WO2011154991A1 - 高分子凝集剤およびその製造方法 - Google Patents

高分子凝集剤およびその製造方法 Download PDF

Info

Publication number
WO2011154991A1
WO2011154991A1 PCT/JP2010/003798 JP2010003798W WO2011154991A1 WO 2011154991 A1 WO2011154991 A1 WO 2011154991A1 JP 2010003798 W JP2010003798 W JP 2010003798W WO 2011154991 A1 WO2011154991 A1 WO 2011154991A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer flocculant
particles
water
polymerization
polymer
Prior art date
Application number
PCT/JP2010/003798
Other languages
English (en)
French (fr)
Inventor
中田繁邦
山下勉
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to PCT/JP2010/003798 priority Critical patent/WO2011154991A1/ja
Publication of WO2011154991A1 publication Critical patent/WO2011154991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/12Prevention of foaming
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone

Definitions

  • the present invention relates to a polymer flocculant. More specifically, the present invention relates to a polymer flocculant useful for dewatering sewage sludge, for coagulating sedimentation of industrial wastewater, for improving drainage yield or increasing paper strength in the papermaking process, and for tertiary recovery of petroleum.
  • polymer flocculants composed of water-soluble polymers are used for dewatering treatment of sewage or human waste (hereinafter abbreviated as sewage sludge), for agglomeration / sedimentation treatment of general industrial wastewater (hereinafter abbreviated as waste water), It is widely used as an agent for treating muddy water, for promoting sedimentation and separation of muddy water at the time of reclamation, and as a drainage yield improver and paper strength enhancer for papermaking.
  • a cation comprising a water-soluble polymer such as poly (meth) acryloyloxyethyltrimethylammonium chloride, acrylamide-acryloyloxyethyltrimethylammonium chloride copolymer, polyvinylamidine, etc.
  • An amphoteric polymer flocculant made of a water-soluble polymer such as an ionic polymer flocculant (see, for example, Patent Document 1) and acrylamide-acrylic acid- (meth) acryloyloxyethyltrimethylammonium chloride copolymer is widely known (for example, , See Patent Document 2).
  • water-soluble polymers such as polyvinyl alcohol and polysaccharides other than the polymer coagulant, and (meth) acrylamide, (meth) acrylic acid, etc.
  • An anionic polymer flocculant made of a water-soluble polymer whose graft density is increased by graft polymerization of a water-soluble monomer is also known (see, for example, Patent Documents 3 and 4).
  • the polymer flocculants described in Patent Documents 1 and 2 have a small floc particle size generated during the treatment of sewage sludge and poor drainage, and a filter cloth when a dehydrator such as a belt press or a filter press is used. It was difficult to obtain a sufficient dehydration effect, for example, the peelability between the cake and the solid matter was poor, and the water content of the solid-liquid separated cake was high.
  • a polymer flocculant composed of a water-soluble polymer obtained by a reverse phase suspension polymerization method has been proposed.
  • the reversed-phase suspension polymerization method the water for the polymerization reaction is easily removed by the hydrophobic dispersion medium used, and the polymerization at a constant temperature is easy.
  • the polymer flocculant can be obtained, and the polymer flocculant is said to solve the above problems.
  • JP 63-274409 A Japanese Unexamined Patent Publication No. 3-189000 JP-A-6-254305 JP-A-6-254306 Japanese Patent No. 1303149 Japanese Patent No. 1303161 Japanese Patent No. 1391345
  • the present invention reverses by dropping a monomer aqueous solution containing a water-soluble unsaturated monomer (a) and a polymerization initiator (d) into a mixture of a hydrophobic dispersion medium (b) and a dispersant (c).
  • Polymer aggregation comprising dry particles of water-soluble (co) polymer (A) obtained by phase suspension polymerization, wherein the particles contain secondary particles obtained by combining single particles (primary particles) It is an agent.
  • the polymer flocculant of the present invention has the following effects. (1) There is little adhesion to the wall surface in the polymerization tank during production. (2) Since it has moderately excellent powder fluidity, it can be quantitatively supplied using a powder feeder or the like. (3) Since the dissolution rate at the time of water dissolution is high and the amount of water insoluble matter is small, the aggregation performance can be enhanced. (4) Form strong coarse flocs in the treatment of sludge and wastewater. (5) Since the formed floc is not easily broken or redispersed, the stability and processing speed of the aggregation treatment can be remarkably increased. (6) The agglomeration can be performed with a small amount of addition, and the moisture content of the cake after the sludge dehydration step is low, so the amount of waste and incineration costs can be reduced.
  • the water-soluble (co) polymer (A) in the present invention comprises an aqueous monomer solution containing a water-soluble unsaturated monomer (a) and a polymerization initiator (d), a hydrophobic dispersion medium (b) and a dispersant (c). It is dripped in this liquid mixture and reverse phase suspension polymerization is carried out.
  • the water-soluble unsaturated monomer (a) includes the following nonionic monomer (a1), cationic monomer (a2), anionic monomer (a3), and a mixture of two or more thereof.
  • a water-insoluble unsaturated monomer (x) and / or a crosslinkable monomer (y) may be used in combination as long as the effects of the present invention are not impaired.
  • the water-soluble unsaturated monomer or water-soluble (co) polymer means an unsaturated monomer or (co) polymer whose solubility in water (g / 100 g of water, 20 ° C., the same shall apply hereinafter) is 1 g or more.
  • the water-insoluble unsaturated monomer means an unsaturated monomer having a solubility in water of less than 1 g.
  • GMn number average molecular weight measured by gel permeation chromatography (GPC) method
  • GMw weight average molecular weight
  • the GMn and GMw are obtained under the following GPC measurement conditions.
  • Detector Refractive index detector Standard: Polystyrene
  • (A1) Nonionic monomer The following are mentioned, and these mixtures.
  • (A2) Cationic monomer The following are included, and salts thereof [for example, inorganic acid (hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, etc.) salts, methyl chloride salts, dimethyl sulfate salts, benzyl chloride salts], and mixtures thereof. .
  • Nitrogen atom-containing (meth) acrylate C5-30 such as aminoalkyl (C2-3) (meth) acrylate, N, N-dialkyl (C1-2) aminoalkyl (C2-3) (meth) acrylate [N N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, etc.], containing heterocyclic ring (Meth) acrylate [N-morpholinoethyl (meth) acrylate etc.]; (A22) Nitrogen atom-containing (meth) acrylamide derivative C5-30, such as N, N-dialkyl (C1-2) aminoalkyl (C2-3) (meth) acrylamide [N, N-dimethylaminoethy
  • an ethylenically unsaturated compound having an amino group C5-30 such as vinylamine, vinylaniline, (meth) allylamine, p-aminostyrene, etc.]
  • Compound having amine imide group C5-30 such as 1,1,1-trimethylamine (meth) acrylimide, 1,1-dimethyl-1-ethylamine (meth) acrylimide, 1,1-dimethyl-1- ( 2′-phenyl-2′-hydroxyethyl) amine (meth) acrylimide
  • Nitrogen atom-containing vinyl monomers other than the above C5-30 such as 2-vinylpyridine, 3-vinylpiperidine, vinylpyrazine, vinylmorpholine.
  • Anionic monomer The following acids, salts thereof [alkali metal (lithium, sodium, potassium, etc., the same shall apply hereinafter) salts, alkaline earth metals (magnesium, calcium, etc., the same shall apply hereinafter) salts, ammonium salts and amines (C1-20) salts and the like], and mixtures thereof.
  • (a), (a1), (a21), (a22), (a31), (a32) are preferable, and (a12), (a13), (a21) are more preferable.
  • (A22), (a31), and (a32) a sulfo group-containing (meth) acrylate, a sulfo group-containing (meth) acrylamide, particularly preferably (meth) acrylamide of (a12), (a13) Acrylonitrile, N-vinylformamide of (a21), N, N-dialkylaminoalkyl (meth) acrylate of (a21) and salts thereof (above), (meth) acrylic acid of (a31), ( Maleic acid anhydride, (anhydrous) itaconic acid and their salts, 2- (meth) acryloyloxyethanesulfonic acid of (a32), 2- and 3- (meth) acryloyloxypropanesulfonic acid, 2- (meth) acrylo
  • the content (mol%) of (a) based on the total number of moles of the monomer constituting (A) is agglomeration performance (high floc strength, coarse floc, low moisture content of dehydrated cake, etc.). From this point of view, it is preferably 55 to 100 mol%, more preferably 80 to 100 mol%.
  • Examples of the water-insoluble unsaturated monomer (x) that may be used in combination with (a) as necessary include the following (x1) to (x5) and mixtures thereof.
  • (X1) C6-23 (meth) acrylate (meth) acrylate of aliphatic or cycloaliphatic alcohol (C3-20) [propyl-, butyl-, lauryl-, octadecyl- and cyclohexyl (meth) acrylate etc.] and epoxy Group (C4-20) -containing (meth) acrylate [glycidyl (meth) acrylate and the like];
  • (X2) Unsaturated carboxylic acid monoester of [monoalkoxy (C1-20)-, monocycloalkoxy (C3-12)-or monophenoxy] polypropylene glycol (hereinafter abbreviated as PPG) (degree of polymerization 2-50) mono Allyl (C1-20) or monohydric phenol (C6-20) propylene oxide (hereinafter abbreviated as PO) adduct (meth) acrylate ester [ ⁇ -methoxy PPG mono (meth) acrylate, ⁇ -ethoxy PPG mono ( Meth) acrylate, ⁇ -propoxy PPG mono (meth) acrylate, ⁇ -butoxy PPG mono (meth) acrylate, ⁇ -cyclohexyl PPG mono (meth) acrylate, ⁇ -phenoxy PPG mono (meth) acrylate, etc.] and diols (C2 ⁇ 20) or dihydric phenol (C6-20) Of PO adduct
  • (X3) C2-30 unsaturated hydrocarbon ethylene, nonene, styrene, 1-methylstyrene and the like; (X4) carboxylic acid (C2-30) ester (vinyl acetate, etc.) of C2-4 unsaturated alcohol [for example, vinyl alcohol, (meth) allyl alcohol]; (X5) C2-30 halogen-containing monomer (for example, vinyl chloride).
  • crosslinkable monomer (y) examples include the following (y1) to (y5) and salts thereof [for example, for basic monomers, inorganic acids (hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, (Sulfurous acid, phosphoric acid, nitric acid, etc.) salts, methyl chloride salts, dimethyl sulfate salts, benzyl chloride salts, etc., for acidic monomers, alkali metal salts, alkaline earth metal salts, amines (C1-20, such as methylamine, ethylamine, Cyclohexylamine) salts], and mixtures thereof.
  • salts thereof for example, for basic monomers, inorganic acids (hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, (Sulfurous acid, phosphoric acid, nitric acid, etc.) salts, methyl chloride salts, dimethyl sulfate salts, benzyl chlor
  • Allyl group (2 to 20 or more) -containing monomers C6 or more and GMn3,000 or less such as di (meth) allylamine, N-alkyl (C1-20) di (meth) allylamine, polyvalent amine (above Poly (2-20) (meth) allylamine, di (meth) allyl ether, polyhydric alcohol (above) poly (2-20) (meth) allyl ether, poly (2-20) ( (Meth) allyloxyalkanes (C1-20) (such as tetraallyloxyethane); (Y5) Epoxy group-containing monomer C8 or more and GMn6,000 or less, for example, EG diglycidyl ether, PEG diglycidyl ether, GR triglycidyl ether.
  • the content (mol%) of (x) is preferably 40 or less, based on the total number of moles of the monomer constituting (A), preferably from the viewpoint of aggregation performance and solubility of the polymer flocculant in water. It is 0.1 to 20, more preferably 0.5 to 10. Further, the content (mol%) of (y) is usually 5 or less based on the total number of moles of the monomer constituting (A), although it depends on the polymerizability or reactivity of the crosslinkable monomer (y) used. From the viewpoint of expression of aggregation performance and solubility of the polymer flocculant in water, it is preferably 0.001 to 1, more preferably 0.01 to 0.5.
  • hydrophobic means that the solubility in water (g / 100 g of water, 20 ° C.) is less than 1 g.
  • B includes hydrocarbon [aliphatic (C5-12, such as n-hexane, n-heptane, n-octane, n-nonane, n-decane), alicyclic group (C5-12, such as cyclopentane, Cyclohexane, cycloheptane, methylcyclohexane, cyclooctane, decalin) and aromatic ring-containing hydrocarbons (C6-12, such as benzene, toluene, xylene, ethylbenzene), etc.], ketones [aliphatic (C3-10, such as methyl-n-) Propyl ketone, diethyl ketone, methyl isobutyl ketone
  • aliphatic and alicyclic hydrocarbons are preferred, and n-hexane, n-heptane, and n-octane are more preferred. , N-nonane, n-decane, cyclohexane and methylcyclohexane.
  • Examples of the dispersant (c) in the present invention include various oil-soluble substances for the purpose of controlling the particle diameter of the dispersed particles and the later-described angle of repose of the dried particles after the dispersed particles are dehydrated and dried. It is done.
  • the HLB (Hydrophile-Lipophile Balance) of (c) is preferably 1 to 8 from the viewpoint of controlling the dispersion stability of the reversed-phase suspended particles and the particle size [that is, the angle of repose of the dried particles of (A) described later]. It is preferably 2 to 7, particularly preferably 3 to 5.
  • HLB represents a balance between hydrophilicity and lipophilicity, and is obtained from the following formula [“Synthesis of surfactants and their applications”, page 501, published by Takashi Shoten in 1957; “New surfactants” [Introduction], pp. 197-198, published by Sanyo Chemical Industries, Ltd. in 1992, etc.].
  • HLB 10 ⁇ (inorganic / organic)
  • the value in () represents the inorganic to organic ratio of the organic compound, and the ratio can be calculated from the values described in the above documents.
  • (C) includes a low molecular dispersant (c1) having a GMw of less than 5,000 (more preferably from 100 to 3,000, particularly preferably from 100 to 1,000), and a GMw of 5,000 or more (more preferably 7,000 to 1,000,000, particularly preferably 10,000 to 100,000) of the polymer dispersant (c2).
  • the (c2) has a glass transition temperature (Tg) of 60 to 100 ° C.
  • (C1) includes fatty acid (C10-30) esters of polyhydric (2-8 or more) alcohols [sucrose fatty acid esters (C22-120, eg sucrose distearate, sucrose tristearate), sorbitan fatty acid esters (C16-120, eg sorbitan monostearate, sorbitan monooleate), (poly) glycerin fatty acid ester (C12-120, eg glycerin monostearate), PEG fatty acid ester [GMw 100-4,500, eg PEG (GMw 100-4) , 500) monostearate] and the like], alkyl (C1-30) allyl ether and the like.
  • the fatty acid ester of a polyhydric alcohol is preferable from the viewpoint of preventing polymer particle adhesion to the apparatus during the production of (A) and the angle of repose of the dried particles of the polymer flocculant after drying. Preference is given to sucrose fatty acid esters and sorbitan fatty acid esters.
  • C2 includes a copolymer of an alkene and an ⁇ , ⁇ -unsaturated polycarboxylic acid (anhydride) or a derivative thereof [for example, a 1-olefin (C11-100) / (anhydrous) maleic acid copolymer, And its amine reaction product], long-chain alkyl group (C12-50) -containing (meth) acrylate (co) polymer, modified (amino, carboxy, epoxy, hydroxy, mercapto, fatty acid ester or fatty acid amide modified, etc.) organopolysiloxane , Cellulose ether (for example, ethyl cellulose, ethyl hydroxyethyl cellulose), (maleic anhydride modified) ethylene / vinyl acetate copolymer, and the like.
  • anhydride an ⁇ , ⁇ -unsaturated polycarboxylic acid
  • a derivative thereof for example, a 1-olefin (C11-100
  • the above (maleic anhydride modified) ethylene / vinyl acetate copolymer is a copolymer of ethylene and / or maleic anhydride modified ethylene and vinyl acetate, and ethylene / vinyl acetate copolymer modified with maleic anhydride. Etc. are included.
  • Examples of the ethylene / vinyl acetate copolymer modified with maleic anhydride include those obtained by adding maleic anhydride to an ethylene / vinyl acetate copolymer.
  • the weight ratio is preferably 2/98 to 30/70, more preferably 5/95 to 20/80, from the viewpoint of dispersion stability of the reversed-phase suspended particles and adjustment of the molecular weight of the reaction product.
  • the copolymerization ratio (weight ratio) in the copolymer of ethylene and vinyl acetate is preferably from the viewpoint of solubility in the hydrophobic dispersion medium (b) and dispersion stability of the reversed-phase suspension particles. Is 50/50 to 95/5, more preferably 70/30 to 90/10.
  • alkene and ⁇ , ⁇ -unsaturation are preferable.
  • the dispersant (c) is preferably 60 to 100 ° C., more preferably from the viewpoint of powder flowability of the water-soluble (co) polymer (A) and solubility in the hydrophobic dispersion medium (b) during polymerization. It is preferable to contain a dispersant [for example, the above (c2)] having a Tg of 65 to 95 ° C., particularly preferably 67 to 92 ° C., and most preferably 70 to 90 ° C. The Tg is measured using a differential scanning calorimeter (DSC) according to the method for measuring the transition temperature of JIS K7121-1987 plastic.
  • DSC differential scanning calorimeter
  • the melting point of (c) is preferably 25 to 100 ° C. from the viewpoint of powder flowability of the water-soluble (co) polymer (A) and solubility in the hydrophobic dispersion medium (b) at the time of polymerization.
  • the temperature is preferably 30 to 80 ° C, particularly preferably 40 to 70 ° C.
  • the melting point is measured using a melting point measuring device according to JIS K0064-1992, 3.2 melting point test method.
  • the dispersant (c) it is preferable to use (c1) and (c2) in combination from the viewpoints of dispersion stability of reversed-phase suspended particles, angle of repose of dry particles, and particle size distribution.
  • the ratio [(c1) / (c2)] is preferably 70/30 to 1/99, more preferably 50/50 to 5/95, from the same viewpoint.
  • a preferred combination from the viewpoint of the particle size distribution of the dry particles is a combination of a fatty acid ester of a polyhydric alcohol and a maleic anhydride-modified ethylene / vinyl acetate copolymer, more preferably PEG.
  • the amount of (c) used is based on the weight of the hydrophobic dispersion medium (b), the stability of the reversed-phase suspension particles, the prevention of polymer particle adhesion to the apparatus during polymerization, and the rest of the dry particles of the polymer flocculant From the viewpoint of controlling the angle and particle diameter, it is preferably 0.01 to 20%, more preferably 0.03 to 10%, and particularly preferably 0.05 to 5%.
  • Examples of the polymerization initiator (d) include various compounds such as azo compounds [water-soluble compounds [azobisamidinopropane (salt), azobiscyanovaleric acid (salt), etc.]) and oil-soluble compounds [azobiscyanovalero]. Nitriles, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, etc.]] and peroxides [water-soluble [peracetic acid, t-butyl peroxide, hydrogen peroxide, ammonium persulfate, sodium persulfate, potassium persulfate] Etc.] and oil-soluble ones [benzoyl peroxide, cumene hydroxy peroxide, etc.].
  • Examples of the salt in the azo compound include inorganic acid (hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, etc.) salts, alkali metal (lithium, sodium, potassium, etc.) salts, ammonium salts, and the like.
  • the above peroxide may be used as a redox initiator in combination with a reducing agent.
  • the reducing agent examples include bisulfites (sodium bisulfite, potassium bisulfite, ammonium bisulfite, etc.), reducing metal salts [iron sulfate (II ), Etc.], amine complexes of transition metal salts [pentamethylenehexamine complexes of cobalt (III) chloride, diethylenetriamine complexes of copper (II) chloride, etc.], organic reducing agents [ascorbic acid, tertiary amine [dimethylaminobenzoic acid ( Salt), dimethylaminoethanol and the like].
  • the azo compound, peroxide and redox initiator may be used alone or in combination of two or more.
  • D is usually present in the monomer aqueous solution (hereinafter sometimes referred to as a dispersed phase), but may also be present in a hydrophobic dispersion medium.
  • the amount of (d) used is preferably 0.001 to 1%, more preferably 0.005 to 0.00, based on the total weight of the monomers constituting (A) from the viewpoint of obtaining an optimum molecular weight. 5%, particularly preferably 0.01 to 0.1%, most preferably 0.02 to 0.05%.
  • a chain transfer agent (f) may be used if necessary.
  • (f) include compounds having one or more OH groups in the molecule [monohydric alcohol (C1-60, such as methanol, ethanol, n- and i-propanol), polyvalent (2 to 3 or more) alcohol (C2-60, eg EG, PG), polymeric polyol (GMn 200-10,000, eg PEG, oxyethylene / oxypropylene block and / or random copolymer), 1 in the molecule
  • Compounds having one or more amino groups [C0-60, such as ammonia, methylamine, dimethylamine, triethylamine, n- and i-propanolamine], hypophosphites (such as sodium hypophosphite), Examples thereof include compounds having one or more thiol groups in the molecule (described later). Of these, compounds having one or more thiol groups in the molecule are preferred from the viewpoint of mo
  • Examples of the compound having one or more thiol groups in the molecule include the following compounds, salts thereof [alkali metal salts, alkaline earth metal salts, ammonium salts, amines (C1-20, such as methylamine, ethanol Amine) salts, inorganic acid (hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, etc.) salts, and the like], and mixtures thereof.
  • Monovalent thiol Aliphatic thiol (C1-20, such as methanethiol, ethanethiol, propanethiol, n-octanethiol, n-dodecanethiol, hexadecanethiol, n-octadecanethiol, 2-mercaptoethanol, mercaptoacetic acid, 3-mercaptopropionic acid, 1-thioglycerol, thioglycolic acid monoethanolamine, thiomaleic acid, mercaptosuccinic acid, cysteine, cysteamine), alicyclic thiol (C5-20, eg cyclopentanethiol, cyclohexanethiol), aromatic ring Containing thiols (C6-12, such as benzenethiol, thiosalicylic acid, thiocresol, thiolenol, thionaphthol) and
  • the use amount of (f) is preferably 0.0001 based on the total weight of (a), (x) and (y) from the viewpoint of obtaining the optimum molecular weight of the polymer flocculant of the present invention. %, More preferably 0.001%, particularly preferably 0.01%, most preferably 0.05%, the preferred upper limit is 10%, more preferably 5%, particularly preferably 3%, most preferably 1%. is there.
  • the monomer content (hereinafter sometimes referred to as monomer concentration) in the aqueous monomer solution (dispersed phase) in the present invention is determined based on the weight of the aqueous monomer solution, productivity and dispersion stability, and a water-soluble (co) polymer. From the viewpoint of reducing the water-insoluble content of (A), it is preferably 40 to 80%, more preferably 45 to 75%, particularly preferably 48 to 72%, and most preferably 50 to 70%.
  • the pH of the aqueous monomer solution in the present invention is preferably 2 to 8, more preferably 2.5 to 7, particularly preferably 3 to 6.5, from the viewpoints of increasing the molecular weight and preventing hydrolysis of (A).
  • pH adjusters used for pH adjustment include inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.) and inorganic solid acidic substances (acidic sodium phosphate, acidic sodium nitrate, ammonium chloride) when the aqueous monomer solution is alkaline.
  • aqueous monomer solution is acidic, inorganic alkaline substances (sodium hydroxide, potassium hydroxide) , Ammonia and the like) and organic alkaline substances (guanidine and the like).
  • the pH is a value measured at room temperature (20 ° C.) using a stock solution of the monomer aqueous solution using a pH meter [eg, trade name “LAB pH meter M-12”, manufactured by Horiba, Ltd.].
  • Examples of the reverse phase suspension polymerization method in the present invention include the following methods. That is, the hydrophobic dispersion medium (b) and the dispersing agent (c) are charged into a polymerization tank to obtain a mixed liquid, adjusted to a predetermined polymerization temperature while heating as necessary, and then the inside of the tank is filled with an inert gas (for example, nitrogen ).
  • an inert gas for example, nitrogen
  • an aqueous monomer solution containing a water-soluble unsaturated monomer (a), a polymerization initiator (d), and, if necessary, a water-insoluble unsaturated monomer (x) and / or a crosslinkable monomer (y) is prepared, and an inert gas After sufficiently substituting with, the mixture is put into a polymerization tank under stirring and polymerized while being suspended.
  • the monomer aqueous solution is added dropwise.
  • the dropping method include the following. (1) A uniform aqueous solution of (a) and (d) is added dropwise. (2) The aqueous solution of (a) and (d) or the aqueous solution thereof are added dropwise with continuous mixing immediately before the addition. (3) The aqueous solution of (a) and the aqueous solution of (d) are simultaneously dropped simultaneously. Among these, (2) is preferable from the viewpoint of reducing the water-insoluble content and reducing the molecular weight distribution (A) described later.
  • the temperature of the monomer aqueous solution is usually 25 ° C. or less, and preferably 10 to 20 ° C.
  • Examples of the method for substituting the monomer aqueous solution with the inert gas include a method for bubbling and supplying the inert gas to the monomer aqueous solution and the like, a method for blending the monomer aqueous solution and the inert gas with a static mixer or the like in the dropping line, and the like.
  • a blending method using a static mixer or the like is preferable from the viewpoint of reducing water-insoluble matter.
  • the volume average diameter of the droplet when the monomer aqueous solution is dropped is preferably 0 from the viewpoints of the solubility characteristics of (A) and the reduction of water-insoluble matter and the content of the hydrophobic solvent (b) in the polymer flocculant. 0.1 to 3 mm, more preferably 0.15 to 2.5 mm, particularly preferably 0.2 to 2 mm, and most preferably 0.5 to 1.5 mm.
  • the volume average diameter is measured by using an image analysis software [for example, the trade name “VK” with a high-speed camera [for example, trade name “Motion Analysis Microscope VW-6000”, manufactured by Keyence Corporation]. -H1A7 "(manufactured by Keyence Co., Ltd.)] was included, and this method was followed in the examples described later.
  • the polymerization temperature of the reversed phase suspension polymerization is preferably 70 ° C. or less, more preferably 10 to 70 from the viewpoint of the polymerization rate and the stability of the reversed phase suspension particles, the high molecular weight of (A), and the reduction of water insoluble matter. ° C, more preferably 20-60 ° C, particularly preferably 30-55 ° C, most preferably 40-50 ° C. Further, during the polymerization, it is preferable to appropriately heat and cool, or to adjust the dropping speed of the aqueous monomer solution so that the predetermined polymerization temperature is kept constant (for example, the predetermined polymerization temperature ⁇ 5 ° C.).
  • Polymerization pressure [kPa (absolute pressure), only numerical values are shown below. ] Is preferably reduced pressure conditions from the viewpoint of controlling the fractal order of the polymer flocculant particles and preventing the polymer particles from adhering to the apparatus during polymerization, and the pressure is preferably 10 or more and less than 101.3, more preferably 30 to 100 Particularly preferred is 50 to 90.
  • the fractal order of the polymer flocculant particles can be reduced as the pressure during polymerization is lower (that is, the degree of pressure reduction is higher).
  • vacuum boiling polymerization which is carried out under reduced pressure conditions and at the boiling point of (b), is also preferred from the viewpoint of narrowing the molecular weight distribution.
  • the completion of the polymerization reaction can be confirmed when the exotherm due to the polymerization disappears, but the polymerization time is usually 1 to 24 hours from the time when the initiation of the polymerization is confirmed by the usual exotherm, the completion of the polymerization, the reduction of residual monomers, and an industrial viewpoint. To preferably 2 to 12 hours, more preferably 3 to 10 hours.
  • the monomer concentration, polymerization temperature, and polymerization time can be appropriately adjusted depending on the monomer composition, initiator type, and the like.
  • the water-soluble (co) polymer (A) in the present invention may be further modified.
  • the polymer modification method for example, when acrylamide having a hydrolyzable functional group in the molecule is used as the water-soluble unsaturated monomer (a), a caustic alkali (sodium hydroxide, potassium hydroxide, etc.) during or after polymerization Alternatively, a method of adding an alkali carbonate (sodium carbonate, potassium carbonate, etc.) and partially hydrolyzing the amide group of (a) to introduce a carboxyl group (JP-A No.
  • the intrinsic viscosity [ ⁇ ] of the water-soluble (co) polymer (A) is usually 1 to 40, aggregation performance and aggregation From the viewpoint of speed, it is preferably 2 to 38, more preferably 4 to 35, and most preferably 5 to 30.
  • the number average molecular weight (Mn) of (A) is determined by the osmotic pressure method.
  • the measurement method is measured under the following conditions.
  • the osmotic pressure measurement method includes a membrane type osmotic pressure measurement method.
  • the molecular weight distribution of (A) in the present invention is represented by the (Mw / Mn) ratio, and is preferably 1 to 30, more preferably 2 to 28, particularly preferably 5 to 25, and most preferably 10 from the viewpoint of aggregation performance. ⁇ 20.
  • the intrinsic viscosity [ ⁇ ] is in the range of 1 to 40 or the preferable [ ⁇ ]
  • the (Mw / Mn) ratio is in the above range. It is preferable from the viewpoint of performance.
  • (Mw / Mn) of (A) is dropped while continuously mixing the monomer aqueous solution at 10 to 20 ° C. and the polymerization initiator (d) immediately before dropping the monomer aqueous solution into the hydrophobic solvent (b). It can be reduced by controlling the polymerization temperature and drying temperature in a narrow temperature range, keeping the monomer concentration at the time of polymerization constant at an appropriate concentration, etc., and making it (Mw / Mn) within the above range it can.
  • the water-soluble (co) polymer (A) is obtained in the state of hydrogel particles in the hydrophobic solvent (b) immediately after production, and (1) a method of drying the solid content after solid-liquid separation, Alternatively, (2) the polymer flocculant of the present invention in the form of solid particles is obtained by a method in which the hydrophobic dispersion medium (b) and water are azeotropically dehydrated under reduced pressure to form a slurry, and the solid content is dried after solid-liquid separation.
  • the drying method include hot air drying, infrared drying, indirect heating drying (vacuum drying, drying using a stirring dryer, drying with a drum dryer) and the like.
  • the method (2) is preferable from the viewpoint of preventing crosslinking by local heating, and the drying method is preferably vacuum drying from the same viewpoint.
  • the drying temperature (° C.) is usually 20 to 200, preferably 30 to 150, more preferably 40 to 120 from the viewpoint of drying speed and crosslinking prevention.
  • the polymer flocculant of the present invention contains dry particles of the water-soluble (co) polymer (A), and the particles contain secondary particles obtained by combining single particles (primary particles). .
  • the secondary particles include the following (1) to (3) and mixtures thereof.
  • “composite” means that a plurality of primary particles are bonded together, or the bonded particles are further bonded together.
  • a plurality of primary particles of the same size are joined together to form a bead or grape bunch.
  • a plurality of relatively small primary particles are bonded to the surface of relatively large primary particles, and at least a part of the surface is coated.
  • the above (1) are further joined together.
  • the above (2) are further joined together.
  • the above (1) and (2) are further joined together.
  • Examples of a method of forming secondary particles by combining the primary particles include the following [1] to [3] and combinations thereof. Among these, the method [1] is preferable from the viewpoint of productivity.
  • [1] A method of forming secondary particles by fusing primary particles together by raising the temperature of the reaction system to 50 to 100 ° C. to the melting point of the dispersant (c) or higher after the polymerization reaction is completed. .
  • [2] A method of forming secondary particles by spraying water onto the water-containing gel particles and fusing the primary particles together in the solid-liquid separation step of (b) after the polymerization reaction and the water-containing gel particles.
  • [3] A method of forming secondary particles by coalescing primary particles by spraying water in the drying step after the solid-liquid separation step.
  • the content of secondary particles in the dry particles (A) in the polymer flocculant of the present invention is preferably 1 to 100% by weight, more preferably 5 to 80% from the viewpoints of dissolution characteristics and appropriate powder flowability. % By weight.
  • the content of the secondary particles in the dry particles can be within the above range.
  • the content of the secondary particles can be measured by the method described later.
  • the volume average particle diameter ( ⁇ m) of the primary particles in the present invention is preferably 10 to 1,000, and more preferably 50 to 500, from the viewpoint of appropriate powder flowability and narrow molecular weight distribution.
  • the volume average particle diameter ( ⁇ m) of the secondary particles is preferably from 150 to 3,000, more preferably from 200 to 2,500, and particularly preferably from 250 to 2,000, from the viewpoints of dissolution characteristics and appropriate powder fluidity. It is.
  • the volume average particle diameter can be measured using, for example, [Microtrac MT3000II particle size analyzer], manufactured by Nikkiso Co., Ltd.
  • the angle of repose of the polymer flocculant of the present invention is preferably from the viewpoint of appropriate powder flowability suitable for stable quantitative supply with the automatic metering device. It is 25 to 45 degrees, more preferably 30 to 43 degrees.
  • the polymer flocculant of this invention can make an angle of repose into the said range by performing reverse phase suspension polymerization using the dispersing agent (c) which has specific HLB as above-mentioned.
  • the angle of repose is a value obtained by the cylindrical rotation method, and the upper limit inclination angle with respect to the horizontal plane when the granular container is slowly rotated to form a stable inclined surface. It can be measured using a three-wheeled angle of repose measuring machine [manufactured by Tsutsui Rika Instruments Co., Ltd.].
  • the fractal order of the polymer flocculant particles of the present invention is 1.2 to 1.9, preferably 1.3 to 1.85, more preferably 1.4 to 1.8, particularly preferably 1.5 to 1. .7.
  • the fractal order is less than 1.2, the powder fluidity is deteriorated, and when it exceeds 1.9, the solubility in water is deteriorated.
  • the fractal order is an index representing the shape of the particle, that is, the unevenness of the particle surface.
  • a small fractal order means that the surface of the surface of the primary particle or the secondary particle combined with the primary particle is large and the surface area is large. Means.
  • the fractal order is 2 if the surface of the particle is a perfect sphere or ellipsoid having no irregularities.
  • the fractal order can be measured by the following method described in JP-A-2001-2935.
  • ⁇ Fractal order measurement method> One polymer flocculant particle taken at random at 25, 30, 50 and 100 times using a scanning electron microscope [for example, “JSM-7000F” manufactured by JEOL Datum Co., Ltd.] Take a photo of For each of these photographs, the particle contour length (L) and the particle projected area (S) are obtained by using image analysis software “WinROOF” [trade name, manufactured by Mitani Corporation]. Next, the common logarithm of (L) and (S) of each photograph is obtained.
  • the obtained values are plotted on an XY coordinate diagram in which the common logarithm of (L) is the X axis and the common logarithm of (S) is the Y axis, and a straight line is drawn by the method of least squares.
  • the above straight line is drawn in the same manner for each of the four particles of the polymer flocculant taken out at random, and the five simple average values of the slopes are taken as the fractal order.
  • the content (% by weight) of the hydrophobic dispersion medium (b) remaining in the polymer flocculant particles of the present invention is usually 5% or less, preferably 4% or less from the viewpoint of the solubility of the polymer flocculant, Preferably it is 2% or less, particularly preferably 1% or less.
  • the content of (b) remaining in the polymer flocculant particles is such that the droplet diameter (mm) when the monomer aqueous solution is dropped into (b) during the production of (A) is within the above range.
  • the above range can be obtained.
  • the content of (b) can be measured by the method described later.
  • the content (% by weight) of the dispersant (c) remaining in the polymer flocculant particles of the present invention is preferably 0.01 from the viewpoint of powder flowability and water solubility of the polymer flocculant particles. -1%, more preferably 0.02-0.5%, particularly preferably 0.03-0.2%, most preferably 0.05-0.1%.
  • the content of (c) remaining in the polymer flocculant particles is set to the above range by setting the Tg and melting point of (c) within the above range, the use amount of (c) within the above range, and the like. be able to.
  • the water-insoluble content (% by weight) in the polymer flocculant of the present invention is usually 5% or less, preferably 3% or less, more preferably 2% or less, particularly preferably 1% or less from the viewpoint of aggregation performance. .
  • the water-insoluble matter can be measured by the method described later.
  • cationic or amphoteric polymer flocculants in wastewater, the size of suspended particles is relatively large and the surface of suspended particles in water has a negative charge.
  • an inorganic flocculant is often added to treat soluble organic matter, and in that case, since the suspended particle surface is covered with the inorganic flocculant, it has a positive charge.
  • an anionic or nonionic polymer flocculant and a mixture thereof are preferable.
  • the polymer flocculant for the third recovery of petroleum those having a relatively large molecular weight are used, and anionic or nonionic and mixtures thereof are preferable.
  • a cationic or amphoteric polymer flocculant and a mixture thereof are preferable for improving the drainage yield or enhancing the paper strength in the papermaking process.
  • the cationic polymer flocculant is a polymer flocculant having a cationic group in the molecule, that is, a polymer flocculant exhibiting a cationic property when dissolved in water, and an amphoteric polymer flocculant and Is a polymer flocculant having a cationic group and an anionic group in the molecule, that is, a polymer flocculant exhibiting cationic and anionic properties when dissolved in water.
  • the cationic or anionic property of these polymer flocculants in water can be evaluated by a colloid equivalent value (meq / g).
  • the cationic group equivalent value in the cationic flocculant can be determined as the cation colloid equivalent value, and the cationic group equivalent value and the anionic group equivalent value in the amphoteric flocculant are the cationic colloid equivalent value and the anionic colloid respectively. It can be determined as an equivalent value.
  • the cation colloid equivalent value (meq / g) in the flocculant is preferably 0.1 to 7, more preferably 0 from the viewpoint of the aggregation performance. 0.5 to 6, more preferably 1 to 5.5, particularly preferably 1.5 to 5.2, and most preferably 2 to 5.
  • the cation colloid equivalent value (meq / g) in the flocculant is preferably from 0.1 to 7, more preferably from the viewpoint of aggregation performance.
  • anionic colloid equivalent value (meq / g) is preferred from the viewpoint of aggregation performance Is -13 to -0.05, more preferably -10 to -0.1, still more preferably -8 to -0.3, particularly preferably -5 to -0.5, most preferably -3 to -1. It is.
  • the colloid equivalent value can be determined by the colloid titration method shown below. The subsequent measurement is performed at room temperature (about 20 ° C.).
  • measurement sample 50 ppm aqueous solution of polymer flocculant
  • sample in terms of solid content
  • total weight total of sample and ion-exchanged water
  • a magnetic stirrer 40 mm long, 5 mm diameter cylindrical magnet, the same shall apply hereinafter, rotation speed 1,000 rpm
  • the polymer flocculant of the present invention is an antifoaming agent (B1), a chelating agent (B2), a pH adjusting agent (B3), a surfactant (B4), as long as it does not inhibit the effects of the present invention.
  • An additive (B) selected from the group consisting of an antiblocking agent (B5), an antioxidant (B6), an ultraviolet absorber (B7) and a preservative (B8) can be used in combination.
  • Examples of the antifoaming agent (B1) include silicone compounds [GMn 100 to 100,000, such as dimethylpolysiloxane], mineral oil (spindle oil, kerosene, etc.), metal soap (C12-22, such as calcium stearate) and the like;
  • Examples of the chelating agent (B2) include aminocarboxylic acids (C6-24, such as ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, nitrilotriacetic acid, triethylenetetraminehexaacetic acid), polyvalent carboxylic acids [C4 or more and GMn 10,000 or less, such as maleic acid, polyacrylic acid (GMn 1,000-10,000) and isoamylene / maleic acid copolymer (GMn 1,000-10,000)], hydroxycarboxylic acids (C3-10, such as Acid, gluconic acid, lactic acid, malic acid), condensed phosphoric acid
  • pH adjusters (B3) include caustic alkalis (caustic soda, caustic potash, etc.), amines (C1-20, such as methylamine, ethylamine, mono-, di- and triethanolamine), inorganic acids (salts) [inorganic acids ( Hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, sulfamic acid, carbonic acid, etc.) and their metal (same as above) salts (sodium carbonate, potassium carbonate, sodium sulfate, sodium hydrogen sulfate, monosodium phosphate, etc.) and ammonium salts ( Ammonic carbonate, ammonium sulfate, etc.)], organic acid (salt) [organic acid [carboxylic acid (C2-15, such as acetic acid, citric acid), sulfonic acid (C1-15, such as methanesulfonic acid, ethanesulfonic acid, p -
  • Surfactants (B4) include surfactants described in US Pat. No. 4,331,447, such as polyoxyethylene nonylphenyl ether and dioctylsulfosuccinate soda; antiblocking agents (B5) include polyether-modified silicone oil ( GMn 100-3,000), for example polyoxyethylene modified silicone and polyoxyethylene / polyoxypropylene modified silicone];
  • Antioxidants (B6) include phenol compounds [hydroquinone, methoxyhydroquinone, catechol, 2,6-di-t-butyl-p-cresol (BHT) and 2,2′-methylenebis (4-methyl-6-t -Butylphenol), etc.], sulfur-containing compounds [thiourea, tetramethylthiuram disulfide, dimethyldithiocarbamic acid and its salts [eg, metal (same as above) salts and ammonium salts, etc.], sodium sulfite, sodium thiosulfate, 2-mercapto Benzothiazole and its salts (same as above), dilauryl 3,3′-thiodipropionate (DLTDP) and distearyl 3,3′-thiodipropionate (DSTDP), etc.], phosphorus-containing compounds [triphenyl phosphite , Triethyl phosphite, sodium phosphite
  • UV absorber (B7) examples include benzophenone compounds (2-hydroxybenzophenone, 2,4-dihydroxybenzophenone, etc.), salicylate compounds (phenyl salicylate, 2,4-di-t-butylphenyl-3,5-di).
  • the above (B) may be added in advance to the monomer aqueous solution before polymerization or may be added to the polymer after production.
  • the total amount of (B) used is usually 30% or less based on the weight of the monomer or polymer, and preferably 0 to 10% from the viewpoint of aggregation performance.
  • the use amount of each additive of (B1) to (B8) is usually 5% or less, preferably 1 to 3%, and (B2) is usually 20% or less based on the same weight as above.
  • (B3) is usually 10% or less, preferably 1 to 5%
  • (B4) and (B5) are each usually 5% or less, preferably 1 to 3%
  • (B6), (B7 ) And (B8) are each usually 5% or less, preferably 0.1 to 2%.
  • Examples of the method for adding the polymer flocculant of the present invention to sewage sludge and the like include the methods described in Japanese Patent No. 1311340 or Japanese Patent No. 2038341.
  • the amount of the polymer flocculant used in the present invention varies depending on the type of sewage sludge, the content of suspended particles, the molecular weight of the polymer flocculant, etc., but the weight of evaporation residue in the sewage sludge etc. Based on the abbreviation), it is usually 0.01 to 10%, preferably from 0.1 to 5%, more preferably from 0.5 to 3%, particularly preferably from 1 to 2% from the viewpoint of aggregation performance and industry. .
  • the polymer flocculant of the present invention it is preferable to add it to sewage sludge after making it into an aqueous solution from the viewpoint of sufficient flocculation performance, but the polymer flocculant is added directly to sewage sludge etc. in a solid state.
  • concentration when the polymer flocculant is used as an aqueous solution is preferably 0.05 to 1% by weight from the viewpoint of handling and dissolution rate.
  • a predetermined amount of the polymer flocculant is gradually added while stirring the water weighed in advance using a stirring device such as a jar tester, and several hours (about 2 to 4 hours).
  • a method of dissolving by applying a degree can be employed.
  • a method of adding a predetermined amount of the polymer flocculant at a stretch is undesirably caused by the fact that it becomes difficult to completely dissolve in water.
  • the polymer flocculant of the present invention When used for the third recovery of petroleum, it is usually used as an aqueous solution.
  • concentration (% by weight) of the aqueous polymer solution is preferably from 0.001 to 3%, more preferably from 0.005 to 1%, particularly preferably from 0.01 to 0, from the viewpoints of thickening effect and viscosity capable of being fed. .5%.
  • the polymer flocculant of the present invention is applied to sewage sludge, etc.
  • the sewage sludge is organic sludge or anaerobic bacteria-treated sludge, inorganic and / or organic coagulation is performed from the viewpoint of charge neutralization of sludge particles. It is preferable to use an agent in combination.
  • Inorganic coagulants include sulfate band, polyaluminum chloride, ferric chloride, ferric sulfate, polyiron sulfate (polyferric sulfate, etc.), slaked lime, etc .; organic coagulants include aniline-formaldehyde polycondensate Hydrochloride, polyvinylbenzyltrimethylammonium chloride, dimethyldi (meth) allylammonium chloride, (meth) allylamine or di (meth) allylamine-maleic acid copolymer, (meth) allylamine or di (meth) allylamine-citraconic acid copolymer (Meth) allylamine or di (meth) allylamine-itaconic acid, (meth) allylamine or di (meth) allylamine-fumaric acid copolymer, and the like.
  • sewage sludge is treated with a mixture obtained by adding these to the polymer flocculant of the present invention in advance, or an inorganic coagulant and / or an organic coagulant is preliminarily applied to the sewage sludge.
  • the polymer aggregating agent of the present invention may be added and processed, but the latter method is preferred from the viewpoint of floc strength.
  • the amount used when using an inorganic coagulant and / or an organic coagulant varies depending on the type of sewage sludge, the size of suspended particles, the type of coagulant used, etc., but based on the TS in the sewage sludge. 20% or less for inorganic coagulants, preferably 0.5 to 10%, more preferably 1 to 5%, particularly preferably 1.5 to 3% from the viewpoint of coagulation performance; usually 1% or less for organic coagulants From the viewpoint of setting performance, it is preferably 0.01 to 0.5%, more preferably 0.025 to 0.2%, and particularly preferably 0.05 to 0.15%.
  • the pH of sewage sludge and the like may be adjusted in advance.
  • the pH adjustment range is usually from 3 to 8, preferably from 3.5 to 7, more preferably from 4 to 6, particularly preferably from 4.5 to 5.5 from the viewpoint of hydrolysis prevention and solubility of the polymer flocculant. is there.
  • Examples of the pH adjusting method include a method using an acidic substance such as an inorganic acid (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.) or an alkaline substance such as a caustic alkali (sodium hydroxide, potassium hydroxide, etc.).
  • the pH can be adjusted by adding the inorganic or organic coagulant to sewage sludge or the like in advance.
  • a dehydration method solid-liquid separation method for floc formed by adding the polymer flocculant of the present invention to sewage sludge
  • various methods such as centrifugal dehydration, belt press dehydration, filter press dehydration, and capillary dehydration are available. Dehydration method can be applied. Among these, centrifugal dehydration, belt press dehydration, and filter press dehydration are preferable from the viewpoint of high floc strength, which is the specific aggregation performance of the polymer flocculant of the present invention.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the part in an Example represents a weight part and% represents weight%.
  • the solid content, intrinsic viscosity [ ⁇ ], Mw, Mn, Mw / Mn, fractal order, angle of repose and volume average particle diameter of the polymer flocculant were determined by the above methods.
  • Other evaluation items are as follows. TS in sewage sludge, suspended solids (SS), organic content (loss on ignition) and alkalinity were measured according to the analysis method described in “Sewage Test Method” (Japan Sewerage Association, 1984 version). .
  • Adhesion rate (%) The ratio based on the theoretical yield of the polymer solid content adhering to the inner wall of the reaction vessel or the stirring blade after the polymerization is defined as the adhesion rate.
  • the above standard sieve having an appropriate opening, for example, opening 2.00, 1.70, 1.40, 1.18 and 1.0 mm, 850, 710, 500, 425, 355, 300, 250, 180
  • 50.0 g of polymer flocculant particles are taken on a standard sieve of 150 ⁇ m, shaken for 1 minute with a low tap test sieve shaker, and the weight of the particles remaining on each sieve is measured (S W ) i .
  • the content of the secondary particles can be obtained from the following calculation formula.
  • Content of secondary particles (% by weight) 100 ⁇ [ ⁇ [(S W ) i ⁇ (S P ) i / 100]] / 50
  • the composition of the hydrophobic dispersion medium (b) can be identified by a gas chromatograph mass spectrometer [model number “GCMS-QP2010”, manufactured by Shimadzu Corporation] or the like.
  • the dispersant (c) is identified and quantified (content rate q%) by the gas chromatography method or the like.
  • the content (%) of the dispersant (c) remaining in the polymer flocculant is determined from the following formula.
  • (C) Content (%) remaining in the polymer flocculant q ⁇ (W / solid weight of the polymer flocculant)
  • Flock particle size Take 200 ml of sludge in a 300 ml beaker and set it in the stirring device (5). While stirring the sludge gradually with the rotation speed of the stirrer being 300 rpm, an aqueous solution of a polymer flocculant having a predetermined concentration was added by a predetermined method, and after stirring for 30 seconds, the stirring was stopped and the size of the floc was visually observed. To evaluate. Subsequently, after further stirring for 30 seconds at a rotation speed of 650 rpm, the stirring is stopped and the size of the floc is visually evaluated again.
  • Flock particle size ratio (Flock particle size at 650 rpm) / (Flock particle size at 300 rpm) ⁇ Evaluation criteria> ⁇ Very strong (0.8 ⁇ floc particle size ratio ⁇ 1) ⁇ Strong (0.7 ⁇ Flock particle size ratio ⁇ 0.8) ⁇ Slightly weak (0.5 ⁇ floc particle size ratio ⁇ 0.7) ⁇ Weak (Flock particle size ratio ⁇ 0.5)
  • Example 1 [Production of polymer flocculant (P-1)] [First Step] A mixed solution [aqueous phase (1)] formulated according to Table 1 was prepared at room temperature (20 to 25 ° C.). Further, the pH (20 ° C.) of the aqueous phase (1) was adjusted to 3.0 using sulfamic acid while monitoring with a pH meter. Separately, a polymerization initiator (d-2) and ion-exchanged water were blended according to Table 1 to prepare a mixed solution [aqueous phase (2)]. The aqueous phases (1) and (2) were separately sufficiently substituted with nitrogen (purity 99.999% or more; the same shall apply hereinafter) (dissolved oxygen concentration of 20 ppb or less).
  • nitrogen purity 99.999% or more; the same shall apply hereinafter
  • n-decane (b-1), dispersants (c1-1) and (c2-1) are charged according to Table 1 into a reaction vessel equipped with a stirring blade (Max Blend blade) to prepare an oil phase. did. While stirring the stirring blade at a rotation speed of 340 rpm, the inside of the reaction vessel was replaced with nitrogen (gas phase oxygen concentration: 10 ppm or less), heated to 80 ° C. and held for 30 minutes, and then until the polymerization temperature shown in Table 1 Cooled down. After reaching the polymerization temperature, the aqueous phases (1) and (2) are each fed at the temperature shown in Table 1 with a dropping pump under the pressure conditions shown in Table 1, and continuously mixed with a static mixer.
  • the entire amount of the mixed solution (monomer aqueous solution) was dropped into the reaction vessel over 2 hours.
  • the volume average diameter of the droplet at the time of dropping was 0.5 mm.
  • stirring was continued at the polymerization temperature shown in Table 1 for 2 hours to carry out reverse phase suspension polymerization.
  • the temperature of the reaction system was 55 ° C., and azeotropic dehydration was performed under reduced pressure (3 to 20 kPa) to obtain a slurry.
  • the slurry was supplied to a vacuum filter and subjected to solid-liquid separation, and then the solid content was dried in a vacuum dryer (1.3 kPa, 40 ° C. ⁇ 2 hours) to obtain the water-soluble copolymer (A-1).
  • a polymer flocculant (P-1) containing dry particles was obtained.
  • the evaluation results for (P-1) are shown in Table 1.
  • Example 2 Comparative Examples 1 to 4 [Production of polymer flocculants (P-2) to (P-8), (R-1) to (R-4)]
  • the polymer flocculants (P-2) to (P-8) were prepared in the same manner as in Example 1 except that the blending composition, polymerization conditions, etc. were changed according to Table 1 in [First Step]. , (R-1) to (R-4) were obtained. The evaluation results for these are shown in Table 1.
  • the polymerization of Example 7 was performed under reduced pressure boiling point polymerization conditions.
  • Examples 9 to 16 have better water solubility than Comparative Examples 5 to 8, and Examples 9, 10, 11, and 12 are Comparative Examples 5, 6, 7, and 8, respectively.
  • flocs with large particle size are formed, and flocs once formed under low agitation (300 rpm) are less likely to break even under high agitation (650 rpm) (high flock strength), resulting in a large amount of liquid after 10 seconds
  • high agitation 650 rpm
  • the initial filtration rate is high and that the dehydrating property (water content of the dehydrated cake) is excellent.
  • the polymer flocculant of the present invention exhibits a specific agglomeration performance that has not been found in the past, it is used for dewatering sewage sludge, for flocculation / sedimentation of wastewater, for mud treatment in the civil engineering field, muddy water at the time of reclamation It can be used widely and suitably as a polymer flocculant for promoting sedimentation separation, improving drainage yield in papermaking processes, enhancing paper strength, and tertiary recovery of petroleum.

Abstract

 水溶解時の溶解速度が速く、水不溶解分が少ないため凝集性能を高めることができ、汚泥や廃水の処理において強固な粗大フロックを形成し、形成されたフロックは破壊、再分散されにくいため凝集処理の安定性や処理速度を著しく高めることができ、少量の添加で凝集処理でき、汚泥の脱水工程後のケーキの含水率が低いため、廃棄物量および焼却処理コストを低減できる高分子凝集剤を提供する。本発明は、水溶性不飽和モノマー(a)および重合開始剤(d)を含有するモノマー水溶液を、疎水性分散媒(b)と分散剤(c)の混合液中に滴下して逆相懸濁重合させてなる水溶性(共)重合体(A)の乾燥粒子を含有してなり、該粒子が単粒子(一次粒子)を複合させた二次粒子を含有してなる高分子凝集剤である。

Description

高分子凝集剤およびその製造方法
 本発明は高分子凝集剤に関する。さらに詳しくは、下水汚泥の脱水用、産業廃水の凝集沈澱用、製紙工程での濾水歩留向上もしくは紙力増強用、および石油の3次回収用等に有用な高分子凝集剤に関する。
 従来、水溶性高分子からなる高分子凝集剤は、下水もしくはし尿(以下、下水汚泥と略記)の脱水処理用、一般産業廃水(以下、廃水と略記)の凝集・沈殿処理用、土木分野での泥水処理用、浚渫埋め立て時の泥水の沈降分離促進用等の薬剤として、また、製紙用の、濾水歩留向上剤や紙力増強剤等として広く使用されている。
 該高分子凝集剤のうち、例えば下水汚泥の脱水処理用としては、ポリ(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、アクリルアミド-アクリロイルオキシエチルトリメチルアンモニウムクロライドコポリマー、ポリビニルアミジン等の水溶性高分子からなるカチオン性高分子凝集剤(例えば、特許文献1参照)、アクリルアミド-アクリル酸-(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライドコポリマー等の水溶性高分子からなる両性高分子凝集剤が広く知られている(例えば、特許文献2参照)。
 廃水の凝集・沈殿処理用、あるいは土木分野での薬剤としては、前記高分子凝集剤以外のポリビニルアルコールや多糖類等の水溶性高分子に、さらに(メタ)アクリルアミド、(メタ)アクリル酸等の水溶性モノマーをグラフト重合させて、凝集密度を高めた水溶性高分子からなるアニオン性高分子凝集剤も知られている(例えば、特許文献3、4参照)。
 しかしながら、特許文献1~2に記載の高分子凝集剤では、下水汚泥の処理時に生成するフロック粒径が小さく、濾水性が悪い、ベルトプレスまたはフィルタープレス等の脱水機を用いた場合の濾布と固形物との剥離性が悪い、および固液分離されたケーキの含水率が高い等、充分な脱水効果を得ることは困難であった。
 また、特許文献3~4に記載の高分子凝集剤でも、廃水等の処理時に生成するフロック粒径が小さい、ろ過速度が遅い、浮遊物質回収率(以後、SS回収率)が悪い、ケーキ含水率が高い等、やはり充分な処理効果を得ることは困難であった。
 そこで、これらの課題を解決するために、逆相懸濁重合法で得られる水溶性高分子からなる高分子凝集剤が提案されてきた。該逆相懸濁重合法では、用いられる疎水性分散媒により重合反応熱を除去しやすく、一定温度での重合が容易であることから、高分子量で比較的分子量分布がシャープな水溶性高分子からなる高分子凝集剤を得ることができ、該高分子凝集剤は、上記課題を解決するものとされている。
特開昭63-274409号公報 特開平 3-189000号公報 特開平 6-254305号公報 特開平 6-254306号公報 特許1303149号 特許1303161号 特許1391345号
 しかしながら、上記特許文献5~7に記載の逆相懸濁重合法による水溶性高分子からなる高分子凝集剤の場合、前記課題を解決するとされるものの、得られる重合体粒子が重合槽内壁や撹拌羽根に付着しやすいという問題があった。
 また、得られた高分子凝集剤がビーズ状のため転がりやすく、粉体流動性が高すぎることから、下水汚泥、廃水等(以下、下水汚泥等ということがある)の処理時、水溶解槽への自動計量装置での安定的な定量供給ができないという問題等があった。
 本発明者らは、これらの課題を解決すべく鋭意検討した結果本発明に到達した。すなわち、本発明は、水溶性不飽和モノマー(a)および重合開始剤(d)を含有するモノマー水溶液を、疎水性分散媒(b)と分散剤(c)の混合液中に滴下して逆相懸濁重合させてなる水溶性(共)重合体(A)の乾燥粒子を含有してなり、該粒子が単粒子(一次粒子)を複合させた二次粒子を含有してなる高分子凝集剤である。
 本発明の高分子凝集剤は下記の効果を奏する。
(1)製造時において重合槽内の壁面への付着が少ない。
(2)適度に優れた粉体流動性を有するため、粉体供給機等を用いて定量的に供給できる。
(3)水溶解時の溶解速度が速く、水不溶解分が少ないため、凝集性能を高めることができる。
(4)汚泥や廃水の処理において強固な粗大フロックを形成する。
(5)形成されたフロックは破壊、再分散されにくいため凝集処理の安定性や処理速度を著しく高めることができる。
(6)少量の添加で凝集処理でき、汚泥の脱水工程後のケーキの含水率が低いため、廃棄物量および焼却処理コストを低減できる。
[水溶性(共)重合体(A)]
 本発明における水溶性(共)重合体(A)は、水溶性不飽和モノマー(a)および重合開始剤(d)を含有するモノマー水溶液を、疎水性分散媒(b)と分散剤(c)の混合液中に滴下して逆相懸濁重合させてなる。
 水溶性不飽和モノマー(a)には、下記のノニオン性モノマー(a1)、カチオン性モノマー(a2)、アニオン性モノマー(a3)およびこれらのうちの2種またはそれ以上の混合物が含まれる。
 (A)を構成するモノマーとしては、本発明の効果を阻害しない範囲で(a)の他に必要により水不溶性不飽和モノマー(x)および/または架橋性モノマー(y)を併用してもよい。
 ここにおいて水溶性不飽和モノマーもしくは水溶性(共)重合体とは、水に対する溶解度(g/水100g、20℃。以下同じ。)が1g以上である不飽和モノマーもしくは(共)重合体を意味し、水不溶性不飽和モノマーとは、水に対する溶解度が1g未満である不飽和モノマーを意味する。
 なお、以下においてゲルパーミエイションクロマトグラフィー(GPC)法で測定される数平均分子量はGMn、重量平均分子量はGMwと略記し、該GMn、GMwは下記のGPC測定条件で求められる。
<GPC測定条件>
装置    : HLC-802A、東ソー(株)製
カラム   : TSK gel GMH6(2本)[東ソー(株)製]
測定温度  : 40℃
試料溶液  : 0.5重量%のテトラヒドロフラン溶液
溶液注入量 : 200μl
検出装置  : 屈折率検出器
標準    : ポリスチレン
(a1)ノニオン性モノマー
下記のもの、およびこれらの混合物が挙げられる。
(a11)(メタ)アクリレート
 炭素数(以下、Cと略記)4以上かつGMn5,000以下、例えば水酸基含有(メタ)アクリレート[ヒドロキシエチル-、ジエチレングリコールモノ-、ポリエチレングリコール(重合度3~50)モノ-およびポリグリセロール(重合度1~10)モノ(メタ)アクリレート等]、アクリル酸アルキル(アルキル基はC1~2)エステル(C4~5、例えばアクリル酸メチル、アクリル酸エチル);
(a12)(メタ)アクリルアミドおよびその誘導体
 C3~30、例えば(メタ)アクリルアミド、N-アルキル(C1~3)(メタ)アクリルアミド[N-メチルおよび-イソプロピル(メタ)アクリルアミド等]、N-アルキロール(メタ)アクリルアミド[N-メチロール(メタ)アクリルアミド等];
(a13)上記以外の窒素原子含有エチレン性不飽和化合物
 C3~30、例えばアクリロニトリル、N-ビニルホルムアミド、N-ビニル-2-ピロリドン、N-ビニルイミダゾール、N-ビニルスクシンイミド、N-ビニルカルバゾールおよび2-シアノエチル(メタ)アクリレート。
(a2)カチオン性モノマー
 下記のもの、これらの塩[例えば無機酸(塩酸、硫酸、リン酸、硝酸等)塩、メチルクロライド塩、ジメチル硫酸塩、ベンジルクロライド塩]、およびこれらの混合物が挙げられる。
(a21)窒素原子含有(メタ)アクリレート
 C5~30、例えばアミノアルキル(C2~3)(メタ)アクリレート、N,N-ジアルキル(C1~2)アミノアルキル(C2~3)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等]、複素環含有(メタ)アクリレート[N-モルホリノエチル(メタ)アクリレート等];
(a22) 窒素原子含有(メタ)アクリルアミド誘導体
 C5~30、例えばN,N-ジアルキル(C1~2)アミノアルキル(C2~3)(メタ)アクリルアミド[N,N-ジメチルアミノエチル(メタ)アクリルアミド等];
(a23)アミノ基を有するエチレン性不飽和化合物
 C5~30、例えばビニルアミン、ビニルアニリン、(メタ)アリルアミン、p-アミノスチレン等];
(a24) アミンイミド基を有する化合物
 C5~30、例えば1,1,1-トリメチルアミン(メタ)アクリルイミド、1,1-ジメチル-1-エチルアミン(メタ)アクリルイミド、1,1-ジメチル-1-(2’-フェニル-2’-ヒドロキシエチル)アミン(メタ)アクリルイミド;
(a25) 上記以外の窒素原子含有ビニルモノマー
 C5~30、例えば2-ビニルピリジン、3-ビニルピペリジン、ビニルピラジン、ビニルモルホリン。
(a3)アニオン性モノマー
 下記の酸、これらの塩[アルカリ金属(リチウム、ナトリウム、カリウム等、以下同じ。)塩、アルカリ土類金属(マグネシウム、カルシウム等、以下同じ。)塩、アンモニウム塩およびアミン(C1~20)塩等]、およびこれらの混合物が挙げられる。
(a31)不飽和カルボン酸
 C3~30、例えば(メタ)アクリル酸、(無水)マレイン酸、フマル酸、(無水)イタコン酸、ビニル安息香酸、アリル酢酸;
(a32)不飽和スルホン酸
 C2~20の脂肪族不飽和スルホン酸(ビニルスルホン酸等)、C6~20の芳香族不飽和スルホン酸(スチレンスルホン酸等)、スルホ基含有(メタ)アクリレート[スルホアルキル(C2~20)(メタ)アクリレート[2-(メタ)アクリロイルオキシエタンスルホン酸、2-(メタ)アクリロイルオキシプロパンスルホン酸、3-(メタ)アクリロイルオキシプロパンスルホン酸、2-(メタ)アクリロイルオキシブタンスルホン酸、4-(メタ)アクリロイルオキシブタンスルホン酸、2-(メタ)アクリロイルオキシ-2,2-ジメチルエタンスルホン酸、p-(メタ)アクリロイルオキシメチルベンゼンスルホン酸等]、スルホ基含有(メタ)アクリルアミド[2-(メタ)アクリロイルアミノエタンスルホン酸、2-および3-(メタ)アクリロイルアミノプロパンスルホン酸、2-および4-(メタ)アクリロイルアミノブタンスルホン酸、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、p-(メタ)アクリロイルアミノメチルベンゼンスルホン酸等]、アルキル(C1~20)(メタ)アリルスルホコハク酸エステル[メチル(メタ)アリルスルホコハク酸エステル等]等;
(a33)(メタ)アクリロイルポリオキシアルキレン(C1~6)硫酸エステル
 (メタ)アクリロイルポリオキシエチレン(重合度2~50)硫酸エステル等。
 (a)のうち高分子量化の観点から好ましいのは、(a1)、(a21)、(a22)、(a31)、(a32)、さらに好ましいのは(a12)、(a13)、(a21)、(a22)、(a31)、および(a32)のうちのスルホ基含有(メタ)アクリレート、スルホ基含有(メタ)アクリルアミド、特に好ましいのは(a12)のうちの(メタ)アクリルアミド、(a13)のうちのアクリロニトリル、N-ビニルホルムアミド、(a21)のうちのN,N-ジアルキルアミノアルキル(メタ)アクリレートおよびこれらの塩(上記のもの)、(a31)のうちの(メタ)アクリル酸、(無水)マレイン酸、(無水)イタコン酸およびこれらの塩、(a32)のうちの2-(メタ)アクリロイルオキシエタンスルホン酸、2-および3-(メタ)アクリロイルオキシプロパンスルホン酸、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸およびこれらの塩、最も好ましいのは(a12)のうちの(メタ)アクリルアミド、(a21)のうちの(メタ)アクリロイルオキシエチルジアルキルアミン塩、(メタ)アクリロイルオキシエチルトリアルキルアンモニウム塩、(a31)のうちの(メタ)アクリル酸およびこれらのアルカリ金属塩である。また、これらの(a)は、任意に併用して共重合させることができる。
 (A)を構成するモノマーの全モル数に基づく(a)の含有量(モル%)は、凝集性能(高フロック強度、フロックの粗大化、脱水ケーキの低含水率化等。以下同じ。)の観点から好ましくは55~100モル%、さらに好ましくは80~100モル%である。
 必要により(a)と併用してもよい水不溶性不飽和モノマー(x)としては、以下の(x1)~(x5)、およびこれらの混合物が挙げられる。
(x1) C6~23の(メタ)アクリレート
 脂肪族または脂環式アルコール(C3~20)の(メタ)アクリレート[プロピル-、ブチル-、ラウリル-、オクタデシル-およびシクロヘキシル(メタ)アクリレート等]およびエポキシ基(C4~20)含有(メタ)アクリレート[グリシジル(メタ)アクリレート等];
(x2) [モノアルコキシ(C1~20)-、モノシクロアルコキシ(C3~12)-もしくはモノフェノキシ]ポリプロピレングリコール(以下、PPGと略記)(重合度2~50)の不飽和カルボン酸モノエステル
 モノオール(C1~20)もしくは1価フェノール(C6~20)のプロピレンオキシド(以下POと略記)付加物の(メタ)アクリル酸エステル[ω-メトキシPPGモノ(メタ)アクリレート、ω-エトキシPPGモノ(メタ)アクリレート、ω-プロポキシPPGモノ(メタ)アクリレート、ω-ブトキシPPGモノ(メタ)アクリレート、ω-シクロヘキシルPPGモノ(メタ)アクリレート、ω-フェノキシPPGモノ(メタ)アクリレート等]およびジオール(C2~20)もしくは2価フェノール(C6~20)のPO付加物の(メタ)アクリル酸エステル[ω-ヒドロキシエチル(ポリ)オキシプロピレンモノ(メタ)アクリレート等]等;
(x3) C2~30の不飽和炭化水素
 エチレン、ノネン、スチレン、1-メチルスチレン等;
(x4) C2~4の不飽和アルコール[例えばビニルアルコール、(メタ)アリルアルコール]のカルボン酸(C2~30)エステル(酢酸ビニル等);
(x5) C2~30のハロゲン含有モノマー(例えば塩化ビニル)。
 また、架橋性モノマー(y)としては、以下の(y1)~(y5)、これらの塩[例えば、塩基性モノマーについては、無機酸(塩酸、臭化水素酸、ヨウ化水素酸、硫酸、亜硫酸、リン酸、硝酸等)塩、メチルクロライド塩、ジメチル硫酸塩およびベンジルクロライド塩等、酸性モノマーについては、アルカリ金属塩、アルカリ土類金属塩、アミン(C1~20、例えばメチルアミン、エチルアミン、シクロヘキシルアミン)塩]、およびこれらの混合物が挙げられる。
(y1) ビスポリ(2~4またはそれ以上)(メタ)アクリルアミド
 C5~30、例えばN,N’-メチレンビスアクリルアミド;
(y2) ポリ(2~4またはそれ以上)(メタ)アクリレート
 C8~30、例えばエチレングリコールジ(メタ)アクリレート、ペンタエリスリトール[ポリ(2~4)](メタ)アクリレート;
(y3) ビニル基(2~20個またはそれ以上)含有モノマー
 C4以上かつGMn6,000以下、例えばジビニルアミン、多価(2~5またはそれ以上)アミン[C2以上かつGMn3,000以下、例えばエチレンジアミン、ポリエチレンイミン(C4以上かつGMn3,000以下)]のポリ(2~20)ビニルアミン、ジビニルエーテル、多価アルコール〔C2以上かつGMn3,000以下、例えばアルキレン(C2~6またはそれ以上)グリコール[エチレングリコール、プロピレングリコール、1,6-ヘキサンジオール(以下、それぞれEG、PG、HDと略記)等]、ポリオキシアルキレン[GMn2,000~3000、例えばポリエチレングリコール(以下、PEGと略記)(分子量106以上かつGMn3,000以下)、PPG(分子量134以上かつGMn3,000以下)、ポリオキシエチレン(分子量106以上かつGMn3,000以下)/ポリオキシプロピレン(分子量134以上かつGMn3,000以下)ブロックコポリマー]、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール(以下、それぞれTME、TMP、GR、PE、SOと略記)、(ポリ)(2~50)グリセリン(グリセリンは以下GRと略記)、デンプン〕のポリ(2~20)ビニルエーテル等;
(y4) アリル基(2~20個またはそれ以上)含有モノマー
 C6以上かつGMn3,000以下、例えばジ(メタ)アリルアミン、N-アルキル(C1~20)ジ(メタ)アリルアミン、多価アミン(上記のもの)のポリ(2~20)(メタ)アリルアミン、ジ(メタ)アリルエーテル、多価アルコール(上記のもの)のポリ(2~20)(メタ)アリルエーテル、ポリ(2~20)(メタ)アリロキシアルカン(C1~20)(テトラアリロキシエタン等);
(y5) エポキシ基含有モノマー
 C8以上かつGMn6,000以下、例えばEGジグリシジルエーテル、PEGジグリシジルエーテル、GRトリグリシジルエーテル。
 (x)の含有量(モル%)は、(A)を構成するモノマーの全モル数に基づいて、通常40以下、凝集性能発現および高分子凝集剤の水への溶解性の観点から好ましくは0.1~20、さらに好ましくは0.5~10である。
 また、(y)の含有量(モル%)は、使用する架橋性モノマー(y)の重合性または反応性にもよるが、(A)を構成するモノマーの全モル数に基づいて通常5以下、凝集性能発現および高分子凝集剤の水への溶解性の観点から好ましくは0.001~1、さらに好ましくは0.01~0.5である。
 本発明における疎水性分散媒(b)において「疎水性」とは、水に対する溶解度(g/水100g、20℃)が1g未満であることを意味する。
 (b)としては、炭化水素[脂肪族(C5~12、例えばn-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン)、脂環含有(C5~12、例えばシクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロヘキサン、シクロオクタン、デカリン)および芳香環含有炭化水素(C6~12、例えばベンゼン、トルエン、キシレン、エチルベンゼン)等]、ケトン[脂肪族(C3~10、例えばメチル-n-プロピルケトン、ジエチルケトン、メチルイソブチルケトン)、脂環含有(C5~10、例えばシクロペンタノン、シクロヘキサノン)および芳香環含有ケトン(C8~13、例えばアセトフェノン、ベンゾフェノン)等]、エーテル[脂肪族(C4~8、例えばジ-n-プロピルエーテル、ジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル)、環状エーテル(C4~18、例えばテトラヒドロピリン)および芳香環含有エーテル(C7~12、例えばアニソール)等]、エステル[脂肪族エステル(C3~10、例えば酢酸n-ブチル)、脂環含有エステル(C7~12、例えば酢酸シクロヘキシル、シクロヘキサンカルボン酸メチル)および芳香環含有エステル(C8~13、例えば安息香酸メチル、安息香酸エチル、安息香酸n-ブチル、酢酸ベンジル、ジメチルフタレート、ジエチルフタレート、ジ-n-ブチルフタレート)等]、およびこれらの混合物が挙げられる。
 これらのうち、(A)の製造時の取り扱い、および重合時の温度制御の観点から、好ましいのは脂肪族および脂環含有炭化水素、さらに好ましいのはn-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、シクロヘキサンおよびメチルシクロヘキサンである。
 本発明における分散剤(c)としては、分散粒子の粒子径、および分散粒子を脱水、乾燥した後の乾燥粒子の後述の安息角を制御することを目的とする、種々の油溶性物質が挙げられる。
 (c)のHLB(Hydrophile-Lipophile Balance)は、逆相懸濁粒子の分散安定性および粒径[すなわち後述の(A)の乾燥粒子の安息角]制御の観点から好ましくは1~8、さらに好ましくは2~7、とくに好ましくは3~5である。
 ここにおいてHLBとは、親水性と親油性とのつり合いを表し、下記の式から求められる[「界面活性剤の合成と其応用」、501頁、1957年槇書店刊;「新・界面活性剤入門」、197-198頁、1992年三洋化成工業(株)刊、等参照]。
  HLB=10×(無機性/有機性)
 上記式中、( )内は有機化合物の無機性と有機性の比率を表し、該比率は上記文献に記載されている値から計算することができる。
 (c)には、GMwが5,000未満(さらに好ましくは100~3,000、とくに好ましくは100~1,000)の低分子分散剤(c1)、およびGMwが5,000以上(さらに好ましくは7,000~1,000,000、とくに好ましくは10,000~100,000)の高分子分散剤(c2)が含まれる。該(c2)は60~100℃のガラス転移温度(Tg)を有する。
 (c1)には、多価(2~8またはそれ以上)アルコールの脂肪酸(C10~30)エステル〔ショ糖脂肪酸エステル(C22~120、例えばショ糖ジステアレート、ショ糖トリステアレート)、ソルビタン脂肪酸エステル(C16~120、例えばソルビタンモノステアレート、ソルビタンモノオレート)、(ポリ)グリセリン脂肪酸エステル(C12~120、例えばグリセリンモノステアレート)、PEG脂肪酸エステル[GMw100~4,500、例えばPEG(GMw100~4,500)のモノステアレート]等〕、アルキル(C1~30)アリルエーテル等が含まれる。
 上記(c1)のうち、(A)の製造時における装置への重合粒子付着防止および乾燥後の高分子凝集剤の乾燥粒子の安息角の観点から好ましいのは、多価アルコールの脂肪酸エステル、さらに好ましいのはショ糖脂肪酸エステル、ソルビタン脂肪酸エステルである。
 (c2)には、アルケンとα,β-不飽和多価カルボン酸(無水物)との共重合体またはその誘導体[例えば1-オレフィン(C11~100)/(無水)マレイン酸共重合体、およびそのアミン反応物]、長鎖アルキル基(C12~50)含有(メタ)アクリレート(共)重合体、変性(アミノ、カルボキシ、エポキシ、ヒドロキシ、メルカプト、脂肪酸エステルまたは脂肪酸アミド変性等)オルガノポリシロキサン、セルロースエーテル(例えばエチルセルロース、エチルヒドロキシエチルセルロース)、(無水マレイン酸変性)エチレン・酢酸ビニル共重合体等が含まれる。
 上記(無水マレイン酸変性)エチレン・酢酸ビニル共重合体には、エチレンおよび/または無水マレイン酸変性エチレンと酢酸ビニルの共重合体、およびエチレン・酢酸ビニル共重合物を無水マレイン酸で変性したもの等が含まれる。
 該エチレン・酢酸ビニル共重合体を無水マレイン酸で変性したものとしては、無水マレイン酸をエチレン・酢酸ビニル共重合物に付加したものが挙げられ、無水マレイン酸とエチレン・酢酸ビニル共重合物の重量比は、逆相懸濁粒子の分散安定性および反応物の分子量調整の観点から好ましくは2/98~30/70、さらに好ましくは5/95~20/80である。
 (無水マレイン酸変性)エチレンと酢酸ビニルとの共重合体における共重合比(重量比)は、疎水性分散媒(b)への溶解性および逆相懸濁粒子の分散安定性の観点から好ましくは50/50~95/5、さらに好ましくは70/30~90/10である。
 上記(c2)のうち、(A)の製造時における装置への重合粒子付着防止および乾燥後の高分子凝集剤の乾燥粒子の安息角の観点から好ましいのは、アルケンとα,β-不飽和多価カルボン酸(無水物)との共重合体またはその誘導体、変性オルガノポリシロキサン、(無水マレイン酸変性)エチレン・酢酸ビニル共重合体である。
 分散剤(c)は、水溶性(共)重合体(A)の粉体流動性および重合時の疎水性分散媒(b)への溶解性の観点から好ましくは60~100℃、さらに好ましくは65~95℃、特に好ましくは67~92℃、最も好ましく70~90℃のTgを有する分散剤[例えば前記(c2)]を含有することが好ましい。該TgはJIS K7121-1987プラスチックの転移温度測定方法に準じ、示差走査熱量測定装置(DSC)を用いて測定されるものである。
 また、(c)の融点は、水溶性(共)重合体(A)の粉体流動性および重合時の疎水性分散媒(b)への溶解性の観点から好ましくは25~100℃、さらに好ましくは30~80℃、とくに好ましくは40~70℃である。該融点はJIS K0064-1992,3.2融点試験方法に準じ、融点測定装置を用いて測定されるものである。
 分散剤(c)の使用に当たっては、逆相懸濁粒子の分散安定性および乾燥粒子の安息角、粒度分布の観点から(c1)と(c2)を併用することが好ましく、併用する際の重量比[(c1)/(c2)]は、同様の観点から好ましくは70/30~1/99、さらに好ましくは50/50~5/95である。
 (c1)と(c2)を併用する場合、乾燥粒子の粒度分布の観点から好ましい組合せは、多価アルコールの脂肪酸エステルと無水マレイン酸変性エチレン・酢酸ビニル共重合体の組合せ、さらに好ましいのはPEG脂肪酸エステルと無水マレイン酸変性エチレン・酢酸ビニル共重合体の組合せである。
 (c)の使用量は、疎水性分散媒(b)の重量に基づいて、逆相懸濁粒子の安定性、重合時の装置への重合粒子付着防止、高分子凝集剤の乾燥粒子の安息角および粒子径制御の観点から好ましくは0.01~20%、さらに好ましくは0.03~10%、とくに好ましくは0.05~5%である。
 重合開始剤(d)としては、種々のもの、例えばアゾ化合物〔水溶性のもの[アゾビスアミジノプロパン(塩)、アゾビスシアノバレリン酸(塩)等]および油溶性のもの[アゾビスシアノバレロニトリル、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等]〕および過酸化物〔水溶性のもの[過酢酸、t-ブチルパーオキサイド、過酸化水素、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等]および油溶性のもの[ベンゾイルパーオキシド、クメンヒドロキシパーオキシド等]〕が挙げられる。
 上記アゾ化合物における塩としては、無機酸(塩酸、硫酸、リン酸、硝酸等)塩およびアルカリ金属(リチウム、ナトリウム、カリウム等)塩、アンモニウム塩等が挙げられる。
 上記過酸化物は還元剤と組み合わせてレドックス開始剤として用いてもよく、還元剤としては重亜硫酸塩(重亜硫酸ナトリウム、重亜硫酸カリウム、重亜硫酸アンモニウム等)、還元性金属塩[硫酸鉄(II)等]、遷移金属塩のアミン錯体[塩化コバルト(III)のペンタメチレンヘキサミン錯体、塩化銅(II)のジエチレントリアミン錯体等]、有機性還元剤〔アスコルビン酸、3級アミン[ジメチルアミノ安息香酸(塩)、ジメチルアミノエタノール等]等〕が挙げられる。
 また、アゾ化合物、過酸化物およびレドックス開始剤はそれぞれ単独で用いてもよいし、2種以上を併用してもいずれでもよい。
 (d)は、通常上記モノマー水溶液(以下分散相ということがある)に存在させるが、疎水性分散媒にも存在させてもよい。
 (d)の使用量は、最適な分子量を得るとの観点から、(A)を構成するモノマーの全重量に基づいて、好ましくは0.001~1%、さらに好ましくは0.005~0.5%、とくに好ましくは0.01~0.1%、最も好ましくは0.02~0.05%である。
 また、本発明における逆相懸濁重合においては必要により連鎖移動剤(f)を使用してもよい。(f)としては、例えば、分子内に1個また2個以上のOH基を有する化合物[1価アルコール(C1~60、例えばメタノール、エタノール、n-およびi-プロパノール)、多価(2~3またはそれ以上)アルコール(C2~60、例えばEG、PG)、高分子ポリオール(GMn200~10,000、例えばPEG、オキシエチレン/オキシプロピレンのブロックおよび/またはランダム共重合体]、分子内に1個または2個以上のアミノ基を有する化合物[C0~60、例えばアンモニア、メチルアミン、ジメチルアミン、トリエチルアミン、n-およびi-プロパノールアミン]、次亜リン酸塩(次亜リン酸ナトリウム等)、分子内に1個または2個以上のチオール基を有する化合物(後述)等が挙げられる。
 これらのうち、分子量制御の観点から好ましいのは分子内に1個または2個以上のチオール基を有する化合物である。
 分子内に1個または2個以上のチオール基を有する化合物としては、以下のもの、これらの塩[アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン(C1~20、例えばメチルアミン、エタノールアミン)塩、無機酸(塩酸、硫酸、リン酸、硝酸等)塩等]、およびこれらの混合物が挙げられる。
(1)1価チオール
 脂肪族チオール(C1~20、例えばメタンチオール、エタンチオール、プロパンチオール、n-オクタンチオール、n-ドデカンチオール、ヘキサデカンチオール、n-オクタデカンチオール、2-メルカプトエタノール、メルカプト酢酸、3-メルカプトプロピオン酸、1-チオグリセロール、チオグリコール酸モノエタノールアミン、チオマレイン酸、メルカプトコハク酸、システイン、システアミン)、脂環含有チオール(C5~20、例えばシクロペンタンチオール、シクロヘキサンチオール)、芳香環含有チオール(C6~12、例えばベンゼンチオール、チオサリチル酸、チオクレゾール、チオキシレノール、チオナフトール)および芳香脂肪族チオール(C7~20、例えばα-トルエンチオール)が挙げられる。
(2)多価チオール
 ジチオール[脂肪族ジチオール(C2~40、例えばエタンジチオール、ジエチレンジチオール、トリエチレンジチオール、n-、i-およびsec-プロパンジチオール、1,3-および1,4-ブタンジチオール、1,6-ヘキサンジチオール、ネオペンタンジチオール)、脂環式ジチオール(C5~20、例えばシクロペンタンジチオール、シクロヘキサンジチオール)、芳香族ジチオール(C6~16、例えばベンゼンジチオール、ビフェニルジチオール)および芳香脂肪族ジチオール(C8~20、例えばキシレンジチオール)が挙げられる。
 (f)の使用量は、本発明の高分子凝集剤の最適な分子量を得るとの観点から、(a)、(x)および(y)の合計重量に基づいて、好ましい下限は0.0001%、さらに好ましくは0.001%、とくに好ましくは0.01%、最も好ましくは0.05%、好ましい上限は10%、さらに好ましくは5%、とくに好ましくは3%、最も好ましくは1%である。
 本発明におけるモノマー水溶液(分散相)中のモノマーの含有量(以下、モノマー濃度ということがある。)は、モノマー水溶液の重量に基づいて、生産性および分散安定性、水溶性(共)重合体(A)の水不溶解分低減の観点から好ましくは40~80%、さらに好ましくは45~75%、とくに好ましくは48~72%、最も好ましくは50~70%である。
 本発明におけるモノマー水溶液のpHは、高分子量化および(A)の加水分解防止の観点から好ましくは2~8、さらに好ましくは2.5~7、とくに好ましくは3~6.5である。
 pH調整のために用いられるpH調整剤としては、モノマー水溶液がアルカリ性の場合は無機酸(硫酸、塩酸、リン酸、硝酸等)、無機固体酸性物質(酸性リン酸ソーダ、酸性ぼう硝、塩化アンモン、硫安、重硫安、スルファミン酸等)および有機酸(C2~20、例えばシュウ酸、こはく酸、リンゴ酸)が挙げられ、モノマー水溶液が酸性の場合は無機アルカリ性物質(水酸化ナトリウム、水酸化カリウム、アンモニア等)および有機アルカリ性物質(グアニジン等)が挙げられる。
 なお、ここにおけるpHは、モノマー水溶液の原液をpHメーター[例えば、商品名「LABpHメーターM-12」、(株)堀場製作所製]を用いて室温(20℃)で測定される値である。
 本発明における逆相懸濁重合法としては、例えば次の方法が挙げられる。すなわち、疎水性分散媒(b)および分散剤(c)を重合槽に仕込んで混合液とし、必要に応じて加熱しながら所定の重合温度に調整した後、槽内を不活性ガス(例えば窒素)で十分置換する。一方、水溶性不飽和モノマー(a)、重合開始剤(d)、および必要により水不溶性不飽和モノマー(x)および/または架橋性モノマー(y)を含有するモノマー水溶液を調製し、不活性ガスで十分置換した後、撹拌下で重合槽内に投入し、懸濁させながら重合させる。
 モノマー水溶液の投入は滴下により行う。滴下方式としては、以下が挙げられる。
(1)(a)および(d)の均一水溶液を滴下する。
(2)(a)の水溶液と(d)もしくはその水溶液を滴下直前に連続的に混合しながら滴下する。
(3)(a)の水溶液と(d)の水溶液を、別々に同時滴下する。
 これらのうち水不溶解分低減、後述の(A)の分子量分布低減の観点から好ましいのは(2)である。
 また、該モノマー水溶液と(d)の混合に際し、モノマー水溶液の温度は、通常25℃以下、重合速度および水不溶解分低減の観点から好ましくは10~20℃である。
 モノマー水溶液を不活性ガスで置換する方法としては、モノマー水溶液等に不活性ガスをバブリング供給する方法、滴下ライン中でスタティックミキサー等によりモノマー水溶液と不活性ガスとをブレンドする方法等が挙げられる。これらのうち水不溶解分低減の観点からスタティックミキサー等によるブレンド方法が好ましい。
 モノマー水溶液を滴下する際の液滴の体積平均径は、(A)の溶解特性および水不溶解分低減、高分子凝集剤中の疎水性溶媒(b)の含有量低減の観点から好ましくは0.1~3mm、さらに好ましくは0.15~2.5mm、特に好ましくは0.2~2mm、最も好ましくは0.5~1.5mmである。該体積平均径を測定する方法には、ハイスピードカメラ[例えば、商品名「動き解析マイクロスコープVW-6000」、(株)キーエンス製]で測定した画像を画像解析ソフト[例えば、商品名「VK-H1A7」、(株)キーエンス製]により画像解析する方法が含まれ、後述の実施例ではこの方法に従った。
 逆相懸濁重合の重合温度は、重合速度および逆相懸濁粒子の安定性、(A)の高分子量化、水不溶解分低減の観点から好ましくは70℃以下、より好ましくは10~70℃、さらに好ましくは20~60℃、とくに好ましくは30~55℃、最も好ましくは40~50℃である。
 また、重合中は所定重合温度を一定(例えば、所定重合温度±5℃)に保つように、適宜加熱、冷却したり、モノマー水溶液の滴下スピードを調節することが好ましい。
 重合時の圧力[kPa(絶対圧力)、以下数値のみを示す。]は、高分子凝集剤粒子のフラクタル次数制御および重合時の装置への重合粒子付着防止の観点から減圧条件が好ましく、該圧力は好ましくは10以上101.3未満、さらに好ましくは30~100、とくに好ましくは50~90である。重合時の圧力は低い(すなわち減圧度が高い)ほど高分子凝集剤粒子のフラクタル次数を小さくすることができる。また、減圧条件でしかも(b)の沸点で重合させる、減圧沸点重合も分子量分布を狭くする観点から好ましい。
 重合反応の終了は、重合による発熱がなくなった時点で確認できるが、重合時間は、通常発熱により重合開始を確認した時点から通常1~24時間、重合の完結、残存モノマー低減および工業上の観点から好ましくは2~12時間、さらに好ましくは3~10時間である。
 上記のモノマー濃度、重合温度、重合時間は、モノマー組成、開始剤種類等によって適宜調整することができる。
 また、本発明における水溶性(共)重合体(A)は、さらに変性反応させてもよい。ポリマー変性方法としては、例えば、水溶性不飽和モノマー(a)として加水分解性官能基を分子内に有するアクリルアミドを使用した場合、重合時または重合後に苛性アルカリ(水酸化ナトリウム、水酸化カリウム等)または炭酸アルカリ(炭酸ナトリウム、炭酸カリウム等)を添加して、(a)のアミド基を部分的に加水分解してカルボキシル基を導入する方法(特開昭56-16505号公報等);ホルムアルデヒド、ジアルキルアミン(C1~12)およびハロゲン(塩素、臭素、ヨウ素等)化アルキル(C1~12)(メチルクロライド、エチルクロライド等)を加え、マンニッヒ反応によって部分的にカチオン性基を導入する方法;アクリロニトリル等のニトリル基と、ビニルホルムアミド等の加水分解により得られるアミノ基との閉環反応により分子内にアミジン環を形成させる方法(特開平5-192513号公報等);および重合後に前記の架橋性モノマー(y)を添加して架橋反応させる方法(特許3305688号公報等)等が挙げられる。
 水溶性(共)重合体(A)の固有粘度[η](1N-NaNO3水溶液中30℃での測定値、単位はdl/g。以下同じ。)は通常1~40、凝集性能および凝集速度の観点から好ましくは2~38、さらに好ましくは4~35、最も好ましくは5~30である。
 本発明における(A)の重量平均分子量(Mw)は、固有粘度[η]から換算して求められるもので、ポリアクリルアミド系高分子の粘度式:[η]=3.73×10-4×(Mw)×0.66[ラジカル重合ハンドブック、(株)エヌ・ティー・エス刊、558頁(1999)]から(Mw)を求めることができる。該粘度式によれば(A)が非イオン性のポリアクリルアミドだけでなく、カチオン性、アニオン性、両性高分子についても(Mw)を求めることができる。
 (A)の数平均分子量(Mn)は、浸透圧法により求められる。測定法は以下の条件にて測定される。
 浸透圧測定法にはメンブラン式浸透圧測定法が含まれる。該メンブラン式浸透圧測定法では次のようにしてMnが求められる。すなわち、理想溶液の場合、ファントホッフの式:πV=wRT/M(π:浸透圧、V:体積、w:質量、R:気体定数、T:絶対温度、M:数平均分子量)より、 C(体積モル濃度)=w/(MV)と置き換えると、π=CmRTとなる。ここで、本発明における(A)のような高分子量のものを測定する場合は補正する必要があり、補正式π=CRT+αC より、π/C=RT+αCとなる。(α:濃度に依存しない定数)
 ここで、濃度Cを容量当たりのg数で表すとき、C=C/Mを代入すればよいので、上式はπ/C=RT/M+(α/M)Cとなる。
 濃度を変えて浸透圧を測定することにより、グラフにCとπ/CをそれぞれX軸、Y軸としてプロットした場合にその延長線がY軸(π/C)を横切る点を求めれば、その高さがRT/Mに相当するため、そこから無限希釈溶液における(A)のM、すなわち本発明におけるMnを求めることができる。通常測定温度は37℃、気体定数Rは8.31Pa・m3/mol・Kを使用する。
 本発明における(A)の分子量分布は、(Mw/Mn)比で表され、凝集性能の観点から好ましくは1~30、さらに好ましくは2~28、とくに好ましくは5~25、最も好ましくは10~20である。
 また、該(Mw/Mn)比については、前記固有粘度[η]が1~40、または前記の好ましい[η]の範囲で、かつ該(Mw/Mn)比が上記範囲であることが凝集性能の観点から好ましい。
 (A)の(Mw/Mn)は、前記疎水性溶媒(b)中にモノマー水溶液を滴下する直前に10~20℃の該モノマー水溶液と重合開始剤(d)を連続的に混合しながら滴下すること、狭い温度幅で重合温度、乾燥温度をコントロールすること、重合時のモノマー濃度を適正な濃度で一定に保つこと等により低減することができ上記範囲の(Mw/Mn)にすることができる。
 水溶性(共)重合体(A)は、製造直後は疎水性溶媒(b)中の含水ゲル粒子の状態で得られるが、さらに(1)固液分離後、固形分を乾燥する方法か、もしくは(2)減圧条件で疎水性分散媒(b)と水を共沸脱水させてスラリー状とし、固液分離後に固形分を乾燥する方法によって固形粒子状の本発明の高分子凝集剤を得ることができる。
 乾燥方法としては、熱風乾燥、赤外線乾燥、間接加熱乾燥(真空乾燥、撹拌型の乾燥機を用いる乾燥、ドラムドライヤーによる乾燥)等が挙げられる。
 上記方法(1)、(2)のうち、局部加熱による架橋防止の観点から(2)の方法が好ましく、乾燥方法としては同様の観点から真空乾燥が好ましい。
 乾燥温度(℃)は、通常20~200、乾燥速度および架橋防止の観点から好ましくは30~150、さらに好ましくは40~120である。
[高分子凝集剤]      
 本発明の高分子凝集剤は、前記水溶性(共)重合体(A)の乾燥粒子を含有してなり、該粒子が単粒子(一次粒子)を複合させた二次粒子を含有してなる。
 該二次粒子には次の(1)~(3)およびこれらの混合物が含まれる。ここにおいて複合とは、複数個の一次粒子同士が合着すること、または該合着したもの同士がさらに合着することを意味するものとする。
(1)同程度の大きさの複数の一次粒子同士が合着して、数珠状またはブドウの房状に連なったもの。
(2)比較的大きな一次粒子の表面に複数の比較的小さな一次粒子が合着して、該表面の少なくとも一部が被覆されたもの。
(3)上記(1)同士が、さらに相互に合着したもの。
(4)上記(2)同士が、さらに相互に合着したもの。
(5)上記(1)および(2)間でさらに相互に合着したもの。
 該一次粒子を複合させて二次粒子を形成する方法としては、以下の[1]~[3]、およびこれらの併用が挙げられる。これらのうち、生産性の観点から好ましいのは[1]の方法である。
[1]前記重合反応終了後、反応系の温度を50~100℃にまで上げて分散剤(c)の融点以上とすることで、一次粒子同士を合着させて二次粒子を形成する方法。
[2]重合反応終了後の(b)と含水ゲル粒子の固液分離工程において、含水ゲル粒子に水を噴霧して一次粒子同士を合着させて二次粒子を形成する方法。
[3]固液分離工程後の乾燥工程において、水を噴霧することにより、一次粒子同士を合着させて二次粒子を形成する方法。 
 本発明の高分子凝集剤における(A)の乾燥粒子中の二次粒子の含有量は、溶解特性および適度な粉体流動性の観点から好ましくは1~100重量%、さらに好ましくは5~80重量%である。前記一次粒子を複合させて二次粒子を形成する[1]~[3]の方法、およびこれらを併用することで乾燥粒子中の該二次粒子の含有量を上記範囲とすることができる。該二次粒子の含有量は、後述の方法で測定することができる。
 本発明における一次粒子の体積平均粒子径(μm)は、適度な粉体流動性および狭い分子量分布の観点から好ましくは10~1,000、さらに好ましくは50~500である。
 二次粒子の体積平均粒子径(μm)は、溶解特性および適度な粉体流動性の観点から好ましくは150~3,000、さらに好ましくは200~2,500、とくに好ましくは250~2,000である。ここにおいて、体積平均粒子径は、例えば[マイクロトラックMT3000II粒度分析計」、日機装(株)製]を用いて測定することができる。
 本発明の高分子凝集剤(以下において高分子凝集剤粒子ということがある)の安息角は、前記自動計量装置での安定的な定量供給に適した適度な粉体流動性の観点から好ましくは25~45度、さらに好ましくは30~43度である。
 本発明の高分子凝集剤は、前記のとおり、特定のHLBを有する分散剤(c)を用いて逆相懸濁重合を行うことにより安息角を上記範囲とすることができる。
 ここにおいて、安息角とは、円筒回転法で求められる値で、粉粒体を入れた円筒容器を、ゆっくり回転させ、粉粒体が安定な傾斜面を形成するときの水平面に対する上限の傾斜角度で表され、三輪式安息角測定機[筒井理化学器械(株)製]を用いて測定することができる。
 本発明の高分子凝集剤粒子のフラクタル次数は、1.2~1.9、好ましくは1.3~1.85、さらに好ましくは1.4~1.8、とくに好ましくは1.5~1.7である。フラクタル次数が1.2未満では粉体流動性が悪くなり、1.9を超えると水への溶解性が悪くなる。
 本発明の高分子凝集剤粒子のフラクタル次数を上記範囲とする観点からは、二次粒子の含有量を増やすことが好ましい。
 ここにおいてフラクタル次数とは粒子の形状、すなわち粒子表面の凹凸を表わす指標であり、フラクタル次数が小さいことは、一次粒子もしくは一次粒子を複合させた二次粒子の表面の凹凸が多く表面積が大きいことを意味する。粒子表面に凹凸が全くない真球状、楕円球状等であればフラクタル次数は2となる。
 なお、上記のフラクタル次数は特開2001-2935号公報に記載されている以下の方法で測定できる。
<フラクタル次数の測定方法>
 走査型電子顕微鏡[例えば、日本電子データム(株)製「JSM-7000F」]を用いて、25、30、50および100倍の各倍率で無作為に取り出した1個の高分子凝集剤の粒子の写真を撮影する。これらの各写真について画像解析ソフト「WinROOF」[商品名、三谷商事(株)製]を用いて、粒子輪郭長(L)および粒子投影面積(S)を求める。次に各写真の(L)と(S)の常用対数を求める。(L)の常用対数をX軸、(S)の常用対数をY軸とするX-Y座標図に得られた値をプロットし、最小二乗法で直線を引く。無作為に取出したさらに4個の高分子凝集剤の各粒子について同様に上記の直線を引き、それらの傾きの5個の単純平均値をフラクタル次数とする。
 本発明の高分子凝集剤粒子中に残存する疎水性分散媒(b)の含有量(重量%)は、通常5%以下、高分子凝集剤の溶解性の観点から好ましくは4%以下、さらに好ましくは2%以下、とくに好ましくは1%以下である。
 高分子凝集剤粒子中に残存する(b)の含有量は、前記(A)の製造時、モノマー水溶液を(b)中に滴下する際の液滴径(mm)を前記の範囲とすること、分散剤(c)のHLBを前記の範囲にすること、等により上記範囲とすることができる。該(b)の含有量は、後述の方法により測定することができる。
 本発明の高分子凝集剤粒子中に残存する分散剤(c)の含有量(重量%)は、高分子凝集剤粒子の粉体流動性および水への溶解性の観点から好ましくは0.01~1%、さらに好ましくは0.02~0.5%、とくに好ましくは0.03~0.2%、最も好ましくは0.05~0.1%である。
 高分子凝集剤粒子中に残存する(c)の含有量は、(c)のTgおよび融点を前記範囲とすること、(c)の使用量を前記範囲とすること、等により上記範囲とすることができる。
 本発明の高分子凝集剤中の水不溶解分(重量%)は、通常5%以下、凝集性能の観点から好ましくは3%以下、さらに好ましくは2%以下、とくに好ましくは1%以下である。該水不溶解分は、後述の方法により測定することができる。
 高分子凝集剤の適用対象のうち、下水汚泥においては、懸濁粒子の大きさが比較的大きく、また水中における懸濁粒子表面がマイナス荷電を有していることから、脱水用高分子凝集剤としてはカチオン性または両性高分子凝集剤、およびこれらの混合物が好ましい。
 廃水においては、溶解性有機物などを処理するために無機凝集剤を添加することが多く、その場合、懸濁粒子表面は無機凝集剤で覆われているためプラス荷電を有していることから、凝集沈殿処理用としては、アニオン性またはノニオン性高分子凝集剤、およびこれらの混合物が好ましい。
 石油の3次回収用の高分子凝集剤としては、比較的大きな分子量を有するものが使用され、アニオン性またはノニオン性、およびこれらの混合物が好ましい。
 また、製紙工程での濾水歩留向上用または紙力増強用としては、カチオン性または両性高分子凝集剤、およびこれらの混合物が好ましい。
 ここで、カチオン性高分子凝集剤とは、分子内にカチオン性基を有する高分子凝集剤、すなわち水に溶解した際にカチオン性を示す高分子凝集剤であり、また両性高分子凝集剤とは、分子内にカチオン性基およびアニオン性基を有する高分子凝集剤、すなわち水に溶解した際にカチオン性およびアニオン性を示す高分子凝集剤である。
 これらの高分子凝集剤の水中におけるカチオン性またはアニオン性については、コロイド当量値(meq/g)で評価することができる。すなわち、カチオン性凝集剤中のカチオン性基当量値はカチオンコロイド当量値として求めることができ、両性凝集剤中のカチオン性基当量値およびアニオン性基当量値は、それぞれカチオンコロイド当量値、アニオンコロイド当量値として求めることができる。
 本発明の高分子凝集剤がカチオン性高分子凝集剤の場合、該凝集剤中のカチオンコロイド当量値(meq/g)は、凝集性能の観点から好ましくは0.1~7、より好ましくは0.5~6、さらに好ましくは1~5.5、とくに好ましくは1.5~5.2、最も好ましくは2~5である。
 また、本発明の高分子凝集剤が両性高分子凝集剤の場合、該凝集剤中のカチオンコロイド当量値(meq/g)は、凝集性能の観点から好ましくは0.1~7、より好ましくは0.5~6、さらに好ましくは1~5.5、とくに好ましくは1.5~5.2、最も好ましくは2~5;アニオンコロイド当量値(meq/g)は、凝集性能の観点から好ましくは-13~-0.05、より好ましくは-10~-0.1、さらに好ましくは-8~-0.3、とくに好ましくは-5~-0.5、最も好ましくは-3~-1である。
 コロイド当量値は以下に示すコロイド滴定法により求めることができる。なお、以降の測定は室温(約20℃)下で行うものとする。
(1)測定試料(高分子凝集剤の50ppm水溶液)の調製
 試料0.2g(固形分含量換算したもの)を精秤し、200mlの三角フラスコにとり、全体の重量(試料とイオン交換水の合計重量)が100gとなるようにイオン交換水を加えた後、マグネチックスターラー(長さ40mm、直径5mmの円柱状マグネット、以下同じ。回転数1,000rpm)で、3時間撹拌して完全に溶解させ、0.2重量%の高分子凝集剤溶液を調製する。500mlのビーカーに該調製溶液10mlをとり、全体の重量(溶液10mlとイオン交換水の合計重量)が400gとなるようにイオン交換水を加え、再度マグネチックスターラー(1,000~1,200rpm)で、30分間撹拌して、均一な測定試料とする。
 なお、高分子凝集剤の固形分含量は、試料約1.0gをシャーレ(直径100mm、深さ10mm)に秤量(W1)して、循風乾燥機中、105±5℃で90分間乾燥させた後の残存重量(W2)に基づいて、次式から算出した値である。
 固形分含量(重量%)=(W2)×100/(W1)
(2)カチオンコロイド当量値の測定
 (1)で得られた測定試料100gを200mlのコニカルビーカーにとり、マグネチックスターラー(500rpm)で撹拌しながら徐々に0.5重量%硫酸水溶液を加え、pH3に調整する。次にトルイジンブルー指示薬(TB指示薬)を2~3滴加え、N/400ポリビニル硫酸カリウム(N/400PVSK)試薬で滴定する。滴定速度は2ml/分とし、測定試料が青から赤紫色に変色し、赤紫色が30秒間保持される時点を終点とする。
(3)アニオンコロイド当量値の測定
 測定試料100gを200mlのコニカルビーカーにとり、マグネチックスターラー(500rpm)で撹拌しながら、N/10水酸化ナトリウム水溶液0.5mlを加え、さらにN/200メチルグリコールキトサン水溶液5mlを加えた後、5分間撹拌する(その時のpH約10.5)。TB指示薬を2~3滴加え、上記(2)と同様にして滴定する。
(4)空試験
 測定試料の代わりにイオン交換水100gを用いる以外は(2)および(3)と同様の操作を行う。
(5)計算方法
 カチオンまたはアニオンコロイド当量値(meq/g)=(1/2)×(測定試料の滴定量-空試験の滴定量)×[(N/400PVSK)の力価]
 本発明の高分子凝集剤は必要に応じ、本発明の効果を阻害しない範囲で、消泡剤(B1)、キレート化剤(B2)、pH調整剤(B3)、界面活性剤(B4)、ブロッキング防止剤(B5)、酸化防止剤(B6)、紫外線吸収剤(B7)および防腐剤(B8)からなる群から選ばれる添加剤(B)を併用することができる。
 消泡剤(B1)としては、シリコーン化合物[GMn100~100,000、例えばジメチルポリシロキサン]、鉱物油(スピンドル油、ケロシン等)、金属石ケン(C12~22、例えばステアリン酸カルシウム)等;
 キレート化剤(B2)としては、アミノカルボン酸(C6~24、例えばエチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、ヒドロキシエチルエチレンジアミントリ酢酸、ニトリロトリ酢酸、トリエチレンテトラミンヘキサ酢酸)、多価カルボン酸[C4以上かつGMn10,000以下、例えばマレイン酸、ポリアクリル酸(GMn1,000~10,000)およびイソアミレン/マレイン酸共重合体(GMn1,000~10,000)]、ヒドロキシカルボン酸(C3~10、例えばクエン酸、グルコン酸、乳酸、リンゴ酸)、縮合リン酸(トリポリリン酸、トリメタリン酸等)、およびこれらの塩[金属(アルカリ金属、アルカリ土類金属等)塩、アンモニウム塩、アルキルアミン(C1~20、例えばメチルアミン、エチルアミン、オクチルアミン)塩およびアルカノールアミン(C2~12、例えばモノ-、ジ-およびトリエタノールアミン)塩]等;
 pH調整剤(B3)としては、苛性アルカリ(苛性ソーダ、苛性カリ等)、アミン(C1~20、例えばメチルアミン、エチルアミン、モノ-、ジ-およびトリエタノールアミン)、無機酸(塩)〔無機酸(塩酸、硫酸、硝酸、リン酸、スルファミン酸、炭酸等)、およびこれらの金属(上記に同じ)塩(炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、硫酸水素ナトリウム、リン酸1ナトリウム等)およびアンモニウム塩(炭酸アンモン、硫酸アンモン等)等〕、有機酸(塩)〔有機酸[カルボン酸(C2~15、例えば酢酸、クエン酸)、スルホン酸(C1~15、例えばメタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸)およびフェノール]、およびこれらの金属(上記に同じ)塩(酢酸ナトリウム、乳酸ナトリウム等)およびアンモニウム塩(酢酸アンモニウム、乳酸アンモニウム等)等〕等;
 界面活性剤(B4)としては、米国特許第4331447号明細書記載の界面活性剤、例えばポリオキシエチレンノニルフェニルエーテルおよびジオクチルスルホコハク酸ソーダ;ブロッキング防止剤(B5)としては、ポリエーテル変性シリコーンオイル(GMn100~3,000)、例えばポリオキシエチレン変性シリコーンおよびポリオキシエチレン/ポリオキシプロピレン変性シリコーン];
 酸化防止剤(B6)としては、フェノール化合物[ハイドロキノン、メトキシハイドロキノン、カテコール、2,6-ジ-t-ブチル-p-クレゾール(BHT)および2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等]、含硫化合物〔チオ尿素、テトラメチルチウラムジサルファイド、ジメチルジチオカルバミン酸およびその塩[例えば金属(上記に同じ)塩およびアンモニウム塩等]、亜硫酸ナトリウム、チオ硫酸ナトリウム、2-メルカプトベンゾチアゾールおよびその塩(上記に同じ)、ジラウリル3,3’-チオジプロピオネート(DLTDP)およびジステアリル3,3’-チオジプロピオネート(DSTDP)等〕、含リン化合物[トリフェニルホスファイト、トリエチルホスファイト、亜リン酸ナトリウム、次亜リン酸ナトリウム、トリフェニルホスファイト(TPP)およびトリイソデシルホスファイト(TDP)等]および含窒素化合物[アミン(オクチル化ジフェニルアミン、N-n-ブチル-p-アミノフェノールおよびN,N-ジイソプロピル-p-フェニレンジアミン等)、尿素、グアニジンおよびグアニジンの無機酸(上記に同じ)塩]等;
 紫外線吸収剤(B7)としては、ベンゾフェノン化合物(2-ヒドロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン等)、サリチレート化合物(フェニルサリチレート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等)、ベンゾトリアゾール化合物[(2’-ヒドロキシフェニル)ベンゾトリアゾール、(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール等]およびアクレート[エチル-2-シアノ-3,3-ジフェニルアクリレート、メチル-2-カルボメトキシ-3-(パラメトキシベンジル)アクリレート等]等;
 防腐剤(B8)としては、安息香酸、パラオキシ安息香酸エステルおよびソルビン酸等が挙げられる。
 上記(B)は、重合前のモノマー水溶液中に予め添加しても、製造後のポリマー中に添加してもよい。(B)全体の使用量は、モノマーまたはポリマー重量に基づいて、通常30%以下、凝集性能の観点から好ましくは0~10%である。
 (B1)~(B8)の各添加剤の使用量は、上記と同様の重量に基づいて、(B1)は通常5%以下、好ましくは1~3%、(B2)は通常20%以下、好ましくは2~10%、(B3)は通常10%以下、好ましくは1~5%、(B4)および(B5)はそれぞれ通常5%以下、好ましくは1~3%、(B6)、(B7)および(B8)はそれぞれ通常5%以下、好ましくは0.1~2%である。
 本発明の高分子凝集剤を下水汚泥等に添加する方法としては、例えば特許第1311340号公報または特許第2038341号公報等に記載の方法が挙げられる。
 本発明の高分子凝集剤の使用量は、下水汚泥等の種類、懸濁粒子の含有量、高分子凝集剤の分子量等により異なるが、下水汚泥等中の蒸発残留物重量(以下、TSと略記)に基づいて、通常0.01~10%、凝集性能および工業上の観点から好ましくは0.1~5%、さらに好ましくは0.5~3%、とくに好ましくは1~2%である。
 本発明の高分子凝集剤の使用方法としては、十分な凝集性能の観点から水溶液にした後に下水汚泥等に添加するのが好ましいが、高分子凝集剤を固体の状態で直接下水汚泥等に添加することもできる。
 高分子凝集剤を水溶液として用いる場合の濃度は、取り扱い上および溶解速度の観点から好ましくは0.05~1重量%である。
 高分子凝集剤の溶解方法としては、例えば予め秤り取った水をジャーテスターなどの撹拌装置を用いて撹拌しながら所定量の高分子凝集剤を徐々に加え、数時間(約2~4時間程度)かけて溶解させる方法等が採用できる。粉末状の高分子凝集剤を水に溶解させる際に、所定量の高分子凝集剤を一気に加える方法はままこを生じ、完全に水に溶解させることが困難となることから好ましくない。
 本発明の高分子凝集剤を石油の3次回収用として使用する際には、通常水溶液として使用される。該ポリマー水溶液の濃度(重量%)は、増粘効果および送液可能な粘度の観点から好ましくは0.001~3%、さらに好ましくは0.005~1%、とくに好ましくは0.01~0.5%である。
 本発明の高分子凝集剤を下水汚泥等に適用する際、下水汚泥等が有機性の汚泥や嫌気性菌処理汚泥である場合は、汚泥粒子の荷電中和の観点から無機および/または有機凝結剤を併用するのが好ましい。
 無機凝結剤としては、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第二鉄、ポリ硫酸鉄(ポリ硫酸第二鉄等)、消石灰等;有機凝結剤としては、アニリン-ホルムアルデヒド重縮合物塩酸塩、ポリビニルベンジルトリメチルアンモニウムクロライド、ジメチルジ(メタ)アリルアンモニウムクロライド、(メタ)アリルアミンまたはジ(メタ)アリルアミン-マレイン酸共重合体、(メタ)アリルアミンまたはジ(メタ)アリルアミン-シトラコン酸共重合体、(メタ)アリルアミンまたはジ(メタ)アリルアミン-イタコン酸、(メタ)アリルアミンまたはジ(メタ)アリルアミン-フマル酸共重合体等が挙げられる。
 無機および/または有機凝結剤を併用する場合は、本発明の高分子凝集剤に予めこれらを添加した混合物で下水汚泥等を処理するか、下水汚泥等に予め無機凝結剤および/または有機凝結剤を添加して一次凝集させた後、本発明の高分子凝集剤を添加して処理するかのいずれでもよいが、フロックの強度の観点から好ましいのは後者の方法である。
 無機凝結剤および/または有機凝結剤を併用する場合の使用量は、下水汚泥等の種類、懸濁粒子の大きさ、用いる凝結剤の種類等によって異なるが、下水汚泥等中のTSに基づいて、無機凝結剤では通常20%以下、凝結性能の観点から好ましくは0.5~10%、さらに好ましくは1~5%、とくに好ましくは1.5~3%;有機凝結剤では通常1%以下、凝結性能の観点から好ましくは0.01~0.5%、さらに好ましくは0.025~0.2%、とくに好ましくは0.05~0.15%である。
 本発明の高分子凝集剤の添加の際には、下水汚泥等のpHを予め調整しておいてもよい。pHの調整範囲は通常3~8、加水分解防止および高分子凝集剤の溶解性の観点から好ましくは3.5~7、さらに好ましくは4~6、とくに好ましくは4.5~5.5である。
 pHの調整方法としては、無機酸(硫酸、塩酸、リン酸、硝酸等)等の酸性物質や苛性アルカリ(水酸化ナトリウム、水酸化カリウム等)等のアルカリ性物質を用いる方法が挙げられる。また、前記の無機または有機凝結剤を下水汚泥等に予め加えることで、上記pHに調整することもできる。
 また、本発明の高分子凝集剤を下水汚泥等に添加して形成されたフロックの脱水方法(固液分離法)としては、遠心脱水、ベルトプレス脱水、フィルタープレス脱水およびキャピラリー脱水等の種々の脱水法が適用できる。これらのうち、本発明の高分子凝集剤の特異的な凝集性能である高フロック強度の観点から好ましいのは、遠心脱水、ベルトプレス脱水およびフィルタープレス脱水である。
 以下実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の部は重量部、%は重量%を表す。
 実施例および比較例に使用した原料の組成、記号等は次の通りである。
(1)水溶性不飽和モノマー(a)
 DAMQ:N,N-ジメチルアミノエチルメタアクリレートのメチルクロライド塩の80%水溶液
 DAAQ:N,N-ジメチルアミノエチルアクリレートのメチルクロライド塩の80%水溶液
 AAM :アクリルアミドの50%水溶液
 AAC :アクリル酸
(2)連鎖移動剤(f)
 (f-1):1-チオグリセロールの1%水溶液
 (f-2):メルカプト酢酸の1%水溶液
 (f-3):システアミン塩酸塩の1%水溶液
(3)重合開始剤(d)
 (d-1):ジクミルパーオキサイド 
 (d-2):アゾビスアミジノプロパン塩酸塩の10%水溶液
(4)疎水性分散媒(b)
 (b-1):n-デカン
 (b-2):シクロヘキサン
 (b-3):酢酸イソブチル
(5)分散剤(c) 
 (c1-1):PEG(GMw300)のジステアリン酸エステル[商品名「イオネットDS-300」、三洋化成工業(株)製、HLB7.3、融点35℃、Tg25℃]
 (c2-1):製造例1で得られた分散剤(HLB2.1、融点95℃、Tg85℃、GMw35,000)
 (c2-2):無水マレイン酸変性エチレン・酢酸ビニル共重合体[商品名「オレヴァック9318」、アルケマ(株)製、HLB1.2、融点86℃、Tg68℃、GMw18,000]
 (c2-3):アルケン(C30以上)と無水マレイン酸の共重合体[商品名「ダイヤカルナ30」、三菱化学(株)製、HLB2.1、融点65℃、Tg60℃、GMw9,300]
(6)無機凝結剤
  ポリ鉄:10%ポリ硫酸第二鉄水溶液[商品名「ポリテツ」、日鉄鉱業(株)製]
 高分子凝集剤の固形分含量、固有粘度[η]、Mw、Mn、Mw/Mn、フラクタル次数、安息角および体積平均粒子径は、前記の方法によって求めた。その他の評価項目は下記のとおりである。なお、下水汚泥等中のTS、浮遊物質(SS)、有機分(強熱減量)、アルカリ度は、「下水試験方法」(日本下水道協会、1984年度版)記載の分析方法に準じて行った。
(1)付着率(%)
 重合後に反応槽内壁または撹拌羽根に付着したポリマー固形分の、理論収量に基づく割合を付着率とする。
(2)高分子凝集剤粒子中の二次粒子の含有量(%)
 ロータップ試験篩振とう機[例えば、(株)飯田製作所製。以下同じ。]およびJIS Z8801-2000に規定された標準篩を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー刊、1984年、21頁)に記載の方法で求めることができる。
 すなわち、適当な目開きの上記標準篩、例えば目開きが2.00、1.70、1.40、1.18および1.0mm、850、710、500、425、355、300、250、180および150μmの標準篩上にそれぞれ高分子凝集剤粒子50.0gをとり、ロータップ試験篩振とう機で1分間振とうし、各篩上に残った粒子重量を測定する(Si。各篩上の粒子から無作為に50個取り出し、そのうちの複合された二次粒子を目視にて選り分けて重量を測定し、(Sに対する二次粒子の割合(Si(重量%)を算出する。二次粒子の含有量は、下記の計算式から求められる。
二次粒子の含有量(重量%)=100×〔Σ[(S×(Si/100]〕/50
(3)高分子凝集剤中に残存する疎水性分散媒(b)の含有量(%)
 高分子凝集剤中に残存する疎水性分散媒の含有量(%)は下記の方法で求め、3回の測定値の平均値を求める。 
<測定法>
 容量100mlの密栓付きガラス容器に、高分子凝集剤10gと、0.1%の内部標準物質をあらかじめ溶解したイソプロパノール50gを入れて振とう機[型番「MK200D」、ヤマト科学(株)製。以下同じ。]で振とうする(25℃、5時間)。下記のガスクロマトグラフィー法により、得られた上澄み液中の(b)および内部標準物質の各ピーク面積を測定し、下記の式から高分子凝集剤中に残存する(b)の含有量(%)を求める。
高分子凝集剤中に残存する(b)の含有量(%)=(L/M)×F×100
〔式中、L= (b)のピーク面積/高分子凝集剤の固形分重量
    M= 内部標準物質のピーク面積/内部標準物質の重量
    F= 内部標準物質に対するファクター[同一重量の(b)と内部標準物質の各ピーク面積の比]〕
 ここにおいて、疎水性分散媒(b)の組成は、ガスクロマトグラフ質量分析計[型番「GCMS-QP2010」、(株)島津製作所製]等により同定することができる。
<ガスクロマトグラフィー測定条件>
ガスクロマトグラフ :GC-14B[(株)島津製作所製]
カラム       :内径4mmφ、長さ1.6m、ガラス製
カラム充填剤    :ポリエチレングリコール20M[信和化工(株)製]
内部標準物質    :α-メチルスチレン[ナカライテスク(株)製]
希釈溶媒      :イソプロピルアルコール[和光純薬(株)製]
インジェクション温度:200℃
カラム初期温度   :110℃
昇温速度      :5℃/min.
カラムファイナル温度:200℃
試料注入量     :1μl
(4)高分子凝集剤中に残存する分散剤(c)の含有量(%)
 高分子凝集剤中に残存する分散剤の含有量(%)は下記の方法で求め、3回の測定値の平均値を求める。
 容量100mlの密栓付きガラス容器に、高分子凝集剤10gとシクロヘキサン50gを入れて振とう機で振とうする(25℃、5時間)。得られた上澄み液からシクロヘキサンを減圧留去して固形分重量(W)を測定する。該固形分について、核磁気共鳴分光法測定装置[型番「JNM-ECA400WB」、日本電子(株)製]、フーリエ変換赤外分光光度計[型番「IRPrestige-21、(株)島津製作所製」、および前記ガスクロマトグラフィー法等により、分散剤(c)の同定、定量(含有率q%)を行う。下記の式から高分子凝集剤中に残存する分散剤(c)の含有量(%)を求める。
高分子凝集剤中に残存する(c)含有量(%)=q×(W/高分子凝集剤の固形重量)
(5)水溶解性
 板状の塩ビ製撹拌羽根(直径5cm、高さ2cm、厚さ0.2cm)2枚を十字になるように上下に連続して備えた撹拌棒をジャーテスター[型番「JMD-6HS-A」、宮本理研工業(株)製、以下同じ。]に取り付けた撹拌装置を用いる。ここにイオン交換水499gを入れた500mlビーカーをセットし、水温25℃にて200rpmで撹拌する。シャーレに秤り取った高分子凝集剤1g(固形分)の全量を撹拌下のイオン交換水に一気に投入し、投入から60分後の溶解状態を目視で観察して下記の基準で水溶解性を評価した。
<評価基準>
 ◎ ままこの発生、溶け残りともになし
 ○ ままこの発生がなく、溶け残りごくわずか
 △ ままこの発生があり、溶け残りやや多い
 × ままこの発生、溶け残りともに多い
(6)水不溶解分(%)
 1Lのビーカーに0.1%の塩化ナトリウム水溶液500gを入れ、長さ50mm、幅20mmの撹拌翼を取り付けた攪拌機にて、液温25℃、200rpmで撹拌下、高分子凝集剤2.5g(固形分)を徐々に加えて、2時間撹拌し溶解させる。あらかじめ秤量した目開き100μmのメッシュで溶解液をろ過する。残渣をメッシュとともにアルミ皿にのせて、120℃の循風乾燥機で2時間乾燥させる。下記の計算式で求めた値を水不溶解分(%)とする。
水不溶解分(%)=100×[乾燥後の残渣重量]/[高分子凝集剤の固形分重量)]
(7)フロック粒径(mm)
 汚泥200mlを300mlのビーカーに取り、前記(5)の撹拌装置にセットする。撹拌装置の回転数を300rpmとして徐々に汚泥を撹拌しながら、所定の濃度の高分子凝集剤の水溶液を所定の方法で添加し、30秒間撹拌した後、撹拌を止めフロックの大きさを目視にて評価する。
 続いて回転数を650rpmとしてさらに30秒間撹拌した後、撹拌を止めフロックの大きさを再度目視にて評価する。
(8)フロック強度
 上記(7)における回転数650rpmおよび300rpmでの各フロック粒径の比を下記式から算出し、下記の基準に従って評価する。
 フロック粒径比=(650rpmでのフロック粒径)/(300rpmでのフロック粒径)
<評価基準>
  ◎ 非常に強固(0.8 ≦フロック粒径比≦1  )
  ○ 強固   (0.7 ≦フロック粒径比<0.8)
  △ やや弱い (0.5 ≦フロック粒径比<0.7)
  × 弱い   (     フロック粒径比<0.5)
(9)ろ液量(ml)
 ナイロン製ろ布[型番「T-1189」、敷島カンバス(株)製、円形状、直径9cm]、ヌッチェ漏斗、300mlが測れるメスシリンダーをセットし、上記フロック粒径試験後の汚泥を一気に投入して濾過し、ストップウォッチを用いて投入直後から10秒後および60秒後のろ液量を測定する。
(10)ろ布剥離性
 濾過した汚泥をろ布ごとスパーテルで取り出し、プレスフィルター試験機[型番「FPT-W20」、(株)宮本製作所製]を用いて脱水試験(1kg/cm2、60秒)を行い、試験後のろ布に付着した脱水ケーキをスパーテルで剥離させる場合の脱水ケーキの剥離性を下記の基準に従って評価する。
<評価基準>
 ◎ 非常に剥がれやすい(ろ布付着物ほとんどなし)
 ○ 剥がれやすい   (わずかにろ布付着物あり)
 △ 多少剥がれにくい (ろ布付着物あり、わずかにろ布内部まで付着)
 × 剥がれにくい   (ろ布内部まで付着)
(11)ケーキ含水率(%)
 上記(10)のろ布剥離性試験後の脱水ケーキ約3gをシャーレに秤量(W3)して、循風乾燥機中、105±5℃、8時間で乾燥させた後、シャーレ中に残った乾燥ケーキの重量(W4)を求め、次式からケーキ含水率を算出する。
ケーキ含水率(%)=[(W3)-(W4)]×100/(W3)
製造例1[分散剤(c2-1)の製法]
 反応容器に、エチレン-酢酸ビニル共重合体[商品名「AC-POLY-400」、Honeywell(株)製、酢酸ビニル単位含量14%]171部、無水マレイン酸17.1部、キシレン117.7部を仕込み100℃まで加熱、撹拌して均一なポリマー溶液とした。滴下漏斗にジクミルパーオキサイド(d-1)11.8部、キシレン11.8部、ドデシルメルカプタン0.092部を仕込み均一溶解させて開始剤溶液とした。150℃に加熱した上記ポリマー溶液に、滴下漏斗から開始剤溶液を0.4部/分の滴下速度で1時間かけて投入し、その後3時間反応させた。キシレンを3~20kPaの減圧下、140~160℃、2時間でストリッピングして、分散剤(c2-1)を得た。
実施例1[高分子凝集剤(P-1)の製造]
 [第1工程] 表1に従って配合した混合液[水相(1)]を室温(20~25℃)で調製した。さらにスルファミン酸を用いて水相(1)のpH(20℃)をpHメーターで監視しながら3.0に調整した。別に、重合開始剤(d-2)、イオン交換水を表1に従って配合し、混合液[水相(2)]を調製した。該水相(1)、(2)を別々に十分に窒素(純度99.999%以上。以下同じ。)で置換(溶存酸素濃度20ppb以下)した。
 これらとは別に、撹拌翼(マックスブレンド翼)を備えた反応槽に、n-デカン(b-1)、分散剤(c1-1)および(c2-1)を表1に従って仕込み油相を調製した。撹拌翼を340rpmの回転数にて撹拌しながら、反応槽内を窒素置換(気相酸素濃度10ppm以下)した後、80℃まで昇温して30分間保持した後、表1に示す重合温度まで冷却した。重合温度に到達後、表1に示す圧力条件下で、上記水相(1)、(2)を各々滴下ポンプにて表1に示す温度で送液し、スタティックミキサーにて連続的に混合しながら、混合液(モノマー水溶液)を反応槽中に2時間かけて全量滴下投入した。前記方法による、滴下時の液滴の体積平均径は0.5mmであった。その後2時間、表1に示す重合温度で撹拌を継続し逆相懸濁重合させた。
 [第2工程] その後、さらに水相(2)を9部添加し1時間後、さらに、重亜硫酸ナトリウム14部およびメルカプト酢酸0.19部をイオン交換水10部に溶解させた水溶液を追加投入し、該投入した時点から、55℃で30分間撹拌を継続して重合を完結させた。
 その後、反応系の温度を分散剤(c)の融点以上として30分間撹拌し、一次粒子を複合させて二次粒子を形成させた。反応系の温度を55℃として減圧(3~20kPa)により共沸脱水させてスラリーを得た。該スラリーを減圧ろ過機に供給し固液分離を行った後、固形分を減圧乾燥機中(1.3kPa、40℃×2時間)で乾燥させ、水溶性共重合体(A-1)の乾燥粒子を含有してなる高分子凝集剤(P-1)を得た。(P-1)について評価結果を表1に示す。
実施例2~8、比較例1~4[高分子凝集剤(P-2)~(P-8)、(R-1)~(R-4)の製造]
 実施例1において、[第1工程]で配合組成、重合条件等を表1に従って変えたこと以外は、実施例1と同様にして、高分子凝集剤(P-2)~(P-8)、(R-1)~(R-4)を得た。これらについて評価結果を表1に示す。なお、実施例7の重合は減圧沸点重合条件で行った。
Figure JPOXMLDOC01-appb-T000001
実施例9~16、比較例5~8[高分子凝集剤の性能評価]
 上記得られた高分子凝集剤をそれぞれイオン交換水に溶解して固形分含量0.2%の水溶液とした。A市処理場から採取した嫌気性消化汚泥[pH6.8、TS2.8%、SS2.6%、有機分82%、繊維分8%、アルカリ度4923mg-CaCO3/L]200部を500mlのビーカーに採り、表2に従って、高分子凝集剤の各水溶液45部(このときの固形分添加量1.6%/TS)、ポリ鉄を添加し、前記の方法に従って高分子凝集剤の性能を評価した。結果を表2に示す。
 なお、前記ポリ鉄(10%水溶液)を添加する場合は、あらかじめ混合生汚泥1,000部に対し、表2のポリ鉄純分(%/TS)となるようにポリ鉄を添加し、ミキサーにて十分撹拌した後、高分子凝集剤の各水溶液を添加した。
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例9~16では、比較例5~8に比べて、水溶解性が良好であること、実施例9、10、11、12は、それぞれ比較例5、6、7、8に比べて、大粒径のフロックが形成され、低撹拌下(300rpm)で一旦形成されたフロックが高撹拌下(650rpm)でも壊れにくい(フロック強度が大)こと、10秒後ろ液量が多いことから初期ろ過速度が速いこと、および脱水性(脱水ケーキ含水率)において優れた効果を示すことがわかる。
 本発明の高分子凝集剤は、従来にない特異的な凝集性能を示すことから、下水汚泥の脱水処理用、廃水の凝集・沈殿処理用、土木分野での泥水処理用、浚渫埋め立て時の泥水の沈降分離促進用、製紙工程での濾水歩留向上用もしくは紙力増強用および石油の3次回収用等の高分子凝集剤として幅広く好適に用いることができ、極めて有用である。

Claims (31)

  1. 水溶性不飽和モノマー(a)および重合開始剤(d)を含有するモノマー水溶液を、疎水性分散媒(b)と分散剤(c)の混合液中に滴下して逆相懸濁重合させてなる水溶性(共)重合体(A)の乾燥粒子を含有してなり、該粒子が単粒子(一次粒子)を複合させた二次粒子を含有してなる高分子凝集剤。
  2. 乾燥粒子中の二次粒子の含有量が1~100重量%である請求項1記載の高分子凝集剤。
  3. 乾燥粒子中の二次粒子の体積平均粒子径が150~3,000μmである請求項1または2記載の高分子凝集剤
  4. (a)が、(メタ)アクリロイルオキシエチルジアルキルアミン塩、(メタ)アクリロイルオキシエチルトリアルキルアンモニウム塩、(メタ)アクリルアミドおよびアクリル酸(塩)からなる群から選ばれる少なくとも1種である請求項1~3のいずれか記載の高分子凝集剤。    
  5. モノマー水溶液中のモノマーの含有量が、40~80重量%である請求項1~4のいずれか記載の高分子凝集剤。
  6. モノマー水溶液の滴下が、水溶性不飽和モノマー(a)を含有する10~20℃の水溶液と重合開始剤(d)を連続的に混合しながら行う滴下である請求項1~5のいずれか記載の高分子凝集剤。
  7. モノマー水溶液の滴下において、液滴の体積平均径が0.1~3mmである請求項1~6のいずれか記載の高分子凝集剤。
  8. 分散剤(c)が、60~100℃のガラス転移温度(Tg)を有する分散剤(c2)を含有してなる請求項1~7のいずれか記載の高分子凝集剤。
  9. 重合温度が70℃以下である請求項1~8のいずれか記載の高分子凝集剤。
  10. 重合が、減圧重合もしくは減圧沸点重合である請求項1~9のいずれか記載の高分子凝集剤。
  11. (A)が、固有粘度1~40dl/g、かつ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)1~30を有する請求項1~10のいずれか記載の高分子凝集剤。
  12. 二次粒子のフラクタル次数が1.2~1.9である請求項1~11のいずれか記載の高分子凝集剤。
  13. 高分子凝集剤中の疎水性分散媒(b)の含有量が、5重量%以下である請求項1~12のいずれか記載の高分子凝集剤。
  14. 高分子凝集剤中の分散剤(c)の含有量が0.01~1重量%である請求項1~13のいずれか記載の高分子凝集剤。
  15. 高分子凝集剤の水不溶解分が5重量%以下である請求項1~14のいずれか記載の高分子凝集剤。
  16. 水溶性不飽和モノマー(a)および重合開始剤(d)を含有するモノマー水溶液を、疎水性分散媒(b)と分散剤(c)の混合液中に滴下して逆相懸濁重合させてなる水溶性(共)重合体(A)の乾燥粒子を含有させ、該粒子に単粒子(一次粒子)を複合してなる二次粒子を含有させることを特徴とする高分子凝集剤の製造方法。
  17. 二次粒子が、重合反応終了後、反応系温度を分散剤(c)の融点以上として一次粒子を複合したものである請求項16記載の製造方法。
  18. 乾燥粒子中の二次粒子の含有量が1~100重量%である請求項16または17記載の製造方法。
  19. 乾燥粒子中の二次粒子の体積平均粒子径が150~3,000μmである請求項16~18のいずれか記載の製造方法。
  20. モノマー水溶液中の(a)の含有量が、40~80重量%である請求項16~19のいずれか記載の製造方法。
  21. モノマー水溶液の滴下が、水溶性不飽和モノマー(a)を含有する10~20℃の水溶液と重合開始剤(d)を連続的に混合しながら行う滴下である請求項16~20のいずれか記載の製造方法。
  22. モノマー水溶液の滴下において、液滴の体積平均径が0.1~3mmである請求項16~21のいずれか記載の製造方法。
  23. 分散剤(c)が、60~100℃のガラス転移温度(Tg)を有する分散剤(c2)を含有してなる請求項16~22のいずれか記載の製造方法。
  24. 重合温度が70℃以下である請求項16~23のいずれか記載の製造方法。
  25. 重合が、減圧重合もしくは減圧沸点重合である請求項16~24のいずれか記載の製造方法。
  26. (A)が、固有粘度1~40dl/g、かつ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)1~30を有する請求項16~25のいずれか記載の製造方法。
  27. 二次粒子のフラクタル次数が1.2~1.9である請求項16~26のいずれか記載の製造方法。
  28. 高分子凝集剤中の(b)の含有量が、5重量%以下である請求項16~27のいずれか記載の製造方法。
  29. 高分子凝集剤中の分散剤(c)の含有量が0.01~1重量%である請求項16~28のいずれか記載の製造方法。
  30. 高分子凝集剤の水不溶解分が5重量%以下である請求項16~29のいずれか記載の製造方法。
  31. 高分子凝集剤を汚泥または廃水に添加、混合してフロックを形成させ、固液分離を行う工程からなる汚泥または廃水の処理方法において、請求項1~15のいずれか記載の高分子凝集剤を用いることを特徴とする汚泥または廃水の処理方法。
PCT/JP2010/003798 2010-06-08 2010-06-08 高分子凝集剤およびその製造方法 WO2011154991A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003798 WO2011154991A1 (ja) 2010-06-08 2010-06-08 高分子凝集剤およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003798 WO2011154991A1 (ja) 2010-06-08 2010-06-08 高分子凝集剤およびその製造方法

Publications (1)

Publication Number Publication Date
WO2011154991A1 true WO2011154991A1 (ja) 2011-12-15

Family

ID=45097626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003798 WO2011154991A1 (ja) 2010-06-08 2010-06-08 高分子凝集剤およびその製造方法

Country Status (1)

Country Link
WO (1) WO2011154991A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439566A (zh) * 2018-04-08 2018-08-24 南宁市夏阳化工科技有限责任公司 一种矿山污水絮凝剂及其制备方法
CN112047448A (zh) * 2020-09-28 2020-12-08 杨剑飞 一种污水处理用絮凝剂及其制备方法
EP3964477A1 (en) * 2020-09-08 2022-03-09 Yara International ASA Process for the removal of heavy metals from a phosphoric acid containing composition using an ionic polymeric surfactant
CN115605430A (zh) * 2020-06-16 2023-01-13 雅苒国际集团(No) 使用离子聚合物表面活性剂从含磷酸组合物中去除重金属的方法和所述表面活性剂在含磷酸组合物中沉淀重金属的用途
CN116622037A (zh) * 2023-07-25 2023-08-22 东明旭阳化工有限公司 己内酰胺肟化废水总磷去除方法和该方法使用的氢氧化钙沉淀剂及该沉淀剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774309A (en) * 1980-10-27 1982-05-10 Kao Corp Production of water-soluble bead polymer
JPH06287207A (ja) * 1993-02-03 1994-10-11 Retsuku Tec Lab Kk 可溶性アクリル酸重合体粒状物の製造方法
JP2003251107A (ja) * 2001-12-28 2003-09-09 Sanyo Chem Ind Ltd 高分子凝集剤
JP2004000923A (ja) * 2002-03-28 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤の製造法
JP2004181449A (ja) * 2002-11-18 2004-07-02 Sanyo Chem Ind Ltd 高分子凝集剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774309A (en) * 1980-10-27 1982-05-10 Kao Corp Production of water-soluble bead polymer
JPH06287207A (ja) * 1993-02-03 1994-10-11 Retsuku Tec Lab Kk 可溶性アクリル酸重合体粒状物の製造方法
JP2003251107A (ja) * 2001-12-28 2003-09-09 Sanyo Chem Ind Ltd 高分子凝集剤
JP2004000923A (ja) * 2002-03-28 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤の製造法
JP2004181449A (ja) * 2002-11-18 2004-07-02 Sanyo Chem Ind Ltd 高分子凝集剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439566A (zh) * 2018-04-08 2018-08-24 南宁市夏阳化工科技有限责任公司 一种矿山污水絮凝剂及其制备方法
CN115605430A (zh) * 2020-06-16 2023-01-13 雅苒国际集团(No) 使用离子聚合物表面活性剂从含磷酸组合物中去除重金属的方法和所述表面活性剂在含磷酸组合物中沉淀重金属的用途
EP3964477A1 (en) * 2020-09-08 2022-03-09 Yara International ASA Process for the removal of heavy metals from a phosphoric acid containing composition using an ionic polymeric surfactant
CN112047448A (zh) * 2020-09-28 2020-12-08 杨剑飞 一种污水处理用絮凝剂及其制备方法
CN116622037A (zh) * 2023-07-25 2023-08-22 东明旭阳化工有限公司 己内酰胺肟化废水总磷去除方法和该方法使用的氢氧化钙沉淀剂及该沉淀剂的制备方法
CN116622037B (zh) * 2023-07-25 2023-10-13 东明旭阳化工有限公司 己内酰胺肟化废水总磷去除方法和该方法使用的氢氧化钙沉淀剂及该沉淀剂的制备方法

Similar Documents

Publication Publication Date Title
JP5528660B2 (ja) 高分子凝集剤
JP4021439B2 (ja) 高分子凝集剤
JP4733060B2 (ja) 高分子凝集剤
JP4382760B2 (ja) 高分子凝集剤
JP5032353B2 (ja) 汚泥脱水処理用両性高分子凝集剤
JP2005213343A (ja) 有機凝結剤および高分子凝集剤
WO2011154991A1 (ja) 高分子凝集剤およびその製造方法
JP2012170853A (ja) 高分子凝集剤
JP5431890B2 (ja) 高分子凝集剤
JP5461158B2 (ja) 高分子凝集剤
JP4021418B2 (ja) 有機凝結剤および高分子凝集剤
JP2006167584A (ja) 汚泥または廃水の処理方法
JP5596662B2 (ja) 高分子凝集剤
JP5322879B2 (ja) 高分子凝集剤
JP2007117956A (ja) 高分子凝集剤
JP2015057275A (ja) 高分子凝集剤
WO2011154990A1 (ja) 高分子凝集剤およびその製造方法
JP2012213769A (ja) 高分子凝集剤
JP2014180648A (ja) 高分子凝集剤
JP4786558B2 (ja) 高分子凝集剤
JP2014184406A (ja) 粉末状有機凝結剤
JP2014233654A (ja) 高分子凝集剤
JP4106305B2 (ja) 有機凝結剤及び高分子凝集剤
JP2014064988A (ja) 高分子凝集剤
JP2015057272A (ja) 高分子凝集剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP