WO2011150653A1 - 大型铰接车底盘铰接*** - Google Patents

大型铰接车底盘铰接*** Download PDF

Info

Publication number
WO2011150653A1
WO2011150653A1 PCT/CN2010/080462 CN2010080462W WO2011150653A1 WO 2011150653 A1 WO2011150653 A1 WO 2011150653A1 CN 2010080462 W CN2010080462 W CN 2010080462W WO 2011150653 A1 WO2011150653 A1 WO 2011150653A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
oil
articulated vehicle
vehicle chassis
hinge system
Prior art date
Application number
PCT/CN2010/080462
Other languages
English (en)
French (fr)
Inventor
郝韵
Original Assignee
Hao Yun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010202118753U external-priority patent/CN201670067U/zh
Priority claimed from CN201020211872XU external-priority patent/CN201670066U/zh
Priority claimed from CN2010202119012U external-priority patent/CN201670270U/zh
Priority claimed from CN 201020226770 external-priority patent/CN201769882U/zh
Priority claimed from CN 201020233715 external-priority patent/CN201694004U/zh
Priority claimed from CN2010202761714U external-priority patent/CN201827172U/zh
Priority claimed from CN2010205395531U external-priority patent/CN201824815U/zh
Application filed by Hao Yun filed Critical Hao Yun
Priority to BR112012030617A priority Critical patent/BR112012030617B8/pt
Priority to US13/700,628 priority patent/US9150062B2/en
Publication of WO2011150653A1 publication Critical patent/WO2011150653A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/01Traction couplings or hitches characterised by their type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D5/00Gangways for coupled vehicles, e.g. of concertina type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D12/00Steering specially adapted for vehicles operating in tandem or having pivotally connected frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/0842King pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/0871Fifth wheel traction couplings with stabilising means, e.g. to prevent jack-knifing, pitching, rolling, buck jumping

Definitions

  • the invention relates to the technical field of vehicle structures, in particular to the technical field of vehicle chassis articulation, in particular to a hinge system of a large articulated vehicle chassis. Background technique
  • the articulated bus is generally composed of front and rear compartments and a chassis hinge system connecting the front and rear compartments, wherein the chassis hinge system includes a slewing bearing, a front frame, a rear frame, and a damping system, among which:
  • the front frame is fixedly connected with the front car by the front cross beam, wherein the front frame and the front cross beam are generally connected by a ball joint connection mechanism such as a ball joint and a ball joint mount, and the ball joint is generally composed of a metal core and an elastic member, such as China.
  • Patent CN201099154 discloses a ball joint connection structure in a hinge system of a large hinged passenger car chassis, wherein the front frame is fixedly connected with the front beam through a ball joint and a ball joint fixing seat, and the ball joint fixing seat is a double-layer plate, which is relatively thin.
  • the connection rigidity is not ideal, and the traction force or thrust of the ball joint mechanism is large during the running of the vehicle. This puts higher requirements on the rigidity of the ball joint mechanism.
  • the ball joint structure only casts rubber outside the middle part of the rigid central axis. This kind of structural rigidity is weak, and at the same time, because the vehicle has a large force on the central axis of the ball joint during the up and down bumps and the left and right turn, it is easy to make the center of the ball joint
  • the shaft is strung in the left and right of the elastic element, which affects the stability of the articulated vehicle during operation, and the ball joint is easily damaged due to the large force.
  • the front frame and the rear frame are connected by a slewing bearing, wherein the front frame is fixedly connected with the outer cymbal of the slewing bearing through the beam, the rear frame is fixedly connected with the inner cymbal of the slewing bearing, and the rotation of the front and rear frames can realize the free steering of the articulated vehicle, such as the Chinese patent.
  • CN201086609 discloses a large hinged passenger car chassis hinge system, wherein the front frame is fixedly connected with the outer ring of the slewing bearing through a beam, and the rear frame is fixedly connected with the inner cymbal of the slewing bearing. Although a better rotational connection is realized, the structure is complicated.
  • the cost is higher, and a multi-layer structure is formed by joining, and the entire hinge system is large in thickness.
  • the screw on the slewing bearing is unevenly arranged, the connection strength is poor, and the long-term use affects the service life.
  • the rear frame is fixedly connected with the rear frame of the articulated vehicle through the rear cross beam.
  • the rear cross member in order to reduce the quality of the rear cross member, the rear cross member is often made into a sheet metal structure, and the rear frame and the rear car are welded through the rear cross member, due to the sheet metal part. Structure, the connection strength is poor, and as the connecting piece of the rear frame and the rear car, the connection rigidity of the rear beam is relatively high, and in the event of a failure, a traffic accident is likely to occur, and at the same time, the installation is difficult due to the complicated structure.
  • the rear frame is fixedly connected with the inner cymbal of the slewing bearing, and the rotation of the front and rear frames can realize the free steering of the articulated car, although the steering of the articulated car is on the road.
  • Width to be The demand is not very high, this is a big advantage of the urban articulated bus, but if the turning angle is too large (especially the rear engine articulated bus), the rear car will increase the lateral force generated by the front car, causing serious side slip
  • the front and rear compartments of articulated vehicles are "cutting, accidents, causing property damage and casualties.
  • CN201086610 discloses a rear truss structure in a hinge system of a large articulated bus chassis, which realizes a rotational connection, but due to the limitation of the structure, on the one hand, the screws are only partially arranged, the arrangement is not uniform enough, and the torsion resistance is poor, on the other hand
  • the formed torsion force acts directly on the screw, and its long-term use will affect its service life, and the rear frame structure is more complicated, the cost is higher, and the processing technology is complicated.
  • the damping system in the chassis hinge system is the key factor that restricts the performance of the articulated car.
  • the hydraulic buffer system of the articulated bus is generally composed of two hydraulic cylinders, a hydraulic controller and an electric control system.
  • the hydraulic cylinder is controlled by the hydraulic controller to change the output resistance.
  • the electric control system sends a signal to the hydraulic controller according to the turning angle of the vehicle, so that it can change different pressure values.
  • Chinese patent CN201086607 discloses a rotation control through the control body. Hydraulic damping system, which converts the damping control hydraulic control system.
  • control system can form different damping according to the change of the angle of the vehicle, it can obviously prevent the front and rear vehicle shearing, but the control body structure It is more complicated, requires high processing precision, high cost, complicated installation and connection, large space occupation, and also has shortcomings such as oil leakage, valve core jam or electrical system failure.
  • the buffering effect is not ideal, especially in the articulated bus. If the damping buffer cannot be effectively controlled, the driver often turns a big turn when driving the articulated vehicle. The angle of the turn is large and an accident occurs, causing casualties and property damage.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a hinge system for a large articulated vehicle chassis.
  • the hinge system of the large articulated vehicle chassis is uniquely designed, and the structure is compact and compact, and the cylinder is installed to enhance the large articulated vehicle.
  • the safety, stability and durability of the chassis articulation system reduce costs and are suitable for large-scale deployment.
  • a large articulated vehicle chassis hinge system including a front cross member, a ball joint structure, a front frame, a slewing bearing, a rear frame and a rear cross member, and the front cross member Connecting the front frame by the ball joint structure, the slewing bearing includes an inner cymbal and an outer cymbal, the front frame is fixedly connected to the outer cymbal/inner cymbal, and the rear frame is The inner/outer ⁇ is fixedly connected, the inner and outer cymbals are relatively rotated, and the rear frame is Connecting the rear cross member, the main feature is that the large articulated vehicle chassis hinge system further includes a steering angle sensing device, and the steering angle sensing device is disposed on the inner/outer raft and the front frame / between the back frame.
  • the steering angle sensing device in the large articulated vehicle chassis hinge system comprises an angle sensor, a first angle sensor and a second angle sensor, wherein the angle sensor is fixedly disposed on the inner/outer jaw.
  • the first angle sensor and the second angle sensor are fixedly disposed on the front frame/rear frame, and the first angle sensor and the second angle sensor are respectively disposed on both sides of the angle sensor .
  • the first angle sensor and the second angle sensor in the hinge system of the large articulated vehicle chassis respectively include a 4 ⁇ police end and a mechanical locking end, and the alarm end and the angle sensor are in the inner ⁇ / ⁇ ⁇ 40 is formed in the circumferential direction. ⁇ 50° angle, the mechanical locking end and the angle sensor form 45 in the circumferential direction of the inner/outer jaw. ⁇ 55. Angle.
  • the ⁇ ⁇ ⁇ and the angle sensor in the hinged system of the large articulated vehicle chassis form a 47 in the circumferential direction of the inner/outer raft.
  • the angle between the mechanical locking end and the angle sensor is 52 in the circumferential direction of the inner/outer jaw. Angle.
  • the steering angle sensing device in the large articulated vehicle chassis hinge system further includes a damping sensor, a first damping sensor and a second damping sensor, the damping sensor being disposed on the inner bore and at an angle
  • the sensor is disposed on a center line of the hinge system, the first damping sensor and the second damping sensor are respectively disposed on the front frame/rear frame, and the first damping sensor and the second damping sensor are disposed On both sides of the damping sensor.
  • the first damping sensor and the second damping sensor in the hinge mechanism of the large articulated vehicle chassis respectively comprise a damping end and a hydraulic locking end, wherein the damping end and the damping sensor are in the circumferential direction of the inner/outer jaw Form 15. ⁇ 20° angle, the hydraulic locking end and the damping sensor form 45 in the circumferential direction of the inner/outer jaw. ⁇ 55. Angle.
  • the damper end of the large articulated vehicle undercarriage hinge system and the damping sensor are formed 17 in the circumferential direction of the inner/outer weir.
  • the angle, the hydraulic locking end and the damping sensor are formed 49 in the circumferential direction of the inner/outer jaw. Angle.
  • the large articulated vehicle chassis hinge system further includes a hydraulic damping buffer system, and the hydraulic damping buffer system is disposed between the front frame and the rear frame.
  • the hydraulic damping buffer system in the hinge system of the large articulated vehicle chassis includes two hydraulic damping buffers arranged symmetrically in a left-right direction and a damping buffer control module, wherein each hydraulic damping damping device comprises a piston, a piston rod and a cylinder a piston is disposed in the cylinder liner, and a side of the piston is fixedly connected to the piston rod, and the piston rod is fixedly connected to the front frame, and each of the piston rods
  • the cylinder sleeve ends of the hydraulic damping buffer device are fixedly connected with the rear frame, and the damping buffer control module is connected with the damping damping device on the left side and the damping buffer device on the right side.
  • the hydraulic damping buffer device in the hinge system of the large articulated vehicle chassis is a hydraulic cylinder, and the hydraulic cylinder is divided into a rod cavity and a rodless cavity by the piston, and the damping buffer control module includes the first single The valve, the second check valve, the third check valve, the fourth check valve, the oil storage tank, the rodless chamber is sequentially connected in series with the third check valve and the oil storage tank to form a first oil absorption
  • the oil passage, the rod cavity is sequentially connected in series with the fourth check valve and the oil storage tank to form a second oil suction oil passage;
  • the rodless cavity is sequentially connected with the first one-way valve and the first check valve
  • the fuel tanks are connected in series to form a first oil passage, said The rod cavity is sequentially connected in series with the second one-way valve and the oil storage tank to form a second oil draining passage, and the first oil draining oil passage and the second oil draining oil pipeline are connected in series with at least one hydraulic damping unit.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis includes a rod cavity integrated block and a rodless cavity integrated block which are independently disposed, and the first oil suction oil passage and the first oil draining oil passage are disposed in the Inside the rodless cavity manifold, the second oil suction oil passage and the second oil drain oil passage are disposed inside the rod cavity integrated block.
  • the rodless cavity integrated block and the rod cavity integrated block in the large articulated vehicle chassis hinge system are respectively disposed at two ends of the cylinder liner, and the rodless cavity integrated block, the cylinder sleeve and the rod cavity integrated block outer surrounding setting There is a casing, and the oil storage tank is a sealed space formed between the cylinder liner, the outer casing, the rodless cavity integrated block and the rod cavity integrated block.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis further includes a first electromagnetic valve and a hydraulic damping boosting unit, wherein the first electromagnetic valve and the hydraulic damping boosting unit are connected in parallel and then connected to the first In a row of oil passages and a second row of oil passages, the first damping inductor is electrically connected to the first solenoid valve.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis further includes an overflow valve and a second electromagnetic valve, wherein the overflow valve and the second electromagnetic valve are connected in parallel to be connected to the first oil And a second row of oil passages, wherein the relief valve and the second solenoid valve are located downstream of the first solenoid valve and the hydraulic damping boosting unit, and the second damping inductor is electrically connected to the The second solenoid valve.
  • a pressure sensor is disposed in the upstream position of the hydraulic damper unit in the first oil passage and the second oil passage in the hinge system of the large articulated vehicle chassis.
  • a pressure is set in the first oil passage and/or the second oil passage of the hydraulic cylinder in the hinge system of the large articulated vehicle chassis.
  • the steering angle sensing device in the large articulated vehicle chassis hinge system further includes a buffer block and a buffer end, the buffer block is disposed on the front frame/rear frame, and the buffer end is disposed in the Rear frame / front frame.
  • the angle sensor in the hinge system of the large articulated vehicle chassis is electrically connected to the 4 alarm device.
  • the thickness of the outer cymbal in the hinge system of the large articulated vehicle chassis is less than the thickness of the inner raft.
  • the joint between the inner and outer turns in the hinge system of the large articulated vehicle chassis forms a steel ball raceway in the circumferential direction, the steel ball raceway is covered with steel balls, and the inner and outer turns pass through the steel ball Achieve relative rotation.
  • the inner hinge of the large articulated vehicle chassis hinge system is provided with at least one lubrication port, the rear frame is provided with a fixing seat, the fixed seat is fixedly provided with a centralized lubricator, and the centralized lubricator passes The conduit is in communication with the lubrication port.
  • the rear frame/front frame of the large articulated vehicle chassis hinge system includes a bearing support portion and a ring boss, the annular boss is disposed on the upper side of the bearing support portion, and the inner cymbal is installed at the The bearing support portion is sleeved on the ring The outside of the boss.
  • the rear frame/front frame of the large articulated vehicle chassis hinge system is integrally cast.
  • the ball joint connection structure in the hinge mechanism of the large articulated vehicle chassis includes a ball joint bracket structure and a ball joint
  • the ball joint bracket structure includes a bracket fixing plate, a first fixing seat and a second fixing seat, and the bracket fixing plate Fixing on the front cross member, the ball joint is movably inserted in the front frame, and the first fixing seat and the second fixing seat are disposed on the same side of the bracket fixing plate.
  • the first fixing base and the second fixing base are respectively provided with screw holes, and the first fixing seat and the second fixing seat are symmetrically disposed with grooves.
  • the ball joint in the hinge mechanism of the large articulated vehicle chassis includes a metal core, an elastic member and a support piece, the elastic member is disposed at an outer surface of the intermediate position of the metal core, and the support piece is disposed on the elastic member
  • the metal core comprises a metal core main shaft and at least one limiting boss, and the limiting boss is disposed on the outer surface of the metal core main shaft.
  • a plurality of buffer holes are disposed in the elastic member in the hinge system of the large articulated vehicle chassis.
  • the ball joint in the hinge mechanism of the large articulated vehicle chassis includes at least two support sheets, and the plurality of support sheets form at least two slots at the joint.
  • the metal core main shaft in the hinge system of the large articulated vehicle chassis and the limiting boss on the outer surface of the metal core main shaft are integrally formed.
  • the groove corner of the hinge mechanism of the large articulated vehicle chassis is a rounded structure, the corners of the support portions of the two ends of the metal core main shaft are rounded, and the corners of the support portions of the two ends of the metal core main shaft
  • the fillet angle is greater than the fillet angle of the groove corners.
  • the width of the groove in the horizontal direction of the large articulated vehicle chassis hinge system is smaller than the width of the first fixed seat or the second fixed seat in the horizontal direction, and the first fixed seat and the second fixed seat each form a horizontal reinforcement unit.
  • the depth of the groove in the hinge mechanism of the large articulated vehicle chassis is smaller than the thickness of the first or second fixing seat, and the first fixing seat or the second fixing seat each form a vertical reinforcing portion.
  • An arc-shaped stress portion is formed on the first fixing seat and the second fixing seat in the hinge system of the large articulated vehicle chassis, and the arc-shaped stress portion is formed on the other side of the groove, and is adjacent to the Bracket mounting plate.
  • the curved stress portion in the hinge system of the large articulated vehicle chassis is provided with a reinforcing rib.
  • the ball joint bracket structure in the hinge system of the large articulated vehicle chassis is integrally cast.
  • the rear cross member in the hinge system of the large articulated vehicle chassis includes a reinforcing portion and a connecting portion welded at both ends of the reinforcing portion, wherein the reinforcing portion is provided with a plurality of fixing screw holes, and the rear frame includes a rear frame connecting portion.
  • the rear frame connecting portion is provided with a rear frame screw hole corresponding to the fixing screw hole, and the rear frame connecting portion is fixed by bolting the fixing screw hole and the rear frame screw hole.
  • a wire harness hole is disposed in the reinforcing portion of the large articulated vehicle chassis hinge system, and the rear frame connecting portion corresponds to the wire
  • the beam hole is provided with a rear frame harness hole.
  • a plurality of relief holes are provided in the reinforcement portion of the large articulated vehicle chassis hinge system.
  • the reinforcement in the hinge system of the large articulated vehicle chassis is integrally cast.
  • a large articulated vehicle chassis hinge system comprising a front cross member, a ball joint structure, a front frame, a slewing bearing, a rear frame and a rear cross member, wherein the front cross member passes the ball a hinge structure connecting the front frame, the slewing bearing includes an inner cymbal and an outer cymbal, the front frame is fixedly connected to the outer cymbal, and the rear frame is fixed to the inner cymbal Connecting, the inner and outer jaws are relatively rotated, and the rear frame is connected to the rear cross member, wherein the large articulated vehicle chassis hinge system further comprises a steering angle sensing device and a hydraulic damping buffer.
  • the steering angle sensing device is disposed between the inner cymbal and the front frame, and the hydraulic damping buffer system is disposed between the front frame and the rear frame, and the steering angle is The sensing device is electrically connected to the hydraulic damping buffer system.
  • the hydraulic damping buffer system in the hinge system of the large articulated vehicle chassis includes two hydraulic damping buffers arranged symmetrically in a left-right direction and a damping buffer control module, wherein each hydraulic damping damping device comprises a piston, a piston rod and a cylinder a piston is disposed in the cylinder liner, and a side of the piston is fixedly connected to the piston rod, and the piston rod is fixedly connected to the front frame, and each of the piston rods
  • the cylinder sleeve ends of the hydraulic damping buffer device are fixedly connected with the rear frame, and the damping buffer control module is connected with the damping damping device on the left side and the damping buffer device on the right side.
  • the hydraulic damping buffer device in the hinge system of the large articulated vehicle chassis is a hydraulic cylinder, and the hydraulic cylinder is divided into a rod cavity and a rodless cavity by the piston, and the damping buffer control module includes the first single The valve, the second check valve, the third check valve, the fourth check valve, the oil storage tank, the rodless chamber is sequentially connected in series with the third check valve and the oil storage tank to form a first oil absorption
  • the oil passage, the rod cavity is sequentially connected in series with the fourth check valve and the oil storage tank to form a second oil suction oil passage;
  • the rodless cavity is sequentially connected with the first one-way valve and the first check valve
  • the oil tanks are connected in series to form a first oil draining passage, and the rod cavity is sequentially connected in series with the second one-way valve and the oil storage tank to form a second oil draining road, and the first oil draining oil
  • At least one hydraulic damping unit is connected in series between the road and the second oil passage.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis includes a rod cavity integrated block and a rodless cavity integrated block which are independently disposed, and the first oil suction oil passage and the first oil draining oil passage are disposed in the Inside the rodless cavity manifold, the second oil suction oil passage and the second oil drain oil passage are disposed inside the rod cavity integrated block.
  • the rodless cavity integrated block and the rod cavity integrated block in the large articulated vehicle chassis hinge system are respectively disposed at two ends of the cylinder liner, and the rodless cavity integrated block, the cylinder sleeve and the rod cavity integrated block outer surrounding setting There is a casing, and the oil storage tank is a sealed space formed between the cylinder liner, the outer casing, the rodless cavity integrated block and the rod cavity integrated block.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis further includes a first electromagnetic valve and a hydraulic damping boosting unit, wherein the first electromagnetic valve and the hydraulic damping boosting unit are connected in parallel and then connected to the first In a row of oil passages and a second row of oil passages, the steering angle sensing device is electrically connected to the first solenoid valve.
  • the damping buffer control module in the hinge system of the large articulated vehicle chassis further includes an overflow valve and a second electromagnetic valve, wherein the overflow valve and the second electromagnetic valve are connected in parallel to be connected to the first oil And a second row of oil passages, wherein the relief valve and the second solenoid valve are located downstream of the first solenoid valve and the hydraulic damping boosting unit, wherein the steering angle sensing device electrically connects the The second solenoid valve.
  • a pressure sensor is disposed in the upstream position of the hydraulic damper unit in the first oil passage and the second oil passage in the hinge system of the large articulated vehicle chassis.
  • a pressure is set in the first oil passage and/or the second oil passage of the hydraulic cylinder in the hinge system of the large articulated vehicle chassis.
  • the thickness of the outer raft in the hinge system of the large articulated vehicle chassis is less than the thickness of the inner raft.
  • the steering angle sensing device of the invention can sense the steering angle; intelligently enhance the damping; the super angle alarm and the hydraulic lock; protect the hinge system from the occurrence of a "shear" accident; and the outer diameter of the slewing bearing is smaller than the inner diameter
  • the thickness of the crucible reduces the thickness of the entire undercarriage hinge system.
  • the rear frame of the present invention comprises a bearing support portion and a ring boss, the annular boss is disposed on the upper side of the bearing support portion, and the inner ring is mounted on the bearing support portion and sleeved on the outer side of the annular boss, thereby Compact cylinder, low cost, easy to process; strong torque resistance, long service life; high casting strength.
  • the structure of the invention is simple, easy to maintain and install; high strength and long service life.
  • the ball joint connection mechanism of the invention has a simple structure, convenient installation and maintenance; greatly improves the connection strength of the ball joint connection mechanism, has high connection strength and long service life; and can effectively prevent the ball joint metal core main shaft from being in the elastic element Stringing; the setting of the buffer hole can buffer the force.
  • the rear beam and the rear frame of the invention have strong connection rigidity and are easy to produce; the wire harness hole arrangement facilitates the installation of the wire harness and the pipeline in the hinge system.
  • the hydraulic damping buffer system of the invention has a pressure control cylinder, which can generate buffering resistance without electrical control or rotating the valve core, and basically does not cause oil leakage, valve core jamming and electrical system failure, etc., greatly reducing The failure rate; at the same time, it can provide hydraulic buffering force proportional to the turning speed of the vehicle, and can also provide over-angle locking and safety protection during large turns; low manufacturing cost, no need to use expensive hydraulic proportional valve or manufacturing
  • the rotary valve with high processing precision greatly reduces the manufacturing cost and improves the competitiveness in the market; the structure is simple and interchangeable, especially in the articulated bus, the left hydraulic cylinder and the right hydraulic cylinder are mutually Symmetrical, other structures and components are exactly the same; easy to install, assembled and refueled through a unique refueling process, it is convenient to install on the hinge system, only need to install the cylinder on the rack, no need to install Other parts such as oil pipes and pipe joints.
  • Figure 1 is a perspective view of a specific embodiment of a hinge system for a large articulated vehicle chassis of the present invention.
  • Figure 2 is a top plan view of the embodiment shown in Figure 1.
  • Figure 3 is a partially enlarged schematic view of Figure 2.
  • Figure 4 is a cross-sectional perspective view of the slewing bearing of the embodiment shown in Figure 1.
  • Fig. 5 is a schematic view showing the principle of oil passage control of the hydraulic damping cushioning device of the embodiment shown in Fig. 1.
  • Figure 6a is a perspective view of the hydraulic damping cushioning device of the embodiment shown in Figure 1.
  • Figure 6b is a cross-sectional view of the hydraulic damping cushioning device shown in Figure 6a.
  • Figure 6c is an enlarged schematic view of area A in Figure 6b.
  • Figure 7 is a perspective view of the rear frame of the embodiment shown in Figure 1.
  • Figure 8a is a perspective view showing the structure of the ball joint bracket of the ball joint mechanism of the embodiment shown in Figure 1.
  • Figure 8b is another perspective view of the ball joint bracket structure shown in Figure 8a.
  • Figure 9 is a perspective view of the ball joint of the ball joint mechanism of the embodiment shown in Figure 1.
  • Figure 10 is a front elevational view of the ball joint of Figure 9.
  • Figure 11 is a cross-sectional view of the ball joint of Figure 9.
  • Figure 12 is a perspective view of the metal core of the ball joint of Figure 9.
  • Figure 13 is a partial perspective view of the embodiment shown in Figure 1.
  • Figure 14 is a perspective view of another embodiment of the ball joint bracket structure of the present invention.
  • Figure 15 is a perspective view showing the installation of the rear frame and the slewing bearing shown in Figure 11;
  • Figure 16 is a perspective view of the rear cross member of the embodiment shown in Figure 1.
  • Figure 17 is a perspective view 2 of the rear cross member shown in Figure 16.
  • Figure 18 is a perspective view showing the reinforcing portion of the rear cross member shown in Figure 16 .
  • FIG 19 is a perspective view of another embodiment of the rear cross member of the present invention. detailed description
  • the hinge mechanism of the large articulated vehicle chassis of the present invention comprises a front cross member 1, a ball joint structure 2, a front frame 3, a slewing bearing 4, a rear frame 5 and a rear cross member 6, and the front cross member 1 passes
  • the ball joint structure 2 is connected to the front frame 3, and the slewing bearing 4 includes an inner cymbal 41 and an outer cymbal 42.
  • the front frame 3 is fixedly connected to the outer cymbal 42.
  • the rear frame 5 is fixedly connected to the inner cymbal 41, the inner cymbal 41 and the outer cymbal 42 are relatively rotatable, and the rear frame 5 is connected to the rear cross member 6.
  • connection manner between the front frame 3 and the rear frame 5 of the present invention and the slewing bearing 4 respectively can also be connected in the same manner and with the same function as the above embodiment, that is, the front The frame is fixedly connected to the inner cymbal, the rear frame is fixedly connected to the outer cymbal, and the corresponding mating structures of the subsequent components can be assembled in a manner symmetrical to the embodiment, and these should be
  • the transformation of the technical means that can be understood and implemented by those skilled in the art without the need for creative labor, in order to save space and clarity, will not be repeated here.
  • the large articulated vehicle chassis hinge system further includes a steering angle sensing device disposed between the inner cymbal 41/outer sill 42 and the front frame 3/rear frame 5.
  • the steering angle sensing device includes an angle sensor 7, a first angle sensor 6-1, and a second angle sensor 6-2,
  • the inner bore 41 is provided with a plurality of sensor mounting holes 416 (shown in FIG. 4).
  • the angle sensor 7 is mounted through the sensor mounting hole 416, and the first angle sensor 6 is fixedly disposed on the front frame 3.
  • the first angle sensor 6-1 and the second angle sensor 6-2 are respectively disposed on two sides of the angle sensor 7, the first angle sensing
  • the 6-1 and the second angle sensor 6-2 are electrically connected to a buzzer (not shown), respectively.
  • the front frame 3 is also symmetrically disposed with a buffer block 33, and the rear frame 5 is symmetrically disposed with a buffer end 71.
  • the first angle sensor 6-1 includes a first alarm terminal 6-1-1 and a first mechanical lock terminal 6-1-2.
  • the second angle sensor 6-2 includes a second alarm terminal 6-2-1 and a second mechanical lock terminal 6-2-2, and the first 4 ⁇ police terminal 6-1-1 and the second ⁇
  • the slamming end 6-2-1 and the angle sensor 7 described above are respectively formed 40 in the circumferential direction of the inner cymbal 41. ⁇ 50.
  • the angle, the first mechanical locking end 6-1-2 and the second mechanical locking end 6-2-2 are respectively formed 45 with the angle sensor in the circumferential direction of the inner cymbal 41. ⁇ 55° angle.
  • the first police terminal 6-1-1 and the second police terminal 6-2-1 and the angle sensor ⁇ are respectively formed in the circumferential direction of the inner cymbal 41. .
  • the angle between the first mechanical locking end 6-1-2 and the second mechanical locking end 6-2-2 and the angle sensor 7 are formed 52 in the circumferential direction of the inner cymbal 41, respectively. The angle is the best.
  • the steering angle sensing device described in the preferred embodiment further includes a first damping sensor 8-1, a second damping sensor 8-2, and a damping sensor 9, the first damping sensor 8-1, the second The damper sensor 8-2 is fixedly disposed on the front frame 3, and the damper sensor 9 is fixedly disposed in the sensor mounting hole 416 on the inner cymbal 41, the angle sensor 7 and the The damping sensor 9 is located on the center line ⁇ _ ⁇ line, halving the circumference of the inner tube 41, and the first damping sensor 8-1 and the second damping sensor 8-2 are respectively disposed at the damping Both sides of the sensor 9.
  • the first damping sensor 8-1 includes a first damping end 8-1-1 and a first hydraulic locking end 8-1-2
  • the second damping sensor 8-2 includes a second damping end. 8-2-1 and second hydraulic locking end 8-2-2, said first damping end 8-1-1 and
  • the two damper ends 8-2-1 are respectively formed with the damping sensor 9 in the circumferential direction of the inner bore 41. ⁇ 20° angle
  • the first hydraulic locking end 8-1-2 and the second hydraulic locking end 8-2-2 are respectively arranged with the damping sensor 9 in the circumferential direction of the inner bore 41 Form an angle of 45 ° ⁇ 55 °.
  • first damper end 8-1-1 and the second damper end 8-2-1 are respectively formed with the damping sensor 9 in the circumferential direction of the inner cymbal 41.
  • the angle between the first hydraulic locking end 8-1-2 and the second hydraulic locking end 8-2-2 and the damping sensor 9 respectively form a 49° in the circumferential direction of the inner bore 41 The angle is the best.
  • the present invention also includes a hydraulic damping buffer system disposed between the front frame 3 and the rear frame 5.
  • the hydraulic damping buffer system includes two hydraulic damping buffer devices 100 symmetrically disposed, and a damping buffer control module.
  • Each of the hydraulic damping buffer devices 100 includes a piston 101. a piston rod 102 and a cylinder liner 103, the piston 101 is disposed in the cylinder liner 103, and a side of the piston 101 is fixedly connected to the piston rod 102, and the piston rod 102 is
  • the front frame 3 is fixedly connected, and the end portions of the cylinder sleeves 103 of the respective hydraulic damping buffer devices 100 are fixedly connected with the rear frame 5, and the damping buffer control module and the damping on the left side are slow. Both the punching device 100 and the damping cushioning device 100 on the right side are connected.
  • the hydraulic damping buffer device 100 is a hydraulic cylinder, and the hydraulic cylinder is divided into a rod cavity 104 and a rodless cavity 105 by the piston 101, and the damping buffer control module
  • the first check valve 106, the second check valve 107, the third check valve 108, the fourth check valve 109, the oil storage tank 110, the rodless chamber 105 and the third check valve in sequence 108 and the oil storage tank 110 are connected in series to form a first oil absorption oil passage
  • the rod chamber 104 is sequentially connected in series with the fourth one-way valve 109 and the oil storage tank 110 to form a second oil absorption oil passage
  • the rodless chamber 105 is sequentially connected in series with the first one-way valve 106 and the oil storage tank 110 to form a first oil draining passage
  • the rod-shaped chamber 104 is sequentially connected with the second one-way valve 107 and the storage.
  • the oil tanks 110 are connected in series to form a second oil draining passage, and at least one hydraulic damping unit 111, 121 is connected in series in the first oil draining oil passage and the second oil draining oil passage.
  • the hydraulic damping units 111, 121 complete the basic damping.
  • the damping buffer control module further includes a rod cavity integration block 112 and a rodless cavity integration block 113 which are independently disposed, and the first oil absorption oil passage and the first oil discharge oil passage are disposed on the rodless rod.
  • the second oil absorption oil passage and the second oil drain oil passage are disposed inside the cavity unit block 112.
  • the rodless cavity assembly block 113 and the rod cavity integration block 112 are respectively disposed at two ends of the cylinder liner 103, and the rodless cavity assembly block 113, the cylinder liner 103 and the rod cavity assembly block 112 are surrounded by the outer portion.
  • a housing 114 is provided, and the oil storage tank 110 is a sealed space formed between the cylinder liner 103, the outer casing 114, the rodless cavity manifold 113, and the rod cavity assembly block 112.
  • the damping buffer control module further includes a first electromagnetic valve 115 and a hydraulic damping boosting unit 116, and the first electromagnetic valve 115 and the hydraulic damping boosting unit 116 are connected in parallel to access the first Oil drain and second drain
  • the first damping inductor 8-1 is electrically connected to the first electromagnetic valve 115.
  • the hydraulic damping boosting unit 116 functions as a damping boosting function, and the above three fixed hydraulic dampings can make the compression speed proportional to the damping response of the damping reaction.
  • the damping buffer control module further includes an overflow valve 117 and a second electromagnetic valve 118.
  • the overflow valve 117 and the second electromagnetic valve 118 are connected in parallel to be connected to the first oil draining passage. And a second row of oil passages, wherein the relief valve 117 and the second solenoid valve 118 are located downstream of the first solenoid valve 115 and the hydraulic damping boosting unit 116, and the second damping sensor 8 -2 electrically connects the second solenoid valve 118.
  • the relief valve 117 can preset the pressure value. When the hydraulic oil pressure is greater than the set pressure value, the relief valve 117 will automatically open the pressure relief to prevent leakage or blasting caused by excessive pressure in the hydraulic system, thereby providing safety protection. .
  • the upstream position of the hydraulic damping boosting unit 116 in the first and second oil passages is provided with a pressure sensor 119.
  • the pressure sensor 119 can set a pressure value. After the vehicle travels for a certain time, if the pressure in the hydraulic cylinder continues to be lower than the set value of the pressure sensor 119, the alarm device connected with the pressure sensor 119 will issue an alarm signal. , indicating buffer failure, and even oil cylinder leakage may occur, requiring timely maintenance to prevent traffic accidents caused by buffer failure.
  • a pressure measuring port 120 is disposed in the first oil draining oil passage and/or the second oil draining oil passage, and the first oil discharging pipeline and the second oil discharging pipeline can be pressure tested during the product testing process to ensure The best buffering effect of the product.
  • the hydraulic damping boosting unit 116 Since the hydraulic damping boosting unit 116 has a large resistance, the hydraulic oil passes through the first one-way valve 106 and passes through the first electromagnetic The valve 115 and the second solenoid valve 118 flow to the reservoir 110, and the first proximity switch (not shown) electrically connected to the first solenoid valve 115 controls the first solenoid valve as the piston 101 continues to move left to a certain position. 115 is closed, hydraulic oil flows to the oil storage tank 110 via the hydraulic damping boosting unit 116 and the second electromagnetic valve 118, and when flowing through the hydraulic damping boosting unit 116, the oil pressure in the rodless chamber 105 and the first oil draining passage is again increase , Hydraulic damping cylinder continues to increase and improve the cushioning effect.
  • the present invention When the piston 101 continues to move to the left, the present invention will give a super angle signal, and a second proximity switch (not shown) electrically connected to the second solenoid valve 118 controls the second solenoid valve 118 to be closed, and the hydraulic oil is hydraulically damped.
  • the pressurizing unit 116 can only flow to the relief valve 117.
  • the relief valve 117 As the pressure in the rodless chamber 105 and the first oil drain passage increases, when the oil pressure reaches a predetermined pressure value of the relief valve 117, the relief valve 117 will automatically open the pressure relief. When the pressure is reduced to the preset pressure value, the relief valve 117 is automatically closed. At this time, due to the pressure difference, the piston 101 is prevented from continuing to move to the left. The piston 101 can be moved to the right to reset the lock. And security protection.
  • the oil in the reservoir tank 110 passes through the fourth The check valve 109 replenishes the oil in the rod cavity 104 to ensure that the oil in the rod chamber 104 is full, and completes the oil absorption process of the second oil suction passage.
  • the hydraulic cylinder When the hydraulic cylinder is stretched, that is, the piston 101 moves toward the rod chamber 104.
  • the hydraulic oil In the rod chamber 104, the hydraulic oil is subjected to a compressive force, the pressure is gradually increased, and the hydraulic oil is also increased with the pressure, and the discharged hydraulic oil is increased.
  • the damping is increased to complete the basic damping effect; after the hydraulic oil passes through the hydraulic damping unit 121, the hydraulic oil opens the second one-way valve 107 after the pressure difference is generated. Since the first electromagnetic valve 115 is in the open state, the hydraulic oil passes through the second one-way valve 107. Afterwards, the first electromagnetic valve 115 and the second electromagnetic valve 118 flow to the oil storage tank 110.
  • the first proximity switch controls the first electromagnetic valve 115 to be closed.
  • the hydraulic oil flows to the oil storage tank 110 via the hydraulic damping boosting unit 116 and the second electromagnetic valve 118.
  • the oil pressure in the rod chamber 104 and the second oil draining passage is pressurized again.
  • the damping in the hydraulic cylinder continues to increase, improving the cushioning effect.
  • the present invention will give a super angle signal
  • the second proximity switch controls the second solenoid valve 118 to be closed
  • the hydraulic oil passes through the hydraulic damping boosting unit 116 and flows to the overflow valve 117, with the rod cavity
  • the pressure in the 104 and the second oil drain circuit is increased.
  • the relief valve 117 automatically opens the pressure relief, and when the pressure is reduced to the preset pressure value, The relief valve 117 is automatically closed.
  • the piston 101 is prevented from continuing to move to the right, and the piston 101 can be reset to the left to complete the locking and safety protection functions.
  • the oil in the oil storage tank 110 and the high pressure oil in the second oil drain passage pass through the third check valve 108.
  • the oil is filled in the rod cavity 105 to ensure that the oil in the rodless chamber 105 is full, and the oil absorption process of the first oil suction passage is completed.
  • the positions of the first proximity switch and the second proximity switch can be set at appropriate positions as needed.
  • the first proximity switch and the second proximity switch are disposed in the front frame assembly and the rear frame assembly.
  • the first solenoid valve 115 and the second solenoid valve 118 are both open, when the vehicle is left When turning or turning right a certain angle, the proximity switch will control the corresponding solenoid valve to close or open.
  • the hydraulic damping cushioning system of the present invention includes two hydraulic damping cushioning devices 100, i.e., hydraulic cylinders, disposed symmetrically left and right, when the vehicle turns, one hydraulic cylinder must be stretched while the other hydraulic cylinder is compressed.
  • the pistons 101 of the left and right hydraulic cylinders are in an intermediate position, and the rod chamber 104 and the rodless chamber 105 of the two hydraulic cylinders are filled with hydraulic oil.
  • the vehicle is going straight or around 17 .
  • the two sensors do not give an induction signal.
  • the damping sensor 9 senses the second damping end 8-2-1 on the second damping sensor 8-2.
  • the angle sensor 7 approaches the first 4-inch police terminal 6-1-1 on the first angle sensor 6-1, and gives an alarm signal, and the alarm signal is transmitted to the buzzer to start.
  • the alarm the prompt is close to the super-hinged, and the notification resumes straight.
  • the damping sensor 9 approaches the second hydraulic locking end 8-2-2 on the second damping sensor 8-2, and gives an induction signal, the proximity damping switch of the hydraulic damping damping system controls the right hydraulic cylinder receives the sensing The signal will open or close the corresponding locking solenoid valve to complete the hydraulic locking action.
  • the angle sensor 7 approaches the first mechanical locking end 6-1-2 on the first angle sensor 6-1, at this time the buffer block 33 on the front frame 3 of the hinge system and the buffer on the rear frame 5 The end 71 is in contact, and the buffer end 71 prevents the front frame 3 from continuing to turn left, completing the mechanical lock, and the vehicle cannot continue to expand the right turn angle to complete the mechanical locking action.
  • the sensing signals are:
  • the first damping sensor 8-1 gives an enhanced damping signal
  • the second angle sensor 6-2 gives an alarm signal, the first damping induction.
  • the device 8-1 will give a hydraulic lock signal.
  • the left buffer block 33 on the front frame 3 and the left buffer end 71 on the rear frame 5 complete the mechanical locking action to prevent the vehicle from being locked. "Cut, accident, due to excessive turning.
  • Another embodiment of the present invention is substantially similar to the mechanism of the preferred embodiment described above, except that the damping sensor 9, the first damping sensor 8-1 and the second damping sensor 8-2 are not required in the embodiment, and the angle sensor 7 is directly It is electrically connected to the electromagnetic valve in the hydraulic damping buffer system, when the vehicle turns more than 47 left and right.
  • the super-hinge alarm signal and the hydraulic locking action are directly given, the hydraulic damping is increased, and when the 52° is reached, the mechanical locking action is completed by the buffer block 33 on the front frame 3 and the buffer end 71 on the rear frame 5
  • this structure can not achieve the effect of intelligent enhanced damping, it can save cost, and can basically achieve the effect of sensing angle super angle alarm 4 and super angle locking.
  • a plurality of inner mounting holes 411 are defined in the inner ring 41 at intervals in the circumferential direction, and the outer cymbals 42 are circumferentially spaced apart from each other by a plurality of outer cymbal mounting holes 421.
  • the thickness of the outer crucible 42 is smaller than the thickness of the inner crucible 41, and the difference in thickness between the outer crucible 42 and the inner crucible 41 constitutes a step portion.
  • the circumference of the inner cymbal mounting hole 411 and the circumference of the outer cymbal mounting hole 421 are concentrically disposed.
  • the steel ball 412 is formed in the circumferential direction of the joint between the inner cymbal 41 and the outer cymbal 42.
  • the steel ball race 412 is covered with steel balls 413, and the inner cymbal 41 and the outer cymbal 42 are The steel balls 413 achieve relative rotation.
  • At least one steel ball inlet 414 is disposed on the inner wall of the inner crucible 41 for mounting the steel ball 413.
  • the inner bore 41 is further provided with at least one lubrication port 415.
  • the lubrication port 415 is in communication with the steel ball 413 in the ball race 412.
  • the lubricant can be added to the lubricant lubrication ball raceway 412 through the lubrication port 415.
  • the steel ball 413 thereby achieving lubrication.
  • four lubrication ports 415 are evenly spaced on the inner bore 41.
  • the rear frame 5 includes a rear frame connecting portion 51, a bearing support portion 52, and a ring boss 53 which is disposed on the front side of the rear frame connecting portion 51,
  • the annular boss 53 is disposed on the upper side of the bearing support portion 52.
  • the bearing support portion 52 is further provided with a plurality of rear frame mounting holes 54, and the rear frame mounting holes 54 are evenly spaced on the same circumference. And the circumference of the rear frame mounting hole 54 and the annular boss 53 are concentrically arranged.
  • a plurality of rear frame screw holes 56 are formed on the rear wall 55 of the rear frame connecting portion 51, and the rear frame screw holes 56 are used for rear and rear.
  • the beam 6 is fixedly connected to the articulated rear compartment.
  • the bearing support portion 52 of the rear frame 5 is formed with a through hole 57 at a central position thereof, and the circumference of the through hole 57 is formed by the inner diameter of the annular boss 53. More preferably, the inner wall of the through hole 57 is formed with a fixing seat 58 for mounting the slewing bearing lubrication system and the control device other than the present invention.
  • the rear frame 5 is formed by body casting, has high rigidity, and is convenient to process.
  • the ball joint structure 2 includes a ball joint structure 21 and a ball joint 22, as shown in FIGS. 8a to 8b, the ball joint structure 21 includes a bracket fixing plate 23, a first fixing seat 24, and a second
  • the first fixing seat 24 and the second fixing seat 25 are disposed on the same side of the bracket fixing plate 23, and the first fixing seat 24 and the second fixing seat 25 are respectively provided with screws.
  • the hole 26, the first fixing seat 24 and the second fixing seat 25 are symmetrically disposed with a groove 27, and the screw holes 26 are disposed in the groove 27, and are vertically disposed in the hole
  • the first fixing seat 24 and the second fixing seat 25 are inside.
  • the corners 28 of the grooves 27 are rounded.
  • the width of the groove 27 in the horizontal direction is smaller than the width of the first fixing seat 24 or the second fixing seat 25 in the horizontal direction, and the first fixing seat 24 and the second fixing seat 25 are respectively A horizontal reinforcing portion 29 is formed.
  • the depth of the groove 27 in the vertical direction is smaller than the thickness of the first fixing seat 24 or the second fixing seat 25, and the first fixing seat 24 or the second fixing seat 25 each form a vertical reinforcing portion 30.
  • the screw hole 26 extends through the vertical reinforcing portion 30.
  • the thickness of the vertical reinforcing portion 30 is at least twice the depth of the groove 27.
  • the first fixing seat 24 and the second fixing seat 25 are respectively provided with a second boss 11 on the other side of the groove 27, and the other end of the screw hole 26 is disposed in the second convex portion. Inside the station 11.
  • the first fixing seat 24 and the second fixing seat are An arc-shaped stress portion 12 is formed on the other side of the groove 27 (on the same side of the second boss 11), and is adjacent to the bracket fixing plate 23 . More preferably, the curved stress portion 12 is provided with a reinforcing rib 13 . The reinforcing ribs 13 connect the two ends of the arc-shaped stress portion 12 to further improve the stress resistance.
  • a fixing hole 14 is defined in the bracket fixing plate 23, and the fixing hole 14 is located between the first fixing seat 24 and the second fixing seat 25.
  • the ball joint support structure 21 is formed by body casting. That is, the bracket fixing plate 23, the first fixing seat 24, the second fixing seat 25, the second boss 11, and all other components are integrally molded to improve the joint strength.
  • the ball joint 22 includes a metal core 221, a resilient member 222, and a support piece 223.
  • the metal core 221 includes a metal core spindle 224 and is disposed outside the metal core spindle 224. At least one limiting boss 225 on the surface, the elastic member 222 is cast on the outer surface of the intermediate position of the metal core 221, and the supporting piece 223 is disposed outside the elastic member 222 for enclosing
  • the elastic element 222, the setting of the limiting boss 225 can be The metal core 221 is prevented from moving left and right in the elastic member 222.
  • the two ends of the metal core main shaft 224 are support portions 226.
  • the two support portions 226 are respectively provided with ball joint fixing holes 227 for fixing the ball joints 22.
  • the corners 228 of the support portions 226 are arranged in a rounded structure.
  • a plurality of buffer holes 229 are disposed in the elastic member 222.
  • the elastic member 222 is a shock-resistant and wear-resistant rubber material, and a buffer hole 229 is formed in each of the upper, lower, left and right portions of the elastic member 222.
  • the buffer hole 229 can generate a force. The cushioning effect does not damage the ball joints and protects the other joints in the entire articulated system.
  • the support piece 223 is composed of two curved metal sheets, and two slits 230 are formed at the joint to prevent stress deformation under a great force.
  • the metal core main shaft 224 and the limiting boss 225 on the outer surface of the metal core main shaft 224 are integrally formed.
  • the metal core 221 is formed, and the rigidity is strong.
  • the metal core spindle 224 is a square cylinder structure, and the limiting boss 225 is disposed on the metal core spindle 224. On the outer surface.
  • the limiting protrusion 225 is a circular ring structure integrally surrounding the outer surface of the metal core main shaft 224. In this embodiment, four limiting bosses 225 are evenly spaced.
  • the large articulated vehicle chassis hinge system generally includes two ball joint bracket structures 21, and each ball joint bracket structure 21 is welded to the front cross member 1 through the bracket fixing plate 23, in order to improve the joint strength, the front cross member 1
  • the bracket fixing plate 23 is reinforced by the bolt 10, that is, the bolt 10 is further fixed through the fixing hole 14, and the front cross member 1 is fixedly coupled to the front compartment (not shown).
  • the front frame 3 is provided with two ball joint mounting holes 31.
  • Each ball joint mounting hole 31 is provided with a ball joint 22, and the support piece 223 of the outer surface of the ball joint 22 is a metal component, so as to avoid the elastic component 222 directly
  • the ball joint mounting holes 31 are in contact, and the two end support portions 226 of each ball joint are provided with the ball joint fixing holes 227 and the screw holes 26 through the bolts 20 to fix the grooves 27 on the first fixing base 24 and the second fixing base 25
  • Since the corner 228 of the support portion 226 at both ends of the metal core main shaft 224 is a rounded structure, and the rounded angle is larger than the rounded angle of the corner 28 of the groove 27, the vehicle avoids the ball joint structure 21 during running.
  • the stress concentration causes damage to the ball joint mount, and thus the rounded structure improves the joint strength between the ball joint 22 and the ball joint support structure 21.
  • the ball joint 22 does not move left and right under the action of the limiting boss 225; the vehicle exerts a large force on the ball joint 22 when advancing, braking, or bumping up and down, the buffer hole 229
  • the setting acts as a cushioning effect and protects the articulated system.
  • Figure 14 is a perspective view of another embodiment of the ball joint support structure 21 of the large articulated vehicle undercarriage hinge system of the present invention, wherein the width of the groove 27 in the horizontal direction is equal to the first fixed seat 24 or the second fixed
  • the width of the seat 25 in the horizontal direction, that is, the groove 27 is a through groove
  • other structures are the same as those in the above embodiment, and the mounting manner is not described again, and the effect consistent with the above embodiment can be basically achieved.
  • the metal core main shaft 224 of another specific embodiment of the metal core 221 of the present invention has a square cylinder structure, and the limit is A boss 225 is disposed on the outer surface of the metal core spindle 224.
  • the limiting boss 225 is a square ring structure integrally wound on the outer surface of the metal core main shaft 224, and is evenly spaced, for example, four limiting bosses 225.
  • the intermediate portion of the metal core main shaft 224 of the further embodiment of the metal core 221 of the present invention has a circular cylindrical structure, and the ends of the metal core main shaft 224 have a square cylindrical structure, and the limiting boss 225 It is placed on the outer surface of the circular cylinder structure.
  • the limiting bosses 225 are square ring structures, and are evenly spaced, for example, four limiting bosses 225.
  • the support piece 223 may also be formed by two or more curved metal pieces, and two or more slit grooves 230 may be formed to achieve the effect of preventing stress deformation.
  • the number of the limiting bosses 225 can be set according to the magnitude of the force and the stiffness requirement.
  • the structure of the limiting boss 225 can be a regular shape or a random shape, and the shape of the limiting boss 225 can be It can be set as needed, and the set position may be a regular setting or a random setting as long as the metal core 221 can be prevented from rotating in the elastic member 222 or moving left and right.
  • FIG. 15 is a perspective view showing the mounting of the rear frame 5 and the slewing bearing 4, and the slewing bearing 4 is mounted on the outer circumference of the annular boss 53 of the rear frame 5, the inner diameter of the inner cymbal 41 and the annular boss The outer diameter of 53 is equal.
  • the inner cymbal mounting hole 411 corresponds to the rear frame mounting hole 54 on the bearing support portion 52 of the rear frame 5, and the inner cymbal 41 and the rear frame 5 are fixedly connected by the bolt 40, and the fixed seat 58 of the rear frame 5 is fixed.
  • a centralized lubricator 59 is fixedly disposed, and the centralized lubricator 59 communicates with the lubrication port 415 through a pipe (not shown) to further lubricate the steel ball 413 in the ball bead 412, thereby improving the rotation effect and extending Its service life.
  • the front frame 3 and the outer cymbal 42 are bored through the outer cymbal mounting hole 421 and the front frame mounting hole 32 by bolts (not shown) to fix the step portion formed by the inner cymbal 41 and the outer cymbal 42.
  • the front frame 3 is further It is connected by the front cross member 1 and the front car (not shown). Since the thickness of the outer cymbal 42 is smaller than the thickness of the inner cymbal 41, the thickness of the entire splicing system is reduced.
  • the bolts fixed to the front frame 3 and the outer cymbal 42 are processed by the "double force buckle", which is non-detachable, has high connection strength and strong stability.
  • the outer cymbal 42 of the slewing bearing 4 will rotate as the front car and the front frame 3 turn. Since the annular boss 53 and the inner cymbal 41 are in direct circumferential contact, the rotational torque formed when the vehicle turns is not Acting only on the bolt 40, the annular boss 53 provides greater torsional resistance, thereby greatly increasing the torsion resistance of the slewing bearing 4.
  • the rear frame 5 and the rear cross member 6 are connected by a bolt 60, and the rear cross member 6 is weldedly connected to the rear car (not shown), as shown in FIGS. 16-18,
  • the rear cross member 6 includes a reinforcing portion 61 and a connecting portion 62 welded to the two ends of the reinforcing portion 61.
  • the reinforcing portion 61 is provided with a plurality of fixing screw holes 63, and the reinforcing portion 61 is provided with a wire harness hole 64.
  • the plurality of relief holes 65 are symmetrically disposed on both sides of the wire harness hole 64.
  • the wire reinforcement hole 61 is used for the passage of the wire harness in the hinge system, and the lightening hole 65 is a blind hole structure. The weight of the rear cross member 6 can be minimized without affecting the rigidity of the reinforcing portion 61.
  • the reinforcing portion 61 includes two mounting portions 66, and the two mounting portions 66 are divided into two parts.
  • the first mounting portion 66 includes a first stepped surface 67 and a second stepped surface 68
  • the connecting portion 62 is a sheet metal hollow cylinder structure.
  • the left and right connecting portions 62 are respectively sleeved outside the first step portions 67 of the two mounting portions 66 and welded to the second step portions 68.
  • the center of the reinforcing portion 61 is provided with a wire harness hole 64, and each of the wire harness holes 64 is provided with a lightening hole 65.
  • the reinforcing portion 61 forms four reinforcing connecting portions 69, and each of the reinforcing connecting portions 69 is provided with six fixing screw holes 63.
  • Figure 19 is a perspective view showing another embodiment of the rear cross member 6 of the present invention.
  • the center of the reinforcing portion 61 is provided with a wire harness hole 64, and the wire harness hole 64 is provided with two relief holes 65 on both sides thereof.
  • the reinforcing portion 61 forms six reinforcing connecting portions 69, and each of the reinforcing connecting portions 69 is provided with three fixing screw holes 63.
  • the rear frame 5 is connected to the rear cross member via bolts 60 through the rear frame screw holes 56 formed in the rear wall 55 of the rear frame connecting portion 51 and the fixing screw holes 63 on the rear cross member 6.
  • the number of the rear frame screw holes 56 may be set according to the number of the fixing screw holes 63 in the above embodiment;
  • the rear frame connecting portion 51 is provided with a rear frame wire harness hole 70 corresponding to the wire harness hole 64 on the rear cross member 6. It is convenient for the wiring harness to be installed so that the wiring harness does not affect the normal operation of the hinge system.
  • the front and rear faces of the rear cross member 6 can serve as the connecting contact faces of the rear frame 5 and the rear cross member 6, and Fig. 1 shows the side of the rear cross member 6 with the relief holes 65 as the contact faces.
  • Steering angle sensing device can sense steering angle; intelligent enhanced damping; over-angle alarm and hydraulic locking; protects the articulated system from "cutting" accidents; and the outer diameter of the slewing bearing is less than the inner thickness , so that the thickness of the entire chassis hinge system is reduced by 'J.
  • the rear frame includes a bearing support portion and a ring boss, the ring boss is disposed on the upper side of the bearing support portion, and the inner ring is mounted on the bearing support portion and sleeved on the outer side of the ring boss, thereby forming the structure Compact, low cost, easy to process; strong torque resistance, long service life; high casting strength.
  • the structure of the ball joint connection mechanism is simple, easy to install and maintain; the connection strength of the ball joint connection mechanism is greatly improved, the connection strength is high, and the service life is long; the ball joint metal core main shaft can be effectively prevented from moving in the left and right of the elastic element ; The setting of the buffer hole can buffer the force.
  • the rear beam and the rear frame have strong connection rigidity and are easy to produce; the wire harness hole arrangement facilitates the installation of wire harnesses and pipelines in the hinge system.
  • the hinged system of the large articulated vehicle chassis of the present invention has a unique and ingenious design, and the structure is compact and compact, and the cylinder is installed, thereby improving the safety, stability and durability of the hinge system of the large articulated vehicle chassis, reducing the cost, and being suitable for large-scale promotion. application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Body Structure For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Description

大型铰接车底盘铰接*** 技术领域
本发明涉及车辆结构技术领域, 特别涉及车辆底盘铰接技术领域, 具体是一种大型铰接 车底盘铰接***。 背景技术
随着我国汽车制造业的迅速发展, 各种车辆制造业也在突飞猛进, 铰接式客车以它载 客量大、 利用系数高等特点在国内大中城市逐渐得到推广。 铰接客车一般由前后车厢以及 连接前后车厢的底盘铰接***等组成, 其中底盘铰接***包括转盘轴承、 前架、 后架以及 阻尼***等, 其中:
前架通过前横梁与铰接车前车厢固定连接, 其中前架和前横梁一般通过球铰及球铰固 定座等球铰连接机构进行连接, 球铰一般由金属芯和弹性元件等组成, 如中国专利 CN201099154公开了一种大型铰接客车底盘铰接***中的球铰连接结构, 其前架通过球铰 及球铰固定座与前横梁固定连接, 其球铰固定座为双层板材, 相对较薄, 连接刚度不理想, 而车辆在运行中, 球铰连接机构承受的牵引力或推力较大, 这对球铰连接机构的刚度提出 了更高的要求, 球铰连接机构一旦出现故障, 会造成较严重的交通事故。 其球铰结构仅仅 是在刚性中心轴中间部位外浇注橡胶, 这种结构刚度较弱, 同时由于车辆在上下颠簸和左 右转弯过程中对球铰中心轴的作用力较大, 容易使球铰中心轴在弹性元件内左右串动, 影 响铰接车运行时的稳定性, 同时由于作用力较大, 球铰很容易损坏。
前架和后架通过转盘轴承连接, 其中前架通过横梁与转盘轴承外圏进行固定连接, 后 架与转盘轴承的内圏固定连接, 前后架的转动可实现铰接车的自由转向, 如中国专利 CN201086609公开了一种大型铰接客车底盘铰接***, 其前架通过横梁与转盘轴承外圏固 定连接, 后架与转盘轴承的内圏固定连接, 虽然实现了较佳的转动连接, 但结构较复杂, 成本较高, 且通过连接形成了多层结构, 整个铰接***在厚度上尺寸较大。 同时, 由于受 结构的限制, 转盘轴承上螺钉布置不均匀, 连接强度差, 长期使用影响使用寿命。
后架通过后横梁与铰接车后车厢固定连接, 现有技术中, 为了减轻后横梁质量, 往往 将后横梁制成钣金件结构, 后架和后车厢通过后横梁焊接连接, 由于钣金件结构, 连接强 度较差, 而作为后架和后车厢的连接件, 后横梁的连接刚度的要求相对较高, 一旦出现故 障很容易出现交通事故, 同时由于结构较复杂, 安装困难。
如前所述的, 由于前架通过横梁与转盘轴承外圏进行固定连接, 后架与转盘轴承的内 圏固定连接, 前后架的转动可实现铰接车的自由转向, 虽然铰接车的转向对道路的宽度要 求不是很高, 这是城市铰接客车的一大优点, 但如果转弯角度过大(尤其是后置发动机铰 接客车), 后车厢会对前车厢产生的侧向力增大, 严重的造成侧滑, 行业内称为铰接车前后 车厢 "剪切,, 事故, 导致财产损失和人员伤亡事故。
另外, 车辆在前进过程中转向时, 后架和与其连接的转盘轴承内圏之间产生一个抗扭 力, 现有技术中, 一般只是通过设置多个螺钉连接来实现这种抗扭力, 如中国专利
CN201086610公开了一种大型铰接客车底盘铰接***中的后桁架结构, 其虽然实现了转动 连接, 但由于受结构的限制, 一方面螺钉仅局部区域布置, 设置不够均匀, 抗扭力差, 另 一方面形成的扭力直接作用在螺钉上, 长期使用会影响其使用寿命, 且该后架结构较复杂, 成本较高, 加工工艺复杂。
而底盘铰接***中的阻尼***即液压緩冲***是制约铰接车性能的关键因素, 现有技 术中, 铰接客车的液压緩冲***一般由两个液压缸、 一个液压控制器和电气控制***组成, 液压缸由液压控制器控制变换其输出阻力的大小, 电气控制***根据车辆转弯角度发信号 给液压控制器, 使其变换不同的压力值, 如中国专利 CN201086607公开了一种通过控制体 转动控制液压阻尼, 从而变换緩冲阻尼的的液压控制***, 这种控制***虽然可以根据车 辆夹角的变化形成不同的阻尼, 在防止前、 后车剪切方面起到明显效果, 但该控制体结构 较复杂, 加工精度要求高, 成本较高, 安装连接烦杂, 占用空间大, 还会出现漏油、 阀芯 卡死或电气***故障等缺点。
同时, 由于现有技术中的液压阻尼***, 緩冲效果不理想, 尤其使用在铰接式客车中, 如果阻尼緩冲不能得到有效控制, 司机在驾驶铰接车时特别是大转弯时, 往往会因为转弯 角度多大而发生事故, 造成人员的伤亡和财产的损失。
因此, 需要对现有技术的大型铰接车底盘铰接***进行改进, 以克服上述缺点的一个 或多个, 从而提升大型铰接车底盘铰接***的安全性、 稳定性和耐久性, 精筒结构, 降低 成本。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供一种大型铰接车底盘铰接***, 该 大型铰接车底盘铰接***设计独特巧妙, 结构筒洁紧凑, 安装筒便, 从而提升大型铰接车底 盘铰接***的安全性、 稳定性和耐久性, 降低成本, 适于大规模推广应用。
为了实现上述目的, 在本发明的第一方面, 提供了一种大型铰接车底盘铰接***, 包括 前横梁、 球铰连接结构、 前架、 转盘轴承、 后架和后横梁, 所述的前横梁通过所述的球铰连 接结构连接所述的前架, 所述的转盘轴承包括内圏和外圏, 所述的前架与所述的外圏 /内圏固 定连接, 所述的后架与所述的内圏 /夕卜圏固定连接, 所述的内圏和外圏相对转动, 所述的后架 连接所述的后横梁, 其主要特点是, 所述的大型铰接车底盘铰接***中还包括转向角度感应 装置, 该转向角度感应装置设置于所述的内圏 /外圏和所述的前架 /后架之间。
该大型铰接车底盘铰接***中的所述的转向角度感应装置包括角度传感器、 第一角度感 应器和第二角度感应器, 所述的角度传感器固定设置在所述的内圏 /外圏上, 所述的第一角度 感应器和第二角度感应器固定设置在所述的前架 /后架上,且该第一角度感应器和第二角度感 应器分别设置在所述的角度传感器两侧。
该大型铰接车底盘铰接***中的第一角度感应器和第二角度感应器分别包括 4艮警端和机 械锁止端, 所述的报警端和所述的角度传感器在内圏 /夕卜圏圆周方向上形成 40。 ~ 50° 夹角, 所述的机械锁止端和所述的角度传感器在内圏 /外圏圆周方向上形成 45。 ~ 55。 夹角。
该大型铰接车底盘铰接***中的 ·ί艮警端和所述的角度传感器在内圏 /外圏圆周方向上形 成 47。 夹角, 所述的机械锁止端和所述的角度传感器在内圏 /外圏圆周方向上形成 52。 夹角。
该大型铰接车底盘铰接***中的转向角度感应装置还包括阻尼传感器、 第一阻尼感应器 和第二阻尼感应器, 所述的阻尼传感器设置在所述的内圏上, 并与所述的角度传感器设置在 铰接***中心线上, 所述的第一阻尼感应器和第二阻尼感应器分别设置在所述的前架 /后架 上, 且该第一阻尼感应器和第二阻尼感应器设置在所述的阻尼传感器两侧。
该大型铰接车底盘铰接***中的第一阻尼感应器和第二阻尼感应器分别包括阻尼端和液 压锁止端, 所述的阻尼端和所述的阻尼传感器在内圏 /外圏圆周方向上形成 15。 ~ 20° 夹角, 所述的液压锁止端和所述的阻尼传感器在内圏 /外圏圆周方向上形成 45。 ~ 55。 夹角。
该大型铰接车底盘铰接***中的阻尼端和所述的阻尼传感器在内圏 /外圏圆周方向上形 成 17。 夹角, 所述的液压锁止端和所述的阻尼传感器在内圏 /外圏圆周方向上形成 49。 夹角。
该大型铰接车底盘铰接***还包括液压阻尼緩冲***, 所述的液压阻尼緩冲***设置于 所述的前架与后架之间。
该大型铰接车底盘铰接***中的液压阻尼緩冲***中包括左右对称设置的两个液压阻尼 緩冲装置以及阻尼緩冲控制模块, 所述的各个液压阻尼緩冲装置包括活塞、 活塞杆和缸套, 所述的活塞设置于所述的缸套中, 且该活塞的一侧面与所述的活塞杆相固定连接, 所述的活 塞杆与所述的前架相固定连接, 所述的各个液压阻尼緩冲装置的缸套端部均与所述的后架相 固定连接,所述的阻尼緩冲控制模块与左侧的阻尼緩冲装置和右侧的阻尼緩冲装置均相连接。
该大型铰接车底盘铰接***中的液压阻尼緩冲装置为液压缸, 所述的液压缸被所述的活 塞分为有杆腔和无杆腔, 所述的阻尼緩冲控制模块包括第一单向阀、 第二单向阀、 第三单向 阀、 第四单向阀、 储油箱, 所述的无杆腔依次与所述的第三单向阀和储油箱相串联连通构成 第一吸油油路, 所述的有杆腔依次与所述的第四单向阀和储油箱相串联连通构成第二吸油油 路; 所述的无杆腔依次与所述的第一单向阀和储油箱相串联连通构成第一排油油路, 所述的 有杆腔依次与所述的第二单向阀和储油箱相串联连通构成第二排油油路, 所述的第一排油油 路和第二排油油路中串联有至少一个液压阻尼单元。
该大型铰接车底盘铰接***中的阻尼緩冲控制模块包括独立设置的有杆腔集成块和无杆 腔集成块, 所述的第一吸油油路和第一排油油路设置于所述的无杆腔集成块内部, 所述的第 二吸油油路和第二排油油路设置于所述的有杆腔集成块内部。
该大型铰接车底盘铰接***中的无杆腔集成块和有杆腔集成块分别设置于所述的缸套两 端, 且该无杆腔集成块、 缸套和有杆腔集成块外包围设置有外壳, 所述的储油箱为缸套、 外 壳、 无杆腔集成块和有杆腔集成块之间所形成的密封空间。
该大型铰接车底盘铰接***中的阻尼緩冲控制模块中还包括第一电磁阀和液压阻尼增压 单元, 所述的第一电磁阀和液压阻尼增压单元相并联后接入所述的第一排油油路和第二排油 油路中, 所述的第一阻尼感应器电连接所述的第一电磁阀。
该大型铰接车底盘铰接***中的阻尼緩冲控制模块中还包括溢流阀和第二电磁阀, 所述 的溢流阀和第二电磁阀相并联后接入所述的第一排油油路和第二排油油路中, 且该溢流阀和 第二电磁阀位于所述的第一电磁阀和液压阻尼增压单元的下游位置, 所述的第二阻尼感应器 电连接所述的第二电磁阀。
该大型铰接车底盘铰接***中的第一排油油路和第二排油油路中的液压阻尼增压单元的 上游位置接入设置有压力传感器。
该大型铰接车底盘铰接***中的液压缸的第一排油油路和 /或第二排油油路中设置有测 压 。 该大型铰接车底盘铰接***中的转向角度感应装置还包括緩冲块和緩冲端, 所述的緩冲 块设置在所述的前架 /后架上, 所述的緩冲端设置在所述的后架 /前架上。
该大型铰接车底盘铰接***中的角度传感器电连接 4艮警装置。
该大型铰接车底盘铰接***中的外圏的厚度小于所述的内圏的厚度。
该大型铰接车底盘铰接***中的内圏和外圏的连接处在圆周方向上形成一钢珠滚道, 所 述的钢珠滚道内布满钢珠, 所述的内圏和外圏通过所述的钢珠实现相对转动。
该大型铰接车底盘铰接***中的内圏上设置有至少一个润滑口, 所述的后架上设置有固 定座, 所述的固定座上固定设置有集中润滑器, 所述的集中润滑器通过管道与所述的润滑口 连通。
该大型铰接车底盘铰接***中的后架 /前架包括轴承支撑部和圆环凸台, 所述的圆环凸台 设置在所述的轴承支撑部上侧, 所述的内圏安装在所述的轴承支撑部上并套接在所述的圆环 凸台的外侧。
该大型铰接车底盘铰接***中的后架 /前架一体铸造成型。
该大型铰接车底盘铰接***中的球铰连接结构包括球铰支架结构和球铰, 所述的球铰支 架结构包括支架固定板、 第一固定座和第二固定座, 所述的支架固定板固定在所述的前横梁 上, 所述的球铰可活动插设在所述的前架中, 所述的第一固定座和第二固定座设置在所述的 支架固定板的同一侧, 所述的第一固定座和第二固定座上各设有螺孔, 所述的第一固定座和 第二固定座上对称设置有凹槽。
该大型铰接车底盘铰接***中的球铰包括金属芯、 弹性元件和支撑片, 所述的弹性元件 设置在所述的金属芯中间位置外表面, 所述的支撑片设置在所述的弹性元件外侧, 所述的金 属芯包括金属芯主轴和至少一个限位凸台, 所述的限位凸台设置在所述的金属芯主轴外表面 上。
该大型铰接车底盘铰接***中的弹性元件内设置若干个緩冲孔。
该大型铰接车底盘铰接***中的球铰包括至少两个支撑片, 所述的若干个支撑片在连接 处形成至少两个缝槽。
该大型铰接车底盘铰接***中的金属芯主轴及金属芯主轴外表面上的限位凸台为一体成 型。
该大型铰接车底盘铰接***中的凹槽边角为圆角结构, 所述的金属芯主轴的两端支撑部 的边角为圆角结构, 且该金属芯主轴的两端支撑部的边角的圆角角度大于所述的凹槽边角的 圆角角度。
该大型铰接车底盘铰接***中的凹槽水平方向的宽度小于所述的第一固定座或第二固定 座水平方向的宽度, 所述的第一固定座和第二固定座各形成一个水平加强部。
该大型铰接车底盘铰接***中的凹槽垂直方向的深度小于所述的第一固定座或第二固定 座的厚度, 所述的第一固定座或第二固定座各形成一个垂直加强部。
该大型铰接车底盘铰接***中的第一固定座和第二固定座上形成一个弧形应力部, 所述 的弧形应力部形成于所述的凹槽的另一侧, 并靠近所述的支架固定板。
该大型铰接车底盘铰接***中的弧形应力部设置有加强筋。
该大型铰接车底盘铰接***中的球铰支架结构一体铸造成型。
该大型铰接车底盘铰接***中的后横梁包括加强部和焊接在所述的加强部两端的连接 部, 所述的加强部内设置若干固定螺孔, 所述的后架包括后架连接部, 所述的后架连接部对 应所述的固定螺孔设置有后架螺孔, 所述的后架连接部通过螺栓穿设所述的固定螺孔和所述 的后架螺孔实现固定。
该大型铰接车底盘铰接***中的加强部内设置线束孔, 所述的后架连接部对应所述的线 束孔设置有后架线束孔。
该大型铰接车底盘铰接***中的加强部内设置若干减轻孔。
该大型铰接车底盘铰接***中的加强部一体铸造成型。
在本发明的第二方面, 提供了一种大型铰接车底盘铰接***, 包括前横梁、 球铰连接结 构、 前架、 转盘轴承、 后架和后横梁, 所述的前横梁通过所述的球铰连接结构连接所述的前 架, 所述的转盘轴承包括内圏和外圏, 所述的前架与所述的外圏相固定连接, 所述的后架与 所述的内圏相固定连接, 所述的内圏和外圏相对转动, 所述的后架连接所述的后横梁, 其特 点是, 所述的大型铰接车底盘铰接***中还包括转向角度感应装置和液压阻尼緩冲***, 所 述的转向角度感应装置设置于所述的内圏和所述的前架之间, 所述的液压阻尼緩冲***设置 于所述的前架与后架之间, 且该转向角度感应装置与液压阻尼緩冲***相电连接。
该大型铰接车底盘铰接***中的液压阻尼緩冲***中包括左右对称设置的两个液压阻尼 緩冲装置以及阻尼緩冲控制模块, 所述的各个液压阻尼緩冲装置包括活塞、 活塞杆和缸套, 所述的活塞设置于所述的缸套中, 且该活塞的一侧面与所述的活塞杆相固定连接, 所述的活 塞杆与所述的前架相固定连接, 所述的各个液压阻尼緩冲装置的缸套端部均与所述的后架相 固定连接,所述的阻尼緩冲控制模块与左侧的阻尼緩冲装置和右侧的阻尼緩冲装置均相连接。
该大型铰接车底盘铰接***中的液压阻尼緩冲装置为液压缸, 所述的液压缸被所述的活 塞分为有杆腔和无杆腔, 所述的阻尼緩冲控制模块包括第一单向阀、 第二单向阀、 第三单向 阀、 第四单向阀、 储油箱, 所述的无杆腔依次与所述的第三单向阀和储油箱相串联连通构成 第一吸油油路, 所述的有杆腔依次与所述的第四单向阀和储油箱相串联连通构成第二吸油油 路; 所述的无杆腔依次与所述的第一单向阀和储油箱相串联连通构成第一排油油路, 所述的 有杆腔依次与所述的第二单向阀和储油箱相串联连通构成第二排油油路, 所述的第一排油油 路和第二排油油路中串联有至少一个液压阻尼单元。
该大型铰接车底盘铰接***中的阻尼緩冲控制模块包括独立设置的有杆腔集成块和无杆 腔集成块, 所述的第一吸油油路和第一排油油路设置于所述的无杆腔集成块内部, 所述的第 二吸油油路和第二排油油路设置于所述的有杆腔集成块内部。
该大型铰接车底盘铰接***中的无杆腔集成块和有杆腔集成块分别设置于所述的缸套两 端, 且该无杆腔集成块、 缸套和有杆腔集成块外包围设置有外壳, 所述的储油箱为缸套、 外 壳、 无杆腔集成块和有杆腔集成块之间所形成的密封空间。
该大型铰接车底盘铰接***中的阻尼緩冲控制模块中还包括第一电磁阀和液压阻尼增压 单元, 所述的第一电磁阀和液压阻尼增压单元相并联后接入所述的第一排油油路和第二排油 油路中, 所述的转向角度感应装置电连接所述的第一电磁阀。 该大型铰接车底盘铰接***中的阻尼緩冲控制模块中还包括溢流阀和第二电磁阀, 所述 的溢流阀和第二电磁阀相并联后接入所述的第一排油油路和第二排油油路中, 且该溢流阀和 第二电磁阀位于所述的第一电磁阀和液压阻尼增压单元的下游位置, 所述的转向角度感应装 置电连接所述的第二电磁阀。
该大型铰接车底盘铰接***中的第一排油油路和第二排油油路中的液压阻尼增压单元的 上游位置接入设置有压力传感器。
该大型铰接车底盘铰接***中的液压缸的第一排油油路和 /或第二排油油路中设置有测 压 。
该大型铰接车底盘铰接***中的外圏厚度小于所述的内圏厚度。
上述第一方面提供的大型铰接车底盘铰接***的其它特征也适用于第二方面提供的大型 铰接车底盘铰接***。
本发明的有益效果在于:
1、本发明的转向角度感应装置能够感应转向角度;智能增强阻尼;超角报警及液压锁止; 对铰接***起保护作用, 防止出现 "剪切" 事故; 且转盘轴承的外圏厚度小于内圏厚度, 使 得整个底盘铰接***的厚度减小。
2、 本发明的后架包括轴承支撑部和圆环凸台, 圆环凸台设置在轴承支撑部上侧, 内圏安 装在轴承支撑部上并套接在圆环凸台的外侧, 从而结构筒单紧凑, 成本较低, 易于加工; 抗 扭力强, 使用寿命长; 一体铸造强度较高。
3、 本发明的结构筒单, 易于维护安装; 强度高, 使用寿命长。
4、 本发明的球铰连接机构结构筒单, 安装维护方便; 大大提高了球铰连接机构的连接强 度, 连接强度较高, 使用寿命长; 可以有效防止球铰金属芯主轴在弹性元件内左右串动; 緩 冲孔的设置可以对作用力产生緩冲效果。
5、 本发明的后横梁与后架连接刚度强, 易于生产; 线束孔设置便于铰接***中的线束、 管路等安装。
6、本发明的液压阻尼緩冲***压力控制筒单, 不需要电气控制或转动阀芯即可产生緩冲 阻力, 基本上不会出现漏油、 阀芯卡死和电气***故障等, 大大降低了故障率; 同时能够提 供与车辆转弯速度成正比的液压緩冲力, 在大转弯时还可以起到超角锁止和安全保护功能; 制造成本低, 不需使用价格昂贵的液压比例阀或者制造加工精度高的转阀, 大大降低了制造 成本, 提高了在市场上的竟争力; 结构筒单, 具有很好的互换性, 尤其在铰接客车中, 左液 压缸和右液压缸互为对称, 其他结构和元器件完全一样; 使用安装方便, 经装配并经过独特 的加油工艺加油后, 安装到铰接***上很方便, 只需要把油缸安装到机架上, 不需要再安装 其他如油管、 管接头等零部件。 附图说明
图 1是本发明的大型铰接车底盘铰接***的一具体实施例的立体示意图。
图 2是图 1所示的具体实施例的俯视示意图。
图 3是图 2的局部放大示意图。
图 4是图 1所示的具体实施例的转盘轴承的剖视立体示意图。
图 5是图 1所示的具体实施例的液压阻尼緩冲装置的油路控制原理示意图。
图 6a是图 1所示的具体实施例的液压阻尼緩冲装置的立体示意图。
图 6b是图 6a所示的液压阻尼緩冲装置的剖视示意图。
图 6c是图 6b中区域 A的放大示意图。 图 7是图 1所示的具体实施例的后架的立体示 意图。
图 8a是图 1所示的具体实施例的球铰连接机构的球铰支架结构的立体示意图。
图 8b是图 8a所示的球铰支架结构的另一立体示意图。
图 9是图 1所示的具体实施例的球铰连接机构的球铰的立体示意图。
图 10是图 9的球铰的主视示意图。
图 11是图 9的球铰的剖视示意图。
图 12是图 9的球铰的金属芯的立体示意图。
图 13是图 1所示的具体实施例的局部立体示意图。
图 14是本发明的球铰支架结构的另一具体实施例的立体示意图。
图 15是图 11所示的后架与转盘轴承的安装立体示意图。
图 16是图 1所示的具体实施例的后横梁的立体示意图一。
图 17是图 16所示的后横梁的立体示意图二。
图 18是图 16所示的后横梁的加强部的立体示意图。
图 19是本发明的后横梁的另一具体实施例的立体示意图。 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明。 其中相同的部件 釆用相同的附图标记。
请参见图 1所示, 本发明的大型铰接车底盘铰接***包括前横梁 1、 球铰连接结构 2、 前 架 3、 转盘轴承 4、 后架 5和后横梁 6, 所述的前横梁 1通过所述的球铰连接结构 2连接所述 的前架 3 , 所述的转盘轴承 4包括内圏 41和外圏 42, 所述的前架 3与所述的外圏 42固定连 接, 所述的后架 5与所述的内圏 41固定连接, 所述的内圏 41和外圏 42可相对转动, 所述的 后架 5连接所述的后横梁 6。
需要指出的是, 本发明的前架 3和后架 5分别与所述的转盘轴承 4的连接方式也可以釆 用与上述的实施方式相对称且功效相同的方式进行连接, 即所述的前架与所述的内圏固定连 接, 所述的后架与所述的外圏固定连接, 后续的各个部件的相应配合结构均可以釆用与本实 施方式相对称的方式进行装配, 这些应该都属于本领域普通技术人员无须花费创造性劳动就 能够理解和实施的技术手段的变换, 为了节约篇幅和筒明, 在此不再重复赞述。
所述的大型铰接车底盘铰接***还包括转向角度感应装置, 该转向角度感应装置设置于 所述的内圏 41/外圏 42和所述的前架 3/后架 5之间。 请参见图 2和 3所示, 在本发明的具体 实施例中, 所述的转向角度感应装置包括角度传感器 7、第一角度感应器 6-1和第二角度感应 器 6-2, 所述的内圏 41上设置有若干个传感器安装孔 416 (如图 4所示), 通过所述传感器安 装孔 416安装所述角度传感器 7,所述的前架 3上固定设置第一角度感应器 6-1和第二位角度 应器 6-2,所述的第一角度感应器 6-1和第二角度感应器 6-2分别设置在角度传感器 7的两侧, 所述的第一角度感应器 6-1和第二角度感应器 6-2分别电连接蜂鸣器(图中未示出)。 所述的 前架 3上还对称设置有緩冲块 33 , 所述的后架 5上还对称设置有緩冲端 71。 如图 3所示, 本发明优选实施例中, 所述的第一角度感应器 6-1包括第一报警端 6-1-1和 第一机械锁止端 6-1-2, 所述的第二角度感应器 6-2包括第二报警端 6-2-1和第二机械锁止端 6-2-2, 所述的第一 4艮警端 6-1-1和第二 ·ί艮警端 6-2-1分别与所述的角度传感器 7在内圏 41圆 周方向上形成 40。 ~ 50。 夹角,所述的第一机械锁止端 6-1-2和所述的第二机械锁止端 6-2-2 分别与所述的角度传感器在内圏 41圆周方向上形成 45。 ~ 55° 夹角。
本具体实施例中, 所述的第一 ^艮警端 6-1-1和第二 ·ί艮警端 6-2-1与所述的角度传感器 Ί分 别在内圏 41圆周方向上形成 47。 夹角,所述的第一机械锁止端 6-1-2和所述的第二机械锁止 端 6-2-2分别与所述的角度传感器 7在内圏 41圆周方向上形成 52。 夹角为最佳。
本优选实施例中所述的转向角度感应装置还包括第一阻尼感应器 8-1、 第二阻尼感应器 8-2和阻尼传感器 9, 所述的第一阻尼感应器 8-1、 第二阻尼感应器 8-2固定设置在所述的前 架 3上, 所述的阻尼传感器 9固定设置在所述的内圏 41上的传感器安装孔 416内, 所述的角 度传感器 7和所述的阻尼传感器 9位于中心线 Α_Α线上,二等分所述的内圏 41所在的圆周, 所述的第一阻尼感应器 8-1和第二阻尼感应器 8-2分别设置在所述的阻尼传感器 9的两侧。 所述的第一阻尼感应器 8-1 包括第一阻尼端 8-1-1和第一液压锁止端 8-1-2, 所述的第二 阻尼感应器 8-2包括第二阻尼端 8-2-1和第二液压锁止端 8-2-2,所述的第一阻尼端 8-1-1和第 二阻尼端 8-2-1分别与所述的阻尼传感器 9在内圏 41圆周方向上形成 15。 ~ 20° 夹角, 所 述的第一液压锁止端 8-1-2和所述的第二液压锁止端 8-2-2分别与所述的阻尼传感器 9在内圏 41圆周方向上形成 45° ~ 55° 夹角。
本具体实施例中, 所述的第一阻尼端 8-1-1和第二阻尼端 8-2-1分别与所述的阻尼传感器 9在内圏 41圆周方向上形成 17。 夹角, 所述的第一液压锁止端 8-1-2和所述的第二液压锁止 端 8-2-2分别与所述的阻尼传感器 9在内圏 41圆周方向上形成 49° 夹角为最佳。
本发明还包括液压阻尼緩冲***, 所述的液压阻尼緩冲***设置于所述的前架 3与后架 5之间。
请参见图 2、 5-6c所示, 液压阻尼緩冲***包括左右对称设置的两个液压阻尼緩冲装置 100以及阻尼緩冲控制模块, 所述的各个液压阻尼緩冲装置 100包括活塞 101、活塞杆 102和 缸套 103 , 所述的活塞 101设置于所述的缸套 103中, 且该活塞 101的一侧面与所述的活塞 杆 102相固定连接, 所述的活塞杆 102与所述的前架 3相固定连接, 所述的各个液压阻尼緩 冲装置 100的缸套 103端部均与所述的后架 5相固定连接, 所述的阻尼緩冲控制模块与左侧 的阻尼緩冲装置 100和右侧的阻尼緩冲装置 100均相连接。
在本发明的具体实施例中, 液压阻尼緩冲装置 100为液压缸, 所述的液压缸被所述的活 塞 101分为有杆腔 104和无杆腔 105 , 所述的阻尼緩冲控制模块包括第一单向阀 106、第二单 向阀 107、 第三单向阀 108、 第四单向阀 109、 储油箱 110, 所述的无杆腔 105依次与所述的 第三单向阀 108和储油箱 110相串联连通构成第一吸油油路, 所述的有杆腔 104依次与所述 的第四单向阀 109和储油箱 110相串联连通构成第二吸油油路; 所述的无杆腔 105依次与所 述的第一单向阀 106和储油箱 110相串联连通构成第一排油油路, 所述的有杆腔 104依次与 所述的第二单向阀 107和储油箱 110相串联连通构成第二排油油路, 所述的第一排油油路和 第二排油油路中串联有至少一个液压阻尼单元 111、 121。 液压阻尼单元 111、 121完成基础阻 尼。
较佳地, 阻尼緩冲控制模块还包括独立设置的有杆腔集成块 112和无杆腔集成块 113 , 所述的第一吸油油路和第一排油油路设置于所述的无杆腔集成块 113 内部, 所述的第二吸油 油路和第二排油油路设置于所述的有杆腔集成块 112内部。
较佳地, 无杆腔集成块 113和有杆腔集成块 112分别设置于所述的缸套 103两端, 且该 无杆腔集成块 113、 缸套 103和有杆腔集成块 112外包围设置有外壳 114, 所述的储油箱 110 为缸套 103、 外壳 114、 无杆腔集成块 113和有杆腔集成块 112之间所形成的密封空间。
较佳地, 阻尼緩冲控制模块中还包括第一电磁阀 115和液压阻尼增压单元 116, 所述的 第一电磁阀 115和液压阻尼增压单元 116相并联后接入所述的第一排油油路和第二排油油路 中, 所述的第一阻尼感应器 8-1电连接所述的第一电磁阀 115。 液压阻尼增压单元 116起阻尼 增压功能, 上述三个定值液压阻尼可以使压缩速度与阻尼反作用成正比的阻力緩冲作用。
较佳地, 阻尼緩冲控制模块中还包括溢流阀 117和第二电磁阀 118 , 所述的溢流阀 117 和第二电磁阀 118相并联后接入所述的第一排油油路和第二排油油路中, 且该溢流阀 117和 第二电磁阀 118位于所述的第一电磁阀 115和液压阻尼增压单元 116的下游位置, 所述的第 二阻尼感应器 8-2电连接所述的第二电磁阀 118。 所述溢流阀 117可以预先设定压力值, 当液 压油压力大于设定压力值时, 溢流阀 117会自动打开泄压, 防止液压***内压力过大造成泄 漏或***, 起安全保护作用。
较佳地, 第一排油油路和第二排油油路中的液压阻尼增压单元 116的上游位置接入设置 有压力传感器 119。 所述压力传感器 119可设定压力值, 在车辆行驶一定时间后, 如果液压 缸内的压力持续低于压力传感器 119设定值时, 和所述压力传感器 119信号连接的报警装置 会发布报警信号, 说明緩冲失效, 甚至可能出现液压缸漏油现象, 需要及时维修, 防止出现 緩冲失效造成交通事故。
较佳地, 第一排油油路和 /或第二排油油路中设置有测压口 120, 可以在产品试验过程中 对第一排油管路和第二排油管路进行测压, 保证产品最佳緩冲效果。
如图 5所示, 当液压缸受压缩力收缩时, 活塞 101向无杆腔 105移动, 在无杆腔 105内, 液压油受压缩, 压力随受压缩速度或快或慢地增大, 在经过液压阻尼单元 111 时, 液压油或 多或少地排出, 液压缸受到的压缩力越大, 收缩越快, 需要排出的油量就越多, 液压缸产生 的阻力就越大, 起到基础阻尼作用; 在经过液压阻尼单元 111产生压力差后, 液压油打开第 一单向阀 106, 由于液压阻尼增压单元 116阻力较大, 液压油经第一单向阀 106后会通过第 一电磁阀 115和第二电磁阀 118流向储油箱 110, 随着活塞 101持续左移到一定位置时,与第 一电磁阀 115电连接的第一接近开关 (图中未示出)控制第一电磁阀 115关闭, 液压油经液 压阻尼增压单元 116和第二电磁阀 118流向储油箱 110,在流经液压阻尼增压单元 116时,无 杆腔 105和第一排油油路内的油压再次增压, 液压缸内的阻尼继续增加, 提高緩冲效果。
当活塞 101继续左移时, 本发明会给出超角信号, 与第二电磁阀 118电连接的第二接近 开关 (图中未示出)控制第二电磁阀 118关闭, 液压油经过液压阻尼增压单元 116后只能流 向溢流阀 117, 随着无杆腔 105和第一排油油路内的压力增大, 当油压达到溢流阀 117预定 设置的压力值时, 溢流阀 117会自动打开泄压, 当压力减小到预设压力值后, 溢流阀 117 自 动关闭, 此时, 由于压力差的原因, 阻止活塞 101继续左移, 活塞 101可以右移复位, 完成 锁止和安全保护功能。
在第一排油油路排油过程中, 随着有杆腔 104内容积增大, 储油箱 110内的油会经第四 单向阀 109往有杆腔 104内补油, 保证有杆腔 104内的油是充满状态, 完成第二吸油油路的 吸油过程。
当液压缸拉伸时, 即活塞 101向有杆腔 104移动, 在有杆腔 104内, 液压油受压缩力, 压力逐渐增大, 液压油也随压力的增大, 排出的液压油增多, 增强阻尼, 完成基础阻尼作用; 液压油经过液压阻尼单元 121 , 产生压力差后, 液压油打开第二单向阀 107, 由于第一电磁阀 115是打开状态,液压油经第二单向阀 107后会通过第一电磁阀 115和第二电磁阀 118流向储 油箱 110, 随着活塞 101持续右移到一定位置时, 第一接近开关 (图中未示出)控制第一电 磁阀 115关闭,液压油经液压阻尼增压单元 116和第二电磁阀 118流向储油箱 110,在流经液 压阻尼增压单元 116时, 有杆腔 104和第二排油油路内的油压再次增压, 液压缸内的阻尼继 续增加, 提高緩冲效果。
当活塞 101继续右移时, 本发明会给出超角信号, 第二接近开关控制第二电磁阀 118关 闭, 液压油经过液压阻尼增压单元 116后流向溢流阀 117, 随着有杆腔 104和第二排油油路 内的压力增大, 当油压达到溢流阀 117预定设置的压力值时, 溢流阀 117会自动打开泄压, 当压力减小到预设压力值后, 溢流阀 117自动关闭, 此时, 由于压力差的原因, 阻止活塞 101 继续右移, 活塞 101可以左移复位, 完成锁止和安全保护功能。
在第二排油油路排油过程中, 随着无杆腔 105内容积增大, 储油箱 110内的油和第二排 油油路内的高压油会经第三单向阀 108往无杆腔 105内补油, 保证无杆腔 105内的油是充满 状态, 完成第一吸油油路的吸油过程。
实际中, 第一接近开关和第二接近开关的位置可以根据需要设置在合适的位置, 本具体 实施例中, 第一接近开关和第二接近开关设置在前架总成和后架总成连接处, 受本液压阻尼 緩冲***之外的电控***控制, 当活塞 101位于中间位置而没有触发到接近开关时, 第一电 磁阀 115和第二电磁阀 118都处于打开状态, 当车辆左转或右转一定角度时, 接近开关会控 制相应的电磁阀关闭或打开。
由于本发明的液压阻尼緩冲***包括左右对称设置的两个液压阻尼緩冲装置 100即液压 缸, 当车辆转弯时, 必有一液压缸拉伸, 而另一液压缸压缩。 铰接车直行时, 左液压缸和右 液压缸的活塞 101都处在中间位置,此时两液压缸的有杆腔 104和无杆腔 105都充满液压油。 车辆在直行或左右 17。 范围内转弯过程中, 两个传感器不会给出感应信号, 当车辆右转弯达 到 17° 时, 阻尼传感器 9感应到第二阻尼感应器 8-2上的第二阻尼端 8-2-1给出感应信号, 并将信号传给本发明的液压阻尼緩冲***的控制右液压缸的接近开关, 打开或关闭相应的电 磁阀, 开始增强阻尼, 对车辆继续左转形成阻尼緩冲, 并随着左转角度增大, 阻尼力增大。
当车辆继续右转达到 47° 时, 角度传感器 7接近第一角度感应器 6-1 上的第一 4艮警端 6-1-1 , 并给出报警信号, 报警信号传达给蜂鸣器开始报警, 提示接近超铰接, 通知恢复直行。 当车辆继续右转达到 49。 时, 阻尼传感器 9接近第二阻尼感应器 8-2上的第二液压锁止 端 8-2-2, 并给出感应信号, 液压阻尼緩冲***的控制右液压缸的接近开关接收到感应信号, 会打开或关闭相应的锁止电磁阀, 完成液压锁止动作。
当车辆继续右转达到 52。 时, 角度传感器 7接近到第一角度感应器 6- 1上的第一机械锁 止端 6-1-2, 此时铰接***前架 3上的緩冲块 33和后架 5上的緩冲端 71接触, 緩冲端 71阻 止前架 3继续左转, 完成机械锁止, 车辆不能继续扩大右转角度, 完成机械锁止动作。
同理, 当车辆左转弯并且角度不断扩大时, 感应信号分别是: 第一阻尼感应器 8-1会给 出增强阻尼信号, 第二角度感应器 6-2给出报警信号, 第一阻尼感应器 8-1会给出液压锁止 信号, 当转弯角度扩大到 52° 时, 前架 3上的左緩冲块 33和后架 5上的左緩冲端 71完成机 械锁止动作, 防止车辆因转弯过大造成 "剪切,, 事故。
本发明的另一实施例与上述优选实施例机构基本相似, 区别在于本实施例中不需要阻尼 传感器 9、 第一阻尼感应器 8-1和第二阻尼感应器 8-2, 角度传感器 7直接和液压阻尼緩冲系 统中的电磁阀门电连接, 当车辆左右转弯超过 47。 时, 直接给出超铰接报警信号和液压锁止 动作, 提高液压阻尼, 当达到 52° 时, 通过前架 3上的緩冲块 33和后架 5上的緩冲端 71完 成机械锁止动作, 虽然此结构不能达到智能增强阻尼的效果, 但可以节省成本, 也基本能达 到感应角度超角警 4艮和超角锁止的效果。
请参见图 4所示, 所述的内圏 41上在圆周方向上间隔设置若干个内圏安装孔 411 , 所述 的外圏 42上在圆周方向上间隔设置若干个外圏安装孔 421 , 所述的外圏 42厚度小于所述的 内圏 41厚度, 外圏 42和内圏 41的厚度差构成一台阶部。
较佳地, 所述的内圏安装孔 411所在的圆周和所述的外圏安装孔 421所在的圆周同心设 置。
所述的内圏 41和外圏 42的连接处在圆周方向上形成一钢珠滚道 412, 所述的钢珠滚道 412内布满钢珠 413 , 所述的内圏 41和外圏 42通过所述的钢珠 413实现相对转动。
较佳地, 所述的内圏 41的内壁上设置至少一个钢珠入口 414, 用于安装所述的钢珠 413。 较佳地,所述的内圏 41上还设置至少一个润滑口 415 ,所述的润滑口 415与钢珠滚道 412 内的钢珠 413连通, 通过润滑口 415可以加入润滑剂润滑钢珠滚道 412内的钢珠 413 , 从而 实现润滑作用。 本具体实施例中, 在内圏 41上均匀间隔设置 4个润滑口 415。
如图 7所示, 后架 5包括后架连接部 51、 轴承支撑部 52和圆环凸台 53 , 所述的轴承支 撑部 52设置在所述的后架连接部 51 的前侧, 所述的圆环凸台 53设置在所述的轴承支撑部 52上侧, 所述的轴承支撑部 52上还设置若干后架安装孔 54, 所述的后架安装孔 54均匀间隔 设置在同一圆周上, 并且所述的后架安装孔 54所在的圆周和圆环凸台 53同心设置。
所述的后架连接部 51后壁 55上形成若干个后架螺孔 56, 所述的后架螺孔 56用于和后 横梁 6固定连接, 进而和铰接车后车厢连接。
较佳地, 所述的后架 5的轴承支撑部 52中央位置形成一通孔 57, 通孔 57圆周为圆环凸 台 53的内径形成。 更佳地, 所述的通孔 57的内壁上形成一固定座 58 , 固定座 58用于安装 本发明之外的转盘轴承润滑***及控制装置。 本具体实施例中, 后架 5—体铸造成型, 刚度 较高, 且加工方便。
所述的球铰连接结构 2包括球铰支架结构 21和球铰 22, 请参见图 8a ~ 8b所示, 所述的 球铰支架结构 21 包括支架固定板 23、 第一固定座 24和第二固定座 25 , 所述的第一固定座 24和第二固定座 25设置在所述的支架固定板 23的同一侧, 所述的第一固定座 24和第二固 定座 25上各设有螺孔 26, 所述的第一固定座 24和第二固定座 25上对称设置有凹槽 27, 所 述的螺孔 26—端设置在所述的凹槽 27内,并分别垂直设置在所述的第一固定座 24和第二固 定座 25内。
较佳地, 所述的凹槽 27边角 28为圆角结构。
较佳地,所述的凹槽 27水平方向的宽度要小于所述的第一固定座 24或第二固定座 25水 平方向的宽度, 所述的第一固定座 24和第二固定座 25各形成一个水平加强部 29。 所述的凹 槽 27垂直方向的深度要小于所述的第一固定座 24或第二固定座 25的厚度,所述的第一固定 座 24或第二固定座 25各形成一个垂直加强部 30。 所述的螺孔 26贯穿于所述的垂直加强部 30, 本具体实施例中垂直加强部 30的厚度至少是凹槽 27深度的两倍。 更佳地, 所述的第一 固定座 24和第二固定座 25相对于凹槽 27的另一侧各设置有第二凸台 11 , 所述的螺孔 26的 另一端设置在第二凸台 11内。
由于本发明的大型铰接车底盘铰接***中的球铰支架结构 21 在车辆运行中不断受到拉 伸和挤压, 为了提高这种抗应力强度, 所述的第一固定座 24和第二固定座 25上形成一个弧 形应力部 12,所述的弧形应力部 12形成于所述的凹槽 27的另一侧(第二凸台 11的同一侧), 并靠近所述的支架固定板 23。 更佳地, 所述的弧形应力部 12设置有加强筋 13。 所述的加强 筋 13连接述弧形应力部 12两端, 进一步提高其抗应力强度。
较佳地, 在支架固定板 23上设置一固定孔 14, 固定孔 14位于第一固定座 24和第二固 定座 25之间。
较佳地, 所述的球铰支架结构 21 —体铸造成型。 即其所述的支架固定板 23、 第一固定 座 24、 第二固定座 25、 第二凸台 11及其它所有部件一体铸造成型, 提高连接强度。
请参见图 9 ~ 12所示, 所述的球铰 22包括金属芯 221、 弹性元件 222和支撑片 223 , 所 述的金属芯 221包括金属芯主轴 224和设置在所述的金属芯主轴 224外表面上的至少一个限 位凸台 225 , 所述的弹性元件 222浇注在所述的金属芯 221 中间位置的外表面, 所述的支撑 片 223设置在所述的弹性元件 222外侧, 用于包围弹性元件 222, 限位凸台 225的设置可以 防止金属芯 221在弹性元件 222内左右串动。
所述的金属芯主轴 224两端为支撑部 226, 两支撑部 226各设置有球铰固定孔 227, 用于 固定球铰 22 , 所述的支撑部 226的边角 228设置为圆角结构。
所述的弹性元件 222内设置若干个緩冲孔 229。 具体实施例中, 所述的弹性元件 222为 抗震耐磨橡胶材料, 弹性元件 222 内上下左右部位各形成一个緩冲孔 229, 当外部作用力较 大时, 緩冲孔 229对作用力可以产生緩冲效果, 不至于损坏球铰, 对整个铰接***中的其它 连接部位也起到保护作用。
所述的支撑片 223 由两个弧形金属片组成, 在连接处形成两个缝槽 230, 防止在巨大作 用力下应力变形。
较佳地, 所述的金属芯主轴 224及金属芯主轴 224外表面上的限位凸台 225制成一体。 组成金属芯 221 , 刚度较强。
图 12是本发明的一具体实施例的金属芯 221的立体图,图中所述的金属芯主轴 224为方 形柱体结构, 所述的限位凸台 225设置在所述的金属芯主轴 224的外表面上。 所述的限位凸 台 225为圆形环体结构, 一体环绕在所述的金属芯主轴 224外表面上, 本实施例中均匀间隔 设置四个限位凸台 225。
如图 13所示, 大型铰接车底盘铰接***一般包含两个球铰支架结构 21 , 每个球铰支架 结构 21通过支架固定板 23焊接在前横梁 1上, 为了提高其连接强度, 前横梁 1和支架固定 板 23通过螺栓 10加强连接, 即螺栓 10穿过固定孔 14进行进一步固定, 前横梁 1与前车厢 (图中未示出) 固定连接。 相应的, 前架 3上设置有两个球铰安装孔 31 , 每个球铰安装孔 31 内设置一球铰 22, 球铰 22外表面的支撑片 223为金属元件, 避免弹性元件 222直接与球铰 安装孔 31接触,每个球铰的两端支撑部 226通过螺栓 20穿设球铰固定孔 227和螺孔 26从而 固定在第一固定座 24和第二固定座 25上的凹槽 27内, 由于金属芯主轴 224两端的支撑部 226的边角 228为圆角结构, 且圆角角度要大于凹槽 27边角 28的圆角角度, 这样车辆在行 驶中使球铰支架结构 21 避免应力集中而造成球铰固定座的损坏, 因此圆角结构提高了球铰 22和球铰支架结构 21之间的连接强度。 当车辆左右转弯时, 球铰 22在限位凸台 225的作用 下不会左右串动; 车辆在前进、 急刹车或上下颠簸时会对球铰 22 产生较大作用力, 緩冲孔 229的设置可以起到緩冲效果, 对铰接***起到保护作用。
图 14是本发明的大型铰接车底盘铰接***中的球铰支架结构 21的另一实施例的立体图, 所示凹槽 27水平方向的宽度要等于所述的第一固定座 24或第二固定座 25水平方向的宽度, 即凹槽 27为通槽, 其它结构与上述实施例一致, 安装方式不再赘述, 基本能达到上述实施例 一致的效果。
本发明的金属芯 221的另一具体实施例的金属芯主轴 224为方形柱体结构, 所述的限位 凸台 225—体设置在所述的金属芯主轴 224的外表面上。 所述的限位凸台 225为方形环体结 构, 一体环绕在所述的金属芯主轴 224外表面上, 均匀间隔设置例如四个限位凸台 225。
本发明的金属芯 221的又一具体实施例的金属芯主轴 224中间部位为圆形柱体结构, 所 述的金属芯主轴 224两端部位为方形柱体结构, 所述的限位凸台 225设置在圆形柱体结构外 表面上。 所述的限位凸台 225为方形环体结构, 均匀间隔设置例如四个限位凸台 225。
在具体实施例中, 支撑片 223也可设置为两个以上弧形金属片构成, 形成两个以上的缝 槽 230 , 都可以达到防止应力变形的效果。
在具体实施例中, 限位凸台 225的数量可以根据作用力大小及刚度需求设置, 限位凸台 225的结构可以是有规则形状, 也可以是无规则形状, 限位凸台 225的形状可以根据需要设 置, 设置的位置可以是有规则设置, 也可以是无规则设置, 只要能达到防止金属芯 221在弹 性元件 222内转动或左右串动即可。
请参见图 2和 15所示, 图 15是后架 5与转盘轴承 4安装立体图, 转盘轴承 4安装在后 架 5上圆环凸台 53的圆周外侧, 内圏 41的内径与圆环凸台 53的外径相等。 所述的内圏安装 孔 411与后架 5轴承支撑部 52上的后架安装孔 54——对应, 并通过螺栓 40将内圏 41与后 架 5固定连接,后架 5的固定座 58上固定设置有集中润滑器 59,集中润滑器 59通过管道(未 示出) 与所述的润滑口 415连通, 进而对钢珠滚道 412内的钢珠 413起到润滑作用, 提高其 转动效果, 并延长其使用寿命。 前架 3与外圏 42通过螺栓(未示出)穿设所述的外圏安装孔 421与前架安装孔 32从而固定设置在内圏 41和外圏 42形成的台阶部, 前架 3进而通过前横 梁 1和前车厢 (未示出)连接。 由于外圏 42的厚度小于内圏 41的厚度, 所以整个交接*** 的厚度减小。
本具体实施例中, 前架 3和外圏 42固定的螺栓通过 "倍力扣" 处理, 不可拆卸, 连接强 度高, 稳定性较强。
当铰接车运行时, 转盘轴承 4的外圏 42会随着前车厢和前架 3转弯而转动, 由于圆环凸 台 53和内圏 41直接圆周接触, 使车辆转弯时形成的转动扭力不会仅仅作用在螺栓 40上, 圆 环凸台 53提供了更强的抗扭性能, 因而大大提高了转盘轴承 4的抗扭力。
所述的后架 5与所述的后横梁 6通过螺栓 60连接, 所述的后横梁 6与所述的后车厢(未 示出)焊接连接, 请参见图 16 ~ 18所示, 所述的后横梁 6包括加强部 61和焊接在所述的加 强部 61两端的连接部 62, 所述的加强部 61 内设置若干固定螺孔 63 , 所述的加强部 61内设 置线束孔 64, 所述的线束孔 64的两侧对称设置若干减轻孔 65 , 所述的加强部 61铸造成型, 所述的线束孔 64用于铰接***中线束的穿过, 所述的减轻孔 65为盲孔结构, 可以最大程度 地减轻后横梁 6的重量而又不影响加强部 61的刚度。
较佳地, 如图 18所示, 所述的加强部 61 包含两个安装部 66, 所述的两个安装部 66分 别位于所述的加强部 61的两端, 所述的每个安装部 66包括第一台阶面 67和第二台阶面 68 , 所述的连接部 62为钣金件空心柱体结构, 所述的左右连接部 62分别套设在所述的两个安装 部 66的第一台阶部 67外侧, 并与所述的第二台阶部 68焊接连接。
图 16 ~ 18是本发明的后横梁 6的优选实施例, 所述的加强部 61的中央位置设置有一个 线束孔 64, 所述的线束孔 64两侧各设置一个减轻孔 65 , 所述的加强部 61形成四个加强连接 部 69, 所述的每个加强连接部 69设置六个固定螺孔 63。
图 19是本发明的后横梁 6的另一具体实施例的立体图, 加强部 61的中央位置设置有一 个线束孔 64, 所述的线束孔 64两侧各设置两个减轻孔 65 , 所述的加强部 61形成六个加强连 接部 69, 所述的每个加强连接部 69设置三个固定螺孔 63。
如图 1、 7和 15所示, 所述的后架 5通过后架连接部 51的后壁 55上形成的后架螺孔 56 和后横梁 6上的固定螺孔 63通过螺栓 60连接后横梁 6, 后架螺孔 56的数量可以根据上述实 施例中的固定螺孔 63的数量设置;所述的后架连接部 51上对应后横梁 6上的线束孔 64设置 有后架线束孔 70, 便于线束的安装, 使线束不至于影响铰接***正常工作。
在具体实施例中, 后横梁 6的前后面都可以作为后架 5与后横梁 6的连接接触面, 图 1 给出的是将后横梁 6上带有减轻孔 65的一面作为接触面。
釆用了本发明的本发明的大型铰接车底盘铰接***, 具有以下的明显技术效果:
( 1 )转向角度感应装置能够感应转向角度; 智能增强阻尼; 超角报警及液压锁止; 对铰 接***起保护作用, 防止出现 "剪切" 事故; 且转盘轴承的外圏厚度小于内圏厚度, 使得整 个底盘铰接***的厚度减 'J、。
( 2 )后架包括轴承支撑部和圆环凸台, 圆环凸台设置在轴承支撑部上侧, 内圏安装在轴 承支撑部上并套接在圆环凸台的外侧, 从而结构筒单紧凑, 成本较低, 易于加工; 抗扭力强, 使用寿命长; 一体铸造强度较高。
( 3 )结构筒单, 易于维护安装; 强度高, 使用寿命长。
( 4 )球铰连接机构结构筒单, 安装维护方便; 大大提高了球铰连接机构的连接强度, 连 接强度较高, 使用寿命长; 可以有效防止球铰金属芯主轴在弹性元件内左右串动; 緩冲孔的 设置可以对作用力产生緩冲效果。
( 5 )后横梁与后架连接刚度强, 易于生产; 线束孔设置便于铰接***中的线束、 管路等 安装。
总之, 本发明的大型铰接车底盘铰接***设计独特巧妙, 结构筒洁紧凑, 安装筒便, 从 而提升大型铰接车底盘铰接***的安全性、 稳定性和耐久性, 降低成本, 适于大规模推广应 用。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以作出各种 修改和变换而不背离本发明的精神和范围。 因此, 说明书和附图应被认为是说明性的而非限 制性的。

Claims

权利要求
1、 一种大型铰接车底盘铰接***, 包括前横梁、 球铰连接结构、 前架、 转盘轴承、 后架 和后横梁, 所述的前横梁通过所述的球铰连接结构连接所述的前架, 所述的转盘轴承包括内 圏和外圏,所述的前架与所述的外圏 /内圏固定连接,所述的后架与所述的内圏 /夕卜圏固定连接, 所述的内圏和外圏相对转动, 所述的后架连接所述的后横梁, 其特征在于, 所述的大型铰接 车底盘铰接***中还包括转向角度感应装置, 该转向角度感应装置设置于所述的内圏 /外圏和 所述的前架 /后架之间。
2、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的转向角度感应 装置包括角度传感器、 第一角度感应器和第二角度感应器, 所述的角度传感器固定设置在所 述的内圏 /外圏上, 所述的第一角度感应器和第二角度感应器固定设置在所述的前架 /后架上, 且该第一角度感应器和第二角度感应器分别设置在所述的角度传感器两侧。
3、 根据权利要求 2所述的大型铰接车底盘铰接***, 其特征在于, 所述的第一角度感应 器和第二角度感应器分别包括报警端和机械锁止端, 所述的报警端和所述的角度传感器在内 圏 /外圏圆周方向上形成 40。 ~ 50。 夹角, 所述的机械锁止端和所述的角度传感器在内圏 / 外圏圆周方向上形成 45。 ~ 55° 夹角。
4、 根据权利要求 3所述的大型铰接车底盘铰接***, 其特征在于, 所述的报警端和所述 的角度传感器在内圏 /外圏圆周方向上形成 47。 夹角,所述的机械锁止端和所述的角度传感器 在内圏 /外圏圆周方向上形成 52° 夹角。
5、 根据权利要求 3所述的大型铰接车底盘铰接***, 其特征在于, 所述的转向角度感应 装置还包括阻尼传感器、 第一阻尼感应器和第二阻尼感应器, 所述的阻尼传感器设置在所述 的内圏上, 并与所述的角度传感器设置在铰接***中心线上, 所述的第一阻尼感应器和第二 阻尼感应器分别设置在所述的前架 /后架上, 且该第一阻尼感应器和第二阻尼感应器设置在所 述的阻尼传感器两侧。
6、 根据权利要求 5所述的大型铰接车底盘铰接***, 其特征在于, 所述的第一阻尼感应 器和第二阻尼感应器分别包括阻尼端和液压锁止端, 所述的阻尼端和所述的阻尼传感器在内 圏 /外圏圆周方向上形成 15。 ~ 20。 夹角, 所述的液压锁止端和所述的阻尼传感器在内圏 / 外圏圆周方向上形成 45。 ~ 55° 夹角。
7、 根据权利要求 6所述的大型铰接车底盘铰接***, 其特征在于, 所述的阻尼端和所述 的阻尼传感器在内圏 /外圏圆周方向上形成 17。 夹角,所述的液压锁止端和所述的阻尼传感器 在内圏 /外圏圆周方向上形成 49° 夹角。
8、 根据权利要求 5所述的大型铰接车底盘铰接***, 其特征在于, 所述的大型铰接车底 盘铰接***中还包括液压阻尼緩冲***, 所述的液压阻尼緩冲***设置于所述的前架与后架 之间。
9、 根据权利要求 8所述的大型铰接车底盘铰接***, 其特征在于, 所述的液压阻尼緩冲 ***中包括左右对称设置的两个液压阻尼緩冲装置以及阻尼緩冲控制模块, 所述的各个液压 阻尼緩冲装置包括活塞、 活塞杆和缸套, 所述的活塞设置于所述的缸套中, 且该活塞的一侧 面与所述的活塞杆相固定连接, 所述的活塞杆与所述的前架相固定连接, 所述的各个液压阻 尼緩冲装置的缸套端部均与所述的后架相固定连接, 所述的阻尼緩冲控制模块与左侧的阻尼 緩冲装置和右侧的阻尼緩冲装置均相连接。
10、 根据权利要求 9所述的大型铰接车底盘铰接***, 其特征在于, 所述的液压阻尼緩 冲装置为液压缸, 所述的液压缸被所述的活塞分为有杆腔和无杆腔, 所述的阻尼緩冲控制模 块包括第一单向阀、 第二单向阀、 第三单向阀、 第四单向阀、 储油箱, 所述的无杆腔依次与 所述的第三单向阀和储油箱相串联连通构成第一吸油油路, 所述的有杆腔依次与所述的第四 单向阀和储油箱相串联连通构成第二吸油油路; 所述的无杆腔依次与所述的第一单向阀和储 油箱相串联连通构成第一排油油路, 所述的有杆腔依次与所述的第二单向阀和储油箱相串联 连通构成第二排油油路, 所述的第一排油油路和第二排油油路中串联有至少一个液压阻尼单 元。
11、根据权利要求 10所述的铰接车用底盘铰接***, 其特征在于, 所述的阻尼緩冲控制 模块包括独立设置的有杆腔集成块和无杆腔集成块, 所述的第一吸油油路和第一排油油路设 置于所述的无杆腔集成块内部, 所述的第二吸油油路和第二排油油路设置于所述的有杆腔集 成块内部。
12、 根据权利要求 11所述的铰接车用底盘铰接***, 其特征在于, 所述的无杆腔集成块 和有杆腔集成块分别设置于所述的缸套两端, 且该无杆腔集成块、 缸套和有杆腔集成块外包 围设置有外壳, 所述的储油箱为缸套、 外壳、 无杆腔集成块和有杆腔集成块之间所形成的密 封空间。
13、 根据权利要求 10至 12中任一项所述的大型铰接车底盘铰接***, 其特征在于, 所 述的阻尼緩冲控制模块中还包括第一电磁阀和液压阻尼增压单元, 所述的第一电磁阀和液压 阻尼增压单元相并联后接入所述的第一排油油路和第二排油油路中, 所述的第一阻尼感应器 电连接所述的第一电磁阀。
14、 根据权利要求 13所述的大型铰接车底盘铰接***, 其特征在于, 所述的阻尼緩冲控 制模块中还包括溢流阀和第二电磁阀, 所述的溢流阀和第二电磁阀相并联后接入所述的第一 排油油路和第二排油油路中, 且该溢流阀和第二电磁阀位于所述的第一电磁阀和液压阻尼增 压单元的下游位置, 所述的第二阻尼感应器电连接所述的第二电磁阀。
15、 根据权利要求 13所述的大型铰接车底盘铰接***, 其特征在于, 所述的第一排油油 路和第二排油油路中的液压阻尼增压单元的上游位置接入设置有压力传感器。
16、 根据权利要求 10至 12中任一项所述的大型铰接车底盘铰接***, 其特征在于, 所 述的液压缸的第一排油油路和 /或第二排油油路中设置有测压口。
17、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的转向角度感 应装置还包括緩冲块和緩冲端, 所述的緩冲块设置在所述的前架 /后架上, 所述的緩冲端设置 在所述的后架 /前架上。
18、 根据权利要求 2所述的大型铰接车底盘铰接***, 其特征在于, 所述的角度传感器 电连接报警装置。
19、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的外圏的厚度 小于所述的内圏的厚度。
20、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的内圏和外圏 的连接处在圆周方向上形成一钢珠滚道, 所述的钢珠滚道内布满钢珠, 所述的内圏和外圏通 过所述的钢珠实现相对转动。
21、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的内圏上设置 有至少一个润滑口, 所述的后架上设置有固定座, 所述的固定座上固定设置有集中润滑器, 所述的集中润滑器通过管道与所述的润滑口连通。
22、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的后架 /前架包 括轴承支撑部和圆环凸台, 所述的圆环凸台设置在所述的轴承支撑部上侧, 所述的内圏安装 在所述的轴承支撑部上并套接在所述的圆环凸台的外侧。
23、 根据权利要求 22所述的大型铰接车底盘铰接***, 其特征在于, 所述的后架 /前架 一体铸造成型。
24、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的球铰连接结 构包括球铰支架结构和球铰, 所述的球铰支架结构包括支架固定板、 第一固定座和第二固定 座, 所述的支架固定板固定在所述的前横梁上, 所述的球铰可活动插设在所述的前架中, 所 述的第一固定座和第二固定座设置在所述的支架固定板的同一侧, 所述的第一固定座和第二 固定座上各设有螺孔, 所述的第一固定座和第二固定座上对称设置有凹槽。
25、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的球铰包括金 属芯、 弹性元件和支撑片, 所述的弹性元件设置在所述的金属芯中间位置外表面, 所述的支 撑片设置在所述的弹性元件外侧, 所述的金属芯包括金属芯主轴和至少一个限位凸台, 所述 的限位凸台设置在所述的金属芯主轴外表面上。
26、 根据权利要求 25所述的大型铰接车底盘铰接***, 其特征在于, 所述的弹性元件内 设置若干个緩冲孔。
27、 根据权利要求 25所述的大型铰接车底盘铰接***, 其特征在于, 所述的球铰包括至 少两个支撑片, 所述的若干个支撑片在连接处形成至少两个缝槽。
28、 根据权利要求 25所述的大型铰接车底盘铰接***, 其特征在于, 所述的金属芯主轴 及金属芯主轴外表面上的限位凸台为一体成型。
29、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的凹槽边角为 圆角结构, 所述的金属芯主轴的两端支撑部的边角为圆角结构, 且该金属芯主轴的两端支撑 部的边角的圆角角度大于所述的凹槽边角的圆角角度。
30、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的凹槽水平方 向的宽度小于所述的第一固定座或第二固定座水平方向的宽度, 所述的第一固定座和第二固 定座各形成一个水平加强部。
31、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的凹槽垂直方 向的深度小于所述的第一固定座或第二固定座的厚度, 所述的第一固定座或第二固定座各形 成一个垂直加强部。
32、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的第一固定座 和第二固定座上形成一个弧形应力部, 所述的弧形应力部形成于所述的凹槽的另一侧, 并靠 近所述的支架固定板。
33、 根据权利要求 32所述的大型铰接车底盘铰接***, 其特征在于, 所述的弧形应力部 设置有加强筋。
34、 根据权利要求 24所述的大型铰接车底盘铰接***, 其特征在于, 所述的球铰支架结 构一体铸造成型。
35、 根据权利要求 1所述的大型铰接车底盘铰接***, 其特征在于, 所述的后横梁包括 加强部和焊接在所述的加强部两端的连接部, 所述的加强部内设置若干固定螺孔, 所述的后 架包括后架连接部, 所述的后架连接部对应所述的固定螺孔设置有后架螺孔, 所述的后架连 接部通过螺栓穿设所述的固定螺孔和所述的后架螺孔实现固定。
36、 根据权利要求 35所述的大型铰接车底盘铰接***, 其特征在于, 所述的加强部内设 置线束孔, 所述的后架连接部对应所述的线束孔设置有后架线束孔。
37、 根据权利要求 35所述的大型铰接车底盘铰接***, 其特征在于, 所述的加强部内设 置若干减轻孔。
38、 根据权利要求 35所述的大型铰接车底盘铰接***, 其特征在于, 所述的加强部一体 铸造成型。
39、 一种大型铰接车底盘铰接***, 包括前横梁、 球铰连接结构、 前架、 转盘轴承、 后 架和后横梁, 所述的前横梁通过所述的球铰连接结构连接所述的前架, 所述的转盘轴承包括 内圏和外圏, 所述的前架与所述的外圏相固定连接, 所述的后架与所述的内圏相固定连接, 所述的内圏和外圏相对转动, 所述的后架连接所述的后横梁, 其特征在于, 所述的大型铰接 车底盘铰接***中还包括转向角度感应装置和液压阻尼緩冲***, 所述的转向角度感应装置 设置于所述的内圏和所述的前架之间, 所述的液压阻尼緩冲***设置于所述的前架与后架之 间, 且该转向角度感应装置与液压阻尼緩冲***相电连接。
40、 根据权利要求 39所述的大型铰接车底盘铰接***, 其特征在于, 所述的液压阻尼緩 冲***中包括左右对称设置的两个液压阻尼緩冲装置以及阻尼緩冲控制模块, 所述的各个液 压阻尼緩冲装置包括活塞、 活塞杆和缸套, 所述的活塞设置于所述的缸套中, 且该活塞的一 侧面与所述的活塞杆相固定连接, 所述的活塞杆与所述的前架相固定连接, 所述的各个液压 阻尼緩冲装置的缸套端部均与所述的后架相固定连接 , 所述的阻尼緩冲控制模块与左侧的阻 尼緩冲装置和右侧的阻尼緩冲装置均相连接。
41、 根据权利要求 40所述的大型铰接车底盘铰接***, 其特征在于, 所述的液压阻尼緩 冲装置为液压缸, 所述的液压缸被所述的活塞分为有杆腔和无杆腔, 所述的阻尼緩冲控制模 块包括第一单向阀、 第二单向阀、 第三单向阀、 第四单向阀、 储油箱, 所述的无杆腔依次与 所述的第三单向阀和储油箱相串联连通构成第一吸油油路, 所述的有杆腔依次与所述的第四 单向阀和储油箱相串联连通构成第二吸油油路; 所述的无杆腔依次与所述的第一单向阀和储 油箱相串联连通构成第一排油油路, 所述的有杆腔依次与所述的第二单向阀和储油箱相串联 连通构成第二排油油路, 所述的第一排油油路和第二排油油路中串联有至少一个液压阻尼单 元。
42、 根据权利要求 41所述的铰接车用底盘铰接***, 其特征在于, 所述的阻尼緩冲控制 模块包括独立设置的有杆腔集成块和无杆腔集成块, 所述的第一吸油油路和第一排油油路设 置于所述的无杆腔集成块内部, 所述的第二吸油油路和第二排油油路设置于所述的有杆腔集 成块内部。
43、 根据权利要求 42所述的铰接车用底盘铰接***, 其特征在于, 所述的无杆腔集成块 和有杆腔集成块分别设置于所述的缸套两端, 且该无杆腔集成块、 缸套和有杆腔集成块外包 围设置有外壳, 所述的储油箱为缸套、 外壳、 无杆腔集成块和有杆腔集成块之间所形成的密 封空间。
44、 根据权利要求 41至 43中任一项所述的大型铰接车底盘铰接***, 其特征在于, 所 述的阻尼緩冲控制模块中还包括第一电磁阀和液压阻尼增压单元, 所述的第一电磁阀和液压 阻尼增压单元相并联后接入所述的第一排油油路和第二排油油路中, 所述的转向角度感应装 置电连接所述的第一电磁阀。
45、 根据权利要求 44所述的大型铰接车底盘铰接***, 其特征在于, 所述的阻尼緩冲控 制模块中还包括溢流阀和第二电磁阀, 所述的溢流阀和第二电磁阀相并联后接入所述的第一 排油油路和第二排油油路中, 且该溢流阀和第二电磁阀位于所述的第一电磁阀和液压阻尼增 压单元的下游位置, 所述的转向角度感应装置电连接所述的第二电磁阀。
46、 根据权利要求 43所述的大型铰接车底盘铰接***, 其特征在于, 所述的第一排油油 路和第二排油油路中的液压阻尼增压单元的上游位置接入设置有压力传感器。
47、 根据权利要求 40至 42中任一项所述的大型铰接车底盘铰接***, 其特征在于, 所 述的液压缸的第一排油油路和 /或第二排油油路中设置有测压口。
48、 根据权利要求 39所述的大型铰接车底盘铰接***, 其特征在于, 所述的外圏厚度小 于所述的内圏厚度。
PCT/CN2010/080462 2010-06-02 2010-12-29 大型铰接车底盘铰接*** WO2011150653A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112012030617A BR112012030617B8 (pt) 2010-06-02 2010-12-29 Sistema de chassi articulado de veículo articulado grande
US13/700,628 US9150062B2 (en) 2010-06-02 2010-12-29 Articulated chassis system of large articulated vehicle

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN2010202118753U CN201670067U (zh) 2010-06-02 2010-06-02 铰接车底盘铰接***中的球铰支架结构
CN201020211875.3 2010-06-02
CN201020211872XU CN201670066U (zh) 2010-06-02 2010-06-02 铰接车底盘铰接***中转盘轴承结构
CN2010202119012U CN201670270U (zh) 2010-06-02 2010-06-02 铰接车底盘铰接***中的后架
CN201020211901.2 2010-06-02
CN201020211872.X 2010-06-02
CN201020226770.5 2010-06-17
CN 201020226770 CN201769882U (zh) 2010-06-17 2010-06-17 铰接车底盘铰接***中转向角度感应装置
CN201020233715.9 2010-06-23
CN 201020233715 CN201694004U (zh) 2010-06-23 2010-06-23 铰接车底盘铰接***中的球铰结构
CN201020276171.4 2010-06-30
CN2010202761714U CN201827172U (zh) 2010-07-30 2010-07-30 增压锁止液压缓冲***
CN201020539553.1 2010-09-25
CN2010205395531U CN201824815U (zh) 2010-09-25 2010-09-25 铰接车底盘铰接***中后横梁连接机构

Publications (1)

Publication Number Publication Date
WO2011150653A1 true WO2011150653A1 (zh) 2011-12-08

Family

ID=45066144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080462 WO2011150653A1 (zh) 2010-06-02 2010-12-29 大型铰接车底盘铰接***

Country Status (3)

Country Link
US (1) US9150062B2 (zh)
BR (1) BR112012030617B8 (zh)
WO (1) WO2011150653A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598219B2 (en) 2017-09-18 2020-03-24 Roller Bearing Company Of America, Inc. Bearing and sealing arrangement for joints in heavy duty vehicles
CN111231639A (zh) * 2019-12-27 2020-06-05 中国第一重型机械集团大连加氢反应器制造有限公司 振动式移动平台及其操作方法
CN115056815A (zh) * 2022-07-14 2022-09-16 株洲时代新材料科技股份有限公司 胶轮列车车端铰接机构

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20130562A1 (it) * 2013-10-15 2015-04-16 Pei Protezioni Elaborazioni Dispositivo e metodo di collegamento di una prima e di una seconda unita' di un veicolo articolato.
JP6356959B2 (ja) * 2013-11-28 2018-07-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG アンダランプロテクタの構造
US10131380B1 (en) * 2014-07-15 2018-11-20 Jack Simmons Vertically articulating vehicle
CN104118288B (zh) * 2014-07-28 2016-05-25 伊卡路斯(苏州)车辆***有限公司 前、中置驱动铰接客车用底盘铰接***
CN104329406B (zh) * 2014-10-16 2016-05-04 伊卡路斯(苏州)车辆***有限公司 基于铰接***实现车辆安全回转的液压缓冲器及其方法
US10096175B2 (en) * 2016-05-12 2018-10-09 International Business Machines Corporation Structural damage detection
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
CN107053976A (zh) * 2017-03-29 2017-08-18 江苏农牧科技职业学院 一种农用装载车辆铰接***
US11014417B2 (en) 2018-02-27 2021-05-25 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US10670479B2 (en) 2018-02-27 2020-06-02 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11999415B2 (en) 2018-05-08 2024-06-04 Jost-Werke Deutschland Gmbh Joint module for an articulated vehicle, articulated vehicle, and method for manufacturing such a joint module
CN110282280B (zh) * 2019-06-05 2023-08-15 山东泰开汽车制造有限公司 基于铝合金罐体的运油车装置
LU101365B1 (en) * 2019-08-28 2021-03-04 Alpha Ec Ind 2018 S A R L Articulated bus with a swivelling joint and control process
CN113291377B (zh) * 2021-06-30 2022-09-13 中车株洲电力机车有限公司 一种无轨电车转向角度检测装置及其控制***
CN114919660B (zh) * 2022-07-11 2023-07-25 徐州华邦专用汽车有限公司 一种风电叶片运输车用自调式机械转向机构
CN115648879A (zh) * 2022-11-04 2023-01-31 中车南京浦镇车辆有限公司 一种新型数字轨道胶轮电车用拖车转向架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545046A1 (de) * 1991-12-04 1993-06-09 Man Nutzfahrzeuge Ag Drehgelenk mit einer Knickeinrichtung in Gelenkomnibussen
US5332247A (en) * 1993-04-27 1994-07-26 Dosco Overseas Engineering Ltd. Articulated joint
WO1995017328A1 (en) * 1993-12-23 1995-06-29 Autóipari Kutató És Fejleszto^' Rt Arrangement for influencing the joint angle between sections of an articulated vehicle
CN101168345A (zh) * 2006-10-25 2008-04-30 许布奈有限公司 两个相互铰接的车辆部分,例如铰接式汽车之间的铰接部
CN101376403A (zh) * 2007-08-30 2009-03-04 无锡华创伊卡露斯车辆设备有限公司 大型铰接客车底盘铰接***
CN201400056Y (zh) * 2009-04-09 2010-02-10 江苏常隆客车有限公司 两节客车车厢之间的连接结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE419844B (sv) * 1980-07-03 1981-08-31 Saab Scania Ab Arrangemang for att vid ledade fordon begrensa okontrollerade ledvinkelrorelser mellan en fremre fordonsenhet och en med denna ledbart forbunden bakre fordonsenhet utrustad med drivhjul
US6437701B1 (en) * 2000-12-18 2002-08-20 Caterpillar Inc. Apparatus and method for a machine stability system for an articulated work machine
CN201099154Y (zh) 2007-08-28 2008-08-13 无锡华创伊卡露斯车辆设备有限公司 大型铰接客车铰接***中的球铰连接结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545046A1 (de) * 1991-12-04 1993-06-09 Man Nutzfahrzeuge Ag Drehgelenk mit einer Knickeinrichtung in Gelenkomnibussen
US5332247A (en) * 1993-04-27 1994-07-26 Dosco Overseas Engineering Ltd. Articulated joint
WO1995017328A1 (en) * 1993-12-23 1995-06-29 Autóipari Kutató És Fejleszto^' Rt Arrangement for influencing the joint angle between sections of an articulated vehicle
CN101168345A (zh) * 2006-10-25 2008-04-30 许布奈有限公司 两个相互铰接的车辆部分,例如铰接式汽车之间的铰接部
CN101376403A (zh) * 2007-08-30 2009-03-04 无锡华创伊卡露斯车辆设备有限公司 大型铰接客车底盘铰接***
CN201400056Y (zh) * 2009-04-09 2010-02-10 江苏常隆客车有限公司 两节客车车厢之间的连接结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598219B2 (en) 2017-09-18 2020-03-24 Roller Bearing Company Of America, Inc. Bearing and sealing arrangement for joints in heavy duty vehicles
CN111231639A (zh) * 2019-12-27 2020-06-05 中国第一重型机械集团大连加氢反应器制造有限公司 振动式移动平台及其操作方法
CN111231639B (zh) * 2019-12-27 2024-01-12 中国第一重型机械集团大连加氢反应器制造有限公司 振动式移动平台及其操作方法
CN115056815A (zh) * 2022-07-14 2022-09-16 株洲时代新材料科技股份有限公司 胶轮列车车端铰接机构
CN115056815B (zh) * 2022-07-14 2024-03-12 株洲时代新材料科技股份有限公司 胶轮列车车端铰接机构

Also Published As

Publication number Publication date
US9150062B2 (en) 2015-10-06
BR112012030617B1 (pt) 2021-11-23
US20130062860A1 (en) 2013-03-14
BR112012030617B8 (pt) 2022-04-19
BR112012030617A2 (pt) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2011150653A1 (zh) 大型铰接车底盘铰接***
CN101618669B (zh) 多轴车辆油气悬架***及起重机
CA1180362A (en) Safety stabilizer for vehicle steering linkage
CN101376403B (zh) 大型铰接客车底盘铰接***
US20110056785A1 (en) Vibration Damper
CN105492296B (zh) 转向止挡装置
CN105856996A (zh) 一种用于超重型底盘的独立悬架***
CN102896992B (zh) 自动侧倾悬架
CN104455165B (zh) 铰接车底盘铰接***
CN103243919A (zh) 一种混凝土泵车
CN207607313U (zh) 一种两栖车辆转向油罐及动力转向装置
WO2016015272A1 (zh) 后置驱动铰接客车用底盘铰接***
WO2011143917A1 (zh) 铰接车用底盘铰接***
CN202743000U (zh) 铰接式客车用电控装置
CN102032307B (zh) 可控阻尼减震液压控制***
CN102116332A (zh) 增压锁止液压缓冲***
CN207607539U (zh) 一种两栖车辆水陆转换集成阀组及转向装置
JPS5967111A (ja) 自動車の操舵輪懸架装置
AU2016101712A4 (en) Frame assembly of a mining dump truck
CN109160380A (zh) 一种软管绞车卷筒
CN102588496A (zh) 安全锁止液压缓冲***
CN113818324A (zh) 一种拼接式钢结构桥梁及其建造方法
CN102102727A (zh) 无极控制阻尼减震***
CN213271776U (zh) 一种便捷安装的汽车空调机支架
WO2016015268A1 (zh) 前、中置驱动铰接客车用底盘铰接***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13700628

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012/13941

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10852448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12217771

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121130