WO2011150693A1 - 发光二极管晶片级色彩纯化的方法 - Google Patents

发光二极管晶片级色彩纯化的方法 Download PDF

Info

Publication number
WO2011150693A1
WO2011150693A1 PCT/CN2011/070863 CN2011070863W WO2011150693A1 WO 2011150693 A1 WO2011150693 A1 WO 2011150693A1 CN 2011070863 W CN2011070863 W CN 2011070863W WO 2011150693 A1 WO2011150693 A1 WO 2011150693A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent film
layer
wafer
transparent
Prior art date
Application number
PCT/CN2011/070863
Other languages
English (en)
French (fr)
Inventor
陈文彬
Original Assignee
Chen Wen-Pin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Wen-Pin filed Critical Chen Wen-Pin
Priority to JP2013512731A priority Critical patent/JP2013530529A/ja
Priority to EP11789072.3A priority patent/EP2579342A4/en
Publication of WO2011150693A1 publication Critical patent/WO2011150693A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present invention relates to an LED chip, and more particularly to a LED structure on which a multilayer filter film is formed after the wafer process of the LED wafer is completed to optimize the color of the wafer. Background technique
  • LEDs Light-emitting diodes
  • AlGalnP materials are used in high-brightness red, orange, yellow and yellow-green LEDs.
  • AlGalnN materials are used in blue and green LEDs, and are often mass-produced by metal organic Vapor Phase Epitaxy (MOVPE).
  • MOVPE metal organic Vapor Phase Epitaxy
  • HOMO homo-junction
  • SH single-heterostructure
  • DH double-heterostructure
  • SQW single-quantum well
  • MQW multiple Structures
  • the structure of a conventional light-emitting diode is as shown in FIG. 1A.
  • the upper electrode ll frr 0n electrical contact
  • the capping layer or window layer capping layer or window layer
  • the substrate 10 and the back electrode 13 are back contacts.
  • the light transmissive layer 15 is most typically a transparent conductor oxide layer that provides a function of current spreading such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the active layer comprises a p-type cladding layer, an instric layer and an n-type cladding layer. Further, in order to enhance the conductivity of the transparent conductor oxide layer, the most common example is to embed the metal gate 16 in the transparent conductor oxide layer 15. That is, the metal gate 16 is formed on the active layer 12 first, and then covered with the germanium layer 15.
  • the substrate 10 selects different materials as substrates for the different active layers 12.
  • the material of the active layer 12 is AlGalnP, a gallium arsenide material is selected as the substrate; and when the material of the active layer 12 is AlGalnN, a sapphire material is used as the substrate.
  • the active layer has a thickness of 0.3 to 3 ⁇ m and the light-transmitting layer 15 has a thickness of 10 to 50 ⁇ m. Both the active layer 12 and the light-transmitting layer 15 are subjected to organometallic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE). ) Made.
  • MOVPE organometallic vapor phase epitaxy
  • MBE molecular beam epitaxy
  • the above process is a typical LED process.
  • the epitaxial process in practice, whether it is a blue light emitting diode process, a green light emitting diode process, or a red light emitting diode process, as long as it is on a wafer of more than two turns, please refer to FIG. 1B, at the center of the wafer.
  • the crystal grains 30 are offset from the crystal grains 32, 33, 34 at the edges, and the center wavelength of the light emitting diodes. For example, in the case of a blue light emitting diode, the center wavelength is about 440.
  • the center wavelength of the crystal grains 34 (one end of the diameter to the other end) at the edge of the wafer may have a difference of 30 nm to 40 nm, resulting in a color deviation of the die.
  • the wafer center die 30 may be offset by the process variation, causing the center wavelengths of the batch and the last batch of wafers to be shifted. Therefore, it is a big problem for semiconductor manufacturers of LED dies to break the entire batch of wafers into defective products or to test the chromatic aberration of each crystal by the quality control to eliminate the insiders who are no longer in scope.
  • the center wavelength has a small offset or large offset, which is a tolerable range, but to be combined with other primary color LEDs to create a decoration or pattern.
  • manufacturers such as LED-backlit TVs, LED-backlit notebooks, LED-backlit displays, and LED-backlit phones. Its requirements are usually more stringent and unacceptable. Especially for high-end models.
  • the present invention provides a wafer level light emitting diode multilayer filter film for purifying LED color.
  • a primary object of the present invention is to provide a method for LED wafer level color purification and a color purification structure for an LED wafer.
  • the present invention discloses a method for color-grading a light-emitting diode (LED) wafer level, comprising at least the following steps: First, an LED wafer is fabricated by a conventional semiconductor process. There is no limit to the single-sided or double-sided light output, and the two electrodes have not been manufactured. Next, the center wavelength value of the predetermined light output of the light emitting diode (LED) wafer level is set. Subsequently, two appropriate transparent films were selected as the multilayer film. A preferred embodiment of the two transparent films is a low refractive index silicon dioxide film, and the other is a metal oxide film having a relatively high refractive index and can be deposited in combination with a silicon dioxide film.
  • the predetermined thickness value of the two transparent films alternately deposited.
  • An object of the present invention is to provide a method for color-level purification of a light-emitting diode wafer level, the method comprising: providing an LED wafer, a process of completing an n-type semiconductor epitaxial layer, an active layer, and a p-type semiconductor epitaxial layer; The predetermined central wavelength value is determined; the material of the first transparent film in which the silicon dioxide is a multilayer film is selected; the metal oxide film having a higher refractive index than the silicon dioxide film is selected as the material of the second transparent film; The central wavelength of the light emitted from the LED wafer; the thickness of the first transparent film and the second transparent film are alternately deposited, and the predetermined thickness is determined by the center wavelength, the first transparent film, the second transparent film, The refractive index of the outermost film of the LED wafer is calculated by calculating the thickness of each layer under the alternating deposition of the first transparent film and the second transparent film, and the refractive index is a relative central wave. Long-term refractive index;
  • An object of the present invention is to provide a light-emitting diode wafer level color purification structure, comprising: a first transparent film and a second transparent film are alternately deposited with more than 90 layers to make the wavelength of the center wavelength of the LED chip light out at Within ⁇ 1% of the preset value, or 80 layers or more, so that the wavelength of the center wavelength is within ⁇ 3% of the preset value, wherein the first transparent film is a low refractive index material layer, and the second The transparent film is a film layer of a high refractive index material.
  • the ion plasma cleaning of the LED wafer is performed, followed by the ion plasma assisted electron gun deposition technique, and the first transparent film and the second transparent film are alternately deposited according to the predetermined thickness of each film layer. Finally, the p, n electrodes are formed and the wafer is diced into a die.
  • 1A is a structure of a known light emitting diode
  • FIG. 1B shows that the crystal grains of the known LED wafer may have a central wave shift at the center and the edge due to the process
  • Figure 2 shows the structure of the present invention for plating a multilayer film on an LED wafer
  • Figure 3 shows the simulation results of the center wavelength after purification of the LED wafer according to the present invention, including a 95-layer filter film for blue light, a 105-layer filter film for green light, and a 120-layer filter film for red light;
  • 4A and 4B show the thickness values of each layer of the multilayer film used in the green and blue LED chips corresponding to FIG. 3;
  • Figures 5A, 5B show the thickness values of each layer of the multilayer film used in the red LED wafer corresponding to Figure 3.
  • the present invention provides a wafer level light emitting diode multilayer filter film and a method of color purification thereof to solve the above problems.
  • the semiconductor manufacturers of LED dies only need to eliminate the poor brightness (there is only one kind of the center wavelength of the whole wafer) without the color difference, quality control It will become very easy.
  • the quality of LED-backlit TV, LED-backlit notebook, LED-backlit display, and LED-backlit mobile phone tends to be consistent.
  • FIG. 1A A cross-sectional view of a conventional light emitting diode structure is shown in FIG. 1A. From bottom to top, the substrate 10 (including an n-type semiconductor layer epitaxial layer), an active layer 120, a transparent layer 15 (including a p-type semiconductor layer, a current diffusion layer), whether it is an n-side light-emitting diode, or The light-emitting diode chips on the different sides of p and n can be set to a certain value by applying the method of the present invention to the center wavelength of the LED light.
  • the structure of the present invention is further formed with a multilayer filter layer 50 in which the first transparent layer 51 and the second transparent layer 52 are alternated at the topmost layer 15 of Fig. 1A.
  • the first transparent layer 51 and the second transparent layer 52 are Si0 2 and Ti0 2 , respectively . These two materials have refractive indices of 1.45 to 1.48 and 2.2 to 2.5, respectively.
  • the first transparent layer 51 is not limited to SiO 2 , and it may be another metal oxide such as zirconia (Zr0 2 ) or a fluoride such as MgF 2 .
  • the second transparent layer 52 may be Ti 2 0 5 , Ta 2 0 5 , Nb 2 0 5 .
  • the first transparent layer 51 and the second transparent layer 52 have a common feature that the first transparent layer 51 has a different refractive index than the second transparent layer 52, and is alternately deposited one low and one high. Further, since the multilayer filter layer 50 deposited by the present invention is at least tens of layers, for example, at least 80 layers or more, it is not important to alternate first, then lower, or higher, then lower, and lower.
  • the method of the present invention is to make the center wavelength of the whole wafer the same, for example, if the target wavelength is 440 nm, the whole piece is 440 nm, regardless of the original LED chip semi-finished product (the semi-finished product described here is to make the conventional LED wafer process have been All done, except for the wafer core on the wafer where the uppermost metal electrode has not been completed, is the change in the center wavelength of the wafer core toward the periphery of the wafer.
  • the method of the present invention selects a high refractive index metal oxide material such as Ti0 2 and Ta 2 0 5 as the first layer 51 or the second layer 52 is plated on the uppermost layer of the wafer, which in one embodiment is the wafer 20
  • the uppermost layer is a transparent conductor oxide layer 15, such as indium tin oxide ITO, and in another embodiment, for example, a p-type epitaxial layer, a binary or quaternary epitaxial layer.
  • Another lower refractive index oxide material such as SiO 2 is used as the second layer or the first layer is plated on the first layer.
  • a high-level, low-refractive, two-layer coating is alternately deposited.
  • the refractive index of the uppermost layer of the wafer will affect the thickness of the first coating, and
  • the thickness and refractive index of one layer of coating affect the angle of incidence of the second layer of coating.
  • the setting of boundary conditions is necessary, and it may include (1) setting the center wavelength of the outermost layer of the multilayer film, and selecting a layer number to be the total layer of the multilayer film.
  • the number or (2) the lower limit of the transmittance at the center wavelength for example, the transmittance is limited to 95%, or (3) the transmittance is 50%, which is ⁇ 1% or 2% or 3% of the center wavelength.
  • the wave width is used as a boundary condition.
  • (4) the incident angle of the light emitted from the LED wafer into the first transparent film may be used as a boundary condition, and the incident angle may not be less than ⁇ 45 degrees.
  • the thickness and the refraction angle of the second outer layer are calculated, and the thickness of the third outer layer is calculated according to the refractive index, incident angle and thickness of the second outer layer. And so on, until the top layer of the LED chip.
  • the above calculations are shown in the following mathematical expressions.
  • the layer will be up to one hundred layers. Therefore, in the calculation, the following mathematical formula is represented by a computer program.
  • the center wavelength of the final target light output, the allowable width of the outermost layer of the wave width, the refractive index of the first material film layer, the refractive index of the second material film layer, and the refractive index of the wafer substrate are used as parameters, the calculation can be calculated.
  • the predetermined thickness of each film layer is used as parameters.
  • the ion beam assisted electron gun evaporation method is performed to perform the deposition of the multilayer film 50. .
  • W is the refractive index of the coating material, is the thickness of the film
  • ⁇ ' ⁇ is the refractive index of the outermost outer layer, such as air.
  • the coating material 1 or 2 is the coating thickness, according to a preferred embodiment of the present invention.
  • the ion source When the plasma is cleaned, the ion source has an argon flow rate of 45 sccm and an oxygen flow rate of 8 sccm, while in the electron gun evaporation,
  • the neutralizer acts to discharge the charge of the ion source, so there is a matching ratio. If the current of the ion source is 900 mA and the ratio of the neutralizer is 150%, the current value of the neutralizer is 1350 Ma. 3 is a simulation result of a central wavelength of a 95-, 105-, and 120-layer filter film on a blue LED chip, a green LED chip, and a red LED chip, respectively, according to the method of the present invention. The % transmittance is simulated as a boundary condition under the condition that the wavelength is 2% of the center wavelength.
  • Fig. 4A and Fig. 4B show the film thicknesses of the two layers alternately in the 105 layers of the green light of the multilayer filter film.
  • the results of Fig. 3 are simulated according to the conditions of Figs. 4A, 4B, 5A, and 5B.
  • the bonding between the film layer and the film layer and the bonding of the outermost layer of the film wafer substrate must be considered.
  • the present invention purifies the LED wafer level color, in other words, the center wavelength of the light output is adjusted to the same value, and the color matching is very convenient.
  • the LED wafer level color purification provided by the present invention can reduce the cost of quality control, and the quality control personnel only need to use the transmittance as the standard for quality control. Compared with the conventional LED chips which are not color-purified, it is necessary to judge whether or not the center wavelength of each wafer is acceptable. Obviously, the advantages of the present invention stand out.
  • the present invention can be widely applied to color purification of blue light, red light, and green light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

发光二极管晶片级色彩纯化的方法 技术领域
本发明是关于一种发光二极管晶片, 特别是指一种在发光二极管晶片 (wafer)的晶片 工艺完成后再形成多层滤光膜于其上, 以使晶片发光色彩纯化的发光二极管结构。 背景技术
发光二极管 (Light emitting diodes; LED)的发光原理是将电流顺向流入半导体的 p-n 时便会发出光线。 其中 AlGalnP材料应用于高亮度红、 橘、 黄及黄绿光 LED, AlGalnN材 料应用于蓝、 绿光 LED, 常以有机金属气相磊晶法 (metal Organic Vapor Phase Epitaxy; MOVPE)进行量产, 元件上亦使用同质结构 (homo-junction, HOMO)、 单异质结构 (single- heterostructure, SH)、 双异质结构(double-heterostructure, DH)、 单一量子井结构(single- quantum well, SQW)及多重量子井结构 (multiple-quantum well, MQW)…等构造或其他结构 方式发光。
传统的发光二极管其结构如图 1A所示, 从上而下分别是上电极 l l(fr0nt electrical contact)、 透光层 15 ( capping layer or window layer ) 增加电流分散、 活性层 12(active layer) 基板 10、 背电极 13(back contact)。 而透光层 15最典型的是使用透明导体氧化层, 提供电流扩散的功能例如氧化铟锡 (ITO)。 当电流由上电极 11注入时, 电流会通过透明导 体氧化层 14扩散, 再经活性层 12、 基板 10、 流向背电极 13。 当电流流经活性层 12时, 便 会发出光线。 其中, 活性层包含一 ρ型包覆层, 一本质层 (instric layer)及一 η型包覆层。 此 夕卜, 为提升透明导体氧化层的导电性, 因此, 最常见的例子是在透明导体氧化层 15内埋 入金属栅 16。 即金属栅 16先形成于活性层 12上, 再覆盖以 ΙΤΟ层 15。
基板 10随不同的活性层 12选择不同的材料作为基板。 当活性层 12的材料 AlGalnP 时, 选用砷化镓材料作为基板; 而当活性层 12的材料 AlGalnN时, 选用蓝宝石 ( sapphire) 材料作为基板。 活性层厚度为 0.3〜3μιη和透光层 15厚度为 10~ 50μιη, 其活 性层 12及透光层 15皆使用有机金属气相磊晶法 (MOVPE)或分子束磊晶法 ( Molecular Beam Epitaxy; MBE) 制作而成。
以上工艺为典型的发光二极管工艺。 然而, 由于磊晶工艺均匀度不够, 实务上不管 是蓝光发光二极管工艺, 绿光发光二极管工艺, 或红光发光二极管工艺只要是在二吋以 上的晶片上, 请参考图 1B, 在晶片的中心的晶粒 30与边缘处的晶粒 32、 33、 34, 发光二 极管发光的中心波长是有偏差的。 例如, 以蓝光发光二极管而言, 中心波长约为 440 nm, 而实际上, 晶片边缘的晶粒 34(直径的一端到另一端)中心波长可能就有 30 nm-40nm 的差值而使得晶粒 (die)有色彩偏差。 即使是晶片中心晶粒 30(die)亦可能因工艺偏差, 而 使得这一批号和上一批号的晶片的中心波长偏移了。 因此, 对于 LED晶粒的半导体制造 业者是否将整批晶片打入不良品或经品管测试每一晶粒的出光的色差以淘汰不再范围的 内者是一大困扰。
而对于使用 LED晶粒以制造照明灯具的厂商而言中心波长具有少量偏移了或较大的 偏移, 为可容忍的范围, 但若要和其它原色 LED配光, 以产生装饰或图案的厂商而言, 例如 LED背光电视、 LED背光笔电、 LED背光显示器、 LED背光手机而言。 它的要求通 常较为严苛, 是不能被接受的。 特别是高阶的机种而言。
有鉴于此, 本发明提供一晶片级发光二极管多层滤光膜, 用以纯化发光二极管色 彩。 发明内容
本发明的主要目的在于提供一种 LED晶片级色彩纯化的方法及 LED晶片色彩纯化的 结构。
本发明揭露一种使发光二极管 (LED)晶片级色彩纯化的方法, 至少包含以下步骤:首 先以习知的半导体工艺制造出 LED晶片。 在单面出光或双面出光不限, 两电极则尚未制 造。 接着, 设定发光二极管 (LED) 晶片级预定出光的中心波长值。 随后, 选取适当的二 种透明膜做为多层膜。 这二种透明膜中一较佳的实施例是一为低折射率的二氧化硅膜, 另一则为折射率相对较高的金属氧化膜且能与二氧化硅膜相搭配沉积时残留应力不会随 着膜数增加而增加者, 例如二氧化钛做为第二种透明膜。 随后, 依据以下参数, 包含中 心波长, 二材质在中心波长下的折射率、 LED晶片的最上层材质的折率率、 及最终预定 的多层厚总厚度或透光率下限, 计算出由上述二透明膜交替沉积下的预定厚度值。
本发明的目的之一在于提供一种发光二极管晶片级色彩纯化的方法, 该方法包括: 提供一 LED晶片, 已完成 n型半导体磊晶层、 活化层、 p型半导体磊晶层的工艺; 设定预 定的中心波长值; 选取二氧化硅为多层膜的其中第一种透明膜的材质; 选取一折射率高 于二氧化硅膜的金属氧化膜为第二种透明膜的材质; 设定 LED晶片出光的中心波长; 进 行第一种透明膜、 第二种透明膜交替沉积下的厚度预定值计算, 厚度预定值依所述的中 心波长、 第一种透明膜、 第二种透明膜、 LED晶片的最外层膜的折射率计算出第一种透 明膜、 第二种透明膜交替沉积下进行每一层的厚度预定值计算, 折射率是以相对中心波 长时的折射率; 及沉积第一种透明膜、 第二种透明膜并依据膜厚度预定值依序交替沉 积。
本发明的目的之一在于, 提供一种发光二极管晶片级色彩纯化结构, 包含: 第一种 透明膜及第二种透明膜交替沉积共 90层以上以使 LED晶片出光的中心波长的波宽在预设 值的 ± 1%之内, 或 80层以上以使中心波长的波宽在预设值的 ± 3%之内, 其中第一种透 明膜是是低折射率材料膜层, 第二种透明膜是高折射率材料膜层。
对 LED晶片进行离子电浆清洁术, 紧接着, 以离子电浆辅助电子枪沉积技术, 依据 每一膜层的预定厚度, 交替沉积第一种透明膜、 第二种透明膜。 最后, 再形成 p、 n 电 极, 切割晶片成晶片 (die)。 附图说明
图 1A为已知的发光二极管的结构;
图 1B为已知的发光二极管晶圆的晶粒在中心与边缘可能会因工艺产生中心波光偏 移;
图 2显示本发明将多层膜镀于 LED晶片上的结构;
图 3显示在以本发明纯化 LED晶片后的中心波长, 包含蓝光用 95层滤光膜, 绿光 为 105层滤光膜及红光为 120层滤光膜时的模拟结果;
图 4A、 图 4B显示对应于图 3的绿光及蓝光 LED晶片使用的多层膜的每一层厚度 值; 及
图 5A、 图 5B显示对应于图 3的红光 LED晶片使用的多层膜的每一层厚度值。 主要元件符号说明:
基板 10 活性层 12
背电极 13 透明导体氧化层 15
透光层 15 多层滤光膜 50
发光二极管晶片 20 第一种透明膜 51
第二种透明膜 51 最外层透明膜 520
次外层透明膜 510 具体实施方式
习知晶片在发光二极管工艺后有色彩偏差的问题, 晶片核心到周遭的发光的中心波 长就可能有差异, 而当色彩偏差至超出容忍的限度时, 该晶片就被视为不良品, 予以作 废。 且进行品管时, 必须就每一晶片的中心波长进行量度, 以做为是否淘汰的依据。
本发明提供一晶片级发光二极管多层滤光膜及其色彩纯化的方法以解决上述问题。 当整片晶片的中心波长都被调为一致性的目标波长时, LED晶粒的半导体制造业者只要 淘汰亮度较差者 (整片晶片的中心波长就只有一种)而不用管色差, 品管将会变得非常容 易。 对于下游业者, 使用起来更方便, LED背光电视、 LED背光笔电、 LED背光显示 器、 LED背光手机的品质趋于一致。
如图 1A所示为一习知发光二极管结构的横截面示意图。 由下而上包含基板 10(包含 n 型半导体层磊晶层)、 一活化层 120、 一透明层 15(包含 p型半导体层、 电流扩散层), 不管 是 、 n同侧的发光二极管, 或者 p、 n不同侧的发光二极管晶片都可应用本发明的方法将 LED出光的中心波长设定在一定值。
本发明的结构请参见图 2, 它是在图 1A的最顶层 15再形成以第一透明层 51和第二透 明层 52交替的多层滤光层 50。 以一较佳实施例而言, 第一透明层 51和第二透明层 52分别 为 Si02及 Ti02。 这两种材料它们的折射率分别为 1.45至 1.48及 2.2至 2.5。 当然, 第一透明 层 51并不限于 Si02,它也可以是其它金属氧化物, 例如氧化锆 (Zr02)或氟化物如 MgF2。而 第二透明层 52则可以是 Ti205、 Ta205、 Nb205。 上述的第一透明层 51和第二透明层 52, 具有共同的特色是第一透明层 51相较于第二透明层 52两者的折射率不同, 且是一低一高 交替沉积。 又由于以本发明所沉积的多层滤光层 50至少是数十层例如至少是八十多层以 上, 因此, 先低后高交替或先高后低交替并不重要。
本发明的方法是使整片晶片的中心波长都相同, 例如, 若目标波长为 440nm, 则整 片都是 440nm, 不管原始 LED晶片半成品 (此处所述的半成品是使习知 LED晶片工艺已全 部完成, 除了晶片上晶粒的最上的金属电极尚未完成外)的晶片核心往晶片的四周方向是 否中心波长的变化如何。
本发明的方法是选择一高折射率的金属氧化物材料如 Ti02及 Ta205做为第一层 51或 第二层 52镀于晶片的最上层, 以一实施例而言是晶片 20的最上层是透明导体氧化层 15, 例如氧化铟锡 ITO, 再一实施例, 则是例如 ρ型磊晶层, 二元或四元的磊晶层。
另一较低折射率的氧化物材料如 Si02做为第二层或第一层镀于第一层上。 一高、 一 低折射率的两层镀膜交替沉积。 晶片的最上层的折射率将影响第一层镀膜的厚度, 而第 一层镀膜的厚度及折射率影响对第二层镀膜的入射角。 依据本发明的方法, 边界条件的 设定是必要的, 它可以包括(1)设定多层膜的最外层出光的中心波长, 并选定一层数后, 以多层膜的总层数或 (2)该中心波长下的穿透率下限, 例如穿透率下限定为 95%、 或 (3)穿 透率为 50%时是中心波长的 ± 1%或 2%或 3%的波宽做为边界条件。 另外, 也可以 (4)以 LED晶片出光进入第一透明膜的入射角做为边界条件, 这个入射角不可小于 ±45度。 再 依最外层的折射率及厚度, 向第二外层推算其应有的厚度及折射角, 依第二外层的折射 率、 入射角及厚度推算第三外层其应有的厚度, 依此类推, 直到 LED晶片的最上层为 止。
上述的演算, 以数学式表示如下所示。 依据本发明的一实施例出光的中心波长愈纯 化将需要愈多的膜层, 以一实施例而言, 将达百层, 因此, 计算时, 则是将以下的数学 式以计算机程式表示, 只要输入最终目标出光的中心波长、 允许的波宽最外层预定厚 度, 第一种材料膜层折射率、 第二种材料膜层折射率、 晶片基板的折射率做为参数, 即 可计算出每一膜层的预定厚度。
因此, 待最外层 520、 第二外层 510、 第三外层.…晶片最上层, 每一层的预定厚度都 已知后, 再进行离子束辅助电子枪蒸镀法进行多层膜 50沉积。
将基材与膜层的数学关系式以矩阵的形式表示, 将如下:
1.基板的特性矩阵:
Figure imgf000007_0001
2.膜层的特性矩阵: cos δ ― sin δ
M =
ί η sin δ cos δ δ = ^-nd
其中 , ^波长, W为镀膜材料的折射率, 为膜层的厚度
因此单膜层介面的电磁场关系为: cos —sin
Figure imgf000007_0002
η
ίη ^ι δ cos 其中, i为虚数, η镀膜材料的折射率 令 为等效导纳 B
而反射系数即为
其中 λ'ο为最外层外界的折射率, 例如空气。
当镀上多层膜时, 则介面的电磁场关系即可写为
Ε
MH 、M、、M,
Η
其中 为镀膜材料 1或 2, j'为镀膜厚度 依据本发明的一较佳实施例,
电浆清洁晶片时, 离子源:氩气流率 45 sccm,氧气的流率 8 sccm,而在电子枪蒸镀时,
Figure imgf000008_0001
离子源
Figure imgf000008_0002
其它条件如下表
其中, 中和器作用是放电中和离子源的电荷,因此有匹配的比例。 假如离子源的电流 900mA,中和器匹配的比例为 150%,则中和器所放的电流值为 1350Ma。 图 3示依据本发明的方法, 对蓝光 LED晶片、 绿光 LED晶片及红光 LED晶片分别镀上 95层、 105层及 120层的滤光膜后的中心波长的模拟结果, 它是在 50%透光率下波宽为中 心波长 2%的条件下作为边界条件模拟的。
图 4A、 图 4B则示多层滤光膜绿光在 105层时交替的两层的每层膜厚。 图 3的结果是依 据图 4A、 图 4B及图 5A、 图 5B的条件所模拟的。
上述的演算法中, 膜层与膜层之间的结合性, 膜层晶片基板的最外层的结合性都是 必须要加以考虑的。
本发明的优点:
1)本发明将 LED晶片级色彩纯化, 换言之出光的中心波长都调到相同值, 配色使用 时将非常方便。
2)本发明提供的 LED晶片级色彩纯化将可减少品管成本, 品管人员只要将只需以透 光率做为品管通过与否的标准。 相较习知 LED晶片未进行色彩纯后, 必须就每一晶片的 中心波长判定是否合格, 显然, 本发明的优势立现。
3)本发明可以广泛应用于蓝光、 红光、 及绿光的色彩纯化。
以上所述仅为本发明的较佳实施例, 不应用于局限本发明的可实施范围, 凡熟知此 类技艺人士皆能明了, 适当而作些微的改变及调整, 仍将不失本发明的要义所在, 亦不 脱离本发明的权利要求范围, 皆应属本发明的范围。

Claims

权利要求书
1、 一种发光二极管晶片级色彩纯化的方法, 其特征在于, 所述的方法, 至少包含: 提供一 LED晶片, 所述的 LED晶片已完成 n型半导体磊晶层、 活化层、 p型半导体 磊晶层的工艺;
设定预定的中心波长值;
选取二氧化硅为多层膜的其中第一种透明膜的材质;
选取一折射率高于所述的二氧化硅膜的金属氧化膜为第二种透明膜的材质; 设定所述的 LED晶片出光的中心波长;
进行所述的第一种透明膜、 所述的第二种透明膜交替沉积下的厚度预定值计算, 所 述的厚度预定值依所述的中心波长、 所述的第一种透明膜、 第二种透明膜、 所述的 LED 晶片的最外层膜的折射率计算出所述的第一种透明膜、 所述的第二种透明膜交替沉积下 进行每一层的厚度预定值计算, 上述的折射率是以相对所述的中心波长时的折射率; 及 沉积所述的第一种透明膜、 第二种透明膜并依据所述的膜厚度预定值依序交替沉 积。
2、 如权利要求 1所述的方法, 其特征在于, 所述的方法还包含在沉积上述的第一种 透明膜于 LED晶片前先施以惰性离子电浆束清洁所述的 LED晶片的最外层膜。
3、 如权利要求 1所述的方法, 其特征在于, 所述的厚度预定值计算更包含以总膜层 厚度或所述的中心波长下出光的穿透率做为边界条件。
4、 如权利要求 3所述的方法, 其特征在于, 所述的厚度预定值计算是在所述的边界 条件由预定的多层透明膜的最后一层向内推算至所述的 LED晶片的最外层膜。
5、 如权利要求 1 所述的方法, 其特征在于, 所述的第二种透明膜是选自 Ti02、 Ti205其中的一种。
6、 如权利要求 1所述的方法, 其特征在于, 所述的沉积方法是以离子电浆辅助电子 枪沉积。
7、 一种发光二极管晶片级色彩纯化结构, 其特征在于, 所述的结构至少包含: 第一种透明膜及第二种透明膜交替沉积共 90层以上以使所述的 LED晶片出光的中 心波长的波宽在预设值的 ± 1%之内, 或 80层以上以使中心波长的波宽在预设值的 ±3% 之内, 其中所述的第一种透明膜是是低折射率材料膜层, 所述的第二种透明膜是高折射 率材料膜层。
PCT/CN2011/070863 2010-06-01 2011-01-31 发光二极管晶片级色彩纯化的方法 WO2011150693A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013512731A JP2013530529A (ja) 2010-06-01 2011-01-31 発光ダイオードウェハレベルの色純化方法
EP11789072.3A EP2579342A4 (en) 2010-06-01 2011-01-31 METHOD FOR COLOR CLEANING OF AN ILLUMINATED DIODE AT WAF LEVEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010194081.5A CN102270724B (zh) 2010-06-01 2010-06-01 发光二极管晶片级色彩纯化的方法
CN201010194081.5 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011150693A1 true WO2011150693A1 (zh) 2011-12-08

Family

ID=45052942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070863 WO2011150693A1 (zh) 2010-06-01 2011-01-31 发光二极管晶片级色彩纯化的方法

Country Status (4)

Country Link
EP (1) EP2579342A4 (zh)
JP (1) JP2013530529A (zh)
CN (1) CN102270724B (zh)
WO (1) WO2011150693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972155A (zh) * 2021-10-21 2022-01-25 京东方科技集团股份有限公司 一种led芯片转移装置、设备以及控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428492A (zh) * 2014-09-11 2016-03-23 晶极光电科技股份有限公司 具有色彩纯化滤光层的发光二极管晶粒及其批量制造方法
CN110571319A (zh) * 2019-10-17 2019-12-13 扬州乾照光电有限公司 一种多堆栈odr的倒装led结构及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146734C (zh) * 2001-12-07 2004-04-21 中国科学院上海技术物理研究所 超窄带通光学薄膜滤光片及膜层厚度产生方法
CN101383341A (zh) * 2008-10-21 2009-03-11 友达光电股份有限公司 发光二极管模块
US7532382B2 (en) * 2006-06-07 2009-05-12 Konica Minolta Opto, Inc. Display element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008A (en) * 1853-09-13 India-rtjbbee
US7006A (en) * 1850-01-08 Chubh
JPH08236807A (ja) * 1995-02-24 1996-09-13 Ricoh Co Ltd 半導体発光素子及び半導体発光素子アレイチップ
CN100459189C (zh) * 2003-11-19 2009-02-04 日亚化学工业株式会社 半导体元件
TWI229954B (en) * 2004-06-29 2005-03-21 Ledarts Opto Corp III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof
US20060043398A1 (en) * 2004-08-30 2006-03-02 Pei-Jih Wang Light emitting diode with diffraction lattice
JP2006278567A (ja) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Ledユニット
DE102005062514A1 (de) * 2005-09-28 2007-03-29 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
WO2008036958A2 (en) * 2006-09-23 2008-03-27 Ylx Corporation Brightness enhancement method and apparatus of light emitting diodes
JP2009105379A (ja) * 2007-10-05 2009-05-14 Panasonic Electric Works Co Ltd 発光装置
KR20100097205A (ko) * 2007-12-10 2010-09-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 단순화된 광 추출을 갖는 하향-변환된 발광 다이오드
US8916890B2 (en) * 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
CN201466055U (zh) * 2009-04-07 2010-05-12 山东璨圆光电科技有限公司 具有多层膜穿透窗被覆层的发光二极管结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146734C (zh) * 2001-12-07 2004-04-21 中国科学院上海技术物理研究所 超窄带通光学薄膜滤光片及膜层厚度产生方法
US7532382B2 (en) * 2006-06-07 2009-05-12 Konica Minolta Opto, Inc. Display element
CN101383341A (zh) * 2008-10-21 2009-03-11 友达光电股份有限公司 发光二极管模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972155A (zh) * 2021-10-21 2022-01-25 京东方科技集团股份有限公司 一种led芯片转移装置、设备以及控制方法

Also Published As

Publication number Publication date
CN102270724A (zh) 2011-12-07
CN102270724B (zh) 2014-04-09
EP2579342A4 (en) 2015-10-21
JP2013530529A (ja) 2013-07-25
EP2579342A1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
Zhou et al. Highly efficient GaN-based high-power flip-chip light-emitting diodes
Zhou et al. Numerical and experimental investigation of GaN-based flip-chip light-emitting diodes with highly reflective Ag/TiW and ITO/DBR Ohmic contacts
US20100166983A1 (en) Omni-directional reflector and light emitting diode adopting the same
Byeon et al. Fabrication of SiN x-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography
US10734554B2 (en) Light emitting diode having distributed Bragg reflector
GB2447091A (en) Vertical LED
CN102956770B (zh) 氮化物半导体发光元件和装置及其制造方法
Xu et al. Light-extraction enhancement of GaN-based 395 nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode
Guo et al. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO 2/Al 2 O 3 passivation layers and TiO 2/Al 2 O 3 DBR backside reflector
TWI483430B (zh) 發光二極體晶圓級色彩純化之方法
Zhanghu et al. Ultra-bright green InGaN micro-LEDs with brightness over 10M nits
Zhou et al. Enhanced luminous efficiency of phosphor-converted LEDs by using back reflector to increase reflectivity for yellow light
WO2016000583A1 (zh) 垂直型led结构及其制作方法
Shi et al. Enhanced performance of GaN-based visible flip-chip mini-LEDs with highly reflective full-angle distributed Bragg reflectors
Zhang et al. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones
CN101114697A (zh) 有机发光组件及其制造方法
Park et al. Enhancement of light extraction efficiency of OLEDs using Si 3 N 4-based optical scattering layer
Lee et al. Design of ITO/SiO2/TiO2 distributed Bragg reflectors as a p-type electrode in GaN-based flip-chip light emitting diodes
WO2011150693A1 (zh) 发光二极管晶片级色彩纯化的方法
CN105789404A (zh) 一种GaN基发光二极管芯片及其制备方法
KR20230019422A (ko) 광학 장치 및 광학 장치의 제조 방법
US11239443B2 (en) Display panel, method for preparing the same, and display device
KR100716752B1 (ko) 발광 소자와 이의 제조 방법
US9306126B2 (en) Oxides with thin metallic layers as transparent ohmic contacts for p-type and n-type gallium nitride
Lee et al. Improved device performance of AlGaInP-based vertical light-emitting diodes with low-n ATO antireflective coating layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011789072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789072

Country of ref document: EP