WO2011148454A1 - 造粒方法及び造粒装置 - Google Patents

造粒方法及び造粒装置 Download PDF

Info

Publication number
WO2011148454A1
WO2011148454A1 PCT/JP2010/058762 JP2010058762W WO2011148454A1 WO 2011148454 A1 WO2011148454 A1 WO 2011148454A1 JP 2010058762 W JP2010058762 W JP 2010058762W WO 2011148454 A1 WO2011148454 A1 WO 2011148454A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
water
nozzle
granulation
granulated product
Prior art date
Application number
PCT/JP2010/058762
Other languages
English (en)
French (fr)
Inventor
格 五月女
五十部 誠一郎
孝夫 片桐
井上 孝司
博信 間野
穣寿 丹伊田
博一 竹内
伊藤 毅
裕一郎 溝口
Original Assignee
独立行政法人 農業・食品産業技術総合研究機構
株式会社 ポッカコーポレーション
福田食品工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 農業・食品産業技術総合研究機構, 株式会社 ポッカコーポレーション, 福田食品工業 株式会社 filed Critical 独立行政法人 農業・食品産業技術総合研究機構
Priority to KR1020127032585A priority Critical patent/KR101384552B1/ko
Priority to EP10852125.3A priority patent/EP2578309B1/en
Priority to JP2012506823A priority patent/JP5019661B2/ja
Priority to CN2010800681811A priority patent/CN103037962A/zh
Priority to PCT/JP2010/058762 priority patent/WO2011148454A1/ja
Priority to US13/698,908 priority patent/US20130069270A1/en
Publication of WO2011148454A1 publication Critical patent/WO2011148454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain

Definitions

  • the present invention relates to a granulation method and a granulation apparatus for granulating a powder containing a water-soluble component.
  • Patent Documents 1 and 2 Conventionally, methods of using moisture contained in superheated steam have been proposed for granulation in the food field and the like (see Patent Documents 1 and 2). Recently, superheated steam has been used as a heating medium for foods.
  • Patent Document 3 and Non-Patent Document 1 propose a heating medium in which fine water droplets are dispersed in superheated steam as a heating medium used for cooking foods.
  • a granulated product is obtained by drying a granulated product granulated by adding moisture.
  • the granulated product thus obtained has a higher fluidity than the raw material powder.
  • the fluidity of the granulated product tends to increase when the amount of water added to the powder is increased.
  • the time for drying the granulated product also becomes longer. As a result, the production efficiency of the granulated product decreases.
  • An object of the present invention is to provide a granulation method and a granulation apparatus that can maintain fluidity even if the amount of water added to a powder is reduced.
  • a granulation method for granulating a powder containing a water-soluble component for granulating a powder containing a water-soluble component.
  • a dispersion in which fine water droplets are dispersed in superheated steam is ejected from a nozzle, thereby bringing the dispersion into contact with a powder in a fluid state.
  • the mass ratio of superheated steam contained in the dispersion is 20 mass ratios determined from the theoretical flow rate of superheated steam ejected from the nozzle and the actual flow rate of water supplied to the nozzle. It is preferably set in the range of 70 mass%.
  • the mass ratio of superheated steam contained in the dispersion is the theoretical flow rate of superheated steam ejected from the nozzle and the nozzle.
  • the mass ratio determined from the actual flow rate of the supplied water is preferably set in the range of 23 to 63 mass%.
  • the mass ratio of superheated steam contained in the dispersion is determined based on the theoretical flow rate of superheated steam ejected from the nozzle and actual measurement of water supplied to the nozzle.
  • the mass ratio determined from the flow rate is preferably set in the range of 24 to 68 mass%.
  • the dispersion is generated by a dispersion generator having a nozzle and a heater for heating the flow path for guiding water to the nozzle, and the temperature in the flow path is in the range of 105 to 150 ° C.
  • the internal pressure of the flow path is in the range of 0.01 to 0.30 MPa, and the dispersion is preferably ejected from the nozzle.
  • a granulating apparatus for carrying out the above granulating method.
  • a dispersion generator having a heater and a nozzle for heating a water flow path is mounted on the granulator.
  • a method for producing a granulated product by granulating a powder containing a water-soluble component According to the method for producing a granulated product, a dispersion in which fine water droplets are dispersed in superheated steam is brought into contact with a powder in a fluid state.
  • the granulation method of this embodiment is a method of granulating a powder containing a water-soluble component.
  • a dispersion in which fine water droplets are dispersed in superheated steam is ejected from a nozzle so that the dispersion and the powder in a fluid state are brought into contact with each other.
  • the dispersion is obtained by simultaneously ejecting saturated water vapor and liquid water from the nozzle.
  • Powder contains components that are soluble in water. For this reason, some of the particles constituting the powder are swollen or dissolved by moisture contained in the dispersion. Thereby, a granulated substance is produced
  • the use of the powder provided for the granulation method is not particularly limited, and examples thereof include foods, pharmaceuticals, and chemicals.
  • Superheated steam is steam heated to a temperature exceeding the boiling point.
  • a dispersion in which fine water droplets are dispersed in superheated steam can be generated by the dispersion generator 11 shown in FIG.
  • the dispersion generator 11 includes a heater 13 that heats the water flow path 12 and a nozzle 14 that simultaneously ejects saturated water vapor and liquid water.
  • Water is introduced into the flow path 12 by a metering pump (not shown).
  • the water flowing into the flow path 12 is heated by the heater 13.
  • the pressure in the flow path 12 is raised because a part of water evaporates. That is, by adjusting the amount of water supplied into the flow path 12 and the temperature in the flow path 12, saturated water vapor exceeding 100 ° C. and liquid water exist. Saturated water vapor and liquid water are guided to the nozzle 14 by the flow path 12 and are simultaneously ejected from the nozzle 14.
  • the pressure of the saturated water vapor ejected from the nozzle 14 instantaneously decreases to atmospheric pressure, so that the superheated water vapor 31 exceeding the boiling point is obtained. Further, the water in the liquid state becomes fine water droplets 32 by being ejected from the nozzle 14 at a high speed.
  • the heating method of the heater 13 is not particularly limited as long as the inside of the flow path 12 is heated.
  • Examples of the heating method of the heater 13 include conduction heating, radiation heating, and high-frequency heating.
  • the opening of the nozzle 14 is located in the granulator 21.
  • a dispersion in which fine water droplets 32 are dispersed in superheated steam 31 is supplied into the granulator 21.
  • the powder 33 is flowing in the granulator 21.
  • a part of the powder 33 swells or dissolves due to the water in which the water in the dispersion is condensed. That is, the water in the dispersion aggregates the powder 33 to generate a granulated product.
  • the water supplied to the dispersion generator 11 is soft water or pure water in which the content of each ion of calcium ions and magnesium ions is reduced from the viewpoint of suppressing the generation of scale in the flow path 12 and the nozzle 14. It is preferable.
  • the mass ratio of the superheated steam 31 contained in the dispersion is preferably set in the range of 20 to 70% by mass. By setting this range, the fluidity can be maintained even if the amount of water added to the powder 33 through the dispersion is reduced.
  • the mass ratio (S) of the superheated steam 31 is calculated based on the theoretical flow rate (G) [g / min] of the superheated steam 31 ejected from the nozzle 14 and the actual flow rate (F) [F] of the water supplied to the nozzle 14. g / min] and is expressed by the following formula (1).
  • a 2 Nozzle opening area [m 2 ]
  • P 1 Internal pressure of the flow path [MPa]
  • T 1 Channel temperature [K]
  • the internal pressure (P 1 ) of the flow path and the temperature (T 1 ) of the flow path are measured by a pressure gauge 15 and a thermometer 16 provided in the vicinity of the nozzle 14 as shown in FIG.
  • Cd is calculated by the following equation (4).
  • Nozzle coefficients ⁇ and ⁇ are determined according to the Japan Society of Mechanical Engineers, Vol. 98-1326 (pp 438-444) "Derived from the value measured in accordance with the relationship between the outflow coefficient of the sonic nozzle and the gas type". In this specification, the nozzle coefficients ⁇ and ⁇ are calculated from various measurement values measured using air.
  • FIG. 2 shows an outline of a measuring apparatus used for obtaining the nozzle coefficients ⁇ and ⁇ .
  • air is sent from a compressor 43 into a flow path 42 provided in the measurement device 41.
  • the air sent into the flow path 42 is guided to the nozzle 44.
  • the flow path 42 is provided with a valve 45 that adjusts the flow rate of air sent to the nozzle 44 and a flow meter 46 that measures the air flow rate.
  • a thermometer 47 that measures the temperature in the flow path 42 and a pressure gauge 48 that measures the pressure in the flow path 42 are provided.
  • the nozzle coefficients ⁇ and ⁇ are obtained by the following procedure (1) to procedure (5) using the measuring device 41.
  • T 1 and P 1 in the formula (5) are the temperature T 1 and the pressure P 1 measured in the above ⁇ procedure (1)>.
  • P 2 in the formula (5) is the pressure of the orifice part of the nozzle 44, and the pressure P 2 is the higher one of the critical pressure Pc and the atmospheric pressure Pa shown in the above formulas (2) and (3). Select a value for.
  • the following gas constant and specific heat ratio of air are substituted into R and ⁇ in the above formula (3).
  • the Reynolds number (Re) is calculated from the following equation (6).
  • Re d / ( ⁇ ⁇ w 2 ) (6)
  • d Nozzle diameter [m]
  • Kinematic viscosity coefficient of air [m 2 / s]
  • w 2 air flow rate [m / s]
  • the Reynolds number (Re) obtained here is the Reynolds number of the air flow in the orifice portion of the nozzle 44.
  • 18.58 ⁇ 10 ⁇ 6 [Pa ⁇ s] ⁇ : density of air [kg / m 3 ]
  • the density ( ⁇ ) of the air is calculated using the temperature T 1 and the pressure P 1 measured in the above ⁇ procedure (1)> and the equation of state of gas. That is, the density ( ⁇ ) of air is expressed by the following formula (7).
  • T 2 in the formula (7) is calculated from the adiabatic expansion formula shown in the following formula (8).
  • the air flow rate (w 2 ) in the equation (6) is calculated from the following equation (9) based on the temperature T 1 and the pressure P 1 measured in the above ⁇ procedure (1)>.
  • T 1 Internal pressure of the flow path [MPa]
  • T 1 Channel temperature [K]
  • the internal pressure (P 1 ) of the flow path and the temperature (T 1 ) of the flow path are values measured by the pressure gauge 15 and the thermometer 16 shown in FIG.
  • the mass ratio (S) of the superheated steam 31 is determined.
  • the internal pressure of the flow path 12 is, for example, in the range of 0.01 to 0.30 MPa
  • the temperature of the flow path 12 is, for example, in the range of 105 to 150 ° C.
  • the actually measured flow rate is, for example, in the range of 10 to 200 g / min.
  • Table 1 shows specific examples in which the mass ratio (S) of the superheated steam 31 is set.
  • various commercially available granulators can be used.
  • a fluidized bed granulator for example, a granulator for flowing powder by sending hot air from the lower part of the granulator into the granulator, and a powder flowing by rolling of a container containing the powder.
  • the stirring granulator is a granulator that causes powder to flow by rotation of a blade.
  • the continuous granulator for example, continuously supplies powder as a raw material to a granulator such as an agitation granulator, and continuously discharges the generated granulated material from the granulator.
  • a vibrator may be attached to the granulator.
  • the obtained granulated product is dried until a predetermined moisture content is obtained.
  • the granulated product is dried using a conventional method used for drying the granulated product.
  • a drying method a method of drying while allowing the granulated product to flow, or a method of drying without causing the granulated product to flow may be applied.
  • the dryer that dries the granulated product while flowing it include a fluidized bed dryer and a rotary dryer.
  • Examples of the dryer that dries the granulated product without causing it to flow include a box dryer, a flat dryer, and a band dryer.
  • the heating means in the drying step include hot air heating, conduction heating, radiant heating, and high frequency heating. Moreover, you may improve the drying efficiency of a granulated material by decompressing the inside of a dryer.
  • the flow characteristics of the dried granulated product can be evaluated by the degree of compression.
  • the degree of compression can be measured with a commercially available powder tester. The smaller the degree of compression, the better the fluidity of the granulated product.
  • the degree of compression of the granulated product increases even if the amount of water added to the powder is reduced. This can be suppressed.
  • the degree of compression of the granulated product is preferably 30% or less, for example.
  • the mass ratio (S) is preferably in the range of 23 to 63 mass%.
  • the mass ratio of superheated steam (S) from the viewpoint of maintaining fluidity and suppressing variation in the particle size of the granulated product even if the amount of water added to the powder is reduced. Is preferably in the range of 24-68% by mass.
  • the mass ratio of superheated steam contained in the dispersion is preferably set in the range of 20 to 70% by mass. By setting this range, the fluidity can be maintained even if the amount of water added to the powder through the dispersion is reduced.
  • any one of a fluidized bed granulator, a stirring granulator, and a continuous granulator it is preferable to use any one of a fluidized bed granulator, a stirring granulator, and a continuous granulator.
  • a fluidized bed granulator or an agitation granulator the above-mentioned effects can be enhanced by setting the mass ratio (S) of superheated steam to a range of 23 to 63 mass%. Variations in the particle size of the granules are also suppressed.
  • the above-mentioned effect can be enhanced by setting the mass ratio (S) of superheated steam to a range of 24 to 68 mass%, and the particle size of the granulated product can be increased. Variations are also suppressed.
  • -Dispersions may be generated at a plurality of locations in the granulator by providing a plurality of dispersion generators for one granulator.
  • the dispersion generator may be supplied with water or hot water set at a predetermined temperature in advance. Further, the dispersion generator may be provided with a plurality of heaters. -When obtaining a granulated product, you may dry continuously by granulation by using a fluidized-bed granulation dryer, for example. Moreover, granulation and drying can also be performed continuously by a granulation / drying apparatus equipped with a continuous granulator and a dryer.
  • the resulting granulated product may be dried with a box-type dryer.
  • Example 1-1 In Example 1-1, a granulated product was produced from a corn soup raw material as a powder. Table 2 shows the composition of corn soup ingredients.
  • an agitation granulator (Vertical Granulator FM-VG-01, manufactured by Paulec Co., Ltd.) was used. As shown in FIG. 1, a dispersion generator was attached to a stirring granulator.
  • the obtained granulated product was subjected to the conditions of an air supply air amount of 0.12 m 3 / min and an air supply temperature of 100 ° C. using a rolling fluidized bed granulator / dryer (FD-MP-01E) manufactured by Paulec Co., Ltd. Dried for 19.5 minutes. By this drying, a granulated product containing about 3% by mass of water was obtained.
  • FD-MP-01E rolling fluidized bed granulator / dryer
  • Example 1-2 and Example 1-3 In Example 1-2 and Example 1-3, the mass ratio (S) of superheated steam in the dispersion was changed to the value shown in Table 3, and the same procedure as in Example 1-1 was performed. A granulated product containing% moisture was obtained.
  • Comparative Example 1-1 a granulated product was produced by changing the granulation step and the drying step to conditions different from those in Example 1-1.
  • the dispersion is changed to superheated steam.
  • the granulation process was completed when the amount of water added by superheated steam reached 14.4 g with respect to 400 g of corn soup raw material.
  • the drying step a granulated product containing about 3% by mass of water was obtained in the same manner as in Example 1 except that the drying time was extended from 19.5 minutes to 22.5 minutes.
  • Comparative Example 1-2 a granulated product was produced by changing the granulation step and the drying step to conditions different from those in Example 1-1.
  • the dispersion is changed to water vapor.
  • the granulation process was completed when the amount of water added by steam became 16.4 g with respect to 400 g of corn soup raw material.
  • the drying step a granulated product containing about 3% by mass of water was obtained in the same manner as in Example 1-1, except that the drying time was extended from 19.5 minutes to 24.5 minutes.
  • the mass ratio (S) of superheated steam is less than 23% by mass, the particle size of the granulated product is likely to vary. Therefore, it can be said that the mass ratio (S) of superheated steam is preferably 23% by mass or more.
  • Example 1-4 a granulated product was obtained in the same manner as in Example 1-1 except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation is flattened and placed in a thermostat as a box-type dryer, dried for 59.0 minutes at 60 ° C., and a granulated product containing about 3% by mass of water.
  • Comparative Example 1-3 a granulated product was obtained in the same manner as Comparative Example 1-1 except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation. The granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. for 65.5 minutes to obtain a granulated product containing about 3% by mass of water.
  • Comparative Example 1-4 a granulated product was obtained in the same manner as in Comparative Example 1-2, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation. The granulated product after granulation was flattened and allowed to stand in a thermostatic bath and dried for 70.0 minutes at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Table 4 shows the comparison of the drying time until the granulated product after granulation becomes a granulated product containing about 3% by mass of water.
  • Example 1-5 and Example 1-6 In Examples 1-5 and 1-6, except that the mass ratio (S) of superheated steam in the dispersion, the amount of water added by the dispersion, and the drying time were changed to the values shown in Table 5, A granulated product was obtained in the same manner as in Example 1-1.
  • Example 1-7 granulation was performed in the same manner as in Example 1-1, except that a laundry detergent raw material as a chemical was used.
  • the laundry detergent raw material is obtained by pulverizing a commercially available laundry detergent raw material.
  • the mass ratio (S) of superheated steam in the dispersion was set to 36% by mass.
  • the granulation process was completed when the amount of water added by the dispersion reached 7.2 g with respect to 400 g of laundry detergent raw material.
  • the obtained granulated product was dried for 14.0 minutes in the same manner as in Example 1-1 to obtain a granulated product containing about 3% by mass of water.
  • Example 1-8 granulation was performed in the same manner as in Example 1-1, except that a vitamin preparation raw material as a pharmaceutical was used. Table 6 shows the composition of the vitamin preparation raw material.
  • the mass ratio (S) of superheated steam in the dispersion was set to 36% by mass.
  • the granulation process was completed when the amount of water added by the dispersion reached 8.0 g with respect to 400 g of laundry detergent raw material.
  • the obtained granulated product was dried for 15.5 minutes in the same manner as in Example 1-1 to obtain a granulated product containing about 3% by mass of water.
  • Example 1-7 Evaluation of granulated products
  • Example 1-8 Evaluation of granulated products
  • Table 7 shows the measurement results of the degree of compression.
  • Example 2-1 a granulated product was produced from the corn soup raw material shown in Example 1-1 using a fluidized bed granulator (Fuji Kogyo Co., Ltd., Spray Granulator Model STREA-1).
  • a dispersion generator was installed in a fluidized bed granulator. Granulation was performed with the air supply temperature of the fluidized bed granulator set to 90 ° C. and the air supply flow rate kept constant.
  • 400 g of corn soup raw material was charged into a fluidized bed granulator and mixed for 30 seconds in the fluidized bed granulator.
  • granulation was started by spraying the dispersion on the corn soup raw material in a fluidized state in a fluidized bed granulator.
  • the mass ratio (S) of superheated steam in the dispersion was set to 63% by mass. The granulation process was completed when the amount of water added by the dispersion reached 46.8 g relative to 400 g of corn soup raw material.
  • the obtained granulated product was subjected to the conditions of an air supply air amount of 0.12 m 3 / min and an air supply temperature of 100 ° C. using a rolling fluidized bed granulator / dryer (FD-MP-01E) manufactured by Paulec Co., Ltd. By drying, a granulated product containing about 3% by mass of water was obtained.
  • FD-MP-01E rolling fluidized bed granulator / dryer
  • Example 2-2 a granulated product was obtained in the same manner as in Example 2-1, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Example 2-3 In Example 2-3, the mass ratio (S) of superheated steam in the dispersion, the amount of water added by the dispersion, and the drying time were changed to the values shown in Table 8, and Example 2-1 Similarly, a granulated product containing about 3% by mass of water was obtained.
  • Example 2-4 a granulated product was obtained in the same manner as in Example 2-3, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Example 2-5 In Example 2-5, except that the mass ratio (S) of superheated steam in the dispersion, the amount of water added by the dispersion, and the drying time were changed to the values shown in Table 8, Similarly, a granulated product containing about 3% by mass of water was obtained.
  • Example 2-6 a granulated product was obtained in the same manner as in Example 2-5, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Comparative Example 2-1 In Comparative Example 2-1, about 3% by mass of water was added in the same manner as in Example 2-1, except that the water addition method, the amount of water added, and the drying time were changed to the values shown in Table 8. A granulated product containing was obtained.
  • Example 2-2 a granulated product was obtained in the same manner as in Comparative Example 2-1, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Table 8 shows the comparison of the drying time until the granulated product after granulation becomes a granulated product containing about 3% by mass of water.
  • the mass ratio (S) of the superheated steam is less than 23% by mass, the particle size of the granulated product is likely to vary. Therefore, it can be said that the mass ratio (S) of the superheated steam is preferably 23% by mass or more. .
  • Example 2-7 to 2-12, Comparative Example 2-3, and Comparative Example 2-4 In Examples 2-7 to 2-12, Comparative Example 2-3 and Comparative Example 2-4, the drying time was changed with respect to Examples 2-1 to 2-6, Comparative Example 2-1 and Comparative Example 2-2. It is an example. That is, in Examples 2-7 to 2-12, Comparative Example 2-3, and Comparative Example 2-4, a granulated product containing about 6% by mass of water was obtained by changing the drying time. The same as in Examples 2-1 to 2-6, Comparative Example 2-1 and Comparative Example 2-2.
  • Table 9 shows the comparison of the drying time until the granulated product after granulation becomes a granulated product containing about 6% by mass of water.
  • Example 2-13 granulation was performed in the same manner as in Example 2-1, using a laundry detergent raw material as a chemical.
  • the laundry detergent raw material is obtained by pulverizing a commercially available laundry detergent raw material.
  • the mass ratio (S) of superheated steam in the dispersion was set to 36% by mass.
  • the granulation process was completed when the amount of water added by the dispersion reached 63.0 g with respect to 400 g of laundry detergent raw material.
  • the obtained granulated product was dried for 54.0 minutes in the same manner as in Example 2-1, thereby obtaining a granulated product containing about 3% by mass of water.
  • Example 2-14 In Example 2-14, granulation was performed in the same manner as in Example 2-1, except that a vitamin preparation raw material as a pharmaceutical was used.
  • the vitamin preparation raw materials are the same as those shown in Table 6.
  • the mass ratio (S) of superheated steam in the dispersion was set to 36% by mass.
  • the granulation process was completed when the amount of water added by the dispersion reached 11.7 g with respect to 400 g of laundry detergent raw material.
  • the obtained granulated product was dried for 19.5 minutes in the same manner as in Example 2-1, thereby obtaining a granulated product containing about 3% by mass of water.
  • Example 3-1 a granulated product was produced from the corn soup raw material shown in Example 1-1 using a continuous granulator (manufactured by Paul Wrec Inc., Shugi continuous granulator, FX-100).
  • a dispersion generator was installed in the continuous granulator.
  • the shaft speed of the continuous granulator was 4500 rpm, and the actual flow rate of water in the dispersion generator was 100 mL / min.
  • the mass ratio (S) of superheated steam in the dispersion was set to 68% by mass.
  • the amount of water added per 400 g of corn soup raw material was adjusted to 20.4 g by adjusting the supply rate of the corn soup raw material.
  • ⁇ Dry> The obtained granulated material was subjected to the conditions of an air supply amount of 0.12 m 3 / min and an air supply temperature of 100 ° C. using a rolling fluidized bed granulator / dryer (FD-MP-01E) manufactured by POWREC Co., Ltd. Dried. By this drying, a granulated product containing about 3% by mass of water was obtained.
  • FD-MP-01E rolling fluidized bed granulator / dryer
  • Example 3-2 a granulated product was obtained in the same manner as in Example 3-1, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • a granulated product containing about 3% by mass of water is obtained by flatly leveling the granulated product after granulation in a thermostat as a box-type dryer and allowing it to stand still at 60 ° C. It was.
  • Comparative Example 3-1 In Comparative Example 3-1, about 3% by mass of water was added in the same manner as in Example 3-1, except that the water addition method, the amount of water added, and the drying time were changed to the values shown in Table 11. A granulated product containing was obtained.
  • Example 3-2 a granulated product was obtained in the same manner as in Comparative Example 3-1, except that the rolling fluidized bed granulator was changed to a box dryer for drying after granulation.
  • the granulated product after granulation was flattened and allowed to stand in a thermostat and dried at 60 ° C. to obtain a granulated product containing about 3% by mass of water.
  • Table 11 shows the comparison of the drying time until the granulated product after granulation becomes a granulated product containing about 3% by mass of water.
  • Example 3-3 Example 3-4, Comparative Example 3-3 and Comparative Example 3-4
  • Example 3-4 Comparative Example 3-3 and Comparative Example 3-4, except that the granulated product containing about 6% by mass of water was obtained by changing the drying time.
  • Example 3-1 Example 3-2, Comparative Example 3-1, and Comparative Example 3-2.
  • Table 12 shows the comparison of the drying time until the granulated product after granulation becomes a granulated product containing about 6% by mass of water.
  • Example 3-5 to Example 3-7 In Examples 3-5 to 3-7, except that the mass ratio (S) of superheated steam in the dispersion, the amount of water added by the dispersion, and the drying time were changed to the values shown in Table 13, A granulated product was obtained in the same manner as in Example 3-1.
  • Example 13 shows the measurement results of the degree of compression. Furthermore, Table 13 shows the temperature of the flow path and the pressure of the flow path in the dispersion generator.
  • the degree of compression of the resulting granulated product decreases as the mass ratio (S) of superheated steam in the dispersion decreases.
  • the mass ratio (S) of the superheated steam is less than 24 mass%, the particle size of the granulated product tends to vary. Therefore, it can be said that the mass ratio (S) of the superheated steam is preferably 24 mass% or more. .
  • Example 3-8 and Example 3-9 In Example 3-8 and Example 3-9, except that the mass ratio (S) of superheated steam in the dispersion, the amount of water added by the dispersion, and the drying time were changed to the values shown in Table 14, A granulated product was obtained in the same manner as in Example 3-1.
  • the degree of compression of the resulting granulated product does not depend only on the temperature of the flow path and the pressure of the flow path in the dispersion generator, but on the mass ratio (S) of superheated steam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Drying Of Solid Materials (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Glanulating (AREA)

Abstract

 造粒方法は、水に可溶な成分を含む粉体を造粒する方法である。この造粒方法では、過熱水蒸気中に微細水滴を分散させた分散体をノズルから噴出させることで、その分散体と流動状態の粉体とを接触させる。分散体中に含まれる過熱水蒸気の質量割合は、ノズルから噴出される過熱水蒸気の理論流量と、ノズルに供給される水の実測流量とから求められる質量割合において、20~70質量%の範囲に設定されていることが好ましい。

Description

造粒方法及び造粒装置
 本発明は、水に可溶な成分を含む粉体を造粒するための造粒方法及び造粒装置に関する。
 従来、食品分野等の造粒において、過熱水蒸気に含まれる水分を用いる方法が提案されている(特許文献1及び2参照)。最近では、食材の加熱媒体として、過熱水蒸気が用いられている。例えば、特許文献3及び非特許文献1は、食材の加熱調理等に用いる加熱媒体として、過熱水蒸気中に微細水滴を分散させた加熱媒体を提案している。
特開2001-062278号公報 特開2007-054679号公報 特開2009-091386号公報
FOODS & FOOD INGREDIENTS JOURNAL,Vol213,No11,2008,P969-976
 造粒製品は、水分を添加して造粒した造粒物を乾燥して得られる。こうして得られた造粒製品は、原料の粉体よりも高い流動性を有している。ここで、流動状態の粉体に過熱水蒸気を噴射する造粒方法では、粉体に添加する水分量を増やすと、造粒製品の流動性が高くなる傾向にある。ところが、粉体に添加する水分量を増やすと、造粒物を乾燥するための時間も長くなる。その結果、造粒製品の製造効率が低下する。
 本発明者は、過熱水蒸気中に微細水滴を分散させた分散体を用いて造粒することで、造粒製品の流動性が高まることを見出した。本発明の目的は、粉体に添加する水分量を少なくしても、流動性を維持することのできる造粒方法及び造粒装置を提供することにある。
 上記の目的を達成するために、本発明の第一の態様によれば、水に可溶な成分を含む粉体を造粒する造粒方法が提供される。その造粒方法によれば、過熱水蒸気中に微細水滴を分散させた分散体をノズルから噴出させることで、その分散体と流動状態の粉体とを接触させる。
 上記の造粒方法において、分散体中に含まれる過熱水蒸気の質量割合が、ノズルから噴出される過熱水蒸気の理論流量と、ノズルに供給される水の実測流量とから求められる質量割合において、20~70質量%の範囲に設定されていることが好ましい。
 上記の造粒方法において、流動層造粒機、撹拌造粒機、及び連続造粒機のいずれかを用いることが好ましい。
 上記の造粒方法において、流動層造粒機又は撹拌造粒機を用いることが好ましく、分散体中に含まれる過熱水蒸気の質量割合が、ノズルから噴出される過熱水蒸気の理論流量と、ノズルに供給される水の実測流量とから求められる質量割合において、23~63質量%の範囲に設定されていることが好ましい。
 上記の造粒方法において、連続造粒機を用いることが好ましく、分散体中に含まれる過熱水蒸気の質量割合が、ノズルから噴出される過熱水蒸気の理論流量と、ノズルに供給される水の実測流量とから求められる質量割合において、24~68質量%の範囲に設定されていることが好ましい。
 上記の造粒方法において、分散体は、ノズルとノズルに水を導く流路を加熱する加熱器とを有する分散体発生装置により発生し、流路内の温度は105~150℃の範囲であり、流路の内圧は0.01~0.30MPaの範囲であり、分散体はノズルから噴出されることが好ましい。
 上記の目的を達成するために、本発明の第二の態様によれば、上記の造粒方法を実施する造粒装置が提供される。造粒装置では、水の流路を加熱する加熱器とノズルとを有する分散体発生装置が、造粒機に装着されている。
 上記の目的を達成するために、本発明の第三の態様によれば、水に可溶な成分を含む粉体を造粒することで造粒物を製造する方法が提供される。その造粒物の製造方法によれば、過熱水蒸気中に微細水滴を分散させた分散体と、流動状態の粉体とを接触させる。
 本発明によれば、粉体に添加する水分量を少なくしても、流動性を維持することのできる造粒方法を提供することができる。
本発明の一実施形態の造粒方法を示す概略図。 計測用装置を示す概略図。
 以下、本発明の造粒方法を具体化した一実施形態を詳細に説明する。
 本実施形態の造粒方法は、水に可溶な成分を含む粉体を造粒する方法である。この造粒方法では、過熱水蒸気中に微細水滴を分散させた分散体をノズルから噴出させることで、その分散体と流動状態の粉体とを接触させる。分散体は、飽和水蒸気と液体状態の水とをノズルから同時に噴出させて得られる。
 粉体は、水に可溶な成分を含む。このため、粉体を構成する粒子の一部は、分散体に含まれる水分により膨潤又は溶解する。これにより、水に可溶な成分がバインダーとなることで、造粒物が生成される。造粒方法に供される粉体の用途は、特に限定されず、例えば、食品、医薬品、及び化学品が挙げられる。
 過熱水蒸気は、沸点を超える温度に熱せられた水蒸気である。過熱水蒸気中に微細水滴を分散させた分散体は、図1に示す分散体発生装置11により発生させることができる。分散体発生装置11は、水の流路12を加熱する加熱器13と、飽和水蒸気及び液体状態の水を同時に噴出するノズル14とを備えている。
 流路12には、図示しない定量ポンプにより水が流入される。流路12に流入された水は、加熱器13により熱せられる。これにより、水の一部が気化することで、流路12内の圧力は高められる。すなわち、流路12内への水の供給量及び流路12内の温度を調整することで、100℃を超える飽和水蒸気と、液体状態の水とが存在することになる。飽和水蒸気と液体状態の水とは、流路12によりノズル14に導かれて、ノズル14から同時に噴出される。ノズル14から噴出した飽和水蒸気の圧力は、瞬時に大気圧まで低下することで、沸点を超える過熱水蒸気31となる。また、液体状態の水は、ノズル14から高速で噴出されることで微細水滴32となる。
 加熱器13の加熱方式は、流路12内が加熱される方式であれば、特に限定されない。加熱器13の加熱方式としては、例えば、伝導加熱、放射加熱、及び高周波加熱が挙げられる。
 ノズル14の開口は、造粒機21内に位置している。これにより、造粒機21内には、過熱水蒸気31中に微細水滴32を分散させた分散体が供給される。このとき、造粒機21内では、粉体33が流動している。粉体33に分散体が接触することで、分散体中の水分が凝縮した水により、粉体33の一部が膨潤又は溶解する。すなわち、分散体中の水分が粉体33を凝集させることで、造粒物が生成される。分散体発生装置11に供給する水としては、流路12及びノズル14においてスケールの発生を抑制するという観点から、カルシウムイオン及びマグネシウムイオンの各イオンの含有量を低減した軟水、又は純水を用いることが好ましい。
 分散体中に含まれる過熱水蒸気31の質量割合は、20~70質量%の範囲に設定されていることが好ましい。この範囲に設定されることで、分散体を通じて粉体33に添加する水分量を少なくしても、流動性を維持することができる。ここで、過熱水蒸気31の質量割合(S)は、ノズル14から噴出される過熱水蒸気31の理論流量(G)[g/min]と、ノズル14に供給される水の実測流量(F)[g/min]とから求められる質量割合であって、以下の式(1)で示される。
 S(質量%)=G/F×100 ・・・(1)
 ノズル14に供給される水の実測流量(F)は、図1に示す流量計17により測定される。
 過熱水蒸気31の理論流量(G)[g/min]は、以下の式(2)により定義される。
Figure JPOXMLDOC01-appb-M000001
 A:ノズルの開口面積[m
 P:流路の内圧[MPa]
 T:流路の温度[K]
 流路の内圧(P)、流路の温度(T)は、図1に示すように、ノズル14近傍に設けられる圧力計15及び温度計16により測定される。
 R:気体定数=461.5[J/kg/K]
 κ:比熱比=1.34
 Pは、臨界圧力Pc[MPa]であり、下記の式(3)で示される。
Figure JPOXMLDOC01-appb-M000002
 Cは、下記の式(4)により算出される。
Figure JPOXMLDOC01-appb-M000003
 α:ノズル係数
 β:ノズル係数
 Re:レイノルズ数=10~10
 ノズル係数α及びβは、日本機械学会論文集,66巻,642号,No.98-1326(pp438-444)「音速ノズルの流出係数とガス種の関係」に準拠して実測される値から導かれる。本明細書において、ノズル係数α及びβは、空気を用いて測定した各種測定値から算出される。
 図2は、ノズル係数α及びβを求めるために使用される計測用装置の概略を示す。図2に示すように、計測用装置41に設けられる流路42内には、コンプレッサ43から空気が送り込まれる。流路42内に送り込まれた空気はノズル44へ導かれる。流路42には、ノズル44に送り込まれる空気流量を調整するバルブ45と、空気流量を計測する流量計46とが設けられている。さらに、ノズル44の近傍には、流路42内の温度を計測する温度計47と、流路42内の圧力を計測する圧力計48とが設けられている。ノズル係数α及びβは、計測用装置41を用いて、以下の手順(1)~手順(5)により求められる。
 <手順(1)>
 バルブ45の操作により空気流量を数段から数十段階に調整し、流量計46、温度計47及び圧力計48により、流量U’、温度T、及び圧力Pをそれぞれ測定する。
 <手順(2)>
 それぞれの流量設定において、理論空気流量qを下記式(5)により算出する。
Figure JPOXMLDOC01-appb-M000004
 ここで、式(5)中のT及びPは、上記<手順(1)>で測定した温度T、及び圧力Pである。式(5)中のPは、ノズル44のオリフィス部の圧力であって、圧力Pは、上記式(2),(3)に示す臨界圧力Pc、及び大気圧Paのうち、高い方の値を選択する。ここで、上記式(3)中のR及びκには、以下に示す空気の気体定数及び比熱比を代入する。
 R=287.10[J/kg/K]
 κ=1.4020
 <手順(3)>
 それぞれの流量設定において、理論空気流量qに対する実測空気流量q’の比u(u=q’/q)を算出する。ここで、実測空気流量q’は、流量計46により測定された体積流量から算出される質量流量である。
 <手順(4)>
 それぞれの流量設定において、下記式(6)からレイノルズ数(Re)を算出する。
 Re=d/(ν×w)・・・(6)
 d:ノズル口径[m]
 ν:空気の動粘性係数[m/s]
 w:空気の流速[m/s]
 ここで求められるレイノルズ数(Re)は、ノズル44のオリフィス部における空気の流れのレイノルズ数である。
 空気の動粘性係数(ν)は次のように求める。
 ν=η/ρ
 η:空気の粘性係数[Pa・s]
 この空気の粘性係数(η)に対しては温度及び圧力依存が小さいので、以下の定数を用いる。
 η=18.58×10-6[Pa・s]
 ρ:空気の密度[kg/m
 この空気の密度(ρ)は、上記<手順(1)>で測定した温度T、及び圧力P、並びに気体の状態方程式を用いて算出する。すなわち、空気の密度(ρ)は、下記式(7)に示される。
 ρ=P/(R×T)・・・(7)
 式(7)中のTは、下記式(8)に示す断熱膨張の式から算出される。
Figure JPOXMLDOC01-appb-M000005
 式(6)中の空気の流速(w)は、上記<手順(1)>で測定した温度T、及び圧力Pに基づいて下記式(9)から算出される。
Figure JPOXMLDOC01-appb-M000006
 <手順(5)>
 それぞれの流量設定において、1/(Re)1/2をx軸、及び、上記<手順(3)>で求めたuをy軸にプロットし、上記式(4)を変形した下記式(10)を回帰式として、ノズル係数α及びβを算出する。
 y=α-βx・・・(10)
 式(4)中のレイノルズ数(Re)は、図1に示す分散体発生装置11にて測定される圧力及び温度から算出する。詳述すると、レイノルズ数は、下記式(11)によって算出される。
 Re=d/(ν×w)・・・(11)
 d:ノズル口径[m]
 ν:水蒸気の動粘性係数[m/s]
 w:水蒸気の流速[m/s]
 水蒸気の動粘度係数は、圧力計15及び温度計16の測定値から決定される粘性係数、及び気体の状態方程式から算出される水蒸気の密度から算出される。水蒸気の流速は、上記式(9)を用いて算出される。
 P:流路の内圧[MPa]
 T:流路の温度[K]
 流路の内圧(P)、流路の温度(T)は、図1に示す圧力計15及び温度計16により測定される値である。
 R:気体定数=461.5[J/kg/K]
 κ:比熱比=1.34
 Pには、上記式(3)により算出される臨界圧力Pc[MPa]、及び、大気圧Paのうち高い値を代入する。
 以上により、過熱水蒸気31の質量割合(S)は決定される。
 分散体発生装置11において、流路12の内圧としては、例えば、0.01~0.30MPaの範囲であり、流路12の温度としては、例えば、105~150℃の範囲である。実測流量としては、例えば、10~200g/minの範囲である。表1は、過熱水蒸気31の質量割合(S)を設定した具体例を示す。
Figure JPOXMLDOC01-appb-T000007
 造粒方法では、市販の各種造粒機を用いることができる。本実施形態の造粒方法では、各種造粒機のうち、流動層造粒機、撹拌造粒機、及び連続造粒機のいずれかを用いることが好ましい。
 流動層造粒機としては、例えば、造粒機の下部から造粒機内に熱風を送ることで粉体を流動させる造粒機、及び、粉体を収容する容器の転動により粉体を流動させる造粒機が挙げられる。撹拌造粒機は、ブレードの回転により粉体を流動させる造粒機である。連続造粒機は、例えば、撹拌造粒機等の造粒機に原料となる粉体を連続的に供給するとともに、生成した造粒物を造粒機から連続的に排出する。造粒機には、加振機を装着してもよい。
 得られた造粒物は、所定の水分含有量となるまで乾燥される。造粒物は、造粒物の乾燥に用いられる通常の方法を用いて乾燥される。乾燥の方法としては、造粒物を流動させながら乾燥させる方法、又は造粒物を流動させずに乾燥させる方法を適用してもよい。造粒物を流動させながら乾燥する乾燥機としては、例えば、流動層乾燥機、及び回転乾燥機が挙げられる。造粒物を流動させずに乾燥させる乾燥機としては、例えば、箱型乾燥機、平型乾燥機、及びバンド乾燥機が挙げられる。乾燥工程における加熱手段としては、例えば、熱風加熱、伝導加熱、放射加熱、及び高周波加熱が挙げられる。また、乾燥機内を減圧することで、造粒物の乾燥効率を高めてもよい。
 乾燥された造粒製品の流動特性は、圧縮度により評価することができる。圧縮度は、嵩減りの度合いを示す値であり、以下の式で算出される。
 圧縮度(%)={(最密嵩密度-最疎嵩密度)/最密嵩密度}×100
 圧縮度は、市販のパウダーテスターで計測することができる。圧縮度が小さいほど、造粒製品の流動性は優れている。
 ここで、造粒方法において、過熱水蒸気及び水蒸気のいずれか一方をノズルから噴出するとともに、流動状態の粉体に吹き付けた場合、粉体に添加する水分量を少なくすると、得られる造粒製品の圧縮度は高くなる。この点、本実施形態の造粒方法では、過熱水蒸気中に微細水滴を分散させた分散体を用いるため、粉体に添加する水分量を少なくしても、造粒製品の圧縮度が高くなることを抑制できる。造粒製品の圧縮度としては、例えば、30%以下が好ましい。
 撹拌造粒機又は流動層造粒機を用いる場合、粉体に添加する水分量を少なくしても、流動性を維持できるとともに造粒物の粒径のばらつきを抑制するという観点から、過熱水蒸気の質量割合(S)は、23~63質量%の範囲であることが好ましい。
 連続造粒機を用いる場合、粉体に添加する水分量を少なくしても、流動性を維持できるとともに造粒物の粒径のばらつきを抑制するという観点から、過熱水蒸気の質量割合(S)は、24~68質量%の範囲であることが好ましい。
 本実施形態によって発揮される効果について、以下に記載する。
 (1)本実施形態の造粒方法では、過熱水蒸気中に微細水滴を分散させた分散体をノズルから噴出させることで、その分散体と流動状態の粉体とを接触させる。このとき、粉体は水に可溶な成分を含むため、粉体を構成する粒子の一部は、分散体に含まれる水分により膨潤又は溶解する。これにより、粒子が凝集することで、造粒物が生成される。この方法によれば、粉体に添加する水分量を少なくしても、流動性を維持することができる。このため、例えば、造粒物を乾燥させるに際し、乾燥時間を短縮することができる。
 (2)分散体中に含まれる過熱水蒸気の質量割合は、20~70質量%の範囲に設定されていることが好ましい。この範囲に設定されることで、分散体を通じて粉体に添加する水分量を少なくしても、流動性を維持することができる。
 (3)上述した造粒方法では、流動層造粒機、撹拌造粒機、及び連続造粒機のいずれかの造粒機を用いることが好ましい。例えば、流動層造粒機又は撹拌造粒機を用いる場合、過熱水蒸気の質量割合(S)を23~63質量%の範囲に設定することで、上記の作用効果を高めることができ、また造粒物の粒径ばらつきも抑制される。また、連続造粒機を用いる場合、過熱水蒸気の質量割合(S)を24~68質量%の範囲に設定することで、上記の作用効果を高めることができ、また造粒物の粒径のばらつきも抑制される。
 前記実施形態を次のように変更することもできる。
 ・1つの造粒機に対して複数の分散体発生装置を設けることで、分散体を造粒機内の複数の箇所で発生させてもよい。
 ・分散体発生装置には、予め所定の温度に設定された水又は温水を供給してもよい。また、分散体発生装置には、複数の加熱器を設けてもよい。
 ・造粒製品を得るに際し、例えば、流動層造粒乾燥機を用いることで、造粒と連続して乾燥を行ってもよい。また、連続造粒機と乾燥機とを備えた造粒乾燥装置により、造粒と乾燥とを連続して行うこともできる。
 ・造粒物の乾燥は、複数の段階で行ってもよい。例えば、流動層造粒乾燥機により造粒及び予備乾燥を行った後、得られた造粒物を箱型乾燥機で乾燥してもよい。
 次に、実施例及び比較例を挙げて前記実施形態を具体的に説明する。
 (実施例1-1)
 実施例1-1では、粉体としてのコーンスープ原料から造粒製品を製造した。表2は、コーンスープ原料の配合を示す。
Figure JPOXMLDOC01-appb-T000008
 <造粒>
 造粒機としては、撹拌造粒機(株式会社パウレック製、Vertical Granulator FM-VG-01)を用いた。図1に示すように、撹拌造粒機に分散体発生装置を装着した。
 まず、撹拌造粒機にコーンスープ原料400gを投入し、撹拌造粒機内にて30秒間混合した。次に、撹拌状態のコーンスープ原料に対して分散体を吹き付けることで造粒を開始した。分散体中における過熱水蒸気の質量割合(S)は23質量%に設定した。造粒の工程は、分散体により添加される水の添加量がコーンスープ原料400gに対して11.6gとなった時点で終了した。
 <乾燥>
 得られた造粒物を、株式会社パウレック製の転動流動層造粒乾燥機(FD-MP-01E)を用いて、給気風量0.12m/min、給気温度100℃の条件で19.5分間乾燥した。この乾燥により、約3質量%の水分を含有する造粒製品が得られた。
 (実施例1-2及び実施例1-3)
 実施例1-2及び実施例1-3では、分散体中における過熱水蒸気の質量割合(S)を表3に示す値に変更した以外は、実施例1-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (比較例1-1)
 比較例1-1では、造粒の工程及び乾燥の工程について、実施例1-1と異なる条件に変更して造粒製品を製造した。造粒の工程では、分散体を過熱水蒸気に変更している。造粒の工程は、過熱水蒸気により添加される水分量がコーンスープ原料400gに対して14.4gとなった時点で終了した。乾燥の工程では、乾燥時間を19.5分間から22.5分間に延長した以外は、実施例1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (比較例1-2)
 比較例1-2では、造粒の工程及び乾燥の工程について、実施例1-1と異なる条件に変更して造粒製品を製造した。造粒の工程では、分散体を水蒸気に変更している。造粒の工程は、水蒸気により添加される水の添加量がコーンスープ原料400gに対して16.4gとなった時点で終了した。乾燥の工程では、乾燥時間を19.5分間から24.5分間に延長した以外は、実施例1-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (造粒製品の評価)
 各例で得られた造粒製品について、パウダーテスター(ホソカワミクロン株式会社製、PT-R型)を用いて圧縮度を計測した。表3は、圧縮度の計測結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表3に示すように、各実施例では、粉体400gに対する水の添加量が各比較例よりも少ない。しかしながら、各実施例では、圧縮度について各比較例と同等又は優れるとの結果が得られた。過熱水蒸気の質量割合(S)が23質量%未満の場合、造粒物の粒径がばらつきやすくなるため、過熱水蒸気の質量割合(S)は23質量%以上であることが好ましいと言える。
 (実施例1-4)
 実施例1-4では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、実施例1-1と同様にして造粒製品を得た。箱型乾燥機としての恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で59.0分間乾燥し、約3質量%の水分を含有する造粒製品を得た。
 (比較例1-3)
 比較例1-3では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、比較例1-1と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で65.5分間乾燥し、約3質量%の水分を含有する造粒製品を得た。
 (比較例1-4)
 比較例1-4では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、比較例1-2と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で70.0分間乾燥し、約3質量%の水分を含有する造粒製品を得た。
 (乾燥時間の対比)
 表4は、造粒後の造粒物が約3質量%の水分を含有する造粒製品になるまでの乾燥時間の対比を示す。
Figure JPOXMLDOC01-appb-T000010
 表4に示すように、各実施例では、造粒後の乾燥時間について、各比較例よりも短縮できることが分かる。ここで、実施例1-1及び実施例1-4の各造粒物において、造粒後の水分含有量は、約6質量%であった。こうした結果から、約6質量%の水分を含む造粒製品にする場合、造粒後の乾燥を省略することもできる。一方、比較例1-1~1-4の造粒物を約6質量%の水分を含む造粒製品とするには、造粒後に2.5分以上の乾燥が必要であった。
 (実施例1-5及び実施例1-6)
 実施例1-5及び実施例1-6では、分散体中における過熱水蒸気の質量割合(S)、分散体により添加される水分量、及び乾燥時間を表5に示す値に変更した以外は、実施例1-1と同様にして造粒製品を得た。
 (造粒製品の評価)
 得られた造粒製品について、上記と同様にして圧縮度を計測した。表5は、圧縮度の計測結果を示す。また、表5は、分散体発生装置における流路の温度及び流路の圧力を示す。
Figure JPOXMLDOC01-appb-T000011
 表5に示すように、得られる造粒製品の圧縮度は、流路の条件を変更しても、過熱水蒸気の質量割合がほぼ同じであれば、同様の圧縮度が得られることが分かる。
 (実施例1-7)
 実施例1-7では、化学品としての洗濯用洗剤原料を用いた以外は、実施例1-1と同様にして造粒を行った。洗濯用洗剤原料は、市販の洗濯用洗剤原料を粉砕したものである。造粒の工程では、分散体中における過熱水蒸気の質量割合(S)を36質量%に設定した。造粒の工程は、分散体により添加される水分量が洗濯用洗剤原料400gに対して7.2gとなった時点で終了した。得られた造粒物を実施例1-1と同様にして14.0分乾燥させることで約3質量%の水分を含有する造粒製品を得た。
 (実施例1-8)
 実施例1-8では、医薬品としてのビタミン製剤原料を用いた以外は、実施例1-1と同様にして造粒を行った。表6は、ビタミン製剤原料の配合を示す。
Figure JPOXMLDOC01-appb-T000012
 造粒の工程では、分散体中における過熱水蒸気の質量割合(S)を36質量%に設定した。造粒の工程は、分散体により添加される水分量が洗濯用洗剤原料400gに対して8.0gとなった時点で終了した。得られた造粒物を実施例1-1と同様にして15.5分乾燥させることで約3質量%の水分を含有する造粒製品を得た。
 (造粒製品の評価)
 実施例1-7及び実施例1-8の各造粒製品について、実施例1-1と同様にして圧縮度を計測した。表7は、圧縮度の計測結果を示す。
Figure JPOXMLDOC01-appb-T000013
 表7に示すように、化学品及び医薬品においても、分散体を用いた造粒によれば、流動性に優れる造粒製品が得られた。
 (実施例2-1)
 実施例2-1において、実施例1-1に示すコーンスープ原料から流動層造粒機(富士工業株式会社製、Spray Granulator Model STREA-1)を用いて造粒製品を製造した。
 <造粒>
 図1に示すように、流動層造粒機に分散体発生装置を装着した。流動層造粒機の給気温度を90℃に設定し、給気流量を一定にして造粒を行った。まず、流動層造粒機にコーンスープ原料400gを投入し、流動層造粒機内にて30秒間混合した。次に、流動層造粒機内において流動状態のコーンスープ原料に分散体を吹き付けることで造粒を開始した。分散体中における過熱水蒸気の質量割合(S)を63質量%に設定した。造粒の工程は、分散体により添加される水分量がコーンスープ原料400gに対して46.8gとなった時点で終了した。
 <乾燥>
 得られた造粒物を、株式会社パウレック製の転動流動層造粒乾燥機(FD-MP-01E)を用いて、給気風量0.12m/min、給気温度100℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (実施例2-2)
 実施例2-2では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、実施例2-1と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (実施例2-3)
 実施例2-3では、分散体中における過熱水蒸気の質量割合(S)、分散体により添加される水分量、及び乾燥時間を表8に示す値に変更した以外は、実施例2-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (実施例2-4)
 実施例2-4では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、実施例2-3と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (実施例2-5)
 実施例2-5では、分散体中における過熱水蒸気の質量割合(S)、分散体により添加される水分量、及び乾燥時間を表8に示す値に変更した以外は、実施例2-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (実施例2-6)
 実施例2-6では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、実施例2-5と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (比較例2-1)
 比較例2-1では、水分の添加法、添加される水分量、及び乾燥時間を表8に示す値に変更した以外は、実施例2-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (比較例2-2)
 実施例2-2では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、比較例2-1と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (乾燥時間の対比)
 表8は、造粒後の造粒物が約3質量%の水分を含有する造粒製品になるまでの乾燥時間の対比を示す。
Figure JPOXMLDOC01-appb-T000014
 表8に示すように、各実施例及び各比較例の結果から、各実施例では粉体に添加する水分量を少なくしても、圧縮度を維持できることが分かる。各実施例では、造粒後の乾燥時間について、各比較例よりも短縮できることが分かる。ここで、水分の添加法を過熱水蒸気とした場合、粉体400gに対する水の添加量を218gまで高めても、得られる造粒製品の圧縮度は30%を超える結果となった。
 過熱水蒸気の質量割合(S)が23質量%未満の場合、造粒物の粒径にばらつきが生じやすくなるため、過熱水蒸気の質量割合(S)は23質量%以上であることが好ましいと言える。
 (実施例2-7~2-12、比較例2-3及び比較例2-4)
 実施例2-7~2-12、比較例2-3及び比較例2-4は、実施例2-1~2-6、比較例2-1及び比較例2-2について乾燥時間を変更した例である。すなわち、実施例2-7~2-12、比較例2-3及び比較例2-4は、乾燥時間を変更することで、約6質量%の水分を含有する造粒製品を得た以外は、実施例2-1~2-6、比較例2-1及び比較例2-2とそれぞれ同様である。
 (乾燥時間の対比)
 表9は、造粒後の造粒物が約6質量%の水分を含有する造粒製品になるまでの乾燥時間の対比を示す。
Figure JPOXMLDOC01-appb-T000015
 表9に示すように、各実施例では、造粒後の乾燥時間について、各比較例よりも短縮できることが分かる。
 (実施例2-13)
 実施例2-13では、化学品としての洗濯用洗剤原料を用いて実施例2-1と同様にして造粒を行った。洗濯用洗剤原料は、市販の洗濯用洗剤原料を粉砕したものである。造粒の工程では、分散体中における過熱水蒸気の質量割合(S)を36質量%に設定した。造粒の工程は、分散体により添加される水分量が洗濯用洗剤原料400gに対して63.0gとなった時点で終了した。得られた造粒物を実施例2-1と同様にして54.0分乾燥させることで約3質量%の水分を含有する造粒製品を得た。
 (実施例2-14)
 実施例2-14では、医薬品としてのビタミン製剤原料を用いた以外は、実施例2-1と同様にして造粒を行った。ビタミン製剤原料は、表6に示したものと同じである。造粒の工程では、分散体中における過熱水蒸気の質量割合(S)を36質量%に設定した。造粒の工程は、分散体により添加される水分量が洗濯用洗剤原料400gに対して11.7gとなった時点で終了した。得られた造粒物を実施例2-1と同様にして19.5分乾燥させることで約3質量%の水分を含有する造粒製品を得た。
 (造粒製品の評価)
 実施例2-13及び実施例2-14の各造粒製品について、上記と同様にして圧縮度を計測した。表10は、圧縮度の計測結果を示す。
Figure JPOXMLDOC01-appb-T000016
 表10に示すように、化学品及び医薬品においても、分散体を用いた造粒によれば、流動性に優れる造粒製品が得られることが分かる。
 (実施例3-1)
 実施例3-1において、実施例1-1に示すコーンスープ原料から連続造粒機(株式会社パウレック製、シュギ連続式造粒機、FX-100)を用いて造粒製品を製造した。
 <造粒>
 連続造粒機に分散体発生装置を装着した。連続造粒機のシャフト回転数は4500rpmとし、分散体発生装置における水の実測流量は、100mL/minとした。分散体中における過熱水蒸気の質量割合(S)は68質量%に設定した。この連続造粒機を用いた造粒では、コーンスープ原料の供給速度を調整することで、コーンスープ原料400g当たりに対する水の添加量を20.4gとした。
 <乾燥>
 得られた造粒物は、株式会社パウレック製の転動流動層造粒乾燥機(FD-MP-01E)を用いて、給気風量0.12m/min、給気温度100℃の条件で乾燥した。この乾燥により、約3質量%の水分を含有する造粒製品が得られた。
 (実施例3-2)
 実施例3-2では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、実施例3-1と同様にして造粒製品を得た。箱型乾燥機としての恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (比較例3-1)
 比較例3-1では、水分の添加法、添加される水分量、及び乾燥時間を表11に示す値に変更した以外は、実施例3-1と同様にして、約3質量%の水分を含有する造粒製品を得た。
 (比較例3-2)
 実施例3-2では、造粒後の乾燥について転動流動層造粒乾燥機を箱型乾燥機に変更した以外は、比較例3-1と同様にして造粒製品を得た。恒温槽内に造粒後の造粒物を平たく均して静置し、60℃の条件で乾燥することで、約3質量%の水分を含有する造粒製品を得た。
 (乾燥時間の対比)
 表11は、造粒後の造粒物が約3質量%の水分を含有する造粒製品になるまでの乾燥時間の対比を示す。
Figure JPOXMLDOC01-appb-T000017
 表11に示すように、各実施例及び各比較例の結果から、各実施例では粉体に添加する水分量を少なくしても、圧縮度を維持できることが分かる。各実施例では、造粒後の乾燥時間について各比較例よりも短縮できることが分かる。ここで、水分の添加法を水蒸気とした場合、粉体400gに対する水の添加量を22.4gまで高めても、得られる造粒製品の圧縮度は19%を超える結果となった。
 (実施例3-3、実施例3-4、比較例3-3及び比較例3-4)
 実施例3-3、実施例3-4、比較例3-3及び比較例3-4は、乾燥時間を変更することで約6質量%の水分を含有する造粒製品を得た以外は、実施例3-1、実施例3-2、比較例3-1及び比較例3-2と同様である。
 (乾燥時間の対比)
 表12は、造粒後の造粒物が約6質量%の水分を含有する造粒製品になるまでの乾燥時間の対比を示す。
Figure JPOXMLDOC01-appb-T000018
 表12に示すように、各実施例では、造粒後の乾燥時間について、各比較例よりも短縮できることが分かる。
 (実施例3-5~実施例3-7)
 実施例3-5~実施例3-7では、分散体中における過熱水蒸気の質量割合(S)、分散体により添加される水分量、及び乾燥時間を表13に示す値に変更した以外は、実施例3-1と同様にして造粒製品を得た。
 (造粒製品の評価)
 実施例3-5~実施例3-7の各造粒製品について、上記と同様にして圧縮度を計測した。表13は、圧縮度の計測結果を示す。更に、表13は、分散体発生装置における流路の温度及び流路の圧力を示す。
Figure JPOXMLDOC01-appb-T000019
 表13に示すように、得られる造粒製品の圧縮度は、分散体中における過熱水蒸気の質量割合(S)の低下と共に小さくなることが分かる。過熱水蒸気の質量割合(S)が24質量%未満の場合、造粒物の粒径にばらつきが生じやすくなるため、過熱水蒸気の質量割合(S)は24質量%以上であることが好ましいと言える。
 (実施例3-8及び実施例3-9)
 実施例3-8及び実施例3-9では、分散体中における過熱水蒸気の質量割合(S)、分散体により添加される水分量、及び乾燥時間を表14に示す値に変更した以外は、実施例3-1と同様にして造粒製品を得た。
 (造粒製品の評価)
 得られた造粒製品について、上記と同様にして圧縮度を計測した。表14は、圧縮度の計測結果を示す。更に、表14は、分散体発生装置における流路の温度及び流路の圧力を示す。
Figure JPOXMLDOC01-appb-T000020
 表14に示すように、得られる造粒製品の圧縮度は、分散体発生装置における流路の温度及び流路の圧力のみには依存せずに、過熱水蒸気の質量割合(S)に依存していることが分かる。
 14…ノズル、21…造粒機、31…過熱水蒸気、32…微細水滴、33…粉体。

Claims (8)

  1. 水に可溶な成分を含む粉体を造粒する造粒方法であって、
     過熱水蒸気中に微細水滴を分散させた分散体をノズルから噴出させることで、その分散体と流動状態の前記粉体とを接触させることにより造粒することを特徴とする造粒方法。
  2. 前記分散体中に含まれる前記過熱水蒸気の質量割合が、前記ノズルから噴出される前記過熱水蒸気の理論流量と、前記ノズルに供給される水の実測流量とから求められる質量割合において、20~70質量%の範囲に設定されていることを特徴とする請求項1に記載の造粒方法。
  3. 流動層造粒機、撹拌造粒機、及び連続造粒機のいずれかを用いることを特徴とする請求項1又は請求項2に記載の造粒方法。
  4. 流動層造粒機又は撹拌造粒機を用いる造粒方法であって、前記分散体中に含まれる前記過熱水蒸気の質量割合が、前記ノズルから噴出される前記過熱水蒸気の理論流量と、前記ノズルに供給される水の実測流量とから求められる質量割合において、23~63質量%の範囲に設定されていることを特徴とする請求項1に記載の造粒方法。
  5. 連続造粒機を用いる造粒方法であって、前記分散体中に含まれる前記過熱水蒸気の質量割合が、前記ノズルから噴出される前記過熱水蒸気の理論流量と、前記ノズルに供給される水の実測流量とから求められる質量割合において、24~68質量%の範囲に設定されていることを特徴とする請求項1に記載の造粒方法。
  6. 前記分散体は、前記ノズルと前記ノズルに水を導く流路を加熱する加熱器とを有する分散体発生装置により発生し、前記流路内の温度が105~150℃の範囲であり、前記流路の内圧が0.01~0.30MPaの範囲であり、前記分散体が前記ノズルから噴出されることを特徴とする請求項1に記載の造粒方法。
  7. 請求項1に記載の造粒方法を実施する造粒装置であって、
     水の流路を加熱する加熱器と前記ノズルとを有する分散体発生装置が造粒機に装着されていることを特徴とする造粒装置。
  8. 水に可溶な成分を含む粉体を造粒することで造粒物を製造する造粒物の製造方法であって、
     過熱水蒸気中に微細水滴を分散させた分散体と流動状態の前記粉体とを接触させることにより造粒することを特徴とする造粒物の製造方法。
PCT/JP2010/058762 2010-05-24 2010-05-24 造粒方法及び造粒装置 WO2011148454A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127032585A KR101384552B1 (ko) 2010-05-24 2010-05-24 제립 방법 및 제립 장치
EP10852125.3A EP2578309B1 (en) 2010-05-24 2010-05-24 Granulating method
JP2012506823A JP5019661B2 (ja) 2010-05-24 2010-05-24 造粒方法及び造粒装置
CN2010800681811A CN103037962A (zh) 2010-05-24 2010-05-24 造粒方法及造粒装置
PCT/JP2010/058762 WO2011148454A1 (ja) 2010-05-24 2010-05-24 造粒方法及び造粒装置
US13/698,908 US20130069270A1 (en) 2010-05-24 2010-05-24 Granulating method and granulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058762 WO2011148454A1 (ja) 2010-05-24 2010-05-24 造粒方法及び造粒装置

Publications (1)

Publication Number Publication Date
WO2011148454A1 true WO2011148454A1 (ja) 2011-12-01

Family

ID=45003463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058762 WO2011148454A1 (ja) 2010-05-24 2010-05-24 造粒方法及び造粒装置

Country Status (6)

Country Link
US (1) US20130069270A1 (ja)
EP (1) EP2578309B1 (ja)
JP (1) JP5019661B2 (ja)
KR (1) KR101384552B1 (ja)
CN (1) CN103037962A (ja)
WO (1) WO2011148454A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540209B2 (ja) * 2009-11-17 2014-07-02 独立行政法人農業・食品産業技術総合研究機構 加熱媒体発生方法
EP3046424A1 (en) * 2013-09-17 2016-07-27 Evonik Industries AG Process for the production of granules having greatly improved properties from amino acid solutions and suspensions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509496A (ja) * 1989-04-24 1994-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ナベ造粒
JP2000501981A (ja) * 1995-12-01 2000-02-22 アエロマティック―フィールダー・アクチェンゲゼルシャフト 粒状材料を処理するための装置及び方法
JP2001062278A (ja) 1999-08-27 2001-03-13 Shinmei Seisakusho:Kk 粉粒体の転動造粒方法および装置
JP2002294295A (ja) * 2001-03-29 2002-10-09 Kao Corp 界面活性剤担持用顆粒群の製法
JP2007054679A (ja) 2005-08-22 2007-03-08 G-Labo:Kk 加熱処理装置および加熱処理装置を用いた加熱方法
JP2009091386A (ja) 2007-10-03 2009-04-30 National Agriculture & Food Research Organization 革新的加熱媒体とその発生方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835586A (en) * 1953-07-27 1958-05-20 Instant Milk Company Dried milk product and method of making same
GB1061227A (en) * 1963-11-28 1967-03-08 Ogilvie Flour Mills Company Lt Process and apparatus for preparing free-flowing and readily dispersible products from finely powdered materials
US3966975A (en) * 1970-12-21 1976-06-29 Aktieselskabet Niro Atomizer Method for producing agglomerated powders and apparatus for performing the method
DE3246493A1 (de) * 1982-12-16 1984-06-20 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von wasserdispergierbaren granulaten
US5560896A (en) * 1993-08-31 1996-10-01 Degussa Aktiengesellschaft Method for producing granulated sodium percarbonate
DK1250188T3 (da) * 2000-01-12 2003-10-27 Niro Atomizer As Fremgangsmåde og apparat til agglomerering af pulvere
BR0312808A (pt) 2002-07-23 2005-04-19 Univ Duke Proteìna de fusão igg fc/hiv-gp120/c3d
EP1923188A1 (de) * 2006-11-14 2008-05-21 Linde Aktiengesellschaft Vorrichtung und Verfahren zur Partikelerzeugung
JP2009091686A (ja) 2007-10-09 2009-04-30 Fujifilm Corp 有害物質除去材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509496A (ja) * 1989-04-24 1994-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ナベ造粒
JP2000501981A (ja) * 1995-12-01 2000-02-22 アエロマティック―フィールダー・アクチェンゲゼルシャフト 粒状材料を処理するための装置及び方法
JP2001062278A (ja) 1999-08-27 2001-03-13 Shinmei Seisakusho:Kk 粉粒体の転動造粒方法および装置
JP2002294295A (ja) * 2001-03-29 2002-10-09 Kao Corp 界面活性剤担持用顆粒群の製法
JP2007054679A (ja) 2005-08-22 2007-03-08 G-Labo:Kk 加熱処理装置および加熱処理装置を用いた加熱方法
JP2009091386A (ja) 2007-10-03 2009-04-30 National Agriculture & Food Research Organization 革新的加熱媒体とその発生方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Relationship between Coefficient of Discharge of Sonic Nozzle and Gas Type", PROCEEDINGS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 66, no. 98-132, pages 438 - 444
FOODS & FOOD INGREDIENTS JOURNAL, vol. 213, no. 11, 2008, pages 969 - 976
See also references of EP2578309A4

Also Published As

Publication number Publication date
CN103037962A (zh) 2013-04-10
EP2578309A1 (en) 2013-04-10
JP5019661B2 (ja) 2012-09-05
EP2578309B1 (en) 2017-12-13
KR20130038290A (ko) 2013-04-17
JPWO2011148454A1 (ja) 2013-07-25
EP2578309A4 (en) 2016-07-13
US20130069270A1 (en) 2013-03-21
KR101384552B1 (ko) 2014-04-11

Similar Documents

Publication Publication Date Title
Fuensanta et al. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage
Grabowski et al. Spray‐drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder
CN101232871A (zh) 生育酚聚乙二醇琥珀酸酯粉末及其制备方法
Barkouti et al. Milk powder agglomerate growth and properties in fluidized bed agglomeration
JP2019507807A (ja) 球状ポリシルセスキオキサン粒子の製造方法
JP5019661B2 (ja) 造粒方法及び造粒装置
Benali et al. Drying of vegetable starch solutions on inert particles: Quality and energy aspects
CN108368267B (zh) 生产球形聚倍半硅氧烷颗粒的方法
JP4580397B2 (ja) 噴霧乾燥澱粉加水分解物凝集生成物及び噴霧乾燥澱粉加水分解物凝集生成物の製造方法
Selvamuthukumaran et al. Spraying DryingConcept, Application and Its Recent Advances in Food Processing
JP6783960B2 (ja) 熱抑制処理澱粉及び/又は穀粉の再湿潤化
Das et al. The effects of operating conditions on lactose crystallization in a pilot-scale spray dryer
Roustapour et al. Determination of pomegranate juice powder properties produced by a pilot plant spray dryer with a two-fluid nozzle
CN101939282B (zh) 金属乳酸盐粉末及制备方法
Telis-Romero et al. Effect of apparent viscosity on the pressure drop during fluidized bed drying of soursop pulp
JP6921992B2 (ja) 球状ポリシルセスキオキサン粒子の製造方法
WO2014181859A1 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
Andreola et al. Production of instant rice protein concentrate by rotating pulsed fluidized bed agglomeration using hydrolyzed collagen solution as binder
US1394035A (en) Granular food product
JP6839453B2 (ja) 高タンパク質膨化食品及び高タンパク質膨化食品の製造方法
Hampel et al. Coating of finely dispersed particles by two-fluid nozzle
CN107667121A (zh) 纤维素醚粉末
JP2017112990A (ja) 小麦ふすま加工品の製造方法
KR102393320B1 (ko) 나노버블을 이용한 분무건조 및 이에 의한 입자 형상제어방법
Usman et al. Effect of Size Reduction and Drying Technology on Granules Production

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068181.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13698908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010852125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10843/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127032585

Country of ref document: KR

Kind code of ref document: A