WO2011155089A1 - 電気刺激装置及び電気刺激方法 - Google Patents

電気刺激装置及び電気刺激方法 Download PDF

Info

Publication number
WO2011155089A1
WO2011155089A1 PCT/JP2010/071880 JP2010071880W WO2011155089A1 WO 2011155089 A1 WO2011155089 A1 WO 2011155089A1 JP 2010071880 W JP2010071880 W JP 2010071880W WO 2011155089 A1 WO2011155089 A1 WO 2011155089A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
skin impedance
current
electrical stimulation
electrode
Prior art date
Application number
PCT/JP2010/071880
Other languages
English (en)
French (fr)
Inventor
裕之 梶本
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2012519203A priority Critical patent/JP5709110B2/ja
Priority to US13/702,085 priority patent/US20130093501A1/en
Publication of WO2011155089A1 publication Critical patent/WO2011155089A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches

Definitions

  • the present invention relates to an electrical stimulation device and an electrical stimulation method, and more particularly to an electrical stimulation device and an electrical stimulation method for presenting predetermined information to a user by electrical stimulation.
  • electrotactile display In recent years, various electrical stimulation apparatuses that present predetermined information to users by electrical stimulation have been proposed.
  • One of them is the electrotactile display.
  • a nerve axon connected to a receptor under the skin is driven by electrical stimulation given from an electrode arranged on the surface side in contact with the skin, and predetermined information is presented.
  • the electric tactile display has many practical advantages such as simple configuration, no mechanical drive, no noise problem, and low power consumption.
  • postponed tactile displays are not widely used for general applications because it is difficult to stabilize the sense of occurrence by electrical stimulation.
  • the sense of origin (electrical stimulation) is not stable, one of which is the temporal change in sensation. This occurs, for example, due to a situation change during use due to sweating or the like. Another cause is spatial variation in sensation. This occurs when the threshold value of electrical stimulation changes due to, for example, a difference in the thickness of skin that comes into contact or partial sweating.
  • the instability of electrical stimulation due to the former cause occurs regardless of the number of electrodes, but the instability of electrical stimulation due to the latter cause occurs particularly when there are a large number of electrodes.
  • the electrotactile display When the electrotactile display is applied to a touch panel in which contact and non-contact between the skin and the display are frequently performed, the two causes described above are combined. Furthermore, in such applications, the current path is likely to change when switching between contact and non-contact between the skin and the display, thereby giving the user pain such as a unique discomfort or a strong discomfort due to electric shock, for example. There is.
  • FIG. 10 is a waveform diagram of stimulation pulses applied when electrical stimulation is performed once on one electrode, where the vertical axis represents the amount of stimulation and the horizontal axis represents time.
  • Non-Patent Document 1 In the electrical stimulation method proposed in Non-Patent Document 1, before applying a main pulse 200 for stimulation to a predetermined electrode, a pre-pulse 201 having a weak intensity (current) that does not cause stimulation to the user is applied. Apply to measure skin impedance. Then, the intensity of the main pulse 200 is adjusted based on the measured skin impedance. Note that the technique described in Non-Patent Document 1 is a technique for adjusting the amount of electrical stimulation by feeding forward the measurement result of skin impedance, and cannot be said to be strictly a real-time response.
  • the skin impedance varies greatly depending on the voltage applied to the skin. Therefore, in the conventional electrical stimulation method described above, when the level difference between the prepulse 201 and the main pulse 200 becomes large, the usefulness (reliability) of the measurement result of the skin impedance by the prepulse 201 is questioned. Therefore, with conventional electrical stimulation techniques, it is possible to determine whether or not the skin is in contact with the electrode, but it is difficult to control the electrical stimulation in detail using the skin impedance information and achieve stabilization. It is.
  • the above-described conventional electrical stimulation technique is applied to an application in which a large number of electrodes (for example, about 100 or more) are used, that is, in a practical situation, the above-described skin or display is in contact or non-contact. It is difficult to completely eliminate pains such as a unique feeling of dust and a strong discomfort caused by an electric shock given to the user. The reason for this is as follows.
  • the pulse width of the stimulation main pulse 200 in the conventional electrical stimulation method is 100 ⁇ s
  • 1 ⁇ 4 of the selection period T is the application time (stimulation period) of the main pulse 200.
  • the probability that the stimulation main pulse 200 is energized to the electrode is 25%.
  • the probability of giving the user pain such as the above-mentioned unique dusty feeling or strong discomfort due to electric shock with a probability of 25%.
  • the selection period T is also shortened, and the ratio of the application time of the main pulse 200 in the selection period T is increased.
  • the probability of occurrence of pain due to the electrical stimulation described above increases.
  • the conventional electrical stimulation technique is excellent in that continuous pain does not occur because there is one electrode that causes pain due to the electrical stimulation described above.
  • the conventional method is not suitable for applications that require a situation in which the generation of pain due to such electrical stimulation is not allowed even for a moment.
  • the present invention has been made to solve the above problems, and an object of the present invention is to stabilize electrical stimulation (occurrence sensation) by adjusting electrical stimulation in real time in the electrical stimulation apparatus and electrical stimulation method. And to improve safety.
  • the electrical stimulation device of the present invention is configured to include an electrode, a stimulation current supply unit, a skin impedance detection unit, and a stimulation pulse control unit, and the function of each unit is as follows.
  • the electrode provides electrical stimulation to the user.
  • the stimulation current supply unit supplies a stimulation current to the electrodes for a predetermined stimulation period.
  • the skin impedance detection unit detects information related to the user's skin impedance.
  • the stimulation pulse control unit acquires information on the skin impedance through the skin impedance detection unit at a cycle shorter than the stimulation period during the supply of the stimulation current, and the next cycle based on the acquired information on the skin impedance.
  • the stimulation current supplied to the electrode is adjusted.
  • the electrical stimulation method of the present invention is performed in the following procedure. First, a stimulation current is supplied to a predetermined electrode. Next, during the supply of the stimulation current, information on the user's skin impedance is acquired at a cycle shorter than one stimulation period at a predetermined electrode. And based on the acquired information regarding skin impedance, the stimulation current of the next period is adjusted.
  • stimulation period in this specification refers to a period in which a stimulation current (stimulation current) is continuously applied when electrical stimulation is performed once on a predetermined electrode.
  • information on skin impedance includes not only skin impedance itself but also any parameters related to skin impedance such as voltage and current applied to the user's skin during electrical stimulation, for example. Meaning.
  • the electrical stimulation device and the electrical stimulation method of the present invention information on skin impedance is acquired in a cycle shorter than one stimulation period in a predetermined electrode, and stimulation in the next cycle is performed based on the information. Adjust the current. That is, in the present invention, feedback processing for detecting information on skin impedance and adjusting the amount of stimulation is performed a plurality of times during one stimulation period of a predetermined electrode. Therefore, in the present invention, the measurement phase of information on skin impedance and the adjustment phase of stimulation can be substantially unified, and feedback control of the stimulation amount based on information on skin impedance can be performed in more real time. Become.
  • the feedback control of the stimulation amount based on the information on the skin impedance can be performed in real time, so that it is possible to cope with a sudden change in skin impedance during the stimulation. Therefore, according to the present invention, in the electrical stimulation device and electrical stimulation method, it is possible to further improve the stability and safety of electrical stimulation (occurrence sensation).
  • FIG. 1 is a schematic block diagram of an electrical stimulation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the skin impedance detection unit of the electrical stimulation apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an internal configuration of a switch group and a touch panel of the electrical stimulation apparatus according to the embodiment of the present invention.
  • 4A and 4B are diagrams for explaining the operation of the changeover switch.
  • FIG. 5 is a diagram illustrating an example of scanning of electrodes.
  • FIG. 6 is a diagram for explaining the principle of adjusting the stimulation amount.
  • FIG. 7 is a flowchart showing a procedure for adjusting the amount of stimulation in the electrical stimulation apparatus according to the embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of an electrical stimulation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the skin impedance detection unit of the electrical stimulation apparatus according to the embodiment of the present invention
  • FIG. 8 is a diagram illustrating a stimulation intensity adjustment curve group used in the volume adjustment function of the electrical stimulation apparatus according to the first modification.
  • FIG. 9 is a diagram illustrating a stimulation amount adjustment method in the second modification.
  • FIG. 10 is a diagram for explaining a conventional electrical stimulation technique.
  • FIG. 1 Basic configuration of electrical stimulation device> [Configuration of electrical stimulation device]
  • FIG. 1 the block block diagram of the electrical stimulation apparatus which concerns on one Embodiment of this invention is shown.
  • FIG. 1 the system constructed
  • the verification system mainly includes an electrical stimulation device 10, a personal computer 100, and a serial interface 101.
  • a signal of a predetermined stimulus pattern (for example, an information pattern such as a predetermined character or graphic) to be presented on a touch panel (to be described later) of the electrical stimulation device 10 is generated by the personal computer 100. Then, the personal computer 100 transmits the generated signal of the predetermined stimulation pattern to the electrical stimulation apparatus 10 via the serial interface 101 by high-speed serial communication.
  • the electrical stimulation device 10 controls electrical stimulation so that the received stimulation pattern information is presented on the touch panel.
  • the electrical stimulation apparatus 10 includes a stimulation pulse control unit 11, a voltage / current converter 12 (stimulation current supply unit), a skin impedance detection unit 13, a switch group 14 (switch), and a touch panel 15.
  • the stimulation pulse control unit 11 includes a microprocessor 1, a digital / analog converter 2 (hereinafter referred to as D / A converter 2), and an analog / digital converter 3 (hereinafter referred to as A / D converter 3).
  • D / A converter 2 digital / analog converter 2
  • a / D converter 3 analog / digital converter 3
  • the microprocessor 1 functions as an arithmetic processing device and a control device, and controls the operation of each part of the electrical stimulation device 10 when adjusting the amount of stimulation to be described later. Further, the microprocessor 1 includes a storage unit (not shown). The storage unit stores various determination data such as correlation data between the pulse width threshold value of the stimulation pulse and the skin impedance, which is used when adjusting the stimulation amount.
  • a microprocessor having an operating frequency of 25 MHz is used as the microprocessor 1.
  • any microprocessor can be used as long as it has high speed.
  • the microprocessor 1 is selected in consideration of, for example, the availability of the microprocessor 1 and the abundance of input / output interfaces. It is preferable.
  • the D / A converter 2 converts the digital signal (stimulation voltage signal) output in parallel from the microprocessor 1 into an analog signal. Then, the D / A converter 2 outputs the converted analog signal to the voltage / current converter 12.
  • the D / A converter 2 is a D / A converter having a bit number of 12 bits, a sampling rate of 1 Msps, and a settling time of 1 ⁇ s.
  • the interface on the side (signal input side) connected to the microprocessor 1 of the D / A converter 2 is a parallel interface.
  • the two input terminals of the A / D converter 3 (analog / digital converter) are respectively connected to both ends of the resistor 4 via a voltage dividing circuit 5 described later in the skin impedance detector 13.
  • a voltage signal at both ends of the resistor 4 is input to the A / D converter 3, and the A / D converter 3 converts the input signal (analog signal) into a digital signal.
  • the A / D converter 3 outputs the converted digital signal to the microprocessor 1 in parallel.
  • the A / D converter 3 is an A / D converter having 12 bits and a sampling rate of 1.25 Msps. By using the A / D converter 3 having such performance, the sampling interval (1 ⁇ s or less) of the A / D converter 3 can be made sufficiently smaller than the electrical time constant of the skin, and substantially simultaneous sampling is possible. Become.
  • the interface on the side (signal input side) connected to the microprocessor 1 of the A / D converter 3 is a parallel interface.
  • some microprocessors include a D / A converter and an A / D converter.
  • the D / A converter 2 and the A / D having a parallel interface are provided.
  • the converter 3 is provided separately from the microprocessor 1. This is due to the following reason.
  • the skin impedance is measured, and the measurement result is fed back to adjust the stimulation amount.
  • the period of this feedback processing required in the present embodiment is several ⁇ s. It is as follows. However, at present, it is difficult to perform such high-speed processing with a D / A converter and an A / D converter built in the microprocessor, and it is not suitable for use as an electrical stimulation device.
  • the voltage / current converter 12 converts the voltage signal converted into an analog signal by the D / A converter 2 into a current signal (stimulation current). Then, the voltage / current converter 12 supplies the converted current signal to the selected predetermined electrode in the touch panel 15 via the skin impedance detection unit 13 and the switch group 14. That is, in the electrical stimulation device 10 of the present embodiment, the electrical stimulation amount is adjusted by current control.
  • the skin impedance detection unit 13 includes a resistor 4 and a voltage dividing circuit 5.
  • the resistor 4 and the voltage dividing circuit 5 are provided for measuring the impedance of the skin (skin impedance Z) in contact with the electrode in the touch panel 15.
  • FIG. 2 shows the internal configuration of the voltage dividing circuit 5 according to the present embodiment and the connection relationship between the resistor 4 and the voltage dividing circuit 5.
  • the voltage dividing circuit 5 is a circuit for measuring the voltage at both ends (input / output ends) of the resistor 4 with high accuracy, and includes four voltage dividing resistors Rb, Rc, Rd, and Re.
  • a voltage dividing circuit 5 as shown in FIG. 2 is provided.
  • One terminal (input side terminal) of the resistor 4 is connected to the output terminal of the voltage / current converter 12, and the other terminal (output side terminal) of the resistor 4 is connected to the input terminal of the switch group 14.
  • a series resistor composed of voltage dividing resistors Rb and Rc is connected to one terminal of the resistor 4
  • a series resistor composed of voltage dividing resistors Rd and Re is connected to the other terminal of the resistor 4.
  • the terminal on the opposite side of the resistor 4 side of the series resistor composed of the voltage dividing resistors Rb and Rc is grounded, and the connection point between the voltage dividing resistor Rb and the voltage dividing resistor Rc is connected to the A / D converter 3. .
  • the terminal of the series resistor composed of the voltage dividing resistors Rd and Re on the opposite side to the resistor 4 side is grounded, and the connection point between the voltage dividing resistor Rd and the voltage dividing resistor Re is connected to the A / D converter 3. .
  • the voltage Vo applied to the skin is obtained by detecting the voltage at the terminal on the switch group 14 side of the resistor 4 (resistance value Ra).
  • the voltage dividing resistors Rb, Rc, Rd and Re in the voltage dividing circuit 5 are used to measure the current I flowing through the skin with high accuracy. It is preferable to use a precision resistor with an error of about 0.1%. In the electrical stimulation device 10 of the present embodiment, such precision resistors are used for the voltage dividing resistors Rb, Rc, Rd, and Re, and the 12-bit A / D converter 3 is used, so that the dynamic range of current measurement is obtained. 9 bits could be secured.
  • the resistance is not applied to the high voltage side (upstream side) of the skin. 4 and a voltage dividing circuit 5 are provided to measure current.
  • FIG. 3 is a diagram showing the internal configuration of the switch group 14 and the touch panel 15.
  • the switch group 14 includes a plurality of changeover switches 20.
  • Each changeover switch 20 is configured by connecting a first switch 21 and a second switch 22 in series.
  • the number of changeover switches 20 is the same as the number of electrodes 30 in the touch panel 15 described later.
  • the plurality of changeover switches 20 are connected in parallel, one terminal of each changeover switch 20 is connected to the resistor 4, and the other terminal is grounded.
  • a connection point A of the first switch 21 and the second switch 22 in each changeover switch 20 is connected to one corresponding electrode 30 in the touch panel 15.
  • FIGS. 4A and 4B The on / off operation of the first switch 21 and the second switch 22 in each changeover switch 20 is controlled by the microprocessor 1. The operation will be briefly described with reference to FIGS. 4A and 4B.
  • 4A is a diagram illustrating an on / off state of the first switch 21 and the second switch 22 when a stimulation current is supplied to the electrode 30, and
  • FIG. 4B is a first view when no stimulation current is supplied to the electrode 30. It is a figure which shows the ON / OFF situation of the switch 21 and the 2nd switch 22.
  • one electrode 30 among the plurality of electrodes 30 in the touch panel 15 is based on a signal of a predetermined stimulation pattern input from the personal computer 100. Are scanned and selected in a predetermined order, and a stimulation current is supplied to the selected electrode 30. Therefore, when the electrode 30 is selected, the microprocessor 1 controls the first switch 21 to be on and the second switch 22 to be off as shown in FIG. 4A.
  • the microprocessor 1 performs control so that the first switch 21 is turned off and the second switch 22 is turned on as shown in FIG. 4B.
  • the touch panel 15 includes a plurality of electrodes 30.
  • the plurality of electrodes 30 are arranged in a two-dimensional array.
  • positioning form of the electrode 30 are suitably set, for example according to a use etc.
  • each electrode 30 can be formed of any material as long as it is a conductive material, and can be appropriately selected depending on, for example, the application.
  • the surface shape of the electrode 30 on the side in contact with the user's skin is circular, but this surface shape can also be set appropriately according to, for example, the application.
  • FIG. 5 shows a scanning example of the electrode 30 in the touch panel 15.
  • the electrodes 30 that supply the stimulation current are indicated by hatched circles, and the electrodes 30 that do not supply the stimulation current (non-selected electrodes 30) are white circles. Display with a mark.
  • the microprocessor 1 selects a predetermined row in the electrode group.
  • the microprocessor 1 in the selected row for example, from the electrode 30 at one end in the plurality of electrodes 30 toward the electrode 30 at the other end (direction from left to right in FIG. 5).
  • the electrodes 30 are selected sequentially. This selection is performed by performing on / off control of the operation of the changeover switch 20 with the microprocessor 1, as described with reference to FIGS. 4A and 4B.
  • the scanning pattern of the electrode 30 is not limited to the example shown in FIG. 5, and is appropriately set according to the application, the stimulation pattern input from the personal computer 100, and the like.
  • Stimulation adjustment method> [Outline of adjustment method]
  • the electrical stimulation device 10 of the present embodiment as described above, not only the microprocessor 1 capable of high-speed processing is applied, but also between the microprocessor 1 and the D / A converter 2 and the A / D converter 3. In order to further shorten the data communication time, the parallel interface D / A converter 2 and A / D converter 3 are used.
  • the electrical stimulation apparatus 10 according to the present embodiment can perform feedback processing in a processing time of about several ⁇ s. It was confirmed that. Here, description of the preliminary experiment is omitted.
  • the electrical stimulation device 10 of the present embodiment can perform feedback processing several times to several tens of times within one stimulation period (about several hundred ⁇ s) in one electrode 30. . Further, from preliminary experiments on the electrical stimulation device 10 of the present embodiment, in the electrical stimulation device 10 of the present embodiment, determination processing between contact and non-contact of the skin is also realized in a very short time (several ⁇ s) from the start of stimulation. I found it possible.
  • the feedback loop of the skin impedance Z measurement process and the stimulation amount adjustment process based on the measurement result is performed several times to several tens of times within one stimulation period of one electrode 30.
  • the period (about several ⁇ s) of the feedback processing performed in the present embodiment is a time sufficiently shorter than the time for the user to sense the electrical stimulation. Therefore, in the present embodiment, the measurement phase of skin impedance Z and the adjustment phase of stimulation can be substantially unified in one stimulation period. That is, in the present embodiment, it is possible to perform feedback control of the stimulation amount based on the skin impedance Z information in more real time.
  • correlation data (hereinafter referred to as adjustment data) between such skin impedance Z and the pulse width threshold value ⁇ Tth of the stimulation pulse is obtained in advance with a predetermined value of stimulation current.
  • the stimulus amount is adjusted based on this adjustment data.
  • the voltage Vo (applied to the skin) of the resistor 4 side end of the resistor 4 in FIG. Voltage) is a parameter equivalent to skin impedance Z. Therefore, in this case, as the adjustment data, instead of the correlation data between the skin impedance Z and the pulse width threshold value ⁇ Tth of the stimulation pulse, the voltage Vo (information on the skin impedance Z) at the switch group 14 side end of the resistor 4 and Correlation data with the pulse width threshold value ⁇ Tth of the stimulation pulse may be used.
  • FIG. 6 is a waveform diagram of the stimulation pulse 40 applied in one stimulation period (selection period) in the predetermined electrode 30, the horizontal axis is time, and the vertical axis is the stimulation amount (current value). is there.
  • a stimulation current having a predetermined current value Io (for example, about 5 mA) is supplied to the electrode 30 selected by the changeover switch 20.
  • a predetermined time for example, about 5 mA
  • the skin impedance Z is measured.
  • the measurement period ⁇ Ts (period) of the skin impedance Z is a time (for example, about several ⁇ s) sufficiently shorter than one stimulation period ⁇ Tm (or selection period) in the electrode 30, and the current value of the stimulation current within the measurement period ⁇ Ts. Io is assumed to be constant.
  • a threshold value ⁇ Tth of the pulse width of the stimulation pulse 40 is obtained from the adjustment data based on the measured skin impedance Z, and it is determined whether or not the stimulation pulse 40 is stopped based on the threshold value ⁇ Tth.
  • the pulse width of the stimulation pulse 40 (hereinafter referred to as the final pulse width) when the stimulation current is applied for the measurement period ⁇ Ts and the pulse width threshold value ⁇ Tth obtained from the adjustment data after the measurement of the skin impedance Z To determine whether to stop the stimulation pulse 40 or not.
  • the stimulation current is stopped at the time of impedance measurement for the kth time.
  • the stimulation current to be supplied in the next measurement period ⁇ Ts After the current value is reduced and the next measurement cycle ⁇ Ts (energization period) has elapsed, the stimulation current is stopped.
  • the last energization period is such that the total stimulation amount (current amount) given by the stimulation pulse 40 is substantially the same as the total stimulation amount when the stimulation current of the current value Io is energized for the threshold value ⁇ Tth.
  • the current value of the stimulation current of ( ⁇ Ts) is adjusted.
  • the threshold value ⁇ Tth of the pulse width of the stimulation pulse 40 calculated by the last (kth) impedance measurement is (k + 0.3) ⁇ Ts
  • the value of the stimulation current in the last energization period is set to 0.3 ⁇ Io.
  • the measurement period ⁇ Ts of the skin impedance Z is a parameter determined by restrictions on the hardware of the system and the like, so the threshold value ⁇ Tth of the pulse width of the stimulation pulse 40 calculated based on the measured skin impedance Z is not necessarily the measurement period. It is not an integer multiple of ⁇ Ts.
  • the threshold value ⁇ Tth of the pulse width calculated for the k-th time is equal to or greater than the final pulse width of the stimulation pulse 40 ( ⁇ Tth ⁇ ⁇ k + 1 ⁇ ⁇ Ts)
  • the next measurement cycle ⁇ Ts is also the current value Io. Is supplied to the electrode 30.
  • the measurement of the skin impedance Z and the determination of whether or not the stimulation pulse 40 is stopped are repeated for each measurement cycle ⁇ Ts. Therefore, in this embodiment, as shown in FIG. 6, the stimulation pulse 40 applied to the electrode 30 is continuously applied with a sub-pulse 41 having a pulse width corresponding to the measurement period ⁇ Ts of the skin impedance Z a predetermined number of times. Only the energization period ( ⁇ Ts) is a pulse to which the adjustment sub-pulse 42 in which the stimulation current is reduced is applied. That is, in the present embodiment, the pulse width ⁇ Tm of the stimulation pulse 40 applied to the predetermined electrode 30 is controlled based on the measured skin impedance Z, and the pulse waveform is also controlled.
  • the current value Io (intensity) of the stimulation current of the subpulse 41 is appropriately set according to the stimulation intensity (skin impedance) required by the user, the pulse width ( ⁇ Ts) of the subpulse 41, and the like. Further, the measurement period ⁇ Ts of the skin impedance Z (pulse width of the sub-pulse 41) is appropriately set according to, for example, the stimulation intensity required by the user, one selection period of the electrode 30, and the like.
  • FIG. 7 is a flowchart showing a specific processing procedure at the time of stimulus amount adjustment in the present embodiment.
  • the microprocessor 1 controls the switch group 14 to select a predetermined electrode 30.
  • the microprocessor 1 supplies a stimulation current having a predetermined current value Io to the selected electrode 30 via the D / A converter 2, the voltage / current converter 12, the resistor 4 and the switch group 14 (step S1). ).
  • the microprocessor 1 counts the elapsed time from the start of energization.
  • the microprocessor 1 determines whether or not the elapsed time from the start of energization or after the previous measurement of the skin impedance Z (step S3 to be described later) has passed a preset measurement cycle ⁇ Ts of the skin impedance Z. Is determined (step S2).
  • step S2 if the elapsed time has not reached the measurement period ⁇ Ts, step S2 is NO. In this case, the process of step S2 is repeated in a state where the stimulation current having the current value Io is supplied until the elapsed time reaches the measurement cycle ⁇ Ts.
  • step S2 is YES.
  • the microprocessor 1 detects the voltage across the resistor 4 via the voltage dividing circuit 5 and the A / D converter 3, and calculates the skin impedance Z based on the detection result (step S3).
  • the value of the stimulation current at the time of measuring the skin impedance Z is made constant as in the present embodiment, only the voltage Vo at the terminal on the switch group 14 side of the resistor 4 may be detected. If step S2 is YES, the microprocessor 1 resets the elapsed time count and recounts the elapsed time.
  • the microprocessor 1 determines whether or not the skin is in contact with the currently selected electrode 30 based on the skin impedance Z measured (calculated) in step S3 (step S4). For example, the predetermined threshold value of skin impedance Z for determining contact and non-contact of the skin set (stored) in advance in the microprocessor 1 is compared with the skin impedance Z measured in step S3. Done. Then, the microprocessor 1 determines that the skin is non-contact when the measured skin impedance Z is larger than a predetermined threshold value.
  • step S4 if the microprocessor 1 determines that the skin is non-contact, step S4 is NO. In this case, the supply of the stimulation current is stopped (step S9), and the control of the current stimulation is ended.
  • step S4 is YES.
  • step S5 when the pulse width threshold value ⁇ Tth is equal to or larger than the final pulse width of the stimulation pulse 40 ( ⁇ Tth ⁇ ⁇ k + 1 ⁇ ⁇ Ts), step S5 is NO. In this case, while returning the value of the stimulation current to the current value Io, the process returns to step S2 and the processes after step S2 are repeated.
  • step S5 is YES.
  • the microprocessor 1 determines whether or not the pulse width threshold value ⁇ Tth is equal to the current pulse width (k ⁇ Ts) of the stimulation pulse 40 (step S6).
  • step S6 is NO.
  • the microprocessor 1 reduces (adjusts) the current value of the stimulation current, for example, according to the stimulation amount adjustment principle described above (step S7).
  • the microprocessor 1 determines whether or not the elapsed time after the measurement of the skin impedance Z (step S3) has passed a preset measurement cycle ⁇ Ts of the skin impedance Z (pulse width of the subpulse 41). (Step S8). In step S8, if the elapsed time does not reach the measurement cycle ⁇ Ts, step S8 is NO, and in this case, the adjusted stimulation current is supplied until the elapsed time reaches the measurement cycle ⁇ Ts. Repeat the process.
  • step S8 is YES.
  • the microprocessor 1 stops the supply of the stimulation current (step S9), and ends the stimulation amount control process at the selected electrode 30.
  • the stimulation amount is adjusted for the selected electrode 30 as described above.
  • the present inventor conducted an electrical stimulation verification experiment on a plurality of subjects by the above electrical stimulation technique.
  • skin impedance Z measurement period ⁇ Ts pulse width of sub-pulse 41
  • stimulation current value Io were set to 1.45 ⁇ s and 5 mA, respectively.
  • all subjects reported that stable stimulation was obtained.
  • the electrical stimulation device 10 of the present embodiment and the electrical stimulation method using the electrical stimulation device 10 can provide the user with more optimal electrical stimulation (occurrence sensation) more stably. Further, in the present embodiment, as described above, since the feedback control of the stimulation amount based on the information on the skin impedance Z can be performed in real time, it is possible to cope with a sudden change in skin impedance during the stimulation. . Therefore, in this embodiment, stabilization and safety of electrical stimulation can be further improved.
  • a plurality of adjustment data indicating the correlation between the pulse width threshold value ⁇ Tth of the stimulation pulse and the skin impedance Z is prepared for each different stimulation intensity, and the user can appropriately select the adjustment data corresponding to the favorite stimulation intensity from among the adjustment data. May be. That is, the electrical stimulation apparatus 10 of the above embodiment may further be provided with a function for changing the stimulation intensity (hereinafter referred to as volume adjustment function).
  • adjustment data corresponding to a plurality of stimulation intensities may be stored in the microprocessor 1 in advance.
  • FIG. 8 shows an example of a plurality of adjustment data (adjustment curve group) respectively corresponding to a plurality of stimulus intensities.
  • FIG. 8 is a characteristic showing a correlation between the pulse width threshold ⁇ Tth of the stimulation pulse and the skin impedance Z, the horizontal axis is the skin impedance, and the vertical axis is the threshold of the pulse width of the stimulation pulse.
  • the value of the stimulation current is constant in all adjustment data (adjustment curves). That is, the adjustment curve group shown in FIG. 8 is a stimulation intensity adjustment curve group used when the stimulation intensity is controlled by the pulse width of the stimulation pulse.
  • the relationship between the threshold ⁇ Tth of the pulse width of the stimulation pulse and the skin impedance Z is a single curve (hereinafter, It is known that this curve is expressed as an equal loudness curve). Therefore, in each equal loudness curve 61 in FIG. 8, the same stimulation intensity is obtained by combining the threshold ⁇ Tth of the pulse width of the stimulation pulse existing on the same curve and the skin impedance Z. In addition, in FIG. 8, the stimulus intensity becomes stronger as the equal loudness curve 61 is located above the equal loudness curve group 60.
  • equal loudness curve 61 is usually different for each user and is not limited to the curve shown in FIG. For example, depending on the user, the equal loudness curve may have a linear characteristic.
  • the amount of stimulation is adjusted as follows. First, adjustment data of an equal loudness curve group 60 including a plurality of equal loudness curves 61 corresponding to various stimulus intensities as shown in FIG. 8 is measured in advance. Then, the obtained adjustment data of the equal loudness curve group 60 is stored in the microprocessor 1.
  • the equal loudness curve group 60 may use adjustment data measured for each user, or may be average adjustment data obtained based on measurements performed in advance on a plurality of subjects. Further, when the stimulation current at the time of measuring skin impedance Z is constant as in the above embodiment, the resistance 4 is used instead of correlation data between skin impedance Z and the pulse width threshold value ⁇ Tth of the stimulation pulse as adjustment data. Correlation data between the voltage Vo at the end of the switch group 14 and the threshold value ⁇ Tth of the pulse width of the stimulation pulse may be used.
  • the user selects an equal loudness curve 61 (stimulus intensity) corresponding to the desired stimulus intensity from the equal loudness curve group 60 stored in the microprocessor 1.
  • the user's selection operation is not shown in FIG. 1, but can be performed by, for example, an operation unit (button, switch, etc .: selection unit) provided in the electrical stimulation device 10.
  • a force sensor may be provided on the touch panel 15, the user's pressing force is detected by the force sensor (selection unit), and the equal loudness curve 61 may be automatically switched according to the detected pressing force.
  • the microprocessor 1 determines from the selected equal loudness curve 61 (stimulus intensity) based on the measurement result of the skin impedance Z at each skin impedance measurement period ⁇ Ts. A threshold value ⁇ Tth of the pulse width of the stimulation pulse is calculated. Thereafter, the stimulation amount is adjusted in the same manner as in the above embodiment. In this example, optimal electrical stimulation can be stably given to the user in this way.
  • the electric stimulation apparatus 10 of the above embodiment is further provided with a stimulation intensity volume adjustment function, stimulation adjustment according to the user's preference is possible. Therefore, in this example, it is possible to provide the electrical stimulation apparatus 10 that not only has the same effect as the above-described embodiment but also has excellent operability.
  • the stimulation current to be energized is constant during the time other than the last energization period (application period of the adjustment sub-pulse 42) in the stimulation pulse 40, but the present invention is not limited to this.
  • the magnitude of the stimulation current may be appropriately changed based on the measurement result.
  • FIG. 9 shows an example (Modification 2).
  • FIG. 9 is a waveform diagram of the stimulation pulse 50 in the stimulation amount adjustment method according to the second modification. The horizontal axis represents time, and the vertical axis represents the stimulation amount (current value).
  • the electrical stimulation device 10 of the present embodiment can perform feedback processing of about several ⁇ s, as shown in FIG. 9, based on the measurement result for each measurement period ⁇ Ts of the skin impedance Z. Even if the magnitude of the stimulation current is changed, it can be sufficiently controlled.
  • a D / A converter 2 and an A / D converter 3 whose interfaces with the microprocessor 1 are parallel are provided separately from the microprocessor 1.
  • the present invention is not limited to this. Any configuration can be used as long as the above-described feedback control at the time of stimulus adjustment can be realized in several ⁇ s.
  • a serial interface D / A converter and A / D converter are applicable to the present invention as long as they have the performance capable of high-speed control as described above.
  • the present invention is not limited thereto.
  • the present invention can also be applied to the electrical stimulation apparatus 10 including only one electrode 30, and the same effect can be obtained.
  • the switching operation of the electrode 30 is not performed, and thus the switch group 14 need not be provided.
  • the changeover switch 20 in the switch group 14 and the electrode 30 in the touch panel 15 are made to correspond one-to-one
  • the present invention is not limited to this.
  • one changeover switch 20 may be provided for each predetermined number of electrodes 30 depending on the application.
  • the information regarding the skin impedance Z measured (acquired) by the microprocessor 1 is the skin impedance Z itself or the voltage Vo applied to the electrode 30 has been described.
  • the invention is not limited to this. Any parameter relating to skin impedance Z can be used as information relating to skin impedance Z.
  • the electrical stimulation device 10 is configured as a single unit.
  • the present invention is not limited to this, and can be incorporated as a module in various electronic devices.
  • the electrical stimulation device of the present invention is applicable to electronic devices such as a personal computer having a touch panel function, a mobile device, a car navigation system having a touch panel function, and an information presentation device for visually impaired.
  • the electrical stimulation device of the present invention can also be incorporated into a device part such as a car handle that comes in contact with human skin.
  • the microprocessor 1 dedicated to the tactile sense presentation by electrical stimulation may be provided separately from the main control unit of the device main body.
  • a microprocessor 1 dedicated to presenting tactile sensations may be incorporated in the main control unit.
  • the main control unit of the device as described above is not intended to perform the feedback process in about several ⁇ s, so that a sufficient processing speed cannot be obtained. Therefore, when the electrical stimulation device of the present invention is incorporated in the above-described apparatus, it is preferable to incorporate the microprocessor 1 dedicated to tactile sense presentation by electrical stimulation separately from the main control unit.
  • an electrode is provided on the display provided in the device main body to provide a tactile sense presentation function by electrical stimulation.
  • an electrode is provided on the display panel (display), and thus the electrode may be used as an electrode for electrical stimulation.
  • the information presentation function by the display can be further diversified.
  • SYMBOLS 1 Microprocessor, 2 ... D / A converter, 3 ... A / D converter, 4 ... Resistance, 5 ... Voltage dividing circuit, 10 ... Electrical stimulator, 11 ... Stimulation pulse control part, 12 ... Voltage / current conversion 13 ... Skin impedance detector, 14 ... Switch group, 15 ... Touch panel, 20 ... Changeover switch, 21 ... First switch, 22 ... Second switch, 30 ... Electrode, 40 ... Stimulation pulse, 41 ... Sub-pulse, 42 ... Adjustment sub-pulse

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

 電気刺激装置及びその電気刺激方法において、よりリアルタイムで電気刺激を調整し、電気刺激の安定化及び安全性をより向上させる。 電気刺激装置10を、電極と、刺激電流供給部12と、皮膚インピーダンス検出部13と、刺激パルス制御部11とを備える構成とする。刺激電流供給部12は、電極に刺激電流を所定の刺激期間、供給する。そして、刺激パルス制御部12は、刺激電流の印加中に、刺激期間より短い周期で皮膚インピーダンス検出部13を介して皮膚インピーダンスに関する情報を取得し、該取得された皮膚インピーダンスに関する情報に基づいて次の該周期に電極に供給する刺激電流を調整する。

Description

電気刺激装置及び電気刺激方法
 本発明は、電気刺激装置及び電気刺激方法に関し、より詳細には電気刺激によりユーザに所定の情報を提示する電気刺激装置及び電気刺激方法に関する。
 近年、電気刺激により所定の情報をユーザに提示する電気刺激装置が種々提案されている。その一つに電気触覚ディスプレイがある。電気触覚ディスプレイでは、皮膚が接触する面側に配置された電極から与えられる電気刺激により、皮膚下の受容器につながる神経軸索を駆動し、所定の情報を提示する。
 電気触覚ディスプレイは、例えば、構成が簡易である、機械的駆動部が無い、騒音の問題が無い、低消費電力であるなど、実用面で多くの利点を有する。しかしながら、今のところ、電気刺激による生起感覚の安定化を図ることが難しいという問題から、延期触覚ディスプレイは一般用途に普及していない。
 生起感覚(電気刺激)が安定しない原因は、主に2つ考えられ、その一つは感覚の時間的変化である。これは、例えば発汗等による使用中の状況変化により発生する。もう一つの原因は、感覚の空間的ばらつきである。これは、例えば接触する皮膚の厚みの違いや部分的発汗等により電気刺激の閾値が変化することにより発生する。前者の原因による電気刺激の不安定性は電極の数に関係なく発生するが、後者の原因による電気刺激の不安定性は、特に電極が多数の場合に発生する。
 そして、電気触覚ディスプレイを、皮膚とディスプレイとの接触及び非接触が頻繁に行われるタッチパネルに適用した場合には、上述した2つの原因が複合して生じる。さらに、このような用途では、皮膚とディスプレイとの接触及び非接触間の切り替わり時に電流経路が変化し易く、これにより、例えば独特のチリチリ感や感電による強い不快感等の痛みをユーザに与える場合がある。
 上述した問題を解消するため、従来様々な電気刺激手法が提案されている。例えば、上述した電気刺激の不安定性と相関のある皮膚インピーダンスを計測し、その計測結果に基づいて電気刺激量を調整する技術が提案されている(例えば非特許文献1参照)。図10に、非特許文献1等で提案されている従来の電気刺激手法の概要を示す。なお、図10は、一つの電極において電気刺激を1回行う際に印加する刺激パルスの波形図であり、縦軸は刺激量であり、横軸は時間である。
 非特許文献1で提案されている電気刺激手法では、所定の電極に対して刺激用のメインパルス200を印加する前に、ユーザに刺激感覚を生じさせない程度の弱い強度(電流)のプレパルス201を印加して皮膚インピーダンスを計測する。そして、その計測した皮膚インピーダンスに基づいて、メインパルス200の強度を調整する。なお、非特許文献1に記載の手法は、皮膚インピーダンスの計測結果をフィードフォワードして電気刺激量を調整する手法であるので、厳密にはリアルタイムの対応とは言えない。
谷江,舘:「刺激エネルギーを強度次元パラメータとして用いる定エネルギー型電気パルス刺激I情報伝達装置」,日本エム・イー学会,1980年
 上述した従来の電気刺激手法(図10)では、プレパルス201からメインパルス200に渡る期間に、皮膚インピーダンスが急激に変化しないことを前提としている。しかしながら、実際には、その期間中に、例えば、皮膚の接触強度等が変化して、皮膚インピーダンスが変化する可能性は十分にある。この場合、上述した従来の手法は厳密にはリアルタイムの対応ではないので、皮膚インピーダンスの計測結果は有効でなくなり、電気刺激の安定化を図ることが困難になる。
 また、従来、皮膚インピーダンスは皮膚に印加する電圧に応じて大きく変化することが知られている。それゆえ、上述した従来の電気刺激手法において、プレパルス201とメインパルス200とのレベル差が大きくなると、プレパルス201による皮膚インピーダンスの計測結果の有用性(信頼性)に疑問が生じる。したがって、従来の電気刺激手法では、皮膚が電極に接触しているか否かの判定は可能であるが、皮膚インピーダンスの情報を用いてきめ細やかに電気刺激を制御して安定化を図ることは困難である。
 さらに、上述した従来の電気刺激手法を、電極が多数(例えば100程度以上)となる用途、すなわち、実用的な状況に適用する際には、上述した皮膚とディスプレイとの接触時または非接触時にユーザに与える独特のチリチリ感や感電による強い不快感等の痛みを完全に無くすことは難しい。この理由は、次の通りである。
 電気触覚ディスプレイにおいて多数の電極の駆動する場合、通常、全電極を同時に駆動せず、各電極を刺激電極及び不関電極(グランド)のいずれかに切り換えながら順次走査する。この駆動方式では、刺激電極となる電極は常に一つであるが、電極の走査速度を高速にすることにより所定の刺激パターン(例えば所定の文字、図形等の情報パターン)をユーザに提示することができる。このような駆動方式では、図10に示すプレパルス201及びメインパルス200の印加動作が、電極の走査に同期して繰り返され、プレパルス201及びメインパルス200から成るパルス群が時間軸上で密集した状態となる。
 上記駆動方式において、例えば、駆動する電極数Nを50とし、50Hzのリフレッシュレートfrで走査して刺激する場合、一つの電極を選択している期間T(={1/fr}/N)は20ms/50点=400μsとなる。いま、上記従来の電気刺激手法(図10)における刺激のメインパルス200のパルス幅を100μsとすると、選択期間Tの1/4がメインパルス200の印加時間(刺激期間)となる。
 それゆえ、上記状況において、電極の走査中(選択中)に、ランダムなタイミングでユーザの皮膚が電極に接触または非接触したとき、その電極に刺激用のメインパルス200が通電中である確率は25%となる。この場合、25%の確率で、上述した独特のチリチリ感や感電による強い不快感等の痛みをユーザに与える可能性がある。また、走査する(選択する)電極数Nが増大すると選択期間Tも短くなり、選択期間Tに占めるメインパルス200の印加時間の割合が増加する。この結果、上述した電気刺激による痛みの発生確率が増大する。すなわち、従来の電気刺激手法では、走査する(選択する)電極数が多くなると、安全性を完全に保証することが困難になる。
 なお、従来の電気刺激手法では、上述した電気刺激による痛みが生じる電極は一つであるので連続的な痛みは生じないという点で優れている。しかしながら、このような電気刺激による痛みの発生が一瞬の間でも許されない状況が要求される用途には、従来の手法は好適ではない。
 本発明は、上記問題を解決するためになされたものであり、本発明の目的は、電気刺激装置及び電気刺激方法において、よりリアルタイムで電気刺激を調整し、電気刺激(生起感覚)の安定化及び安全性をより向上させることである。
 上記課題を解決するために、本発明の電気刺激装置は、電極と、刺激電流供給部と、皮膚インピーダンス検出部と、刺激パルス制御部とを備える構成とし、各部の機能を次のようにする。電極は、ユーザに電気刺激を与える。刺激電流供給部は、電極に刺激電流を所定の刺激期間、供給する。皮膚インピーダンス検出部は、ユーザの皮膚インピーダンスに関する情報を検出する。刺激パルス制御部は、刺激電流の供給中に、刺激期間より短い周期で皮膚インピーダンス検出部を介して皮膚インピーダンスに関する情報を取得し、該取得された皮膚インピーダンスに関する情報に基づいて次の該周期に電極に供給する刺激電流を調整する。
 また、本発明の電気刺激方法は、次の手順で行う。まず、所定の電極に刺激電流を供給する。次いで、刺激電流の供給中に、所定の電極における1回の刺激期間より短い周期でユーザの皮膚インピーダンスに関する情報を取得する。そして、取得した皮膚インピーダンスに関する情報に基づいて、次の周期の刺激電流を調整する。
 なお、本明細書でいう「刺激期間」とは、所定の電極において電気刺激を1回行う際に、刺激用の電流(刺激電流)を連続して印加する期間のことをいう。また、本明細書でいう「皮膚インピーダンスに関する情報」とは、皮膚インピーダンス自体だけでなく、例えば電気刺激中にユーザの皮膚に印加される電圧及び電流等の皮膚インピーダンスに関連する任意のパラメータも含む意味である。
 上述のように、本発明の電気刺激装置及びその電気刺激方法では、所定の電極における1回の刺激期間より短い周期で皮膚インピーダンスに関する情報を取得し、その情報に基づいて、次の周期の刺激電流を調整する。すなわち、本発明では、所定の電極における1回の刺激期間に、皮膚インピーダンスに関する情報の検出及び刺激量の調整のフィードバック処理を複数回行う。それゆえ、本発明では、皮膚インピーダンスに関する情報の計測フェーズと、刺激の調整フェーズとを略統一することができ、皮膚インピーダンスに関する情報に基づく刺激量のフィードバック制御を、よりリアルタイムで行うことが可能になる。
 本発明では、上述のように、皮膚インピーダンスに関する情報に基づく刺激量のフィードバック制御をよりリアルタイムで行うことができるので、刺激中の急激な皮膚インピーダンスの変化にも対応することができる。それゆえ、本発明によれば、電気刺激装置及び電気刺激方法において、電気刺激(生起感覚)の安定化及び安全性をより向上させることができる。
図1は、本発明の一実施形態に係る電気刺激装置の概略ブロック構成図である。 図2は、本発明の一実施形態に係る電気刺激装置の皮膚インピーダンス検出部の一構成例を示す図である。 図3は、本発明の一実施形態に係る電気刺激装置のスイッチ群及びタッチパネルの内部構成を示す図である。 図4A及び4Bは、切替スイッチの動作を説明するための図である。 図5は、電極の走査例を示す図である。 図6は、刺激量の調整原理を説明するための図である。 図7は、本発明の一実施形態に係る電気刺激装置における刺激量の調整手順を示すフローチャートである。 図8は、変形例1の電気刺激装置のボリューム調整機能で用いる刺激強度の調整曲線群を示す図である。 図9は、変形例2における刺激量の調整手法を示す図である。 図10は、従来の電気刺激手法を説明するための図である。
 以下に、本発明の一実施形態に係る電気刺激装置及びその電気刺激方法の一例を、図面を参照しながら下記の順で説明する。ただし、本発明はこれに限定されない。
1.電気刺激装置の基本構成
2.刺激量の調整手法
3.各種変形例及び応用例
<1.電気刺激装置の基本構成>
[電気刺激装置の構成]
 図1に、本発明の一実施形態に係る電気刺激装置のブロック構成図を示す。なお、図1には、本実施形態の電気刺激装置10の性能を検証するために構築したシステムを示す。
 本実施形態の検証システムは、主に、電気刺激装置10と、パーソナルコンピュータ100と、シリアルインターフェース101とで構成される。
 図1に示す検証システムでは、電気刺激装置10の後述するタッチパネルに提示する所定の刺激パターン(例えば所定の文字、図形等の情報パターン)の信号をパーソナルコンピュータ100で生成する。そして、パーソナルコンピュータ100は、生成した所定の刺激パターンの信号を、シリアルインターフェース101を介して高速シリアル通信で電気刺激装置10に送信する。電気刺激装置10は、受信した刺激パターンの情報がタッチパネル上に提示されるように電気刺激を制御する。
 電気刺激装置10は、刺激パルス制御部11と、電圧/電流変換器12(刺激電流供給部)と、皮膚インピーダンス検出部13と、スイッチ群14(スイッチ)と、タッチパネル15とを備える。
 刺激パルス制御部11は、マイクロプロセッサ1と、デジタル/アナログ変換器2(以下、D/A変換器2という)と、アナログ/デジタル変換器3(以下、A/D変換器3という)とを有する。
 マイクロプロセッサ1は、演算処理装置および制御装置として機能し、後述する刺激量の調整時に、電気刺激装置10の各部の動作を制御する。また、マイクロプロセッサ1は、記憶部(不図示)を備える。そして、その記憶部には、刺激量の調整時に用いる例えば刺激パルスのパルス幅の閾値と皮膚インピーダンスとの相関データ等の各種判定データが記憶される。
 なお、本実施形態では、マイクロプロセッサ1に、動作周波数25MHzのマイクロプロセッサを用いる。ただし、マイクロプロセッサ1としては、高速性を有するものであれば任意のマイクロプロセッサを用いることができる。また、本実施形態の電気刺激装置10を種々の用途への適用を考慮した場合には、例えばマイクロプロセッサ1の入手可能性及び入出力インターフェースの豊富さ等を考慮してマイクロプロセッサ1を選択することが好ましい。
 D/A変換器2(デジタルアナログ変換器)は、マイクロプロセッサ1からパラレル出力されたデジタル信号(刺激電圧信号)をアナログ信号に変換する。そして、D/A変換器2は、変換したアナログ信号を電圧/電流変換器12に出力する。
 なお、D/A変換器2には、ビット数が12ビットであり、サンプリングレートが1Mspsであり、且つ、セトリングタイムが1μsであるD/A変換器を用いる。また、D/A変換器2のマイクロプロセッサ1に接続する側(信号入力側)のインターフェースは、パラレルインターフェースとする。
 A/D変換器3(アナログデジタル変換器)の2つの入力端子は、皮膚インピーダンス検出部13内の後述する分圧回路5を介して抵抗4の両端にそれぞれ接続される。A/D変換器3には、抵抗4の両端の電圧信号が入力され、A/D変換器3は、その入力信号(アナログ信号)をデジタル信号に変換する。そして、A/D変換器3は、変換したデジタル信号をマイクロプロセッサ1にパラレル出力する。
 なお、A/D変換器3には、ビット数が12ビットであり、サンプリングレートが1.25MspsであるA/D変換器を用いる。このような性能のA/D変換器3を用いることにより、A/D変換器3のサンプリング間隔(1μs以下)を皮膚の電気的時定数より十分小さくすることができ、略同時サンプリングが可能になる。また、A/D変換器3のマイクロプロセッサ1に接続する側(信号入力側)のインターフェースは、パラレルインターフェースとする。
 従来、マイクロプロセッサには、D/A変換器及びA/D変換器を備えるものも存在するが、本実施形態では、上述のように、パラレルインターフェースを有するD/A変換器2及びA/D変換器3をマイクロプロセッサ1とは別個に設ける。これは、次の理由によるものである。本実施形態の電気刺激装置10では、後述するように、皮膚インピーダンスを計測し、その計測結果をフィードバックして刺激量を調節するが、本実施形態で必要とするこのフィードバック処理の周期は数μs以下である。しかしながら、現状では、マイクロプロセッサに内蔵されたD/A変換器及びA/D変換器によりこのような高速処理を行うことは困難であり、電気刺激装置の用途には適さない。
 また、従来、高速動作可能なシリアルインターフェースのD/A変換器及びA/D変換器も存在する。しかしながら、上述のような高速のフィードバック処理を実現するためには、マイクロプロセッサ1と、D/A変換器及びA/D変換器との間のデータの通信時間も短縮する必要がある。それゆえ、本実施形態では、シリアルインターフェースのD/A変換器及びA/D変換器よりも通信時間を短縮することが可能なパラレルインタースのD/A変換器2及びA/D変換器3を用いる。
 電圧/電流変換器12は、D/A変換器2でアナログ信号に変換された電圧信号を電流信号(刺激電流)に変換する。そして、電圧/電流変換器12は、変換した電流信号を、皮膚インピーダンス検出部13及びスイッチ群14を介してタッチパネル15内の選択された所定の電極に供給する。すなわち、本実施形態の電気刺激装置10では、電流制御により電気刺激量を調整する。
 皮膚インピーダンス検出部13は、抵抗4と、分圧回路5とを有する。抵抗4及び分圧回路5は、タッチパネル15内の電極に接触した皮膚のインピーダンス(皮膚インピーダンスZ)を計測するために設けられたものである。
 図2に、本実施形態の分圧回路5の内部構成、及び、抵抗4と分圧回路5との接続関係を示す。分圧回路5は、抵抗4の両端(入出力端)の電圧を精度よく測定するための回路であり、4つの分圧抵抗Rb,Rc,Rd,Reで構成される。なお、本実施形態では、例えば350V程度の高電圧を用いるので、図2に示すような分圧回路5を設ける。
 抵抗4の一方の端子(入力側端子)は、電圧/電流変換器12の出力端子に接続され、抵抗4の他方の端子(出力側端子)は、スイッチ群14の入力端子に接続される。また、抵抗4の一方の端子には、分圧抵抗Rb及びRcからなる直列抵抗が接続され、抵抗4の他方の端子には、分圧抵抗Rd及びReからなる直列抵抗が接続される。さらに、分圧抵抗Rb及びRcからなる直列抵抗の抵抗4側とは反対側の端子は接地され、分圧抵抗Rbと分圧抵抗Rcとの接続点がA/D変換器3に接続される。そして、分圧抵抗Rd及びReからなる直列抵抗の抵抗4側とは反対側の端子は接地され、分圧抵抗Rdと分圧抵抗Reとの接続点がA/D変換器3に接続される。
 皮膚インピーダンスZを計測するためには、皮膚に印加される電圧Voと皮膚に流れる電流Iを測定する必要がある。皮膚に印加される電圧Voは、抵抗4(抵抗値Ra)のスイッチ群14側の端子の電圧を検出することにより得られる。一方、皮膚に流れる電流Iは、抵抗4の両端の電位差(Vo-Vi)に基づいて算出(I=(Vo-Vi)/Ra)することができる。
 なお、抵抗4の両端の電位差(Vo-Vi)は微小であるので、皮膚に流れる電流Iを高精度で測定するため、分圧回路5内の分圧抵抗Rb、Rc、Rd及びReには、誤差0.1%程度の精密抵抗を用いることが好ましい。本実施形態の電気刺激装置10では、分圧抵抗Rb、Rc、Rd及びReにこのような精密抵抗を用い、且つ、12ビットのA/D変換器3を用いることにより、電流計測のダイナミックレンジを9ビット確保することができた。
 なお、後述するように、本実施形態のように皮膚インピーダンスZの計測時の刺激電流を一定とする場合には、抵抗4を流れる電流Iを必ずしも計測する必要は無い。それゆえ、この場合には、分圧回路5内の分圧抵抗Rb、Rc、Rd及びReとして、上述のような抵抗誤差の小さな精密抵抗を用いる必要はない。
 また、本実施形態では、スイッチ群14内の後述する切替スイッチ20の構造上、皮膚のグランド側(下流側)で電流を計測することができないので、皮膚の高電圧側(上流側)に抵抗4及び分圧回路5を設けて電流を計測する。
 次に、本実施形態のスイッチ群14及びタッチパネル15の構成を、図3を参照しながらより詳細に説明する。なお、図3は、スイッチ群14及びタッチパネル15の内部構成を示す図である。
 スイッチ群14は、複数の切替スイッチ20で構成される。各切替スイッチ20は、第1スイッチ21及び第2スイッチ22を直列接続することにより構成される。なお、本実施形態では、切替スイッチ20の数は、後述するタッチパネル15内の電極30の数と同じとする。
 複数の切替スイッチ20は、並列接続され、各切替スイッチ20の一方の端子が抵抗4に接続され、他方の端子は接地される。そして、各切替スイッチ20内の第1スイッチ21及び第2スイッチ22の接続点Aがタッチパネル15内の対応する一つの電極30に接続される。
 各切替スイッチ20内の第1スイッチ21及び第2スイッチ22のオンオフ動作は、マイクロプロセッサ1により制御される。その動作を、図4A及び4Bを参照しながら簡単に説明する。なお、図4Aは、電極30に刺激電流を供給したときの第1スイッチ21及び第2スイッチ22のオンオフ状況を示す図であり、図4Bは、電極30に刺激電流を供給しないときの第1スイッチ21及び第2スイッチ22のオンオフ状況を示す図である。
 本実施形態の電気刺激装置10では、ユーザに電気刺激を与える際、パーソナルコンピュータ100から入力される所定の刺激パターンの信号に基づいて、タッチパネル15内の複数の電極30の中から一つの電極30を所定の順序で走査及び選択し、選択された電極30に刺激電流を供給する。それゆえ、電極30の選択時には、マイクロプロセッサ1は、図4Aに示すように、第1スイッチ21がオン状態となり、且つ、第2スイッチ22がオフ状態となるように制御する。
 一方、電極30の走査時に選択されていない電極30は接地する。それゆえ、電極30の非選択時には、マイクロプロセッサ1は、図4Bに示すように、第1スイッチ21がオフ状態となり、且つ、第2スイッチ22がオン状態となるように制御する。
 タッチパネル15は、複数の電極30で構成される。複数の電極30は2次元のアレイ状に配置される。なお、電極30の数及び配置形態は、例えば用途等に応じて適宜設定される。また、各電極30は、導電性材料であれば任意の材料で形成することができ、例えば用途等に応じて適宜選択できる。さらに、図3に示す例では、ユーザの皮膚と接触する側の電極30の面形状は円形とするが、この面形状も例えば用途等に応じて適宜設定できる。
 図5に、タッチパネル15内の電極30の走査例を示す。なお、図5中では、刺激電流を供給する電極30(選択された電極30)をハッチングした丸印で表示し、刺激電流を供給しない電極30(選択されていない電極30)は白抜きの丸印で表示する。
 図5に示す例では、まず、マイクロプロセッサ1は、電極群内の所定の行を選択する。次いで、マイクロプロセッサ1は、選択された行において、例えば、複数の電極30内の一方の端部の電極30から他方の端部の電極30に向かって(図5では左から右に向かう方向)電極30を順次選択する。この選択は、図4A及び4Bで説明したように、切替スイッチ20の動作をマイクロプロセッサ1でオンオフ制御することにより行われる。なお、電極30の走査パターンは、図5に示す例に限定されず、例えば、用途、パーソナルコンピュータ100から入力される刺激パターン等に応じて適宜設定される。
<2.刺激量の調整手法>
[調整手法の概要]
 本実施形態の電気刺激装置10では、上述のように、高速処理可能なマイクロプロセッサ1を適用するだけでなく、マイクロプロセッサ1とD/A変換器2及びA/D変換器3との間のデータの通信時間をより短縮するためにパラレルインターフェースのD/A変換器2及びA/D変換器3を用いる。このような構成の電気刺激装置10に対して、図1に示す検証システムで種々の予備実験を行ったところ、本実施形態の電気刺激装置10では、数μs程度の処理時間でフィードバック処理が可能であることが確認された。なお、ここでは、予備実験の説明は省略する。
 すなわち、本実施形態の電気刺激装置10では、一つの電極30における1回の刺激期間(数百μs程度)内で、数回~数十回程度のフィードバック処理を行うことができることが確認された。また、本実施形態の電気刺激装置10に対する予備実験から、本実施形態の電気刺激装置10では、皮膚の接触及び非接触間の判定処理も刺激開始から非常に短い時間(数μs程度)で実現可能であることが分かった。
 そこで、本実施形態では、一つの電極30における1回の刺激期間内に、皮膚インピーダンスZの計測処理及びその計測結果に基づく刺激量の調整処理のフィードバックループを数回~数十回程度行う。なお、本実施形態で行うフィードバック処理の周期(数μs程度)は、ユーザが電気刺激を感知する時間より十分短い時間である。それゆえ、本実施形態では、1回の刺激期間において、皮膚インピーダンスZの計測フェーズと、刺激の調整フェーズとを略統一することが可能になる。すなわち、本実施形態では、皮膚インピーダンスZの情報に基づく刺激量のフィードバック制御を、よりリアルタイムで行うことが可能になる。
 また、本実施形態では、刺激量をフィードバック制御する際、ユーザが電気刺激を感じ始める刺激パルスのパルス幅(閾値ΔTth)と、皮膚インピーダンスZ(皮膚インピーダンスZに関する情報)との間の相関データを用いる。従来、刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの間には強い相関があることが知られている。具体的には、両者の間には、皮膚インピーダンスZが大きくなると、刺激パルスのパルス幅の閾値ΔTthが小さくなるという関係がある。
 本実施形態では、このような皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データ(以下、調整データという)を予め所定値の刺激電流で求めておく。そして、刺激量のフィードバック制御時には、この調整データに基づいて、刺激量を調整する。
 なお、本実施形態では、後述するように、皮膚インピーダンスZの計測時には刺激電流の値は一定とするので、図2中の抵抗4のスイッチ群14側端部の電圧Vo(皮膚に印加される電圧)が皮膚インピーダンスZと同等のパラメータとなる。それゆえ、この場合、調整データとして、皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データの代わりに、抵抗4のスイッチ群14側端部の電圧Vo(皮膚インピーダンスZに関する情報)と刺激パルスのパルス幅の閾値ΔTthとの相関データを用いてもよい。
[刺激量の調整原理]
 次に、本実施形態の電気刺激装置10における刺激量の調整手法の原理を、図6を参照しながらより詳細に説明する。なお、図6は、所定の電極30において1回の刺激期間(選択期間)に印加される刺激パルス40の波形図であり、横軸は時間であり、縦軸は刺激量(電流値)である。
 本実施形態では、まず、所定の電流値Io(例えば約5mA程度)の刺激電流を切替スイッチ20により選択された電極30に供給する。次いで、刺激開始から所定の時間(皮膚インピーダンスZの計測周期ΔTs)が経過した後、皮膚インピーダンスZを計測する。なお、皮膚インピーダンスZの計測周期ΔTs(周期)は、電極30における1回の刺激期間ΔTm(または選択期間)より十分短い時間(例えば数μs程度)とし、計測周期ΔTs内の刺激電流の電流値Ioは一定とする。
 次いで、計測された皮膚インピーダンスZに基づいて、調整データから刺激パルス40のパルス幅の閾値ΔTthを求め、その閾値ΔTthに基づいて刺激パルス40を停止するか否かを判定する。この際、皮膚インピーダンスZの計測時からさらに、計測周期ΔTsだけ刺激電流を通電した際の刺激パルス40のパルス幅(以下、最終パルス幅という)と、調整データから求めたパルス幅の閾値ΔTthとを比較して刺激パルス40を停止するか否かを判定する。
 この判定動作をより具体的に説明すると、例えばk回目のインピーダンス計測で算出された刺激パルス40のパルス幅の閾値ΔTthが刺激パルス40の最終パルス幅({k+1}ΔTs)より小さい場合(ΔTth<{k+1}ΔTs)には、刺激パルス40を停止すると判定する。
 この場合、例えばk回目に算出されたパルス幅の閾値ΔTthがkΔTsである場合(ΔTth=kΔTs)には、k回目のインピーダンス計測時点で刺激電流を停止する。
 また、例えばk回目に算出されたパルス幅の閾値ΔTthがkΔTsより大きく且つ{k+1}ΔTsより小さい場合(kΔTs<ΔTth<{k+1}ΔTs)には、次の計測周期ΔTsに供給する刺激電流の電流値を低減し、次の計測周期ΔTs(通電期間)が経過した後、刺激電流を停止する。この際、刺激パルス40で与えるトータルの刺激量(電流量)と、電流値Ioの刺激電流を閾値ΔTth間、通電した際のトータルの刺激量とが略同じになるように、最後の通電期間(ΔTs)の刺激電流の電流値を調整する。
 例えば、最後(k回目)のインピーダンス計測で算出された刺激パルス40のパルス幅の閾値ΔTthが(k+0.3)ΔTsである場合、最後の通電期間における刺激電流の値を0.3×Ioに設定する。なお、皮膚インピーダンスZの計測周期ΔTsはシステムのハードウェアの制約等により決まるパラメータであるので、計測された皮膚インピーダンスZに基づいて算出される刺激パルス40のパルス幅の閾値ΔTthは、必ずしも計測周期ΔTsの整数倍にはならない。
 一方、例えばk回目に算出されたパルス幅の閾値ΔTthが刺激パルス40の最終パルス幅以上である場合(ΔTth≧{k+1}ΔTs)には、次の計測周期ΔTs(通電期間)も電流値Ioの刺激電流を電極30に供給する。
 本実施形態では、上述した皮膚インピーダンスZの計測及び刺激パルス40の停止の有無の判定を計測周期ΔTs毎に繰り返して行う。それゆえ、本実施形態では、電極30に印加する刺激パルス40は、図6に示すように、皮膚インピーダンスZの計測周期ΔTsに対応するパルス幅のサブパルス41を所定回数連続して印加し、最後の通電期間(ΔTs)だけは刺激電流が低減された調整用サブパルス42を印加したパルスとなる。すなわち、本実施形態では、計測された皮膚インピーダンスZに基づいて、所定の電極30に印加する刺激パルス40のパルス幅ΔTmを制御するとともに、そのパルス波形も制御する。
 なお、サブパルス41の刺激電流の電流値Io(強度)は、例えば、ユーザが求める刺激強度(皮膚インピーダンス)、サブパルス41のパルス幅(ΔTs)等に応じて適宜設定される。また、皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)は、例えばユーザが求める刺激強度、電極30の1回の選択期間等に応じて適宜設定される。
[刺激量の調整動作]
 次に、本実施形態の電気刺激装置10における刺激量調整時の具体的な処理手順を、図7を参照しながら説明する。なお、図7は、本実施形態における刺激量調整時の具体的な処理手順を示すフローチャートである。
 まず、マイクロプロセッサ1は、スイッチ群14を制御して所定の電極30を選択する。次いで、マイクロプロセッサ1は、D/A変換器2、電圧/電流変換器12、抵抗4及びスイッチ群14を介して、選択した電極30に所定の電流値Ioの刺激電流を供給する(ステップS1)。この際、マイクロプロセッサ1は、通電開始からの経過時間をカウントする。
 次いで、マイクロプロセッサ1は、通電開始から、または、前回の皮膚インピーダンスZの計測(後述するステップS3)後からの経過時間が、予め設定された皮膚インピーダンスZの計測周期ΔTsを経過したか否かを判定する(ステップS2)。
 ステップS2において、経過時間が計測周期ΔTsに達していなければ、ステップS2はNO判定となる。この場合には、経過時間が計測周期ΔTsに達するまで、電流値Ioの刺激電流を供給した状態でステップS2の処理を繰り返す。
 一方、ステップS2において、経過時間が計測周期ΔTsに達した場合、ステップS2はYES判定となる。この場合には、マイクロプロセッサ1は、抵抗4の両端の電圧を分圧回路5及びA/D変換器3を介して検出し、その検出結果に基づいて皮膚インピーダンスZを算出する(ステップS3)。なお、本実施形態のように、皮膚インピーダンスZの計測時における刺激電流の値を一定とする場合には、抵抗4のスイッチ群14側の端子における電圧Voのみを検出してもよい。また、ステップS2がYES判定となった場合には、マイクロプロセッサ1は、経過時間のカウントをリセットし、経過時間をカウントし直す。
 次いで、マイクロプロセッサ1は、ステップS3で計測(算出)された皮膚インピーダンスZに基づいて、現在選択されている電極30に皮膚が接触している否かを判定する(ステップS4)。これは、例えば、マイクロプロセッサ1に予め設定(記憶)された皮膚の接触及び非接触を判定するための皮膚インピーダンスZの所定の閾値と、ステップS3で計測された皮膚インピーダンスZとを比較して行われる。そして、マイクロプロセッサ1は、計測された皮膚インピーダンスZが所定の閾値より大きい場合には、皮膚が非接触であると判定する。
 ステップS4において、マイクロプロセッサ1が、皮膚が非接触であると判定した場合、ステップS4はNO判定となる。この場合には、刺激電流の供給を停止し(ステップS9)、電流刺激の制御を終了する。
 一方、ステップS4において、マイクロプロセッサ1が、皮膚が接触していると判定した場合、ステップS4はYES判定となる。この場合、マイクロプロセッサ1は、計測された皮膚インピーダンスZに基づいて、マイクロプロセッサ1内に記憶された調整データから刺激パルスのパルス幅の閾値ΔTthを求める。さらに、マイクロプロセッサ1は、刺激パルス40の最終パルス幅({k+1}ΔTs:k=1,2,…)を算出する。そして、マイクロプロセッサ1は、刺激パルスのパルス幅の閾値ΔTthが、刺激パルス40の最終パルス幅({k+1}ΔTs)より小さいか否かを判定する(ステップS5)。
 ステップS5において、パルス幅の閾値ΔTthが刺激パルス40の最終パルス幅以上である場合(ΔTth≧{k+1}ΔTs)、ステップS5はNO判定となる。この場合、刺激電流の値を電流値Ioに維持したまま、ステップS2に戻って、ステップS2以降の処理を繰り返す。
 一方、ステップS5において、パルス幅の閾値ΔTthが刺激パルス40の最終パルス幅未満である場合(ΔTth<{k+1}ΔTs)、ステップS5はYES判定となる。この場合、マイクロプロセッサ1は、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅(kΔTs)に等しいか否かを判定する(ステップS6)。
 ステップS6において、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅に等しい場合(ΔTth=kΔTs)、ステップS6はYES判定となる。この場合には、刺激電流の供給を停止し(ステップS9)、電流刺激の制御を終了する。
 一方、ステップS6において、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅に等しくない場合(kΔTs<ΔTth<{k+1}ΔTs)、ステップS6はNO判定となる。この場合、次回のインピーダンス計測まで電流値Ioの刺激電流を流し続けると刺激過多となる。それゆえ、ステップS6でNO判定となった場合には、マイクロプロセッサ1は、例えば、上述した刺激量の調整原理に従って刺激電流の電流値を低減(調整)する(ステップS7)。
 次いで、マイクロプロセッサ1は、皮膚インピーダンスZの計測(ステップS3)後からの経過時間が、予め設定された皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)を経過したか否かを判定する(ステップS8)。ステップS8において、経過時間が計測周期ΔTsに達していなければ、ステップS8はNO判定となり、この場合には、経過時間が計測周期ΔTsに達するまで、調整後の刺激電流を供給した状態でステップS8の処理を繰り返す。
 一方、ステップS8において、経過時間が計測周期ΔTsに達した場合、ステップS8はYES判定となる。この場合には、マイクロプロセッサ1は、刺激電流の供給を停止し(ステップS9)、選択された電極30での刺激量の制御処理を終了する。
 本実施形態では、選択された電極30に対して、上述のようにして刺激量を調整する。実際に、本発明者は、複数の被験者に対して、上記電気刺激手法により、電気刺激の検証実験を行った。なお、この実験では、皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)及び刺激電流の電流値Ioをそれぞれ1.45μs及び5mAとした。その結果、全ての被験者から、安定した刺激が得られるという報告が得られた。
 すなわち、本実施形態の電気刺激装置10及びそれによる電気刺激方法では、最適な電気刺激(生起感覚)をより一層安定してユーザに提供することができることが分かった。また、本実施形態では、上述のように、皮膚インピーダンスZの情報に基づく刺激量のフィードバック制御をよりリアルタイムで行うことができるので、刺激中の急激な皮膚インピーダンスの変化にも対応することができる。それゆえ、本実施形態では、電気刺激の安定化及び安全性をより向上させることができる。
<3.各種変形例及び応用例>
[変形例1]
 上記実施形態の電気刺激装置10では、刺激パルスのパルス幅の閾値ΔTth(電気刺激を感じ始めるパルス幅)と、皮膚インピーダンスZとの相関を示す調整データを一つ用意する例を説明したが、本発明はこれに限定されない。
 刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの相関を示す調整データを異なる刺激強度毎に複数用意し、その中からユーザが好みの刺激強度に対応する調整データを適宜選択できるようにしてもよい。すなわち、上記実施形態の電気刺激装置10に、さらに、刺激強度の変更機能(以下、ボリューム調整機能という)を設けてもよい。
 このような刺激強度のボリューム調整機能を上記実施形態の電気刺激装置10に設けるためには、例えば、マイクロプロセッサ1に、予め、複数の刺激強度に対応する調整データを記憶すればよい。
 図8に、複数の刺激強度にそれぞれ対応する複数の調整データ(調整曲線群)の一例を示す。なお、図8は、刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの相関を示す特性であり、横軸は皮膚インピーダンスであり、縦軸は刺激パルスのパルス幅の閾値である。ただし、この例では、全ての調整データ(調整曲線)において、刺激電流の値は一定とする。すなわち、図8に示す調整曲線群は、刺激パルスのパルス幅で刺激強度を制御する際に用いる刺激強度の調整曲線群である。
 従来、ユーザが、刺激強度が同一であると感じる(主観的な刺激強度が一定となる)時の刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの関係は、一つの曲線(以下、この曲線を等ラウドネス曲線という)で表されることが知られている。それゆえ、図8中の各等ラウドネス曲線61において、同じ曲線上に存在する刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの組み合わせでは同じ刺激強度が得られる。また、図8上において、等ラウドネス曲線61が等ラウドネス曲線群60内の上方に位置するほど、刺激強度が強くなる。
 なお、等ラウドネス曲線61は、通常、ユーザ毎に異なるので、図8に示す曲線に限定されない。例えば、ユーザによっては、等ラウドネス曲線が直線状の特性を備える場合もある。
 この例では、具体的には、次のようにして刺激量の調整が行われる。まず、図8に示すような様々な刺激強度に対応する複数の等ラウドネス曲線61からなる等ラウドネス曲線群60の調整データを予め測定する。そして、得られた等ラウドネス曲線群60の調整データをマイクロプロセッサ1内に記憶する。
 ただし、等ラウドネス曲線群60は、ユーザ毎に測定した調整データを用いてもよいし、複数の被験者に対して予め行った測定に基づいて得られる平均的な調整データであってもよい。また、上記実施形態のように皮膚インピーダンスZの計測時の刺激電流が一定の場合には、調整データとして、皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データの代わりに、抵抗4のスイッチ群14側端部の電圧Voと刺激パルスのパルス幅の閾値ΔTthとの相関データを用いてもよい。
 次いで、ユーザが、マイクロプロセッサ1内に記憶された等ラウドネス曲線群60から、好みの刺激強度に対応する等ラウドネス曲線61(刺激強度)を選択する。なお、このユーザの選択操作は、図1には示さないが、例えば電気刺激装置10に設けられた操作部(ボタン、スイッチ等:選択部)により行うことができる。また、タッチパネル15に力センサを設け、ユーザの押圧力をその力センサ(選択部)で検知し、検知した押圧力に応じて自動的に、等ラウドネス曲線61を切り換える構成にしてもよい。
 そして、皮膚が電極30に接触している場合には、マイクロプロセッサ1は、皮膚インピーダンスの計測周期ΔTs毎に、皮膚インピーダンスZの計測結果に基づいて、選択した等ラウドネス曲線61(刺激強度)から刺激パルスのパルス幅の閾値ΔTthを算出する。その後は、上記実施形態と同様にして刺激量を調整する。この例では、このようにして、最適な電気刺激をユーザに安定して与えることができる。
 この例では、上記実施形態の電気刺激装置10にさらに刺激強度のボリューム調整機能を設けた構成であるので、ユーザの好みに応じた刺激調整が可能になる。それゆえ、この例では、上記実施形態と同様の効果が得られるだけでなく、さらに操作性の優れた電気刺激装置10を提供することができる。
[変形例2]
 上記実施形態では、刺激パルス40中の最後の通電期間(調整用サブパルス42の印加期間)以外の時間では、通電する刺激電流は一定としたが、本発明はこれに限定されない。皮膚インピーダンスZの計測毎に、その計測結果に基づいて、刺激電流の大きさを適宜変化させてもよい。図9に、その一例(変形例2)を示す。図9は、変形例2の刺激量の調整手法における刺激パルス50の波形図であり、横軸は時間であり、縦軸は刺激量(電流値)である。
 上述のように、本実施形態の電気刺激装置10では、数μs程度のフィードバック処理が可能であるので、図9に示すように、皮膚インピーダンスZの計測周期ΔTs毎に、その計測結果に基づいて、刺激電流の大きさを変化させても、十分制御可能である。
 ただし、刺激電流の変化に伴い皮膚インピーダンスZも変化するので、この手法では、例えば、皮膚インピーダンスZと、刺激パルス50で得られるトータルの刺激量(電流量)との関係が最適になるように電流制御する必要がある。それゆえ、この手法は、上記実施形態で説明した調整手法に比べて若干複雑になる。
[その他各種変形例]
 上記実施形態では、刺激調整時のフィードバック制御を高速化するため、マイクロプロセッサ1とは別個に、マイクロプロセッサ1とのインターフェースがパラレルであるD/A変換器2及びA/D変換器3を設ける例を説明したが、本発明はこれに限定されない。上述した刺激調整時のフィードバック制御を数μsで実現できる構成であれば任意の構成を用いることができる。例えば、シリアルインターフェースのD/A変換器及びA/D変換器であっても、上述のような高速制御が可能となる性能を有するものであれば本発明に適用可能である。
 上記実施形態では、電気刺激装置10が複数の電極30を備える例を説明したが、本発明はこれに限定されない。電極30を一つしか備えない電気刺激装置10に対しても、本発明は適用可能であり、同様の効果が得られる。ただし、電極30を一つしか備えない電気刺激装置10では、電極30の切替操作は行わないので、スイッチ群14を設けなくてもよい。
 上記実施形態では、スイッチ群14内の切替スイッチ20と、タッチパネル15内の電極30とを1対1に対応させる構成例を説明したが、本発明はこれに限定されない。例えば用途等に応じて、所定数の電極30毎に一つの切替スイッチ20を設ける構成にしてもよい。
 また、上記実施形態及び各種変形例では、マイクロプロセッサ1で計測(取得)する皮膚インピーダンスZに関する情報が、皮膚インピーダンスZそのもの、または、電極30に印加する電圧Voである例を説明したが、本発明はこれに限定されない。皮膚インピーダンスZに関連するパラメータであれば、任意のパラメータを皮膚インピーダンスZに関する情報として用いることができる。
[各種応用例]
 上記実施形態では、電気刺激装置10を単体で構成する例を説明したが、本発明はこれに限定されず、種々の電子機器等にモジュールとして組み込むことができる。例えば、本発明の電気刺激装置は、タッチパネル機能を備えるパーソナルコンピュータ、モバイル機器、タッチパネル機能を備えるカーナビ、視覚障害用の情報提示機器等の電子機器に適用可能である。また、本発明の電気刺激装置は、電子機器以外にも、例えば、自動車のハンドル等の人間の皮膚が接触するような機器部品にも組み込むことができる。
 上述のような用途の機器に本発明の電気刺激装置を組み込む場合には、電気刺激による触覚提示専用のマイクロプロセッサ1を機器本体のメイン制御部とは別個に設けてもよいし、機器本体のメイン制御部内に触覚提示専用のマイクロプロセッサ1を組み込む構成してもよい。ただし、現状では、上述したような機器のメイン制御部は、数μs程度でフィードバック処理を行うことを目的としていないので十分な処理速度が得られない。それゆえ、本発明の電気刺激装置を上述した機器に組み込む場合には、電気刺激による触覚提示専用のマイクロプロセッサ1をメイン制御部とは別個に組み込むことが好ましい。
 また、上述のような用途の機器本体において情報表示用のディスプレイが設けられている場合には、その機器本体に設けられたディスプレイに電極を設置して電気刺激による触覚提示機能を設ける。なお、タッチパネル機能を備える電子機器等では、その表示パネル(ディスプレイ)に電極が設けられているので、その電極を電気刺激用の電極として兼用すればよい。
 本発明の電気刺激装置を上述のような用途に適用した場合、ディスプレイによる情報提示機能をより多様化させることができる。
 1…マイクロプロセッサ、2…D/A変換器、3…A/D変換器、4…抵抗、5…分圧回路、10…電気刺激装置、11…刺激パルス制御部、12…電圧/電流変換器、13…皮膚インピーダンス検出部、14…スイッチ群、15…タッチパネル、20…切替スイッチ、21…第1スイッチ、22…第2スイッチ、30…電極、40…刺激パルス、41…サブパルス、42…調整用サブパルス

Claims (9)

  1.  ユーザに電気刺激を与える電極と、
     前記電極に刺激電流を所定の刺激期間、供給する刺激電流供給部と、
     前記ユーザの皮膚インピーダンスに関する情報を検出する皮膚インピーダンス検出部と、
     前記刺激電流の供給中に、前記刺激期間より短い周期で前記皮膚インピーダンス検出部を介して前記皮膚インピーダンスに関する情報を取得し、該取得された皮膚インピーダンスに関する情報に基づいて次の該周期に前記電極に供給する前記刺激電流を調整する刺激パルス制御部と
     を備える電気刺激装置。
  2.  前記刺激パルス制御部は、前記刺激期間の最後の前記周期以外の通電期間に供給する刺激電流を一定とすることを特徴とする
     請求項1に記載の電気刺激装置。
  3.  前記刺激パルス制御部は、ユーザが電気刺激を感じ始める電流パルスのパルス幅の閾値と皮膚インピーダンスに関する情報との関係を示す相関データを記憶し、前記周期毎に、前記取得された皮膚インピーダンスに関する情報に基づいて該相関データから該電流パルスのパルス幅の閾値を算出し、且つ、該算出した電流パルスのパルス幅の閾値と刺激開始から当該皮膚インピーダンスに関する情報の取得時までの経過期間から得られる最終的な刺激期間とを比較して次の該周期に前記電極に供給する刺激電流を調整することを特徴とする
     請求項2に記載の電気刺激装置。
  4.  前記刺激パルス制御部は、互いに異なる複数の刺激強度にそれぞれ対応する複数の前記相関データを有し、
     さらに、ユーザが前記複数の相関データから所定の相関データを選択することのできる選択部を備える
     請求項3に記載の電気刺激装置。
  5.  前記刺激パルス制御部は、
     前記周期毎に行う前記皮膚インピーダンスに関する情報の取得処理、及び、前記取得された皮膚インピーダンスに関する情報に基づく前記刺激電流の調整処理を行うマイクロプロセッサと、
     前記マイクロプロセッサから出力されたデジタル信号をアナログ信号に変換して前記刺激電流供給部に出力し、且つ、前記マイクロプロセッサ側のインターフェースがパラレルインターフェースであるデジタルアナログ変換器と、
     前記皮膚インピーダンス検出部から出力されたアナログ信号をデジタル信号に変換して前記マイクロプロセッサに出力し、且つ、前記マイクロプロセッサ側のインターフェースがパラレルインターフェースであるアナログデジタル変換器とを有することを特徴とする
     請求項1~4のいずれか一項に記載の電気刺激装置。
  6.  前記刺激電流供給部が、電圧/電流変換器であることを特徴とする
     請求項1~5のいずれか一項に記載の電気刺激装置。
  7.  さらに、複数の電極と、
     前記複数の電極を所定の順序で走査及び選択するスイッチとを備え、
     前記刺激パルス制御部は、前記スイッチの走査及び選択処理を制御し、選択された所定の前記電極に前記刺激電流を供給することを特徴とする
     請求項1~6のいずれか一項に記載の電気刺激装置。
  8.  前記皮膚インピーダンスに関する情報が、前記電極に印加される電圧である
     請求項1~7のいずれか一項に記載の電気刺激装置。
  9.  所定の電極に刺激電流を供給するステップと、
     前記刺激電流の供給中に、前記所定の電極における1回の刺激期間より短い周期でユーザの皮膚インピーダンスに関する情報を取得するステップと、
     前記取得した皮膚インピーダンスに関する情報に基づいて、次の前記周期の前記刺激電流を調整するステップと
     を含む電気刺激方法。
PCT/JP2010/071880 2010-06-07 2010-12-07 電気刺激装置及び電気刺激方法 WO2011155089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012519203A JP5709110B2 (ja) 2010-06-07 2010-12-07 電気刺激装置
US13/702,085 US20130093501A1 (en) 2010-06-07 2010-12-07 Electrical stimulation device and electrical stimulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-130532 2010-06-07
JP2010130532 2010-06-07

Publications (1)

Publication Number Publication Date
WO2011155089A1 true WO2011155089A1 (ja) 2011-12-15

Family

ID=45097714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071880 WO2011155089A1 (ja) 2010-06-07 2010-12-07 電気刺激装置及び電気刺激方法

Country Status (3)

Country Link
US (1) US20130093501A1 (ja)
JP (1) JP5709110B2 (ja)
WO (1) WO2011155089A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017065239A1 (ja) * 2015-10-14 2018-08-09 国立大学法人 熊本大学 炎症及び過剰免疫を抑制する装置、並びに炎症及び過剰免疫を抑制するための方法
JP2019501003A (ja) * 2016-01-11 2019-01-17 セラニカ バイオ‐エレクトロニックス リミテッド 電気刺激中のインピーダンスのモニタリング
JP2019503206A (ja) * 2013-07-15 2019-02-07 ジミトリー モロゾフ 使用者を仮想環境と同期化させる方法及び着用可能な装置
CN109954205A (zh) * 2017-12-14 2019-07-02 财团法人工业技术研究院 电刺激控制电路及控制方法
JP2019213794A (ja) * 2018-06-14 2019-12-19 有限会社楽電 電気治療器、及び電気治療器の制御方法
JP2021509317A (ja) * 2017-12-27 2021-03-25 ヴィリリティ メディカル リミテッドVirility Medical Ltd. ***のコントロール
JP2022526789A (ja) * 2018-03-29 2022-05-26 バイオ-メディカル リサーチ リミテッド 経皮電流制御装置及び方法
WO2023058168A1 (ja) * 2021-10-06 2023-04-13 日本電信電話株式会社 刺激調節装置、刺激調節方法、および刺激調節プログラム
WO2024135778A1 (ja) * 2022-12-21 2024-06-27 株式会社Jvcケンウッド 生体フィードバック検出装置、生体感覚拡張装置、生体感覚拡張方法、及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285666A1 (en) * 2010-05-21 2011-11-24 Ivan Poupyrev Electrovibration for touch surfaces
CN104331155B (zh) * 2014-10-27 2017-02-15 北京理工大学 一种利用电刺激实现触觉再现装置
WO2016113661A1 (en) 2015-01-13 2016-07-21 Siano Mobile Silicon Ltd. Treatment of headaches by electrical stimulation
WO2018060997A1 (en) 2016-09-29 2018-04-05 Theranica Bio-Electronics Ltd. Apparatus for applying an electrical signal to a subject
EP3615134B1 (en) * 2017-04-28 2024-05-15 Tivic Health Systems Inc. Sinus treatment device with adaptive circuit
WO2018215879A1 (en) 2017-05-21 2018-11-29 Theranica Bio-Electronics Ltd. Apparatus for providing pain relief therapy
US10702184B2 (en) * 2017-06-07 2020-07-07 Analog Devices International Unlimited Company Low power measurement of skin electrical properties
WO2023221671A1 (zh) * 2022-05-18 2023-11-23 未来穿戴健康科技股份有限公司 一种电刺激按摩装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230831U (ja) * 1985-08-07 1987-02-24
JPS63318958A (ja) * 1987-06-12 1988-12-27 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 生体組織刺激装置
JPH05168721A (ja) * 1991-12-24 1993-07-02 Matsushita Electric Works Ltd 低周波治療器
JP2006212458A (ja) * 2000-01-07 2006-08-17 Biowave Corp 電気治療方法および電気治療装置
JP2008500850A (ja) * 2004-05-28 2008-01-17 ユーメディック リミテッド 患者の身体に電気刺激を加えるための治療装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131677A (en) * 1976-04-26 1977-11-04 Kogyo Gijutsuin Information transmitting device by electric stimulation
US6647290B2 (en) * 2000-01-18 2003-11-11 Koninklijke Philips Electronics N.V. Charge-based defibrillation method and apparatus
US7865236B2 (en) * 2004-10-20 2011-01-04 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
JP4360497B2 (ja) * 2005-03-09 2009-11-11 国立大学法人 東京大学 電気触覚提示装置及び電気触覚提示方法
US8897885B2 (en) * 2008-12-19 2014-11-25 Ethicon, Inc. Optimizing the stimulus current in a surface based stimulation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230831U (ja) * 1985-08-07 1987-02-24
JPS63318958A (ja) * 1987-06-12 1988-12-27 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 生体組織刺激装置
JPH05168721A (ja) * 1991-12-24 1993-07-02 Matsushita Electric Works Ltd 低周波治療器
JP2006212458A (ja) * 2000-01-07 2006-08-17 Biowave Corp 電気治療方法および電気治療装置
JP2008500850A (ja) * 2004-05-28 2008-01-17 ユーメディック リミテッド 患者の身体に電気刺激を加えるための治療装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503206A (ja) * 2013-07-15 2019-02-07 ジミトリー モロゾフ 使用者を仮想環境と同期化させる方法及び着用可能な装置
JPWO2017065239A1 (ja) * 2015-10-14 2018-08-09 国立大学法人 熊本大学 炎症及び過剰免疫を抑制する装置、並びに炎症及び過剰免疫を抑制するための方法
JP2019501003A (ja) * 2016-01-11 2019-01-17 セラニカ バイオ‐エレクトロニックス リミテッド 電気刺激中のインピーダンスのモニタリング
CN109954205B (zh) * 2017-12-14 2023-06-27 财团法人工业技术研究院 电刺激控制电路及控制方法
CN109954205A (zh) * 2017-12-14 2019-07-02 财团法人工业技术研究院 电刺激控制电路及控制方法
JP7423531B2 (ja) 2017-12-27 2024-01-29 ヴィリリティ メディカル リミテッド ***のコントロール
JP2021509317A (ja) * 2017-12-27 2021-03-25 ヴィリリティ メディカル リミテッドVirility Medical Ltd. ***のコントロール
US12017067B2 (en) 2017-12-27 2024-06-25 Virility Medical Ltd. Ejaculation control
JP2022526789A (ja) * 2018-03-29 2022-05-26 バイオ-メディカル リサーチ リミテッド 経皮電流制御装置及び方法
JP7514484B2 (ja) 2018-03-29 2024-07-11 バイオ-メディカル リサーチ リミテッド 経皮電流制御装置及び方法
JP2019213794A (ja) * 2018-06-14 2019-12-19 有限会社楽電 電気治療器、及び電気治療器の制御方法
WO2023058168A1 (ja) * 2021-10-06 2023-04-13 日本電信電話株式会社 刺激調節装置、刺激調節方法、および刺激調節プログラム
WO2024135778A1 (ja) * 2022-12-21 2024-06-27 株式会社Jvcケンウッド 生体フィードバック検出装置、生体感覚拡張装置、生体感覚拡張方法、及びプログラム

Also Published As

Publication number Publication date
JP5709110B2 (ja) 2015-04-30
US20130093501A1 (en) 2013-04-18
JPWO2011155089A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5709110B2 (ja) 電気刺激装置
Kajimoto Electrotactile display with real-time impedance feedback using pulse width modulation
US10413717B2 (en) Pain sensory nerve stimulation apparatus
US6564103B2 (en) Electrical stimulator and method of use
JP2002113115A (ja) バリアント方式を利用した電気治療装置
JP6667810B2 (ja) 触覚提示装置
JP2013504357A (ja) 定時刺激装置
TW201406422A (zh) 美容器具
JP5963412B2 (ja) 美容装置
US20100161008A1 (en) Potential therapy apparatus and combined electric therapy apparatus
KR20180119866A (ko) 피부 관리 장치 및 그 피부 관리 장치의 제어 방법
CN112057739B (zh) 脉冲输出控制方法、装置、电子设备及计算机存储介质
CN102145205B (zh) 痛觉神经刺激装置
EP1923096A1 (en) Low-frequency electric therapy apparatus
JP6424402B2 (ja) 生体電気刺激装置
JP2004319255A (ja) 擬似触覚呈示装置
EP1923093A1 (en) Low-frequency electric therapy apparatus
EP1923092A1 (en) Low-frequency electric therapy apparatus
KR101478920B1 (ko) 탐침을 구비한 다기능 측정 및 파형발생 장치
Kajimoto Electro-tactile display with real-time impedance feedback
JP4704599B2 (ja) 触覚提示方法及び触覚提示装置
EP2047885A1 (en) Low frequency therapy device and its control method
KR101387285B1 (ko) 양도점 탐측시스템 및 이를 이용한 양도점 탐측방법
JP3159214U (ja) プローブ装置
US20210128008A1 (en) Muscle relaxation monitoring apparatus and patient monitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519203

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13702085

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852924

Country of ref document: EP

Kind code of ref document: A1