WO2011153930A1 - 核电厂放射性气体净化能力试验用制剂、制备方法及其使用该制剂的碘过滤器试验装置 - Google Patents

核电厂放射性气体净化能力试验用制剂、制备方法及其使用该制剂的碘过滤器试验装置 Download PDF

Info

Publication number
WO2011153930A1
WO2011153930A1 PCT/CN2011/075377 CN2011075377W WO2011153930A1 WO 2011153930 A1 WO2011153930 A1 WO 2011153930A1 CN 2011075377 W CN2011075377 W CN 2011075377W WO 2011153930 A1 WO2011153930 A1 WO 2011153930A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive
power plant
nuclear power
reaction
iodide
Prior art date
Application number
PCT/CN2011/075377
Other languages
English (en)
French (fr)
Inventor
杜建兴
张大勇
边守利
刘道和
吴宇坤
李现峰
杨列堂
孔海霞
丘丹圭
史英霞
郭亮天
吴振龙
韩丽红
Original Assignee
中国广东核电集团有限公司
大亚湾核电运营管理有限责任公司
中国辐射防护研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010193321 external-priority patent/CN101875597B/zh
Priority claimed from CN2010205149645U external-priority patent/CN201791424U/zh
Application filed by 中国广东核电集团有限公司, 大亚湾核电运营管理有限责任公司, 中国辐射防护研究院 filed Critical 中国广东核电集团有限公司
Priority to KR1020127031116A priority Critical patent/KR101524649B1/ko
Priority to EP11791921.7A priority patent/EP2581359B1/en
Publication of WO2011153930A1 publication Critical patent/WO2011153930A1/zh
Priority to ZA2012/08773A priority patent/ZA201208773B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/07Acyclic saturated compounds containing halogen atoms containing iodine
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0063Iodine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of nuclear power technology of a million kilowatt advanced pressurized water reactor, relates to a nuclear power safety testing article, a preparation method and a device thereof, and particularly relates to a preparation for preparing a radioactive gas purification capability of a nuclear power plant, a preparation method thereof and the use thereof Formulation iodine filter test device. Background technique
  • gaseous radioactive iodine mainly appears as molecular iodine ( 129 1 2 , 131 1 2 ) and organic iodine (C3 ⁇ 4 131 I).
  • the elemental molecular iodine accounts for 90 ⁇ 95% of the gaseous radioactive iodine, and the organic iodine only accounts for 5 ⁇ 10% of the gaseous radioactive iodine.
  • the radioactive iodine concentration is very low, the radioactive iodine in the air in the reactor containment is generally after a design basis accident.
  • the concentration does not exceed l Ci/m 3 or 8 g/m 3 , but because the human thyroid has a high absorption capacity for radioactive iodine, it is very harmful to human health after release. Therefore, it needs to be in the exhaust system.
  • the sample is sampled using a sampling carbon cartridge, and then the activity of the upper and lower carbon cartridges is analyzed by a gamma spectrometer, and the ratio of the upstream and downstream radioactivity (purification coefficient) is used to determine the filtration characteristics of the iodine filter.
  • the existing radioactive methyl iodide gas tracer is formed by reacting a radioactive and non-radioactive sodium iodide solution with dimethyl sulfate.
  • the reaction formula is:
  • Radioactive methyl iodide is airborne iodide, its physical and chemical properties are similar to other organic iodides, and it has the advantages of low boiling point, easy to be volatile, easy to produce, easy to measure, difficult to deposit, long analysis time and convenient measurement. . Radioactive methyl iodide is one of the most iodized compounds that are not easily adsorbed by iodine filters. It does not affect the filtration characteristics of iodine filters. It has a short half-life and has little radiation impact on people and the environment. Therefore, it is used in iodine filters. On-site inspection.
  • the raw material used in the radioactive methyl iodide method is a drug
  • the toxicity is similar to that of mustard gas, and the safety and environmental protection requirements during storage and use are high, and the test risk is high.
  • dimethyl sulfate is rarely stored and used in nuclear power plants, it is the only chemical used in power plants. It is a national regulatory chemical reagent. It needs to be registered and registered in the safety supervision department and public security department. Store the warehouse and establish a corresponding management system. Nuclear power plants pay a lot of manpower and financial resources to ensure that they are foolproof, and there is a very big risk in management.
  • the existing methyl iodide generating device has the following problems: 1. Although an iodine removing device is provided at the air inlet in the existing device, the radioactive gas returned to the intake pipe can be passed through the iodine removing device in the event of equipment failure. Remove, do not let the radioactive gas out of the methyl iodide generating device, and pollute the tester. Moreover, the iodine removal device mainly produces iodine removal from the radioactive gas, and does not produce significant iodine removal effect on the radioactive liquid. If a radioactive liquid enters, it will fail. 2. In the existing device, the inner needle and the outer needle of the trocar are flat.
  • the technical problem to be solved by the present invention is to provide a nuclear power plant for radioactive gas purification in the field of the above-mentioned defects of the prior art, which is used in the field reaction, with the use, and which is harmless or poisonous to the nuclear grade impregnated activated carbon in the iodine filter. Formulation test for ability.
  • the technical problem to be solved by the present invention is that, in view of the above defects of the prior art, it is provided that the reactant is not highly toxic, the reaction can be carried out quickly and efficiently without high temperature and high pressure, and other products other than methyl iodide are filtered for iodine.
  • Another technical problem to be solved by the present invention is to provide a nuclear power plant iodine filter test apparatus using the preparation, which has good safety performance, greatly improved reaction controllability, and no iodine source strength loss.
  • the technical problem to be solved by the present invention is to provide a nuclear power plant iodine filter test device using the preparation which can be automatically disposed when a failure of a suction port below the suction port of the reaction circuit is provided.
  • the preparation for testing the radioactive gas purification capacity of a nuclear power plant is based on a methyl phosphate compound or a dimethyl acetal compound, acetonitrile, trimethylsilyl silane and a radioactive iodine source at 20 ° C to 50 ° C.
  • the reaction is obtained after mixing.
  • the methyl phosphate compound is R l PO(OCH 3 ) 2 , wherein is PhClCH 2 , CC 1 3 , NCCH 2 , MeCO, MeOCOCH 2 , EtOCOCH 2 , t-BuOCOCH 2 , PhCH 2 OCOCH 2 , EtOCO, Et 2 NCO, MeCOOCHPh, PhCOCH 2 , MeOCH 2 , (MeO) 2 CHCH 2 or (MeO) 2 CH.
  • the dimethyl acetal compound is R 2 R 3 C(OCH 3 ) 2 , wherein R 2 is Ph, Me(CH 2 ) 5 or (CH 2 ) 5 , The R 3 is Me or H.
  • the preparation method of the test preparation for radioactive gas purification capability of a nuclear power plant is a reaction of a methyl phosphate compound or a dimethyl acetal compound, acetonitrile, trimethylsilyl silane and a radioactive iodine source, and reacts after mixing.
  • the time is 10 ⁇ 40min
  • the reaction temperature is 20°C ⁇ 50°C, that is, the radioactive methyl iodide tracer for the iodine filter field test is obtained.
  • the volume ratio of the methyl phosphate compound or the dimethyl acetal compound, acetonitrile to trimethylsilyl silane is 0.1-2: 3-6: 0.1 to 2.
  • the preparation method of the present invention adopts the following two specific technical solutions:
  • the radioactive iodine source is a radioactive iodide, and the radioactive iodide has a radioactivity of 10 to 400 MBq.
  • the radioactive iodide is radioactive potassium iodide or radioactive sodium iodide.
  • the radioactive iodide, acetonitrile, methyl phosphate compound, and trimethylchlorosilane are mixed as raw materials, and the reaction is carried out by bubbling with an inert gas or stirring; wherein the reaction temperature is 20 ° C to 30 ° C. , the reaction time is 10 ⁇ 30min.
  • the first specific technical solution it is further preferred to: put acetonitrile, radioactive potassium iodide in sequence in a reaction flask, and then add dimethyl chlorophenyl phosphate and trimethylchlorosilane to form a preparation, wherein the preparation is obtained.
  • the reaction temperature is 25 ° C
  • the reaction time is lOmin; the ratio between acetonitrile, radioactive potassium iodide, dimethyl chlorophenyl phosphate and trimethylchlorosilane is 3 ⁇ 6ml: 3 ⁇ 4g: 0.1 ⁇ 2ml: 0.1 ⁇ 2ml .
  • the radioactive iodide, acetonitrile, dimethyl acetal compound, and trimethyl chlorosilane are used as raw materials, and the reaction is carried out by bubbling with an inert gas or stirring; wherein the reaction temperature is 40 ° C. 50 ° C, the reaction time is 20 min ⁇ 40 min.
  • the reaction temperature is 40. °C, reaction time is 20min; the ratio between acetonitrile, radioactive potassium iodide, benzaldehyde dimethyl acetal, trimethyl chlorosilane is 3 ⁇ 6ml: 3 ⁇ 4g: 0.1 ⁇ 2ml: 0.1 ⁇ 2ml.
  • the reaction temperature is 45 ° C, the reaction time is 30 min; the ratio of acetonitrile, radioactive potassium iodide, (CH 2 ) 5 C (OCH 3 ) 2 , trimethyl chlorosilane is 3 ⁇ 6ml: 3 ⁇ 4g: 0.1 ⁇ 2ml: 0.1 ⁇ 2ml.
  • the radioactive iodine source is prepared by mixing a buffer distribution solution and an aqueous solution of radioactive iodide, and the radioactive iodine source has a radioactivity of 10 to 400 MBq; the buffer distribution solution is Made from a mixture of non-radioactive iodide and acetone.
  • the radioactive iodide is radioactive potassium iodide or radioactive sodium iodide
  • the non-radioactive iodide is non-radioactive potassium iodide or non-radioactive sodium iodide.
  • step (2) then adding an aqueous solution of radioactive iodide to the mixed solution of step (1) to prepare a mixture of acetonitrile and a source of radioactive iodine;
  • step (2) a mixture of acetonitrile and a radioactive iodine source is added with a methyl phosphate compound or a dimethyl acetal compound, trimethyl chlorosilane is uniformly mixed, and the reaction is carried out by bubbling with an inert gas or stirring.
  • the reaction temperature is 20 ° C to 50 ° C, and the reaction time is 10 to 40 min, that is, the radioactive methyl iodide tracer for the iodine filter field test is obtained.
  • step (3) a methyl phosphate compound, trimethylsilyl silane is added to a mixture of a radioactive iodine source and acetonitrile, and the mixture is bubbled under an inert gas or stirred, wherein The reaction temperature is 20 ° C to 30 ° C, and the reaction time is 10 to 30 min.
  • the reaction temperature is 40 ° C to 50 ° C, and the reaction time is 20 to 40 min.
  • the methyl phosphate compound is ⁇ 0 (OCH 3 ) 2 , wherein is ? 11( 1( 3 ⁇ 4 , CC1 3 , NCCH 2 , MeCO, MeOCOCH 2 , EtOCOCH 2 , t-BuOCOCH 2 , PhCH 2 OCOCH 2 , EtOCO, Et 2 NCO, MeCOOCHPh, PhCOCH 2 , MeOCH 2 , (MeO) 2 CHCH 2 Or (MeO) 2 CH.
  • the dimethyl acetal compound is R 2 R 3 C((CH 3 ) 2 , wherein ⁇ 11, Me(CH 2 ) 5 or (CH 2 ) 5 , the R 3 is Me or H.
  • a nuclear power plant iodine filter test device using the above preparation comprising a negative pressure tank, and a negative pressure tank There is a compressed air distributor, a methyl iodine generator and a pneumatic control unit are arranged in the negative pressure tank, and the methyl iodine generator includes a compressed air jet pump, a check valve, a throttle valve, a generator body, and a sleeve.
  • the methyl iodide generator is connected with an intake pipe communicating with the outside atmosphere of the negative pressure box, and the intake pipe passes through the generator body and the sleeve
  • the inner needle of the needle needle communicates
  • the suction port of the compressed air jet pump communicates with the gap between the inner and outer needles of the trocar needle
  • the pneumatic control unit comprises a micro pressure signal valve and a push-pull reversing valve
  • the two-position five-way single air control reversing wide, one-way throttle valve and the one-way valve are characterized in that: the push-pull reversing valve is a pneumatically-reduced push-pull reversal, and the intake pipe is provided with a delay.
  • Output non-negative pressure switch and check valve is characterized in that: the push-pull reversing valve is a pneumatically-reduced push-pull reversal, and the intake pipe is provided with a delay.
  • the delayed output non-negative pressure switch is connected with the pneumatic reset push-pull reversing valve, and the delayed output non-negative pressure switch outputs gas to the pneumatically reset push-pull reversing valve. Close the pneumatically reset push-pull reversing valve.
  • the pneumatic reset push-pull reversing valve comprises a push-pull reversing valve cylinder, three pistons are connected in series in the cylinder of the push-pull reversing valve, and the piston is connected with the piston outside the cylinder of the push-pull reversing valve.
  • the cylinder wall of the push-pull reversing valve has a total of five air holes from the first air hole to the fifth air hole, and the two ends of the push-pull reversing valve cylinder are respectively provided with the balance push-pull reversing valve cylinder inside and outside for the piston movement.
  • the piston is connected by a tie rod, and the first pressure balance port is in communication with the time delay output non-negative pressure switch.
  • the delayed output non-negative pressure switch includes non-negative pressure opening Off, a delay switch for the non-negative pressure signal delay output is added to the non-negative pressure switch outlet.
  • the non-negative pressure switch comprises a cylinder body, and the piston body is provided with three piston groups which are arranged at intervals and integrated into one body, and springs of the same force are respectively arranged on both sides of the piston group, the cylinder
  • the body is provided with a first venting hole, a second venting hole and a third venting hole, and one end of the cylinder body is provided with a pressure conducting hole for inputting a gas to move the piston group, and the pressure conducting hole passes through the pipe and the generator body
  • the inner needle inlet is connected; when the pressure transmission hole is input without gas input or positive pressure, the second ventilation hole and the third ventilation hole are in communication, and the non-negative pressure switch is in an open state; When the pressure conducts the hole, the piston group moves
  • the trocar head includes inner and outer needles that are fitted to each other, and the gap between the outer needle and the inner needle is 0.5 mm to 1.5 mm.
  • the inner needle has an inner diameter of l ⁇ 1.5 mm and an outer diameter of 1.5 ⁇ 2 mm.
  • the outer needle has an inner diameter of 2.5 to 3 mm and an outer diameter of 3 to 3.5 mm.
  • the lower end of the outer needle is slightly lower than the lower end of the reaction bottle cover.
  • the lower end faces of the outer needle and the inner needle are inclined surfaces.
  • the negative pressure tank is provided with a storage bracket for storing the reagent bottle, and the storage bracket is disposed on the bottom plate of the negative pressure tank beside the methyl iodide generator.
  • the storage bracket is provided with a flat plate insert with a circular hole, and the storage bracket is made of an elastic material.
  • the invention adopts methyl phosphate or dimethyl acetal compound, radioactive iodide, trimethyl chlorosilane
  • the alkane and acetonitrile are used as raw materials, and are mixed and reacted to prepare a preparation.
  • the reaction principle is:
  • reaction yield is high, generally reaching 40-90%. It has been proved by laboratory tests and field tests that it can completely replace dimethyl sulfate to produce qualified radioactive methyl iodide.
  • the methyl phosphate compound is used as a raw material, and the reaction temperature is low and the reaction time is short relative to the other raw material dimethyl acetal compound, which is more suitable for field operation.
  • the invention converts the push-pull reversing valve into a pneumatically-reduced push-pull reversing valve on the basis of the original device, and adds a delayed output non-negative pressure switch on the intake pipe of the methyl iodide generator and the outside atmosphere of the negative pressure tank. And check valve.
  • the invention improves the trocar needle relative to the prior art, reduces the length of the outer needle, and increases the diameter of the outer needle, wherein shortening the length of the outer needle can avoid the contact of the impurities in the liquid with the outer needle during the stirring process, and increase The diameter of the outer needle greatly reduces the chance that the solid material in the liquid blocks the gap between the inner and outer needles.
  • Both the inner needle and the outer needle are designed as a bevel on the lower end surface. On the one hand, the needle is puncture through the rubber layer of the cork, and on the other hand, it is not easily blocked by the impurities in the liquid or the rubber crumb of the cork.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is a schematic view showing a non-negative pressure switch with a time delay output in a non-negative pressure state according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a non-negative pressure switch with a time delay output in a negative pressure state according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a pneumatically reset push-pull reversing valve in an OFF state according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing the structure of a storage bracket according to an embodiment of the present invention. detailed description
  • the laboratory uses non-radioactive methyl iodide for simulation experiments.
  • the experiments conducted in Examples 1 to 13 using non-radioactive iodides are fully applicable to the same reaction of radioactive iodide, and the yield of radioactive methyl iodide is the same as that of non-radioactive methyl iodide.
  • Example 1 in a 50 ml round bottom reaction flask, 8 ml of acetonitrile and 5 g of non-radioactive potassium iodide were placed in sequence, wherein non-radioactive potassium iodide was used to simulate the radioactive iodine source (the same applies to the following examples), and then 2.5 ml of B was added.
  • the dimethylphosphoric acid dimethyl ester and 3.8 ml of trimethylsilyl silane were mixed, and the reaction was carried out under magnetic stirring at a reaction temperature of 30 ° C and a reaction time of 15 min to prepare a test preparation for the radioactive gas purification ability of the nuclear power plant.
  • Example 2 10 ml of acetonitrile, 5 g of non-radioactive potassium iodide were placed in a 50 ml round bottom reaction flask, and then 2.75 ml of dimethyl chlorophenyl phosphate and 3.8 ml of trimethylsilyl silane were mixed and stirred magnetically.
  • the reaction was carried out at a reaction temperature of 25 ° C and a reaction time of 10 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • the preparation was reflux-condensed at 70 ° C to collect non-radioactive methyl iodide for 1.5 h, and the yield of non-radioactive methyl iodide was analyzed by gas chromatography to be about 55%.
  • Example 3 10 ml of acetonitrile, 5 g of non-radioactive sodium iodide were placed in a 50 ml round bottom reaction flask, and about 3 ml of CCl 3 PO(OCH 3 ) 2 was added , and about 4 ml of trimethylsilyl chloride was mixed.
  • the reaction was carried out under magnetic stirring at a reaction temperature of 25 ° C and a reaction time of 15 min to prepare a test preparation for purifying the radioactive gas of a nuclear power plant.
  • the preparation was reflux-condensed at 70 ° C to collect non-radioactive methyl iodide for 1.5 h, and the yield of non-radioactive methyl iodide was analyzed by gas chromatography to be about 51%.
  • Example 4 10 ml of acetonitrile, 5 g of non-radioactive sodium iodide were placed in a 50 ml round bottom reaction flask, and about 3 ml of t-BuOCOCH 2 PO(OCH 3 ) 2 was added , and about 4 ml of trimethylchlorosilane was mixed. The reaction was carried out under magnetic stirring at a reaction temperature of 25 ° C and a reaction time of 15 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • Example 5 10 ml of acetonitrile, 5 g of non-radioactive sodium iodide were placed in a 50 ml round bottom reaction flask, and then about 3 ml of MeCOOCHPhPOC(OCH 3 ) 2 was added , and about 4 ml of trimethylsilyl chloride was mixed, and magnetically stirred.
  • the reaction was carried out at a reaction temperature of 25 ° C and a reaction time of 15 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • the preparation was reflux-condensed at 70 ° C to collect non-radioactive methyl iodide for 1.5 h, and the yield of non-radioactive methyl iodide was analyzed by gas chromatography to be about 50%.
  • Example 6 In a 50 ml round bottom reaction flask, 10 ml of acetonitrile, 5 g of non-radioactive potassium iodide were placed in turn, and about 3 ml of PhCOCH 2 PO(OCH 3 ) 2 was added , and about 4 ml of trimethylsilyl silane was mixed, and magnetically stirred. The reaction was carried out at a reaction temperature of 25 ° C and a reaction time of 15 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • Example 7 in a 50 ml round bottom reaction flask, 10 ml of acetonitrile, 5 g of non-radioactive sodium iodide, and about 3 ml of (MeO) 2 CHCH 2 PO(OCH 3 ) 2 , about 4 ml of trimethylsilyl silane were placed.
  • the reaction is carried out under magnetic stirring, the reaction temperature is 25 ° C, and the reaction time is 10 min to prepare a test preparation for the radioactive gas purification ability of the nuclear power plant.
  • the preparation was reflux-condensed at 70 ° C to collect non-radioactive methyl iodide for 1.5 h, and the yield of non-radioactive methyl iodide was analyzed by gas chromatography to be about 56%.
  • Example 8 in a 25 ml round bottom reaction flask, 1 ml of acetonitrile, 1 ml of acetone, an aqueous solution containing O.lg non-radioactive potassium iodide, and then 1 ml of trimethylphosphorylacetate and 0.5 ml of trimethylchlorosilane were mixed.
  • the reaction temperature is 20 ° C, and the reaction time is 20 min, and a test preparation for purifying the radioactive gas of the nuclear power plant is prepared.
  • the gas phase non-radioactive methyl iodide was collected by a nitrogen gas agitation and a carrier gas, and the collected gas was analyzed by gas chromatography to obtain a non-radioactive methyl iodide yield of about 65%.
  • Example 9 in a 25 ml round bottom reaction flask, 1 ml of acetonitrile, 1 ml of acetone, an aqueous solution containing O.lg non-radioactive potassium iodide, and then 1 ml of trimethylphosphorylacetate and 0.5 ml of trimethylchlorosilane were mixed.
  • the reaction temperature is 30 ° C, and the reaction time is 30 min, and a test preparation for purifying the radioactive gas of the nuclear power plant is prepared. Then, the gas phase non-radioactive methyl iodide was collected by a nitrogen gas agitation and the carrier gas was collected, and the collected gas was analyzed by gas chromatography to obtain a non-radioactive methyl iodide yield of about 74%.
  • Example 10 8 ml of acetonitrile and 5 g of non-radioactive potassium iodide were placed in a 50 ml round bottom reaction flask, and then 2.5 ml of benzaldehyde dimethyl acetal and 3.8 ml of trimethylsilyl silane were added and mixed, and the reaction was carried out under magnetic stirring.
  • the reaction temperature is 40 ° C and the reaction time is 20 min to prepare a test preparation for the radioactive gas purification ability of the nuclear power plant.
  • the preparation was reflux-condensed at 50 ° C to collect non-radioactive methyl iodide for 1.5 h, and the collected liquid was subjected to density analysis for a non-radioactive methyl iodide yield of about 40%.
  • Example 11 8 ml of acetonitrile and 5 g of non-radioactive potassium iodide were placed in a 50 ml round bottom reaction flask, and then 2.5 ml of benzaldehyde dimethyl acetal and 3.8 ml of trimethylchlorosilyl hydrazine were added, and the reaction was carried out under magnetic stirring.
  • the reaction temperature is 50 ° C, and the reaction time is 40 min, and a test preparation for the radioactive gas purification ability of the nuclear power plant is prepared.
  • Example 12 The preparation was reflux-condensed at 70 ° C to collect non-radioactive methyl iodide for 1.5 h, and the collected liquid was subjected to density analysis for a non-radioactive methyl iodide yield of about 78%.
  • 8 ml of acetonitrile, 5 g of non-radioactive sodium iodide were placed in a 50 ml round bottom reaction flask, and about 3 ml of Me(CH 2 )CH(OCH 3 ) 2 and about 4 ml of trimethylchlorosilane were added.
  • the reaction was carried out under magnetic stirring at a reaction temperature of 45 ° C and a reaction time of 30 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • the preparation was reflux-condensed at 50 ° C to collect non-radioactive methyl iodide for 1.5 h, and the collected liquid was subjected to density analysis for a non-radioactive methyl iodide yield of about 56%.
  • Example 13 in a 50 ml round bottom reaction flask, 8 ml of acetonitrile, 5 g of non-radioactive sodium iodide, and then about 3 ml of (C3 ⁇ 4) 5 C(OC3 ⁇ 4) 2 and about 4 ml of trimethylsilyl chloride were added.
  • the reaction was carried out under magnetic stirring at a reaction temperature of 45 ° C and a reaction time of 30 min to prepare a test preparation for the radioactive gas purification ability of a nuclear power plant.
  • Example 14 Preparation of the preparation of the invention (radioactive methyl iodide) and its use method in an iodine filter field test:
  • the radioactive iodide used in the iodine filter test is a commercially available pharmaceutical grade radioactive sodium iodide aqueous solution.
  • the reaction of the present invention needs to be carried out under anhydrous neutral conditions, and cannot be directly
  • a radioactive sodium iodide aqueous solution is used as a source of radioactive iodine. Therefore, acetone and acetonitrile are firstly arranged as a mixed solution in a volume ratio of 1:1 to 4, and the ratio between the two may be any value in the above range. In this embodiment, a ratio of 1:4 is selected, and 4 ml of the mixed solution is taken. O.
  • lg non-radioactive sodium iodide is added to prepare a mixture of acetonitrile and a buffer distribution solution, and then mixed with a radioactive sodium iodide aqueous solution to obtain an iodine source for the required activity of the test by volume partitioning.
  • methyl iodide generator Connect the methyl iodide generator to the ventilation system tracer injection port, then connect the methyl iodide generator to the compressed air source, first draw the methyl iodide generator box into a negative pressure, and put the water bottle on the bottle. Bracket, start the loop, operate the reversing valve, raise the bracket, let the needle pass through the stopper, observe the bubbling of the liquid level of the reaction vial, if the bubbling is normal, purge the loop for 1 minute, such as drum The bubble is not normal, and the loop blocking condition is checked and eliminated. After confirming that the loop is smooth, stop the loop and take off the water bottle for later use.
  • a mixed solution of radioactive iodine source and acetonitrile, trimethylchlorosilane and phosphoryl group will be contained.
  • Three vials of trimethyl acetate were placed in a negative pressure tank, and about 1 ml of trimethylchlorosilane and trimethylphosphorylacetate were respectively extracted into a vial containing a mixed solution of radioactive iodine source and acetonitrile, shaken and placed.
  • the upper bracket let stand for 5 minutes, start the circuit, operate the reversing valve, raise the bracket, let the needle pass through the stopper, the liquid in the bottle bubbling to generate radioactive methyl iodide, and start to inject into the system Radioactive methyl iodide produced.
  • the product and the preparation of the present invention were subjected to comparative tests using the "dimethyl thiosulfate" method on the iodine filter of the exhaust gas treatment system (TEG) of Daya Bay and Ling Ao Nuclear Power Plant, respectively.
  • the test temperature is around 25 °C;
  • Test air volume 2000m 3 /H ⁇ 10%; 5, "radioactive methyl iodide" system injection time: 30 minutes;
  • the radioactive methyl iodide of the invention can completely replace the radioactive methyl iodide produced by the "dimethyl sulfate" method, and is suitable for the iodine filter. Used in field trials. Second, the effect of iodine source solvent on the yield of methyl iodide:
  • the radioactive iodine source used in the field test is a radioactive Nal aqueous solution or a radioactive KI aqueous solution, and Nal or KI is soluble in water, ethanol, and acetone solvents. Since trimethylchlorosilane is in contact with water and alcohol is susceptible to hydrolysis and alcoholysis reaction, the preparation of radioactive methyl iodide by trimethylsilyl silane/Nal or KI is carried out under anhydrous neutral conditions. In order to test the effect of water and other solvents on the above reaction, the effects of water, ethanol and acetone solvents on the yield of methyl iodide were tested. The test results are shown in Table 2. Table 2 Effect of different solvents on the yield of methyl iodide
  • methyl iodide yield is less than 45% when distilled water or ethanol is used as the solvent, and the methyl iodide yield is 80% or more when acetone is used as the solvent. Therefore, acetone can be used as a solvent for radioactive Nal or KI.
  • the volume is generally not more than 1.5ml through multiple purchase records.
  • the amount of water in the radioactive solution during the actual test is very small, and from the test results, 0.1 ml of water is present.
  • the yield of methyl iodide is still above 70%, so the effect of the amount of water in the purchased radioactive source on the yield of methyl iodide after dilution with acetone is negligible.
  • test conditions Refer to ASTM D3803 nuclear grade activated carbon standard test method and field test conditions. Temperature: 25-30 ° C
  • Test carbon bed Carbon bed total depth 5cm, divided into 3 layers, diameter 5cm methyl iodide feed line speed: 12.2 ⁇ 0.3m/min
  • Radioactive methyl iodide dosage 0.3 ⁇ 2MBq
  • Test (1) Adsorption efficiency of radioactive methyl iodide by nuclear grade impregnated activated carbon
  • Test (2) Effect of acetonitrile on the efficiency of adsorption of radioactive methyl iodide by nuclear-grade impregnated activated carbon.
  • the results are shown in Test (2) in Table 3.
  • Test (3) Effect test of simultaneous injection of methyl iodide, acetone and acetonitrile
  • Test (4) Inject acetone and acetonitrile first, then inject radioactive methyl iodide, and investigate the effect of nuclear-grade impregnated activated carbon on the adsorption efficiency of radioactive methyl iodide under the conditions of injection. The amount of various reagents is the same as test (3). The results are shown in Test (4) in Table 3. Table 3 Effect of acetone and acetonitrile on activated carbon
  • a nuclear power plant iodine filter test device comprising a negative pressure tank 2, a compressed air distributor 4 is arranged on the negative pressure tank 2, and a compressed air injection pump is also connected to the negative pressure tank 2
  • the compressed air jet pump 21 is connected to an air supply port of the compressed air distributor 4 for maintaining a negative pressure state in the negative pressure tank 2.
  • the suction pipe of the compressed air jet pump 21 extends into the negative pressure tank 2, and the suction pipe thereof
  • An iodine removing device 20 is mounted on the suction port.
  • a methyl iodine generator is provided in the negative pressure tank 2, and the methyl iodine generator includes a compressed air jet pump 3, a check valve 5, a throttle valve 6, a generator body 23, a trocar 18, a reaction bottle 17,
  • the cylinder 13 and its reaction bottle lift 16 are provided, wherein the reaction bottle lift 16 includes a reaction bottle holder for supporting the reaction bottle 17 and a jig for clamping the reaction bottle 17.
  • the compressed air injection pump 3 is connected to the compressed air distributor 4, and is supplied by the compressed air distributor 4, the suction port of the compressed air injection pump 3 is connected to the unidirectional width 5, and the lower end of the check valve 5 is connected to the throttle valve 6, The lower end of the throttle 6 is connected to the generator body 23, and the trocar 18 is positioned below the generator body 23 and fixed to the generator body 23.
  • the cylinder 13 is mounted on a support 14, and the piston rod of the cylinder 13 is connected to the reaction bottle lifting frame 16 for moving the reaction bottle 17.
  • An intake pipe 204 is connected to the generator body 23, a rotor flow meter 22 is disposed on the intake pipe 204, a check valve 27, a non-negative pressure switch 26 with a delay function, and an end of the intake pipe 204 outside the negative pressure tank 2
  • An intake iodine removal device 1 is provided.
  • the trocar head 18 includes an inner needle and an outer needle. The air outside the negative pressure tank 2 is communicated with the inner needle tube of the trocar head 18 via the air intake iodine removing unit 1, and the suction port of the compressed air jet pump 3 is The gap between the outer needle and the inner needle of the trocar 18 is communicated.
  • a pneumatic control unit is further provided in the negative pressure tank 2, which comprises a micro pressure signal valve 8, a pneumatically reset push-pull reversing valve 10, a check valve throttle valve 7, and a check valve 9, two Five-way single air-controlled reversing valve 11.
  • the air inlet P of the two-position five-way single air-operated reversing valve 11 is connected to the air supply port of the pneumatic control unit by the compressed air distributor 4, and the second air hole A of the two-way five-way single air control reversing wide 11
  • the check valve 9 is connected to the upper air inlet of the cylinder 13
  • the first air hole B is connected to the air inlet of the pneumatically reset push-pull reversing valve 10
  • the control hole K is connected to the air outlet of the micro pressure signal valve 8 .
  • the non-negative pressure switch 26 includes a cylinder block 260.
  • the cylinder block 260 is provided with three pistons 262, 263, and 264 which are arranged in series to form a piston group.
  • the two sides are respectively provided with springs 261 and 266 having the same elastic force, and the cylinder body 260 is provided with a first ventilation hole Z and a second ventilation hole T.
  • the third vent hole E and the fourth vent hole Q communicate with the air in the negative pressure tank 2.
  • the third vent E is coupled to the compressed air distributor 4 to provide power to the non-negative pressure switch 26.
  • the cylinder 260 is provided with a pressure transmitting hole W for inputting a gas to move the piston.
  • the pressure conducting hole W is connected to the check valve 27 of the intake pipe 204 through a pipe; as shown in FIG. 2, the pressure is input at a non-negative pressure signal.
  • the second vent hole T and the third vent hole E communicate with each other, and the compressed air is sent to the P1 port of the pneumatically reset push-pull reversal width 10 through the third vent hole E and the second vent hole T to be reset or blocked.
  • Power source turn off or prevent the handle from opening, that is, if it is turned on, it will be turned off. If it is turned off, it will be prevented from opening.
  • the non-negative pressure switch is turned on; as shown in Figure 3, when the pressure is conducted When W is input to the negative pressure, the chamber of the spring 261 is at a negative pressure, the pistons 262, 263, 264 are moved in the direction of the pressure transmission hole W, and the non-negative pressure switch is in a closed state.
  • the movement of the pistons 262, 263, 264 causes the first vent hole Z and the second vent hole T to communicate, and the air in the pneumatic return push-pull reversing valve 10 passes through the first vent hole Z of the non-negative pressure switch 26 from the first pressure balance port P1. Dismissed.
  • the compressed air body enters between the pistons 263, 264.
  • the fourth vent hole Q is used to maintain the pressure of the air chamber where the spring 266 is located when the pistons 262, 263, 264 move, and to reduce the air resistance when the pistons 262, 263, 264 move.
  • the pneumatically-reduced push-pull reversing valve 10 includes a push-pull reversing valve cylinder 101.
  • the push-pull reversing valve cylinder 101 is connected in series with three pistons 102, 103, 104 through a pull rod 106.
  • a handle 105 connected to the pistons 102, 103, 104 and used for pushing and pulling the pistons 102, 103, 104 is disposed outside the valve cylinder 101.
  • the push-pull reversing cylinder 101 has a first air hole 13, a second air hole & a third
  • the air hole c, the fourth air hole 1 ⁇ , and the fifth air hole d have a total of five air holes.
  • the two ends of the push-pull reversing wide cylinder 101 are respectively provided for balancing the pressure inside and outside the cylinder 101 of the reversing valve when the pistons 102, 103, and 104 move.
  • the first pressure balance port P1, the second pressure balance port e, the third air hole c and the fifth air hole directly pass the negative pressure
  • the handle 105 when the handle 105 is pushed into the closed state of the pneumatic reset, the first air hole b and the fourth air hole P' are connected, and the second air hole a and the fifth air hole d are connected.
  • the third air hole c is closed by the first piston 102. As shown in FIG.
  • the second air hole a of the pneumatically-reduced push-pull reversing valve 10 is connected to the lower air inlet hole of the cylinder 13, and the first air hole b is widened by a one-way wide throttle.
  • the upper air inlet port of the cylinder 13 is connected, the first pressure balance port Pi is connected with the second vent hole T of the non-negative pressure switch; the air inlet hole M of the micro pressure signal width 8 is connected to the air supply line of the pneumatic air control unit of the compressed air distributor 4
  • the signal input hole N is connected to the suction port of the compressed air jet pump 3.
  • the bottom of the negative pressure tank 2 is provided with a base 19 and a vacuum gauge 25 on the side.
  • Operation process Manipulating the handle 105 installed outside the negative pressure tank 2, pulling it outward, exhausting the first air hole b and the third air hole c of the cylinder 13 through the pneumatically reset push-pull reversing valve 10, pneumatically reset
  • the second air hole a of the push-pull reversing valve 10 communicates with the fourth air hole F, supplies air to the lower cylinder of the cylinder 13, raises the reaction bottle 17 to a suitable height, and the trocar 18 mounted on the generator body 23 penetrates into the reaction bottle.
  • the bubbling air can also agitate the mother liquid, thereby accelerating reaction speed.
  • the gas stream carrying methyl iodide is stabilized by the throttle pot 6 and then passed through the open check valve 5 and finally enters the compressed air jet pump 3 to be mixed with the working air. After the outflow.
  • the bubbling flow rate is indicated by the rotameter 22 and can be controlled by adjusting the operating pressure of the compressed air jet pump 3.
  • the carrier air inlet is provided with an iodine removing device 1, the purpose of which is to prevent the radioactive material in the reaction bottle 17 from being counteracted from the air inlet after the device does not operate, and the residual radioactive gas in the pipeline diffuses and escapes and the circuit is blocked.
  • the position of the methyl iodide generator can be arbitrarily adjusted along the direction of the slide rail 12.
  • the handle of the pneumatically-reduced push-pull reversing valve 10 is pushed inward, the upper cylinder of the cylinder 13 is pneumatically reset and the second air hole a of the wide-width 10 is exhausted through the fifth air hole d, and the pneumatically-reduced push-pull reversing ⁇ 10
  • the fourth air hole P communicates with the first air hole b, supplies air to the upper cylinder of the cylinder 13, lowers the reaction bottle 17, and is separated from the trocar 18, and the methyl iodide stops outputting.
  • the suction port of the compressed air injection pump 3 is a negative pressure
  • the micro pressure signal is wide 8 without command output
  • the B port of the two-position five-way single air-controlled reversing valve 11 is pneumatically reset.
  • the P' port of the push-pull reversing valve 10 is supplied with air, and the operator can push the handle of the push-pull reversing valve 10 provided by the pneumatic reset outside the negative pressure tank 2 to push it outward or push inward to control the cylinder 13
  • the lift of the piston controls the start and stop of the occurrence of methyl iodide gas.
  • the methyl iodide injection line valve is forgotten to open, or the injection line resistance is too large, which may cause the compressed air jet pump 3 to suck in due to poor air outlet.
  • a positive pressure is formed at the gas port, and in order to prevent the radioactive gas in the reaction bottle 17 from being reversely pressed out by the pressure, a check valve 5 is installed in the suction port of the compressed air jet pump 3 in the apparatus, and the compressed air is injected.
  • the micro pressure signal valve 8 of the pneumatic control unit starts to operate immediately after receiving the positive pressure signal, and controls the hole K to the two-position five-way single air-controlled reversing valve 11.
  • the output pressure is such that the air outlet B is closed, the air source of the pneumatically reset push-pull reversing valve 10 is cut off, the air source of the cylinder 13 is lost, and the air is exhausted through the B port of the two-position five-way single air control reversing valve 11.
  • the air outlet A of the two-position five-way single air-operated reversing valve 11 is opened, and the upper air intake hole of the cylinder 13 is inflated through the check valve 9, and the reaction bottle 17 is lowered, and the ferrule 18 is released.
  • Base iodine output stop, pneumatic control list Yuan plays a role in security protection.
  • the pneumatic control unit has a start-up time of about 1 ⁇ 2 seconds, but since the check valve 5 is provided in the gas path of the methyl iodide generator, only a small amount of air is reversely entered into the reaction bottle during this time.
  • the one-way valve 27 can block the flow of radioactive gas and liquid in the reaction bottle 17 to the outside environment.
  • the specific operation of the non-negative pressure switch 26 with the delay output and the pneumatically-reduced push-pull reversing valve 10 is as follows: After the methyl iodide generator is connected to the compressed air source, The compressed air passes through the compressed air distributor 4, passes through the third vent E of the non-negative pressure switch 26 with the delayed output, and enters the first pressure balance port P1 of the pneumatically reset push-pull reversing valve 10 through the second vent hole T. , to prevent the handle from pulling out.
  • the needle in the trocar 18 is evacuated from the outside through the 204 line, and the piston of the non-negative pressure switch 26 with the delayed output moves to the right, the first vent. Z is connected to the second vent hole T, and the first pressure balance port P1 of the pneumatically-reduced push-pull reversing valve 10 is exhausted through the ventilating valve. At this time, the pneumatically-reduced push-pull reversing valve 10 can be manually pulled out, and the reaction bottle holder 15 is manipulated upward.
  • the pressure transmission hole W of the non-negative pressure switch 26 will immediately have a non-negative pressure, so that the handle is immediately reset, so that the reaction bottle holder 15 is restored after the suction port of the compressed air jet pump 3 returns to the negative pressure.
  • Not self Ascending after using the delayed output, ensure that the micro pressure signal is wide and can move first, and the reaction bottle holder 15 is lowered.
  • the non-negative pressure switch 26 is normally in a negative pressure state, and the push-pull reversing valve is not pneumatically reset.
  • the pistons 262, 263, 264 of the output non-negative pressure switch 26 are moved to the left, and the compressed air passes through the distributor 4, passes through the E port of the non-negative pressure switch 26, and enters the pneumatically reset push-pull reversing valve 10 through the second vent hole T.
  • the first pressure balance port P1 drives the pistons 102, 103, 104 to move to the left, the first air hole b and the air source are turned on, the cylinder 13 is charged to the upper cylinder, and the lower cylinder is exhausted through the second air hole a, and the reaction bottle holder 15 is exhausted. The downward movement causes the reaction bottle 17 and the trocar 18 to disengage.
  • the blocking position is in the trocar 18 to the check valve 5, and the non-negative pressure switch 26 is in a negative pressure state, the gas source and the second vent hole T are not connected, pneumatically
  • the first pressure balance port P1 of the reset push-pull reversing valve 10 is not ventilated, and the handle can be pulled out, so that the reaction bottle holder 15 can be raised upward, but due to the above protection, the pneumatic reset is actuated, thereby lowering the reaction bottle holder 15
  • the blocking position is at the inner needle portion of the trocar 18, and the non-negative pressure switch 26 is in a non-negative pressure state, and the compressed air passes through the second vent T.
  • the first pressure balance port P1 of the pneumatically reset push-pull reversing valve 10 enters, so that the handle cannot be pulled out. Only when the above defects are handled well can they happen again.
  • the trocar includes an inner needle and an outer needle that are fitted to each other, and the gap between the outer needle and the inner needle is 0.5 mn! ⁇ 1.5mm is more suitable, the lower end of the outer needle is slightly lower than the lower end of the reaction bottle cover.
  • the embodiment reduces the length of the outer needle by more than 2 mm, and increases the diameter of the outer needle by 0.5 to 1 mm, and the lower end faces of the outer needle and the inner needle are inclined surfaces to form a long pointed triangular shape. Needle.
  • a storage bracket 50 of elastic material is installed at the inner bottom of the negative pressure tank.
  • the storage bracket 50 is 15 cm long, 4 to 5 cm wide, and 4 cm thick.
  • the storage bracket is provided with four circular holes 51, two of which are holes of ⁇ 32, and the two circular holes are holes of ⁇ 26.
  • the above-mentioned circular hole 51 is used for placing a reagent bottle for testing, and the elastic material is convenient for inserting a syringe for use in preparation.
  • the holes at the four corners of the support are screwed onto the bottom plate of the negative pressure tank 2 of the portable methyl iodide generating device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Measurement Of Radiation (AREA)

Description

核电厂放射性气体净化能力试验用制剂、 制备方法 及其使用该制剂的碘过滤器试验装置 技术领域
本发明属于百万千瓦级先进压水堆核电技术领域,涉及一种核电安全检测 用品、制备方法及其使用装置,尤其涉及一种核电厂放射性气体净化能力试验 用制剂、 制备方法及其使用该制剂的碘过滤器试验装置。 背景技术
在百万千瓦级先进压水堆核电站的反应堆放射性裂变产物中,气态放射性 碘主要呈现为分子碘 (1291213112)和有机碘 (C¾131I)。 其中单质分子碘占气态放 射性碘的 90〜95%, 有机碘只占气态放射性碘的 5〜10%, 虽然放射性碘浓度很 低,一般在一次设计基准事故后,反应堆安全壳内空气中放射性碘的浓度不超 过 l Ci/m3或 8 g/m3, 但因人体甲状腺对放射性碘有很高的吸收能力, 释放后 其对人体健康危害是很大的, 因此, 需要在排风***中使用碘过滤器(或称为 碘吸附器)进行碘过滤处理, 用于拦截空气中可能存在的放射性碘, 给服务的 区域提供安全、无害的新鲜空气或过滤工艺性放射性废气排放中放射性碘, 以 减少放射性碘并控制放射性碘对大气的排放, 减少对环境的影响。
为确保核电站的重要通风***中碘过滤器的可用性,需要定期对碘过滤器 进行现场效率试验,使其对放射性碘的拦截能力满足要求。国内核电站碘过滤 器现场效率试验"放射性甲基碘法" 使用的是法国机械标准委员会编制的 AFNOR NF MG2-206《碘过滤器净化系数测定方法》。 该方法是使用甲基碘气 体发生装置在碘过滤器的上游投放放射性甲基碘示踪剂,在碘过滤器的上、下 游使用采样碳盒采样,然后用 γ谱仪分析上、下游碳盒放射性活度,再使用上、 下游放射性活度的比值 (净化系数) 来判断碘过滤器的过滤特性。
现有的放射性甲基碘气体示踪剂是由放射性和非放射性的碘化钠溶液和 硫酸二甲酯反应生成, 其反应式为:
Na127I十 Na131I十 (CH3)2SO4=Na2S04十 CH3 131I十 CH3 127I
放射性甲基碘是气载碘化物,其理化性质和其他有机碘化物相似,具有代表性, 并且其具有沸点低、 易挥发、 易产生、 易测量、 不易沉积、 解析时间长、 方便 测量的优点。放射性甲基碘属于最不易被碘过滤器吸附的一类碘化物,不会影 响碘过滤器的过滤特性, 加之半衰期短, 对人员和环境的辐射影响小, 因此将 其用于碘过滤器的现场检测。但是由于放射性甲基碘法中采用的原料硫酸二甲 酯是剧毒品, 其毒性与芥子气相似, 储存和使用时的安全和环保要求很高, 具 有较高的试验风险。虽然硫酸二甲酯在核电站的存贮、使用量很少, 但作为电 站唯一在用的剧毒品, 属于国家管控化学试剂, 需在安监部门、公安部门登记 备案, 需要在电站设置符合法规的存放仓库、并建立相应的管理制度。核电站 付出了大量的人力和财力来确保其万无一失, 在管理上存在非常大的风险。
现有的甲基碘发生装置存在以下问题: 1、虽然现有装置中在空气入口处设 有除碘装置,可在出现设备故障时,将回流到进气管路中的放射性气体通过除 碘装置除去, 不使放射性气体排出甲基碘发生装置, 污染试验人员。而且除碘 装置主要对放射性气体产生除碘作用, 并不能对放射性液体产生明显除碘作 用, 如果有放射性液体进入则会失效。 2、 现有的装置中套管针头的内针和外 针都是平头,如果反应瓶内存在杂质或在反应时有固体产物生成,加上反应时 液体的搅动, 很容易在平头的内针、 外针之间形成堵塞。 3、 在发生回路中的 喷射泵吸气口以下部位出现堵塞后 (如针头或节流阀堵塞), 现有的甲基碘发生 装置不能自动停止甲基碘的发生, 由于堵塞产生的甲基碘气体无法排出, 同时 甲基碘气体的增加会使得反应瓶内出现正压,将小瓶中的液体碘源压入进气管 路而损耗或甲基碘气体从外针和瓶塞处漏到发生器箱体内, 即使故障排除,剩 余碘源由于损耗也不能再用于试验, 被浪费掉。 发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种现场 反应、随用随产生、对碘过滤器中的核级浸渍活性炭无害或毒害很小的核电厂 放射性气体净化能力试验用制剂。
本发明进一步要解决的技术问题在于,针对现有技术的上述缺陷,提供一 种反应物非剧毒、 反应无需高温、高压就能快速高效进行、 除甲基碘外的其它 生成物对碘过滤器中的核级浸渍活性炭无害或毒害很小的核电厂放射性气体 净化能力试验用制剂的制备方法。
本发明另外要解决的技术问题在于,提供一种安全性能好、反应可控性大 大提高、 无碘源强度损失的应用该制剂的核电厂碘过滤器试验装置。
本发明再要解决的技术问题是,提供一种出现反应回路喷射泵吸气口以下 部位堵塞故障时, 能自动处置的应用该制剂的核电厂碘过滤器试验装置。
本发明解决其技术问题所采用的技术方案是:
一种核电厂放射性气体净化能力试验用制剂,是以磷酸甲酯类化合物或二 甲縮醛类化合物、 乙腈、 三甲基氯硅垸和放射性碘源为原料, 在 20°C〜50°C 下混合后反应得到。
核电厂放射性气体净化能力试验用制剂中, 所述磷酸甲酯类化合物为 RlPO(OCH3)2 , 其中 为 PhClCH2、 CC13、 NCCH2、 MeCO、 MeOCOCH2、 EtOCOCH2、 t-BuOCOCH2、 PhCH2OCOCH2、 EtOCO、 Et2NCO、 MeCOOCHPh、 PhCOCH2、 MeOCH2、 (MeO)2CHCH2或 (MeO)2CH。
核电厂放射性气体净化能力试验用制剂中, 所述二甲缩醛类化合物为 R2R3C(OCH3)2 , 其中 R2为 Ph、 Me(CH2)5或 (CH2)5, 所述 R3为 Me或H。 一种核电厂放射性气体净化能力试验用制剂的制备方法,是以磷酸甲酯类 化合物或二甲缩醛类化合物、 乙腈、三甲基氯硅垸和放射性碘源为原料, 混合 后反应, 反应时间为 10〜40min, 反应温度为 20°C〜50°C, 即得碘过滤器现场 试验用放射性甲基碘示踪剂。
所述的磷酸甲酯类化合物或二甲缩醛类化合物、乙腈与三甲基氯硅垸的体 积比为 0.1-2: 3-6: 0.1〜2。
根据放射性碘源选择不同, 本发明制备方法采用以下两种具体的技术方 案:
一、第一种具体技术方案中, 所述放射性碘源为放射性碘化物, 放射性碘 化物的放射性活度为 10~400MBq。
第一种具体技术方案中,所述放射性碘化物为放射性碘化钾或放射性碘化 钠。
第一种具体技术方案中, 以放射性碘化物、 乙腈、磷酸甲酯类化合物、三 甲基氯硅烷为原料混合,鼓入惰性气体或搅拌下反应;其中反应温度为 20°C〜 30°C, 反应时间为 10~30min。
第一种具体技术方案中,优选:在反应瓶中依次放入乙腈、放射性碘化钾, 再放入乙基磷酰基乙酸二甲酯、三甲基氯硅烷混匀搅拌下反应即得制剂,其中 反应温度 30°C, 反应时间为 15min; 乙腈、放射性碘化钾、 乙基磷酰基乙酸二 甲酯、 三甲基氯硅垸之间的比例为 3~6ml:3~4g:0.1~2ml:0.1~2ml。
第一种具体技术方案中, 另外优选: 在反应瓶中依次放入乙腈、放射性碘 化钾, 再放入邻氯苯基磷酸二甲酯、 三甲基氯硅烷混勾搅拌下反应即得制剂, 其中反应温度 25°C, 反应时间为 lOmin; 乙腈、放射性碘化钾、邻氯苯基磷酸 二甲酯、 三甲基氯硅烷之间的比例为 3~6ml:3~4g:0.1~2ml:0.1~2ml。
第一种具体技术方案中, 以放射性碘化物、 乙腈、 二甲縮醛类化合物、三 甲基氯硅垸为原料混勾,鼓入惰性气体或搅拌下反应;其中反应温度为 40°C〜 50°C, 反应时间为 20min〜40min。
第一种具体技术方案中,优选:在反应瓶中依次放入乙腈、放射性碘化钾, 再放入苯甲醛二甲缩醛、三甲基氯硅烷混匀搅拌下反应即得制剂,其中反应温 度 40°C, 反应时间为 20min; 乙腈、 放射性碘化钾、 苯甲醛二甲缩醛、 三甲基 氯硅垸之间的比例为 3〜6ml:3〜4g:0.1〜2ml:0.1〜2ml。
第一种具体技术方案中, 另外优选: 在反应瓶中依次放入乙腈、放射性碘 化钾, 再放入 (CH2)5C OCH3 )2、 三甲基氯硅垸混匀搅拌下反应即得制剂, 其中 反应温度 45°C, 反应时间为 30min; 乙腈、 放射性碘化钾、 (CH2)5C(OCH3)2、 三甲基氯硅垸之间的比例为 3~6ml:3~4g:0.1~2ml:0.1〜2ml。
二、第二种具体的技术方案中, 所述放射性碘源由缓冲分配溶液、放射性 碘化物的水溶液混合制成, 获得的放射性碘源的放射性活度为 10~400MBq; 所述缓冲分配溶液是由非放射性碘化物和丙酮混合制成。
第二种具体的技术方案中,所述放射性碘化物为放射性碘化钾或放射性碘 化钠, 非放射性碘化物为非放射性碘化钾或非放射性碘化钠。
第二种具体的技术方案中, 包括以下步骤:
( 1 )、将乙腈与丙酮混合, 再放入非放射性碘化物, 制成乙腈与缓冲分配 溶液的混合溶液, 其中各原料之间的比例为: 乙腈:非放射性碘化物:丙酮
=l~4ml:0.1~5g:0.5~2ml;
(2)、 接着在步骤 (1 ) 的混合溶液中加入放射性碘化物的水溶液, 制成 乙腈和放射性碘源的混合物;
(3 )、 然后在步骤 (2 ) 乙腈和放射性碘源的混合物中加入磷酸甲酯类化 合物或二甲缩醛类化合物、三甲基氯硅垸均匀混合,鼓入惰性气体或搅拌下反 应, 反应温度为 20°C〜50°C, 反应时间为 10〜40min, 即得碘过滤器现场试验 用放射性甲基碘示踪剂。
第二种具体的技术方案中, 步骤( 3 )中如将磷酸甲酯类化合物、三甲基 氯硅垸加入放射性碘源和乙腈的混合物中混匀, 鼓入惰性气体或搅拌下反应, 其中反应温度为 20°C〜30°C, 反应时间为 10~30min。
第二种具体的技术方案中, 步骤( 3 ) 中, 如将二甲縮醛类化合物、 三甲 基氯硅垸加入放射性碘源和乙腈的混合物中混匀, 鼓入惰性气体或搅拌下反 应, 其中反应温度为 40°C〜50°C, 反应时间为 20〜40min。
三、上述所有的核电厂放射性气体净化能力试验用制剂的制备方法中,所 述磷酸甲酯类化合物为^尸 0(OCH3 )2, 其中 为?11( 1( ¾、 CC13、 NCCH2、 MeCO、 MeOCOCH2、 EtOCOCH2、 t-BuOCOCH2、 PhCH2OCOCH2、 EtOCO、 Et2NCO、 MeCOOCHPh, PhCOCH2、 MeOCH2、 (MeO)2CHCH2或 (MeO)2CH。
上述所有的核电厂放射性气体净化能力试验用制剂的制备方法中,所述二 甲縮醛类化合物为 R2R3C(( CH3)2, 其中 为卩11、 Me(CH2)5或 (CH2)5, 所述 R3为 Me或H。 一种采用上述制剂的核电厂碘过滤器试验装置,包括负压箱,负压箱上设 有压縮空气分配器, 负压箱内设有甲基碘发生器、气动控制单元, 所述的甲基 碘发生器包括压缩空气喷射泵、 单向阀、 节流阀、 发生器体、 套管针头、 反应 瓶、反应瓶升降架、用于升降架上下移动的气缸, 所述甲基碘发生器连接有与 负压箱外界大气连通的进气管,所述进气管通过发生器体与套管针头的内针相 通,所述压缩空气喷射泵的吸气口与所述套管针头的内、外针之间的间隙相通, 所述的气动控制单元包括微压信号阀、 推拉换向阀、 二位五通单气控换向阔、 单向节流阀、单向阀,其特征在于:所述推拉换向阀为气动复位的推拉换向阔, 所述进气管上设有延时输出非负压开关和单向阀。
核电厂碘过滤器试验装置中,所述的延时输出非负压开关与气动复位的推 拉换向阀连接,所述的延时输出非负压开关向气动复位的推拉换向阀输出气体 来关闭气动复位的推拉换向阀。
核电厂碘过滤器试验装置中,所述气动复位的推拉换向阀包括推拉换向阀 气缸,推拉换向阀气缸内串接三个活塞,在推拉换向阀气缸外设有与活塞连接 并用于推拉活塞运动的手柄,推拉换向阀气缸壁开有第一气孔至第五气孔共五 个气孔,推拉换向阀气缸的两端部分别设有用于活塞运动时平衡推拉换向阀气 缸内外压力的第一压力平衡口、第二压力平衡口;拉出手柄使气动复位的推拉 换向阀处于开启状态时,第二气孔和第四气孔联通,第一气孔和第三气孔联通, 第五气孔被第三活塞封闭; 推入手柄使气动复位的推拉换向阀处于关闭状态 时, 第一气孔和第四气孔联通, 第二气孔和第五气孔联通, 第三气孔被第一活 塞封闭。
核电厂碘过滤器试验装置中,所述活塞通过拉杆连接,所述的第一压力平 衡口与延时输出非负压开关连通。
核电厂碘过滤器试验装置中, 所述的延时输出非负压开关包括非负压开 关, 在所述的非负压开关出口加设用于非负压信号延时输出的延时开关。 核电厂碘过滤器试验装置中,所述的非负压开关包括缸体,缸体内设有三 个活塞间隔设置并连成一体的活塞组, 活塞组两侧分别设有弹力相同的弹簧, 缸体上设有第一通气孔、第二通气孔和第三通气孔,所述缸体一端设有用于输 入气体使活塞组移动的压力传导孔,所述压力传导孔通过管道与发生器体上的 内针进气口相连;在无气体输入或正压输入所述压力传导孔时,所述第二通气 孔和第三通气孔相通,非负压开关处于开启状态;在负压输入所述压力传导孔 时,所述活塞组移动使得第一通气孔和第二通气孔相通, 非负压开关处于关闭 状态。
核电厂碘过滤器试验装置中, 所述的套管针头包括相互套装的内针和外 针, 外针和内针之间的间隙为 0.5mm~1.5mm。
核电厂碘过滤器试验装置中, 所述内针的内径为 l〜1.5mm、 外径为 1.5~2mm。
核电厂碘过滤器试验装置中,所述外针内径为 2.5〜3mm、外径为 3〜3.5mm。 核电厂碘过滤器试验装置中,所述外针下端出口略低于反应瓶封盖的下端 面。
核电厂碘过滤器试验装置中, 所述外针、 内针的下端面都为斜面。
核电厂碘过滤器试验装置中,所述负压箱内设有用于存放试剂瓶的存储支 架, 所述存储支架设置在甲基碘发生器旁边的负压箱底板上。
核电厂碘过滤器试验装置中, 所述存储支架为设有带有圆孔的平板插架, 所述存储支架为弹性材料制成。 本发明采用磷酸甲酯类或二甲缩醛类化合物、放射性碘化物、三甲基氯硅 烷、 乙腈为原料, 混合后反应制成制剂。 反应原理为:
R! PO(OCH3 )2 + 2Me,SiCl + 2層 c¾cw > RlPO{OSiMei)2 + 2CHJ + INaCl R2R3C(OCH3)2 +Me SiCl + NaI CH'CN >R2R3CO+ CH,I + Me,SiOCH, + NaCl 上述原料为非剧毒化学品; 反应温度控制在 20°C〜50°C, 温度较低; 并能在 常压下进行, 整个的反应时间为 10〜40min, 时间短, 可以满足现场操作使用 的要求。 同时其他反应产物对碘过滤器中的核级浸渍活性炭无影响, 另外, 反 应产率较高, 一般可以达到 40~90%。 通过实验室试验和现场试验证明完全可 以替代硫酸二甲酯生成合格的放射性甲基碘。
采用磷酸甲酯类化合物作为原料, 相对于另一种原料二甲缩醛类化合物, 反应温度低和反应时间短, 更适应现场操作使用。
本发明在原有装置的基础上将推拉换向阀改为气动复位的推拉换向阀,并 在甲基碘发生器与负压箱外界大气连通的进气管上增加了延时输出非负压开 关和单向阀。这样不管气体还是液体都不能从该回路外溢,并且在出现发生回 路喷射泵吸气口以下部位堵塞后, 能停止甲基碘的发生, 并自动将反应瓶与套 管针头脱离, 防止反应瓶中剩余碘源因压入内针管线而损失强度,本发明增强 甲基碘发生装置的安全性和保证剩源强度不被损失。
本发明相对于现有技术将套管针头进行了改进,减少了外针长度,并增加 了外针的直径,其中縮短外针长度可以避免在搅拌过程中液体中杂质与外针接 触, 同时增加了外针的直径, 就大大减少液体内存在的固状物堵住内、外针之 间间隙的机会。内针和外针均在下端面设计成斜面,一方面便于针头穿刺过瓶 塞橡胶层, 另一方面不易被液体中杂质或瓶塞橡胶碎屑堵住针头。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明实施例的结构示意图;
图 2 是本发明实施例的带延时输出的非负压开关处于非负压状态的示意 图;
图 3是本发明实施例的带延时输出的非负压开关处于负压状态的示意图; 图 4是本发明实施例的气动复位的推拉换向阀处于关的状态下的示意图; 图 5是本发明实施例的气动复位的推拉换向阀处于开的状态下的示意图; 图 6是本发明实施例的存储支架的结构示意图。 具体实施方式
由于制剂中的放射性甲基碘会对人体产生危害,因此实验室采用非放射性 甲基碘进行模拟实验。 实施例 1~13使用非放射性碘化物进行实验的结论是完 全适用于放射性碘化物参与同样反应,放射性甲基碘的收率与非放射性甲基碘 相同。 实施例 1, 在 50ml圆底反应烧瓶中依次放入 8ml乙腈、 5g非放射性碘化 钾, 其中非放射性碘化钾用于模拟放射性碘源(下同, 以下实施例不再赘述), 再放入 2.5ml乙基磷酰基乙酸二甲酯、 3.8ml三甲基氯硅垸混匀, 在磁力搅拌 下进行反应, 反应温度 30°C, 反应时间为 15min, 制得核电厂放射性气体净化 能力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 收集 液体经密度分析非放射性甲基碘收率约 46%。 实施例 2, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钾, 再放入 2.75ml邻氯苯基磷酸二甲酯, 3.8ml三甲基氯硅垸混匀, 在磁力 搅拌下进行反应, 反应温度 25°C, 反应时间为 lOmin, 制得核电厂放射性气体 净化能力试验用制剂。 将该制剂于 70 °C回流冷凝收集非放射性甲基碘 1.5h, 经气相色谱分析非放射性甲基碘收率约 55%。 实施例 3, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钠, 再放入约 3ml CCl3PO(OCH3)2, 约 4ml三甲基氯硅垸混勾, 在磁力搅拌 下进行反应, 反应温度 25°C, 反应时间为 15min, 制得核电厂放射性气体净化 能力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 经气 相色谱分析非放射性甲基碘收率约 51%。 实施例 4, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钠, 再放入约 3ml t-BuOCOCH2PO(OCH3)2, 约 4ml三甲基氯硅烷混匀, 在 磁力搅拌下进行反应, 反应温度 25°C, 反应时间为 15min, 制得核电厂放射性 气体净化能力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 经气相色谱分析非放射性甲基碘收率约 46%。 实施例 5, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钠, 再放入约 3ml MeCOOCHPhPOC(OCH3)2 , 约 4ml三甲基氯硅垸混匀, 在磁力搅拌下进行反应, 反应温度 25°C, 反应时间为 15min, 制得核电厂放射 性气体净化能力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 经气相色谱分析非放射性甲基碘收率约 50%。 实施例 6, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钾, 再放入约 3ml PhCOCH2PO(OCH3)2, 约 4ml三甲基氯硅垸混匀, 在磁力 搅拌下进行反应, 反应温度 25°C, 反应时间为 15min, 制得核电厂放射性气体 净化能力试验用制剂。 将该制剂于 70 °C回流冷凝收集非放射性甲基碘 1.5h, 经气相色谱分析非放射性甲基碘收率约 48%。 实施例 7, 在 50ml圆底反应烧瓶中依次放入 10ml乙腈、 5g非放射性碘 化钠, 再放入约 3ml(MeO)2CHCH2PO(OCH3)2, 约 4ml三甲基氯硅垸混匀, 在 磁力搅拌下进行反应, 反应温度 25°C, 反应时间为 lOmin, 制得核电厂放射性 气体净化能力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 经气相色谱分析非放射性甲基碘收率约 56%。 实施例 8, 在 25ml圆底反应烧瓶中依次放入 1ml乙腈、 1ml丙酮、 含有 O.lg非放射性碘化钾的水溶液, 再放入 lml磷酰基乙酸三甲酯、 0.5ml三甲基 氯硅烷混匀, 反应温度 20°C, 反应时间为 20min, 制得核电厂放射性气体净化 能力试验用制剂。采用鼓氮气搅拌并载带收集气相非放射性甲基碘,收集气体 经气相色谱分析非放射性甲基碘收率约 65%。 实施例 9, 在 25ml圆底反应烧瓶中依次放入 lml乙腈、 lml丙酮、 含有 O.lg非放射性碘化钾的水溶液, 再放入 lml磷酰基乙酸三甲酯、 0.5ml三甲基 氯硅烷混匀, 反应温度 30°C, 反应时间为 30min, 制得核电厂放射性气体净化 能力试验用制剂。然后采用鼓氮气搅拌并载带收集气相非放射性甲基碘,收集 气体经气相色谱分析非放射性甲基碘收率约 74%。 实施例 10, 在 50ml圆底反应烧瓶中依次放入 8ml乙腈、 5g非放射性碘 化钾, 再加入 2.5ml苯甲醛二甲缩醛、 3.8ml三甲基氯硅垸混匀, 在磁力搅拌 下进行反应, 反应温度 40°C, 反应时间为 20min, 制得核电厂放射性气体净化 能力试验用制剂。 将该制剂于 50°C回流冷凝收集非放射性甲基碘 1.5h, 收集 液体经密度分析非放射性甲基碘收率约 40%。 实施例 11,在 50ml圆底反应烧瓶中依次放入 8ml乙腈、 5g非放射性碘化 钾, 再加入 2.5ml苯甲醛二甲縮醛、 3.8ml三甲基氯硅垸混勾, 在磁力搅拌下 进行反应, 反应温度 50°C, 反应时间为 40min, 制得核电厂放射性气体净化能 力试验用制剂。 将该制剂于 70°C回流冷凝收集非放射性甲基碘 1.5h, 收集液 体经密度分析非放射性甲基碘收率约 78%。 实施例 12, 在 50ml圆底反应烧瓶中依次放入 8ml乙腈、 5g非放射性碘 化钠, 再加入约 3mlMe(CH2)CH(OCH3)2、 约 4ml三甲基氯硅烷混勾, 在磁力 搅拌下进行反应, 反应温度 45°C, 反应时间为 30min, 制得核电厂放射性气体 净化能力试验用制剂。 将该制剂于 50°C回流冷凝收集非放射性甲基碘 1.5h, 收集液体经密度分析非放射性甲基碘收率约 56%。 实施例 13, 在 50ml圆底反应烧瓶中依次放入 8ml乙腈、 5g非放射性碘 化钠, 再加入约 3ml(C¾)5C(OC¾)2、 约 4ml三甲基氯硅垸混勾, 在磁力搅拌 下进行反应, 反应温度 45°C, 反应时间为 30min, 制得核电厂放射性气体净化 能力试验用制剂。 将该制剂于 50°C回流冷凝收集非放射性甲基碘 1.5h, 收集 液体经密度分析非放射性甲基碘收率约 54%。 实施例 14, 碘过滤器现场试验中, 本发明制剂 (放射性甲基碘) 的制备 及其使用方法:
一、乙腈和放射性碘源混合物制备: 目前核电站由于碘过滤器试验用的放 射性碘化物为市售的医药级放射性碘化钠水溶液,本发明的反应需要在无水中 性条件下进行, 不能直接将放射性碘化钠水溶液作为放射性碘源。 因此, 先将 丙酮、 乙腈按 1 : 1~4的体积比配置成混合溶液, 二者之间的比例可以是上述 范围中的任意值, 本实施例选择 1 : 4的比例, 取 4ml混合溶液中加入 O. lg非 放射性碘化钠配制成乙腈与缓冲分配溶液的混合物,然后加入放射性碘化钠水 溶液混合, 通过体积分配方式分得试验所需放射性活度的碘源。
二、在碘过滤器现场试验中, 本发明制剂(放射性甲基碘)的制备及其使 用方法:
1、 准备反应试剂:
(1) 用 10ml玻璃瓶分别封装体积小于 10ml的三甲基氯硅烷、 磷酰 基乙酸三甲酯以及按照上述碘源制备方法配制好的碘源;
(2)、 用 10ml玻璃瓶封装 6〜8ml清水。
2、 检查和清洗发生回路:
将甲基碘发生器与通风***示踪剂注入口连接, 再将甲基碘发生器接上 压縮空气气源, 先将甲基碘发生器箱体内抽成负压, 将清水瓶放上托架, 启动 发生回路, 操作换向阀, 将托架升起, 让针头穿过瓶塞, 观察反应小瓶液面的 鼓泡情况, 如鼓泡正常, 吹扫回路 1分钟即可, 如鼓泡不正常, 进行回路阻塞 情况的检查和排除。 确认发生回路通畅后, 停止发生回路, 取下清水瓶备用。
3、 制剂 (放射性甲基碘) 的发生操作:
常温下,将盛放有放射性碘源和乙腈的混合溶液、三甲基氯硅烷和磷酰基 乙酸三甲酯的三个小瓶放入负压箱,分别抽取约 1ml三甲基氯硅垸和磷酰基乙 酸三甲酯注入盛放有放射性碘源和乙腈的混合溶液的小瓶中, 摇晃后放上托 架,静置 5分钟,启动发生回路,操作换向阀,将托架升起,让针头穿过瓶塞, 瓶中液体鼓泡反应,生成放射性甲基碘, 并开始向***中注入产生的放射性甲 基碘。
4、 放射性甲基碘发生的停止和发生回路的吹扫:
放射性甲基碘发生 30分钟后, 操作换向阔, 将托架降下, 待负压箱内吹 扫 5分钟后,将盛放有放射性碘源和乙腈的混合溶液的小瓶取下,将清水瓶放 上托架, 启动发生回路, 操作换向阀, 将托架升起, 让针头穿过瓶塞, 使用清 水吹扫发生回路, 观察反应小瓶液面的鼓泡情况, 如鼓泡正常, 吹扫 8分钟即 可, 如鼓泡不正常, 进行回路阻塞情况的检查和排除。 实施例 15, 本发明的制剂应用效果检验:
一、 现场对比试验:
在大亚湾和岭澳核电站的废气处理***(TEG)的碘过滤器上分别使用"硫 酸二甲酯"的方法制得产品和本发明制剂进行对比试验。
试验条件简述:
1、 每次"硫酸二甲酯"法使用约 1ml"硫酸二甲酯"和约 4ml、 lOMBq 活度的放射性碘化钠水剂碘源;
2、 每次本发明使用各约 1ml 的三甲基氯硅垸、 磷酰基乙酸三甲酯 和约 4ml、 lOMBq活度的放射性碘源和乙腈的混合溶液;
3、 试验温度在 25 °C左右;
4、 试验风量: 2000m3/H±10%; 5、 "放射性甲基碘"***注入时间: 30分钟;
6、 上游采样时间: 45分钟;
7、 下游采样时间: 60分钟;
试验结果如下表 1所示。
表 1 对比试验结果
Figure imgf000018_0001
备注: 1、 净化系数 (CE )。 式中: A—碘过滤器上游示踪剂放射性活度;
a—碘过滤器下游示踪剂放射性活度;
2、 净化效率 (R ):
w = (i— ) x i oo (以%计)
A 试验结论:对于同一碘过滤器,两种方法的对比试验的净化效率基本相当, 本发明的放射性甲基碘完全可以替代"硫酸二甲酯"法产生的放射性甲基碘,适 合碘过滤器现场试验使用。 二、 碘源溶剂对甲基碘产率的影响:
现场试验所用放射性碘源为放射性 Nal水溶液或放射性 KI水溶液, Nal 或 KI可溶于水、 乙醇、 丙酮溶剂。 由于三甲基氯硅烷遇水、 醇易发生水解和 醇解反应, 所以三甲基氯硅垸 /Nal或 KI制备放射性甲基碘法是在无水中性条 件下进行。 为检验水等溶剂对上述反应的影响, 分别进行水、 乙醇、 丙酮溶 剂对甲基碘产率的影响试验, 试验结果见表 2。 表 2不同溶剂对甲基碘产率的影响
Figure imgf000019_0001
由表中甲基碘产率可知: 以蒸馏水或乙醇作为溶剂时, 甲基碘产率在 45% 以下; 而以丙酮作为溶剂时, 甲基碘产率为 80%以上。 因此, 可以用丙酮作 为放射性 Nal或 KI的溶剂。
对于放射性 Nal 水溶液, 通过多次购买记录统计, 体积一般不超过 1.5ml, 经过缓冲、 分配溶液的稀释以后, 实际试验时放射性溶液中的水量 已经微乎其微, 而且从试验结果可知, 有 0.1ml水存在时甲基碘产率仍在 70%以上, 因此购买的放射源中的水量通过丙酮稀释后对甲基碘产率的影 响可忽略。 三、 化学反应试剂对活性炭影响试验:
参与反应的四种有机化学试剂中,根据它们的物理和化学性质,只有丙酮 和乙腈可能对核级浸渍活性炭吸附放射性甲基碘的效率会产生影响, 因此,进 行以下试验验证其影响程度。 试验条件: 参考 ASTMD3803核级活性炭标准试验方法和现场试验条件。 温度: 25-30°C
湿度: 40%以下
试验炭床: 炭床总深 5cm, 分 3层, 直径 5cm 甲基碘供料线速度: 12.2±0.3m/min
甲基碘流量: 1.75mg/m3
放射性甲基碘投放量: 0.3~2MBq
注入时间: lh
试验 (1): 核级浸渍活性炭对放射性甲基碘的吸附效率
在进行丙酮和乙腈对核级浸渍活性炭吸附放射性甲基碘效率的影响试验 时,首先进行同批次核级浸渍活性炭对放射性甲基碘的吸附效率试验,结果见 表 3中试验 ( 1 )。
试验 (2): 乙腈对核级浸渍活性炭吸附放射性甲基碘效率的影响试验 试验时取乙腈和放射性甲基碘注入质量比 =m : m¾«rat.=2.5: 1。结果 见表 3中试验 ( 2 )。
试验 (3): 甲基碘、 丙酮和乙腈同时注入的影响试验
试验时取丙酮、 乙腈和放射性甲基碘注入质量比 = m 丙酮: m 乙 j青: m放射性甲基碘 =10: 10: 1, 结果见表 3中试验 (3 )。
试验(4): 先注入丙酮和乙腈, 然后注入放射性甲基碘, 考察这种注入条 件下,核级浸渍活性炭对吸附放射性甲基碘的效率影响情况,各种试剂用量同 试验 (3), 结果见表 3中试验 (4)。 表 3丙酮和乙腈对活性炭影响试验
Figure imgf000021_0001
从试验结果来看: 试验 (1 ) (4)不同条件下每层浸渍活性炭对放射性 甲基碘的吸附效率都基本相当, 而且试验床总吸附效率为 100%, 表明丙酮和 乙腈对活性炭吸附放射性甲基碘的效率无影响。 实施例 16、 如图 1所示, 一种核电厂碘过滤器试验装置, 包括负压箱 2 在负压箱 2上设有压缩空气分配器 4, 负压箱 2还连接有压缩空气喷射泵 21 压縮空气喷射泵 21与压缩空气分配器 4的一个供气口连接, 用于维持负压箱 2内的负压状态。 压缩空气喷射泵 21 的吸气管伸入负压箱 2内, 其吸气管的 吸气口上安装有除碘器 20。
在负压箱 2内设有甲基碘发生器, 甲基碘发生器包括压缩空气喷射泵 3、 单向阀 5、 节流阀 6、 发生器体 23、 套管针头 18、 反应瓶 17、 气缸 13及其反 应瓶升降架 16, 其中反应瓶升降架 16包括用于支撑反应瓶 17的反应瓶支架 和用于夹装固定反应瓶 17的夹具。 压缩空气喷射泵 3与压缩空气分配器 4连 接, 由压缩空气分配器 4为其供气,压缩空气喷射泵 3的吸气口上连接单向阔 5, 单向阀 5下端连接节流阀 6, 节流闽 6下端与发生器体 23相连, 套管针头 18位于发生器体 23下方并固定在发生器体 23上。气缸 13安装在支座 14上, 气缸 13的活塞杆与反应瓶升降架 16连接, 用于移动反应瓶 17。 发生器体 23 上连接有进气管 204, 进气管 204上设有转子流量计 22, 单向阀 27、 带延时 功能的非负压开关 26、 位于负压箱 2外的进气管 204端部设有进气除碘器 1。 套管针头 18包括内针和外针, 负压箱 2外的空气经进气除碘器 1、 发生器体 23与套管针头 18的内针管相通, 压缩空气喷射泵 3的吸气口与套管针头 18 的外针和内针之间的间隙相通。
如图 1所示, 在负压箱 2内还设有气动控制单元, 它包括微压信号阀 8、 气动复位的推拉换向阀 10、 单向阀节流阀 7、 单向阀 9, 二位五通单气控换向 阀 11。 二位五通单气控换向阀 11的进气孔 P与压縮空气分配器 4用于气动控 制单元的供气口连接, 二位五通单气控换向阔 11的第二气孔 A通过单向阀 9 与气缸 13的上进气孔连接, 其第一气孔 B与气动复位的推拉换向阀 10的进 气孔 连接, 控制孔 K与微压信号阀 8的出气孔连接。
如图 2、 3、 4、 5所示, 所述的非负压开关 26包括缸体 260, 缸体 260内 设有三个活塞 262、 263、 264间隔设置串连成一体的活塞组, 活塞组两侧分别 设有弹力相同的弹簧 261、 266, 缸体 260上设有第一通气孔 Z、第二通气孔 T 和第三通气孔 E、 第四通气孔 Q。 第一通气孔 Z和第四通气孔 Q和负压箱 2 内空气相通。 第三通气孔 E与压缩空气分配器 4连接, 为非负压开关 26提供 动力。 缸体 260—端设有用于输入气体使活塞移动的压力传导孔 W, 压力传 导孔 W通过管道与进气管 204的单向阀 27后相连; 如图 2所示,在非负压信 号输入压力传导孔 W时, 第二通气孔 T和第三通气孔 E相通, 压缩空气通过 第三通气孔 E与第二通气孔 T送至气动复位的推拉换向阔 10的 P1 口, 成为 复位或阻止动力源, 关闭或防止手柄打开, 即如果原来是开启的, 就关闭掉, 如果原来是关闭的, 就阻止打开, 此时非负压开关为开启状态; 如图 3所示, 当压力传导孔 W输入负压时, 弹簧 261所在气室为负压, 活塞 262、 263、 264 向压力传导孔 W的方向移动, 非负压开关为关闭状态。 活塞 262、 263、 264 移动使得第一通气孔 Z和第二通气孔 T相通, 气动复位推拉换向阀 10内的空 气从第一压力平衡口 P1通过非负压开关 26的第一通气孔 Z排掉。 压缩空体 进入活塞 263、 264之间, 由于活塞 263、 264受力相同, 保持静止, 压缩空气 不向气动复位推拉换向阀 10提供动力, 此时非负压开关处于关闭状态。 第四 通气孔 Q用于在活塞 262、 263、 2***时保持弹簧 266所在气室压力稳定, 减少活塞 262、 263、 2***时的空气阻力。
如图 4、 5所示,所述气动复位的推拉换向阀 10包括推拉换向阀气缸 101, 推拉换向阀气缸 101内通过拉杆 106串接三个活塞 102、 103、 104, 在推拉换 向阀气缸 101外设有与活塞 102、 103、 104连接并用于推拉活塞 102、 103、 104运动的手柄 105, 推拉换向闽气缸 101壁开有第一气孔13、第二气孔&、第 三气孔 c、 第四气孔1^、 第五气孔 d共五个气孔, 推拉换向阔气缸 101的两端 部分别设有用于活塞 102、 103、 104运动时平衡推拉换向阀气缸 101内外压力 的第一压力平衡口 Pl、第二压力平衡口 e,第三气孔 c和第五气孔直接通负压 箱内空气; 如图 4所示,推入手柄 105使气动复位的推拉换向阔处于关闭状态 时,第一气孔 b和第四气孔 P'联通,第二气孔 a和第五气孔 d联通,第三气孔 c被第一活塞 102封闭。 如图 5所示, 拉出手柄 105使气动复位的推拉换向阀 10处于开启状态时,第二气孔 a和第四气孔 P'联通,第一气孔 b和第三气孔 c 联通, 第五气孔 d被第三活塞 104封闭。 手柄 105拉推拉杆 106时, 活塞 104 外侧与推拉换向阀气缸 101之间的气室通过 e将气体排出或吸入,排除气体阻 力使手柄推拉自如, 实现开关状态的切换。
如图 1、 2、 3、 4、 5所示, 气动复位的推拉换向阀 10的第二气孔 a与气 缸 13的下进气孔连接,第一气孔 b通过单向阔节流阔 Ί与气缸 13的上进气孔 连接, 第一压力平衡口 Pi与非负压开关的第二通气孔 T连接; 微压信号阔 8 的进气孔 M接压缩空气分配器 4气动控制单元供气管路, 其信号输入孔 N接 压縮空气喷射泵 3的吸气口。负压箱 2底部设有底座 19,侧面设有真空表 25。
操作过程: 操纵安装在负压箱 2外的手柄 105, 将其往外拉, 使气缸 13上 缸经气动复位的推拉换向阀 10的第一气孔 b和第三气孔 c排气, 气动复位的 推拉换向阀 10的第二气孔 a和第四气孔 F相通, 向气缸 13下缸送气,使反应 瓶 17提升到一合适高度, 安装在发生器体 23上的套管针头 18穿入反应瓶 17 的胶塞后, 较长的内针潜入溶液一定深度, 而较短的外针处于液面以上, 使反 应瓶 17内气体与压縮空气喷射泵 3吸气口相通, 压縮空气喷射泵 3接通工作 压縮空气后, 在其吸气口处产生负压, 使单向阀 5打开, 将反应瓶 17内气体 空间抽成真空, 负压箱 2外的空气在压差作用下,通过除碘器 1和进气管路进 入内针, 克服液封后开始在反应瓶 17内溶液中鼓泡, 鼓泡空气除用作甲基碘 载气外, 还能对母液起搅拌作用, 加快反应速率。载有甲基碘的气流经节流陶 6稳定后再通过开启的单向阀 5最后进入压缩空气喷射泵 3, 与工作空气混合 后流出。 鼓泡流量由转子流量计 22指示, 并可通过调节压缩空气喷射泵 3的 工作压力来控制。载带空气入口设除碘器 1,其目的是防止发生装置不运行时, 管路中残留的放射性气体扩散逸出及发生回路出现堵塞后, 反应瓶 17中放射 性物质从进气口反压出来,造成试验人员污染。为使甲基碘出口管能很方便地 与试验回路注入口连接, 甲基碘发生器位置可沿滑轨 12方向任意调整。 当气 动复位的推拉换向阀 10的手柄往里推时,气缸 13上缸通过气动复位的推拉换 向阔 10的第二气孔 a经第五气孔 d排气,气动复位的推拉换向闽 10的第四气 孔 P和第一气孔 b相通, 向气缸 13的上缸送气, 将反应瓶 17降下, 脱离套 管针头 18, 甲基碘停止输出。
由于在正常情况下,压縮空气喷射泵 3的吸气口为负压,此时微压信号阔 8无指令输出, 由二位五通单气控换向阀 11的 B口向气动复位的推拉换向阀 10的 P'口供气, 操作者可以通过操纵设在负压箱 2外的气动复位的推拉换向 阀 10的手柄, 使之向外拉或向里推, 以控制气缸 13的活塞的升降, 从而控制 甲基碘气体发生的启停。然而在异常情况下, 如甲基碘在输出时, 甲基碘注入 管路阀门忘记打开,或注样管路阻力过大,会导致压縮空气喷射泵 3因出气口 不畅而在其吸气口处形成正压, 为防止反应瓶 17内的放射性气体被该压力逆 向压出,装置中除在压缩空气喷射泵 3的吸气口处安装了单向阀 5夕卜,在压缩 空气喷射泵 3的吸气口变为正压的瞬间,气动控制单元的微压信号阀 8在收到 此正压信号后立即开始动作, 向二位五通单气控换向阀 11的控制孔 K输出压 力, 使其关闭出气孔 B, 切断气动复位的推拉换向阀 10的气源, 使气缸 13下 缸失去气源, 并经二位五通单气控换向阀 11的 B口排气, 与此同时, 二位五 通单气控换向阀 11的出气孔 A被打开, 通过单向阀 9向气缸 13的上进气孔 充气, 将反应瓶 17降下, 脱离套管针头 18, 使甲基碘输出停止, 气动控制单 元起到安全保护作用。气动控制单元中有约 1~2秒钟的启动时间,但由于甲基 碘发生器气路中设有单向阀 5, 在此时间内只有少量的空气反向进入反应瓶
17, 基本不会造成放射性液体外逸。异常排除后, 保护状态会自动解除, 使装 置恢复正常甲基碘的输出。单向阀 27可以阻挡反应瓶 17内放射性气体、液体 逆向流至外界环境。 如图 2、 3、 4、 5所示, 带延时输出的非负压开关 26和气动复位的推拉换 向阀 10的具体动作过程为: 甲基碘发生器在接上压缩气源后, 压缩空气通过 压縮空气分配器 4, 经带延时输出的非负压开关 26的第三通气孔 E, 通过第 二通气孔 T进入气动复位的推拉换向阀 10的第一压力平衡口 P1 ,阻止手柄的 拉出。 待压缩空气喷射泵 3将反应瓶 17抽成负压后, 套管针头 18内针经 204 管线从外界抽气, 带延时输出的非负压开关 26的活塞向右动作, 第一通气孔 Z接通第二通气孔 T, 气动复位的推拉换向阀 10的第一压力平衡口 P1经此排 气, 此时可以手动拉出气动复位的推拉换向阀 10, 操纵反应瓶支架 15向上运 动, 从而进行甲基碘的发生和注入操作, 由于两位五通单气控换向阀 11没有 改动, 气动复位的推拉换向阔 10仅增加气动复位, 所以甲基碘输出回路压縮 空气喷射泵 3吸气口出现正压情况, 同样会使反应瓶支架 15出现下降, 非负 压开关 26带延时输出的目的是: 如不使用延时, 压缩空气喷射泵 3出现正压 情况, 不及时降下反应瓶支架 15, 非负压开关 26的压力传导孔 W也立刻会 出现非负压,从而立刻动作手柄复位,这样压缩空气喷射泵 3吸气口恢复负压 后, 反应瓶支架 15不能自动上升, 使用延时输出后, 保证微压信号阔 8能先 动作, 将反应瓶支架 15降下, 降下后, 非负压开关 26正常就处于负压状态, 从而不向气动复位的推拉换向阀 10的第一压力平衡口 P1供气,不会引起手柄 复位,待压縮空气喷射泵 3吸气口恢复负压后,反应瓶支架 15可以自动上升, 继续进行甲基碘的投注。 在甲基碘发生器投入运行中, 气动复位的推拉换向阔 10的手柄已拉出, 如果在喷射泵抽 3吸口以下部位发生堵塞时, 反应瓶 17内会处于非负压, 带 延时输出的非负压开关 26的活塞 262、 263、 264向左移动, 压缩空气通过分 配器 4, 经过非负压开关 26的 E口, 通过第二通气孔 T进入气动复位的推拉 换向阀 10的第一压力平衡口 P1 , 带动活塞 102、 103、 104向左运动, 第一气 孔 b和气源接通, 气缸 13上缸进气, 下缸通过第二气孔 a排气, 反应瓶支架 15向下运动, 带动反应瓶 17和套管针头 18脱离。 脱离后, 如转子流量计 22 有流量显示, 说明阻塞位置在套管针头 18到单向阀 5部位, 此时非负压开关 26处于负压状态, 气源和第二通气孔 T不通, 气动复位的推拉换向阀 10的第 一压力平衡口 P1没有通气,手柄可以拉出,是可以将反应瓶支架 15向上升起, 但是由于上述保护, 会动作气动复位, 从而将反应瓶支架 15降下, 使发生过 程停止; 如转子流量计 22没有流量显示,说明阻塞位置在套管针头 18的内针 部位, 此时非负压开关 26处于非负压状态, 压縮空气通过第二通气孔 T, 气 动复位的推拉换向阀 10的第一压力平衡口 P1进入,使手柄不能拉出。只有上 述缺陷处理好, 才能重新发生。 套管针头包括相互套装的内针和外针,外针和内针之间的间隙为 0.5mn!〜 1.5mm较为合适,外针下端出口略低于反应瓶封盖的下端面。相对于现有的套 管针头, 本实施例减少外针长度 2mm以上, 并增加外针直径 0.5~1 mm, 所述 外针、 内针的下端面都为斜面, 形成长尖三角型状的针头。缩短外针长度可以 避免液体在搅拌过程中与外针接触,减少固状物堵住内外针之间孔隙机会; 使 用斜面针头, 便于针头穿刺过瓶塞橡胶层, 且不易被橡胶碎屑堵住针头。 如图 6所示, 在负压箱内侧底部, 安装一块弹性材料的存储支架 50, 存 储支架 50长 15CM, 宽 4~5CM, 厚 4CM。 存储支架设有四个圆孔 51, 其中 两个圆孔为 φ32的孔, 两个圆孔为 φ26的孔。 上述圆孔 51用于摆放试验用的 试剂瓶, 弹性材料便于插配制使用的注射器。支座四角的孔用于螺丝螺接在可 携式甲基碘发生装置负压箱 2的底板上。

Claims

权 利 要 求
1、 一种核电厂放射性气体净化能力试验用制剂, 其特征在于, 是以磷酸 甲酯类化合物或二甲缩醛类化合物、乙腈、三甲基氯硅垸和放射性碘源为原料, 在 20°C〜50°C下混合后反应得到。
2、 根据权利要求 1所述的核电厂放射性气体净化能力试验用制剂, 其特 征在于,所述磷酸甲酯类化合物为^尸 0(( CH3)2,其中 为 PhClCH2、 CC13、 NCCH2、 MeCO、 MeOCOCH2、 EtOCOCH2、 t-BuOCOCH2、 PhCH2OCOCH2、 EtOCO、 Et2NCO、 MeCOOCHPh , PhCOCH2、 MeOCH2、 (MeO)2CHCH2或 (MeO)2CH。
3、 根据权利要求 1所述的核电厂放射性气体净化能力试验用制剂, 其特 征在于, 所述二甲缩醛类化合物为 W2W3C(OCH3)2, 其中 R2为 Ph、 Me(CH2)5 或 (CH2)5, 所述 R3为 ^^或11。
4、一种核电厂放射性气体净化能力试验用制剂的制备方法,其特征在于, 是以磷酸甲酯类化合物或二甲縮醛类化合物、 乙腈、三甲基氯硅垸和放射性碘 源为原料, 混合后反应, 反应时间为 10〜40min, 反应温度为 20°C〜50°C, 即 得核电厂放射性气体净化能力试验用制剂。
5、 根据权利要求 4所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于, 所述的磷酸甲酯类化合物或二甲缩醛类化合物、 乙腈与三 甲基氯硅烷的体积比为 0.1~2: 3-6: 0.1~2。
6、 根据权利要求 5所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于, 所述放射性碘源为放射性碘化物, 放射性碘化物的放射性 活度为 10~400MBq。
7、 根据权利要求 6所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于, 所述放射性碘化物为放射性碘化钾或放射性碘化钠。
8、 根据权利要求 7所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于: 以放射性碘化物、 乙腈、 磷酸甲酯类化合物、 三甲基氯硅 烷为原料混合, 鼓入惰性气体或搅拌下反应; 其中反应温度为 20°C〜30°C, 反应时间为 10~30min。
9、 根据权利要求 7所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于: 以放射性碘化物、 乙腈、 二甲缩醛类化合物、 三甲基氯硅 垸为原料混匀, 鼓入惰性气体或搅拌下反应; 其中反应温度为 40°C〜50°C, 反应时间为 20mh!〜 40min。
10、根据权利要求 5所述的核电厂放射性气体净化能力试验用制剂的制备 方法, 其特征在于, 所述放射性碘源由缓冲分配溶液、放射性碘化物的水溶液 混合制成, 获得的放射性碘源的放射性活度为 10〜400MBq; 所述缓冲分配溶 液是由非放射性碘化物和丙酮混合制成。
11、 根据权利要求 10所述的核电厂放射性气体净化能力试验用制剂的制 备方法, 其特征在于, 所述放射性碘化物为放射性碘化钾或放射性碘化钠, 非 放射性碘化物为非放射性碘化钾或非放射性碘化钠。
12、 根据权利要求 11所述的核电厂放射性气体净化能力试验用制剂的制 备方法, 其特征在于, 包括以下歩骤:
( 1 )、将乙腈与丙酮混合, 再放入非放射性碘化物, 制成乙腈与缓冲分配 溶液的混合溶液, 其中各原料之间的比例为: 乙腈:非放射性碘化物:丙酮 =l〜4ml:0.1~5g:0.5~2ml;
(2)、 接着在步骤 (1 ) 的混合溶液中加入放射性碘化物的水溶液, 制成 乙腈和放射性碘源的混合物;
(3 )、 然后在步骤 (2 ) 乙腈和放射性碘源的混合物中加入磷酸甲酯类化 合物或二甲缩醛类化合物、三甲基氯硅烷均匀混合,鼓入惰性气体或搅拌下反 应, 反应温度为 20°C〜50°C, 反应时间为 10〜40min, 即得核电厂放射性气体 净化能力试验用制剂。
13、 根据权利要求 12所述的核电厂放射性气体净化能力试验用制剂的制 备方法, 其特征在于, 步骤(3 ) 中, 如使用磷酸甲酯类化合物、 三甲基氯硅 垸加入放射性碘源和乙腈的混合物中混勾,鼓入惰性气体或搅拌下反应,其中, 反应温度为 20°C〜30°C, 反应时间为 10~30min。
14、 根据权利要求 12所述的核电厂放射性气体净化能力试验用制剂的制 备方法, 其特征在于, 歩骤(3 ) 中, 如使用二甲缩醛类化合物、 三甲基氯硅 烷加入放射性碘源和乙腈的混合物中混勾,鼓入惰性气体或搅拌下反应,其中, 反应温度为 40°C〜50°C, 反应时间为 20〜40min。
15、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 所述磷酸甲酯类化合物为 ΡΟ(ΟΟ 3)2, 其中 为 PhClCH2、 CC13、 NCCH2、 MeCO、 MeOCOCH2、 EtOCOCH2、 t-BuOCOCH2、 PhCH2OCOCH2、 EtOCO、 Et2NCO、 MeCOOCHPh, PhCOCH2、 MeOCH2、 (MeO)2CHCH2或 (MeO)2CH。
16、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 所述二甲縮醛类化合物为 AC(OCH3)2, 其中 R2为 Ph、 Me(CH2)5或 (C¾)5, 所述 R3为 Me或 H。
17、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 在反应瓶中依次放入乙腈、 放射性碘化钾, 再放入乙基磷酰基乙酸二甲酯、三甲基氯硅垸混勾搅拌下反应即得制剂,其中 反应温度 30°C, 反应时间为 15min; 乙腈、放射性碘化钾、 乙基磷酰基乙酸二 甲酯、 三甲基氯硅烷之间的比例为 3~6ml:3~4g:0.1~2ml:0.1~2ml。
18、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 在反应瓶中依次放入乙腈、 放射性碘化钾, 再放入邻氯苯基磷酸二甲酯、三甲基氯硅垸混匀搅拌下反应即得制剂,其中反 应温度 25°C,反应时间为 lOmin; 乙腈、放射性碘化钾、邻氯苯基磷酸二甲酯、 三甲基氯硅垸之间的比例为 3~6ml:3~4g:0.1~2ml:0.1~2ml。
19、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 在反应瓶中依次放入乙腈、 放射性碘化钾, 再放入苯甲醛二甲缩醛、三甲基氯硅垸混匀搅拌下反应即得制剂,其中反应温 度 40°C, 反应时间为 20min; 乙腈、 放射性碘化钾、 苯甲醛二甲縮醛、 三甲基 氯硅烷之间的比例为 3~6ml:3~4g:0.1〜2ml:0.1~2ml。
20、根据权利要求 4〜14任意一项所述的核电厂放射性气体净化能力试验 用制剂的制备方法, 其特征在于, 在反应瓶中依次放入乙腈、 放射性碘化钾, 再放入 (CH2)5C(OC¾)2、 三甲基氯硅烷混匀搅拌下反应即得制剂, 其中反应温 度 45 °C, 反应时间为 30min; 乙腈、 放射性碘化钾、 (C¾)5C(OC¾)2、 三甲基 氯硅垸之间的比例为 3~6ml:3~4g:0. l〜2ml:0. l~2ml。
21、 一种应用权利要求 1〜3所述制剂的核电厂碘过滤器试验装置, 包括 负压箱, 负压箱上设有压缩空气分配器, 负压箱内设有甲基碘发生器、气动控 制单元, 所述的甲基碘发生器包括压缩空气喷射泵、单向阀、 节流阀、 发生器 体、 套管针头、 反应瓶、 反应瓶升降架、 用于升降架上下移动的气缸, 所述甲 基碘发生器连接有与负压箱外界大气连通的进气管,所述进气管通过发生器体 与套管针头的内针相通, 所述压縮空气喷射泵的吸气口与所述套管针头的内、 外针之间的间隙相通, 所述的气动控制单元包括微压信号阀、 推拉换向阀、 二 位五通单气控换向阀、 单向节流阔、 单向阀, 其特征在于: 所述推拉换向阀为 气动复位的推拉换向阀, 所述进气管上设有延时输出非负压开关和单向阀。
22、 根据权利要求 21所述的核电厂碘过滤器试验装置, 其特征在于, 所 述的延时输出非负压开关与气动复位的推拉换向阀连接,所述的延时输出非负 压开关向气动复位的推拉换向阀输出气体来关闭气动复位的推拉换向阔。
23、 根据权利要求 22所述的核电厂碘过滤器试验装置, 其特征在于, 所 述气动复位的推拉换向阀包括推拉换向阀气缸,推拉换向阀气缸内串接三个活 塞, 在推拉换向阀气缸外设有与活塞连接并用于推拉活塞运动的手柄, 推拉换 向阀气缸壁开有第一气孔至第五气孔共五个气孔,推拉换向阀气缸的两端部分 别设有用于活塞运动时平衡推拉换向阔气缸内、外压力的第一压力平衡口、第 二压力平衡口; 拉出手柄使气动复位的推拉换向阔处于开启状态时, 第二气孔 和第四气孔联通, 第一气孔和第三气孔联通, 第五气孔被第三活塞封闭; 推入 手柄使气动复位的推拉换向阀处于关闭状态时, 第一气孔和第四气孔联通, 第 二气孔和第五气孔联通, 第三气孔被第一活塞封闭。
24、 根据权利要求 23所述的核电厂碘过滤器试验装置, 其特征在于, 所 述活塞通过拉杆连接, 所述的第一压力平衡口与延时输出非负压开关联通。
25、 根据权利要求 21〜24任意一项所述的核电厂碘过滤器试验装置, 其 特征在于, 所述的延时输出非负压开关包括非负压开关, 在所述的非负压开关 出口加设用于非负压信号延时输出的延时开关。
26、 根据权利要求 25所述的核电厂碘过滤器试验装置, 其特征在于, 所 述的非负压开关包括缸体, 缸体内设有三个活塞间隔设置并连成一体的活塞 组, 活塞组两侧分别设有弹力相同的弹簧, 缸体上设有第一通气孔、第二通气 孔和第三通气孔, 所述缸体一端设有用于输入气体使活塞组移动的压力传导 孔,所述压力传导孔通过管道与发生器体上的内针进气口相连;在无气体输入 或正压输入所述压力传导孔时,所述第二通气孔和第三通气孔相通,非负压开 关处于开启状态;在负压输入所述压力传导孔时,所述活塞组移动使得第一通 气孔和第二通气孔相通, 非负压开关处于关闭状态。
27、 根据权利要求 21〜24任意一项所述的核电厂碘过滤器试验装置, 其 特征在于,所述的套管针头包括相互套装的内针和外针,外针和内针之间的间 隙为 0.5mm〜1.5mm。
28、 根据权利要求 27所述的核电厂碘过滤器试验装置, 其特征在于, 所 述内针的内径为 l~1.5mm、 外径为 1.5~2mm。
29、 根据权利要求 27所述的核电厂碘过滤器试验装置, 其特征在于, 所 述夕卜针内径为 2.5~3mm、 夕卜径为 3~3.5mm。
30、 根据权利要求 27所述的核电厂碘过滤器试验装置, 其特征在于, 所 述外针下端出口略低于反应瓶封盖的下端面。
31、 根据权利要求 27所述的核电厂碘过滤器试验装置, 其特征在于, 所 述外针、 内针的下端面都为斜面。
32、 根据权利要求 21〜24任意一项所述的核电厂碘过滤器试验装置, 其 特征在于,所述负压箱内设有用于存放试剂瓶的存储支架,所述存储支架设置 在甲基碘发生器旁边的负压箱底板上。
33、 根据权利要求 32所述的核电厂碘过滤器试验装置, 其特征在于, 所 述存储支架为设有带有圆孔的平板插架, 所述存储支架为弹性材料制成。
PCT/CN2011/075377 2010-06-07 2011-06-07 核电厂放射性气体净化能力试验用制剂、制备方法及其使用该制剂的碘过滤器试验装置 WO2011153930A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127031116A KR101524649B1 (ko) 2010-06-07 2011-06-07 원자력발전소 방사성 기체 정화 능력 시험용 제제, 제조방법 및 그 제제를 사용하는 요드 여과기 시험장치
EP11791921.7A EP2581359B1 (en) 2010-06-07 2011-06-07 Reagent for testing purification capacity of radioactive gas in a nuclear power plant, preparation method thereof and iodide filter testing equipment using this reagent
ZA2012/08773A ZA201208773B (en) 2010-06-07 2012-11-21 Reagent for testing purification capacity of radioactive gas in nuclear power plant,preparation method thereof and iodide filter testing equipment using this reagent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201010193321 CN101875597B (zh) 2010-06-07 2010-06-07 核电厂放射性气体净化能力试验用制剂的制备方法
CN201010193321.X 2010-06-07
CN2010205149645U CN201791424U (zh) 2010-08-27 2010-08-27 核电厂碘过滤器试验装置
CN201020514964.5 2010-08-27

Publications (1)

Publication Number Publication Date
WO2011153930A1 true WO2011153930A1 (zh) 2011-12-15

Family

ID=45097536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075377 WO2011153930A1 (zh) 2010-06-07 2011-06-07 核电厂放射性气体净化能力试验用制剂、制备方法及其使用该制剂的碘过滤器试验装置

Country Status (4)

Country Link
EP (1) EP2581359B1 (zh)
KR (1) KR101524649B1 (zh)
WO (1) WO2011153930A1 (zh)
ZA (1) ZA201208773B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806814A (zh) * 2017-05-05 2018-11-13 中国辐射防护研究院 放射性剧毒残液处理装置及方法
CN113324777A (zh) * 2021-04-26 2021-08-31 中国辐射防护研究院 一种多形态放射性碘环境模拟及装备综合评价设备
CN115945170A (zh) * 2022-12-22 2023-04-11 中国辐射防护研究院 一种捕集气载放射性碘的核级活性炭制备***及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673678C1 (ru) * 2017-10-27 2018-11-29 Общество с ограниченной ответственностью "Технология" Способ приготовления твердого гранулированного реактива для получения газообразного радиоактивного метилиодида
CN110068434B (zh) * 2019-03-29 2021-05-18 中国辐射防护研究院 用于碘吸附器泄漏率检测的脉冲式环己烷气体冷发生器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329968Y (zh) * 1998-02-25 1999-07-21 中国辐射防护研究院 可携式甲基碘气体发生装置
CN101875597A (zh) * 2010-06-07 2010-11-03 中国广东核电集团有限公司 核电厂放射性气体净化能力试验用制剂的制备方法
CN201791424U (zh) * 2010-08-27 2011-04-13 中国广东核电集团有限公司 核电厂碘过滤器试验装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016242A (en) * 1976-02-26 1977-04-05 The United States Of America As Represented By The United States Energy Research And Development Administration Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide
FR2553562B1 (fr) * 1983-10-17 1985-12-27 Electricite De France Generateur d'un produit radioactif ou toxique utilisable notamment comme generateur d'iode radioactif
JP4730760B2 (ja) * 2004-05-25 2011-07-20 住友重機械工業株式会社 Ri標識化合物合成システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329968Y (zh) * 1998-02-25 1999-07-21 中国辐射防护研究院 可携式甲基碘气体发生装置
CN101875597A (zh) * 2010-06-07 2010-11-03 中国广东核电集团有限公司 核电厂放射性气体净化能力试验用制剂的制备方法
CN201791424U (zh) * 2010-08-27 2011-04-13 中国广东核电集团有限公司 核电厂碘过滤器试验装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEI YING.: "Radioactive methyl-iodide method for on-site test of iodine adsorbers.", NUCLEAR TECHNIQUES, vol. 31, no. 4, April 2008 (2008-04-01), pages 289 - 292, XP008169076 *
See also references of EP2581359A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806814A (zh) * 2017-05-05 2018-11-13 中国辐射防护研究院 放射性剧毒残液处理装置及方法
CN108806814B (zh) * 2017-05-05 2022-11-18 中国辐射防护研究院 放射性剧毒残液处理装置及方法
CN113324777A (zh) * 2021-04-26 2021-08-31 中国辐射防护研究院 一种多形态放射性碘环境模拟及装备综合评价设备
CN113324777B (zh) * 2021-04-26 2024-01-23 中国辐射防护研究院 一种多形态放射性碘环境模拟及装备综合评价设备
CN115945170A (zh) * 2022-12-22 2023-04-11 中国辐射防护研究院 一种捕集气载放射性碘的核级活性炭制备***及其方法

Also Published As

Publication number Publication date
KR101524649B1 (ko) 2015-06-01
KR20130040897A (ko) 2013-04-24
EP2581359A1 (en) 2013-04-17
ZA201208773B (en) 2013-09-25
EP2581359B1 (en) 2016-03-30
EP2581359A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2011153930A1 (zh) 核电厂放射性气体净化能力试验用制剂、制备方法及其使用该制剂的碘过滤器试验装置
Shriver et al. The manipulation of air-sensitive compounds
CN101875597B (zh) 核电厂放射性气体净化能力试验用制剂的制备方法
CN205149195U (zh) 一种印刷设备的排气***
CN105981109B (zh) 提高啜吸***的灵敏度的***和方法
US3590247A (en) Method and apparatus for monitoring a gaseous atmosphere for radioactive isotopes including organic iodine compounds
CN104833689B (zh) 基于干法富集烟气中总汞的在线分析仪
CN106442875A (zh) 一种危险化学品泄漏处置实验模拟***及方法
US5743944A (en) Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases
CN206492388U (zh) 适用于儿童用品的杀菌消毒***
CN107340288B (zh) 一种用于检测空气中甲醛浓度的设备
CN205965112U (zh) 废液收集装置以及液相色谱
CN201791424U (zh) 核电厂碘过滤器试验装置
CN2329968Y (zh) 可携式甲基碘气体发生装置
CN207036539U (zh) 一种利用吸附剂作为浓度缓冲层的汽化炉
CN101875005A (zh) 苯吸附材料及其制备方法
CN108806814B (zh) 放射性剧毒残液处理装置及方法
CN102847411B (zh) 一种活性炭纤维吸附装置
CN211627468U (zh) 气相色谱仪的进气检测装置
CN207108521U (zh) 一种处理污水提升池废气的装置
KR102340950B1 (ko) 기체상 방사성탄소 전자동 온라인 감시장치 및 감시방법
CN107983066A (zh) 一种环保处理废气装置
CN214277919U (zh) 碘量法硫化氢含量测定器
CN112786116B (zh) 基于破口的高放废液泄漏事故应急释放源项估算方法
CN109870384B (zh) 一种测定土壤呼吸的简易装置及其测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011791921

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127031116

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012/14018

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE