side of the recess 88b of the filter cloth 81 and the second frame 82b” and discharge the filtrate, the second frame 82b is vertically below. On the side, an “outlet B” is formed through the primary space 85 and the outside. The outlet A and the outlet B are connected to the filtrate storage tank 14 (see FIG. 1).
 また、圧搾工程において濾布81内の汚泥を圧搾するために、第2枠体82bの凹部88bの底側の空間88baに加圧ガスを導入するための「加圧口D」が、第2枠体82bの鉛直方向上側に形成されている。圧搾工程においては、第2枠体82bの加圧口Dから凹部88bの底側の空間88baに加圧ガスを導入し、凹部88bの底側の空間88ba内を加圧して圧搾用ゴム膜86を外側に向かって膨れさせ、圧搾用ゴム膜86によって汚泥が入った濾布81を押圧し、汚泥を圧搾する。加圧口Dは、汚泥加圧手段13(図1参照)に繋がっている。 Further, in order to squeeze the sludge in the filter cloth 81 in the squeezing step, the “pressurizing port D” for introducing the pressurized gas into the space 88ba on the bottom side of the recess 88b of the second frame 82b is the second. It is formed above the frame body 82b in the vertical direction. In the pressing step, a pressurized gas is introduced into the space 88ba on the bottom side of the recess 88b from the pressure port D of the second frame 82b, and the inside of the space 88ba on the bottom side of the recess 88b is pressurized to compress the rubber film 86 for pressing. The filter cloth 81 containing sludge is pressed by the rubber film 86 for squeezing and the sludge is squeezed. The pressurizing port D is connected to the sludge pressurizing means 13 (see FIG. 1).
 汚泥加圧手段13(図1参照)としては、窒素ボンベを使用した。圧力調整手段13a(図1参照)としては、減圧弁を用いた。汚泥貯留槽12a(図1参照)としては、鉄により形成された25リットルのタンクを用いた。濾液排出槽61は鉄により形成した。濾布81としては、ナイロン製のモノフィラメントを朱子織して形成した濾布を用いた。濾液貯留槽14としては、透明な塩化ビニルにより形成されたタンクを用いた。濾液貯留槽14内を減圧するための減圧手段11(図1参照)としては、真空ポンプを用いた。 As the sludge pressurizing means 13 (see FIG. 1), a nitrogen cylinder was used. A pressure reducing valve was used as the pressure adjusting means 13a (see FIG. 1). As the sludge storage tank 12a (see FIG. 1), a 25 liter tank formed of iron was used. The filtrate discharge tank 61 was made of iron. As the filter cloth 81, a filter cloth formed by satin weaving nylon monofilament was used. As the filtrate storage tank 14, a tank made of transparent vinyl chloride was used. A vacuum pump was used as the decompression means 11 (see FIG. 1) for decompressing the filtrate storage tank 14.
 得られた固液分離装置を用いて、浄水場において排出された固形分0.74質量%の汚泥を用いて、固液分離を行った。 Using the obtained solid-liquid separator, solid-liquid separation was performed using sludge having a solid content of 0.74% by mass discharged at the water purification plant.
 吸引濾過工程においては、「-0.033MPa(ゲージ圧)」で2次側空間を減圧しながら、汚泥を、1次側空間に60分間供給した(60分間、吸引濾過を行った)。 In the suction filtration step, sludge was supplied to the primary space for 60 minutes while reducing the secondary space at “−0.033 MPa (gauge pressure)” (suction filtration was performed for 60 minutes).
 加圧濾過工程においては、2次側空間を「-0.033MPa(ゲージ圧)」で減圧しながら、汚泥を0.4MPa(ゲージ圧)で加圧し、1次側空間に10分間供給した。この昇圧操作は1回実施した。 In the pressure filtration step, sludge was pressurized at 0.4 MPa (gauge pressure) while the secondary side space was depressurized at “−0.033 MPa (gauge pressure)”, and supplied to the primary side space for 10 minutes. This step-up operation was performed once.
 圧搾工程においては、2次側空間を「-0.033MPa(ゲージ圧)」で減圧しながら、第2枠体82bの加圧口Dから凹部88bの底側の空間88baに、汚泥加圧手段13(図1参照)からの加圧ガスを導入した。そして、導入された加圧ガスによって、第2枠体82bの凹部88bの底側の空間88ba内を加圧して、圧搾用ゴム膜86を外側に向かって膨れさせ、圧搾用ゴム膜86によって汚泥が入った濾布81を押圧し、汚泥を圧搾した。圧搾の圧力は1.5MPa(ゲージ圧)であり、圧搾の時間は10分間とした。 In the squeezing step, sludge pressurizing means is applied from the pressurizing port D of the second frame 82b to the space 88ba on the bottom side of the recess 88b while reducing the secondary side space at “−0.033 MPa (gauge pressure)”. Pressurized gas from 13 (see FIG. 1) was introduced. Then, the inside of the space 88ba on the bottom side of the concave portion 88b of the second frame 82b is pressurized with the introduced pressurized gas to swell the rubber film 86 for squeezing outward, and the sludge is sludged by the rubber film 86 for squeezing. The filter cloth 81 containing was pressed and sludge was squeezed. The pressing pressure was 1.5 MPa (gauge pressure), and the pressing time was 10 minutes.
 排出工程においては、第1枠体82aと第2枠体82bとを分離し、濾過器本体82内の圧搾汚泥を内部に有する濾布81を取り出し、圧搾汚泥を濾布から剥離させて取り出した。 In the discharging step, the first frame 82a and the second frame 82b are separated, the filter cloth 81 having the compressed sludge in the filter body 82 is taken out, and the compressed sludge is peeled off from the filter cloth and taken out. .
 得られた圧搾汚泥の固形分濃度を以下の方法で測定した。結果を表1に示す。表1において、「吸引濾過工程」の「圧力」の欄は、減圧している2次側空間の圧力を示し、「時間」の欄は減圧濾過の時間を示す。また、「加圧濾過工程」の「圧力」の欄は、加圧している1次側空間の圧力を示し、「時間」の欄は、加圧濾過の時間を示す。また、「圧搾工程」の「圧力」の欄は、濃縮汚泥の圧搾に際して、濃縮汚泥に加える圧力を示し、「時間」の欄は、圧搾の時間を示す。また、「固形分濃度」の欄は、圧搾汚泥の固形分濃度を示す。尚、比較例1の「固形分濃度」の欄は、吸引濾過工程により得られた濃縮汚泥の固形分濃度を示す。 The solid content concentration of the obtained compressed sludge was measured by the following method. The results are shown in Table 1. In Table 1, the “pressure” column of the “suction filtration step” indicates the pressure of the secondary space being depressurized, and the “time” column indicates the time of vacuum filtration. In the “pressure filtration step”, the “pressure” column indicates the pressure in the primary space being pressurized, and the “time” column indicates the pressure filtration time. Further, the “pressure” column of the “squeezing step” indicates the pressure applied to the concentrated sludge when the concentrated sludge is compressed, and the “time” column indicates the time of pressing. Moreover, the column of "solid content concentration" shows the solid content concentration of pressing sludge. The column “Solid Concentration” in Comparative Example 1 indicates the solid concentration of the concentrated sludge obtained by the suction filtration process.
(固形分濃度)
 乾燥前の測定対象物(圧搾汚泥又は濃縮汚泥)の質量(乾燥前質量)を測定し、乾燥機で乾燥させた後の測定対象物の質量(乾燥後質量)を測定し、乾燥前質量から乾燥後質量を差し引いた値を乾燥前質量で除算した値を100倍した値を固形分濃度(質量%)とする。測定対象物の乾燥は、110℃、8時間の条件で行った。
(Solid content concentration)
Measure the mass (mass before drying) of the measurement object (pressed sludge or concentrated sludge) before drying, measure the mass (mass after drying) of the measurement object after drying with a dryer, A value obtained by dividing the value obtained by subtracting the mass after drying by the mass before drying is 100 times the solid content concentration (% by mass). The measurement object was dried at 110 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 加圧濾過工程及び圧搾工程における「圧力(ゲージ圧)」及び「時間」を表1に示すように変化させた以外は実施例1と同様にして、汚泥の固液分離を行った。実施例1の場合と同様にして、上記方法で、圧搾汚泥の「固形分濃度」の測定を行った。結果を表1に示す。表1において、「加圧濾過工程」の「圧力」の欄の「0.2-0.8」は、-0.033MPaから0.2MPaまで1分間で昇圧し、0.2MPaで9分間保持し、その後0.2MPaから0.4MPaまで1分間で昇圧し、0.4MPaで9分間保持し、その後0.4MPaから0.6MPaまで1分間で昇圧し、0.6MPaで4分間、その後0.6MPaから0.8MPaまで1分間で昇圧し、0.8MPaで4分間保持する、という昇圧パターンで、連続して1次側空間を加圧したことを示す。そして、「加圧濾過工程」の「時間」の欄の「30」は、上記1次側空間を加圧する時間(加圧濾過を行う時間)が、合計で30分であることを示す。また、「圧搾工程」の「圧力」の欄の「1.5-1.8」は、0.8MPaから1.5MPaまで1分間で昇圧し、1.5MPaで4分間保持し、その後1.5MPaから1.8MPaまで1分間で昇圧し、1.8MPaで5分間保持するという昇圧パターンで、連続して濃縮汚泥を圧搾(加圧)したことを示す。そして、「圧搾工程」の「時間」の欄の「10」は、上記濃縮汚泥を圧搾する時間が、合計で10分であることを示す。
(Example 2)
Sludge was separated into solid and liquid in the same manner as in Example 1 except that the “pressure (gauge pressure)” and “time” in the pressure filtration step and the pressing step were changed as shown in Table 1. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1. In Table 1, “0.2-0.8” in the “Pressure” column of “Pressure filtration step” is a pressure increase from −0.033 MPa to 0.2 MPa in 1 minute, and is held at 0.2 MPa for 9 minutes. Then, the pressure was increased from 0.2 MPa to 0.4 MPa in 1 minute, held at 0.4 MPa for 9 minutes, then increased from 0.4 MPa to 0.6 MPa in 1 minute, then at 0.6 MPa for 4 minutes, and then 0 It shows that the primary space was continuously pressurized in a pressure increasing pattern in which the pressure was increased from 6 MPa to 0.8 MPa in 1 minute and held at 0.8 MPa for 4 minutes. Then, “30” in the “time” column of the “pressure filtration step” indicates that the time for pressurizing the primary space (time for performing pressure filtration) is 30 minutes in total. “1.5-1.8” in the “Pressure” column of the “Pressing step” is a pressure increase from 0.8 MPa to 1.5 MPa in 1 minute, and is held at 1.5 MPa for 4 minutes. It shows that the concentrated sludge was continuously squeezed (pressurized) in a pressure increasing pattern in which the pressure was increased from 5 MPa to 1.8 MPa in 1 minute and held at 1.8 MPa for 5 minutes. And "10" of the column of "time" of a "squeezing process" shows that the time which squeezes the said concentrated sludge is 10 minutes in total.
(比較例1)
 加圧濾過工程及び圧搾工程を行わなかった以外は、実施例1と同様にして、汚泥の固液分離を行った。実施例1の場合と同様にして、上記方法で、圧搾汚泥の「固形分濃度」の測定を行った。結果を表1に示す。
(Comparative Example 1)
Sludge was subjected to solid-liquid separation in the same manner as in Example 1 except that the pressure filtration step and the pressing step were not performed. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
 表1より、実施例1の固液分離方法により、1つの固液分離装置を用いて、固形分濃度0.74質量%(1質量%程度)の汚泥から、固形分濃度45質量%の圧搾汚泥が得られたことがわかる。また、実施例2の固液分離方法により、吸引濾過工程の吸引濾過時間を10分と短くし、加圧濾過工程及び圧搾工程において、段階的に各「圧力」を上昇させたことにより、固液分離の合計時間が大幅に短縮されたことが分かる。また、比較例1の固液分離方法により、吸引濾過工程だけでは、濃縮汚泥の固形分濃度は、あまり上がらないことがわかる。 According to the solid-liquid separation method of Example 1, from Table 1, using one solid-liquid separation device, the solid content concentration of 0.74% by mass (about 1% by mass) from the sludge with a solid content concentration of 45% by mass is obtained. It turns out that sludge was obtained. In addition, by the solid-liquid separation method of Example 2, the suction filtration time in the suction filtration process was shortened to 10 minutes, and each “pressure” was increased step by step in the pressure filtration process and the compression process. It can be seen that the total time for liquid separation was significantly reduced. Moreover, it turns out that the solid content density | concentration of concentrated sludge does not rise so much only by the suction filtration process by the solid-liquid separation method of the comparative example 1.
(実施例3)
 固液分離に使用する汚泥の固形分濃度を1.2質量%とし、吸引濾過工程、加圧濾過工程及び圧搾工程の条件を以下のように変更した以外は、実施例1と同様にして、汚泥の固液分離を行った。吸引濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」とし、濾過時間を10分とした(吸引濾過工程の条件)。加圧濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「0.20MPa(ゲージ圧)」で30分間加圧した後に「0.39MPa(ゲージ圧)」で20分間加圧した(加圧濾過工程の条件)。圧搾工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「1.5MPa(ゲージ圧)」で10分間加圧した(圧搾工程の条件)。濾過時間と2次側空間に排出された濾液量との関係を図9に示す。図9は、実施例3,4の固液分離方法における、濾過時間と濾液量との関係を示すグラフである。
(Example 3)
The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed. In the suction filtration step, the pressure in the secondary space was set to “−0.025 MPa (gauge pressure)” and the filtration time was set to 10 minutes (conditions of the suction filtration step). In the pressure filtration step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.20 MPa (gauge pressure)” for 30 minutes. Pressurization was carried out for 20 minutes at “0.39 MPa (gauge pressure)” (conditions for pressure filtration step). In the pressing step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “1.5 MPa (gauge pressure)” for 10 minutes (pressing step) Conditions). FIG. 9 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space. FIG. 9 is a graph showing the relationship between the filtration time and the filtrate amount in the solid-liquid separation methods of Examples 3 and 4.
(実施例4)
 固液分離に使用する汚泥の固形分濃度を1.2質量%とし、吸引濾過工程、加圧濾過工程及び圧搾工程の条件を以下のように変更した以外は、実施例1と同様にして、汚泥の固液分離を行った。吸引濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」とし、濾過時間を90分とした(吸引濾過工程の条件)。加圧濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「0.39MPa(ゲージ圧)」で10分間加圧した(加圧濾過工程の条件)。圧搾工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「1.5MPa(ゲージ圧)」で16分間加圧した(圧搾工程の条件)。濾過時間と2次側空間に排出された濾液量との関係を図9に示す。
Example 4
The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed. In the suction filtration step, the pressure in the secondary space was set to “−0.025 MPa (gauge pressure)”, and the filtration time was set to 90 minutes (conditions of the suction filtration step). In the pressure filtration step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.39 MPa (gauge pressure)” for 10 minutes ( Pressure filtration process conditions). In the pressing step, the pressure in the secondary side space is maintained at “−0.025 MPa (gauge pressure)” and the primary side space is pressurized at “1.5 MPa (gauge pressure)” for 16 minutes (pressing step) Conditions). FIG. 9 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
 図9より、実施例3の固液分離方法では、70分程度で3.5kgの濾液を排出しているのに対し、実施例4の固液分離方法では、110分程度で3.5kgの濾液を排出していることが分かる。これより、本発明の固液分離方法では、吸引濾過工程を10分程度と短くして、加圧濾過工程に切り替えることにより、短時間で汚泥の固液分離を行うことができることが分かる。実施例3と実施例4との違いは、主として、実施例3においては、10分間の吸引濾過の後に40分間の加圧濾過を行ったところ(合計50分)で濾液量が3kgに達しているのに対し、実施例4においては、吸引濾過を90分間行ったところで濾液量が3kgに達した点である。つまり、吸引濾過工程を長時間続けるよりも、吸引濾過工程を短時間で終了させて、加圧濾過工程に切り替えるほうが、濾過時間を大幅に短縮できるのである。 From FIG. 9, in the solid-liquid separation method of Example 3, 3.5 kg of filtrate was discharged in about 70 minutes, whereas in the solid-liquid separation method of Example 4, 3.5 kg was discharged in about 110 minutes. It can be seen that the filtrate is discharged. From this, in the solid-liquid separation method of this invention, it turns out that solid-liquid separation of sludge can be performed in a short time by shortening a suction filtration process to about 10 minutes and switching to a pressure filtration process. The difference between Example 3 and Example 4 is that in Example 3, when the pressure filtration for 40 minutes was performed after the suction filtration for 10 minutes (total of 50 minutes), the amount of filtrate reached 3 kg. On the other hand, in Example 4, the amount of the filtrate reached 3 kg after suction filtration for 90 minutes. That is, rather than continuing the suction filtration process for a long time, the filtration time can be significantly shortened by ending the suction filtration process in a short time and switching to the pressure filtration process.
 本発明の固液分離装置は、浄水場から排出される固形分濃度1質量%程度の汚泥を処理するために、好適に利用することができる。 The solid-liquid separation device of the present invention can be suitably used for treating sludge having a solid content concentration of about 1% by mass discharged from a water purification plant.
1:濾布、2:濾過器本体、3,3a:濾過器、4:1次側空間、5:2次側空間、6:1次側の面、7:2次側の面、11:減圧手段、11a:真空ポンプ、12:汚泥供給手段、12a:汚泥貯留槽、12b:汚泥受入口、12c:汚泥排出口、13:汚泥加圧手段、13a:圧力調整手段、14:濾液貯留槽、16:汚泥、17:濃縮汚泥、17a:初期濃縮汚泥、17b:2層目濃縮汚泥、18:圧搾汚泥、19:濾液、61:濾液排出槽、62:濃縮槽、63:濾液透過部材、64:胴体部、65:対向する壁、65a:開口部、71:流入口、71a:流入ノズル、72:流出口、72a:流出ノズル、73:開閉部、74:サイホン管、75:移動機構、76:ガイド部、77:支持部、81:濾布、82:濾過器本体、82a:第1枠体、82b:第2枠体、83:濾過器、84:1次側空間、85:2次側空間、86:圧搾用ゴム膜、87:汚泥導入管、88a:(第1枠体の)凹部、88b:(第2枠体の)凹部、88ba:底側の空間、88bb:開口部側の空間、A,B:流出口、C:流入口、D:加圧口、100:固液分離装置。 1: filter cloth, 2: filter body, 3, 3a: filter, 4: primary side space, 5: secondary side space, 6: primary side surface, 7: secondary side surface, 11: Pressure reducing means, 11a: vacuum pump, 12: sludge supply means, 12a: sludge storage tank, 12b: sludge receiving port, 12c: sludge discharge port, 13: sludge pressurizing means, 13a: pressure adjusting means, 14: filtrate storage tank 16: sludge, 17: concentrated sludge, 17a: initial concentrated sludge, 17b: second layer concentrated sludge, 18: pressed sludge, 19: filtrate, 61: filtrate discharge tank, 62: concentrate tank, 63: filtrate permeation member, 64: body part, 65: opposing wall, 65a: opening, 71: inflow port, 71a: inflow nozzle, 72: outflow port, 72a: outflow nozzle, 73: opening and closing unit, 74: siphon tube, 75: moving mechanism 76: guide portion, 77: support portion, 81: filter cloth, 82: filter body, 82 : First frame body, 82b: second frame body, 83: filter, 84: primary side space, 85: secondary side space, 86: rubber film for pressing, 87: sludge introduction pipe, 88a: (first Recesses in the frame body, 88b: recesses in the second frame body, 88ba: space on the bottom side, 88bb: space on the opening side, A, B: outlet, C: inlet, D: pressure inlet, 100: Solid-liquid separator.

Claims (3)

  1.  濾布、及び前記濾布によって内部が仕切られた濾過器本体を有し、前記濾布の一方の面側の空間であるとともに濾液が排出される空間である2次側空間及び前記濾布の他方の面側の空間であるとともに汚泥が供給される空間である1次側空間が形成された濾過器と、
     前記2次側空間を減圧することができる減圧手段と、
     前記1次側空間に汚泥を供給することができる汚泥供給手段と、
     前記1次側空間に供給する汚泥を加圧することができる汚泥加圧手段と、
     前記1次側空間に供給された汚泥が前記濾布によって濾過されたときに前記濾布の前記1次側空間側の面である1次側の面に付着した濃縮汚泥を、圧搾することができる汚泥圧搾手段とを備え、
     前記濾布が、モノフィラメントにより形成された濾布である固液分離装置。
    A filter cloth and a filter body having an interior partitioned by the filter cloth, and a secondary side space which is a space on one side of the filter cloth and where the filtrate is discharged; and the filter cloth A filter in which a primary side space which is a space on the other surface side and a sludge is supplied is formed;
    Decompression means capable of decompressing the secondary side space;
    Sludge supply means capable of supplying sludge to the primary side space;
    Sludge pressurizing means capable of pressurizing the sludge supplied to the primary side space;
    When the sludge supplied to the primary side space is filtered by the filter cloth, the concentrated sludge attached to the primary side surface, which is the primary side space side surface of the filter cloth, is squeezed. A sludge squeezing means that can
    A solid-liquid separation device, wherein the filter cloth is a filter cloth formed of monofilaments.
  2.  前記濾布が、ポリアミド樹脂のモノフィラメントにより形成された濾布である請求項1に記載の固液分離装置。 The solid-liquid separator according to claim 1, wherein the filter cloth is a filter cloth formed of monofilament of polyamide resin.
  3.  前記濾過器の前記濾過器本体は、内部が前記2次側空間となる2つの濾液排出槽を有し、前記濾液排出層が間隔を開けて配置され、更に、前記濾過器本体は、前記2つの濾液排出槽に挟まれるように配置されるとともに内部が1次側空間となる濃縮槽を有し、
     前記濾過器が、2つの前記濾液排出槽のそれぞれと前記濃縮槽との境界に前記濾布を1枚ずつ備えるとともに、2つの前記濾液排出槽内に、前記濾布を支えるように濾液透過部材を備え、
     前記汚泥圧搾手段が、前記2つの濾液排出槽が前記1次側空間を狭めて互いに近づくように移動し、前記2枚の濾布のそれぞれの前記1次側の面に付着した濃縮汚泥を、前記2つの濾液排出槽の間に挟んで圧搾する手段である請求項1又は2に記載の固液分離装置。
    The filter body of the filter has two filtrate discharge tanks, the interior of which is the secondary space, and the filtrate discharge layer is disposed at an interval, and further, the filter body is It is arranged so as to be sandwiched between two filtrate discharge tanks, and has a concentration tank whose inside is a primary space,
    The filter includes one filter cloth at the boundary between each of the two filtrate discharge tanks and the concentration tank, and a filtrate transmitting member that supports the filter cloth in the two filtrate discharge tanks. With
    The sludge squeezing means moves so that the two filtrate discharge tanks narrow the primary side space and approach each other, and the concentrated sludge adhering to the primary side surfaces of the two filter cloths, The solid-liquid separation device according to claim 1 or 2, wherein the solid-liquid separation device is a means for squeezing between the two filtrate discharge tanks.
PCT/JP2011/062840 2010-06-07 2011-06-03 Solid-liquid separating device WO2011155415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519361A JP5985984B2 (en) 2010-06-07 2011-06-03 Solid-liquid separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-129671 2010-06-07
JP2010129671 2010-06-07

Publications (1)

Publication Number Publication Date
WO2011155415A1 true WO2011155415A1 (en) 2011-12-15

Family

ID=45098022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062840 WO2011155415A1 (en) 2010-06-07 2011-06-03 Solid-liquid separating device

Country Status (2)

Country Link
JP (1) JP5985984B2 (en)
WO (1) WO2011155415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111035977A (en) * 2019-12-19 2020-04-21 珠海杰赛科技有限公司 Filter device of resin hole plugging ink
CN116492729A (en) * 2023-06-21 2023-07-28 中大贝莱特压滤机有限公司 Plate-frame type high-efficiency separation filter press system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204612U (en) * 1985-06-12 1986-12-23
JPH07124600A (en) * 1993-11-08 1995-05-16 Chikuma Eisei Shisetsu Kumiai Organic sludge treatment method and apparatus
JP2000334221A (en) * 1999-06-02 2000-12-05 Tsukishima Kikai Co Ltd Filter press device and method for dehydrating sludge as well as filter plate for filter press

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823159B2 (en) * 1977-04-04 1983-05-13 栗田工業株式会社 Sludge dewatering method
JP2001137617A (en) * 1999-11-12 2001-05-22 Kurita Mach Mfg Co Ltd Filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204612U (en) * 1985-06-12 1986-12-23
JPH07124600A (en) * 1993-11-08 1995-05-16 Chikuma Eisei Shisetsu Kumiai Organic sludge treatment method and apparatus
JP2000334221A (en) * 1999-06-02 2000-12-05 Tsukishima Kikai Co Ltd Filter press device and method for dehydrating sludge as well as filter plate for filter press

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111035977A (en) * 2019-12-19 2020-04-21 珠海杰赛科技有限公司 Filter device of resin hole plugging ink
CN116492729A (en) * 2023-06-21 2023-07-28 中大贝莱特压滤机有限公司 Plate-frame type high-efficiency separation filter press system
CN116492729B (en) * 2023-06-21 2023-11-10 中大贝莱特压滤机有限公司 Plate-frame type high-efficiency separation filter press system

Also Published As

Publication number Publication date
JP5985984B2 (en) 2016-09-06
JPWO2011155415A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
AU2003283788B2 (en) Direct osmosis cleaning
JP5431474B2 (en) Filtration method and membrane filtration device
JP4975950B2 (en) Membrane module cleaning method
JP5744436B2 (en) Filtration cake recovery method and cake forming / cleaning filtration device
WO2004106697A1 (en) Apparatus and method for treating injection fluid
JP5636040B2 (en) Solid-liquid separation method
CN113087349A (en) Deep dehydration method for sludge belt
JP5985984B2 (en) Solid-liquid separator
WO2013191245A1 (en) Turbid-water treatment system and turbid-water treatment method
JP5108163B1 (en) Filtration method and filtration device
JP5867923B2 (en) Anaerobic treatment liquid treatment system and treatment method
JP6297415B2 (en) Muddy water treatment system and muddy water treatment method
JP4677374B2 (en) Filtration concentration apparatus and filtration concentration method
JP5149133B2 (en) Apparatus and method for concentrating backwash wastewater from membrane filtration
EA038051B1 (en) Method for operating a filter press and filter press
CN111204892A (en) Seawater desalination and permeation device
JPH07251041A (en) Membrane separation apparatus and washing method therefor
JP5764346B2 (en) Pressurizing apparatus and pressurizing method
EP3240758A1 (en) Tubular elements for cake filtration and method of providing a filtration cake
JP2014188469A (en) Filtration method, and filtration apparatus and water treatment system using the same
JP2004160319A (en) Concentrator for slurry and concentration/filtration apparatus
JP4678757B2 (en) Water treatment apparatus and operation method thereof
JP2010201405A (en) Filter, method for dehydrating slurry substance using the filter, method for purifying water polluted with solid matter, method for desulfurizing heavy oil, and method for refining used oil
JPS61149206A (en) Method and apparatus for low flow speed membrane separation treatment
JP2020049404A (en) Filtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519361

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792372

Country of ref document: EP

Kind code of ref document: A1