WO2011149071A1 - Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film - Google Patents

Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film Download PDF

Info

Publication number
WO2011149071A1
WO2011149071A1 PCT/JP2011/062258 JP2011062258W WO2011149071A1 WO 2011149071 A1 WO2011149071 A1 WO 2011149071A1 JP 2011062258 W JP2011062258 W JP 2011062258W WO 2011149071 A1 WO2011149071 A1 WO 2011149071A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
compound
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2011/062258
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 作本
祐樹 高山
隆夫 堀
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012517340A priority Critical patent/JP5761183B2/en
Priority to KR1020127033890A priority patent/KR101823712B1/en
Priority to CN201180035610.XA priority patent/CN103003741B/en
Publication of WO2011149071A1 publication Critical patent/WO2011149071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/205Compounds containing groups, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention has high mechanical strength, excellent resistance to rubbing treatment, liquid crystal orientation, particularly excellent electrical characteristics such as voltage holding ratio and ion density at high temperature, and a reliability that provides a high pretilt angle.
  • the present invention relates to a liquid crystal aligning agent that can form a liquid crystal aligning film having high properties, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • a liquid crystal alignment film a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
  • liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon.
  • Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
  • a compound containing one carboxylic acid group in the molecule, a compound containing one carboxylic anhydride group in the molecule, and 1 in the molecule A liquid crystal aligning agent containing a very small amount of a compound selected from compounds containing three tertiary amino groups (see Patent Document 3), a tetracarboxylic dianhydride having a specific structure and a tetracarboxylic dianhydride having cyclobutane
  • Patent Document 4 A liquid crystal aligning agent containing a polyamic acid obtained from the diamine compound or an imidized polymer thereof (see Patent Document 4) is known.
  • liquid crystal aligning agent containing an imide group-containing monomer having a specific structure or an amic acid site-containing monomer, together with polyamic acid or polyimide, polyamic acid and an imidized polymer of polyamic acid.
  • a liquid crystal aligning agent (see Patent Document 6) containing one kind of polymer and at least one compound selected from an amic acid compound and an imide compound has been proposed.
  • the present invention provides a liquid crystal alignment film having a large mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, particularly electrical characteristics such as voltage holding ratio and ion density at high temperatures,
  • An object of the present invention is to provide a liquid crystal aligning agent capable of forming a highly reliable liquid crystal aligning film that gives a high pretilt angle.
  • the present inventor has intensively studied to achieve the above object, and as a result, a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative, which are components of a conventional liquid crystal aligning agent, and / or Or a compound having an amino group protected by a heat-releasable group that replaces hydrogen by heating and having an amic acid or an amic acid ester structure (hereinafter referred to as “thermal desorption”). It was also found that the above-mentioned object can be achieved by a liquid crystal aligning agent containing a release group-containing compound.
  • a compound having an amino group protected by a heat-releasable group that replaces hydrogen by heating added to the liquid crystal aligning agent and having an amic acid or amic acid ester structure (hereinafter referred to as a heat-releasable group-containing compound) Is a novel compound not yet published in the literature before the filing of the present application, but when such a heat-releasable group-containing compound is added to the liquid crystal aligning agent, the film has high mechanical strength and resistance to rubbing treatment. It was found that a liquid crystal alignment film having excellent reliability and excellent electrical properties such as liquid crystal alignment properties, in particular, voltage holding ratio and ion density at high temperatures, and giving a high pretilt angle can be formed. .
  • the present invention has the following gist. 1. Protected by a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative, and / or a polyimide imidized with the polyimide precursor, and a thermally desorbable group that replaces hydrogen by heating at 80 to 300 ° C.
  • a liquid crystal aligning agent comprising a compound having an amino group-containing amic acid or amic acid ester structure.
  • the liquid crystal aligning agent according to 1 above, wherein the polyimide precursor has a repeating unit represented by the following formula (7).
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group
  • R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a 1 and A 2 are respectively Independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
  • the polyimide precursor and the polyimide are contained in a total amount of 0.5 to 15% by mass in the liquid crystal aligning agent, and an amic acid or an amic acid having an amino group protected by a thermally detachable group that replaces hydrogen by heating.
  • the compound having an acid ester structure is 0.5 to 50 mol% based on one unit of the polyimide precursor having a repeating unit represented by the above formula (7) and the repeating unit of the imidized polymer of the polyimide precursor.
  • X is a tetravalent organic group
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • Z is a structure represented by the following formula (2).
  • Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms.
  • R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent.
  • An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms.
  • D 1 is a thermally leaving group.
  • liquid crystal aligning agent according to any one of 1 to 4 above, wherein the thermally leaving group is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. 6). 6. The liquid crystal aligning agent according to any one of 1 to 5, wherein X is any one selected from the group consisting of a structure represented by the following formula.
  • X is a tetravalent organic group
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • Z is a structure represented by the following formula (2).
  • Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms.
  • R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent.
  • An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms.
  • D 1 is a thermally leaving group.
  • a bischlorocarbonyl compound represented by the following formula (3) and a monoamine compound represented by the following formula (4) have a molar ratio of (chlorocarbonyl compound / monoamine) of 1/2 to 1/3. 11.
  • a tetracarboxylic dianhydride represented by the following formula (6) and a monoamine compound represented by the above formula (4) have a molar ratio of (tetracarboxylic dianhydride / monoamine) of 1/2 to 1/3. 11. The compound according to the above 10, obtained by reacting.
  • the obtained liquid crystal alignment film has high mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, in particular, electrical characteristics such as voltage holding ratio and ion density at high temperatures,
  • a liquid crystal alignment agent capable of forming a highly reliable liquid crystal alignment film giving a high pretilt angle is provided.
  • the liquid crystal aligning agent of the present invention can form a liquid crystal aligning film having the above-mentioned excellent characteristics and is excellent in long-term storage stability when stored before using the liquid crystal aligning agent.
  • a compound having an amino group protected by a thermally desorbable group contained in the liquid crystal aligning agent of the present invention and having an amic acid or an amic acid ester structure is a novel compound, and such a novel compound is also provided. Is done.
  • liquid crystal aligning agent of the present invention has excellent characteristics as described above is not necessarily clear, but is estimated as follows.
  • the thermally desorbable group-containing compound contained in the liquid crystal aligning agent of the present invention has a heat desorbing property at a temperature during the firing process when the liquid crystal aligning agent is applied to the substrate surface and baked to form a liquid crystal alignment film.
  • the group is decomposed and a highly reactive primary or secondary amine is generated.
  • the generated primary or secondary amine accelerates the imidization reaction of the polyimide precursor and / or the polymer of the polyimide, which is the main component contained in the liquid crystal aligning agent, and brings about a high imidization ratio.
  • This causes a cross-linking reaction and gives a large mechanical strength to the liquid crystal alignment film obtained from the liquid crystal aligning agent.
  • the increase in mechanical strength results in improved rubbing resistance and stability of liquid crystal characteristics at high temperatures.
  • the thermally detachable group-containing compound has the same amic acid or amic acid ester structure as the polyimide precursor and / or polyimide polymer, which is the main component contained in the liquid crystal aligning agent, When this is added to the liquid crystal aligning agent, the liquid crystal alignment is improved rather than inhibiting the liquid crystal alignment, and as a result, the liquid crystal characteristics such as voltage holding ratio, ion density, and pretilt angle are improved. Furthermore, since the thermally detachable group-containing compound does not decompose until a high temperature is applied, it has no adverse effect on the storage stability of the liquid crystal aligning agent containing the compound. None give.
  • the obtained liquid crystal alignment film has high mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, in particular, electrical characteristics such as voltage holding ratio and ion density at high temperatures,
  • a liquid crystal alignment agent capable of forming a highly reliable liquid crystal alignment film giving a high pretilt angle is provided.
  • the thermally detachable group-containing compound added to the liquid crystal aligning agent in the present invention is a compound having an amino group protected by a thermally detachable group and having an amic acid or an amic acid ester structure,
  • the temperature is 80 to 300 ° C., preferably 100 to 250 ° C., particularly preferably 150 to 230 ° C.
  • the thermally desorbable group is decomposed and replaced with a hydrogen atom.
  • the liquid crystal aligning agent is applied to the substrate of the liquid crystal display element, and the thermally desorbable group is desorbed and replaced with hydrogen at a normal temperature of 150 to 300 ° C. when firing.
  • the thermal leaving group-containing compound used in the present invention is preferably represented by the following general formula (1).
  • X is a tetravalent organic group
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • Z has a structure represented by the following formula (2).
  • Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms
  • R 2 and R 3 are each independently a hydrogen atom or a carbon atom that may have a substituent.
  • R 4 may have a hydrogen atom or a substituent and has 1 to 30 carbon atoms.
  • D 1 is an amino-protecting group that replaces a hydrogen atom by heating.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 1 has a bulky structure, when used as a liquid crystal alignment film, there is a possibility that the alignment of the liquid crystal may be inhibited. Therefore, R 1 is more preferably a hydrogen atom, a methyl group, or an ethyl group, An atom or a methyl group is particularly preferred.
  • X is a tetravalent organic group, and its structure is not particularly limited. Specific examples of X include X-1 to X-46 shown below. Among them, X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X-21, X-25, X-26 X-27, X-28 or X-32 is preferred.
  • R 2 and R 3 each independently represent a hydrogen atom, or an alkyl group, alkenyl group, alkynyl group, aryl group having 1 to 30 carbon atoms which may have a substituent, or And may form a ring structure.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • aryl group examples include a phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • the above alkyl group, alkenyl group, alkynyl group, and aryl group may have a substituent as long as the whole has 1 to 20 carbon atoms, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, aryl groups, alkyls.
  • the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the organooxy group can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkyloxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group.
  • the organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, and a laurylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R examples include the above-described alkyl group, alkenyl group, and aryl group.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • R 4 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may have a substituent. Specific examples of the alkyl group and the substituent include the same alkyl groups and substituents as described above.
  • Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. When Z 1 is a divalent organic group having 1 to 30 carbon atoms, it is preferably a divalent organic group represented by the following formula (8).
  • B 1 and B 2 are each independently a single bond or a divalent linking group, provided that at least one of B 1 and B 2 is a divalent linking group.
  • R 8 and R 9 are each independently a single bond or an optionally substituted alkylene group having 1 to 20 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. Specific examples of the B 1 and B 2 are shown below, but is not limited thereto.
  • B-10, B-11, R 10 and R 11 are a hydrogen atom or an alkyl group, alkenyl group, alkynyl group, aryl group which may have a substituent, or a group thereof. It is a combination and may form a ring structure.
  • Specific examples of the alkyl group, alkenyl group, alkynyl group, aryl group, and substituent include the same ones as described above.
  • R 10 and R 11 have a bulky structure such as an aromatic ring or an alicyclic structure
  • the liquid crystal alignment may be lowered. Therefore, methyl group, ethyl group, propyl group , An alkyl group such as a butyl group, or a hydrogen atom is preferable, and a hydrogen atom is more preferable.
  • R 8 and R 9 are an alkylene group having 1 to 20 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof, specific examples thereof are listed below. It is not limited to.
  • alkylene group examples include a structure in which one hydrogen atom is removed from an alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 1,2-nonylene group, 1,2-dodecylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene Group, 1,2-cyclobutylene group, 1,3-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-cyclononylene group, 1,2-cyclododecylene, etc.
  • the alkenylene group includes a structure in which one hydrogen atom is removed from an alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group, 1,2-ethenylene-1,2-butylene group, 1,2-ethenylene-1,2-heptylene group, 1,2-ethenylene-1,2-decylene group and the like.
  • the alkynylene group includes a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group, ethynylene-1,2-heptylene group, ethynylene-1,2-decylene group and the like.
  • the arylene group includes a structure in which one hydrogen atom is removed from an aryl group. More specifically, 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2, Examples thereof include a 3-naphthylene group, a 2,6-naphthylene group, a 3-phenyl-1,2-phenylene group, and a 2,2′-diphenylene group.
  • the alkylene group, alkenylene group, alkynylene group, arylene group, and a combination thereof may have a substituent as long as the number of carbon atoms is 1 to 20 as a whole, and a ring structure depending on the substituent. May be formed.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure. Examples of this substituent include the same ones as described above.
  • R 8 and R 9 have a small number of carbon atoms, the liquid crystal orientation is improved when used as a liquid crystal alignment film. Therefore, an alkylene group having 1 to 5 carbon atoms, an alkenylene group having 1 to 5 carbon atoms, a carbon number 1-5 alkynylene groups are preferred. Moreover, it is preferable that both or one of R 8 and R 9 is a single bond.
  • D 1 is an amino-protecting group, and its structure is not particularly limited as long as it is a functional group that can be replaced by a hydrogen atom by heating.
  • this protecting group D 1 is preferably not desorbed at room temperature, preferably a protecting group that is deprotected by heat of 80 ° C. or more, more preferably 100 It is a protecting group that is deprotected by heat at a temperature of at least ° C.
  • it is preferably a protective group that is deprotected with heat of 300 ° C.
  • the protecting group is deprotected with the following heat, and more preferably the protecting group is deprotected with a heat of 200 ° C. or less.
  • an ester group represented by the following formula is preferable.
  • R 11 is a hydrocarbon having 1 to 22 carbon atoms.
  • ester group represented by the above formula (9) examples include methoxycarbonyl group, trifluoromethoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, tert- Examples include butoxycarbonyl group, sec-butoxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, 9-fluorenylmethoxycarbonyl group and the like.
  • a structure in which the elimination reaction efficiently proceeds at a baking temperature of 150 ° C. to 300 ° C. when obtaining the liquid crystal alignment film is preferable, and a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group is more preferable.
  • a tert-butoxycarbonyl group is particularly preferred.
  • the compounds of the present invention can include the following structures, but are not limited thereto.
  • the compound of the present invention is a bischlorocarbonyl compound represented by the following formula (3), a tetracarboxylic acid derivative represented by the following formula (5), or a tetracarboxylic dianhydride represented by the following formula (6).
  • a monoamine compound represented by the following formula (4) as a raw material and can be synthesized by various methods. Specific examples include the methods (i) to (iii), but are not limited thereto.
  • the bischlorocarbonyl compound of the above formula (3) is obtained by reacting, for example, a tetracarboxylic dianhydride of the above formula (6) with an alcohol represented by R 5 OH to form a tetracarboxylic acid dialkyl ester, It can be obtained by converting a carboxyl group into a chlorocarbonyl group with an agent.
  • the tetracarboxylic acid derivative of the above formula (5) can be obtained, for example, by reacting the tetracarboxylic dianhydride of the above formula (6) with an alcohol represented by R 5 OH.
  • the monoamine compound of the above formula (4) is obtained by reacting a compound having a primary or secondary amino group represented by the following formula with di-tert-butyl dicarbonate in the presence of a base, or a primary or secondary Although it can be obtained by a method in which a compound having an amino group is reacted with chloroformic acid-9-fluorenylmethyl in the presence of a base, it is not particularly limited as long as it is a known method.
  • the synthesis method of the compound of the present invention includes the following methods (i) to (iii), but is not limited thereto.
  • the compound of the present invention is obtained by reacting the biscarbonyl compound represented by the above formula (3) with the monoamine compound represented by the above formula (4).
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the amount of the base added is preferably 2 to 4 moles relative to the bischlorocarbonyl compound from the viewpoint of easy removal.
  • (Ii) Method of synthesizing from tetracarboxylic acid derivative and monoamine compound
  • the compound of the present invention is obtained by dehydrating condensation of a tetracarboxylic acid derivative represented by the above formula (5) and a monoamine compound represented by the above formula (4).
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the amount of the condensing agent added is preferably 2 to 3 moles compared to the tetracarboxylic acid derivative.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times the mol of the monoamine compound.
  • the compound of the present invention comprises a tetracarboxylic dianhydride represented by the above formula (6) and a monoamine compound represented by the above formula (4). It can be synthesized by reacting. Specifically, the tetracarboxylic dianhydride and the monoamine compound are used in the presence of an organic solvent at ⁇ 20 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. It can be synthesized by reacting.
  • the solvents used in the above reaction are N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide because of the solubility of tetracarboxylic dianhydride, monoamine compound, and product. , Tetrahydrofuran, chloroform, and the like, and N-methyl-2-pyrrolidone, N, N-dimethylformamide, or tetrahydrofuran is preferable, and these may be used alone or in combination.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • R 1 in the above formula (1) is an alkyl group having 1 to 5 carbon atoms
  • various esterifying agents are added to a reaction solution of tetracarboxylic dianhydride and a monoamine compound. And can be synthesized by esterification of the carboxyl group.
  • the tetracarboxylic dianhydride, monoamine compound, and esterifying agent in the presence of an organic solvent at ⁇ 20 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably It can be synthesized by reacting for 1 to 4 hours.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per mole of tetracarboxylic dianhydride.
  • Solvents used in the above reactions (i) to (iii) are N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N— because of the solubility of monomers and products used in the synthesis.
  • Examples thereof include dimethylacetamide, tetrahydrofuran, chloroform, and the like, and N-methyl-2-pyrrolidone, N, N-dimethylformamide, or tetrahydrofuran is preferable, and these may be used alone or in combination.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • the reaction solution obtained by the reactions (i) to (iii) can be used as it is as the composition of the present invention.
  • the compound of the present invention in which R 1 in formula (1) is a hydrogen atom is obtained by the above method (iii)
  • it is a reaction between an acid anhydride and an amine, and therefore reaction by-products and removal are necessary.
  • the compound of the present invention can be precipitated by pouring the reaction solution obtained by the reactions (i) to (iii) above into a poor solvent while thoroughly stirring. Precipitation is carried out several times, washed with a poor solvent, and then purified at room temperature or by heating and drying to obtain a powder of the compound of the present invention.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, etc. are mentioned.
  • purification by various methods is preferable. Examples of the purification method include silica gel column chromatography, recrystallization, and washing with an organic solvent.
  • Recrystallization is more preferable from the viewpoint of simplicity of operation and high purification efficiency.
  • the organic solvent used for recrystallization is an organic solvent which can recrystallize the compound of this invention, it may select the kind and may recrystallize with 2 or more types of mixed solvents.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention is a polymer which has the site
  • the polyimide precursor used in the present invention has a structure represented by the following formula (7).
  • R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • a 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 10, preferably 1 to 5 carbon atoms which may have a substituent.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • the above alkyl group may have a substituent, and may further form a ring structure with the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • a 1 and A 2 have a hydrogen atom or a substituent. More preferred is an alkyl group having 1 to 5 carbon atoms, particularly preferably a hydrogen atom, a methyl group or an ethyl group.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group.
  • Two or more kinds of X 1 may be mixed in the polyimide precursor.
  • X-1 to X-46 which are the same as those exemplified as X, are Can be mentioned.
  • Y 1 is a divalent organic group and is not particularly limited.
  • two or more types of Y 1 may be mixed. Specific examples of Y 1 include the following Y-1 to Y-97.
  • Y 1 is Y-7, Y-10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y- More preferred are diamines of 45, Y-46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98. .
  • a diamine having a long chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in the side chain may be introduced into the polyimide precursor or polyimide.
  • Y 1 is preferably Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86.
  • any pretilt angle can be expressed.
  • examples of the polyimide precursor include polyamic acid esters and polyamic acids.
  • the polyamic acid ester can be obtained by reaction of any of the tetracarboxylic acid derivatives represented by the following formulas (10) to (12) with the diamine compound represented by the formula (13).
  • the polyamic acid ester represented by the above formula (1) can be synthesized by the following methods (1) to (3) using the above monomer.
  • Polyamic acid ester can be synthesized by esterifying polyamic acid obtained from tetracarboxylic dianhydride and diamine.
  • the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours It can be synthesized by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the method (1) or the method (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the weight average molecular weight of the polyamic acid ester is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000.
  • the number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000.
  • the polyamic acid when the polyimide precursor is a polyamic acid, the polyamic acid can be obtained by a reaction between a tetracarboxylic dianhydride represented by the following formula (12) and a diamine compound represented by the formula (13).
  • X 1 , Y 1 , A 1 and A 2 are the same as defined in the above formula (7).
  • tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. It may be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the weight average molecular weight of the polyamic acid is preferably 10,000 to 300,000, more preferably 20,000 to 200,000.
  • the number average molecular weight is preferably 2,500 to 15,000, and more preferably 5,000 to 100,000.
  • the imidization reaction for dehydrating and cyclizing the polyimide precursor is generally thermal imidization or chemical imidation, but chemical imidation in which the imidization reaction proceeds at a relatively low temperature may reduce the molecular weight of the resulting polyimide. Less likely to occur.
  • Chemical imidation can be performed by stirring the polyimide precursor in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the reaction temperature at this time is ⁇ 20 to 250 ° C., preferably 0 to 180 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the polyimide precursor, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the polyimide precursor. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
  • Examples of the basic catalyst used for imidization include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • an organic solvent the solvent used at the time of the polyamic acid polymerization reaction mentioned above can be used.
  • the imidation rate by chemical imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the added catalyst remains in the solution. Therefore, in order to use it for the liquid crystal aligning agent of the present invention, this polyimide solution is put into a poor solvent which is being stirred. It is preferable to use the polyimide after precipitation. Although it does not specifically limit as a poor solvent used for precipitation collection
  • the polyimide precipitated by adding it to a poor solvent can be recovered by filtration, washing and drying at room temperature or under reduced pressure at normal temperature or by heating. By further dissolving the powder in a good solvent and reprecipitating it 2 to 10 times, the polyimide can be purified. When impurities cannot be completely removed by a single precipitation recovery operation, it is preferable to repeat this purification step. Mixing or sequentially using, for example, three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent in the repeated purification step is preferable because the purification efficiency is further increased.
  • poor solvents such as alcohols, ketones, and hydrocarbons
  • the imidation ratio of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited. What is necessary is just to set to arbitrary values in consideration of the solubility of a polyimide.
  • the molecular weight of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but if the molecular weight of the polyimide is too small, the strength of the resulting coating film may be insufficient, and conversely, the molecular weight of the polyimide is too large. And the viscosity of the liquid crystal aligning agent manufactured may become high too much, and the workability
  • the liquid crystal aligning agent of this invention is a form of the solution which said polyimide precursor and / or polyimide melt
  • a polyimide precursor such as polyamic acid ester and / or polyamic acid
  • the resulting reaction solution itself may be used. It may be diluted with a solvent.
  • a polyimide precursor and / or a polyimide is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
  • the content (concentration) of the polyimide precursor and / or polyimide (hereinafter also referred to as polymer) in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the polyimide film to be formed.
  • the polymer content is preferably 0.5% by mass or more with respect to the organic solvent, and preferably 15% by mass or less from the viewpoint of storage stability of the solution. More preferably, it is 1 to 10% by mass.
  • the above-described heat-leaving group-containing compound is added to the liquid crystal aligning agent of the present invention.
  • the thermally desorbable group-containing compound is preferably added in an amount of 0.5 to 50 mol% with respect to 1 unit of the repeating unit of the polyimide precursor and the imidized polymer of the polyimide precursor.
  • the content of the heat-leaving group-containing compound is more preferably 1 to 30 mol%, particularly preferably 5 to 20 mol%. When the content is excessively small, the imidization reaction or crosslinking reaction of the polyimide precursor becomes insufficient, and when it is excessively large, the liquid crystal orientation may be adversely affected. It is not preferable.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these
  • the liquid crystal aligning agent of the present invention may contain various additives such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon.
  • a silane coupling agent is given to the following, it is not limited to this.
  • the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 to 5.0% by weight is preferable, and 0.1 to 1.0% by weight is more preferable.
  • An imidization accelerator may be added to efficiently advance imidization of the polyamic acid ester when the coating film is baked.
  • the liquid crystal aligning agent of the present invention has the purpose of changing the electrical properties such as the polymer other than the polymer and the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a dielectric or conductive material, and further a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal aligning film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation, or without alignment treatment in vertical alignment applications.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or the like can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a prepared substrate from the viewpoint of simplification of the process.
  • an opaque substance such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • the polyimide precursor contained in the liquid crystal aligning agent changes in conversion ratio to polyimide depending on the baking temperature, but the liquid crystal aligning agent does not necessarily need to be 100% imidized.
  • the firing time can be set to an arbitrary time, but if the firing time is too short, display failure may occur due to the influence of the residual solvent. Therefore, the firing time is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
  • the thermally detachable group-containing compound contained in the liquid crystal aligning agent of the present invention decomposes the thermally detachable group, resulting in a highly reactive primary or secondary amine.
  • the generated primary or secondary amine accelerates the imidization reaction of the polyimide precursor and / or the polymer of the polyimide, which is the main component contained in the liquid crystal aligning agent, and brings about a high imidization ratio. This causes a cross-linking reaction and gives a large mechanical strength to the liquid crystal alignment film obtained from the liquid crystal aligning agent. An increase in mechanical strength results in improved rubbing resistance and stability of liquid crystal properties at high temperatures.
  • the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight
  • a liquid crystal aligning agent was spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and baked at a temperature of 230 ° C. for 20 minutes to form an imidized film having a thickness of 100 nm. After this coating film was rubbed, the surface state of the film was observed to evaluate the presence or absence of rubbing scratches, the presence or absence of scraped film, and the presence or absence of film peeling.
  • a liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried for 5 minutes on a hot plate at a temperature of 80 ° C, and baked for 20 minutes in a hot air circulation oven at 230 ° C to form a coating film having a thickness of 100 nm. I let you.
  • the coating surface was rubbed or photo-aligned to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment is antiparallel.
  • the periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
  • the liquid crystal alignment was observed with a polarizing microscope, and the liquid crystal alignment was evaluated according to the following criteria. ⁇ Evaluation criteria> ⁇ : No flow alignment is observed, and no light leakage occurs under crossed Nicols. ⁇ : Some flow alignment is observed, and light leakage is observed under crossed Nicols. X: Flow orientation is observed throughout the cell.
  • the voltage holding ratio of the liquid crystal cell was measured as follows. By applying a voltage of 4 V for 60 ⁇ s and measuring the voltage after 16.67 ms, the fluctuation from the initial value was calculated as the voltage holding ratio. During the measurement, the temperature of the liquid crystal cell was set to 23 ° C., 60 ° C., and 90 ° C., and the measurement was performed at each temperature. [Ion density] The measurement of the ion density of the liquid crystal cell was performed as follows. Measurement was performed using a 6254 type liquid crystal property evaluation apparatus manufactured by Toyo Technica.
  • a triangular wave of 10 V and 0.01 Hz was applied, and an area corresponding to the ion density of the obtained waveform was calculated by a triangle approximation method to obtain an ion density.
  • the temperature of the liquid crystal cell was 23 ° C. and 60 ° C., and the measurement was performed at each temperature.
  • Pretilt angle measurement The pretilt angle of the liquid crystal cell was measured using an AxoScan manufactured by Axometrics.
  • the diamine compound (DA-1) was synthesized by the following four-step route.
  • Second step Synthesis of compound (A6)
  • N-propargylaminoacetic acid t-butyl 12.0 g, 70.9 mmol
  • dichloromethane 600 mL
  • di-t-butyl dicarbonate 15.5 g, A solution of 70.9 mmol
  • dichloromethane 100 mL
  • the reaction solution was brought to room temperature and stirred for 20 hours.
  • the reaction solution was washed with 300 mL of saturated brine and dried over magnesium sulfate.
  • the activated carbon was filtered, the organic solvent was distilled off under reduced pressure, and the remaining oil was dried under reduced pressure to obtain a diamine compound (DA-1).
  • the yield was 19.8 g, and the yield was 96%.
  • the diamine compound (DA-1) was confirmed by 1 H NMR.
  • 1,3-DM 1,3-dimethylcyclobutane-1,2,3,4-tetracarboxylic dianhydride
  • 1,3-DM 1,3-dimethylcyclobutane-1,2,3,4-tetracarboxylic dianhydride
  • -CBDA abbreviated 220 g (0.981 mol)
  • methanol 2200 g 6.87 mol, 10 wt times with respect to 1,3-DM-CBDA
  • the mixture was stirred as it was at 75 ° C. for 1 hour and 30 minutes, and then the solvent was distilled off with an evaporator until the internal volume reached 924.42 g in a water bath at 40 ° C. This was heated to 60 ° C., the crystals precipitated when the solvent was distilled off were dissolved, the insoluble matter was filtered by performing hot filtration at 60 ° C., and then the filtrate was heated to 25 ° C. at a rate of 1 ° C. for 10 minutes. It was cooled with. After stirring for 30 minutes at 25 ° C., the precipitated white crystals were taken out by filtration, and the crystals were washed with 264.21 g of n-heptane. This was dried under reduced pressure to obtain 226.09 g of white crystals.
  • this crystal was found to be compound (3-1), that is, dimethyl-1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate (hereinafter referred to as 1,3 -DM-CBDE-C1) (HPLC relative area 99.5%) (yield 77.2%).
  • 1H NMR (CDCl3, ⁇ ppm): 3.78 (s, 6H), 3.72 (s, 2H), 1.69 (s, 6H).
  • Second step Synthesis of precursor (1-a2)
  • 20.90 g (78.49 mmol) of the precursor (1-a1) was placed, and 200 ml of tetrahydrofuran was added.
  • the reaction vessel was purged with nitrogen
  • 2.09 g of palladium carbon was added and purged with nitrogen.
  • the reaction vessel was purged with hydrogen and stirred at 20 ° C. for 19 hours.
  • palladium carbon was removed by Celite filtration, and the solvent was removed from the filtrate to obtain a white solid.
  • the obtained solid was dissolved in 20 ml of acetic ester, and 140 ml of hexane was added for recrystallization.
  • This monoamine solution was transferred to a dropping funnel, and the monoamine solution was dropped into a four-necked flask over 15 minutes. After dropping, the mixture was stirred for 20 hours. After 20 hours, the reaction solution was poured into 200 ml of water, and extracted with 100 ml of chloroform. The obtained organic layer was washed twice with pure water and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a white solid. The obtained solid was dissolved in 30 ml of tetrahydrofuran, and recrystallized by adding 100 ml of diisopropyl ether. The precipitated solid was collected by suction filtration and dried under reduced pressure.
  • First step synthesis of precursor (1-b1)
  • 4-bromonitrobenzene 8.95 g (44.30 mmol) of 4-bromonitrobenzene, 0.311 g (0.44 mmol) of bis (triphenylphosphine) palladium (II) dichloride, and 0.1% of copper iodide were added.
  • 169 g (0.89 mmol) and 5.38 g (53.16 mmol) of triethylamine were added, 30 ml of tetrahydrofuran was added, and the mixture was stirred at room temperature (20 ° C.) for 10 minutes.
  • Second step Synthesis of precursor (1-c2) Add 40.00 g (0.168 mol) of precursor (1-c1) and 32.86 g (0.238 mol) of potassium carbonate to a 1 L four-necked flask, add 481 g of DMF, and heat and stir at 60 ° C. for 7 hours. did. After 7 hours, the obtained reaction solution was poured into 3 L of pure water with stirring, and 1 L of acetate was added for extraction. The obtained organic layer was washed twice with pure water with 500 ml of 1M aqueous sodium hydroxide solution and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a yellow solid.
  • the obtained solid was dissolved in 200 ml of acetic ester, and 1 L of hexane was added with stirring to precipitate a solid.
  • the obtained solid was collected by suction filtration and dried under reduced pressure.
  • the yellow solid obtained from 1 HNMR was confirmed to be the precursor (1-c2).
  • the yield was 35.49 g, and the yield was 71.3%.
  • the obtained reaction solution was poured into 1800 g of water with stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 1800 g of water, once with 1800 g of ethanol, and three times with 540 g of ethanol.
  • a white solid was obtained.
  • the obtained white solid was dissolved in ethyl acetate, and hexane was added for recrystallization.
  • the precipitated solid was collected by suction filtration and dried under reduced pressure.
  • the yellow solid obtained from 1 HNMR was confirmed to be the precursor (1-c).
  • the yield was 15.23 g, and the yield was 84.4%.
  • Example 4 Synthesis of Compound (1-d) A 300 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, and 1.87 g (6.63 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid and 1.10 g (13.9 mmol) of pyridine were added thereto. Was added and heated to reflux. To this solution, 1.54 g (12.9 mmol) of thionyl chloride was added and heated under reflux for 1 hour. After 1 hour, 3.13 g (19.56 mmol) of the precursor (1-a2) was added to the reaction solution, and the mixture was further heated to reflux for 2 hours.
  • the obtained reaction solution was poured into 500 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 500 g of water, once with 500 g of methanol, and three times with 240 g of methanol.
  • a white solid was obtained.
  • the obtained white solid was put into a 200 ml eggplant type flask, 100 ml of ethyl acetate was added, and the mixture was heated and stirred. The remaining solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained from 1 HNMR was the compound (1-d). The yield was 1.97 g, and the yield was 41.4%.
  • Example 5 Synthesis of Compound (1-j) A 30 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 1.04 g (4.42 mmol) of the precursor (1-a2) was added, 20 g of NMP, and 0.58 g (7.43 mmol) of pyridine as a base were added and stirred. And dissolved. Next, while stirring this monoamine solution, 0.658 g (2.22 mol) of CBDE-Cl was added and reacted for 2 hours under water cooling.
  • the obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 200 g of water, once with 200 g of ethanol, and three times with 100 g of ethanol.
  • a white solid was obtained.
  • the obtained white solid was put into a 50 ml eggplant type flask, 30 ml of ethyl acetate was added, and the mixture was heated and stirred at 80 ° C. for 30 minutes. After 30 minutes, the remaining solid was filtered off with suction and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-j). The yield was 0.42 g, and the yield was 27.3%.
  • Example 6 Synthesis of Compound (1-k) A 30 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 1.06 g (3.99 mmol) of the precursor (1-c3) was added, 20 g of NMP, and 0.58 g (7.43 mmol) of pyridine as a base were added and stirred. And dissolved. Next, while stirring this monoamine solution, 0.658 g (1.99 mol) of CBDE-Cl was added and reacted for 2 hours under water cooling.
  • the obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 200 g of water, once with 200 g of ethanol, and three times with 100 g of ethanol.
  • a white solid was obtained.
  • the obtained white solid was put into a 50 ml eggplant type flask, 30 ml of ethyl acetate was added, and the mixture was heated and stirred at 80 ° C. for 30 minutes. After 30 minutes, the remaining solid was filtered off with suction and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-k). The yield was 0.58 g, and the yield was 38.4%.
  • Example 7 Synthesis of Compound (1-i) A 50 ml two-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 0.62 g (2.20 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid and 0.38 g (4.80 mmol) of pyridine were added, and dehydrated tetrahydrofuran was added. 20 ml was added and heated to reflux. To this solution, 0.55 g (4.62 mmol) of thionyl chloride was added and heated to reflux for 1 hour. After 1 hour, 1.23 g (4.62 mmol) of the precursor (1-c3) was added to the reaction solution, and the mixture was further heated to reflux for 2 hours.
  • the obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 100 g of water, once with 100 g of ethanol, and three times with 50 g of ethanol. To obtain a pale yellow solid.
  • the obtained pale yellow solid was put into a 50 ml eggplant type flask, 20 ml of ethyl acetate was added, and the mixture was heated and stirred. The remaining solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained from 1 HNMR was the compound (1-i). The yield was 0.57 g, and the yield was 33.1%.
  • Example 8 Preparation of a solution containing compound (1-e) 2.37 g (10.03 mmol) of the precursor (1-a2) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 9.40 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 0.98 g (5.00 mmol) of CBDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to obtain the compound (1-e). A containing solution was obtained.
  • Example 9 Preparation of Compound (1-f) -Containing Solution 2.37 g (10.03 mmol) of the precursor (1-a2) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 9.62 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.09 g (5.00 mmol) of PMDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-f). A containing solution was obtained.
  • Example 10 Preparation of Compound (1-g) -Containing Solution 2.66 g (9.99 mmol) of the precursor (1-c3) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 10.19 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.09 g (5.00 mmol) of CBDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-g). A containing solution was obtained.
  • Example 11 Preparation of Compound (1-h) -Containing Solution 3.99 g (15.0 mmol) of the precursor (1-c3) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 16.91 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.64 g (7.52 mmol) of PMDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-h) A containing solution was obtained.
  • Example 12 In a 100 ml Erlenmeyer flask, 44.3382 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 3 was added, and then 19.6930 g of GBL and 16.0839 g of BCS were added, and a diluted polyamic acid ester solution was added. Obtained. In a 20 ml sample tube containing a stir bar, 5.02 g of the above solution was added, and then 0.0645 g of the compound (1-a) obtained in Example 1 (0.005 g per mol of the polyamic acid ester repeating unit). 1 mol equivalent) was added, and the mixture was stirred at room temperature for 30 minutes to completely dissolve the compound (1-a) to obtain a liquid crystal aligning agent (A1-1).
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 3
  • Example 13 The same procedure as in Example 12 except that 0.1 mol equivalent of the compound (1-c) obtained in Example 3 was used in place of compound (1-a) with respect to 1 mol of the polyamic acid ester repeating unit. Thus, a liquid crystal aligning agent (A1-2) was obtained.
  • Example 14 instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was added in an amount of 0.1 molar equivalent with respect to 1 mole of the polyamic acid ester repeating unit of the compound (1-e).
  • a liquid crystal aligning agent (A1-3) was obtained in the same manner as in Example 12 except that it was added so that
  • Example 15 instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was added in an amount of 0.1 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-f).
  • a liquid crystal aligning agent (A1-4) was obtained in the same manner as in Example 12 except that it was added so that
  • Example 16 instead of the compound (1-a), the compound (1-g) -containing solution obtained in Example 10 was added in an amount of 0.1 molar equivalent relative to 1 mole of the polyamic acid ester repeating unit of the compound (1-g).
  • a liquid crystal aligning agent (A1-5) was obtained in the same manner as in Example 12 except that it was added so that
  • Example 17 instead of the compound (1-a), the compound (1-h) -containing solution obtained in Example 11 was added in an amount of 0.1 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-h).
  • a liquid crystal aligning agent (A1-6) was obtained in the same manner as in Example 12 except that it was added so that
  • Example 18 Into a 20-ml sample tube containing a stir bar, 4.4560 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 4 was added, and then 1.8437 g of NMP and 1.5021 g of BCS were added, and further implementation was performed. Add 0.1023 g of compound (1-a) obtained in Example 1 (0.2 molar equivalent to 1 mol of polyamic acid ester repeating unit) and stir at room temperature for 30 minutes to give compound (1-a). By completely dissolving, a liquid crystal aligning agent (A2-1) was obtained.
  • PAE-2 polyamic acid ester solution obtained in Synthesis Example 4
  • Example 19 The same procedure as in Example 18 except that 0.2 mol equivalent of the compound (1-d) obtained in Example 4 was used in place of compound (1-a) with respect to 1 mol of the polyamic acid ester repeating unit. Thus, a liquid crystal aligning agent (A2-2) was obtained.
  • Example 20 instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was added in an amount of 0.2 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-e).
  • a liquid crystal aligning agent (A2-3) was obtained in the same manner as in Example 18 except that it was added so that
  • Example 21 instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was added in an amount of 0.2 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-f).
  • a liquid crystal aligning agent (A2-4) was obtained in the same manner as in Example 18 except that it was added so that
  • Example 22 Into a 20 ml sample tube containing a stir bar, 4.4156 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 5 was added, and then 1.3409 g of NMP and 1.4426 g of BCS were added. The compound (1-a) obtained in 1 was added in an amount of 0.2113 g (0.2 molar equivalent based on 1 mol of the polyamic acid repeating unit) and stirred at room temperature for 30 minutes to completely dissolve the compound (1-a). By dissolving, a liquid crystal aligning agent (A3-1) was obtained.
  • PAA-1 polyamic acid solution obtained in Synthesis Example 5
  • Example 23 instead of compound (1-a), compound (1-d) obtained in Example 4 was used in the same manner as in Example 22 except that 0.2 molar equivalent was used per 1 mol of the polyamic acid repeating unit. As a result, a liquid crystal aligning agent (A3-2) was obtained.
  • Example 24 instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was prepared so that the compound (1-e) was 0.2 molar equivalent with respect to 1 mole of the polyamic acid repeating unit.
  • a liquid crystal aligning agent (A3-3) was obtained in the same manner as in Example 22 except that it was added as described above.
  • Example 25 instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was used in such a manner that the compound (1-f) was 0.2 molar equivalent with respect to 1 mol of the polyamic acid repeating unit.
  • a liquid crystal aligning agent (A3-4) was obtained in the same manner as in Example 22 except that it was added as described above.
  • Example 26 The liquid crystal aligning agent (A1-1) obtained in Example 12 was filtered through a 1.0 ⁇ m membrane filter, spin-coated on a glass substrate, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and then 230 The film was baked at 10 ° C. for 10 minutes to obtain an imidized film having a thickness of 100 nm. This coating film was shaved off and the FT-IR spectrum was measured by the ATR method to calculate the imidization rate. The results are shown in Table 1.
  • Example 27 to 31 Using the liquid crystal aligning agents (A1-2) to (A1-6) obtained in Examples 13 to 17, an imidized film was produced in the same manner as in Example 26, and an FT-IR spectrum was measured. The imidization rate was calculated. The results are shown in Table 1.
  • Comparative Example 6 Using the liquid crystal aligning agent (B1-1) obtained in Comparative Example 1, an imidized film was produced in the same manner as in Example 26, and an FT-IR spectrum was measured to calculate an imidization ratio. The results are shown in Table 1.
  • Example 32 The liquid crystal aligning agent (A2-1) obtained in Example 18 was filtered through a 1.0 ⁇ m membrane filter, spin-coated on a glass substrate, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, then 20 The film was baked at 10 ° C. for 10 minutes to obtain an imidized film having a thickness of 100 nm. This coating film was shaved off and the FT-IR spectrum was measured by the ATR method to calculate the imidization rate. The results are shown in Table 2.
  • Example 33 to 35 Using the liquid crystal aligning agents (A2-2) to (A2-4) of the present invention obtained in Examples 19 to 21, imidized films were prepared in the same manner as in Example 32, and FT-IR spectra were measured. And the imidization ratio was calculated. The results are shown in Table 2.
  • Example 36 The liquid crystal aligning agent (A3-1) obtained in Example 22 was filtered through a 1.0 ⁇ m membrane filter, spin-coated on a glass substrate with a transparent electrode, and placed on a hot plate at a temperature of 80 ° C. for 5 minutes. After being dried, the film was baked at 230 ° C. for 20 minutes to obtain an imidized film having a film thickness of 100 nm. The polyimide film was rubbed with a rayon cloth (roll diameter: 120 mm, rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation amount: 0.4 mm), and then the surface state of the polyimide film was observed. No debris or peeling of the polyimide film was observed.
  • Example 37 A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
  • Example 38 A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-3) obtained in Example 24 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
  • Example 39 A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-4) obtained in Example 25 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
  • Comparative Example 9 A polyimide film was prepared and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. When the surface state of the polyimide film was observed, scratches due to rubbing and scraped scraps of the polyimide film were observed.
  • Example 10 A polyimide film was prepared and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (B3-2) obtained in Comparative Example 5 was used. When the surface state of the polyimide film was observed, scratches due to rubbing and scraped scraps of the polyimide film were observed. From the results of Examples 36 to 39 and Comparative Example 9, it is possible to obtain an imidized film excellent in mechanical strength that is hard to be damaged by rubbing by applying and baking a polyamic acid solution to which the compound of the present invention is added. confirmed. In addition, the results of Examples 38 and 39 and Comparative Example 10 confirm that the reaction product of tetracarboxylic dianhydride and precursor (1-a2) improves the mechanical strength of the resulting imidized film. It was done.
  • Example 40 The liquid crystal aligning agent (A2-1) obtained in Example 18 was filtered through a 1.0 ⁇ m membrane filter, spin-coated on a glass substrate with a transparent electrode, and dried for 5 minutes on a hot plate at a temperature of 80 ° C. After the baking for 20 minutes at a temperature of 230 ° C., an imidized film having a film thickness of 100 nm was formed.
  • This coating film is rubbed with a rayon cloth (roll diameter: 120 mm, rotation speed: 300 rpm, moving speed: 20 mm / sec, indentation amount: 0.4 mm), cleaned by irradiating with ultrasonic waves in pure water for 1 minute, and air blown After removing the water droplets at, the substrate was dried at 80 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the rubbing directions of the two substrates are antiparallel, The periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the liquid crystal cell with the injection port sealed was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. Went. The results are shown in Tables 3 and 4 below.
  • Example 41 A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A2-2) obtained in Example 19 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4 below.
  • Example 42 A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A3-1) obtained in Example 22 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
  • Example 43 A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
  • Example 11 A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (B2-1) obtained in Comparative Example 2 was used and the firing time was 1 hour. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
  • Example 12 A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
  • Example 44 The liquid crystal aligning agent (A3-1) obtained in Example 22 was filtered through a 1.0 ⁇ m membrane filter, spin-coated on a glass substrate with a transparent electrode, and dried for 5 minutes on a hot plate at a temperature of 80 ° C. After the baking for 20 minutes at a temperature of 230 ° C., an imidized film having a film thickness of 100 nm was formed. The coating surface was irradiated with 1 J / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • Example 45 A liquid crystal cell was produced in the same manner as in Example 44 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Table 5.
  • Example 13 A liquid crystal cell was produced in the same manner as in Example 44 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Table 5.
  • the mechanical strength is large, the resistance to rubbing treatment is excellent, and the liquid crystal alignment property, in particular, the electrical characteristics such as voltage holding ratio and ion density at high temperature, A highly reliable liquid crystal alignment film giving a high pretilt angle can be formed.
  • the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a liquid crystal aligning agent which is capable of providing a liquid crystal alignment film that has high mechanical strength and thus exhibits excellent resistance to rubbing. The liquid crystal alignment film is highly reliable and has excellent liquid crystal aligning properties and excellent electrical characteristics such as voltage holding ratio at high temperatures and ion density, while giving a large pretilt angle. Specifically disclosed is a liquid crystal aligning agent which is characterized by containing: a polyimide precursor that is obtained by causing a diamine compound and a tetracarboxylic acid derivative to react with each other and/or a polyimide that is obtained by imidizing the polyimide precursor; and a compound that contains an amino group protected by a thermally cleavable group, which is substituted by hydrogen when heated at 80-300˚C, and has an amic acid or amic acid ester structure.

Description

熱脱離性基含有化合物を含有する液晶配向剤、及び液晶配向膜LIQUID CRYSTAL ALIGNING AGENT CONTAINING THERMALLEELABLE GROUP-CONTAINING COMPOUND, AND LIQUID CRYSTAL Alignment Film
 本発明は、機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜を形成できる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び液晶表示素子に関する。 The present invention has high mechanical strength, excellent resistance to rubbing treatment, liquid crystal orientation, particularly excellent electrical characteristics such as voltage holding ratio and ion density at high temperature, and a reliability that provides a high pretilt angle. The present invention relates to a liquid crystal aligning agent that can form a liquid crystal aligning film having high properties, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. Conventionally, as the liquid crystal alignment film, a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
 液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。 As liquid crystal display elements have become higher in definition, liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon. Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
 ポリイミド系の液晶配向剤においては、上記のような要求にこたえるために、種々の提案がなされてきている。例えば、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤(特許文献1参照)、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤(特許文献2参照)などが提案されている。 Various proposals have been made for polyimide-based liquid crystal aligning agents in order to meet the above requirements. For example, in addition to polyamic acid and imide group-containing polyamic acid, a liquid crystal aligning agent containing a tertiary amine having a specific structure (see Patent Document 1), a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material A liquid crystal aligning agent (see Patent Document 2) has been proposed.
 また、ポリアミド酸やそのイミド化重合体などに加えて、分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物、及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤(特許文献3参照)、特定構造のテトラカルボン酸二無水物とシクロブタンを有するテトラカルボン酸二無水物と特定のジアミン化合物から得られるポリアミド酸やそのイミド化重合体を含有する液晶配向剤(特許文献4参照)が知られている。 Further, in addition to polyamic acid and its imidized polymer, etc., a compound containing one carboxylic acid group in the molecule, a compound containing one carboxylic anhydride group in the molecule, and 1 in the molecule A liquid crystal aligning agent containing a very small amount of a compound selected from compounds containing three tertiary amino groups (see Patent Document 3), a tetracarboxylic dianhydride having a specific structure and a tetracarboxylic dianhydride having cyclobutane A liquid crystal aligning agent containing a polyamic acid obtained from the diamine compound or an imidized polymer thereof (see Patent Document 4) is known.
 さらに、ポリアミド酸又はポリイミドとともに、特定構造を有するイミド基含有モノマー又はアミック酸部位含有モノマーを添加含有する液晶配向剤(特許文献5参照)、ポリアミック酸及びポリアミック酸のイミド化重合体から選ばれる少なくとも1種の重合体と、アミック酸化合物及びイミド化合物から選ばれる少なくとも1種類の化合物を含有する液晶配向剤(特許文献6参照)が提案されている。 Further, at least selected from a liquid crystal aligning agent (see Patent Document 5) containing an imide group-containing monomer having a specific structure or an amic acid site-containing monomer, together with polyamic acid or polyimide, polyamic acid and an imidized polymer of polyamic acid. A liquid crystal aligning agent (see Patent Document 6) containing one kind of polymer and at least one compound selected from an amic acid compound and an imide compound has been proposed.
特開平9-316200号公報JP-A-9-316200 特開平10-104633号公報JP-A-10-104633 特開平8-76128号公報JP-A-8-76128 特開平9-138414号公報Japanese Patent Laid-Open No. 9-138414 特開平6-110061号公報JP-A-6-110061 特開平9-269491号公報Japanese Patent Laid-Open No. 9-269491
 しかし、近年では、さらに大画面で高精細の液晶テレビが主体となり、液晶表示素子に対する要求はますます厳しくなるのに伴い、液晶表示素子の特性に密接に関係する液晶配向膜に対してもより優れた高信頼性の特性が要求され、さらなる高特性が求められるとともに、初期特性が良好なだけでなく、高温下に長時間曝された後であっても、良好な特性を維持する高信頼性が求められている。 However, in recent years, LCD TVs with larger screens and high-definition have become the main, and the demand for liquid crystal display elements has become more stringent, and even for liquid crystal alignment films that are closely related to the characteristics of liquid crystal display elements. Excellent high-reliability characteristics are required, and even higher characteristics are required. Not only the initial characteristics are good, but also high reliability that maintains good characteristics even after long-term exposure to high temperatures. Sex is required.
 本発明は、得られる液晶配向膜の機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜を形成できる液晶配向剤を提供することを目的とする。 The present invention provides a liquid crystal alignment film having a large mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, particularly electrical characteristics such as voltage holding ratio and ion density at high temperatures, An object of the present invention is to provide a liquid crystal aligning agent capable of forming a highly reliable liquid crystal aligning film that gives a high pretilt angle.
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、従来の液晶配向剤の成分である、ジアミン化合物とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体、及び/又は該ポリイミド前駆体をイミド化したポリイミドに加えて、加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有し、かつアミック酸若しくはアミック酸エステル構造を有する化合物(以下、熱脱離性基含有化合物ともいう。)を含有せしめた液晶配向剤により上記の目的を達成し得ることを見出した。 The present inventor has intensively studied to achieve the above object, and as a result, a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative, which are components of a conventional liquid crystal aligning agent, and / or Or a compound having an amino group protected by a heat-releasable group that replaces hydrogen by heating and having an amic acid or an amic acid ester structure (hereinafter referred to as “thermal desorption”). It was also found that the above-mentioned object can be achieved by a liquid crystal aligning agent containing a release group-containing compound.
 かかる液晶配向剤中に添加される加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有し、かつアミック酸若しくはアミック酸エステル構造を有する化合物(以下、熱脱離性基含有化合物ともいう。)は、本願出願前に文献未載の新規化合物であるが、かかる熱脱離性基含有化合物を液晶配向剤中に添加した場合、膜の機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜を形成できることが見出された。 A compound having an amino group protected by a heat-releasable group that replaces hydrogen by heating added to the liquid crystal aligning agent and having an amic acid or amic acid ester structure (hereinafter referred to as a heat-releasable group-containing compound) Is a novel compound not yet published in the literature before the filing of the present application, but when such a heat-releasable group-containing compound is added to the liquid crystal aligning agent, the film has high mechanical strength and resistance to rubbing treatment. It was found that a liquid crystal alignment film having excellent reliability and excellent electrical properties such as liquid crystal alignment properties, in particular, voltage holding ratio and ion density at high temperatures, and giving a high pretilt angle can be formed. .
 かくして、本発明は、下記を要旨とするものである。
1.ジアミン化合物とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体、及び/又は該ポリイミド前駆体をイミド化したポリイミドと、80~300℃の加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するアミック酸若しくはアミック酸エステル構造を有する化合物を含有することを特徴とする液晶配向剤。
2.前記ポリイミド前駆体が、下記の式(7)で表わされる繰り返し単位を有する上記1に記載の液晶配向剤。
Thus, the present invention has the following gist.
1. Protected by a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative, and / or a polyimide imidized with the polyimide precursor, and a thermally desorbable group that replaces hydrogen by heating at 80 to 300 ° C. A liquid crystal aligning agent comprising a compound having an amino group-containing amic acid or amic acid ester structure.
2. 2. The liquid crystal aligning agent according to 1 above, wherein the polyimide precursor has a repeating unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000014
(式中Xは4価の有機基であり、Yは2価の有機基であり、Rは、水素原子又は炭素数1~5のアルキル基である。A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
3.前記ポリイミド前駆体及び前記ポリイミドが、それらの合計量で液晶配向剤中0.5~15質量%含有され、加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するアミック酸若しくはアミック酸エステル構造を有する化合物が、上記式(7)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の繰り返し単位1ユニットに対して、0.5~50モル%含有される上記1又は2に記載の液晶配向剤。
4.前記アミック酸若しくはアミック酸エステル構造を有する化合物が、下記式(1)で表される化合物である、上記1~3のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, and R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 and A 2 are respectively Independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
3. The polyimide precursor and the polyimide are contained in a total amount of 0.5 to 15% by mass in the liquid crystal aligning agent, and an amic acid or an amic acid having an amino group protected by a thermally detachable group that replaces hydrogen by heating. The compound having an acid ester structure is 0.5 to 50 mol% based on one unit of the polyimide precursor having a repeating unit represented by the above formula (7) and the repeating unit of the imidized polymer of the polyimide precursor. The liquid crystal aligning agent of said 1 or 2 contained.
4). 4. The liquid crystal aligning agent according to any one of 1 to 3, wherein the compound having an amic acid or an amic acid ester structure is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000015
(式中、Xは4価の有機基であり、Rは水素原子、又は炭素数1~5のアルキル基であり、Zは下記式(2)で表される構造である。)
Figure JPOXMLDOC01-appb-C000015
(Wherein X is a tetravalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z is a structure represented by the following formula (2).)
Figure JPOXMLDOC01-appb-C000016
(式中、Zは単結合、又は炭素数1~30の2価の有機基である。R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基若しくはそれらの組み合わせであり、環構造を形成してもよい。Rは水素原子又は置換基を有してもよい炭素数1~30のアルキル基である。Dは熱脱離性基である。)
5.前記熱脱離性基がtert-ブトキシカルボニル基又は9-フルオレニルメトキシカルボニル基である上記1~4のいずれかに記載の液晶配向剤。
6.前記Xが下記式で表される構造からなる群から選ばれるいずれかである上記1~5のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000016
(In the formula, Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent. An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms. D 1 is a thermally leaving group.)
5. 5. The liquid crystal aligning agent according to any one of 1 to 4 above, wherein the thermally leaving group is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
6). 6. The liquid crystal aligning agent according to any one of 1 to 5, wherein X is any one selected from the group consisting of a structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000017
7.上記1~6のいずれかに記載の液晶配向剤を塗布、焼成して得られる膜を配向処理した液晶配向膜。
8.前記配向処理が、ラビング処理、又は偏光された放射線の照射処理である上記7に記載の液晶配向膜。
9.上記7又は8に記載の液晶配向膜を具備する液晶表示素子。
10.下記式(1)で表されるアミック酸若しくはアミック酸エステル構造を有する化合物。
Figure JPOXMLDOC01-appb-C000017
7). 7. A liquid crystal alignment film obtained by aligning a film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 6 above.
8). 8. The liquid crystal alignment film as described in 7 above, wherein the alignment treatment is rubbing treatment or irradiation treatment with polarized radiation.
9. 9. A liquid crystal display device comprising the liquid crystal alignment film according to 7 or 8 above.
10. The compound which has an amic acid or an amic acid ester structure represented by following formula (1).
Figure JPOXMLDOC01-appb-C000018
(式中、Xは4価の有機基、Rは水素原子、又は炭素数1~5のアルキル基であり、Zは下記式(2)で表される構造である。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, X is a tetravalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z is a structure represented by the following formula (2).)
Figure JPOXMLDOC01-appb-C000019
(式中、Zは単結合、又は炭素数1~30の2価の有機基である。R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基若しくはそれらの組み合わせであり、環構造を形成してもよい。Rは水素原子又は置換基を有してもよい炭素数1~30のアルキル基である。Dは熱脱離性基である。)
11.下記式(3)で表されるビスクロロカルボニル化合物と下記式(4)で表されるモノアミン化合物とを塩基存在下に、(クロロカルボニル化合物/モノアミン)のモル比が1/2~1/3で反応させて得られる上記10に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
(In the formula, Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent. An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms. D 1 is a thermally leaving group.)
11. In the presence of a base, a bischlorocarbonyl compound represented by the following formula (3) and a monoamine compound represented by the following formula (4) have a molar ratio of (chlorocarbonyl compound / monoamine) of 1/2 to 1/3. 11. The compound according to the above 10, obtained by reacting with
Figure JPOXMLDOC01-appb-C000020
(式中、X、Z、R、R、R、及びDは上記式(1)及び(2)のものと同様の定義であり、Rは炭素数1~5のアルキル基である。)
12.下記式(5)で表されるテトラカルボン酸誘導体と上記式(4)で表されるモノアミン化合物とを縮合剤の存在下に、(テトラカルボン酸誘導体/モノアミン)のモル比が1/2~1/3で反応させて得られる上記10に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
(In the formula, X, Z 1 , R 2 , R 3 , R 4 , and D 1 have the same definitions as those in the above formulas (1) and (2), and R 5 is alkyl having 1 to 5 carbon atoms. Group.)
12 In the presence of a condensing agent, a tetracarboxylic acid derivative represented by the following formula (5) and a monoamine compound represented by the above formula (4) have a molar ratio of (tetracarboxylic acid derivative / monoamine) of 1/2 to 11. The compound according to the above 10, obtained by reacting at 1/3.
Figure JPOXMLDOC01-appb-C000021
(式中、X及びRは上記式(1)及び(3)の定義と同じである。)
13.下記式(6)で表されるテトラカルボン酸二無水物と上記式(4)で表されるモノアミン化合物を(テトラカルボン酸二無水物/モノアミン)のモル比が1/2~1/3で反応させて得られる上記10に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
(In the formula, X and R 5 are the same as defined in the above formulas (1) and (3).)
13. A tetracarboxylic dianhydride represented by the following formula (6) and a monoamine compound represented by the above formula (4) have a molar ratio of (tetracarboxylic dianhydride / monoamine) of 1/2 to 1/3. 11. The compound according to the above 10, obtained by reacting.
Figure JPOXMLDOC01-appb-C000022
(式中、Xは上記式(1)のものと同様の定義である。)
14.上記式(6)で表されるテトラカルボン酸二水物と上記式(4)で表されるモノアミン化合物とを(テトラカルボン酸二無水物/モノアミン)のモル比が1/2~1/3で反応させて、さらにエステル化剤でカルボキシル基をエステル化することで得られる上記10に記載の化合物。
15.上記Xが、下記式で表される構造からなる群から選ばれるいずれかである上記10~14のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000022
(Wherein X has the same definition as in formula (1) above)
14 The tetracarboxylic acid dihydrate represented by the above formula (6) and the monoamine compound represented by the above formula (4) have a molar ratio of (tetracarboxylic dianhydride / monoamine) of 1/2 to 1/3. The compound of said 10 obtained by making it react by further esterifying a carboxyl group with an esterifying agent.
15. 15. The compound according to any one of the above 10 to 14, wherein X is any one selected from the group consisting of structures represented by the following formulae.
Figure JPOXMLDOC01-appb-C000023
16.上記Rが炭素数1~5のアルキル基である上記10~15のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000023
16. 16. The compound according to any one of 10 to 15 above, wherein R 1 is an alkyl group having 1 to 5 carbon atoms.
 本発明によれば、得られる液晶配向膜の機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜を形成できる液晶配向剤が提供される。 According to the present invention, the obtained liquid crystal alignment film has high mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, in particular, electrical characteristics such as voltage holding ratio and ion density at high temperatures, In addition, a liquid crystal alignment agent capable of forming a highly reliable liquid crystal alignment film giving a high pretilt angle is provided.
 本発明の液晶配向剤は、上記の優れた特性の液晶配向膜を形成できるとともに、液晶配向剤を使用する前に保存する場合の長期にわたる保存安定性にも優れている。 The liquid crystal aligning agent of the present invention can form a liquid crystal aligning film having the above-mentioned excellent characteristics and is excellent in long-term storage stability when stored before using the liquid crystal aligning agent.
 また、本発明の液晶配向剤中に含有される熱脱離性基により保護されたアミノ基を有し、かつアミック酸若しくはアミック酸エステル構造を有する化合物は新規化合物であり、かかる新規化合物も提供される。 Further, a compound having an amino group protected by a thermally desorbable group contained in the liquid crystal aligning agent of the present invention and having an amic acid or an amic acid ester structure is a novel compound, and such a novel compound is also provided. Is done.
 本発明の液晶配向剤が何故に上記のごとき優れた特性を有するかのメカニズムについては、必ずしも明らかではないが、ほぼ次のように推定される。 The mechanism of why the liquid crystal aligning agent of the present invention has excellent characteristics as described above is not necessarily clear, but is estimated as follows.
 本発明の液晶配向剤に含有される熱脱離性基含有化合物は、液晶配向剤を基板表面に塗布し、焼成し液晶配向膜を形成する場合、その焼成する過程における温度において熱脱離性基が分解し、反応性の高い1級又は2級アミンが発生する。この発生した1級又は2級アミンは、液晶配向剤に含有される主成分である、ポリイミド前駆体及び/又はポリイミドのポリマーのイミド化反応を促進し、高イミド化率をもたらすとともに、ポリマー間に架橋反応をもたらし、液晶配向剤から得られる液晶配向膜に対して大きい機械的強度を与える。機械的強度の増大は、ラビング耐性の向上、高温時の液晶特性の安定性をもたらす。 The thermally desorbable group-containing compound contained in the liquid crystal aligning agent of the present invention has a heat desorbing property at a temperature during the firing process when the liquid crystal aligning agent is applied to the substrate surface and baked to form a liquid crystal alignment film. The group is decomposed and a highly reactive primary or secondary amine is generated. The generated primary or secondary amine accelerates the imidization reaction of the polyimide precursor and / or the polymer of the polyimide, which is the main component contained in the liquid crystal aligning agent, and brings about a high imidization ratio. This causes a cross-linking reaction and gives a large mechanical strength to the liquid crystal alignment film obtained from the liquid crystal aligning agent. The increase in mechanical strength results in improved rubbing resistance and stability of liquid crystal characteristics at high temperatures.
 また、熱脱離性基含有化合物は、その有する骨格構造が、液晶配向剤に含有される主成分であるポリイミド前駆体及び/又はポリイミドのポリマーと同じアミック酸若しくはアミック酸エステル構造を有するので、これを液晶配向剤中に添加した場合、液晶配向性を阻害するどころか、逆に液晶配向性の向上をもたらし、その結果、電圧保持率、イオン密度、プレチルト角などの液晶特性を向上させる。
 さらに、熱脱離性基含有化合物は、高温が負荷されるまでは、該化合物の有する熱脱離性基は分解することはないので、これを含む液晶配向剤の保存安定性になんらの悪影響を与えることはない。
In addition, the thermally detachable group-containing compound has the same amic acid or amic acid ester structure as the polyimide precursor and / or polyimide polymer, which is the main component contained in the liquid crystal aligning agent, When this is added to the liquid crystal aligning agent, the liquid crystal alignment is improved rather than inhibiting the liquid crystal alignment, and as a result, the liquid crystal characteristics such as voltage holding ratio, ion density, and pretilt angle are improved.
Furthermore, since the thermally detachable group-containing compound does not decompose until a high temperature is applied, it has no adverse effect on the storage stability of the liquid crystal aligning agent containing the compound. Never give.
 本発明によれば、得られる液晶配向膜の機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜を形成できる液晶配向剤が提供される。 According to the present invention, the obtained liquid crystal alignment film has high mechanical strength, excellent resistance to rubbing treatment, and excellent liquid crystal alignment properties, in particular, electrical characteristics such as voltage holding ratio and ion density at high temperatures, In addition, a liquid crystal alignment agent capable of forming a highly reliable liquid crystal alignment film giving a high pretilt angle is provided.
<熱脱離性基含有化合物>
 本発明において液晶配向剤に添加される熱脱離性基含有化合物は、熱脱離性基により保護されたアミノ基を有し、かつアミック酸若しくはアミック酸エステル構造を有する化合物であり、該化合物は、温度が80~300℃、好ましくは100~250℃、特に好ましくは150~230℃にて、熱脱離性基が分解し、水素原子に置き換わる。このため、液晶配向剤が液晶表示素子の基板に塗布され、焼成される際の通常の温度である150~300℃にて熱脱離性基が脱離し、水素に置換されることになる。
<Heat-leaving group-containing compound>
The thermally detachable group-containing compound added to the liquid crystal aligning agent in the present invention is a compound having an amino group protected by a thermally detachable group and having an amic acid or an amic acid ester structure, When the temperature is 80 to 300 ° C., preferably 100 to 250 ° C., particularly preferably 150 to 230 ° C., the thermally desorbable group is decomposed and replaced with a hydrogen atom. For this reason, the liquid crystal aligning agent is applied to the substrate of the liquid crystal display element, and the thermally desorbable group is desorbed and replaced with hydrogen at a normal temperature of 150 to 300 ° C. when firing.
 本発明において使用される熱脱離性基含有化合物は好ましくは下記の一般式(1)で表わされる。 The thermal leaving group-containing compound used in the present invention is preferably represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000024
 式中、Xは4価の有機基であり、Rは水素原子、又は炭素数1~5のアルキル基であり、Zは下記式(2)で表される構造である。
Figure JPOXMLDOC01-appb-C000024
In the formula, X is a tetravalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z has a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000025
 式中、Zは単結合、又は炭素数1~30の2価の有機基であり、R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基、又はそれらの組み合わせであり、環構造を形成してもよく、Rは水素原子又は置換基を有してもよい炭素数1~30のアルキル基であり、Dは加熱により、水素原子に置き換わるアミノ基の保護基である。
 上記式(1)において、R1は、水素原子、又は炭素数1~5アルキル基である。Rが嵩高い構造である場合、液晶配向膜として用いた場合に、液晶の配向を阻害する可能性があるため、R1としては、水素原子、メチル基、又はエチル基がより好ましく、水素原子又はメチル基が特に好ましい。
Figure JPOXMLDOC01-appb-C000025
In the formula, Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms, and R 2 and R 3 are each independently a hydrogen atom or a carbon atom that may have a substituent. Or an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and has 1 to 30 carbon atoms. And D 1 is an amino-protecting group that replaces a hydrogen atom by heating.
In the above formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. When R 1 has a bulky structure, when used as a liquid crystal alignment film, there is a possibility that the alignment of the liquid crystal may be inhibited. Therefore, R 1 is more preferably a hydrogen atom, a methyl group, or an ethyl group, An atom or a methyl group is particularly preferred.
 上記式(1)において、Xは、4価の有機基であり、その構造は特に限定されるものではない。Xの具体例を示すならば、以下に示すX-1~X-46が挙げられる。なかでも、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28又はX-32が好ましい。 In the above formula (1), X is a tetravalent organic group, and its structure is not particularly limited. Specific examples of X include X-1 to X-46 shown below. Among them, X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X-21, X-25, X-26 X-27, X-28 or X-32 is preferred.
Figure JPOXMLDOC01-appb-C000026
 上記式(2)において、R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基、又はそれらの組み合わせであり、環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000026
In the above formula (2), R 2 and R 3 each independently represent a hydrogen atom, or an alkyl group, alkenyl group, alkynyl group, aryl group having 1 to 30 carbon atoms which may have a substituent, or And may form a ring structure.
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基などが挙げられる。 Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like. Examples of the aryl group include a phenyl group, α-naphthyl group, β-naphthyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 上記のアルキル基、アルケニル基、アルキニル基、アリール基は、全体として炭素数が1~20であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。 The above alkyl group, alkenyl group, alkynyl group, and aryl group may have a substituent as long as the whole has 1 to 20 carbon atoms, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アリール基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, aryl groups, alkyls. A group, an alkenyl group and an alkynyl group.
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 置換基であるオルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基など-O-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基などが挙げられる。 As the substituent, the organooxy group can have a structure represented by —O—R such as an alkoxy group, an alkenyloxy group, and an aryloxy group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the alkyloxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group. .
 置換基であるオルガノチオ基としては、アルキルチオ基、アルケニルチオ基、アリールチオ基など-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などが挙げられる。 The organothio group as a substituent can have a structure represented by —SR, such as an alkylthio group, an alkenylthio group, and an arylthio group. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a nonylthio group, a decylthio group, and a laurylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
The thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R. The structure represented by can be shown. The R may be the same or different, and examples thereof include the alkyl groups and aryl groups described above. These Rs may be further substituted with the substituent described above.
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 上記式(2)において、Rは水素原子、又は置換基を有してもよい炭素数1~30のアルキル基である。アルキル基及び置換基の具体例としては、前述したアルキル基及び置換基と同じものを挙げることができる。
 上記式(2)において、Zは単結合又は炭素数1~30の2価の有機基である。Zが炭素数1~30の2価の有機基である場合、下記式(8)で表される2価の有機基であることが好ましい。
In the above formula (2), R 4 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may have a substituent. Specific examples of the alkyl group and the substituent include the same alkyl groups and substituents as described above.
In the above formula (2), Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. When Z 1 is a divalent organic group having 1 to 30 carbon atoms, it is preferably a divalent organic group represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000027
(式(8)中、B及びBはそれぞれ独立して単結合、又は2価の連結基である。ただし、B及びBの少なくともどちらか一方は2価の連結基である。R及びRはそれぞれ独立して単結合又は置換基を有してもよい炭素数1~20のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はそれらの組み合わせである。)
 上記B及びBの具体的な例を以下に示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000027
(In Formula (8), B 1 and B 2 are each independently a single bond or a divalent linking group, provided that at least one of B 1 and B 2 is a divalent linking group. R 8 and R 9 are each independently a single bond or an optionally substituted alkylene group having 1 to 20 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof.
Specific examples of the B 1 and B 2 are shown below, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000028
 上記B-5~B-8、B-10、B-11において、R10及びR11は水素原子又は置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、又はそれらの組み合わせであり、環構造を形成してもよい。アルキル基、アルケニル基、アルキニル基、アリール基、及び置換基の具体例としては、前述したものと同じものを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
In the above B-5 to B-8, B-10, B-11, R 10 and R 11 are a hydrogen atom or an alkyl group, alkenyl group, alkynyl group, aryl group which may have a substituent, or a group thereof. It is a combination and may form a ring structure. Specific examples of the alkyl group, alkenyl group, alkynyl group, aryl group, and substituent include the same ones as described above.
 R10及びR11が芳香環や脂環構造などの嵩高い構造であると、液晶配向膜として用いた場合に、液晶配向性を低下させる可能性があるため、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、又は水素原子が好ましく、水素原子がより好ましい。
 式(8)中、R及びRが炭素数1~20のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はそれらの組み合わせである場合、その具体的な例を以下に挙げるが、これに限定されない。
When R 10 and R 11 have a bulky structure such as an aromatic ring or an alicyclic structure, when used as a liquid crystal alignment film, the liquid crystal alignment may be lowered. Therefore, methyl group, ethyl group, propyl group , An alkyl group such as a butyl group, or a hydrogen atom is preferable, and a hydrogen atom is more preferable.
In the formula (8), when R 8 and R 9 are an alkylene group having 1 to 20 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof, specific examples thereof are listed below. It is not limited to.
 上記アルキレン基としては、アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、1,2-ノニレン基、1,2-ドデシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基、1,2-シクロノニレン基、1,2-シクロドデシレンなどが挙げられる。アルケニレン基としては、アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基、1,2-エテニレン-1,2-ヘプチレン基、1,2-エテニレン-1,2-デシレン基などが挙げられる。アルキニレン基としては、アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基、エチニレン-1,2-ヘプチレン基、エチニレン-1,2-デシレン基などが挙げられる。アリーレン基としては、アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,2-ナフチレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,3-ナフチレン基、2,6-ナフチレン基、3-フェニル-1,2-フェニレン基、2,2’-ジフェニレン基などが挙げられる。 Examples of the alkylene group include a structure in which one hydrogen atom is removed from an alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 1,2-nonylene group, 1,2-dodecylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene Group, 1,2-cyclobutylene group, 1,3-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-cyclononylene group, 1,2-cyclododecylene, etc. Can be mentioned. The alkenylene group includes a structure in which one hydrogen atom is removed from an alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group, 1,2-ethenylene-1,2-butylene group, 1,2-ethenylene-1,2-heptylene group, 1,2-ethenylene-1,2-decylene group and the like. The alkynylene group includes a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group, ethynylene-1,2-heptylene group, ethynylene-1,2-decylene group and the like. The arylene group includes a structure in which one hydrogen atom is removed from an aryl group. More specifically, 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2, Examples thereof include a 3-naphthylene group, a 2,6-naphthylene group, a 3-phenyl-1,2-phenylene group, and a 2,2′-diphenylene group.
 上記のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基は、全体として炭素数が1~20であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としては、前述したものと同じものを挙げることができる。
The alkylene group, alkenylene group, alkynylene group, arylene group, and a combination thereof may have a substituent as long as the number of carbon atoms is 1 to 20 as a whole, and a ring structure depending on the substituent. May be formed. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of this substituent include the same ones as described above.
 R及びRは、炭素数が少ないと、液晶配向膜として用いた場合に、液晶配向性が良くなるため、炭素数1~5のアルキレン基、炭素数1~5のアルケニレン基、炭素数1~5のアルキニレン基が好ましい。また、R及びRの両方、又はどちらか一方が単結合であることが好ましい。 When R 8 and R 9 have a small number of carbon atoms, the liquid crystal orientation is improved when used as a liquid crystal alignment film. Therefore, an alkylene group having 1 to 5 carbon atoms, an alkenylene group having 1 to 5 carbon atoms, a carbon number 1-5 alkynylene groups are preferred. Moreover, it is preferable that both or one of R 8 and R 9 is a single bond.
 式(2)中、Dはアミノ基の保護基であり、加熱により水素原子に置き換わる官能基であれば、その構造は特に限定されない。本発明の液晶配向剤の保存安定性の観点からは、この保護基Dは室温において脱離しないことが好ましく、好ましくは80℃以上の熱で脱保護する保護基であり、更に好ましくは100℃以上での熱で脱保護する保護基である。また、ポリアミック酸エステルの熱イミド化を促進する効率及びポリイミド前駆体又はポリイミドとの架橋反応の観点からは、300℃以下の熱で脱保護する保護基であることが好ましく、より好ましくは250℃以下の熱で脱保護する保護基であり、更に好ましくは200℃以下の熱で脱保護する保護基である。以上のようなDの構造としては、下記式で表されるエステル基が好ましい。 In formula (2), D 1 is an amino-protecting group, and its structure is not particularly limited as long as it is a functional group that can be replaced by a hydrogen atom by heating. From the viewpoint of the storage stability of the liquid crystal aligning agent of the present invention, this protecting group D 1 is preferably not desorbed at room temperature, preferably a protecting group that is deprotected by heat of 80 ° C. or more, more preferably 100 It is a protecting group that is deprotected by heat at a temperature of at least ° C. Moreover, from the viewpoint of the efficiency of promoting thermal imidation of polyamic acid ester and the crosslinking reaction with the polyimide precursor or polyimide, it is preferably a protective group that is deprotected with heat of 300 ° C. or less, more preferably 250 ° C. The protecting group is deprotected with the following heat, and more preferably the protecting group is deprotected with a heat of 200 ° C. or less. As the structure of D 1 as described above, an ester group represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000029
 (式中、R11は炭素数1~22の炭化水素である。)
Figure JPOXMLDOC01-appb-C000029
(In the formula, R 11 is a hydrocarbon having 1 to 22 carbon atoms.)
 上記式(9)で表されるエステル基の具体例としては、メトキシカルボニル基、トリフルオロメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、tert-ブトキシカルボニル基、sec-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、9-フルオレニルメトキシカルボニル基等が挙げられる。これらの中でも、液晶配向膜を得る際の焼成温度である150℃~300℃で効率よく脱離反応が進行する構造が好ましく、tert-ブトキシカルボニル基又は9-フルオレニルメトキシカルボニル基がより好ましく、tert-ブトキシカルボニル基が特に好ましい。 Specific examples of the ester group represented by the above formula (9) include methoxycarbonyl group, trifluoromethoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, tert- Examples include butoxycarbonyl group, sec-butoxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, 9-fluorenylmethoxycarbonyl group and the like. Among these, a structure in which the elimination reaction efficiently proceeds at a baking temperature of 150 ° C. to 300 ° C. when obtaining the liquid crystal alignment film is preferable, and a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group is more preferable. A tert-butoxycarbonyl group is particularly preferred.
 以下に、式(2)で表される構造の好ましい具体的として、D-1~D-24の構造を挙げるが、これに限定されない。 Hereinafter, preferred specific examples of the structure represented by the formula (2) include the structures of D-1 to D-24, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031

 また、本発明の化合物としては、以下の構造を挙げることができるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000031

The compounds of the present invention can include the following structures, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[本発明の化合物の合成方法]
 本発明の化合物は、下記式(3)で表されるビスクロロカルボニル化合物、下記式(5)で表されるテトラカルボン酸誘導体、又は下記式(6)で表されるテトラカルボン酸二無水物と、下記式(4)で表されるモノアミン化合物を原料とし、種々の方法で反応させることにより合成することができる。具体的には、(i)~(iii)の方法が挙げられるが、これに限定されない。
[Method for Synthesizing Compound of the Present Invention]
The compound of the present invention is a bischlorocarbonyl compound represented by the following formula (3), a tetracarboxylic acid derivative represented by the following formula (5), or a tetracarboxylic dianhydride represented by the following formula (6). And a monoamine compound represented by the following formula (4) as a raw material, and can be synthesized by various methods. Specific examples include the methods (i) to (iii), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000044
(式中、Rは炭素数1~5のアルキル基、X、Z、R、R、R及びDはそれぞれ式(1)及び(2)で定義したものと同様である。)
 上記式(3)のビスクロロカルボニル化合物は、例えば上記式(6)のテトラカルボン酸二無水物とROHで表されるアルコールとを反応させて、テトラカルボン酸ジアルキルエステルとした後、塩素化剤にてカルボキシル基をクロロカルボニル基に変換することで得ることができる。
Figure JPOXMLDOC01-appb-C000044
(Wherein R 5 is an alkyl group having 1 to 5 carbon atoms, and X, Z 1 , R 2 , R 3 , R 4 and D 1 are the same as defined in formulas (1) and (2), respectively. .)
The bischlorocarbonyl compound of the above formula (3) is obtained by reacting, for example, a tetracarboxylic dianhydride of the above formula (6) with an alcohol represented by R 5 OH to form a tetracarboxylic acid dialkyl ester, It can be obtained by converting a carboxyl group into a chlorocarbonyl group with an agent.
 上記式(5)のテトラカルボン酸誘導体は、例えば上記式(6)のテトラカルボン酸二無水物とROHで表されるアルコールとを反応させることで得ることができる。
 上記式(4)のモノアミン化合物は、下記式に示す1級又は2級のアミノ基を有する化合物と二炭酸ジ-tert-ブチルを塩基存在下で作用させる方法、又は、1級又は2級のアミノ基を有する化合物にクロロぎ酸-9-フルオレニルメチルを塩基存在下で作用させる方法により得られるが、公知の方法であれば、特に限定されるものではない。
The tetracarboxylic acid derivative of the above formula (5) can be obtained, for example, by reacting the tetracarboxylic dianhydride of the above formula (6) with an alcohol represented by R 5 OH.
The monoamine compound of the above formula (4) is obtained by reacting a compound having a primary or secondary amino group represented by the following formula with di-tert-butyl dicarbonate in the presence of a base, or a primary or secondary Although it can be obtained by a method in which a compound having an amino group is reacted with chloroformic acid-9-fluorenylmethyl in the presence of a base, it is not particularly limited as long as it is a known method.
Figure JPOXMLDOC01-appb-C000045
 上記方法で得られた置換基を有する化合物をニトロ化合物、モノアミン化合物、ジアミン化合物又はその誘導体に付加し、さらに必要に応じて、ニトロ基の還元やアミノ基の導入を行うことで、熱脱離性の保護基を有するモノアミン化合物が得られる。
Figure JPOXMLDOC01-appb-C000045
Addition of a compound having a substituent obtained by the above method to a nitro compound, a monoamine compound, a diamine compound or a derivative thereof, and further reducing the nitro group or introducing an amino group, if necessary, thermal desorption A monoamine compound having a protective group is obtained.
 本発明の化合物の合成方法としては、下記(i)~(iii)の方法が挙げられるが、これに限定されない。 The synthesis method of the compound of the present invention includes the following methods (i) to (iii), but is not limited thereto.
 (i)ビスクロロカルボニル化合物とモノアミン化合物から合成する方法
 本発明の化合物は、上記式(3)で表されるビスカルボニル化合物と上記式(4)で表されるモノアミン化合物とを反応させることにより合成することができる。
 具体的には、ビスクロロカルボニル化合物とモノアミン化合物とを塩基と有機溶媒の存在下で-20℃~80℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量という点から、ビスクロロカルボニル化合物に対して、2~4倍モルであることが好ましい。
(I) Method of synthesizing from bischlorocarbonyl compound and monoamine compound The compound of the present invention is obtained by reacting the biscarbonyl compound represented by the above formula (3) with the monoamine compound represented by the above formula (4). Can be synthesized.
Specifically, a bischlorocarbonyl compound and a monoamine compound in the presence of a base and an organic solvent at −20 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The amount of the base added is preferably 2 to 4 moles relative to the bischlorocarbonyl compound from the viewpoint of easy removal.
 (ii)テトラカルボン酸誘導体とモノアミン化合物から合成する方法
 本発明の化合物は、上記式(5)で表されるテトラカルボン酸誘導体と上記式(4)で表されるモノアミン化合物とを脱水縮合されることにより合成することができる。
 具体的には、テトラカルボン酸誘導体とモノアミン化合物を縮合剤、塩基、有機溶媒の存在下で0℃~80℃、好ましくは0℃~50℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(Ii) Method of synthesizing from tetracarboxylic acid derivative and monoamine compound The compound of the present invention is obtained by dehydrating condensation of a tetracarboxylic acid derivative represented by the above formula (5) and a monoamine compound represented by the above formula (4). Can be synthesized.
Specifically, a tetracarboxylic acid derivative and a monoamine compound in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize | combine by making it react for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸誘導体に対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量という点から、ジアミン成分に対して2~4倍モルが好ましい。 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はモノアミン化合物に対して0~1.0倍モルが好ましい。
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The amount of the condensing agent added is preferably 2 to 3 moles compared to the tetracarboxylic acid derivative.
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal. In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times the mol of the monoamine compound.
 (iii)テトラカルボン酸二無水物とモノアミン化合物から合成する方法
 本発明の化合物は、上記式(6)で表されるテトラカルボン酸二無水物と上記式(4)で表されるモノアミン化合物を反応させることによって合成することができる。
 具体的には、テトラカルボン酸二無水物とモノアミン化合物とを有機溶媒の存在下で-20℃~80℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。上記の反応に用いる溶媒は、テトラカルボン酸二無水物、モノアミン化合物、及び生成物の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、クロロホルムなどが挙げられ、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、又はテトラヒドロフランが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、1~30質量%が好ましく、5~20質量%がより好ましい。
 さらに、上記式(1)のRが炭素数1~5のアルキル基である本発明の化合物は、テトラカルボン酸二無水物とモノアミン化合物との反応溶液に、種々のエステル化剤を添加し、カルボキシル基のエステル化を行うことで合成することができる。
(Iii) Method of synthesizing from tetracarboxylic dianhydride and monoamine compound The compound of the present invention comprises a tetracarboxylic dianhydride represented by the above formula (6) and a monoamine compound represented by the above formula (4). It can be synthesized by reacting.
Specifically, the tetracarboxylic dianhydride and the monoamine compound are used in the presence of an organic solvent at −20 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. It can be synthesized by reacting. The solvents used in the above reaction are N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide because of the solubility of tetracarboxylic dianhydride, monoamine compound, and product. , Tetrahydrofuran, chloroform, and the like, and N-methyl-2-pyrrolidone, N, N-dimethylformamide, or tetrahydrofuran is preferable, and these may be used alone or in combination. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
Further, in the compound of the present invention in which R 1 in the above formula (1) is an alkyl group having 1 to 5 carbon atoms, various esterifying agents are added to a reaction solution of tetracarboxylic dianhydride and a monoamine compound. And can be synthesized by esterification of the carboxyl group.
 具体的には、テトラカルボン酸二無水物、モノアミン化合物、及びエステル化剤を有機溶媒の存在下で-20℃~80℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。 Specifically, the tetracarboxylic dianhydride, monoamine compound, and esterifying agent in the presence of an organic solvent at −20 ° C. to 80 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably It can be synthesized by reacting for 1 to 4 hours.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、テトラカルボン酸二無水物1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per mole of tetracarboxylic dianhydride.
 上記(i)~(iii)の反応に用いる溶媒は、合成に使用するモノマー及び生成物の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、クロロホルムなどが挙げられ、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、又はテトラヒドロフランが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、1~30質量%が好ましく、5~20質量%がより好ましい。また、ビスクロロカルボニル化合物を用いる場合は、ビスクロロカルボニル化合物の加水分解を防ぐため、合成時に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 Solvents used in the above reactions (i) to (iii) are N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N— because of the solubility of monomers and products used in the synthesis. Examples thereof include dimethylacetamide, tetrahydrofuran, chloroform, and the like, and N-methyl-2-pyrrolidone, N, N-dimethylformamide, or tetrahydrofuran is preferable, and these may be used alone or in combination. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass. Moreover, when using a bischlorocarbonyl compound, in order to prevent a hydrolysis of a bischlorocarbonyl compound, it is preferable to dehydrate the solvent used at the time of synthesis | combination as much as possible, and it is preferable to prevent mixing of external air in nitrogen atmosphere.
 上記(i)~(iii)の反応により得られた反応溶液は、そのまま本発明の組成物としても使用することができる。特に、式(1)中のRが水素原子である本発明の化合物を上記(iii)の方法で得る場合は、酸無水物とアミンの反応であるため、反応副生成物及び除去が必要な塩基や縮合剤を含まない。よって、前記のような本発明の化合物は、反応溶液をそのまま本発明の組成物として用いることが特に好ましい。 The reaction solution obtained by the reactions (i) to (iii) can be used as it is as the composition of the present invention. In particular, when the compound of the present invention in which R 1 in formula (1) is a hydrogen atom is obtained by the above method (iii), it is a reaction between an acid anhydride and an amine, and therefore reaction by-products and removal are necessary. No base or condensing agent. Therefore, the compound of the present invention as described above is particularly preferably used as it is as the composition of the present invention.
 また、上記(i)~(iii)の反応により得られた反応溶液をよく撹拌させながら貧溶媒に注入することで、本発明の化合物を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された本発明の化合物の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン等が挙げられる。得られた化合物の純度が低い場合、組成物から得られる膜を電子材料に用いた場合、電気的な特性を悪化させる可能性があるため、種々の方法で精製するのが好ましい。精製方法としては、シリカゲルカラムクロマトグラフィー、再結晶、有機溶媒での洗浄などが挙げられるが、操作の簡便さ、精製効率の高さから再結晶がより好ましい。再結晶に用いる有機溶媒は、本発明の化合物を再結晶できる有機溶媒であれば、その種類を選ばず、2種類以上の混合溶剤で再結晶を行ってもよい。 In addition, the compound of the present invention can be precipitated by pouring the reaction solution obtained by the reactions (i) to (iii) above into a poor solvent while thoroughly stirring. Precipitation is carried out several times, washed with a poor solvent, and then purified at room temperature or by heating and drying to obtain a powder of the compound of the present invention. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, etc. are mentioned. When the purity of the obtained compound is low, when a film obtained from the composition is used as an electronic material, the electrical characteristics may be deteriorated. Therefore, purification by various methods is preferable. Examples of the purification method include silica gel column chromatography, recrystallization, and washing with an organic solvent. Recrystallization is more preferable from the viewpoint of simplicity of operation and high purification efficiency. As long as the organic solvent used for recrystallization is an organic solvent which can recrystallize the compound of this invention, it may select the kind and may recrystallize with 2 or more types of mixed solvents.
 <ポリイミド前駆体及びポリイミド>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマーである。
<Polyimide precursor and polyimide>
The polyimide precursor contained in the liquid crystal aligning agent of this invention is a polymer which has the site | part which can perform the imidation reaction shown below by heating.
Figure JPOXMLDOC01-appb-C000046
 本発明に使用されるポリイミド前駆体は、下記式(7)で表わされる構造を有する。
Figure JPOXMLDOC01-appb-C000046
The polyimide precursor used in the present invention has a structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記式中、Rは、水素原子、又は、炭素数1~5、好ましくは1~2のアルキル基である。A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10、好ましくは1~5のアルキル基である。上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。上記のアルキル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
In the above formula, R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms. A 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 10, preferably 1 to 5 carbon atoms which may have a substituent. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. The above alkyl group may have a substituent, and may further form a ring structure with the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of such substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. A group, an alkenyl group and an alkynyl group.
 ポリイミド前駆体において、一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。 In general, when a bulky structure is introduced in the polyimide precursor, the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, A 1 and A 2 have a hydrogen atom or a substituent. More preferred is an alkyl group having 1 to 5 carbon atoms, particularly preferably a hydrogen atom, a methyl group or an ethyl group.
 また、式(7)において、上記Xは4価の有機基であり、Yは2価の有機基である。ポリイミド前駆体中、Xは2種類以上が混在していてもよい。その具体例を示すならば、上記した熱脱離性基含有化合物の好ましい化合物である式(2)で表わされる構造において、Xの例示として記載したのと同じ、X-1~X-46が挙げられる。
 また、式(7)において、Yは2価の有機基であり、特に限定されるものではなく、ポリイミド前駆体中、Yは2種類以上が混在していてもよい。Yの具体例を示すと、下記のY-1~Y-97が挙げられる。
In the formula (7), X 1 is a tetravalent organic group, and Y 1 is a divalent organic group. Two or more kinds of X 1 may be mixed in the polyimide precursor. As a specific example, in the structure represented by the formula (2) which is a preferable compound of the above-described heat-leaving group-containing compound, X-1 to X-46, which are the same as those exemplified as X, are Can be mentioned.
In formula (7), Y 1 is a divalent organic group and is not particularly limited. In the polyimide precursor, two or more types of Y 1 may be mixed. Specific examples of Y 1 include the following Y-1 to Y-97.
 なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリイミド前駆体、又はポリイミドに導入することが好ましく、Yとしては、Y-7、Y-10、Y-11、Y-12、Y-13、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-41、Y-42、Y-43、Y-44、Y-45、Y-46、Y-48、Y-61、Y-63、Y-64、Y-71、Y-72、Y-73、Y-74、Y-75、Y-98のジアミンがより好ましい。また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリイミド前駆体、又はポリイミドに導入することが好ましく、Yとしては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、又はY-97のジアミンがより好ましい。これらジアミンを全ジアミンの1~50モル%添加することにより、任意のプレチルト角を発現させることができる。 Among these, in order to obtain good liquid crystal alignment, it is preferable to introduce a highly linear diamine into the polyimide precursor or polyimide. Y 1 is Y-7, Y-10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y- More preferred are diamines of 45, Y-46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98. . In order to increase the pretilt angle, a diamine having a long chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in the side chain may be introduced into the polyimide precursor or polyimide. Y 1 is preferably Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86. Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, or Y-97 diamine is more preferable. . By adding 1 to 50 mol% of these diamines, any pretilt angle can be expressed.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 <ポリイミド前駆体の製造方法>
 本発明において、ポリイミド前駆体としては、ポリアミック酸エステルやポリアミック酸が挙げられる。そのうち、ポリアミック酸エステルは、下記式(10)~(12)で表されるテトラカルボン酸誘導体のいずれかと、式(13)で表されるジアミン化合物との反応によって得ることができる。
<Method for producing polyimide precursor>
In the present invention, examples of the polyimide precursor include polyamic acid esters and polyamic acids. Among them, the polyamic acid ester can be obtained by reaction of any of the tetracarboxylic acid derivatives represented by the following formulas (10) to (12) with the diamine compound represented by the formula (13).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(式中、X、Y、R、A及びAはそれぞれ上記式(7)中の定義と同じである。)
 上記式(1)で表されるポリアミック酸エステルは、上記モノマーを用いて、以下に示す(1)~(3)の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000062
(Wherein X 1 , Y 1 , R 6 , A 1 and A 2 are the same as defined in the above formula (7).)
The polyamic acid ester represented by the above formula (1) can be synthesized by the following methods (1) to (3) using the above monomer.
 (1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
(1) When synthesizing from polyamic acid Polyamic acid ester can be synthesized by esterifying polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Figure JPOXMLDOC01-appb-C000063
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
Figure JPOXMLDOC01-appb-C000063
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
 (2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。 (2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Figure JPOXMLDOC01-appb-C000064
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
Figure JPOXMLDOC01-appb-C000064
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
 (3)テトラカルボン酸ジエステルとジアミンから合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
(3) When synthesizing from tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
Figure JPOXMLDOC01-appb-C000065
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
Figure JPOXMLDOC01-appb-C000065
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours It can be synthesized by reacting.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the method (1) or the method (2) is particularly preferable.
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
 ポリアミック酸エステルの重量平均分子量は、好ましくは5,000~300,000であり、より好ましくは、10,000~200,000である。また、数平均分子量は、好ましくは、2,500~150,000であり、より好ましくは、5,000~100,000である。 The weight average molecular weight of the polyamic acid ester is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000. The number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000.
 一方、ポリイミド前駆体がポリアミック酸の場合、ポリアミック酸は、下記式(12)で表されるテトラカルボン酸二無水物と式(13)で表されるジアミン化合物との反応によって得ることができる。 On the other hand, when the polyimide precursor is a polyamic acid, the polyamic acid can be obtained by a reaction between a tetracarboxylic dianhydride represented by the following formula (12) and a diamine compound represented by the formula (13).
Figure JPOXMLDOC01-appb-C000066
(式中、X、Y、A及びAはそれぞれ上記式(7)中の定義と同じである。)
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
Figure JPOXMLDOC01-appb-C000066
(In the formula, X 1 , Y 1 , A 1 and A 2 are the same as defined in the above formula (7).)
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. It may be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
 ポリアミック酸の重量平均分子量は、好ましくは10,000~300,000であり、より好ましくは、20,000~200,000である。また、数平均分子量は、好ましくは、2,500~15,000であり、より好ましくは、5,000~100,000である。 The weight average molecular weight of the polyamic acid is preferably 10,000 to 300,000, more preferably 20,000 to 200,000. The number average molecular weight is preferably 2,500 to 15,000, and more preferably 5,000 to 100,000.
 <ポリイミド>
 ポリイミド前駆体を脱水閉環させるイミド化反応は、熱イミド化又は化学的イミド化が一般的であるが、比較的低温でイミド化反応が進行する化学的イミド化が、得られるポリイミドの分子量低下が起こりにくく好ましい。
<Polyimide>
The imidization reaction for dehydrating and cyclizing the polyimide precursor is generally thermal imidization or chemical imidation, but chemical imidation in which the imidization reaction proceeds at a relatively low temperature may reduce the molecular weight of the resulting polyimide. Less likely to occur.
 化学的イミド化は、ポリイミド前駆体を有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。このときの反応温度は-20~250°C、好ましくは0~180°Cであり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリイミド前駆体の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はポリイミド前駆体の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒や酸無水物の量が少ないと反応が十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。
 イミド化に用いる塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
Chemical imidation can be performed by stirring the polyimide precursor in an organic solvent in the presence of a basic catalyst and an acid anhydride. The reaction temperature at this time is −20 to 250 ° C., preferably 0 to 180 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the polyimide precursor, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the polyimide precursor. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
Examples of the basic catalyst used for imidization include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。有機溶媒としては前述したポリアミック酸重合反応時に用いる溶媒を使用することができる。化学的イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Further, examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. As an organic solvent, the solvent used at the time of the polyamic acid polymerization reaction mentioned above can be used. The imidation rate by chemical imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 このようにして得られたポリイミド溶液は、添加した触媒が溶液内に残存しているので、本発明の液晶配向剤に用いるためには、このポリイミド溶液を、攪拌している貧溶媒に投入し、ポリイミドを沈殿回収して使用するのが好ましい。ポリイミドの沈殿回収に用いる貧溶媒としては特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどが例示できる。貧溶媒に投入することにより沈殿したポリイミドは濾過・洗浄して回収した後、常圧あるいは減圧下で、常温あるいは加熱乾燥してパウダーとすることが出来る。このパウダーを更に良溶媒に溶解して、再沈殿する操作を2~10回繰り返すと、ポリイミドを精製することもできる。一度の沈殿回収操作では不純物が除ききれないときは、この精製工程を繰り返し行うことが好ましい。繰り返し精製工程を行う際の貧溶媒として例えばアルコール類、ケトン類、炭化水素類など3種類以上の貧溶媒を混合もしくは順次用いることで、より一層精製の効率が上がるので好ましい。 In the polyimide solution thus obtained, the added catalyst remains in the solution. Therefore, in order to use it for the liquid crystal aligning agent of the present invention, this polyimide solution is put into a poor solvent which is being stirred. It is preferable to use the polyimide after precipitation. Although it does not specifically limit as a poor solvent used for precipitation collection | recovery of a polyimide, Methanol, acetone, hexane, a butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene etc. can be illustrated. The polyimide precipitated by adding it to a poor solvent can be recovered by filtration, washing and drying at room temperature or under reduced pressure at normal temperature or by heating. By further dissolving the powder in a good solvent and reprecipitating it 2 to 10 times, the polyimide can be purified. When impurities cannot be completely removed by a single precipitation recovery operation, it is preferable to repeat this purification step. Mixing or sequentially using, for example, three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent in the repeated purification step is preferable because the purification efficiency is further increased.
 本発明の液晶配向剤に含有されるポリイミドのイミド化率は特に限定されない。ポリイミドの溶解性を考慮し任意の値に設定すればよい。本発明の液晶配向剤に含有されるポリイミドの分子量は特に限定されないが、ポリイミドの分子量は小さ過ぎると、得られる塗膜の強度が不十分となる場合があり、逆にポリイミドの分子量が大き過ぎると、製造される液晶配向剤の粘度が高くなり過ぎて、塗膜形成時の作業性、塗膜の均一性が悪くなる場合がある。従って、本発明の液晶配向剤に用いるポリイミドの重量平均分子量は2,000~500,000が好ましく、より好ましくは5,000~300,000である。 The imidation ratio of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited. What is necessary is just to set to arbitrary values in consideration of the solubility of a polyimide. The molecular weight of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but if the molecular weight of the polyimide is too small, the strength of the resulting coating film may be insufficient, and conversely, the molecular weight of the polyimide is too large. And the viscosity of the liquid crystal aligning agent manufactured may become high too much, and the workability | operativity at the time of coating-film formation and the uniformity of a coating film may worsen. Accordingly, the weight average molecular weight of the polyimide used for the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
 <液晶配向剤>
 本発明の液晶配向剤は、上記のポリイミド前駆体及び/又はポリイミドが有機溶媒中に溶解した溶液の形態である。かかる形態を有する限り、例えば、ポリアミック酸エステル及び/又はポリアミック酸などのポリイミド前駆体を有機溶媒中で合成した場合には、得られる反応溶液そのものであってもよく、また、この反応溶液を適宜の溶媒で希釈したものであってもよい。また、ポリイミド前駆体及び/又はポリイミドを粉末として得た場合は、これを有機溶媒に溶解させて溶液としたものであってもよい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a form of the solution which said polyimide precursor and / or polyimide melt | dissolved in the organic solvent. As long as it has such a form, for example, when a polyimide precursor such as polyamic acid ester and / or polyamic acid is synthesized in an organic solvent, the resulting reaction solution itself may be used. It may be diluted with a solvent. Moreover, when a polyimide precursor and / or a polyimide is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
 本発明の液晶配向剤におけるポリイミド前駆体及び/又はポリイミド(以下、ポリマーともいう。)の含有量(濃度)は、形成させようとするポリイミド膜の厚みの設定によっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、有機溶媒に対して、ポリマー含有量は、0.5質量%以上が好ましく、溶液の保存安定性の点からは15質量%以下が好ましく、より好ましくは、1~10質量%である。 The content (concentration) of the polyimide precursor and / or polyimide (hereinafter also referred to as polymer) in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the polyimide film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the polymer content is preferably 0.5% by mass or more with respect to the organic solvent, and preferably 15% by mass or less from the viewpoint of storage stability of the solution. More preferably, it is 1 to 10% by mass.
 本発明の液晶配向剤には、ポリマーに加えて、上記した熱脱離性基含有化合物が添加される。熱脱離性基含有化合物は、上記ポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の繰り返し単位1ユニットに対して、好ましくは0.5~50モル%添加される。
 熱脱離性基含有化合物の含有量が、より好ましくは1~30モル%であり、特に好ましくは5~20モル%である。該含有量が、過度に少ない場合には、ポリイミド前駆体のイミド化反応や架橋反応が不十分になり、また、過度に大きい場合には、液晶配向性に悪影響を与える可能性があるために好ましくない。
In addition to the polymer, the above-described heat-leaving group-containing compound is added to the liquid crystal aligning agent of the present invention. The thermally desorbable group-containing compound is preferably added in an amount of 0.5 to 50 mol% with respect to 1 unit of the repeating unit of the polyimide precursor and the imidized polymer of the polyimide precursor.
The content of the heat-leaving group-containing compound is more preferably 1 to 30 mol%, particularly preferably 5 to 20 mol%. When the content is excessively small, the imidization reaction or crosslinking reaction of the polyimide precursor becomes insufficient, and when it is excessively large, the liquid crystal orientation may be adversely affected. It is not preferable.
 本発明の液晶配向剤に含有される上記有機溶媒は、ポリマーが均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマーを均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer uniformly independently, as long as a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、ポリマーを溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。 The liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these solvents may be used in combination.
 本発明の液晶配向剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。以下にシランカップリング剤の具体例を挙げるが、これに限定されるものではない。 The liquid crystal aligning agent of the present invention may contain various additives such as a silane coupling agent and a crosslinking agent. The silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon. Although the specific example of a silane coupling agent is given to the following, it is not limited to this.
 3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-アミノプロピルジエトキシメチルシランなどのアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシランなどのビニル系シランカップリング剤;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤;ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシランなどのメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒドなどのアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3-トリエトキシシリルプロピル)-t-ブチルカルバメートなどのカルバメート系シランカップリング剤。 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-phenylaminopropyltri Amine-based silane coupling agents such as methoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-aminopropyldiethoxymethylsilane; vinyltrimethoxysilane, vinyltriethoxysilane, Vinyl silane couplings such as vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane, vinyltriacetoxysilane, vinyltriisopropoxysilane, allyltrimethoxysilane, p-styryltrimethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4 -Epoxy cyclohexyl) Epoxy silane coupling agents such as ethyltrimethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl Methacrylic silane coupling agents such as triethoxysilane; Acrylic silane coupling agents such as 3-acryloxypropyltrimethoxysilane; Ureido silane coupling agents such as 3-ureidopropyltriethoxysilane Ringing agents; sulfide-based silane coupling agents such as bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide; 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyl Mercapto silane coupling agents such as trimethoxysilane and 3-octanoylthio-1-propyltriethoxysilane; Isocyanate silane coupling agents such as 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane; triethoxysilyl Aldehyde-based silane coupling agents such as butyraldehyde; calories such as triethoxysilylpropylmethyl carbamate, (3-triethoxysilylpropyl) -t-butylcarbamate Bamate silane coupling agent.
 上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01~5.0重量%が好ましく、0.1~1.0重量%がより好ましい。
 上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。
 塗膜を焼成する際にポリアミック酸エステルのイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。
If the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 to 5.0% by weight is preferable, and 0.1 to 1.0% by weight is more preferable.
When adding the said silane coupling agent, in order to prevent precipitation of a polymer, it is preferable to add before adding the solvent for improving the above-mentioned coating-film uniformity.
An imidization accelerator may be added to efficiently advance imidization of the polyamic acid ester when the coating film is baked.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外のポリマー、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物等を添加しても良い。 In addition to the above, the liquid crystal aligning agent of the present invention has the purpose of changing the electrical properties such as the polymer other than the polymer and the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. A dielectric or conductive material, and further a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、及びアクリル基板、ポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物質でも使用でき、この場合の電極としてはアルミ等の光を反射する材料も使用できる。 The liquid crystal aligning agent of the present invention can be used as a liquid crystal aligning film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation, or without alignment treatment in vertical alignment applications. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or the like can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a prepared substrate from the viewpoint of simplification of the process. In the reflection type liquid crystal display element, an opaque substance such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used.
 液晶配向剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いても良い。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向剤を塗布した基板の焼成は、温度100~350°Cの任意の温度で行うことができ、好ましくは温度150~300°Cであり、さらに好ましくは温度180~250°Cである。液晶配向剤中に含有されるポリイミド前駆体は、この焼成温度によってポリイミドへの転化率が変化するが、液晶配向剤は、必ずしも100%イミド化させる必要は無い。そのため焼成時間は任意の時間に設定できるが、焼成時間が短すぎると残存溶媒の影響で表示不良が発生する場合があるので、好ましくは5~60分間、より好ましくは10~40分間である。 The substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C. The polyimide precursor contained in the liquid crystal aligning agent changes in conversion ratio to polyimide depending on the baking temperature, but the liquid crystal aligning agent does not necessarily need to be 100% imidized. For this reason, the firing time can be set to an arbitrary time, but if the firing time is too short, display failure may occur due to the influence of the residual solvent. Therefore, the firing time is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
 この焼成過程において、本発明の液晶配向剤に含有される、熱脱離性基含有化合物は、上記したように、熱脱離性基が分解し、反応性の高い1級又は2級アミンが発生する。この発生した1級又は2級アミンは、液晶配向剤に含有される主成分である、ポリイミド前駆体及び/又はポリイミドのポリマーのイミド化反応を促進し、高イミド化率をもたらすとともに、ポリマー間に架橋反応をもたらし、液晶配向剤から得られる液晶配向膜に対して大きい機械的強度を与える。機械的強度の増大は、ラビング耐性の向上、高温時の液晶特性の安定性がもたらされる。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。
In this firing process, the thermally detachable group-containing compound contained in the liquid crystal aligning agent of the present invention, as described above, decomposes the thermally detachable group, resulting in a highly reactive primary or secondary amine. appear. The generated primary or secondary amine accelerates the imidization reaction of the polyimide precursor and / or the polymer of the polyimide, which is the main component contained in the liquid crystal aligning agent, and brings about a high imidization ratio. This causes a cross-linking reaction and gives a large mechanical strength to the liquid crystal alignment film obtained from the liquid crystal aligning agent. An increase in mechanical strength results in improved rubbing resistance and stability of liquid crystal properties at high temperatures.
If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
1,3DMCBDE-Cl:ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート
CBDE-Cl:ジメチル 2,4-ビス(クロロカルボニル)シクロブタン-1,3-ジカルボキシレート
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
PAE:ポリアミック酸エステル
PAA:ポリアミック酸
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. The abbreviations of the compounds used in the examples and comparative examples, and the measuring methods of the respective properties are as follows.
1,3DMCBDE-Cl: Dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate CBDE-Cl: Dimethyl 2,4-bis (chlorocarbonyl) cyclobutane-1,3 Dicarboxylate CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride PMDA: pyromellitic dianhydride NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve PAE: polyamic acid Ester PAA: Polyamic acid
[HNMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian社製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d)、重水素化クロロホルム(CDCl
標準物質:テトラメチルシラン(TMS)
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[ 1 HNMR]
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (manufactured by Varian) 400 MHz
Solvent: deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 )
Standard substance: Tetramethylsilane (TMS)
[viscosity]
In the synthesis examples, the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
[分子量]
 また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[FT-IR測定]
装置:NICOLET5700(Thermo ELECTRON社製)
   Smart Orbitアクセサリー
測定法:ATR法
[Molecular weight]
The molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
[FT-IR measurement]
Apparatus: NICOLET5700 (manufactured by Thermo ELECTRON)
Smart Orbit accessory measurement method: ATR method
[液晶配向膜のラビング耐性]
 液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃で20分間の焼成し、膜厚100nmのイミド化した膜を形成した。この塗膜にラビング処理を施した後、膜の表面状態を観察して、ラビング傷の有無、膜の削れカスの有無、膜の剥離の有無を評価した。
[Rubbing resistance of liquid crystal alignment film]
A liquid crystal aligning agent was spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and baked at a temperature of 230 ° C. for 20 minutes to form an imidized film having a thickness of 100 nm. After this coating film was rubbed, the surface state of the film was observed to evaluate the presence or absence of rubbing scratches, the presence or absence of scraped film, and the presence or absence of film peeling.
[液晶配向性]
 液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、230℃の熱風循環式オーブンで20分間の焼成を経て膜厚100nmの塗膜を形成させた。この塗膜面に、ラビング処理又は光配向処理を施し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルを用いて、液晶配向性を偏光顕微鏡にて観察し、液晶配向性を以下の基準で評価した。
<評価基準>
○:流動配向が観察されず、クロスニコル下で光抜けがない。
△:流動配向が若干観察され、クロスニコル下で光抜けが観察される。
×:セル全体に流動配向が観察される。
[Liquid crystal orientation]
A liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried for 5 minutes on a hot plate at a temperature of 80 ° C, and baked for 20 minutes in a hot air circulation oven at 230 ° C to form a coating film having a thickness of 100 nm. I let you. The coating surface was rubbed or photo-aligned to obtain a substrate with a liquid crystal alignment film. Two substrates with such a liquid crystal alignment film are prepared, and a 6 μm spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment is antiparallel. The periphery was sealed and the empty cell having a cell gap of 6 μm was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell. Using this liquid crystal cell, the liquid crystal alignment was observed with a polarizing microscope, and the liquid crystal alignment was evaluated according to the following criteria.
<Evaluation criteria>
○: No flow alignment is observed, and no light leakage occurs under crossed Nicols.
Δ: Some flow alignment is observed, and light leakage is observed under crossed Nicols.
X: Flow orientation is observed throughout the cell.
[電圧保持率]
 上記液晶セルの電圧保持率の測定は以下のようにして行った。
 4Vの電圧を60μs間印加し、16.67ms後の電圧を測定することで、初期値からの変動を電圧保持率として計算した。測定の際、液晶セルの温度を23℃、60℃、90℃とし、それぞれの温度で測定を行った。
[イオン密度]
 上記液晶セルのイオン密度の測定は以下のようにして行った。
 東陽テクニカ社製の6254型液晶物性評価装置を用いて測定を行った。10V、0.01Hzの三角波を印加し、得られた波形のイオン密度に相当する面積を三角形近似法により算出し、イオン密度とした。測定の際、液晶セルの温度を23℃、60℃とし、それぞれの温度で測定を行った。
[プレチルト角の測定]
 上記液晶セルのプレチルト角の測定は、Axometrics社製のAxoScanを用いて測定した。
[Voltage holding ratio]
The voltage holding ratio of the liquid crystal cell was measured as follows.
By applying a voltage of 4 V for 60 μs and measuring the voltage after 16.67 ms, the fluctuation from the initial value was calculated as the voltage holding ratio. During the measurement, the temperature of the liquid crystal cell was set to 23 ° C., 60 ° C., and 90 ° C., and the measurement was performed at each temperature.
[Ion density]
The measurement of the ion density of the liquid crystal cell was performed as follows.
Measurement was performed using a 6254 type liquid crystal property evaluation apparatus manufactured by Toyo Technica. A triangular wave of 10 V and 0.01 Hz was applied, and an area corresponding to the ion density of the obtained waveform was calculated by a triangle approximation method to obtain an ion density. At the time of measurement, the temperature of the liquid crystal cell was 23 ° C. and 60 ° C., and the measurement was performed at each temperature.
[Pretilt angle measurement]
The pretilt angle of the liquid crystal cell was measured using an AxoScan manufactured by Axometrics.
(合成例1)
 以下に示す4ステップの経路でジアミン化合物(DA-1)を合成した。
第1ステップ:化合物(A5)の合成
Figure JPOXMLDOC01-appb-C000067
 500mL のナスフラスコにプロパルギルアミン (8.81 g, 160 mmol) 、N,N-ジメチルホルムアミド (112 mL) 、炭酸カリウム (18.5 g, 134 mmol) の順に入れ、0 ℃ にし、ブロモ酢酸t-ブチル (21.9 g, 112 mmol) をN,N-ジメチルホルムアミド (80 mL) に溶かした溶液を約1時間で、撹拌しながら滴下した。滴下終了後、反応溶液を室温にし、20時間撹拌した。その後、固形物をろ過により除去し、ろ液に酢酸エチルを 1 L 加え、300 mL の水で 4 回、300 mL の飽和食塩水で 1 回洗浄した。その後、有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。最後に、残留した油状物を 0.6 Torr, 70 ℃で減圧蒸留することにより、無色液体のN-プロパルギルアミノ酢酸t-ブチル(化合物(A5))を得た。収量は 12.0 g、収率は63% であった。
(Synthesis Example 1)
The diamine compound (DA-1) was synthesized by the following four-step route.
First step: Synthesis of compound (A5)
Figure JPOXMLDOC01-appb-C000067
Into a 500 mL eggplant flask, put propargylamine (8.81 g, 160 mmol), N, N-dimethylformamide (112 mL), potassium carbonate (18.5 g, 134 mmol) in this order, bring it to 0 ° C., and add t-butyl bromoacetate (21.9 g, 112 mmol) in N, N-dimethylformamide (80 mL) was added dropwise with stirring over about 1 hour. After completion of the dropwise addition, the reaction solution was brought to room temperature and stirred for 20 hours. Thereafter, the solid matter was removed by filtration, 1 L of ethyl acetate was added to the filtrate, and the mixture was washed 4 times with 300 mL of water and once with 300 mL of saturated saline. Thereafter, the organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. Finally, the remaining oil was distilled under reduced pressure at 0.6 Torr and 70 ° C. to obtain t-butyl N-propargylaminoacetate (compound (A5)) as a colorless liquid. The yield was 12.0 g, and the yield was 63%.
第2ステップ:化合物(A6)の合成
Figure JPOXMLDOC01-appb-C000068
 1 L のナスフラスコに上記N-プロパルギルアミノ酢酸t-ブチル (12.0 g, 70.9 mmol)、ジクロロメタン (600 mL) を入れて溶液とし、攪拌氷冷しながら、二炭酸ジt-ブチル (15.5 g, 70.9 mmol) をジクロロメタン (100 mL) に溶かした溶液を1時間で滴下した。滴下終了後、反応溶液を室温にし、20時間攪拌した。反応終了後、反応溶液を300 mL の飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。その後、溶媒を減圧留去することで、薄黄色液体のN-プロパルギル-N-t-ブトキシカルボニルアミノ酢酸t-ブチル(化合物(A6))を得た。収量は 18.0 g、収率は 94% であった。
Second step: Synthesis of compound (A6)
Figure JPOXMLDOC01-appb-C000068
In a 1 L eggplant flask, the above N-propargylaminoacetic acid t-butyl (12.0 g, 70.9 mmol) and dichloromethane (600 mL) were added to form a solution. While stirring and cooling with ice, di-t-butyl dicarbonate (15.5 g, A solution of 70.9 mmol) in dichloromethane (100 mL) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was brought to room temperature and stirred for 20 hours. After completion of the reaction, the reaction solution was washed with 300 mL of saturated brine and dried over magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain N-propargyl-Nt-butoxycarbonylaminoacetic acid t-butyl (compound (A6)) as a light yellow liquid. The yield was 18.0 g, and the yield was 94%.
第3ステップ:化合物(A7)の合成
Figure JPOXMLDOC01-appb-C000069
 300 mL の四つ口フラスコに2-ヨード-4-ニトロアニリン (22.5 g, 85.4 mmol)、ビス(トリフェニルホスフィン)パラジウムジクロリド (1.20 g, 1.71 mmol)、ヨウ化銅 (0.651 g, 3.42 mmol)を入れ、窒素置換した後、ジエチルアミン (43.7 g, 598 mmol)、N,N-ジメチルホルムアミド (128 mL) を加え、氷冷攪拌しながら、前記N-プロパルギルアミノ-N-t-ブトキシカルボニル酢酸t-ブチル (27.6 g, 102 mmol) を加え、室温で20時間攪拌した。反応終了後、1 L の酢酸エチルを加え、1 mol/L の塩化アンモニウム水溶液 150 mL で3回、150 mL の飽和食塩水で1回洗浄し、硫酸マグネシウムで乾燥した。その後、溶媒を減圧留去することで析出した固体を200 mL の酢酸エチルに溶かし、1 L のヘキサンを加えることで再結晶を行った。この固体をろ取し、減圧乾燥することで、黄色固体の2-{3-(N-t-ブトキシカルボニル-N-t-ブトキシカルボニルメチルアミノ)-1-プロピニル)}-4-ニトロアニリン(化合物(A7))を得た。収量は23.0 g, 収率は66%であった。
Third step: Synthesis of compound (A7)
Figure JPOXMLDOC01-appb-C000069
2-Iodo-4-nitroaniline (22.5 g, 85.4 mmol), bis (triphenylphosphine) palladium dichloride (1.20 g, 1.71 mmol), copper iodide (0.651 g, 3.42 mmol) in a 300 mL four-necked flask After adding nitrogen and replacing with nitrogen, diethylamine (43.7 g, 598 mmol) and N, N-dimethylformamide (128 mL) were added, and while stirring on ice, the N-propargylamino-Nt-butoxycarbonyl acetate t-butyl was added. (27.6 g, 102 mmol) was added and stirred at room temperature for 20 hours. After completion of the reaction, 1 L of ethyl acetate was added, washed with 150 mL of a 1 mol / L aqueous ammonium chloride solution three times and once with 150 mL of saturated brine, and dried over magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure, and the precipitated solid was dissolved in 200 mL of ethyl acetate and recrystallized by adding 1 L of hexane. This solid was collected by filtration and dried under reduced pressure to give 2- {3- (Nt-butoxycarbonyl-Nt-butoxycarbonylmethylamino) -1-propynyl)}-4-nitroaniline (compound (A7)) as a yellow solid. ) The yield was 23.0 g, and the yield was 66%.
第4ステップ:化合物(A7)の還元
 500 mL の四つ口フラスコに前記2-{3-(N-t-ブトキシカルボニル-N-t-ブトキシカルボニルメチルアミノ)-1-プロピニル)}-4-ニトロアニリン (22.0 g, 54.2 mmol)、及び、エタノール (200 g) を加え、系内を窒素で置換した後、パラジウム炭素 (2.20 g) を加え、系内を水素で置換し、50 ℃で48時間攪拌した。反応終了後、セライトろ過によりパラジウム炭素を除き、ろ液に活性炭を加え、50 ℃で30 分攪拌した。その後、活性炭をろ過し、有機溶媒を減圧留去し、残留した油状物を減圧乾燥することで、ジアミン化合物(DA-1)を得た。収量は19.8 g、収率は 96% であった。
 ジアミン化合物(DA-1)は1H NMRにより確認した。
Figure JPOXMLDOC01-appb-C000070
1H NMR (DMSO-d6): δ 6.54-6.42 (m, 3H, Ar), 3.49, 3.47 (each s, 2H, NCH2CO2t-Bu), 3.38-3.30 (m, 2H, CH2CH2N), 2.51-2.44 (m, 2H, ArCH2), 1.84-1.76 (m, 2H, CH2CH2CH2), 1.48-1.44 (m, 18H, NCO2t-Bu and CH2CO2t-Bu).
Fourth Step: Reduction of Compound (A7) Into a 500 mL four-necked flask, the 2- {3- (Nt-butoxycarbonyl-Nt-butoxycarbonylmethylamino) -1-propynyl)}-4-nitroaniline (22.0 g, 54.2 mmol) and ethanol (200 g) were added, and the inside of the system was replaced with nitrogen. Then, palladium carbon (2.20 g) was added, the inside of the system was replaced with hydrogen, and the mixture was stirred at 50 ° C. for 48 hours. After completion of the reaction, palladium carbon was removed by Celite filtration, activated carbon was added to the filtrate, and the mixture was stirred at 50 ° C. for 30 minutes. Thereafter, the activated carbon was filtered, the organic solvent was distilled off under reduced pressure, and the remaining oil was dried under reduced pressure to obtain a diamine compound (DA-1). The yield was 19.8 g, and the yield was 96%.
The diamine compound (DA-1) was confirmed by 1 H NMR.
Figure JPOXMLDOC01-appb-C000070
1 H NMR (DMSO-d 6 ): δ 6.54-6.42 (m, 3H, Ar), 3.49, 3.47 (each s, 2H, NCH 2 CO 2 t-Bu), 3.38-3.30 (m, 2H, CH 2 CH 2 N), 2.51-2.44 (m, 2H, ArCH 2 ), 1.84-1.76 (m, 2H, CH 2 CH 2 CH 2 ), 1.48-1.44 (m, 18H, NCO 2 t-Bu and CH 2 CO 2 t-Bu).
(合成例2)
ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート(1,3DMCBDE-Cl)の合成
a-1:テトラカルボン酸ジアルキルエステルの合成
Figure JPOXMLDOC01-appb-C000071
(Synthesis Example 2)
Synthesis of dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate (1,3DMCBDE-Cl) a-1: Synthesis of dialkyl ester of tetracarboxylic acid
Figure JPOXMLDOC01-appb-C000071
 窒素気流下中、3Lの四つ口フラスコに、1,3-ジメチルシクロブタン-1,2,3,4-テトラカルボン酸二無水物(式(5-1)の化合物、以下1,3-DM-CBDAと略す)を220g(0.981mol)と、メタノールを2200g(6.87mol、1,3-DM-CBDAに対して10wt倍)仕込み、65℃にて加熱還流を行ったところ、30分で均一な溶液となった。反応溶液はそのまま4時間30分加熱還流下で撹拌した。この反応液を高速液体クロマトグラフィー(以下、HPLCと略す)にて測定した。この測定結果の解析は後述する。
 エバポレーターにて、この反応液から溶媒を留去した後、酢酸エチル1301gを加えて80℃まで加熱し、30分還流させた。その後、10分間に2~3℃の速度で内温が25℃になるまで冷却し、そのまま25℃で30分撹拌した。析出した白色結晶をろ過によって取り出し、この結晶を酢酸エチル141gにて2回洗浄した後、減圧乾燥することで、白色結晶を103.97g得た。
 この結晶は、1H NMR分析、及びX線結晶構造解析の結果により、化合物(1-1)であることを確認した(HPLC相対面積97.5%)(収率36.8%)。
1H NMR (DMSO-d6, δppm);12.82 (s, 2H), 3.60 (s, 6H), 3.39 (s, 2H), 1.40 (s, 6H).
Under a nitrogen stream, a 3-L four-necked flask was charged with 1,3-dimethylcyclobutane-1,2,3,4-tetracarboxylic dianhydride (compound of formula (5-1), hereinafter referred to as 1,3-DM). -CBDA (abbreviated) 220 g (0.981 mol) and methanol 2200 g (6.87 mol, 10 wt times with respect to 1,3-DM-CBDA) were charged and heated to reflux at 65 ° C. for 30 minutes. A homogeneous solution was obtained. The reaction solution was stirred for 4 hours and 30 minutes under heating and reflux. This reaction solution was measured by high performance liquid chromatography (hereinafter abbreviated as HPLC). The analysis of the measurement result will be described later.
After evaporating the solvent from the reaction solution with an evaporator, 1301 g of ethyl acetate was added, heated to 80 ° C., and refluxed for 30 minutes. Thereafter, the mixture was cooled at a rate of 2 to 3 ° C. for 10 minutes until the internal temperature reached 25 ° C., and stirred at 25 ° C. for 30 minutes. The precipitated white crystals were taken out by filtration, washed twice with 141 g of ethyl acetate, and then dried under reduced pressure to obtain 103.97 g of white crystals.
This crystal was confirmed to be compound (1-1) by the results of 1H NMR analysis and X-ray crystal structure analysis (HPLC relative area 97.5%) (yield 36.8%).
1H NMR (DMSO-d6, δppm); 12.82 (s, 2H), 3.60 (s, 6H), 3.39 (s, 2H), 1.40 (s, 6H).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
a-2.1,3-DM-CBDE-C1の合成
Figure JPOXMLDOC01-appb-C000073
 窒素気流下中、3Lの四つ口フラスコに、化合物(1-1)234.15g(0.81mol)、n-ヘプタン1170.77g(11.68mol.5wt倍)を仕込んだ後、ピリジン0.64g(0.01mol)を加え、マグネチックスターラー攪拌下にて75℃まで加熱撹拌した。続いて、塩化チオニル289.93g(11.68mol)を1時間かけて滴下した。滴下直後から発泡が開始し、滴下終了30分後に反応溶液は均一となり、発泡は停止した。続いてそのまま75℃にて1時間30分撹拌した後、エバポレーターにて水浴40℃で内容量が924.42gになるまで溶媒を留去した。これを60℃に加熱し、溶媒留去時に析出した結晶を溶解させ、60℃にて熱時ろ過を行うことで不溶物をろ過した後、ろ液を25℃まで10分間に1℃の速度で冷却した。そのまま25℃で30分撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn-ヘプタン264.21gにて洗浄した。これを減圧乾燥することで、白色結晶を226.09g得た。
Synthesis of a-2.1,3-DM-CBDE-C1
Figure JPOXMLDOC01-appb-C000073
Under a nitrogen stream, 234.15 g (0.81 mol) of compound (1-1) and 1170.77 g (11.68 mol.5 times by weight) of n-heptane were charged into a 3 L four-necked flask, 64 g (0.01 mol) was added, and the mixture was heated and stirred to 75 ° C. while stirring with a magnetic stirrer. Subsequently, 289.93 g (11.68 mol) of thionyl chloride was added dropwise over 1 hour. Foaming started immediately after the dropping, and the reaction solution became uniform 30 minutes after the completion of the dropping, and the foaming stopped. Subsequently, the mixture was stirred as it was at 75 ° C. for 1 hour and 30 minutes, and then the solvent was distilled off with an evaporator until the internal volume reached 924.42 g in a water bath at 40 ° C. This was heated to 60 ° C., the crystals precipitated when the solvent was distilled off were dissolved, the insoluble matter was filtered by performing hot filtration at 60 ° C., and then the filtrate was heated to 25 ° C. at a rate of 1 ° C. for 10 minutes. It was cooled with. After stirring for 30 minutes at 25 ° C., the precipitated white crystals were taken out by filtration, and the crystals were washed with 264.21 g of n-heptane. This was dried under reduced pressure to obtain 226.09 g of white crystals.
 続いて窒素気流下中、3Lの四つ口フラスコに、上記で得られた白色結晶226.09g、n-ヘプタン452.18gを仕込んだ後、60℃に加熱撹拌して結晶を溶解させた。その後、25℃まで10分間に1℃の速度で冷却撹拌し、結晶を析出させた。そのまま25℃で1時間撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn-ヘキサン113.04gにて洗浄した後、減圧乾燥することで白色結晶を203.91g得た。この結晶は、1H NMR分析結果により、化合物(3-1)すなわち、ジメチル-1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート(以下、1,3-DM-CBDE-C1という。)であるであることを確認した(HPLC相対面積99.5%)(収率77.2%)。
1H NMR (CDCl3, δppm) : 3.78 (s, 6H), 3.72 (s, 2H), 1.69 (s, 6H).
Subsequently, 226.09 g of the white crystal obtained above and 454.18 g of n-heptane were charged into a 3 L four-necked flask in a nitrogen stream, and the mixture was heated and stirred at 60 ° C. to dissolve the crystal. Thereafter, the mixture was cooled and stirred at a rate of 1 ° C. for 10 minutes to 25 ° C. to precipitate crystals. After stirring for 1 hour at 25 ° C., the precipitated white crystals were taken out by filtration, washed with 113.04 g of n-hexane, and dried under reduced pressure to obtain 203.91 g of white crystals. According to the result of 1H NMR analysis, this crystal was found to be compound (3-1), that is, dimethyl-1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate (hereinafter referred to as 1,3 -DM-CBDE-C1) (HPLC relative area 99.5%) (yield 77.2%).
1H NMR (CDCl3, δppm): 3.78 (s, 6H), 3.72 (s, 2H), 1.69 (s, 6H).
(合成例3)
 撹拌装置付きの3L四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを10.9293g (0.101mol)、ジアミン(DA-1)を10.8177g(0.0285mol)入れ、NMPを472g、塩基としてピリジンを23.12g (0.292mol) 加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM-CBDE-Clを39.6013g(0.122mol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液に、NMP2101gを追加して30分撹拌し、固形分濃度を5wt%の得られたポリアミック酸エステル溶液を得た。このポリアミック酸エステル溶液を、5247g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、5247g の水で1回、5247g のエタノールで1回、1312g のエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末45.90gを得た。収率は、87.7%であった。また、このポリアミック酸エステルの分子量はMn=16,556、Mw=35,901であった。
 得られたポリアミック酸エステル樹脂粉末35.99gを300ml三角フラスコにとり、GBLを230.85g 加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-1)を得た。
(Synthesis Example 3)
A 3 L four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere. 10.9293 g (0.101 mol) of p-phenylenediamine, 10.8177 g (0.0285 mol) of diamine (DA-1) were added, 472 g of NMP, base As a result, 23.12 g (0.292 mol) of pyridine was added and dissolved by stirring. Next, 39.6013 g (0.122 mol) of 1,3DM-CBDE-Cl was added while stirring the diamine solution, and the mixture was reacted for 4 hours under water cooling. To the obtained polyamic acid ester solution, 2101 g of NMP was added and stirred for 30 minutes to obtain an obtained polyamic acid ester solution having a solid content concentration of 5 wt%. The polyamic acid ester solution is poured into 5247 g of water while stirring, and the precipitated white precipitate is collected by filtration, and then washed once with 5247 g of water, once with 5247 g of ethanol, and three times with 1312 g of ethanol. Then, 45.90 g of a white polyamic acid ester resin powder was obtained by drying. The yield was 87.7%. Moreover, the molecular weight of this polyamic acid ester was Mn = 16,556 and Mw = 35,901.
35.99 g of the obtained polyamic acid ester resin powder was placed in a 300 ml Erlenmeyer flask, 230.85 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-1).
(合成例4)
 撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、4,4’-ジアミノジフェニルメタンを10.532g (53.12mmol)入れ、NMPを197.63g、塩基としてピリジンを9.00g (113.8mmol) 加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM-CBDE-Clを15.4194g (47.42mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、2196g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、2196g の水で1回、2196g のエタノールで1回、549g のエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末20.37gを得た。収率は、92.8%であった。また、このポリアミック酸エステルの分子量はMn=11,659、Mw=25,571であった。
 得られたポリアミック酸エステル樹脂粉末3.9648gを100ml三角フラスコにとり、NMP35.7135g を加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-2)を得た。
(Synthesis Example 4)
A 300 mL four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 10.532 g (53.12 mmol) of 4,4′-diaminodiphenylmethane was added, 197.63 g of NMP, and 9.00 g (113.8 mmol) of pyridine as a base. Added and stirred to dissolve. Next, while stirring this diamine solution, 15.4194 g (47.42 mmol) of 1,3DM-CBDE-Cl was added and reacted for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 2196 g of water while stirring, and the precipitated white precipitate was collected by filtration, followed by 2196 g of water once, 2196 g of ethanol once, and 549 g of ethanol. By washing 3 times and drying, 20.37 g of white polyamic acid ester resin powder was obtained. The yield was 92.8%. Moreover, the molecular weight of this polyamic acid ester was Mn = 11,659 and Mw = 25,571.
3.9648 g of the obtained polyamic acid ester resin powder was placed in a 100 ml Erlenmeyer flask, 35.7135 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-2).
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CBDAを5.8936g(30.05mmol)入れ、次いで、NMPを56.11g加えて、窒素を送りながら撹拌し、スラリー状にした。このスラリー液を撹拌しながら、p-PDAを3.0196g(27.92mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は136.5mPa・sであった。また、このポリアミック酸の分子量はMn=13,391、Mw=32,745であった。
(Synthesis Example 5)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.8936 g (30.05 mmol) of CBDA was added, and then 56.11 g of NMP was added, and the mixture was stirred while feeding nitrogen to form a slurry. While stirring this slurry solution, 3.0196 g (27.92 mmol) of p-PDA was added, NMP was further added so that the solid content concentration was 10% by mass, and the mixture was stirred at room temperature for 24 hours to obtain polyamic acid (PAA). A solution of -1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 136.5 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13,391 and Mw = 32,745.
(実施例1)化合物(1-a)の合成
Figure JPOXMLDOC01-appb-C000074
以下に、4ステップの経路で化合物(1-a)を合成した。
Example 1 Synthesis of Compound (1-a)
Figure JPOXMLDOC01-appb-C000074
Hereinafter, compound (1-a) was synthesized by a four-step route.
第1ステップ:前駆体(1-a1)の合成
Figure JPOXMLDOC01-appb-C000075
 300ml四つ口フラスコに、2-(4-ニトロフェニル)エチルアミン塩酸塩を18.78g(92.68mmol)入れ、次いで、トルエンを152ml、トリエチルアミンを9.847g(97.31mmol)加えて、0℃(氷浴)にて撹拌した。滴下ロートに二炭酸ジ-tert-ブチルを21.24g(97.31mmol)を、四つ口フラスコ中の溶液に30分かけて滴下した。滴下終了後、室温(20℃)にて8時間撹拌した。反応終了後、反応溶液に純水500mlを加え、抽出した。得られた有機層を純水で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を除去後、溶媒留去し、白色固体を得た。この白色固体にヘキサンを100ml、酢酸エチルを20ml加えて、再結晶を行った。析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が前駆体(1-a1)であることを確認した。収量は20.92g、収率は85%であった。
1H NMR (400MHz, CDCl3, δppm):1.43(s, 9H), 2.92(t, J=6.8Hz, 2H), 3.41(q, J=6.8Hz, 2H), 4.56(bs, 1H), 7.35(d, J=8.8Hz, 2H), 8.16(d, J=8.8Hz, 2H).
First step: Synthesis of precursor (1-a1)
Figure JPOXMLDOC01-appb-C000075
In a 300 ml four-necked flask, 18.78 g (92.68 mmol) of 2- (4-nitrophenyl) ethylamine hydrochloride was added, and then 152 ml of toluene and 9.847 g (97.31 mmol) of triethylamine were added. (Ice bath). To the dropping funnel, 21.24 g (97.31 mmol) of di-tert-butyl dicarbonate was added dropwise to the solution in the four-necked flask over 30 minutes. After completion of dropping, the mixture was stirred at room temperature (20 ° C.) for 8 hours. After completion of the reaction, 500 ml of pure water was added to the reaction solution and extracted. The obtained organic layer was washed twice with pure water and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a white solid. The white solid was recrystallized by adding 100 ml of hexane and 20 ml of ethyl acetate. The precipitated solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-a1). The yield was 20.92 g and the yield was 85%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.43 (s, 9H), 2.92 (t, J = 6.8Hz, 2H), 3.41 (q, J = 6.8Hz, 2H), 4.56 (bs, 1H), 7.35 (d, J = 8.8Hz, 2H), 8.16 (d, J = 8.8Hz, 2H).
第2ステップ:前駆体(1-a2)の合成
Figure JPOXMLDOC01-appb-C000076
 500mlナス型フラスコに前駆体(1-a1)を20.90g(78.49mmol)入れ、テトラヒドロフラン200mlを加えた。反応容器を窒素置換した後、パラジウムカーボンを2.09g加え、窒素置換した。反応容器を水素置換し、20℃にて、19時間撹拌した。反応終了後、セライトろ過により、パラジウムカーボンを除去し、ろ液から溶媒を除去し、白色固体を得た。得られた固体を酢酸エステル20mlに溶解し、ヘキサンを140ml加えて、再結晶を行った。析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が前駆体(1-a2)であることを確認した。収量は16.54g、収率は89%であった。
1H NMR (400MHz, CDCl3, δppm):1.43(s, 9H), 2.67(t, J=6.8Hz, 2H), 3.31(q, J=6.8Hz, 2H), 3.59(bs, 2H),  4.52(bs, 1H), 6.64(d, J=8.0Hz, 2H), 6.97(d, J=8.0Hz, 2H).
Second step: Synthesis of precursor (1-a2)
Figure JPOXMLDOC01-appb-C000076
In a 500 ml eggplant type flask, 20.90 g (78.49 mmol) of the precursor (1-a1) was placed, and 200 ml of tetrahydrofuran was added. After the reaction vessel was purged with nitrogen, 2.09 g of palladium carbon was added and purged with nitrogen. The reaction vessel was purged with hydrogen and stirred at 20 ° C. for 19 hours. After completion of the reaction, palladium carbon was removed by Celite filtration, and the solvent was removed from the filtrate to obtain a white solid. The obtained solid was dissolved in 20 ml of acetic ester, and 140 ml of hexane was added for recrystallization. The precipitated solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-a2). The yield was 16.54 g, and the yield was 89%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.43 (s, 9H), 2.67 (t, J = 6.8Hz, 2H), 3.31 (q, J = 6.8Hz, 2H), 3.59 (bs, 2H), 4.52 (bs, 1H), 6.64 (d, J = 8.0Hz, 2H), 6.97 (d, J = 8.0Hz, 2H).
第3ステップ:化合物(1-a)の合成
 100ml四つ口フラスコを窒素雰囲気とし、これに1,3DM-CBDE-Clを5.00g(15.38mmol)入れ、次いで、テトラヒドロフラン(脱水)を25ml、ピリジンを2.68g(33.83mmol)加えて、撹拌し、酸クロライド溶液を得た。次に、100ml三角フラスコに前駆体(1-a2)を7.45g(31.53mmol)入れ、次いで、テトラヒドロフラン(脱水)を15ml加えて、モノアミン溶液とした。このモノアミン溶液を滴下ロートに移し、四つ口フラスコの中に、モノアミン溶液を15分かけて滴下した。滴下後、20時間撹拌した。20時間後、反応溶液を200mlの水に注ぎ、クロロホルムを100ml加えて、抽出した。得られた有機層を純水で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を除去後、溶媒留去し、白色固体を得た。得られた固体をテトラヒドロフラン30mlに溶解し、ジイソプロピルエーテルを100ml加えて、再結晶を行った。析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が化合物(1-a)であることを確認した。収量は8.38g、収率は75%であった。
1H NMR (400MHz, CDCl3, δppm):1.43(s, 18H), 1.58(s, 6H), 2.78(t, J=6.8Hz, 4H), 3.53(m, 4H), 3.84(s, 6H), 4.10(s, 2H), 4.55(bs, 2H), 7.18(d, J=8.0Hz, 4H), 7.45(d, J=8.0Hz, 4H), 8.62(s, 2H).
Third Step: Synthesis of Compound (1-a) A 100 ml four-necked flask was placed in a nitrogen atmosphere, and 5.00 g (15.38 mmol) of 1,3DM-CBDE-Cl was added thereto, and then 25 ml of tetrahydrofuran (dehydrated) was added. 2.68 g (33.83 mmol) of pyridine was added and stirred to obtain an acid chloride solution. Next, 7.45 g (31.53 mmol) of the precursor (1-a2) was placed in a 100 ml Erlenmeyer flask, and then 15 ml of tetrahydrofuran (dehydrated) was added to obtain a monoamine solution. This monoamine solution was transferred to a dropping funnel, and the monoamine solution was dropped into a four-necked flask over 15 minutes. After dropping, the mixture was stirred for 20 hours. After 20 hours, the reaction solution was poured into 200 ml of water, and extracted with 100 ml of chloroform. The obtained organic layer was washed twice with pure water and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a white solid. The obtained solid was dissolved in 30 ml of tetrahydrofuran, and recrystallized by adding 100 ml of diisopropyl ether. The precipitated solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained from 1 HNMR was the compound (1-a). The yield was 8.38 g, and the yield was 75%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.43 (s, 18H), 1.58 (s, 6H), 2.78 (t, J = 6.8Hz, 4H), 3.53 (m, 4H), 3.84 (s, 6H ), 4.10 (s, 2H), 4.55 (bs, 2H), 7.18 (d, J = 8.0Hz, 4H), 7.45 (d, J = 8.0Hz, 4H), 8.62 (s, 2H).
(実施例2)化合物(1-b)の合成
Figure JPOXMLDOC01-appb-C000077
 以下に、3ステップの経路で化合物(1-b)を合成した。
Example 2 Synthesis of Compound (1-b)
Figure JPOXMLDOC01-appb-C000077
Hereinafter, compound (1-b) was synthesized by a three-step route.
第1ステップ:前駆体(1-b1)の合成
Figure JPOXMLDOC01-appb-C000078
 窒素置換した100ml四つ口フラスコに4-ブロモニトロベンゼンを8.95g(44.30mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを0.311g(0.44mmol)、ヨウ化銅を0.169g(0.89mmol)、トリエチルアミンを5.38g(53.16mmol)を入れ、テトラヒドロフランを30ml加えて、室温(20℃)で10分間攪拌した。次に、100ml三角フラスコにN-(tert-ブトキシカルボニル)プロパルギルアミンを8.25g(53.16mmol)を入れ、テトラヒドロフランを15ml加えて、溶解した。この溶液を滴下ロートに移し、四つ口フラスコ中の溶液へ5分間かけて滴下した。滴下後、60℃にて3時間加熱撹拌した。3時間後、反応溶液を250mlの純水に投入し、固体を析出させた。析出した固体を吸引ろ取した後、得られた固体をトルエン40mlに溶解し、ヘキサン25mlを加えて、再結晶した。析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた茶色固体が前駆体(1-b1)であることを確認した。収量は7.66g、収率は62.5%であった。
1H NMR (400MHz, CDCl3, δppm):1.43(s, 9H), 4.20(s, 2H), 4.82(bs, 1H), 7.56(d, J=8.0Hz, 2H), 8.18(d, J=8.0Hz, 2H).
First step: synthesis of precursor (1-b1)
Figure JPOXMLDOC01-appb-C000078
In a 100 ml four-necked flask purged with nitrogen, 8.95 g (44.30 mmol) of 4-bromonitrobenzene, 0.311 g (0.44 mmol) of bis (triphenylphosphine) palladium (II) dichloride, and 0.1% of copper iodide were added. 169 g (0.89 mmol) and 5.38 g (53.16 mmol) of triethylamine were added, 30 ml of tetrahydrofuran was added, and the mixture was stirred at room temperature (20 ° C.) for 10 minutes. Next, 8.25 g (53.16 mmol) of N- (tert-butoxycarbonyl) propargylamine was placed in a 100 ml Erlenmeyer flask, and 15 ml of tetrahydrofuran was added and dissolved. This solution was transferred to a dropping funnel and added dropwise to the solution in the four-necked flask over 5 minutes. After dropping, the mixture was stirred with heating at 60 ° C. for 3 hours. After 3 hours, the reaction solution was poured into 250 ml of pure water to precipitate a solid. After the precipitated solid was collected by suction filtration, the obtained solid was dissolved in 40 ml of toluene and recrystallized by adding 25 ml of hexane. The precipitated solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the brown solid obtained by 1 HNMR was the precursor (1-b1). The yield was 7.66 g, and the yield was 62.5%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.43 (s, 9H), 4.20 (s, 2H), 4.82 (bs, 1H), 7.56 (d, J = 8.0Hz, 2H), 8.18 (d, J = 8.0Hz, 2H).
第2ステップ:前駆体(1-b2)の合成
Figure JPOXMLDOC01-appb-C000079
500mlナス型フラスコに前駆体(1-b1)を12.87g(46.58mmol)入れ、メタノール130mlを加えた。反応容器を窒素置換した後、パラジウムカーボンを1.28g加え、窒素置換した。反応容器を水素置換し、50℃にて、24時間加熱撹拌した。反応終了後、セライトろ過により、パラジウムカーボンを除去し、ろ液から溶媒を除去し、茶色のアメ状化合物を得た。得られたアメ状化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=50:50)にて精製し、茶色のアメ状化合物を得た。HNMRより得られた茶色のアメ状化合物が前駆体(1-b2)であることを確認した。収量は4.42g、収率は37.9%であった。
1H NMR (400MHz, CDCl3, δppm):1.43(s, 9H), 1.75(quin, J=6.8Hz, 2H), 2.55(t, J=6.8Hz, 2H), 3.16(q, J=6.8Hz, 2H), 3.59(bs, 2H), 4.56(bs, 1H), 6.67(d, J=8.0Hz, 2H), 6.96(d, J=8.0Hz, 2H).
Second step: Synthesis of precursor (1-b2)
Figure JPOXMLDOC01-appb-C000079
12.87 g (46.58 mmol) of the precursor (1-b1) was placed in a 500 ml eggplant type flask, and 130 ml of methanol was added. After the reaction vessel was purged with nitrogen, 1.28 g of palladium carbon was added and purged with nitrogen. The reaction vessel was purged with hydrogen and stirred at 50 ° C. for 24 hours. After completion of the reaction, palladium carbon was removed by Celite filtration, and the solvent was removed from the filtrate to obtain a brown candy-like compound. The obtained candy-like compound was purified by silica gel column chromatography (ethyl acetate: hexane = 50: 50) to obtain a brown candy-like compound. It was confirmed that the brown candy-like compound obtained by 1 HNMR was the precursor (1-b2). The yield was 4.42 g, and the yield was 37.9%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.43 (s, 9H), 1.75 (quin, J = 6.8Hz, 2H), 2.55 (t, J = 6.8Hz, 2H), 3.16 (q, J = 6.8 Hz, 2H), 3.59 (bs, 2H), 4.56 (bs, 1H), 6.67 (d, J = 8.0Hz, 2H), 6.96 (d, J = 8.0Hz, 2H).
第3ステップ:化合物(1-b)の合成
 100ml四つ口フラスコを窒素雰囲気とし、これに1,3DM-CBDE-Clを2.40g(15.38mmol)入れ、次いで、テトラヒドロフラン(脱水)を10ml、ピリジンを1.29g(16.24mmol)加えて、撹拌し、酸クロライド溶液を得た。 次に、50ml三角フラスコに前駆体(1-b2)を4.07g(16.24mmol)入れ、次いで、テトラヒドロフラン(脱水)を10ml加えて、モノアミン溶液とした。このモノアミン溶液を滴下ロートに移し、四つ口フラスコの中に、モノアミン溶液を5分かけて滴下した。滴下後、3時間撹拌した。20時間後、反応溶液を60mlの水に注ぎ、クロロホルムを40ml加えて、抽出した。得られた有機層を純水で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を除去後、溶媒留去し、白色固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)で精製し、白色固体を得た。HNMRより得られた白色固体が化合物(1-b)であることを確認した。収量は3.72g、収率は66.9%であった。
1H NMR (400MHz, DMSO-d6, δppm):1.43(s, 18H), 1.58(s, 6H), 1.67(quin, J=6.8Hz, 4H), 2.55(m, 4H), 2.97(q, J=6.8Hz, 4H), 3,59(s, 6H), 3.62(s, 2H), 6.86(t, J=6.8Hz, 2H), 7.16(d, J=8.0Hz, 4H), 7.45(d, J=8.0Hz, 4H), 9.43(s, 2H).
Third Step: Synthesis of Compound (1-b) A 100 ml four-necked flask was placed in a nitrogen atmosphere, and 2.40 g (15.38 mmol) of 1,3DM-CBDE-Cl was added thereto, followed by 10 ml of tetrahydrofuran (dehydrated). , 1.29 g (16.24 mmol) of pyridine was added and stirred to obtain an acid chloride solution. Next, 4.07 g (16.24 mmol) of the precursor (1-b2) was placed in a 50 ml Erlenmeyer flask, and then 10 ml of tetrahydrofuran (dehydrated) was added to obtain a monoamine solution. This monoamine solution was transferred to a dropping funnel, and the monoamine solution was dropped into a four-necked flask over 5 minutes. After dropping, the mixture was stirred for 3 hours. After 20 hours, the reaction solution was poured into 60 ml of water and extracted by adding 40 ml of chloroform. The obtained organic layer was washed twice with pure water and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a white solid. The obtained solid was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1) to obtain a white solid. It was confirmed that the white solid obtained by 1 HNMR was the compound (1-b). The yield was 3.72 g, and the yield was 66.9%.
1 H NMR (400MHz, DMSO-d6, δppm): 1.43 (s, 18H), 1.58 (s, 6H), 1.67 (quin, J = 6.8Hz, 4H), 2.55 (m, 4H), 2.97 (q, J = 6.8Hz, 4H), 3,59 (s, 6H), 3.62 (s, 2H), 6.86 (t, J = 6.8Hz, 2H), 7.16 (d, J = 8.0Hz, 4H), 7.45 ( d, J = 8.0Hz, 4H), 9.43 (s, 2H).
(実施例3)化合物(1-c)の合成
Figure JPOXMLDOC01-appb-C000080
以下に、3ステップの経路で化合物(1-c)を合成した。
Example 3 Synthesis of Compound (1-c)
Figure JPOXMLDOC01-appb-C000080
Hereinafter, compound (1-c) was synthesized by a three-step route.
第1ステップ:前駆体(1-c1)の合成
Figure JPOXMLDOC01-appb-C000081
 2L四つ口フラスコに3-ブロモプロピルアミン臭化水素酸塩を50.42g(0.230mol)入れ、ジクロロメタンを672g、二炭酸ジ-tert-ブチルを56.28g(0.258mol)加え、0℃(氷浴)にて撹拌した。滴下ロートにN,N-ジジイソプロピルエチルアミンを60.86g(0.471mol)入れ、四つ口フラスコ中のスラリー溶液へ30分かけて滴下した。滴下開始後、反応溶液が激しく発泡し、白色固体が析出した。滴下終了後、3時間撹拌した。反応終了後、反応溶液に純水500mlを加え、抽出した。得られた有機層を純水で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を除去後、溶媒留去し、無色透明のオイルを得た。このオイル状物質にヘキサン500mlを加え、-78℃で晶析し、白色固体を得た。固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体がtert-ブチル-3-ブロモプロピルカルバメート、すなわち前駆体(1-c1)であることを確認した。収量は42.99g、収率は78.5%であった。
1H NMR (400MHz, CDCl3, δppm):1.44(s, 9H), 2.05(quin, J=6.4Hz, 2H), 3.27(q, J=6.4Hz, 2H), 3.45(t, J=6.4Hz,2H), 4.69(bs, 1H).
First step: synthesis of precursor (1-c1)
Figure JPOXMLDOC01-appb-C000081
In a 2 L four-necked flask, 50.42 g (0.230 mol) of 3-bromopropylamine hydrobromide was added, 672 g of dichloromethane and 56.28 g (0.258 mol) of di-tert-butyl dicarbonate were added. Stir at ° C (ice bath). 60.86 g (0.471 mol) of N, N-didiisopropylethylamine was placed in the dropping funnel and dropped into the slurry solution in the four-necked flask over 30 minutes. After the start of dropping, the reaction solution foamed vigorously and a white solid was precipitated. It stirred for 3 hours after completion | finish of dripping. After completion of the reaction, 500 ml of pure water was added to the reaction solution and extracted. The obtained organic layer was washed twice with pure water and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a colorless and transparent oil. To this oily substance, 500 ml of hexane was added and crystallized at −78 ° C. to obtain a white solid. The solid was filtered off with suction and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was tert-butyl-3-bromopropylcarbamate, ie, precursor (1-c1). The yield was 42.99 g, and the yield was 78.5%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.44 (s, 9H), 2.05 (quin, J = 6.4Hz, 2H), 3.27 (q, J = 6.4Hz, 2H), 3.45 (t, J = 6.4 Hz, 2H), 4.69 (bs, 1H).
第2ステップ:前駆体(1-c2)の合成
Figure JPOXMLDOC01-appb-C000082
 1L四つ口フラスコに前駆体(1-c1)を40.00g(0.168mol)、炭酸カリウムを32.86g(0.238mol)入れ、DMFを481g加えて、60℃にて7時間加熱撹拌した。7時間後、得られた反応溶液を3Lの純水に撹拌しながら投入し、酢酸エステルを1L加え、抽出した。得られた有機層を純水で2回、1M水酸化ナトリウム水溶液500mlで洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を除去後、溶媒留去し、黄色固体を得た。得られた固体を酢酸エステル200mlに溶解し、撹拌しながらヘキサンを1L加えて、固体を析出された。得られた固体を吸引ろ取し、減圧乾燥した。HNMRより得られた黄色固体が前駆体(1-c2)であることを確認した。収量は35.49g、収率は71.3%であった。
1H NMR (400MHz, CDCl3, δppm):1.44(s, 9H), 2.03(quin, J=6.4Hz, 2H), 3.34(q, J=6.4Hz, 2H), 4.12(t, J=6.4Hz, 2H), 4.72(bs, 1H), 6.95(d, 8.0Hz, 2H), 8.20(d, 8.0Hz, 2H).
Second step: Synthesis of precursor (1-c2)
Figure JPOXMLDOC01-appb-C000082
Add 40.00 g (0.168 mol) of precursor (1-c1) and 32.86 g (0.238 mol) of potassium carbonate to a 1 L four-necked flask, add 481 g of DMF, and heat and stir at 60 ° C. for 7 hours. did. After 7 hours, the obtained reaction solution was poured into 3 L of pure water with stirring, and 1 L of acetate was added for extraction. The obtained organic layer was washed twice with pure water with 500 ml of 1M aqueous sodium hydroxide solution and dried over anhydrous magnesium sulfate. After removing the desiccant, the solvent was distilled off to obtain a yellow solid. The obtained solid was dissolved in 200 ml of acetic ester, and 1 L of hexane was added with stirring to precipitate a solid. The obtained solid was collected by suction filtration and dried under reduced pressure. The yellow solid obtained from 1 HNMR was confirmed to be the precursor (1-c2). The yield was 35.49 g, and the yield was 71.3%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.44 (s, 9H), 2.03 (quin, J = 6.4Hz, 2H), 3.34 (q, J = 6.4Hz, 2H), 4.12 (t, J = 6.4 Hz, 2H), 4.72 (bs, 1H), 6.95 (d, 8.0Hz, 2H), 8.20 (d, 8.0Hz, 2H).
第3ステップ:前駆体(1-c3)の合成
Figure JPOXMLDOC01-appb-C000083
 500mlナス型フラスコに前駆体(1-c2)を30.04g(0.102mol)を入れ、エタノール170gを加えた。反応容器を窒素置換した後、パラジウムカーボンを3.11g加え、窒素置換した。反応容器を水素置換し、20℃にて、48時間撹拌した。反応終了後、セライトろ過により、パラジウムカーボンを除去し、ろ液から溶媒を除去し、固体を得た。得られた固体を酢酸エステル100mlに溶解し、撹拌しながらヘキサンを400ml加え、さらに-50℃に冷却することにより、白色固体が析出した。析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた黄色固体が前駆体(1-c3)であることを確認した。収量は26.64g、収率は97.7%であった。
1H NMR (400MHz, CDCl3, δppm):1.44(s, 9H), 1.93(quin, J=6.4Hz, 2H), 3.32(q, J=6.4Hz, 2H), 3.44(bs, 2H), 3.94(t, J=6.4Hz,2H), 4.85(bs, 1H), 6.63(d, 8.0Hz, 2H), 6.73(d, 8.0Hz, 2H).
Third step: Synthesis of precursor (1-c3)
Figure JPOXMLDOC01-appb-C000083
30.04 g (0.102 mol) of the precursor (1-c2) was placed in a 500 ml eggplant type flask, and 170 g of ethanol was added. After the reaction vessel was purged with nitrogen, 3.11 g of palladium carbon was added and purged with nitrogen. The reaction vessel was purged with hydrogen and stirred at 20 ° C. for 48 hours. After completion of the reaction, palladium carbon was removed by Celite filtration, and the solvent was removed from the filtrate to obtain a solid. The obtained solid was dissolved in 100 ml of acetic ester, 400 ml of hexane was added with stirring, and the mixture was further cooled to −50 ° C. to precipitate a white solid. The precipitated solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the yellow solid obtained by 1 HNMR was the precursor (1-c3). The yield was 26.64 g and the yield was 97.7%.
1 H NMR (400MHz, CDCl 3 , δppm): 1.44 (s, 9H), 1.93 (quin, J = 6.4Hz, 2H), 3.32 (q, J = 6.4Hz, 2H), 3.44 (bs, 2H), 3.94 (t, J = 6.4Hz, 2H), 4.85 (bs, 1H), 6.63 (d, 8.0Hz, 2H), 6.73 (d, 8.0Hz, 2H).
第4ステップ:化合物(1-c)の合成
 撹拌装置付きの300ml四つ口フラスコを窒素雰囲気とし、前駆体(1-c3)を12.26g (46.0mmol)入れ、NMPを241g、塩基としてピリジンを5.31g (67.1mmol) 加え撹拌して溶解させた。次にこのモノアミン溶液を撹拌しながら1,3DM-CBDE-Clを7.43g (22.9mol)添加し、水冷下4時間反応させた。得られた反応溶液を、1800g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1800g の水で1回、1800g のエタノールで1回、540g のエタノールで3回洗浄し、白色固体を得た。得られた白色固体を酢酸エチルに溶解し、ヘキサンを加えて、再結晶を行った。析出した固体を析出した固体を吸引ろ取し、減圧乾燥した。HNMRより得られた黄色固体が前駆体(1-c)であることを確認した。収量は15.23g、収率は84.4%であった。
1H NMR (400MHz, CDCl3 δppm):1.44(s, 18H), 1.58(s, 6H), 1.97(quin, J=6.4Hz, 4H) , 3.31(q, J=6.4Hz, 4H), 3.85(s, 6H), 3.99(t, J=6.4Hz,4H), 4.80(bs, 2H), 6.85(d, 8.0Hz, 4H), 7.42(d, 8.0Hz, 4H), 8.50(s,2H).
Fourth Step: Synthesis of Compound (1-c) A 300 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 12.26 g (46.0 mmol) of the precursor (1-c3) was added, 241 g of NMP was used as the base 5.31 g (67.1 mmol) of pyridine was added and dissolved by stirring. Next, while stirring the monoamine solution, 7.43 g (22.9 mol) of 1,3DM-CBDE-Cl was added and reacted for 4 hours under water cooling. The obtained reaction solution was poured into 1800 g of water with stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 1800 g of water, once with 1800 g of ethanol, and three times with 540 g of ethanol. A white solid was obtained. The obtained white solid was dissolved in ethyl acetate, and hexane was added for recrystallization. The precipitated solid was collected by suction filtration and dried under reduced pressure. The yellow solid obtained from 1 HNMR was confirmed to be the precursor (1-c). The yield was 15.23 g, and the yield was 84.4%.
1 H NMR (400MHz, CDCl 3 δppm): 1.44 (s, 18H), 1.58 (s, 6H), 1.97 (quin, J = 6.4Hz, 4H), 3.31 (q, J = 6.4Hz, 4H), 3.85 (s, 6H), 3.99 (t, J = 6.4Hz, 4H), 4.80 (bs, 2H), 6.85 (d, 8.0Hz, 4H), 7.42 (d, 8.0Hz, 4H), 8.50 (s, 2H ).
(実施例4)化合物(1-d)の合成
Figure JPOXMLDOC01-appb-C000084
 撹拌装置付きの300ml四つ口フラスコを窒素雰囲気とし、2,5-ビス(メトキシカルボニル)テレフタル酸を1.87g(6.63mmol)、ピリジンを1.10g(13.9mmol)を入れ、脱水テトラヒドロフランを40ml加え、加熱還流した。この溶液に塩化チオニルを1.54g(12.9mmol)加え、1時間加熱還流した。1時間後、反応溶液に前駆体(1-a2)を3.13g (19.56mmol)入れ、さらに2時間加熱還流した。得られた反応溶液を、500g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、500g の水で1回、500g のメタノールで1回、240g のメタノールで3回洗浄し、白色固体を得た。得られた白色固体を200mlナス型フラスコに入れ、酢酸エチル100mlを加えて、加熱撹拌した。残った固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が化合物(1-d)であることを確認した。収量は1.97g、収率は41.4%であった。
1H NMR (400MHz, DMSO-d6 δppm):1.38(s, 18H), 2.67(t, J=8.0Hz, 4H) , 3.13(q J=8.0Hz, 4H), 3.81(s, 6H), 6.89(t, J=5.6Hz,2H), 7.18(d, 8.8Hz, 4H), 7.42(d, 8.8Hz, 4H), 8.03(s,2H), 10.56(s, 2H).
Example 4 Synthesis of Compound (1-d)
Figure JPOXMLDOC01-appb-C000084
A 300 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, and 1.87 g (6.63 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid and 1.10 g (13.9 mmol) of pyridine were added thereto. Was added and heated to reflux. To this solution, 1.54 g (12.9 mmol) of thionyl chloride was added and heated under reflux for 1 hour. After 1 hour, 3.13 g (19.56 mmol) of the precursor (1-a2) was added to the reaction solution, and the mixture was further heated to reflux for 2 hours. The obtained reaction solution was poured into 500 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 500 g of water, once with 500 g of methanol, and three times with 240 g of methanol. A white solid was obtained. The obtained white solid was put into a 200 ml eggplant type flask, 100 ml of ethyl acetate was added, and the mixture was heated and stirred. The remaining solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained from 1 HNMR was the compound (1-d). The yield was 1.97 g, and the yield was 41.4%.
1 H NMR (400MHz, DMSO-d6 δppm): 1.38 (s, 18H), 2.67 (t, J = 8.0Hz, 4H), 3.13 (q J = 8.0Hz, 4H), 3.81 (s, 6H), 6.89 (t, J = 5.6Hz, 2H), 7.18 (d, 8.8Hz, 4H), 7.42 (d, 8.8Hz, 4H), 8.03 (s, 2H), 10.56 (s, 2H).
(実施例5)化合物(1-j)の合成
Figure JPOXMLDOC01-appb-C000085
 撹拌装置付きの30ml四つ口フラスコを窒素雰囲気とし、前駆体(1-a2)を1.04g (4.42mmol)入れ、NMPを20g、塩基としてピリジンを0.58g (7.43mmol) 加え撹拌して溶解させた。次にこのモノアミン溶液を撹拌しながらCBDE-Clを0.658g (2.22mol)添加し、水冷下2時間反応させた。得られた反応溶液を、200g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、200g の水で1回、200g のエタノールで1回、100g のエタノールで3回洗浄し、白色固体を得た。得られた白色固体を50mlナス型フラスコに入れ、酢酸エチルを30ml加え、80℃にて30分間加熱撹拌した。30分後、残った固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が前駆体(1-j)であることを確認した。収量は0.42g、収率は27.3%であった。
1H NMR (400MHz, DMSO-d6 δppm):1.33(s, 18H), 1.58(s, 6H), 2.59(t, J=7.2Hz, 4H) , 3.06(q, J=7.2Hz, 4H), 3.47(s, 6H),3.56~3.63(m,2H), 3.86~3.91(m,2H),6.83(t, J=5.6Hz, 4H), 7.08(d, 8.4Hz, 4H), 7.43(d, 8.4Hz, 4H), 10.10(s,2H).
Example 5 Synthesis of Compound (1-j)
Figure JPOXMLDOC01-appb-C000085
A 30 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 1.04 g (4.42 mmol) of the precursor (1-a2) was added, 20 g of NMP, and 0.58 g (7.43 mmol) of pyridine as a base were added and stirred. And dissolved. Next, while stirring this monoamine solution, 0.658 g (2.22 mol) of CBDE-Cl was added and reacted for 2 hours under water cooling. The obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 200 g of water, once with 200 g of ethanol, and three times with 100 g of ethanol. A white solid was obtained. The obtained white solid was put into a 50 ml eggplant type flask, 30 ml of ethyl acetate was added, and the mixture was heated and stirred at 80 ° C. for 30 minutes. After 30 minutes, the remaining solid was filtered off with suction and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-j). The yield was 0.42 g, and the yield was 27.3%.
1 H NMR (400MHz, DMSO-d6 δppm): 1.33 (s, 18H), 1.58 (s, 6H), 2.59 (t, J = 7.2Hz, 4H), 3.06 (q, J = 7.2Hz, 4H), 3.47 (s, 6H), 3.56 to 3.63 (m, 2H), 3.86 to 3.91 (m, 2H), 6.83 (t, J = 5.6Hz, 4H), 7.08 (d, 8.4Hz, 4H), 7.43 (d , 8.4Hz, 4H), 10.10 (s, 2H).
(実施例6)化合物(1-k)の合成
Figure JPOXMLDOC01-appb-C000086
 撹拌装置付きの30ml四つ口フラスコを窒素雰囲気とし、前駆体(1-c3)を1.06g (3.99mmol)入れ、NMPを20g、塩基としてピリジンを0.58g (7.43mmol) 加え撹拌して溶解させた。次にこのモノアミン溶液を撹拌しながらCBDE-Clを0.658g (1.99mol)添加し、水冷下2時間反応させた。得られた反応溶液を、200g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、200g の水で1回、200g のエタノールで1回、100g のエタノールで3回洗浄し、白色固体を得た。得られた白色固体を50mlナス型フラスコに入れ、酢酸エチルを30ml加え、80℃にて30分間加熱撹拌した。30分後、残った固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が前駆体(1-k)であることを確認した。収量は0.58g、収率は38.4%であった。
1H NMR (400MHz, DMSO-d6 δppm):1.44(s, 18H), 1.79(quin, J=6.4Hz, 4H) , 3.06(q, J=6.4Hz, 4H), 3.60(s, 6H), 3.59~3.66(m, 2H), 3.86~3.96(m, 6H), 6.86(d, 8.0Hz, 4H), 6.90(t, J=6.4Hz, 2H), 7.46(d, 8.0Hz, 4H), 10.06(s,2H).
Example 6 Synthesis of Compound (1-k)
Figure JPOXMLDOC01-appb-C000086
A 30 ml four-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 1.06 g (3.99 mmol) of the precursor (1-c3) was added, 20 g of NMP, and 0.58 g (7.43 mmol) of pyridine as a base were added and stirred. And dissolved. Next, while stirring this monoamine solution, 0.658 g (1.99 mol) of CBDE-Cl was added and reacted for 2 hours under water cooling. The obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 200 g of water, once with 200 g of ethanol, and three times with 100 g of ethanol. A white solid was obtained. The obtained white solid was put into a 50 ml eggplant type flask, 30 ml of ethyl acetate was added, and the mixture was heated and stirred at 80 ° C. for 30 minutes. After 30 minutes, the remaining solid was filtered off with suction and dried under reduced pressure. It was confirmed that the white solid obtained by 1 HNMR was the precursor (1-k). The yield was 0.58 g, and the yield was 38.4%.
1 H NMR (400MHz, DMSO-d6 δppm): 1.44 (s, 18H), 1.79 (quin, J = 6.4Hz, 4H), 3.06 (q, J = 6.4Hz, 4H), 3.60 (s, 6H), 3.59 ~ 3.66 (m, 2H), 3.86 ~ 3.96 (m, 6H), 6.86 (d, 8.0Hz, 4H), 6.90 (t, J = 6.4Hz, 2H), 7.46 (d, 8.0Hz, 4H), 10.06 (s, 2H).
(実施例7)化合物(1-i)の合成
Figure JPOXMLDOC01-appb-C000087
 撹拌装置付きの50ml二口フラスコを窒素雰囲気とし、2,5-ビス(メトキシカルボニル)テレフタル酸を0.62g(2.20mmol)、ピリジンを0.38g(4.80mmol)を入れ、脱水テトラヒドロフランを20ml加え、加熱還流した。この溶液に塩化チオニルを0.55g(4.62mmol)加え、1時間加熱還流した。1時間後、反応溶液に前駆体(1-c3)を1.23g (4.62mmol)入れ、さらに2時間加熱還流した。得られた反応溶液を、200g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、100g の水で1回、100g のエタノールで1回、50g のエタノールで3回洗浄し、淡黄色固体を得た。得られた淡黄色固体を50mlナス型フラスコに入れ、酢酸エチルを20ml加えて、加熱撹拌した。残った固体を吸引ろ取し、減圧乾燥した。HNMRより得られた白色固体が化合物(1-i)であることを確認した。収量は0.57g、収率は33.1%であった。
1H NMR (400MHz, DMSO-d6 δppm):1.38(s, 18H), 1.83(quin, J=6.4Hz, 4H), 3.08(q J=6.4Hz, 4H), 3.81(s, 6H), 3.96(t, J=6.4Hz, 4H), 6.86~7.00(m, 6H), 7.58(d, 7.2Hz, 4H), 8.02(s,2H), 10.47(s, 2H).
Example 7 Synthesis of Compound (1-i)
Figure JPOXMLDOC01-appb-C000087
A 50 ml two-necked flask equipped with a stirrer was placed in a nitrogen atmosphere, 0.62 g (2.20 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid and 0.38 g (4.80 mmol) of pyridine were added, and dehydrated tetrahydrofuran was added. 20 ml was added and heated to reflux. To this solution, 0.55 g (4.62 mmol) of thionyl chloride was added and heated to reflux for 1 hour. After 1 hour, 1.23 g (4.62 mmol) of the precursor (1-c3) was added to the reaction solution, and the mixture was further heated to reflux for 2 hours. The obtained reaction solution was poured into 200 g of water while stirring, and the precipitated white precipitate was collected by filtration, and then washed once with 100 g of water, once with 100 g of ethanol, and three times with 50 g of ethanol. To obtain a pale yellow solid. The obtained pale yellow solid was put into a 50 ml eggplant type flask, 20 ml of ethyl acetate was added, and the mixture was heated and stirred. The remaining solid was collected by suction filtration and dried under reduced pressure. It was confirmed that the white solid obtained from 1 HNMR was the compound (1-i). The yield was 0.57 g, and the yield was 33.1%.
1 H NMR (400MHz, DMSO-d6 δppm): 1.38 (s, 18H), 1.83 (quin, J = 6.4Hz, 4H), 3.08 (q J = 6.4Hz, 4H), 3.81 (s, 6H), 3.96 (t, J = 6.4Hz, 4H), 6.86 ~ 7.00 (m, 6H), 7.58 (d, 7.2Hz, 4H), 8.02 (s, 2H), 10.47 (s, 2H).
(実施例8)化合物(1-e)含有溶液の調製
Figure JPOXMLDOC01-appb-C000088
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、前駆体(1-a2)を2.37g(10.03mmol)入れ、次いで、NMPを9.40g加えて、窒素を送りながら撹拌し、モノアミン溶液とした。このモノアミン溶液を撹拌しながら、CBDAを0.98g(5.00mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌して化合物(1-e)含有溶液を得た。
 得られた溶液の一部に対し、1-メチル-3-p-トリルトリアゼンを加えて、カルボン酸のメチルエステル化を行ったところ、HNMRより実施例5で得られた(1-j)と同一の化合物が得られたことを確認した。このことから、上記溶液には、(1-e)が含まれることが確認された。
(Example 8) Preparation of a solution containing compound (1-e)
Figure JPOXMLDOC01-appb-C000088
2.37 g (10.03 mmol) of the precursor (1-a2) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 9.40 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 0.98 g (5.00 mmol) of CBDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to obtain the compound (1-e). A containing solution was obtained.
1-Methyl-3-p-tolyltriazene was added to a part of the obtained solution to carry out methyl esterification of the carboxylic acid, which was obtained in Example 5 from 1 HNMR (1-j It was confirmed that the same compound was obtained. From this, it was confirmed that the above solution contains (1-e).
(実施例9)化合物(1-f)含有溶液の調製
Figure JPOXMLDOC01-appb-C000089
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、前駆体(1-a2)を2.37g(10.03mmol)入れ、次いで、NMPを9.62g加えて、窒素を送りながら撹拌し、モノアミン溶液とした。このモノアミン溶液を撹拌しながら、PMDAを1.09g(5.00mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌して化合物(1-f)含有溶液を得た。
 得られた溶液の一部に対し、1-メチル-3-p-トリルトリアゼンを加えて、カルボン酸のメチルエステル化を行ったところ、HNMRより実施例4で得られた(1-d)と同一の化合物が得られたことを確認した。このことから、上記溶液には、(1-f)が含まれることが確認された。
Example 9 Preparation of Compound (1-f) -Containing Solution
Figure JPOXMLDOC01-appb-C000089
2.37 g (10.03 mmol) of the precursor (1-a2) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 9.62 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.09 g (5.00 mmol) of PMDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-f). A containing solution was obtained.
1-Methyl-3-p-tolyltriazene was added to a part of the resulting solution to carry out methyl esterification of the carboxylic acid, which was obtained in Example 4 from 1 HNMR (1-d It was confirmed that the same compound was obtained. From this, it was confirmed that the above solution contains (1-f).
(実施例10)化合物(1-g)含有溶液の調製
Figure JPOXMLDOC01-appb-C000090
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、前駆体(1-c3)を2.66g(9.99mmol)入れ、次いで、NMPを10.19g加えて、窒素を送りながら撹拌し、モノアミン溶液とした。このモノアミン溶液を撹拌しながら、CBDAを1.09g(5.00mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌して化合物(1-g)含有溶液を得た。
 得られた溶液の一部に対し、1-メチル-3-p-トリルトリアゼンを加えて、カルボン酸のメチルエステル化を行ったところ、HNMRより実施例6で得られた(1-k)と同一の化合物が得られたことを確認した。このことから、上記溶液には、(1-g)が含まれることが確認された。
Example 10 Preparation of Compound (1-g) -Containing Solution
Figure JPOXMLDOC01-appb-C000090
2.66 g (9.99 mmol) of the precursor (1-c3) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 10.19 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.09 g (5.00 mmol) of CBDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-g). A containing solution was obtained.
1-Methyl-3-p-tolyltriazene was added to a part of the obtained solution to carry out methyl esterification of the carboxylic acid, which was obtained in Example 6 from 1 HNMR (1-k It was confirmed that the same compound was obtained. From this, it was confirmed that the above solution contains (1-g).
(実施例11)化合物(1-h)含有溶液の調製
Figure JPOXMLDOC01-appb-C000091
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、前駆体(1-c3)を3.99g(15.0mmol)入れ、次いで、NMPを16.91g加えて、窒素を送りながら撹拌し、モノアミン溶液とした。このモノアミン溶液を撹拌しながら、PMDAを1.64g(7.52mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌して化合物(1-h)含有溶液を得た。
 得られた溶液の一部に対し、1-メチル-3-p-トリルトリアゼンを加えて、カルボン酸のメチルエステル化を行ったところ、HNMRより実施例7で得られた(1-i)と同一の化合物が得られたことを確認した。このことから、上記溶液には、(1-h)が含まれることが確認された。
Example 11 Preparation of Compound (1-h) -Containing Solution
Figure JPOXMLDOC01-appb-C000091
3.99 g (15.0 mmol) of the precursor (1-c3) was placed in a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 16.91 g of NMP was added and stirred while feeding nitrogen. A monoamine solution was obtained. While stirring this monoamine solution, 1.64 g (7.52 mmol) of PMDA was added, NMP was further added so that the solid content concentration was 20% by mass, and the mixture was stirred at room temperature for 24 hours to give compound (1-h) A containing solution was obtained.
1-Methyl-3-p-tolyltriazene was added to a part of the obtained solution to carry out methyl esterification of carboxylic acid, which was obtained in Example 7 from 1 HNMR (1-i It was confirmed that the same compound was obtained. From this, it was confirmed that the above solution contains (1-h).
(実施例12)
 100ml三角フラスコに、合成例3で得られたポリアミック酸エステル溶液(PAE-1)を44.3382g入れ、次いで、GBLを19.6930g、BCSを16.0839g加えて、ポリアミック酸エステルの希釈溶液を得た。
 撹拌子を入れた20mlサンプル管に上記溶液を5.02g入れ、次いで、実施例1で得られた化合物(1-a)を0.0645g(ポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量)加え、室温で30分攪拌し、化合物(1-a)を完全に溶解させて、液晶配向剤(A1-1)を得た。
(Example 12)
In a 100 ml Erlenmeyer flask, 44.3382 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 3 was added, and then 19.6930 g of GBL and 16.0839 g of BCS were added, and a diluted polyamic acid ester solution was added. Obtained.
In a 20 ml sample tube containing a stir bar, 5.02 g of the above solution was added, and then 0.0645 g of the compound (1-a) obtained in Example 1 (0.005 g per mol of the polyamic acid ester repeating unit). 1 mol equivalent) was added, and the mixture was stirred at room temperature for 30 minutes to completely dissolve the compound (1-a) to obtain a liquid crystal aligning agent (A1-1).
(実施例13)
 化合物(1-a)の代わりに、実施例3で得られた化合物(1-c)をポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量使用した以外は、実施例12と同様にして液晶配向剤(A1-2)を得た。
(Example 13)
The same procedure as in Example 12 except that 0.1 mol equivalent of the compound (1-c) obtained in Example 3 was used in place of compound (1-a) with respect to 1 mol of the polyamic acid ester repeating unit. Thus, a liquid crystal aligning agent (A1-2) was obtained.
(実施例14)
 化合物(1-a)の代わりに、実施例8で得られた化合物(1-e)含有溶液を、化合物(1-e)がポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量となるように添加した以外は、実施例12と同様にして液晶配向剤(A1-3)を得た。
(Example 14)
Instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was added in an amount of 0.1 molar equivalent with respect to 1 mole of the polyamic acid ester repeating unit of the compound (1-e). A liquid crystal aligning agent (A1-3) was obtained in the same manner as in Example 12 except that it was added so that
(実施例15)
 化合物(1-a)の代わりに、実施例9で得られた化合物(1-f)含有溶液を、化合物(1-f)がポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量となるように添加した以外は、実施例12と同様にして液晶配向剤(A1-4)を得た。
(Example 15)
Instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was added in an amount of 0.1 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-f). A liquid crystal aligning agent (A1-4) was obtained in the same manner as in Example 12 except that it was added so that
(実施例16)
 化合物(1-a)の代わりに、実施例10で得られた化合物(1-g)含有溶液を、化合物(1-g)がポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量となるように添加した以外は、実施例12と同様にして液晶配向剤(A1-5)を得た。
(Example 16)
Instead of the compound (1-a), the compound (1-g) -containing solution obtained in Example 10 was added in an amount of 0.1 molar equivalent relative to 1 mole of the polyamic acid ester repeating unit of the compound (1-g). A liquid crystal aligning agent (A1-5) was obtained in the same manner as in Example 12 except that it was added so that
(実施例17)
 化合物(1-a)の代わりに、実施例11で得られた化合物(1-h)含有溶液を、化合物(1-h)がポリアミック酸エステルの繰り返し単位1モルに対して0.1モル当量となるように添加した以外は、実施例12と同様にして液晶配向剤(A1-6)を得た。
(Example 17)
Instead of the compound (1-a), the compound (1-h) -containing solution obtained in Example 11 was added in an amount of 0.1 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-h). A liquid crystal aligning agent (A1-6) was obtained in the same manner as in Example 12 except that it was added so that
(実施例18)
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリアミック酸エステル溶液(PAE-2)を4.4560g入れ、次いで、NMPを1.4837g、BCSを1.5021g加えて、さらに実施例1で得られた化合物(1-a)を0.1023g(ポリアミック酸エステルの繰り返し単位1モルに対して0.2モル当量)加え、室温で30分攪拌し、化合物(1-a)を完全に溶解させて液晶配向剤(A2-1)を得た。
(Example 18)
Into a 20-ml sample tube containing a stir bar, 4.4560 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 4 was added, and then 1.8437 g of NMP and 1.5021 g of BCS were added, and further implementation was performed. Add 0.1023 g of compound (1-a) obtained in Example 1 (0.2 molar equivalent to 1 mol of polyamic acid ester repeating unit) and stir at room temperature for 30 minutes to give compound (1-a). By completely dissolving, a liquid crystal aligning agent (A2-1) was obtained.
(実施例19)
 化合物(1-a)の代わりに、実施例4で得られた化合物(1-d)をポリアミック酸エステルの繰り返し単位1モルに対して0.2モル当量使用した以外は、実施例18と同様にして液晶配向剤(A2-2)を得た。
(Example 19)
The same procedure as in Example 18 except that 0.2 mol equivalent of the compound (1-d) obtained in Example 4 was used in place of compound (1-a) with respect to 1 mol of the polyamic acid ester repeating unit. Thus, a liquid crystal aligning agent (A2-2) was obtained.
(実施例20)
 化合物(1-a)の代わりに、実施例8で得られた化合物(1-e)含有溶液を、化合物(1-e)がポリアミック酸エステルの繰り返し単位1モルに対して0.2モル当量となるように添加した以外は、実施例18と同様にして液晶配向剤(A2-3)を得た。
(Example 20)
Instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was added in an amount of 0.2 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-e). A liquid crystal aligning agent (A2-3) was obtained in the same manner as in Example 18 except that it was added so that
(実施例21)
 化合物(1-a)の代わりに、実施例9で得られた化合物(1-f)含有溶液を、化合物(1-f)がポリアミック酸エステルの繰り返し単位1モルに対して0.2モル当量となるように添加した以外は、実施例18と同様にして液晶配向剤(A2-4)を得た。
(Example 21)
Instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was added in an amount of 0.2 molar equivalent based on 1 mol of the polyamic acid ester repeating unit of the compound (1-f). A liquid crystal aligning agent (A2-4) was obtained in the same manner as in Example 18 except that it was added so that
(実施例22)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-1)を4.4156g入れ、次いで、NMPを1.3409g、BCSを1.4426g加えて、さらに実施例1で得られた化合物(1-a)を0.2113g(ポリアミック酸の繰り返し単位1モルに対して0.2モル当量)加え、室温で30分攪拌し、化合物(1-a)を完全に溶解させて液晶配向剤(A3-1)を得た。
(Example 22)
Into a 20 ml sample tube containing a stir bar, 4.4156 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 5 was added, and then 1.3409 g of NMP and 1.4426 g of BCS were added. The compound (1-a) obtained in 1 was added in an amount of 0.2113 g (0.2 molar equivalent based on 1 mol of the polyamic acid repeating unit) and stirred at room temperature for 30 minutes to completely dissolve the compound (1-a). By dissolving, a liquid crystal aligning agent (A3-1) was obtained.
(実施例23)
 化合物(1-a)の代わりに、実施例4で得られた化合物(1-d)をポリアミック酸の繰り返し単位1モルに対して0.2モル当量使用した以外は、実施例22と同様にして液晶配向剤(A3-2)を得た。
(Example 23)
Instead of compound (1-a), compound (1-d) obtained in Example 4 was used in the same manner as in Example 22 except that 0.2 molar equivalent was used per 1 mol of the polyamic acid repeating unit. As a result, a liquid crystal aligning agent (A3-2) was obtained.
(実施例24)
 化合物(1-a)の代わりに、実施例8で得られた化合物(1-e)含有溶液を、化合物(1-e)がポリアミック酸の繰り返し単位1モルに対して0.2モル当量となるように添加した以外は、実施例22と同様にして液晶配向剤(A3-3)を得た。
(Example 24)
Instead of the compound (1-a), the compound (1-e) -containing solution obtained in Example 8 was prepared so that the compound (1-e) was 0.2 molar equivalent with respect to 1 mole of the polyamic acid repeating unit. A liquid crystal aligning agent (A3-3) was obtained in the same manner as in Example 22 except that it was added as described above.
(実施例25)
 化合物(1-a)の代わりに、実施例9で得られた化合物(1-f)含有溶液を、化合物(1-f)がポリアミック酸の繰り返し単位1モルに対して0.2モル当量となるように添加した以外は、実施例22と同様にして液晶配向剤(A3-4)を得た。
(Example 25)
Instead of the compound (1-a), the compound (1-f) -containing solution obtained in Example 9 was used in such a manner that the compound (1-f) was 0.2 molar equivalent with respect to 1 mol of the polyamic acid repeating unit. A liquid crystal aligning agent (A3-4) was obtained in the same manner as in Example 22 except that it was added as described above.
(比較例1)
 撹拌子を入れた20mlサンプル管に、合成例3で得られたポリアミック酸エステル溶液(PAE-1)を2.7692g入れ、次いで、GBLを1.2308g、BCSを1.012g加えて、室温で30分攪拌し、液晶配向剤(B1-1)を得た。
(Comparative Example 1)
Into a 20-ml sample tube containing a stir bar, 2.7692 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 3 was added, and then 1.2308 g of GBL and 1.012 g of BCS were added. The mixture was stirred for 30 minutes to obtain a liquid crystal aligning agent (B1-1).
(比較例2)
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリアミック酸エステル溶液(PAE-2)を4.3431g入れ、次いで、NMPを1.4722g、BCSを1.4589g加えて、室温で30分攪拌し、液晶配向剤(B2-1)を得た。
(Comparative Example 2)
Into a 20-ml sample tube containing a stir bar, 4.3431 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 4 was added, and then 1.4722 g of NMP and 1.4589 g of BCS were added. The mixture was stirred for 30 minutes to obtain a liquid crystal aligning agent (B2-1).
(比較例3)
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリアミック酸エステル溶液(PAE-2)を4.7100g入れ、次いで、NMPを1.5935g、BCSを1.5892g加えて、さらに、実施例1で得られた前駆体(1-a2)を0.0985g(ポリアミック酸エステルの繰り返し単位1モルに対して0.4モル当量)添加し、室温で30分攪拌して、液晶配向剤(B2-2)を得た。
(Comparative Example 3)
Into a 20 ml sample tube containing a stir bar, 4.7100 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 4 was added, and then 1.5935 g of NMP and 1.5892 g of BCS were added. 0.0985 g of the precursor (1-a2) obtained in Example 1 (0.4 molar equivalent with respect to 1 mol of the repeating unit of polyamic acid ester) was added and stirred at room temperature for 30 minutes to obtain a liquid crystal aligning agent. (B2-2) was obtained.
(比較例4)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-1)を3.9775g入れ、次いで、NMPを1.2069g、BCSを1.2953g加えて、室温で30分攪拌し、液晶配向剤(B3-1)を得た。
(Comparative Example 4)
To a 20 ml sample tube containing a stir bar, 3.9775 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 5 was added, and then 1.2069 g of NMP and 1.2953 g of BCS were added, and 30 ml at room temperature was added. The mixture was stirred for a while to obtain a liquid crystal aligning agent (B3-1).
(比較例5)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-1)を4.3645g入れ、次いで、NMPを1.3462g、BCSを1.4297g加えて、さらに、実施例1で得られた前駆体(1-a2)を0.1357g(ポリアミック酸の繰り返し単位1モルに対して0.4モル当量)添加し、室温で30分攪拌して、液晶配向剤(B3-2)を得た。
(Comparative Example 5)
Into a 20 ml sample tube containing a stir bar, 4.3645 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 5 was added, and then 1.3462 g of NMP and 1.4297 g of BCS were added. The precursor (1-a2) obtained in Example 1 was added in an amount of 0.1357 g (0.4 molar equivalent based on 1 mole of the polyamic acid repeating unit), and stirred at room temperature for 30 minutes to obtain a liquid crystal aligning agent (B3 -2) was obtained.
(実施例26)
 実施例12で得られた液晶配向剤(A1-1)を1.0μmのメンブランフィルターで濾過した後、ガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥後、230℃で10分間焼成し、膜厚100nmのイミド化した膜を得た。この塗膜を削り取り、ATR法でFT-IRスペクトルを測定し、イミド化率を算出した。結果を表1に示す。
(Example 26)
The liquid crystal aligning agent (A1-1) obtained in Example 12 was filtered through a 1.0 μm membrane filter, spin-coated on a glass substrate, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and then 230 The film was baked at 10 ° C. for 10 minutes to obtain an imidized film having a thickness of 100 nm. This coating film was shaved off and the FT-IR spectrum was measured by the ATR method to calculate the imidization rate. The results are shown in Table 1.
(実施例27~31)
 実施例13~17で得られた液晶配向剤(A1-2)~(A1-6)を用い、実施例26と同様の操作でイミド化した膜を作製し、FT-IRスペクトルを測定し、イミド化率を算出した。結果を表1に示す。
(Examples 27 to 31)
Using the liquid crystal aligning agents (A1-2) to (A1-6) obtained in Examples 13 to 17, an imidized film was produced in the same manner as in Example 26, and an FT-IR spectrum was measured. The imidization rate was calculated. The results are shown in Table 1.
(比較例6)
 比較例1で得られた液晶配向剤(B1-1)を用い、実施例26と同様にしてイミド化した膜を作製し、FT-IRスペクトルを測定し、イミド化率を算出した。結果を表1に示す。
(Comparative Example 6)
Using the liquid crystal aligning agent (B1-1) obtained in Comparative Example 1, an imidized film was produced in the same manner as in Example 26, and an FT-IR spectrum was measured to calculate an imidization ratio. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000092

 実施例26~31と比較例6の結果より、本発明の化合物は、ポリアミック酸エステルのイミド化反応を促進することが確認された。
Figure JPOXMLDOC01-appb-T000092

From the results of Examples 26 to 31 and Comparative Example 6, it was confirmed that the compound of the present invention promotes the imidization reaction of the polyamic acid ester.
(実施例32)
 実施例18で得られた液晶配向剤(A2-1)を1.0μmのメンブランフィルターで濾過した後、ガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥後、20℃で10分間焼成し、膜厚100nmのイミド化した膜を得た。この塗膜を削り取り、ATR法でFT-IRスペクトルを測定し、イミド化率を算出した。結果を表2に示す。
(Example 32)
The liquid crystal aligning agent (A2-1) obtained in Example 18 was filtered through a 1.0 μm membrane filter, spin-coated on a glass substrate, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, then 20 The film was baked at 10 ° C. for 10 minutes to obtain an imidized film having a thickness of 100 nm. This coating film was shaved off and the FT-IR spectrum was measured by the ATR method to calculate the imidization rate. The results are shown in Table 2.
(実施例33~35)
 実施例19~21で得られた本発明の液晶配向剤(A2-2)~(A2-4)を用い、実施例32と同様にしてイミド化した膜を作製し、FT-IRスペクトルを測定し、イミド化率を算出した。結果を表2に示す。
(Examples 33 to 35)
Using the liquid crystal aligning agents (A2-2) to (A2-4) of the present invention obtained in Examples 19 to 21, imidized films were prepared in the same manner as in Example 32, and FT-IR spectra were measured. And the imidization ratio was calculated. The results are shown in Table 2.
(比較例7~8)
 比較例2、3で得られた、それぞれ、液晶配向剤(B2-1)、(B2-2)を用い、実施例32と同様にしてイミド化した膜を作製し、FT-IRスペクトルを測定し、イミド化率を算出した。結果を表2に示す。
(Comparative Examples 7 to 8)
Using the liquid crystal aligning agents (B2-1) and (B2-2) obtained in Comparative Examples 2 and 3, respectively, imidized films were prepared in the same manner as in Example 32, and FT-IR spectra were measured. And the imidization ratio was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000093

 実施例32~35と比較例7の結果より、本発明の化合物は、ポリアミック酸エステルのイミド化反応を促進することが確認された。また、実施例34、35と比較例8の結果より、テトラカルボン酸二無水物と前駆体(1-a2)の反応生成物が、ポリアミック酸エステルのイミド化反応を促進することが確認された。
Figure JPOXMLDOC01-appb-T000093

From the results of Examples 32 to 35 and Comparative Example 7, it was confirmed that the compound of the present invention promotes the imidization reaction of the polyamic acid ester. The results of Examples 34 and 35 and Comparative Example 8 confirmed that the reaction product of tetracarboxylic dianhydride and precursor (1-a2) promoted the imidization reaction of polyamic acid ester. .
(実施例36)
 実施例22で得られた液晶配向剤(A3-1)を1.0マイクロmのメンブレンフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥した後、230℃で20分間焼成し、膜厚100nmのイミド化した膜を得た。このポリイミド膜をレーヨン布でラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した後、ポリイミド膜の表面状態を観察したところ、ラビングによる傷、ポリイミド膜の削れカス、及びポリイミド膜の剥離は観察されなかった。
(Example 36)
The liquid crystal aligning agent (A3-1) obtained in Example 22 was filtered through a 1.0 μm membrane filter, spin-coated on a glass substrate with a transparent electrode, and placed on a hot plate at a temperature of 80 ° C. for 5 minutes. After being dried, the film was baked at 230 ° C. for 20 minutes to obtain an imidized film having a film thickness of 100 nm. The polyimide film was rubbed with a rayon cloth (roll diameter: 120 mm, rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation amount: 0.4 mm), and then the surface state of the polyimide film was observed. No debris or peeling of the polyimide film was observed.
(実施例37)
 実施例23で得られた液晶配向剤(A3-2)を用いた以外は、実施例36と同様にしてポリイミド膜を作製し、ラビング処理を行った。ポリイミド膜の表面状態を観察したところ、ラビングによる傷、ポリイミド膜の削れカス、及びポリイミド膜の剥離は観察されなかった。
(Example 37)
A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
(実施例38)
 実施例24で得られた液晶配向剤(A3-3)を用いた以外は、実施例36と同様にしてポリイミド膜を作製し、ラビング処理を行った。ポリイミド膜の表面状態を観察したところ、ラビングによる傷、ポリイミド膜の削れカス、及びポリイミド膜の剥離は観察されなかった。
(Example 38)
A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-3) obtained in Example 24 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
(実施例39)
 実施例25で得られた液晶配向剤(A3-4)を用いた以外は、実施例36と同様にしてポリイミド膜を作製し、ラビング処理を行った。ポリイミド膜の表面状態を観察したところ、ラビングによる傷、ポリイミド膜の削れカス、及びポリイミド膜の剥離は観察されなかった。
(Example 39)
A polyimide film was produced and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (A3-4) obtained in Example 25 was used. When the surface state of the polyimide film was observed, scratches due to rubbing, scraping of the polyimide film, and peeling of the polyimide film were not observed.
(比較例9)
 比較例4で得られた液晶配向剤(B3-1)を用いた以外は、実施例36と同様にしてポリイミド膜を作製し、ラビング処理を行った。ポリイミド膜の表面状態を観察したところ、ラビングによる傷やポリイミド膜の削れカスが観察された。
(Comparative Example 9)
A polyimide film was prepared and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. When the surface state of the polyimide film was observed, scratches due to rubbing and scraped scraps of the polyimide film were observed.
(比較例10)
 比較例5で得られた液晶配向剤(B3-2)を用いた以外は、実施例36と同様にしてポリイミド膜を作製し、ラビング処理を行った。ポリイミド膜の表面状態を観察したところ、ラビングによる傷やポリイミド膜の削れカスが観察された。
 実施例36~39と比較例9の結果より、本発明の化合物を添加したポリアミック酸溶液を塗布、焼成することにより、ラビングによる傷がつきにくい機械強度に優れたイミド化膜が得られることが確認された。また、実施例38、39と比較例10の結果より、テトラカルボン酸二無水物と前駆体(1-a2)の反応生成物が、得られるイミド化膜の機械的強度を向上させることが確認された。
(Comparative Example 10)
A polyimide film was prepared and rubbed in the same manner as in Example 36 except that the liquid crystal aligning agent (B3-2) obtained in Comparative Example 5 was used. When the surface state of the polyimide film was observed, scratches due to rubbing and scraped scraps of the polyimide film were observed.
From the results of Examples 36 to 39 and Comparative Example 9, it is possible to obtain an imidized film excellent in mechanical strength that is hard to be damaged by rubbing by applying and baking a polyamic acid solution to which the compound of the present invention is added. confirmed. In addition, the results of Examples 38 and 39 and Comparative Example 10 confirm that the reaction product of tetracarboxylic dianhydride and precursor (1-a2) improves the mechanical strength of the resulting imidized film. It was done.
(実施例40)
 実施例18で得られた液晶配向剤(A2-1)を1.0μmのメンブレンフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃で20分の焼成を経て膜厚100nmのイミド化した膜を形成させた。この塗膜をレーヨン布でラビングし(ロール径120mm、回転数300rpm、移動速度20mm/sec、押し込み量0.4mm)、純水中にて1分間超音波照射をして洗浄を行い、エアーブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。
 このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板のラビング方向が逆平行になるよう組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止した液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、後述の表3及び表4に示す。
(Example 40)
The liquid crystal aligning agent (A2-1) obtained in Example 18 was filtered through a 1.0 μm membrane filter, spin-coated on a glass substrate with a transparent electrode, and dried for 5 minutes on a hot plate at a temperature of 80 ° C. After the baking for 20 minutes at a temperature of 230 ° C., an imidized film having a film thickness of 100 nm was formed. This coating film is rubbed with a rayon cloth (roll diameter: 120 mm, rotation speed: 300 rpm, moving speed: 20 mm / sec, indentation amount: 0.4 mm), cleaned by irradiating with ultrasonic waves in pure water for 1 minute, and air blown After removing the water droplets at, the substrate was dried at 80 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
Two substrates with such a liquid crystal alignment film are prepared, and a 6 μm spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the rubbing directions of the two substrates are antiparallel, The periphery was sealed and the empty cell having a cell gap of 6 μm was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the liquid crystal cell with the injection port sealed was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. Went. The results are shown in Tables 3 and 4 below.
(実施例41)
 実施例19で得られた液晶配向剤(A2-2)を用いた以外は、実施例40と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、後述の表3及び表4に示す。
(Example 41)
A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A2-2) obtained in Example 19 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4 below.
(実施例42)
 実施例22で得られた液晶配向剤(A3-1)を用いた以外は、実施例40と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表3及び表4に示す。
(Example 42)
A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A3-1) obtained in Example 22 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
(実施例43)
 実施例23で得られた液晶配向剤(A3-2)を用いた以外は、実施例40と同様の方法で液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表3及び表4に示す。
(Example 43)
A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
(比較例11)
 比較例2で得られた液晶配向剤(B2-1)を用いて、焼成時間を1時間とした以外は、実施例40と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表3及び表4に示す。
(Comparative Example 11)
A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (B2-1) obtained in Comparative Example 2 was used and the firing time was 1 hour. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
(比較例12)
 比較例4で得られた液晶配向剤(B3-1)を用いた以外は、実施例40と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表3及び表4に示す。
(Comparative Example 12)
A liquid crystal cell was produced in the same manner as in Example 40 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000094

 実施例40~43と比較例11、12の結果より、本発明の液晶配向膜を用いることで、液晶配向性が良好な液晶表示素子が得られることが確認された。また、本発明の液晶配向膜を用いることにより、プレチルト角が高くなることが確認された。
Figure JPOXMLDOC01-appb-T000094

From the results of Examples 40 to 43 and Comparative Examples 11 and 12, it was confirmed that by using the liquid crystal alignment film of the present invention, a liquid crystal display element having good liquid crystal alignment properties was obtained. It was also confirmed that the pretilt angle was increased by using the liquid crystal alignment film of the present invention.
Figure JPOXMLDOC01-appb-T000095

 実施例40~43と比較例11、12の結果より、本発明の液晶配向膜を用いることにより、高温時でも電圧保持率が高く、イオン密度が低い液晶表示素子が得られることが確認された。
Figure JPOXMLDOC01-appb-T000095

From the results of Examples 40 to 43 and Comparative Examples 11 and 12, it was confirmed that by using the liquid crystal alignment film of the present invention, a liquid crystal display element having a high voltage holding ratio and a low ion density was obtained even at high temperatures. .
(実施例44)
 実施例22で得られた液晶配向剤(A3-1)を1.0μmのメンブレンフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃で20分の焼成を経て膜厚100nmのイミド化した膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を1J/cm照射し、液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止した液晶セルについて、液晶配向性の観察、電圧保持率測定、及びイオン密度測定を行った。結果は、後述の表5に示す。
(Example 44)
The liquid crystal aligning agent (A3-1) obtained in Example 22 was filtered through a 1.0 μm membrane filter, spin-coated on a glass substrate with a transparent electrode, and dried for 5 minutes on a hot plate at a temperature of 80 ° C. After the baking for 20 minutes at a temperature of 230 ° C., an imidized film having a film thickness of 100 nm was formed. The coating surface was irradiated with 1 J / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
Two substrates with this liquid crystal alignment film are prepared, and a 6 μm spacer is spread on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment of the two substrates is antiparallel, leaving a liquid crystal injection port. The periphery was sealed, and an empty cell having a cell gap of 6 μm was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into the empty cell at room temperature, and the liquid crystal cell with the injection port sealed was observed for liquid crystal orientation, voltage holding ratio measurement, and ion density measurement. The results are shown in Table 5 below.
(実施例45)
 実施例23で得られた液晶配向剤(A3-2)を用いた以外は、実施例44と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表5に示す。
(Example 45)
A liquid crystal cell was produced in the same manner as in Example 44 except that the liquid crystal aligning agent (A3-2) obtained in Example 23 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Table 5.
(比較例13)
 比較例4で得られた液晶配向剤(B3-1)を用いた以外は、実施例44と同様にして液晶セルを作製した。この液晶セルについて、液晶配向性の観察、プレチルト角測定、電圧保持率測定、及びイオン密度測定を行った。結果は、表5に示す。
(Comparative Example 13)
A liquid crystal cell was produced in the same manner as in Example 44 except that the liquid crystal aligning agent (B3-1) obtained in Comparative Example 4 was used. The liquid crystal cell was observed for liquid crystal orientation, pretilt angle measurement, voltage holding ratio measurement, and ion density measurement. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000096

 実施例44、45と比較例13の結果より、本発明の液晶配向膜を用いることにより、光配向においても、良好な液晶配向性を示し、高温でも電圧保持率が高く、イオン密度が低い信頼性に優れた液晶表示素子が得られることが確認された。
Figure JPOXMLDOC01-appb-T000096

From the results of Examples 44 and 45 and Comparative Example 13, by using the liquid crystal alignment film of the present invention, the liquid crystal alignment property is good even in the photo alignment, the voltage holding ratio is high even at high temperature, and the ion density is low. It was confirmed that a liquid crystal display element having excellent properties can be obtained.
 本発明の液晶配向剤によれば、機械的強度が大きく、ラビング処理に対する耐性に優れるとともに、液晶配向性、特に、高温時における電圧保持率やイオン密度などの電気特性の点に優れ、また、高いプレチルト角を与える信頼性の大きい液晶配向膜が形成できる。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。
 なお、2010年5月28日に出願された日本特許出願2010-123471号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the liquid crystal aligning agent of the present invention, the mechanical strength is large, the resistance to rubbing treatment is excellent, and the liquid crystal alignment property, in particular, the electrical characteristics such as voltage holding ratio and ion density at high temperature, A highly reliable liquid crystal alignment film giving a high pretilt angle can be formed. As a result, the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-123471 filed on May 28, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (17)

  1.  ジアミン化合物とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体、及び/又は該ポリイミド前駆体をイミド化したポリイミドと、80~300℃の加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するアミック酸若しくはアミック酸エステル構造を有する化合物と、を含有することを特徴とする液晶配向剤。 Protected by a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative, and / or a polyimide imidized with the polyimide precursor, and a thermally desorbable group that replaces hydrogen by heating at 80 to 300 ° C. A liquid crystal aligning agent comprising: an amino acid having an amino group or a compound having an amic acid ester structure.
  2.  前記ポリイミド前駆体が、下記の式(7)で表わされる繰り返し単位を有する請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中Xは4価の有機基であり、Yは2価の有機基であり、Rは、水素原子又は炭素数1~5のアルキル基である。A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基である。)
    The liquid crystal aligning agent of Claim 1 in which the said polyimide precursor has a repeating unit represented by following formula (7).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, and R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 and A 2 are respectively Independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
  3.  前記ポリイミド前駆体及び前記ポリイミドが、それらの合計量で液晶配向剤中0.5~15質量%含有され、かつ、加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するアミック酸若しくはアミック酸エステル構造を有する化合物が、上記式(7)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の繰り返し単位1ユニットに対して、0.5~50モル%含有される請求項1又は2に記載の液晶配向剤。 The polyimide precursor and the polyimide are contained in a total amount of 0.5 to 15% by mass in the liquid crystal aligning agent, and an amic acid having an amino group protected by a thermally detachable group that replaces hydrogen by heating. Alternatively, the compound having an amic acid ester structure is 0.5 to 50 with respect to 1 unit of the repeating unit of the polyimide precursor having the repeating unit represented by the above formula (7) and the imidized polymer of the polyimide precursor. The liquid crystal aligning agent of Claim 1 or 2 contained by mol%.
  4.  前記アミック酸若しくはアミック酸エステル構造を有する化合物が、下記式(1)で表される化合物である、請求項1~3のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは4価の有機基であり、Rは水素原子、又は炭素数1~5のアルキル基であり、Zは下記式(2)で表される構造である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Zは単結合、又は炭素数1~30の2価の有機基である。R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基若しくはそれらの組み合わせであり、環構造を形成してもよい。Rは水素原子又は置換基を有してもよい炭素数1~30のアルキル基である。Dは熱脱離性基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the compound having an amic acid or an amic acid ester structure is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X is a tetravalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z is a structure represented by the following formula (2).)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent. An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms. D 1 is a thermally leaving group.)
  5.  前記熱脱離性基がtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である請求項1~4のいずれかに記載の液晶配向剤。 5. The liquid crystal aligning agent according to claim 1, wherein the thermally leaving group is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
  6.  前記Xが、下記式で表される構造からなる群から選ばれるいずれかである1~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    6. The liquid crystal aligning agent according to any one of 1 to 5, wherein X is any one selected from the group consisting of a structure represented by the following formula.
    Figure JPOXMLDOC01-appb-C000004
  7.  請求項1~6のいずれかに記載の液晶配向剤を塗布、焼成して得られる膜を配向処理した液晶配向膜。 A liquid crystal alignment film obtained by aligning a film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  前記配向処理が、ラビング処理、又は偏光された放射線の照射処理である請求項7に記載の液晶配向膜。 The liquid crystal alignment film according to claim 7, wherein the alignment treatment is rubbing treatment or irradiation treatment with polarized radiation.
  9.  請求項7又は8に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 7 or 8.
  10.  下記式(1)で表されるアミック酸若しくはアミック酸エステル構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Xは4価の有機基、Rは水素原子、又は炭素数1~5のアルキル基であり、Zは下記式(2)で表される構造である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Zは単結合、又は炭素数1~30の2価の有機基である。R及びRは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~30のアルキル基、アルケニル基、アルキニル基、アリール基若しくはそれらの組み合わせであり、環構造を形成してもよい。Rは水素原子又は置換基を有してもよい炭素数1~30のアルキル基である。Dは熱脱離性基である。)
    The compound which has an amic acid or an amic acid ester structure represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, X is a tetravalent organic group, R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z is a structure represented by the following formula (2).)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, Z 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 and R 3 are each independently a hydrogen atom or a carbon number which may have a substituent. An alkyl group having 1 to 30 alkyl groups, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, which may form a ring structure, and R 4 may have a hydrogen atom or a substituent and may have 1 to 30 carbon atoms. D 1 is a thermally leaving group.)
  11.  下記式(3)で表されるビスクロロカルボニル化合物と下記式(4)で表されるモノアミン化合物とを塩基存在下に、(クロロカルボニル化合物/モノアミン)のモル比が1/2~1/3で反応させて得られる請求項10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、X、Z、R、R、R、及びDは上記式(1)及び(2)のものと同様の定義であり、Rは炭素数1~5のアルキル基である。)
    In the presence of a base, a bischlorocarbonyl compound represented by the following formula (3) and a monoamine compound represented by the following formula (4) have a molar ratio of (chlorocarbonyl compound / monoamine) of 1/2 to 1/3. The compound of Claim 10 obtained by making it react with.
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, X, Z 1 , R 2 , R 3 , R 4 , and D 1 have the same definitions as those in the above formulas (1) and (2), and R 5 is alkyl having 1 to 5 carbon atoms. Group.)
  12.  下記式(5)で表されるテトラカルボン酸誘導体と請求項11に記載の式(4)で表されるモノアミン化合物を縮合剤の存在下で(テトラカルボン酸誘導体/モノアミン)のモル比で1/2~1/3で反応させて得られる請求項10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式中、X及びRは上記式(1)及び(3)の定義と同じである。)
    A tetracarboxylic acid derivative represented by the following formula (5) and a monoamine compound represented by the formula (4) according to claim 11 in a molar ratio of (tetracarboxylic acid derivative / monoamine) in the presence of a condensing agent are 1 The compound according to claim 10, which is obtained by reacting at / 2 to 1/3.
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, X and R 5 are the same as defined in the above formulas (1) and (3).)
  13.  下記式(6)で表されるテトラカルボン酸二無水物と請求項11に記載の式(4)で表されるモノアミン化合物とを、(テトラカルボン酸二無水物/モノアミン)のモル比が1/2~1/3で反応させて得られる請求項10に記載の化合物。
    (式中、Xは上記式(1)のものと同様の定義である。)
    A tetracarboxylic dianhydride represented by the following formula (6) and a monoamine compound represented by the formula (4) according to claim 11 have a molar ratio of (tetracarboxylic dianhydride / monoamine) of 1. The compound according to claim 10, which is obtained by reacting at / 2 to 1/3.
    (Wherein X has the same definition as in formula (1) above)
  14.  請求項13に記載の式(6)で表されるテトラカルボン酸二水物と請求項11に記載の式(4)で表されるモノアミン化合物とを、(テトラカルボン酸二無水物/モノアミン)のモル比が1/2~1/3で反応させて、さらにエステル化剤でカルボキシル基をエステル化することで得られる請求項10に記載の化合物。 A tetracarboxylic acid dihydrate represented by the formula (6) according to claim 13 and a monoamine compound represented by the formula (4) according to claim 11 are (tetracarboxylic dianhydride / monoamine). The compound according to claim 10, which is obtained by reacting at a molar ratio of 1/2 to 1/3 and further esterifying the carboxyl group with an esterifying agent.
  15.  上記Xが、下記式で表される構造からなる群から選ばれるいずれかである請求項10~14のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
    The compound according to any one of claims 10 to 14, wherein X is any one selected from the group consisting of structures represented by the following formulae.
    Figure JPOXMLDOC01-appb-C000010
  16.  上記Rが炭素数1~5のアルキル基である請求項10~15のいずれかに記載の化合物。 The compound according to any one of claims 10 to 15, wherein R 1 is an alkyl group having 1 to 5 carbon atoms.
  17.  下記式(1-a)~(1-o)のいずれかの化合物。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    A compound of any one of the following formulas (1-a) to (1-o):
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
PCT/JP2011/062258 2010-05-28 2011-05-27 Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film WO2011149071A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012517340A JP5761183B2 (en) 2010-05-28 2011-05-27 LIQUID CRYSTAL ALIGNING AGENT CONTAINING THERMALLEELABLE GROUP-CONTAINING COMPOUND, AND LIQUID CRYSTAL Alignment Film
KR1020127033890A KR101823712B1 (en) 2010-05-28 2011-05-27 Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film
CN201180035610.XA CN103003741B (en) 2010-05-28 2011-05-27 Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123471 2010-05-28
JP2010123471 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011149071A1 true WO2011149071A1 (en) 2011-12-01

Family

ID=45004054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062258 WO2011149071A1 (en) 2010-05-28 2011-05-27 Liquid crystal aligning agent containing thermally cleavable group-containing compound, and liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JP5761183B2 (en)
KR (1) KR101823712B1 (en)
CN (1) CN103003741B (en)
TW (1) TWI522390B (en)
WO (1) WO2011149071A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135393A (en) * 2014-01-17 2015-07-27 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and manufacturing method of retardation film
KR20160115685A (en) * 2015-03-27 2016-10-06 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, liquid crystal display device, phase difference film and manufacturing method thereof, polymer and compound
JP2017049576A (en) * 2015-09-02 2017-03-09 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element, and manufacturing method of the same
JP2018507930A (en) * 2015-09-08 2018-03-22 エルジー・ケム・リミテッド Polymer for liquid crystal alignment agent
JP2018523164A (en) * 2016-03-28 2018-08-16 エルジー・ケム・リミテッド Liquid crystal alignment agent, liquid crystal alignment film containing the same, and method for producing liquid crystal alignment film
JP2021516368A (en) * 2019-01-21 2021-07-01 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, liquid crystal alignment film and liquid crystal display element using the same.
JP2021516365A (en) * 2019-01-17 2021-07-01 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
WO2023068085A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060360A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
CN105940343B (en) * 2013-11-28 2019-09-24 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
KR102346494B1 (en) * 2014-04-03 2021-12-31 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent containing polyamic acid ester-polyamic acid copolymer, and liquid crystal alignment film using same
KR20150118527A (en) * 2014-04-14 2015-10-22 제이엔씨 주식회사 Liquid crystal aligning agents, liquid crystal alignment films and liquid crystal display devices
KR102512603B1 (en) * 2014-09-26 2023-03-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6888241B2 (en) * 2015-04-08 2021-06-16 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal element and method for manufacturing liquid crystal element
KR101835746B1 (en) * 2015-09-08 2018-03-07 주식회사 엘지화학 Polymer for liquid crystal aligning agent
KR102202053B1 (en) * 2018-01-17 2021-01-11 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
KR102238704B1 (en) 2018-12-21 2021-04-08 주식회사 엘지화학 Cross-linking agent compound, photosensitive composition comprising the same, and photosensitive material using the same
WO2020153659A1 (en) * 2019-01-21 2020-07-30 주식회사 엘지화학 Liquid crystal alignment composition, and liquid crystal alignment film and liquid crystal display using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203641A (en) * 2007-02-21 2008-09-04 Jsr Corp Method for manufacturing diamine compound with cinnamoyl group
JP2010018807A (en) * 2002-05-31 2010-01-28 Elsicon Inc Hybrid polymer materials for liquid crystal alignment layers
WO2010050523A1 (en) * 2008-10-29 2010-05-06 日産化学工業株式会社 Diamine, polyimide, liquid crystal aligning agent, and liquid crystal alignment film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524458B2 (en) * 2002-05-31 2010-08-18 エルシコン・インコーポレーテッド Branched hybrid polymer material for optical alignment layer preparation
JP2004115697A (en) 2002-09-27 2004-04-15 Tonen Chem Corp METHOD FOR MANUFACTURING alpha-OLEFIN COPOLYMER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018807A (en) * 2002-05-31 2010-01-28 Elsicon Inc Hybrid polymer materials for liquid crystal alignment layers
JP2008203641A (en) * 2007-02-21 2008-09-04 Jsr Corp Method for manufacturing diamine compound with cinnamoyl group
WO2010050523A1 (en) * 2008-10-29 2010-05-06 日産化学工業株式会社 Diamine, polyimide, liquid crystal aligning agent, and liquid crystal alignment film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135393A (en) * 2014-01-17 2015-07-27 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and manufacturing method of retardation film
KR20160115685A (en) * 2015-03-27 2016-10-06 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, liquid crystal display device, phase difference film and manufacturing method thereof, polymer and compound
JP2016186568A (en) * 2015-03-27 2016-10-27 Jsr株式会社 Liquid crystal orientation agent, liquid crystal orientation film, method for forming liquid crystal orientation film, liquid crystal display element, phase-difference film, method for forming phase-difference film, polymer, and compound
KR102390792B1 (en) 2015-03-27 2022-04-25 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, liquid crystal display device, phase difference film and manufacturing method thereof, polymer and compound
JP2017049576A (en) * 2015-09-02 2017-03-09 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element, and manufacturing method of the same
KR20170027665A (en) * 2015-09-02 2017-03-10 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal device, and method of manufacturing them
KR102563014B1 (en) * 2015-09-02 2023-08-02 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal device, and method of manufacturing them
JP2018507930A (en) * 2015-09-08 2018-03-22 エルジー・ケム・リミテッド Polymer for liquid crystal alignment agent
JP2018523164A (en) * 2016-03-28 2018-08-16 エルジー・ケム・リミテッド Liquid crystal alignment agent, liquid crystal alignment film containing the same, and method for producing liquid crystal alignment film
US10526540B2 (en) 2016-03-28 2020-01-07 Lg Chem, Ltd. Liquid crystal aligning agent, liquid crystal alignment layer comprising the same and method for preparing liquid crystal alignment layer
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP7102537B2 (en) 2019-01-17 2022-07-19 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
JP2021516365A (en) * 2019-01-17 2021-07-01 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
US11667843B2 (en) 2019-01-17 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP6992242B2 (en) 2019-01-21 2022-01-13 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, liquid crystal alignment film and liquid crystal display element using the same.
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same
JP2021516368A (en) * 2019-01-21 2021-07-01 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, liquid crystal alignment film and liquid crystal display element using the same.
WO2023068085A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound

Also Published As

Publication number Publication date
KR20130109018A (en) 2013-10-07
TW201209078A (en) 2012-03-01
JPWO2011149071A1 (en) 2013-07-25
CN103003741B (en) 2015-05-13
TWI522390B (en) 2016-02-21
JP5761183B2 (en) 2015-08-12
KR101823712B1 (en) 2018-01-30
CN103003741A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5761183B2 (en) LIQUID CRYSTAL ALIGNING AGENT CONTAINING THERMALLEELABLE GROUP-CONTAINING COMPOUND, AND LIQUID CRYSTAL Alignment Film
JP5708636B2 (en) End-modified polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
JP5915523B2 (en) Polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
JP5761174B2 (en) Polyamic acid ester liquid crystal aligning agent and liquid crystal alignment film using the same
JP6048143B2 (en) Liquid crystal aligning agent and liquid crystal aligning film containing polyamic acid ester and polyamic acid
JP5867555B2 (en) Polyimide precursor and polyimide
JP5846230B2 (en) New diamine compounds
JP6064900B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5962512B2 (en) Liquid crystal aligning agent and liquid crystal aligning film
JP5998939B2 (en) Liquid crystal aligning agent containing polyamic acid ester and polyamic acid
WO2011115079A1 (en) Liquid crystal alignment agent for use in photo-alignment process, and liquid crystal alignment film using same
JP6372009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5904119B2 (en) LIQUID CRYSTAL ALIGNING AGENT CONTAINING POLYAMIC ACID ESTER WITH MODIFIED TERMINAL AND LIQUID CRYSTAL ALIGNING FILM
WO2014024885A1 (en) Liquid crystal aligning agent, and liquid crystal alignment film produced using same
JP6891814B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127033890

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11786768

Country of ref document: EP

Kind code of ref document: A1