WO2011148441A1 - 半導体装置の製造方法及び半導体装置 - Google Patents

半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2011148441A1
WO2011148441A1 PCT/JP2010/006846 JP2010006846W WO2011148441A1 WO 2011148441 A1 WO2011148441 A1 WO 2011148441A1 JP 2010006846 W JP2010006846 W JP 2010006846W WO 2011148441 A1 WO2011148441 A1 WO 2011148441A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
semiconductor device
manufacturing
mold
resin layer
Prior art date
Application number
PCT/JP2010/006846
Other languages
English (en)
French (fr)
Inventor
伊東 哲夫
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011148441A1 publication Critical patent/WO2011148441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14836Preventing damage of inserts during injection, e.g. collapse of hollow inserts, breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device, and more particularly, to a semiconductor device manufacturing method and a semiconductor device having a wiring substrate having wiring, and a semiconductor element mounted on the wiring substrate and having a sensor functional region on the surface. .
  • optical disc devices using a blue-violet laser with a short wavelength of 405 nm as a laser beam for recording and reproducing information have been commercialized. ing.
  • a semiconductor manufacturing apparatus in which a semiconductor element having an optical function area as a sensor function area is mounted on a wiring board has a semiconductor element mounted in an area that penetrates the wiring board, for example, an optical function area having a light receiving function or a light emitting function.
  • a semiconductor device for example, see Patent Documents 1, 2, and 3
  • Patent Documents 1, 2, and 3 having a structure in which a transparent resin is applied to an exposed structure or a penetrating area and an optical function area, the light transmission is provided above the optical function area.
  • the transparent resin has a property that the curing shrinkage is large as a second property. Therefore, in a semiconductor device in which the whole is sealed with a transparent resin as described in Patent Document 3, the warping of the transparent resin becomes large, resulting in defective mounting and chip breakage due to the stress.
  • connection part between the wiring board and the semiconductor element is covered with the transparent resin, the connection part is disconnected due to the shrinkage of the transparent resin.
  • Patent Document 1 a semiconductor element is mounted in a region penetrating the wiring board, and the transparent resin is applied to the penetrating region, the ratio of the volume occupied by the transparent resin is high. growing.
  • the transparent resin has a property that adhesive strength is weak as a third property. Therefore, the larger the contact area between the wiring board, the semiconductor element, and the sealing resin and the transparent resin, the easier it is for the separation to occur. Therefore, the structures described in Patent Documents 1 and 3 also cause mounting failures and connection failures that cause separation. To do.
  • the area where the transparent resin is applied has a larger area on the end face on the wiring board side than the opposing face, and the side faces are tapered. Therefore, when a large stress load is applied to the transparent resin, the transparent resin is detached.
  • this transparent resin has a property of high elastic modulus as a fourth property. For this reason, when the semiconductor elements are collectively sealed with a transparent resin as described above and then cut into individual pieces by dicing, burrs and sagging occur on the end face of the semiconductor device if the cut cross-sectional area of the transparent resin is large. .
  • the top surface of the transparent resin is formed in a concave and convex shape having a curvature, so that light incident on the top surface of the transparent resin is refracted. Therefore, the optical function is not fulfilled. For this reason, it is necessary to polish the top surface of the transparent resin so as to perform an optical function, which requires an enormous apparatus, complicates the manufacturing method, and increases the manufacturing cost.
  • the transmittance can be improved by using only a glass plate with a special coating as the light-transmitting substrate. There is no change, and adhesion of foreign matter on the optical function area can be suppressed.
  • the components of the adhesive for arranging the glass plate are discolored by the short wavelength laser light, the problem of blocking the light receiving or light emitting function, and the glass plate with a special coating are very expensive, so the cost is low. There is a problem of becoming larger. In addition, it is difficult to reduce the size of the semiconductor device because a glass plate mounting area is required.
  • the machining accuracy is inferior if the semiconductor device is downsized for excavation. Or, since the processing time becomes longer, the manufacturing cost becomes higher.
  • a surrounding groove that surrounds the outer periphery of the optical functional region is formed by a photolithography technique.
  • a method is known in which the upper surface of the enclosing groove is covered with a resin film, the resin film is clamped with a mold in which the surface facing the optical functional area is processed into a convex shape, and sealed with a sealing resin.
  • this method has a problem that an enormous apparatus is required and the manufacturing method becomes complicated. Further, since the resin film is expensive, the manufacturing cost is increased. In addition, when forming a punching region using the resin film, it is impossible to form a small punching region.
  • the surface of the punched area is smaller on the surface on the optical function area side than on the surface facing it. Therefore, the side surface of the punching region has an angle that opens from the surface on the optical function region side to the surface facing the surface on the optical function region side.
  • the cross-sectional area in the thickness direction of the semiconductor device gradually increases from the optical function region side toward the surface of the semiconductor device (a surface facing the surface on the optical function region side). Therefore, the received optical signal is reflected on this side surface and causes a false reaction.
  • light is emitted, light is reflected from the side surface, which causes a problem of uneven luminance.
  • the surface area of the punching region is smaller than the area of the surface facing the optical function region side. Therefore, if the distances between the plurality of optical function areas are arranged close to each other, the punched holes formed in each of them overlap, and there is a problem that the received optical signal also interferes and causes a false reaction.
  • the present invention is for solving the above-described problems, and an object of the present invention is to provide a semiconductor device manufacturing method capable of manufacturing a small-sized semiconductor device with high sensor sensitivity easily and at low cost. It is another object of the present invention to provide a semiconductor device that can be manufactured easily and at low cost, is small, and has high sensor sensitivity.
  • a manufacturing method of a semiconductor device includes a wiring board having wiring, and a sensor function region mounted on the wiring board and electrically connected to the wiring on the surface.
  • a semiconductor device comprising: at least one semiconductor element having a first resin layer that is provided on the at least one semiconductor element and covers the sensor functional region; and a second resin layer that seals the at least one semiconductor element.
  • the sensor function area and the first resin material formed in the columnar shape contact the first die and the second die.
  • the second resin layer is formed in the gap between the first mold and the second mold. Forming the second resin layer by filling a second resin material, which is a material of
  • the first resin layer has a columnar structure in which a side surface is covered with the second resin layer and a bottom surface is in contact with the sensor function area, and the bottom surface of the columnar structure is opposed to the bottom surface.
  • the sensor function region and the first resin material are brought into contact with each other, whereby the end portion of the first resin material on the sensor function region side is deformed.
  • the first resin layer may be formed.
  • the received optical signal is not irregularly reflected on the side surface of the columnar structure, so that a sensor erroneous reaction can be suppressed.
  • the sensor function area is the light emission function area
  • the light reflected from the side surface of the columnar structure is not irregularly reflected to the outside, so that the light emission luminance unevenness can be suppressed.
  • the first resin layer does not come off.
  • the first resin holding step before the first resin holding step, at least a part of the first resin material is formed into a columnar shape having one end surface smaller than the other end surface.
  • the one end surface of the first resin material molded into the columnar shape may be in contact with the sensor function region.
  • the adhesion between the sensor functional area and the first resin material in the step of forming the first resin layer is increased.
  • the adhesion between the sensor function region and the first resin layer is increased.
  • the surface of the first resin layer that contacts the at least one semiconductor element may be smaller than the surface of the at least one semiconductor element and larger than the surface of the sensor function region.
  • the sensor functional area can be reliably protected by the first resin layer.
  • the at least one semiconductor element includes a plurality of semiconductor elements, and in the first resin holding step, the other part of the first resin material is molded and held on the second mold in a flat plate shape.
  • the substrate, the other part of the first resin material, and the second resin material may be divided into one or more semiconductor elements among the plurality of semiconductor elements. Good.
  • the second mold has a through hole, and in the step of forming the first resin layer, the first resin material that has been molded is vacuum-adsorbed using the through hole to form the first resin layer. A resin material may be held in the second mold.
  • the second mold has a recess, and in the step of forming the first resin layer, the first resin material is formed by inserting at least a part of the molded first resin material into the recess. May be held in the second mold.
  • the first resin layer is formed with a small volume, so that the amount of material used can be reduced and the manufacturing cost can be suppressed.
  • the first resin layer is positioned on a dicing line that is a position to be cut by a dicing blade. You can avoid it. Thereby, the burr
  • the second mold has a pin that penetrates the second mold and contacts the first resin material.
  • the pin is attached to the first mold. By operating in the mold direction, the first resin material may be brought into contact with the sensor function area.
  • the first resin may transmit light.
  • the first resin may be a thermosetting resin.
  • the first resin may have viscoelasticity.
  • the first resin is softer than the semiconductor element, even if the sensor functional region and the first resin material are brought into contact with each other in the step of forming the first resin layer, the sensor functional region is damaged or the sensor The functional area is not destroyed.
  • the sensor function area may be an optical function area.
  • the optical function area may be a light receiving function area.
  • optical function area may be a light emission function area.
  • the sensor function area may be a pressure sensing function area.
  • the sensor function area may be a magnetic sensing function area.
  • the sensor function area may include a plurality of sub sensor function areas.
  • a semiconductor device includes a wiring board having wiring, a semiconductor element mounted on the wiring board and having a sensor functional region electrically connected to the wiring on the surface, and the semiconductor element.
  • a first resin layer formed and covering the sensor functional area; and a second resin layer formed on the wiring board and the semiconductor element and encapsulating the semiconductor element, the first resin layer comprising: A side surface is covered with the second resin layer, and a bottom surface has a columnar structure in contact with the sensor function area, and a bottom surface of the columnar structure is larger than a top surface of the columnar structure facing the bottom surface.
  • the first resin layer may have a convex mark taken by a vacuum suction hole.
  • the first resin layer may have a mark taken by pressing a pin.
  • the present invention it is possible to realize a semiconductor device and a method for manufacturing the semiconductor device that can easily and inexpensively manufacture a small-sized semiconductor device with high sensor sensitivity.
  • a semiconductor device that can be manufactured easily and at low cost, is small, and has high sensor sensitivity can be realized.
  • FIG. 1A is a cross-sectional view illustrating a configuration of a semiconductor device according to Embodiment 1.
  • FIG. 1B is an enlarged cross-sectional view showing a range A in the configuration shown in FIG. 1A.
  • FIG. 2 is a top view illustrating a configuration of the semiconductor device.
  • FIG. 3A is a schematic cross-sectional view when a wiring board and a resin are installed in a mold in a manufacturing method of a semiconductor device using a mold.
  • FIG. 3B is a cross-sectional view showing an example of the shape of the convex portion (columnar shape) of the resin (transparent resin) molded in the lower mold.
  • FIG. 3C is a cross-sectional view illustrating another example of the shape of the convex portion (columnar shape).
  • FIG. 3D is a cross-sectional view illustrating still another example of the shape of the convex portion (columnar shape).
  • FIG. 3E is a cross-sectional view showing still another example of the shape of the convex portion (columnar shape).
  • FIG. 3F is a cross-sectional view illustrating still another example of the shape of the convex portion (columnar shape).
  • FIG. 3G is a cross-sectional view showing still another example of the shape of the convex portion (columnar shape).
  • FIG. 4 is a schematic cross-sectional view when a wiring board is clamped with an upper mold and a lower mold in a method of manufacturing a semiconductor device using a mold.
  • FIG. 5 is a schematic cross-sectional view of a method for manufacturing a semiconductor device using a mold when the mold is filled with a sealing resin.
  • FIG. 6 is a schematic cross-sectional view when a sealing resin is completely filled in a manufacturing method using a mold of a semiconductor device.
  • FIG. 7 is a schematic cross-sectional view of the semiconductor device manufacturing method using a mold when the mold is opened.
  • FIG. 8 is a top view showing the configuration of a continuous wiring board, resin (transparent resin), and sealing resin taken out from the upper mold.
  • FIG. 9 is a schematic cross-sectional view showing that a semiconductor device is manufactured by using a metal mold and is cut into individual pieces by dicing.
  • FIG. 10A is a cross-sectional view illustrating the configuration of the semiconductor device according to the second embodiment.
  • FIG. 10B is an enlarged cross-sectional view of the range B in the configuration shown in FIG. 10A.
  • FIG. 11A is a top view illustrating the configuration of the semiconductor device according to the second embodiment.
  • FIG. 11B is an enlarged top view showing a part of the configuration shown in FIG. 11A.
  • FIG. 12A is a schematic cross-sectional view of a semiconductor device manufacturing method using a mold when a wiring board and a resin are installed in the mold.
  • FIG. 12A is a schematic cross-sectional view of a semiconductor device manufacturing method using a mold when a wiring board and a resin are installed in the mold.
  • FIG. 12B is a cross-sectional view illustrating another example of the shape of the convex portion (columnar shape).
  • FIG. 12C is a cross-sectional view illustrating still another example of the shape of the convex portion (columnar shape).
  • FIG. 12D is a cross-sectional view showing still another example of the shape of the convex portion (columnar shape).
  • FIG. 12E is a cross-sectional view showing still another example of the shape of the convex portion (columnar shape).
  • FIG. 13 is a schematic cross-sectional view when a wiring board is clamped with an upper mold and a lower mold in a method of manufacturing a semiconductor device using a mold.
  • FIG. 14 is a schematic cross-sectional view when a resin is pushed up by a pin and the resin is brought into contact with a sensor function area in a manufacturing method using a mold of a semiconductor device.
  • FIG. 15 is a schematic cross-sectional view of a method for manufacturing a semiconductor device using a mold when the mold is filled with a sealing resin.
  • FIG. 16 is a schematic cross-sectional view when a sealing resin is completely filled in a manufacturing method using a mold of a semiconductor device.
  • FIG. 17 is a schematic cross-sectional view of the semiconductor device manufacturing method using a mold when the mold is opened.
  • FIG. 18 is a top view showing a configuration of a continuous wiring board, resin (transparent resin), and sealing resin taken out from the upper mold.
  • FIG. 19 is a schematic cross-sectional view showing that a semiconductor device using a mold is cut into individual pieces by dicing.
  • FIG. 20 is a cross-sectional view illustrating a configuration of a semiconductor device according to the third embodiment.
  • FIG. 21 is a top view illustrating a configuration of a semiconductor device.
  • FIG. 22 is a schematic cross-sectional view of a method for manufacturing a semiconductor device using a mold when a wiring board and a resin are installed in the mold.
  • FIG. 23 is a schematic cross-sectional view when a wiring board is clamped with an upper mold and a lower mold in a method of manufacturing a semiconductor device using a mold.
  • FIG. 24 is a schematic cross-sectional view when a resin is pushed up by a pin and the resin is brought into contact with a sensor function area in a manufacturing method using a mold of a semiconductor device.
  • FIG. 25 is a schematic cross-sectional view of the semiconductor device manufacturing method using a mold when the sealing resin is completely filled.
  • FIG. 26 is a schematic cross-sectional view showing that a semiconductor device is manufactured by using a metal mold and is cut into individual pieces by dicing.
  • the semiconductor device is formed on a wiring board having wiring, a semiconductor element mounted on the wiring board and having a sensor function region electrically connected to the wiring on the surface, and the semiconductor element.
  • a first resin layer that covers the sensor functional area; and a second resin layer that is formed on the wiring board and the semiconductor element and that seals the semiconductor element.
  • the first resin layer has a side surface that is the second resin layer.
  • the bottom surface of the columnar structure is covered and has a bottom surface that is in contact with the sensor function area, and the bottom surface of the columnar structure is larger than the top surface of the columnar structure facing the bottom surface.
  • the semiconductor device according to the present embodiment can be easily manufactured at low cost and in a small size, and can realize a small size and high sensor sensitivity.
  • FIG. 1A -Structure of semiconductor device-
  • FIG. 1B The structure of the semiconductor device according to this embodiment will be described with reference to FIGS. 1A, 1B, and 2.
  • FIG. 1A is a cross-sectional view illustrating a configuration of the semiconductor device according to the first embodiment
  • FIG. 1B is a cross-sectional view illustrating a range A in the configuration illustrated in FIG. 1A
  • FIG. 7 is a top view illustrating a configuration of a semiconductor device according to a first embodiment.
  • FIG. FIG. 1A shows a cross-sectional configuration taken along the line A-A ′ of FIG.
  • the semiconductor device 100 includes a wiring board 101 on which a predetermined wiring pattern is formed, a semiconductor element 102 electrically connected to the electrode portion 108c of the wiring board 101 by a wire 109, and a sensor function mounted on the semiconductor element 102.
  • the surface excluding the bottom surface is filled with the sealing resin 107, and the top surface of the resin (transparent resin) 106 is exposed.
  • the semiconductor device 100 includes a wiring board 101 having wiring, and a sensor function area (light receiving function area) 103 mounted on the wiring board 101 and electrically connected to the wiring of the wiring board 101 and the wire 109 on the surface.
  • a resin (transparent resin) 106 that covers the sensor function region (light receiving function region) 103, a sealing resin 107 that seals the semiconductor element 102, and a wiring board 101 has a die bond material 110 for fixing the semiconductor element 102.
  • the semiconductor device 100 is, for example, an optical pickup device.
  • the wiring substrate 101 has an external connection electrode 108b formed on the back surface (lower surface in the drawing), an electrode portion 108c formed on the upper surface (upper surface in the drawing), and further penetrates the wiring substrate 101 in the thickness direction.
  • an external connection electrode 108b formed on the back surface (lower surface in the drawing)
  • an electrode portion 108c formed on the upper surface (upper surface in the drawing)
  • a rectangular flat plastic substrate in which the through electrode 108a that connects the external connection electrode 108b and the electrode portion 108c is formed.
  • the wiring substrate 101 is provided with a plurality of through holes that open around the region where the semiconductor element 102 is mounted on the upper surface of the wiring substrate 101, and plating and conductive material are embedded in the through holes.
  • a through electrode 108a is formed.
  • the through electrode 108 a is electrically connected to an electrode pad (not shown) of the semiconductor element 102 by a wire 109 on the mounting surface (the upper surface of the wiring board 101) of the semiconductor element 102 of the wiring board 101. That is, the through electrode 108 a is electrically connected to the sensor function region (light receiving function region) 103 of the semiconductor element 102 via the electrode portion 108 c and the wire 109.
  • the through electrode 108a is electrically connected to the external connection electrode 108b provided on the surface of the wiring substrate 101 opposite to the mounting surface of the semiconductor element 102 (the lower surface of the wiring substrate 101).
  • the external connection electrode 108b is connected to an external circuit to receive power supply and input / output signals. Therefore, a signal generated in the sensor function area (light receiving area) 103 is extracted from the external connection electrode 108 b to the outside of the semiconductor device 100.
  • the through electrode 108a is electrically connected to the electrode pad of the semiconductor element 102 by a wire on the surface of the wiring substrate 101 where the semiconductor element 102 is mounted.
  • the through electrode 108a is not limited to the wire and is electrically connected by a flip chip method. May be. That is, the semiconductor element 102 may be electrically connected to the electrode portion 108c via the bump.
  • the semiconductor element 102 is fixed on the wiring substrate 101 by a die bonding material 110, and a sensor function area (light receiving function area) 103 is formed on the surface.
  • the sensor function area (light receiving function area) 103 is electrically connected to the electrode portion 108 c on the wiring substrate 101 via the wire 109.
  • the semiconductor element 102 has, for example, a rectangular flat plate shape, and a sensor function region (light receiving function region) 103 is formed at the center of one surface (front surface). Furthermore, an electrode pad is provided on the periphery of the one surface (front surface).
  • the other surface of the semiconductor element 102 where the sensor function region (light receiving function region) 103 is not formed is placed and fixed with the die bond material 110. That is, the semiconductor element 102 is mounted on the wiring board 101, and the sensor function area (light receiving function area) 103 faces upward.
  • the sealing resin 107 corresponds to the second resin layer of the present invention, and is formed on the wiring substrate 101 and the semiconductor element 102 to seal the semiconductor element 102.
  • the sealing resin 107 includes the semiconductor element 102 excluding a portion where the sensor function region (light receiving function region) 103 of the semiconductor element 102 is in contact with the resin (transparent resin) 106, and the resin (transparent resin) 106.
  • the surface excluding the bottom surface that is in contact with the sensor top surface and the sensor function region (light receiving function region) 103 and the wire 109 that electrically connects the semiconductor element 102 and the wiring substrate 101 are sealed.
  • the resin (transparent resin) 106 corresponds to the first resin layer of the present invention, is formed on the semiconductor element 102, and covers the sensor function area (light receiving function area) 103.
  • the resin (transparent resin) 106 desirably transmits light (electromagnetic waves) having a wavelength of 100 nm to 1000 ⁇ m, and more preferably 350 nm to 800 nm.
  • the transmittance is preferably 10% or more, and more preferably 80% or more.
  • the resin (transparent resin) 106 has viscoelasticity, the contact surface of the semiconductor element 102 with the sensor function region (light receiving function region) 103 is in close contact with the sensor function region (light receiving function region). ) No sealing resin 107 enters 103.
  • the resin (transparent resin) 106 has viscoelasticity, the semiconductor element 102 is not destroyed.
  • the elastic modulus of the resin (transparent resin) 106 is desirably 10 kPa to 1 GPa at room temperature, and more desirably 500 kPa to 10 MPa.
  • the resin (transparent resin) 106 is sealed with a columnar structure 106 a whose side surface is covered with a sealing resin 107 and whose bottom surface (lower surface in the drawing) abuts on the sensor function area (light receiving function area) 103. And a flat plate-like structure 106 b covering the surface of the resin 107.
  • the bottom surface of the columnar structure is larger than the top surface of the columnar structure facing the bottom surface.
  • the area of the portion of the semiconductor element 102 where the sensor function area (light receiving function area) 103 and the resin (transparent resin) 106 are in contact is larger than the area of the top surface facing it. For example, if the area of the top surface of the columnar structure is ⁇ and the area of the bottom surface of the columnar structure is ⁇ , ⁇ ⁇ .
  • the received optical signal is not irregularly reflected on the side surface of the columnar structure 106a, erroneous reaction of the sensor can be suppressed.
  • the sensor function area 103 is a light emission function area, light reflected from the side surface of the columnar structure 106a is not irregularly reflected to the outside, so that unevenness in light emission luminance can be suppressed.
  • the resin (transparent resin) 106 is not in contact with the wire 109 that electrically connects the semiconductor element 102 and the wiring board 101.
  • the resin (transparent resin) 106 there is provided a trace 117 in which the resin (transparent resin) 106 is fixed by vacuum suction when molding with a mold.
  • the surface of the resin (transparent resin) 106 that contacts the semiconductor element 102 is smaller than the surface of the semiconductor element 102 and larger than the surface of the sensor function area (light receiving function area) 103. Thereby, the sensor function area (light receiving function area) 103 can be reliably protected by the resin (transparent resin) 105.
  • the semiconductor device 100 includes the wiring substrate 101 having the wiring pattern, and the sensor function region mounted on the wiring substrate 101 and electrically connected to the wiring pattern of the wiring substrate 101 on the surface.
  • a semiconductor element 102 having a (light receiving region), a resin (transparent resin) 106 formed on the semiconductor element 102 covering the sensor function region (light receiving region), and formed on the wiring substrate 101 and the semiconductor element 102.
  • a resin (transparent resin) 106 having a side surface covered with the sealing resin 107 and a bottom surface contacting the sensor function region (light receiving region) 103.
  • the bottom surface of the columnar structure 106a is larger than the top surface of the columnar structure 106a facing the bottom surface.
  • the semiconductor device 100 according to the present embodiment can be manufactured easily and at low cost, and can realize a small size and high sensor sensitivity.
  • 3A to 9 are views showing a part of the method for manufacturing the semiconductor device 100 according to the first embodiment.
  • FIG. 3A is a schematic cross-sectional view when a wiring board and a resin are placed in a mold in the method for manufacturing the semiconductor device 100 according to the first embodiment using a mold.
  • a plurality of semiconductor elements 102 are mounted on a continuous wiring board 118 at regular intervals.
  • the continuous wiring board 118 is formed by connecting a plurality of individual wiring boards 101, and becomes individual wiring boards 101 by being cut later. That is, the continuous wiring board 118 is an aggregate of the wiring boards 101 shown in FIG. 1A.
  • the electrode pads of the semiconductor element 102 and the electrode portions 108c of the continuous wiring board 118 are electrically connected by wire bonding.
  • the resin (transparent resin) 106 is projected so that the convex portion has the same pitch as the pitch of the sensor function area (light receiving function area) 103.
  • the resin (transparent resin) 106 molded with another mold corresponds to the first resin material of the present invention, and a part of the first resin material has a columnar shape in which one end surface is smaller than the other end surface. Molded. Then, one end surface of the first resin material formed into a columnar shape is held by the lower mold 105 so that the sensor function area (light receiving area) 103 abuts in a later step. The other part of the first resin material is formed into a flat plate shape.
  • FIG. 3B an example of the shape of the convex portion (columnar shape) of the resin (transparent resin) 106 molded in the lower mold 105 is shown in FIG. 3B.
  • the adhesiveness to the sensor function area (light receiving function area) 103 is improved by making the convex surface of the resin (transparent resin) 106 convex. That is, the end surface on the sensor function region side of the resin (transparent resin) 106 formed in the columnar shape is smaller than the end surface facing the end surface on the sensor function region side of the resin (transparent resin) 106 formed in the columnar shape. Thereby, the adhesiveness in the joint surface of the sensor function area
  • the shape of the convex portion of the resin (transparent resin) 106 may be a shape as shown in FIGS. 3C to 3G.
  • This resin (transparent resin) 106 is a thermosetting resin having viscoelasticity, and the viscoelasticity can be controlled by a curing reaction rate.
  • the viscoelasticity is preferably such that the shape is maintained by its own weight.
  • the height of the convex portion is set to be slightly longer than the length obtained by subtracting the height of the continuous wiring board 118 and the semiconductor element 102 from the digging height of the lower mold 105. Desirably, it is 50 micrometers to 200 micrometers.
  • a transparent resin having excellent weather resistance such as an epoxy resin, a urea resin, and a silicone resin is preferably used. It is particularly preferable to use a silicone resin.
  • the continuous wiring board 118 is held on the upper mold 104 (wiring board holding step).
  • the continuous wiring board 118 was fixed by installing it in the upper mold 104 and then vacuum-sucking it. In addition, you may hold
  • a lower mold 105 is installed on the surface facing the upper mold 104.
  • a resin (transparent resin) 106 is placed at a predetermined position in the digging portion (cavity) of the lower mold 105. Thereafter, the resin (transparent resin) 106 is fixed by vacuum from a vacuum suction hole 112 provided in the lower mold 105 (resin holding step). At this time, the resin (transparent resin) 106 is installed so that the convex portion faces upward.
  • the upper mold 104 and the lower mold 105 are heated from 120 ° C. to 200 ° C.
  • the upper mold 104 corresponds to the first mold of the present invention
  • the lower mold 105 corresponds to the second mold of the present invention.
  • the upper mold 104 and the lower mold 105 are closed, and the peripheral portion of the continuous wiring board is clamped by the upper mold 104 and the lower mold 105, and sealed in the subsequent steps. Pressure is applied so that the upper mold 104 and the lower mold 105 do not open even when the resin 107 is injected.
  • the resin (transparent resin) 106 and the sensor function area (light receiving function area) 103 are in contact with each other without a gap.
  • the upper mold 104 and the lower mold 105 are clamped so that the sensor function area (light receiving function area) 103 and the columnar resin (transparent resin) 106 are in contact with each other (resin forming process).
  • the sensor function area (light receiving function flow area) 103 and the resin (transparent resin) 106 come into contact with each other, whereby the end of the resin (transparent resin) 106 on the sensor function area (light receiving function area) 103 side is deformed.
  • the shape of the resin (transparent resin) 106 as shown in FIGS. 1A and 1B is obtained.
  • the resin (transparent resin) 106 has a shape in which the size of the bottom surface of the columnar structure 106a in contact with the sensor function region (light receiving function region) 103 is larger than the size of the top surface of the columnar structure 106a.
  • the resin (transparent resin) 106 is an elastic body, it is softer than the semiconductor element 102 and will not be damaged or destroyed even if it comes into contact. In other words, the resin (transparent resin) 106 has viscoelasticity. As a result, even if the sensor function area (light receiving function area) 103 and the resin (transparent resin) 106 are in contact with each other in the resin forming step, the sensor function area (light receiving function area) 103 is damaged or the sensor function area The (light receiving function area) 103 is not destroyed. Note that the resin (transparent resin) 106 until the end portion is deformed in the resin forming step corresponds to the first resin material of the present invention.
  • the mold is filled with the sealing resin 107 from the sealing resin inlet 113 provided in the mold 5.
  • the sealing resin filling method is generally used transfer molding.
  • the sealing resin 107 is filled in the gap between the upper mold 104 and the lower mold 105 (sealing resin forming step).
  • the mounting surface of the semiconductor element 102 on the continuous wiring substrate 118, the side surfaces of the semiconductor element 102, the wires 109, and the top surface of the resin (transparent resin) 106 are sealed with the sealing resin 107.
  • the sealing resin 107 is cured. Note that the sealing resin 107 before curing corresponds to the second resin material of the present invention.
  • FIG. 8 is a top view showing the configuration of the continuous wiring board 118, resin (transparent resin) 106, and sealing resin 107 taken out from the upper mold 104.
  • this top view is the figure which looked at the continuous wiring board 118 from the lower metal mold
  • a continuous wiring board 118 is cut by a dicing blade 114 in a dicing line 111, and a plurality of semiconductor devices 100 shown in FIG.
  • the continuous wiring board 118 is divided into the plurality of semiconductor devices 100 by dividing each of the sensor function areas (light receiving function areas) 103.
  • the manufacturing method of the semiconductor device 100 includes the wiring substrate 101 having wiring, and the sensor function region (light receiving function) mounted on the wiring substrate 101 and electrically connected to the wiring on the surface.
  • (Region) 103 a resin (transparent resin) 106 provided on the semiconductor element 102 and covering the sensor function region (light receiving function region) 103, and a sealing resin 107 for sealing the semiconductor element 102
  • a method of manufacturing a semiconductor device 100 comprising: a continuous wiring board 118 is held on an upper mold 104 such that a back surface of the continuous wiring board 118 having a semiconductor element 102 mounted on the front surface is in contact with the upper mold 104.
  • Transparent Resin Sealing for forming sealing resin 107 by filling sealing resin 107 in the gap between upper mold 104 and lower mold 105 after the resin forming step for forming 106 and the resin forming step Resin forming step.
  • the manufacturing method of the semiconductor device 100 according to the present embodiment can manufacture the semiconductor device 100 with a small size and high sensor sensitivity easily and at low cost.
  • the effects produced by the method for manufacturing the semiconductor device 100 will be specifically described.
  • the wiring board holding process corresponds to the board holding process of the present invention
  • the resin holding process corresponds to the first resin holding process of the present invention
  • the resin forming process corresponds to the process of forming the first resin layer of the present invention.
  • the sealing resin forming step corresponds to the step of forming the second resin layer of the present invention.
  • the method for manufacturing the semiconductor device 100 according to the present embodiment further includes a resin material in which a part of the resin (transparent resin) 106 is molded into a columnar shape with one end face smaller than the other end face before the resin holding step.
  • a resin material in which a part of the resin (transparent resin) 106 is molded into a columnar shape with one end face smaller than the other end face before the resin holding step.
  • one end surface of the resin (transparent resin) 106 molded in a columnar shape in the resin material molding process is brought into contact with the sensor function area (light receiving function area) 103.
  • the resin material molding step corresponds to the first resin material molding step of the present invention.
  • the sensor function area (light receiving function area) 103 is replaced with a resin (transparent resin) 106 as compared with the configuration in which the wiring board described in Patent Document 1 is pierced and the semiconductor function area is exposed. Since it is possible to prevent foreign matter from adhering to the sensor function area (light receiving function area) 103, the signal to the sensor function is not hindered. In addition, since a portion where the semiconductor element 102 and the electrode portion 108c of the wiring board are joined is not exposed, a short circuit failure due to adhesion of foreign matter does not occur.
  • the volume of the resin (transparent resin) 106 can be reduced as compared with the configurations described in Patent Documents 1 and 3, the shrinkage amount of the resin (transparent resin) 106 can be reduced. As a result, warpage of the semiconductor device 100 can be reduced, and connection reliability with an external circuit can be improved. In addition, chip breakage due to shrinkage stress can be suppressed. Further, when the continuous wiring boards 118 are collectively formed as in the first embodiment, the warpage can be reduced, and therefore, the method of cutting into individual pieces by dicing can be performed without causing positional deviation.
  • the bonding area between the resin (transparent resin) 106 having a weak adhesive force and the semiconductor element 102 can be reduced, the occurrence of peeling of the resin (transparent resin) 106 from the semiconductor element 102 can be suppressed. For this reason, it is possible to suppress a mounting failure or an electrical connection failure with an external circuit caused by peeling.
  • the area where the transparent resin is applied has a tapered shape in which the area of the end surface on the wiring board side is larger than the surface facing the end surface, and the side surface is open to the top surface.
  • the columnar structure 106a of the resin (transparent resin) 106 has a cross-sectional area in the thickness direction of the semiconductor device 100 from the light receiving function region 103 side to the surface of the semiconductor device 100 (optical function region side). It is possible to make a reverse taper shape that gradually decreases toward the surface facing the surface of the surface. Therefore, even if a large stress load is applied to the resin (transparent resin) 106, the resin (transparent resin) 106 does not come off.
  • the resin (transparent resin) 106 is continuous, and since the cross-sectional area of the dicing line 111 is small, burrs and sagging of the end surface of the semiconductor device 100 after cutting into pieces by dicing are prevented. it can.
  • the semiconductor device 100 having a sensor function region having a good sensitivity without using a resin film and preventing the sealing resin from leaking into the sensor function region. Can be provided at low cost.
  • the semiconductor device since the excavation process that penetrates the wiring board is not required as in the manufacturing method described in Patent Document 1, the semiconductor device can be downsized. Moreover, since the processing time is not required, the manufacturing cost can be reduced.
  • the columnar structure 106a of the resin (transparent resin) 106 can be formed in a reverse taper, when the sensor function area 103 is a light receiving function area, the received light signal is not irregularly reflected on this side surface, so that the sensor malfunctions. Can be suppressed. Similarly, when the sensor function area is a light emission function area, the light reflected from the side surface is not irregularly reflected to the outside, so that unevenness in light emission luminance can be suppressed.
  • the sensor function area 103 a pressure sensing function area or a magnetic sensing device, and there is an advantage that the manufacturing cost can be reduced because it can be manufactured by the same manufacturing equipment. Since the resin 106 is an elastic body, it can be used as a pressure sensor at the same time.
  • the resin (transparent resin) 106 can be formed on the upper surface of the sensor function region 103 simultaneously with the step of filling the sealing resin 107, there is no need to separately apply resin on the upper portion of the sensor function region 103.
  • a semiconductor device can be manufactured easily and at low cost.
  • the semiconductor device according to the present embodiment is substantially the same as the semiconductor device 100 according to the first embodiment, but the resin (transparent resin) does not have a planar structure, only a columnar structure, and its columnar shape. The structure is different in that there is a trace taken by pressing the pin.
  • the semiconductor device according to the present embodiment will be described focusing on differences from the semiconductor device 100 according to the first embodiment.
  • FIG. 10A is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment
  • FIG. 10B is a cross-sectional view showing an enlarged range B in the configuration shown in FIG. 10A
  • FIG. 11A is a top view showing the configuration of the semiconductor device according to the second embodiment
  • FIG. 11B is an enlarged top view showing a part of the configuration shown in FIG. 11A.
  • the semiconductor device 200 according to the present embodiment includes a resin (transparent resin) 206 instead of the resin (transparent resin) 106 as compared with the semiconductor device 100 according to the first embodiment.
  • This resin (transparent resin) 206 is substantially the same as the columnar structure 106 a of the resin (transparent resin) 106 of the semiconductor device 100 according to the first embodiment. That is, the resin (transparent resin) 206 does not have a flat plate-like structure as compared with the resin (transparent resin) 106 and has a columnar structure.
  • the resin (transparent resin) 206 configured in this manner can be formed with a smaller volume compared to the resin (transparent resin) 106, the amount of material used can be reduced and the manufacturing cost can be suppressed.
  • the resin (transparent resin) 206 does not have a flat plate structure, when a plurality of semiconductor devices 200 are manufactured by dicing into pieces after forming a plurality of semiconductor devices 200 at once, a dicing blade is used.
  • the resin (transparent resin) 206 is not positioned on the dicing line, which is the position to be cut at the step. Thereby, the burr
  • the top surface (the upper surface in the figure) of the resin (transparent resin) 206 is provided with a mark 219 obtained by pushing up the resin (transparent resin) 206 with a pin when molding with a mold.
  • This mark may be convex or concave. In other words, there is a mark taken by pressing the pin.
  • the manufacturing method of the semiconductor device 200 is lower than the manufacturing method of the semiconductor device 100 according to the first embodiment, and the lower mold has a recess, and a part of the resin (transparent resin) 206 formed in the recess is inserted.
  • the resin (transparent resin) 206 is held in the lower mold, and the lower mold has a pin that penetrates the lower mold and contacts the molded resin (transparent resin) 206.
  • the difference is that the resin (transparent resin) 206 is brought into contact with the sensor function area (light receiving function area) 103 by operating in the upper mold direction.
  • a method for manufacturing the semiconductor device 200 will be described in detail with reference to the drawings.
  • 12A to 19 are diagrams showing a part of the method for manufacturing the semiconductor device 200 according to the second embodiment.
  • FIG. 12A is a schematic cross-sectional view when a wiring board and a resin (transparent resin) 206 are installed in a mold in the method for manufacturing a semiconductor device 200 according to the second embodiment using a mold.
  • a continuous wiring board 118 on which a plurality of semiconductor elements 102 are mounted at a fixed size interval is held on the upper mold 104.
  • resin (transparent resin) 206 is molded with a mold.
  • An example of the shape of the resin (transparent resin) 206 is shown in FIG. 12B.
  • the top surface of the resin (transparent resin) 206 has a convex shape similar to the shape of the top surface of the convex portion shown in FIG. 3B, thereby improving the adhesion with the sensor function area (light receiving function area) 103. Yes.
  • the shape of the convex portion of the resin (transparent resin) 206 may be a shape as shown in FIGS. 12C to 12E.
  • This resin (transparent resin) 206 is a thermosetting resin having viscoelasticity, and the viscoelasticity can be controlled by a curing reaction rate.
  • the viscoelasticity is preferably such that the shape is maintained by its own weight.
  • the height of the resin (transparent resin) 206 is slightly longer than the length obtained by subtracting the height of the continuous wiring substrate 118 and the semiconductor element 102 from the digging height of the lower mold 205. Desirably, it is 50 micrometers to 200 micrometers.
  • a transparent resin having excellent weather resistance such as an epoxy resin, a urea resin, and a silicone resin is preferably used. It is particularly preferable to use a silicone resin.
  • a continuous wiring board 118 is held on the upper mold 104 (wiring board holding step).
  • the continuous wiring board 118 was fixed by vacuum suction after being placed in the upper mold 104.
  • a lower mold 205 is installed on the surface facing the upper mold 104.
  • the lower mold 205 is formed with a pot 270 corresponding to the concave portion of the present invention, and holds the resin (transparent resin) 206 by inserting the molded resin (transparent resin) 206 into the pot 270. That is, the resin (transparent resin) 206 is placed in the pot 270 that is dug in the lower mold 205 so as to face the sensor function area (light receiving function area) 103. At this time, the resin (transparent resin) 206 is installed such that the top surface formed in a convex shape faces upward.
  • the upper mold 104 and the lower mold 105 are heated from 150 ° C. to 190 ° C.
  • the upper mold 104 and the lower mold 105 are closed, and the peripheral portion of the continuous wiring board 118 is clamped by the upper mold 104 and the lower mold 105, and sealed in the subsequent steps. Pressure is applied so that the upper mold 104 and the lower mold 105 do not open even when the stop resin 107 is injected.
  • the pin (280) provided in the lower mold 105 and held by the pin holding plate 290 is operated to push up the resin (transparent resin) 206.
  • the resin (transparent resin) 206 and the sensor function area (light receiving function area) 103 are in contact with each other without a gap.
  • the pin 280 is moved to the upper mold 104 by operating the pin holding plate 290, and the resin (transparent resin) 206 is brought into contact with the sensor function area (light receiving function area) 103.
  • the top surface of the resin (transparent resin) 206 is crushed and deformed.
  • the resin (transparent resin) 206 is an elastic body, it is softer than the semiconductor element 102 and does not damage or destroy the semiconductor element 102 even if it contacts.
  • the mold is filled with the sealing resin 107 from the sealing resin inlet 113 provided in the lower mold 205.
  • the sealing resin filling method is generally used transfer molding.
  • the sealing resin 107 is filled in the gap between the upper mold 104 and the lower mold 105 (sealing resin forming step).
  • the mounting surface of the semiconductor element 102 on the continuous wiring substrate 118, the side surfaces of the semiconductor element 102, the wires 109, and the top surface of the resin (transparent resin) 206 are sealed with the sealing resin 107.
  • the resin (transparent resin) 106 and the sensor function area (light receiving function area) 103 are in contact with each other without a gap, the resin (transparent resin) 106 and the sensor function area (light receiving function area) 103 are sealed.
  • the stop resin 107 does not enter.
  • the sealing resin 107 is cured.
  • FIG. 18 is a top view showing the configuration of the continuous wiring board 118, resin (transparent resin) 206, and sealing resin 107 taken out from the upper mold 104.
  • this top view is the figure which looked at the continuous wiring board 118 from the lower metal mold
  • a continuous wiring board 118 is cut by a dicing blade 114 in a dicing line 111, and a plurality of semiconductor devices 200 shown in FIG.
  • the continuous wiring board 118 is divided into the plurality of semiconductor devices 200 by dividing each of the sensor function areas (light receiving function areas) 103.
  • the resin (transparent resin) 206 is not positioned on the dicing line 111. Thereby, the burr
  • the lower mold 205 has the pot 270 and the pot 270 is molded as compared with the method for manufacturing the semiconductor device 100 according to the first embodiment.
  • a part of the resin (transparent resin) 206 is inserted to hold the resin (transparent resin) 206 in the lower mold 205, and the lower mold 205 penetrates the lower mold 205 to be molded.
  • the resin (transparent resin) 206 is in contact with the sensor function area (light receiving function area) 103 by moving the pin 280 in the direction of the upper mold 104. Is different.
  • Embodiment 2 since the usage amount of the resin (transparent resin) 206 can be further reduced, and the resin (transparent resin) 206 is not located on the dicing line 111, it is separated into individual pieces by dicing. It is possible to further prevent burrs and sagging of the end face of the semiconductor device 200 after cutting. Moreover, since the usage-amount of expensive resin (transparent resin) 6 can be reduced, manufacturing cost can be lowered.
  • the semiconductor device according to the present embodiment is substantially the same as the semiconductor device 200 according to the second embodiment, except that the semiconductor element includes a plurality of sensor function areas (light receiving areas).
  • the semiconductor device according to the present embodiment will be described focusing on differences from the semiconductor device 200 according to the second embodiment.
  • FIG. 20 is a cross-sectional view illustrating the configuration of the semiconductor device according to the third embodiment
  • FIG. 21 is a top view illustrating the configuration of the semiconductor device according to the third embodiment.
  • FIG. 20 shows a cross-sectional structure taken along the line C-C ′ of FIG.
  • the semiconductor device 300 includes a semiconductor element 302 in which a plurality of sensor function regions 303a and 303b are formed instead of the semiconductor element 102, as compared with the semiconductor device 200 according to the second embodiment.
  • the sensor function areas 303a and 303b correspond to the sub sensor function areas of the present invention.
  • the resin (transparent resin) 206 is formed corresponding to each sensor function area 303a and 303b.
  • the manufacturing method of the semiconductor device 300 according to the present embodiment is substantially the same as the manufacturing method of the semiconductor device 200 according to the second embodiment.
  • 22 to 26 are diagrams showing a part of the method for manufacturing the semiconductor device 300 according to the third embodiment.
  • FIG. 22 is a schematic cross-sectional view when a wiring board and a resin (transparent resin) 206 are installed in a mold in the method for manufacturing a semiconductor device 300 according to the third embodiment using a mold.
  • the upper mold 104 is held with a continuous wiring board 118 on which a plurality of semiconductor elements 302 are mounted at regular intervals.
  • resin (transparent resin) 206 is molded with a mold.
  • a continuous wiring board 118 is held in the upper mold 104.
  • the continuous wiring board 118 was fixed by placing it in the upper mold 104 and then vacuum-sucking it.
  • a lower mold 305 is installed on the surface facing the upper mold 104.
  • the lower mold 305 has a pot 270 corresponding to the concave portion of the present invention, and holds the resin (transparent resin) 206 by inserting the molded resin (transparent resin) 206 into the pot 270. That is, the resin (transparent resin) 206 is placed in the pot 270 that is dug in the lower mold 305 so as to face the sensor function areas (light receiving function areas) 303a and 303b. At this time, the resin (transparent resin) 206 is installed such that the top surface formed in a convex shape faces upward.
  • the upper mold 104 and the lower mold 305 are heated from 150 ° C. to 190 ° C.
  • the upper mold 104 and the lower mold 305 are closed, and the peripheral portion of the continuous wiring board 118 is clamped by the upper mold 104 and the lower mold 305, and sealed in the subsequent steps. Pressure is applied so that the upper mold 104 and the lower mold 305 do not open even when the stop resin 107 is injected.
  • the resin (transparent resin) 206 is pushed up by operating the pin 380 provided in the lower mold 305 and held by the pin holding plate 390, as shown in FIG. Accordingly, the resin (transparent resin) 206 and the sensor function area (light receiving function area) 303a and 303b are in contact with each other without a gap. At this time, the top surface of the resin (transparent resin) 206 is crushed and deformed.
  • the resin (transparent resin) 206 is an elastic body, it is softer than the semiconductor element 302 and does not damage or destroy the semiconductor element 302 even if it comes into contact.
  • the mold is filled with the sealing resin 107 from the sealing resin inlet 113 provided in the lower mold 305.
  • the sealing resin filling method is generally used transfer molding.
  • the sealing resin 107 is filled in the gap between the upper mold 104 and the lower mold 305 (sealing resin forming step).
  • the mounting surface of the semiconductor element 302 of the continuous wiring substrate 118, the side surfaces of the semiconductor element 302, the wires 109, and the top surface of the resin (transparent resin) 206 are sealed with the sealing resin 107.
  • the sealing resin 107 does not enter between the resin (transparent resin) 206 and the sensor function areas 303a and 303b.
  • the sealing resin 107 is cured.
  • a continuous wiring board 118 is cut with a dicing blade 114, and a plurality of semiconductor devices 300 shown in FIG.
  • the continuous wiring board 118 is divided into a plurality of semiconductor device 300 by dividing the continuous wiring board 118 into a plurality of sensor function regions including sensor function regions (light receiving function regions) 303a and 303b.
  • the shape of the resin (transparent resin) 206 can be inversely tapered, the distance between the plurality of sensor function regions 303a and 303b can be shortened without causing the signal to be irregularly reflected and interfered with on the side surface.
  • the semiconductor manufacturing apparatus can also be reduced in size. As a result, the manufacturing cost can be kept low.
  • the number of sub sensor function areas is two.
  • the number of sub sensor areas may be plural, and may be three or four.
  • the sensor function area is the light receiving function area, but the present invention is not limited thereto.
  • the sensor function area may be a light emission function area, a pressure sensing function area, or a magnetic sensing function area.
  • a semiconductor device when the sensor function area is a pressure sensing function area will be described.
  • the resin 106 covering the pressure sensing function area is an elastic body, the resin 106 can transmit an external pressure signal to the pressure sensing function area.
  • the resin 106 is transparent. However, if the sensor function area is a pressure sensing function area and a magnetic sensing function area, the resin 106 may not transmit light.
  • the semiconductor device manufacturing method according to the present invention is useful for various electronic device manufacturing methods such as an optical pickup device manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

小型かつセンサ感度の高い半導体装置を簡単かつ低コストで製造できる半導体装置の製造方法を提供する。配線基板と、センサ機能領域(103)を有する半導体素子(102)と、センサ機能領域(103)を覆う樹脂(106)と、封止樹脂(107)とを備える半導体装置の製造方法であって、半導体素子(102)が搭載された連続した配線基板(118)を上金型(104)に保持させる配線基板保持工程と、第1樹脂材料の一部を柱状に成形して保持させる樹脂保持工程と、上金型(104)と下金型(105)とを、センサ機能領域(103)と柱状に成形された第1樹脂材料とが当接するようにクランプすることで第1樹脂層を形成する樹脂形成工程と、樹脂形成工程の後、上金型(104)と下金型(105)との隙間に第2樹脂材料を充填することで第2樹脂層を形成する封止樹脂形成工程とを含む。

Description

半導体装置の製造方法及び半導体装置
 本発明は、半導体装置の製造方法及び半導体装置に関し、特に、配線を有する配線基板と、配線基板上に搭載され、表面にセンサ機能領域を有する半導体素子を有する半導体装置の製造方法と半導体装置に関する。
 近年、CD(コンパクトディスク)、DVD(Degital Versatile Disk)といった光ディスクの記録密度を高めるべく、情報の記録再生のためのレーザー光として波長が405nmと短い青紫色レーザーを用いた光ディスク装置が商品化されている。
 センサ機能領域として光学機能領域を搭載した半導体素子を配線基板に搭載した半導体製造装置は、配線基板を刳り貫いた領域に半導体素子を実装し、例えば受光機能あるいは発光機能を備えた光学機能領域を露出させた構造やその刳り貫き領域に透明樹脂を塗布した構造の半導体装置(例えば、特許文献1、2、3参照)や光学機能領域を保護するために、光学機能領域の上方に光透過性基板を配置した中空のパッケージ構造(例えば、特許文献4参照)であった。
 ところが、光学機能領域を露出させた構造では半導体装置の製造過程や半導体装置を光ディスク装置に設置する時に光学機能領域上に埃などの異物が付着することにより受光機能あるいは発光機能を阻害するという課題や、半導体素子と配線基板の電極部とを接続する箇所も露出しているため異物が付着することによりショート不良が発生するという課題があり、それらを避けるため無塵環境を整えるための設備が膨大なコストとなる。
 配線基板を刳り貫いた領域に透明樹脂を塗布する構造の場合、例えば405nmという短波長の青紫色レーザー光を受光あるいは発光させようとすると、多くの透明樹脂はレーザー光のエネルギーによって経時的に樹脂分子鎖が分解する。その結果、透明樹脂が変色し、透過率が変化してしまうため使用することができなかった。しかしながら近年、材料開発が進展し、レーザー光の受光あるいは発光による経時的な変色の速度が遅く、変色し難いという第1の性質を備えた透明樹脂が開発されてきた。
 しかしながら、透明樹脂は、第2の性質として硬化収縮が大きいという性質を有する。よって、特許文献3記載のように全体を透明樹脂で封止する半導体装置では、透明樹脂の反りが大きくなり実装不良やその応力によるチップ破壊が発生する。
 そのうえ、配線基板と半導体素子の接続部が透明樹脂で覆われている場合、透明樹脂の収縮が原因で接続部が断線してしまう。
 また特許文献1記載のように、配線基板を刳り貫いた領域に半導体素子を実装し、その刳り貫いた領域に透明樹脂を塗布する形態においても透明樹脂が占める体積の割合が高いため、反りが大きくなる。
 なお、配線基板上に半導体素子を複数個搭載して一括封止成形した後にダイシングで個片に裁断する工法が一般的であるが、この場合配線基板面積が大きくなるため、反り量はより大きくなってしまう。ダイシングで個片に裁断する方法において位置ズレが生じる原因となる。
 また、透明樹脂は、第3の性質として接着力が弱いという性質を有する。したがって、配線基板、半導体素子、封止樹脂と透明樹脂との接触面積が大きいほど剥離が発生しやすくなるため、特許文献1及び3記載の構造では剥離が原因となる実装不良や接続不良も発生する。
 特許文献1及び3記載の構造では透明樹脂を塗布する領域は、配線基板側の端面の面積がその対向する面よりも面積が大きく、かつ、側面がテーパーになる。そのため、透明樹脂に大きな応力負荷がかかると透明樹脂の離脱に至る。
 またこの透明樹脂は、第4の性質として弾性率が高いという性質を有する。このため、上記のように半導体素子を透明樹脂で一括封止した後、ダイシングにて個片に裁断する場合、透明樹脂の裁断面積が大きいと半導体装置の端面にバリやダレが発生してしまう。
 また透明樹脂を塗布する工程では、透明樹脂の天面が曲率を持った凸凹状に形成されることにより、透明樹脂の天面に入射した光が屈折する。よって、光学機能を果たさなくなる。そのため、光学機能を果たすように透明樹脂の天面を研磨する必要があり、膨大な装置が必要となり製造方法が複雑になってしまい製造コストが高くなる。
 また前記透明樹脂のコストは高いため、その体積を極力少なくしなければ製造コストが高くなるといった課題もある。
 ところで、光学機能領域を保護するために、光学機能領域の上方に光透過性基板を配置した中空のパッケージ構造では、光透過性基板として特殊なコーティングを施したガラス板のみを用いれば透過率の変化は生じず、光学機能領域上の異物付着を抑制することができる。しかしながら、ガラス板を配置するための接着材の成分が短波長レーザー光によって変色するため受光あるいは発光機能を阻害するという課題や、特殊なコーティングを施したガラス板は非常に高価であるためコストが大きくなるという課題がある。また、ガラス板取りつけ領域が必要なため半導体装置を小型化するのは困難である。
 また刳り貫き領域を加工するためには掘削加工するため半導体装置が小型化すると加工精度が劣ってしまう。もしくは加工時間が長くなるため製造コストが高くなる。
 他に、光学機能領域上方にのみ刳り貫き領域を設けた半導体装置では、刳り貫き領域を設けるその他の方法として光学機能領域の外周を包囲する包囲溝をフォトリソグラフィー技術で形成し、光学機能領域と包囲溝の上面を樹脂フィルムで被覆し、光学機能領域に対向する面を凸状に加工した金型で樹脂フィルムをクランプし封止樹脂で封止するといった方法が知られている。しかしながら、この方法では膨大な装置が必要となり製造方法が複雑になってしまうという問題がある。また樹脂フィルムは高価であるため製造コストも高くなる。加えて、前記樹脂フィルムを用いて刳り貫き領域を形成する場合、小さな刳り貫き領域を形成することは不可能である。
 上述したいずれの加工方法においても刳り貫き領域は光学機能領域側の面が、それと対向する面よりも面積が小さくなってしまう。そのため刳り貫き領域の側面は、光学機能領域側の面から、光学機能領域側の面に対向する面に開く角度を有することになる。言い換えると、刳り貫き領域は、半導体装置の厚さ方向の断面積が、光学機能領域側からに半導体装置の表面(光学機能領域側の面に対向する面)へ向かって徐々に増加する。そのため、受光する光信号は、この側面に反射して誤反応の原因となる。また発光する場合は側面で光が反射するため発光輝度ムラの原因となるという課題がある。
 加えて、複数の光学機能領域が半導体装置に備えられている場合、刳り貫き領域は光学機能領域側の面の面積が、それと対向する面の面積よりも面積が小さくなってしまう。ゆえに、複数の光学機能領域の距離を近くに配置すると、それぞれに形成される刳り貫き穴は重なってしまうことになり、受光する光信号も干渉し誤反応を引き起こすという課題がある。
特開2006-32566号公報 特開2009-152299号公報 特開2003-17715号公報 特開2009-239106号公報
 本発明は上記の課題を解決するためのものであり、小型かつセンサ感度の高い半導体装置を簡単かつ低コストで製造できる半導体装置の製造方法を提供することを目的とする。また、簡単かつ低コストで製造でき、小型かつセンサ感度の高い半導体装置を提供することも本発明の目的である。
 上記の課題を解決するために、本発明に係る半導体装置の製造方法は、配線を有する配線基板と、前記配線基板上に搭載され、表面に前記配線と電気的に接続されたセンサ機能領域を有する少なくとも1つの半導体素子と、前記少なくとも1つの半導体素子上に設けられ、前記センサ機能領域を覆う第1樹脂層と、前記少なくとも1つの半導体素子を封止する第2樹脂層とを備える半導体装置の製造方法であって、表面に前記少なくとも1つの半導体素子が搭載された前記配線基板の裏面が第1の金型に接するように、前記第1の金型に前記配線基板を保持させる基板保持工程と、前記第1樹脂層の材料である第1樹脂材料であって、少なくとも一部が柱状に成形された前記第1樹脂材料を第2の金型に保持させる第1樹脂保持工程と、前記基板保持工程及び前記第1樹脂保持工程の後、前記第1の金型と前記第2の金型とを、前記センサ機能領域と前記柱状に成形された前記第1樹脂材料とが当接するようにクランプすることにより前記第1樹脂層を形成する工程と、前記第1樹脂層を形成する工程の後、前記第1の金型と前記第2の金型との隙間に前記第2樹脂層の材料である第2樹脂材料を充填することにより前記第2樹脂層を形成する工程とを含む。
 これにより、小型かつセンサ感度の高い半導体装置を、簡単かつ低コストで製造できる。
 また、前記第1樹脂層は、側面が前記第2樹脂層で覆われ、底面が前記センサ機能領域に当接する柱状構造を有し、前記柱状構造の底面は、当該底面に対向する前記柱状構造の天面より大きく、前記第1樹脂層を形成する工程では、前記センサ機能領域と前記第1樹脂材料とが当接することにより前記第1樹脂材料の前記センサ機能領域側の端部が変形されて前記第1樹脂層を形成してもよい。
 これにより、センサ機能領域が受光機能領域である場合、受光する光信号は柱状構造の側面で乱反射することがないためセンサの誤反応を抑えることができる。また、センサ機能領域が発光機能領域である場合、柱状構造の側面で反射した光が外部に乱反射することがないため発光輝度ムラを抑えることができる。また、第1樹脂層に大きな応力負荷が加わっても、第1樹脂層が離脱することがない。
 また、本発明に係る半導体装置の製造方法は、さらに、前記第1樹脂保持工程の前に、前記第1樹脂材料の少なくとも一部を、一方の端面が他方の端面より小さい柱状に成形する第1樹脂材料成形工程を含み、前記第1樹脂層を形成する工程では、前記柱状に成形された前記第1樹脂材料の前記一方の端面が前記センサ機能領域に当接されてもよい。
 これにより、第1樹脂層を形成する工程での、センサ機能領域と第1樹脂材料との密着性が高くなる。言い換えると、センサ機能領域と第1樹脂層との密着性が高くなる。
 また、前記第1樹脂層の前記少なくとも1つの半導体素子に接する面は、前記少なくとも1つの半導体素子の表面よりも小さく、かつ、前記センサ機能領域の表面よりも大きくてもよい。
 これにより、第1樹脂層により、センサ機能領域を確実に保護することができる。
 また、前記少なくとも1つの半導体素子は、複数の半導体素子を含み、前記第1樹脂保持工程では、前記第1樹脂材料の他部は前記第2の金型上に平板状に成形して保持され、前記第2樹脂層を形成する工程では、前記基板、前記第1樹脂材料の他部及び前記第2樹脂材料を、前記複数の半導体素子のうち1つ以上の半導体素子ごとに分割してもよい。
 また、前記第2の金型は貫通孔を有し、前記第1樹脂層を形成する工程では、成形された前記第1樹脂材料を、前記貫通孔を用いて真空吸着することにより前記第1樹脂材料を前記第2の金型に保持させてもよい。
 また、前記第2の金型は凹部を有し、前記第1樹脂層を形成する工程では、成形された前記第1樹脂材料の少なくとも一部を前記凹部に入れ込むことにより前記第1樹脂材料を前記第2の金型に保持させてもよい。
 これにより、第1樹脂層を小さい体積で形成することが可能となるので、材料の使用量を低減させることができ製造コストを抑制できる。また、複数の半導体装置を一括して形成した後にダイシングで個片化することにより、半導体装置を複数個製造する場合、ダイシングブレードにて裁断する位置であるダイシングライン上に第1樹脂層が位置しないようにできる。これにより、ダイシングにて個片に裁断された後の半導体装置の端面のバリやダレを防止できる。
 また、前記第2の金型は、当該第2の金型を貫通し、前記第1樹脂材料に接するピンを有し、前記第1樹脂層を形成する工程では、前記ピンを前記第1の金型方向へ稼動することにより、前記第1樹脂材料を前記センサ機能領域に当接させてもよい。
 また、前記第1樹脂は光を透過してもよい。
 また、前記第1樹脂は熱硬化性樹脂であってもよい。
 また、前記第1樹脂は粘弾性を有してもよい。
 これにより、第1樹脂は半導体素子よりも柔らかいので、第1樹脂層を形成する工程において、センサ機能領域と第1樹脂材料とが当接されても、センサ機能領域に傷がついたり、センサ機能領域が破壊されたりすることがない。
 また、前記センサ機能領域は光学機能領域であってもよい。
 また、前記光学機能領域は受光機能領域であってもよい。
 また、前記光学機能領域は発光機能領域であってもよい。
 また、前記センサ機能領域は圧力感知機能領域であってもよい。
 また、前記センサ機能領域は磁気感知機能領域であってもよい。
 また、前記センサ機能領域は、複数のサブセンサ機能領域を含んでもよい。
 また、本発明に係る半導体装置は、配線を有する配線基板と、前記配線基板上に搭載され、表面に前記配線と電気的に接続されたセンサ機能領域を有する半導体素子と、前記半導体素子上に形成され、前記センサ機能領域を覆う第1樹脂層と、前記配線基板上及び前記半導体素子上に形成され、前記半導体素子を封止する第2樹脂層とを備え、前記第1樹脂層は、側面が前記第2樹脂層で覆われ、底面が前記センサ機能領域に当接する柱状構造を有し、前記柱状構造の底面は、当該底面に対向する前記柱状構造の天面より大きい。
 これにより、簡単かつ低コストで製造でき、小型かつセンサ感度の高い半導体装置を実現できる。
 また、前記第1樹脂層には、真空吸着穴によって型取られた凸状の跡があってもよい。
 また、前記第1樹脂層には、ピンが押圧されたことによって型取られた跡があってもよい。
 本発明によれば、小型かつセンサ感度の高い半導体装置を、簡単かつ低コストで製造できる半導体装置及び半導体装置の製造方法を実現できる。また、簡単かつ低コストで製造でき、小型かつセンサ感度の高い半導体装置を実現できる。
図1Aは、実施形態1に係る半導体装置の構成を示す断面図である。 図1Bは、図1Aに示した構成のうち、範囲Aを拡大して示す断面図である。 図2は、半導体装置の構成を示す上面図である。 図3Aは、半導体装置の金型による製造方法のうち、配線基板及び樹脂を金型に設置した時の略断面図である。 図3Bは、下金型に成形された樹脂(透明樹脂)の凸部(柱状)の形状の一例を示す断面図である。 図3Cは、凸部(柱状)の形状の他の一例を示す断面図である。 図3Dは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図3Eは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図3Fは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図3Gは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図4は、半導体装置の金型による製造方法のうち、配線基板を上金型及び下金型でクランプする時の略断面図である。 図5は、半導体装置の金型による製造方法のうち、封止樹脂を金型に充填している時の略断面図である。 図6は、半導体装置の金型による製造方法のうち、封止樹脂が充填完了した時の略断面図である。 図7は、半導体装置の金型による製造方法のうち、金型を開いた時の略断面図である。 図8は、上金型から取り出した連続した配線基板、樹脂(透明樹脂)及び封止樹脂の構成を示す上面図である。 図9は、半導体装置の金型による製造方法のうち、ダイシングで個片に裁断することを示した略断面図である。 図10Aは、実施形態2に係る半導体装置の構成を示す断面図である。 図10Bは、図10Aに示した構成のうち、範囲Bを拡大して示す断面図である。 図11Aは、実施形態2に係る半導体装置の構成を示す上面図である。 図11Bは、図11Aに示した構成の一部を拡大して示す上面図である。 図12Aは、半導体装置の金型による製造方法のうち、配線基板及び樹脂を金型に設置した時の略断面図である。 図12Bは、凸部(柱状)の形状の他の一例を示す断面図である。 図12Cは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図12Dは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図12Eは、凸部(柱状)の形状のさらに他の一例を示す断面図である。 図13は、半導体装置の金型による製造方法のうち、配線基板を上金型及び下金型でクランプする時の略断面図である。 図14は、半導体装置の金型による製造方法のうち、樹脂をピンで突き上げ、樹脂とセンサ機能領域とを接触させる時の略断面図である。 図15は、半導体装置の金型による製造方法のうち、封止樹脂を金型に充填している時の略断面図である。 図16は、半導体装置の金型による製造方法のうち、封止樹脂が充填完了した時の略断面図である。 図17は、半導体装置の金型による製造方法のうち、金型を開いた時の略断面図である。 図18は、上金型から取り出した連続した配線基板、樹脂(透明樹脂)及び封止樹脂の構成を示す上面図である。 図19は、半導体装置の金型による製造方法のうち、ダイシングで個片に裁断することを示した略断面図である。 図20は、実施形態3に係る半導体装置の構成を示す断面図である。 図21は、半導体装置の構成を示す上面図である。 図22は、半導体装置の金型による製造方法のうち、配線基板及び樹脂を金型に設置した時の略断面図である。 図23は、半導体装置の金型による製造方法のうち、配線基板を上金型及び下金型でクランプする時の略断面図である。 図24は、半導体装置の金型による製造方法のうち、樹脂をピンで突き上げ、樹脂とセンサ機能領域とを接触させる時の略断面図である。 図25は、半導体装置の金型による製造方法のうち、封止樹脂が充填完了した時の略断面図である。 図26は、半導体装置の金型による製造方法のうち、ダイシングで個片に裁断することを示した略断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 (実施形態1)
 本実施形態に係る半導体装置は、配線を有する配線基板と、配線基板上に搭載され、表面に配線と電気的に接続されたセンサ機能領域を有する半導体素子と、半導体素子上に形成された、センサ機能領域を覆う第1樹脂層と、配線基板上及び半導体素子上に形成された、半導体素子を封止する第2樹脂層とを備え、第1樹脂層は、側面が第2樹脂層で覆われ、底面がセンサ機能領域に当接する柱状構造を有し、柱状構造の底面は、当該底面に対向する前記柱状構造の天面より大きい。
 これにより、本実施形態に係る半導体装置は、簡単かつ低コストで小型に製造でき、小型かつ高いセンサ感度を実現できる。
 ~半導体装置の構造~
 本実施形態に係る半導体装置の構造を、図1A、図1B及び図2を用いて説明する。
 図1Aは、実施形態1に係る半導体装置の構成を示す断面図であり、図1Bは、図1Aに示した構成のうち、範囲Aを拡大して示す断面図であり、図2は、実施形態1に係る半導体装置の構成を示す上面図である。なお、図1Aは、図2のA-A’断面での断面構成を示している。
 半導体装置100は、所定の配線パターンが形成された配線基板101と、ワイヤ109によって配線基板101の電極部108cと電気的に接続された半導体素子102と、半導体素子102上に搭載されたセンサ機能領域(受光機能領域)103と、センサ機能領域(受光機能領域)103上を覆う樹脂(透明樹脂)106を有し、配線基板101上と半導体素子102と樹脂(透明樹脂)106の天面と底面とを除く面を封止樹脂107によって充填されており、樹脂(透明樹脂)106の天面は露出して形成されている。
 言い換えると、半導体装置100は、配線を有する配線基板101と、配線基板101上に搭載され、表面に配線基板101の配線とワイヤ109で電気的に接続されたセンサ機能領域(受光機能領域)103を有する半導体素子102と、半導体素子102上に形成された、センサ機能領域(受光機能領域)103を覆う樹脂(透明樹脂)106と、半導体素子102を封止する封止樹脂107と、配線基板101に半導体素子102を固定するためのダイボンド材110とを有する。
 この半導体装置100は、例えば光ピックアップ装置である。
 配線基板101は、裏面(図中下の面)に外部接続電極108bが形成され、上面(図中上の面)に電極部108cが形成され、さらに、当該配線基板101を厚さ方向に貫通し、外部接続電極108bと電極部108cとを接続する貫通電極108aが形成されている、例えば、矩形平板状のプラスチック基板である。
 具体的には、配線基板101には、配線基板101の上面の半導体素子102が搭載された領域の周辺に開口する複数の貫通孔が設けられ、その貫通孔にめっき及び導電材が埋め込められて貫通電極108aが形成されている。貫通電極108aは、配線基板101の半導体素子102の搭載面(配線基板101の上面)において、半導体素子102の電極パッド(図示せず)とワイヤ109によって電気的に接続されている。つまり、貫通電極108aは、電極部108c及びワイヤ109を介して半導体素子102のセンサ機能領域(受光機能領域)103と電気的に接続されている。一方、配線基板101の半導体素子102の搭載面とは反対側の面(配線基板101の下面)において貫通電極108aは、その面に設けられた外部接続電極108bと電気的に接続している。この外部接続電極108bは外部回路と接続されて、電力の供給を受けたり信号の入出力をおこなったりする。よって、センサ機能領域(受光領域)103で発生した信号は、外部接続電極108bから半導体装置100の外部へ取り出される。
 なお、貫通電極108aは、配線基板101の半導体素子102搭載面において、半導体素子102の電極パッドとワイヤにより電気的接続されているが、当該ワイヤに限られず、フリップチップ工法により電気的接続されていてもよい。つまり、半導体素子102は、バンプを介して電極部108cに電気的に接続されていてもよい。
 半導体素子102は、ダイボンド材110により配線基板101上に固定され、表面にセンサ機能領域(受光機能領域)103が形成されている。センサ機能領域(受光機能領域)103は、ワイヤ109を介して配線基板101上の電極部108cと電気的に接続されている。具体的には、半導体素子102は、例えば矩形平板状であり、1つの面(表面)の中央部分にセンサ機能領域(受光機能領域)103が形成されている。さらに、その1つの面(表面)の周辺部には電極パッドが設けられている。配線基板101へは、半導体素子102のセンサ機能領域(受光機能領域)103が形成されていない他方の面が載せられてダイボンド材110で固定されている。即ち、配線基板101の上に半導体素子102が搭載され、センサ機能領域(受光機能領域)103は上方を向いている。
 封止樹脂107は、本発明の第2樹脂層に相当し、配線基板101上及び半導体素子102上に形成され、半導体素子102を封止する。具体的には、封止樹脂107は、半導体素子102のセンサ機能領域(受光機能領域)103を樹脂(透明樹脂)106と接触している部分を除く半導体素子102と、樹脂(透明樹脂)106の天面とセンサ機能領域(受光機能領域)103と接触している底面を除く面と、半導体素子102と配線基板101とを電気的に接続しているワイヤ109とを封止している。
 樹脂(透明樹脂)106は、本発明の第1樹脂層に相当し、半導体素子102上に形成され、センサ機能領域(受光機能領域)103を覆う。また、樹脂(透明樹脂)106は、100nmから1000μmの波長を有する光(電磁波)を透過することが望ましく、更には350nmから800nmであることが望ましい。また、その透過率は10%以上であることが望ましく、更には80%以上であることが望ましい。
 また、樹脂(透明樹脂)106は粘弾性を有しているため、半導体素子102のセンサ機能領域(受光機能領域)103との接触面は隙間なく密着しており、センサ機能領域(受光機能領域)103上に封止樹脂107は入り込んでいない。加えて、樹脂(透明樹脂)106は粘弾性を有しているため、半導体素子102を破壊することは無い。具体的には、樹脂(透明樹脂)106の弾性率は室温で10kPaから1GPaが望ましく、更には500kPaから10MPaが望ましい。
 ここで、この樹脂(透明樹脂)106は、側面が封止樹脂107で覆われ、底面(図中下の面)がセンサ機能領域(受光機能領域)103に当接する柱状構造106aと、封止樹脂107の表面を覆う平板状構造106bとを含む。図1Bに示すように、柱状構造の底面は、当該底面に対向する柱状構造の天面より大きい。つまり、半導体素子102のセンサ機能領域(受光機能領域)103と樹脂(透明樹脂)106とが接触している部分の面積は、それと対向する天面の面積よりも大きくなっている。例えば、柱状構造の天面の面積をα、柱状構造の底面の面積をβとすると、α<βとなっている。
 これにより、受光する光信号が柱状構造106aの側面で乱反射することがないためセンサの誤反応を抑えることができる。なお、センサ機能領域103が発光機能領域である場合であっても、柱状構造106aの側面で反射した光が外部に乱反射することがないため発光輝度ムラを抑えることができる。
 更に、樹脂(透明樹脂)106は、半導体素子102と配線基板101とを電気的に接続しているワイヤ109と接触していない。
 また、樹脂(透明樹脂)106の上面には、金型で成形するときに真空吸着で樹脂(透明樹脂)106を固定した跡117が設けられる。
 また、樹脂(透明樹脂)106の半導体素子102に接する面は、半導体素子102の表面よりも小さく、センサ機能領域(受光機能領域)103の表面よりも大きい。これにより、樹脂(透明樹脂)105により、センサ機能領域(受光機能領域)103を確実に保護することができる。
 以上のように、本実施形態に係る半導体装置100は、配線パターンを有する配線基板101と、配線基板101上に搭載され、表面に配線基板101の配線パターンと電気的に接続されたセンサ機能領域(受光領域)を有する半導体素子102と、半導体素子102上に形成された、センサ機能領域(受光領域)を覆う樹脂(透明樹脂)106と、配線基板101上及び半導体素子102上に形成された、半導体素子102を封止する封止樹脂107とを備え、樹脂(透明樹脂)106は、側面が封止樹脂107で覆われ、底面がセンサ機能領域(受光領域)103に当接する柱状構造106aを有し、柱状構造106aの底面は、当該底面に対向する柱状構造106aの天面より大きい。
 これにより、本実施形態に係る半導体装置100は、簡単かつ低コストで製造でき、小型かつ高いセンサ感度を実現できる。
 ~半導体装置の製造方法~
 次に、実施形態1に係る半導体装置100の製造方法について説明する。
 図3A~図9は、実施形態1に係る半導体装置100の製造方法の一部を示す図である。
 図3Aは、実施形態1に係る半導体装置100の金型による製造方法のうち、配線基板及び樹脂を金型に設置した時の略断面図である。
 まず、連続した配線基板118に複数の半導体素子102を一定寸法間隔で搭載する。連続した配線基板118は、個々の配線基板101が複数繋がっているものであり、後ほど切断されることにより個々の配線基板101となる。つまり、連続した配線基板118は図1Aに示した配線基板101の集合体である。
 次に、半導体素子102の電極パッドと、連続した配線基板118の電極部108cとをワイヤボンディングによって電気的に接続する。
 一方、下金型105に、当該下金型105とは別の金型を用いて、樹脂(透明樹脂)106を凸部がセンサ機能領域(受光機能領域)103のピッチと同ピッチになるように連続して成形する。つまり、別の金型で成形された樹脂(透明樹脂)106は、本発明の第1樹脂材料に相当し、この第1樹脂材料の一部は、一方の端面が他方の端面より小さい柱状に成形されている。そして、柱状に成形された第1樹脂材料の一方の端面が、後の工程においてセンサ機能領域(受光領域)103の当接するように、下金型105に保持させる。また、第1樹脂材料の他部は、平板状に成形されている。
 ここで、下金型105に成形された樹脂(透明樹脂)106の凸部(柱状)の形状の一例を図3Bに示す。
 樹脂(透明樹脂)106の凸部天面を凸状にすることでセンサ機能領域(受光機能領域)103との密着性を向上させている。つまり、柱状に形成された樹脂(透明樹脂)106のセンサ機能領域側の端面は、柱状に成形された樹脂(透明樹脂)106のセンサ機能領域側の端面に対向する端面より小さい。これにより、センサ機能領域(受光機能領域)103と樹脂(透明樹脂)106との接合面での密着性が高まる。
 その他、樹脂(透明樹脂)106の凸部の形状は、図3C~図3Gに示すような形状でもよい。
 この樹脂(透明樹脂)106は粘弾性を有する熱硬化性樹脂であり、その粘弾性は硬化反応率で制御できる。また、粘弾性は自重で形状が保持される程度が望ましい。凸部の高さは、下金型105の掘り込み高さから連続した配線基板118と半導体素子102の高さを差し引いた長さよりもやや長い長さとする。望ましくは50マイクロメートルから200マイクロメートルである。
 ここで、樹脂(透明樹脂)106は、具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂が好適に用いられる。シリコーン樹脂を用いることが特に好ましい。
 次に、図3Aに示すように連続した配線基板118を上金型104に保持する(配線基板保持工程)。その連続した配線基板118の固定は、上金型104内に設置した後真空吸着することにより行った。その他、冶具により連続した配線基板118の端部を保持してもよい。
 また上金型104に対向する面に下金型105が設置されている。下金型105の掘り込み部(キャビティ)の所定の位置に樹脂(透明樹脂)106を設置する。その後下金型105に設けられた真空吸着穴112から真空で樹脂(透明樹脂)106を固定する(樹脂保持工程)。このとき、樹脂(透明樹脂)106の凸部が上方向に向くように設置する。ここで、上金型104及び下金型105は120℃から200℃に加熱されている。なお、上金型104は本発明の第1の金型に相当し、下金型105は本発明の第2の金型に相当する。
 次に、図4に示すように上金型104と下金型105とを閉じ、連続した配線基板の周辺部を上金型104と下金型105とでクランプし、その後の工程で封止樹脂107が注入されても上金型104と下金型105とが開かないように圧力を付与する。これと同時に、樹脂(透明樹脂)106とセンサ機能領域(受光機能領域)103とは隙間なく接触する。言い換えると、上金型104と下金型105とを、センサ機能領域(受光機能領域)103と柱状に成形された樹脂(透明樹脂)106とが当接するようにクランプする(樹脂形成工程)。
 このとき、センサ機能領域(受光機能流域)103と樹脂(透明樹脂)106とが当接することにより、樹脂(透明樹脂)106のセンサ機能領域(受光機能領域)103側の端部が変形されて、図1A及び図1Bに示すような樹脂(透明樹脂)106の形状となる。具体的には、センサ機能領域(受光機能領域)103に当接する柱状構造106aの底面の大きさが、柱状構造106aの天面の大きさよりも大きい形状を有する樹脂(透明樹脂)106となる。
 ここで、樹脂(透明樹脂)106は弾性体であるため半導体素子102よりも柔らかく、接触しても傷をつけたり破壊することはない。言い換えると、樹脂(透明樹脂)106は、粘弾性を有する。これにより、樹脂形成工程において、センサ機能領域(受光機能領域)103と樹脂(透明樹脂)106とが当接されても、センサ機能領域(受光機能領域)103に傷がついたり、センサ機能領域(受光機能領域)103が破壊されたりすることがない。なお、樹脂形成工程で、端部が変形されるまでの樹脂(透明樹脂)106は本発明の第1樹脂材料に相当する。
 次に、図5に示すように金型5に設けられた封止樹脂注入口113から封止樹脂107を金型内に充填させる。封止樹脂充填方法は一般に用いられるトランスファー成型である。言い換えると、上金型104と下金型105との隙間に封止樹脂107を充填する(封止樹脂形成工程)。これにより、連続した配線基板118の半導体素子102の搭載面、半導体素子102、ワイヤ109、樹脂(透明樹脂)106の天面を除く側面は封止樹脂107によって封止される。ここで、樹脂(透明樹脂)106とセンサ機能領域(受光領域)103とは隙間なく接触しているため、樹脂(透明樹脂)106とセンサ機能領域(受光領域)103との間に封止樹脂107が入り込むことはない。
 次に、図6に示すように、上金型104と下金型105との隙間への封止樹脂107の充填が完了後、封止樹脂107を硬化させる。なお、硬化前の封止樹脂107は、本発明の第2樹脂材料に相当する。
 次に、図7に示すように、上金型104と下金型105とを開き、連続した配線基板118を取り出す。図8に、上金型104から取り出した連続した配線基板118、樹脂(透明樹脂)106及び封止樹脂107の構成を示す上面図である。なお、この上面図は、連続した配線基板118を下金型105側から見た図である。
 次に、図9に示すように、連続した配線基板118を、ダイシングライン111においてダイシングブレード114で切断し、個々の配線基板101からなる図1Aに示す半導体装置100が複数個出来上がる。言い換えると、連続した配線基板118をセンサ機能領域(受光機能領域)103ごとに分割することにより、複数の半導体装置100に分割する。
 以上のように、本実施形態に係る半導体装置100の製造方法は、配線を有する配線基板101と、配線基板101上に搭載され、表面に配線と電気的に接続されたセンサ機能領域(受光機能領域)103を有する半導体素子102と、半導体素子102上に設けられ、センサ機能領域(受光機能領域)103を覆う樹脂(透明樹脂)106と、半導体素子102を封止する封止樹脂107とを備える半導体装置100の製造方法であって、表面に半導体素子102が搭載された連続した配線基板118の裏面が上金型104に接するように、上金型104に連続した配線基板118を保持させる配線基板保持工程と、樹脂(透明樹脂)106の材料の一部を柱状に成形して下金型105に保持させる樹脂保持工程と、配線基板保持工程及び樹脂保持工程の後、上金型104と下金型105とを、センサ機能領域(受光機能領域)103と柱状に成形された樹脂(透明樹脂)106とが当接するようにクランプすることにより樹脂(透明樹脂)106を形成する樹脂形成工程と、樹脂形成工程の後、上金型104と下金型105との隙間に封止樹脂107を充填することにより封止樹脂107を形成する封止樹脂形成工程とを含む。
 これにより、本実施形態に係る半導体装置100の製造方法は、小型かつセンサ感度の高い半導体装置100を、簡単かつ低コストで製造できる。以下、この半導体装置100の製造方法が奏する効果について具体的に述べる。
 なお、配線基板保持工程は本発明の基板保持工程に相当し、樹脂保持工程は本発明の第1樹脂保持工程に相当し、樹脂形成工程は本発明の第1樹脂層を形成する工程に相当し、封止樹脂形成工程は本発明の第2樹脂層を形成する工程に相当する。
 また、本実施形態に係る半導体装置100の製造方法は、さらに、樹脂保持工程の前に、樹脂(透明樹脂)106の一部を、一方の端面が他方の端面より小さい柱状に成形する樹脂材料成形工程を含み、樹脂形成工程では、樹脂材料成形工程で柱状に成形された樹脂(透明樹脂)106の一方の端面がセンサ機能領域(受光機能領域)103に当接される。なお、樹脂材料成形工程は、本発明の第1樹脂材料成形工程に相当する。
 本実施形態1においては、特許文献1に記載されているような配線基板を刳り貫き、半導体機能領域を露出させた構成と比べ、センサ機能領域(受光機能領域)103を樹脂(透明樹脂)106で密着させているためセンサ機能領域(受光機能領域)103に異物が付着することを防ぐことができるためセンサ機能への信号を阻害することがない。また、半導体素子102と配線基板の電極部108cとを接合する箇所も露出していないため異物付着によるショート不良も発生しない。
 特許文献1に記載されているような刳り貫き領域に透明樹脂を別途塗布する場合においても、塗布方法で必要な樹脂天面部の研磨も必要がない。加えて、センサ機能領域(受光機能領域)103上のみを収縮率が大きい樹脂(透明樹脂)106で覆い、配線基板101の電極部108cと半導体素子102との接続部を収縮率の小さい封止樹脂107で覆っているため、樹脂(透明樹脂)106の収縮や接着力不足による配線基板101の電極部108と半導体素子102との接続部の断線などの接続信頼性低下を抑えることができる。さらに、特許文献1及び3記載の構成に比べ樹脂(透明樹脂)106の体積を小さくできるため樹脂(透明樹脂)106の収縮量を小さくできる。これにより半導体装置100の反りを小さくできるため、外部回路との接続信頼性を向上させることができる。そのうえ、収縮応力によるチップ破壊も抑えることができる。また本実施形態1のように連続した配線基板118を一括成型する場合、反りを小さくできるためダイシングで個片に裁断する方法において位置ズレを生じずに裁断することができる。
 また、接着力が弱い樹脂(透明樹脂)106と半導体素子102との接着面積を小さくすることができるため、半導体素子102からの樹脂(透明樹脂)106の剥離の発生を抑えることができる。このため、剥離が原因となる外部回路との実装不良や電気接続不良を抑えることができる。
 更に、特許文献1及び3記載の構造では、透明樹脂を塗布する領域は配線基板側の端面の面積が、その端面に対面する面よりも面積が大きい、側面が天面に開いたテーパー形状になる。これに対し、本実施形態1では、樹脂(透明樹脂)106の柱状構造106aは、半導体装置100の厚さ方向の断面積が、受光機能領域103側から半導体装置100の表面(光学機能領域側の面に対向する面)へ向かって徐々に減少する逆テーパー形状にできる。よって、樹脂(透明樹脂)106に大きな応力負荷が加わっても樹脂(透明樹脂)106が離脱することはない。
 また、図8に示すように樹脂(透明樹脂)106は連続しており、ダイシングライン111における断面積が小さいため、ダイシングにて個片に裁断後の半導体装置100の端面のバリやダレを防止できる。
 他に、特許文献1及び4記載の構成のように特殊なコーティングを施したガラス板を用いることがないため、接着材も不要になりレーザー光により変色をすることもない。また、ガラス板を取りつける領域が不要のため半導体装置を小型化することができる。更に高価なガラス板を用いないため製造コストを低くすることができる。
 その他、特許文献2及び4記載の製造方法のように、別途樹脂フィルムを使用せずにセンサ機能領域に封止樹脂が漏れることがなく良好な感度を有するセンサ機能領域を有した半導体装置100を低コストで提供できる。また特許文献1記載の製造方法のように配線基板を刳り貫く掘削加工が不必要のため、半導体装置を小型化することができる。また加工時間がかからないため製造コストを安くすることができる。
 加えて樹脂(透明樹脂)106の柱状構造106aを逆テーパーに形成できるため、センサ機能領域103が受光機能領域である場合、受光する光信号はこの側面で乱反射することがないためセンサの誤反応を抑えることができる。同様に、センサ機能領域が発光機能領域である場合、側面で反射した光が外部に乱反射することがないため発光輝度ムラを抑えることができる。
 同様に、センサ機能領域103を圧力感知機能領域や磁気感知装置にすることも、容易であり、同じ製造設備で製造できるため製造コストを抑えることができるという利点がある。樹脂106が弾性体のため同時に圧力センサとしても使用することができる。
 加えて、封止樹脂107を充填する工程と同時にセンサ機能領域103の上面に樹脂(透明樹脂)106を形成することができるため、別途センサ機能領域103の上部に樹脂を塗布する必要がなく、簡単かつ低コストで半導体装置を製造することができる。
 (実施形態2)
 本実施形態に係る半導体装置は、実施形態1に係る半導体装置100と比較してほぼ同じであるが、樹脂(透明樹脂)は平面状構造を有さず、柱状構造のみを有し、その柱状構造には、ピンが押圧されたことによって型取られた跡がある点が異なる。以下、本実施形態に係る半導体装置について、実施形態1に係る半導体装置100と異なる点を中心に述べる。
 ~半導体装置の構造~
 本実施形態に係る半導体装置の構造を図10A~図11Bを用いて説明する。
 図10Aは、実施形態2に係る半導体装置の構成を示す断面図であり、図10Bは、図10Aに示した構成のうち、範囲Bを拡大して示す断面図である。また、図11Aは、実施形態2に係る半導体装置の構成を示す上面図であり、図11Bは、図11Aに示した構成の一部を拡大して示す上面図である。
 本実施形態に係る半導体装置200は、実施形態1に係る半導体装置100と比較して、樹脂(透明樹脂)106に代わり、樹脂(透明樹脂)206を有する。この樹脂(透明樹脂)206は、実施形態1に係る半導体装置100の樹脂(透明樹脂)106の柱状構造106aとほぼ同じである。つまり、樹脂(透明樹脂)206は、樹脂(透明樹脂)106と比較して、平板状構造を有さず、柱状構造からなる。
 このように構成された樹脂(透明樹脂)206は、樹脂(透明樹脂)106と比較して、小さい体積で形成できるので、材料の使用量を低減させることができ製造コストを抑制できる。
 また、樹脂(透明樹脂)206が平板状構造を有さないので、複数の半導体装置200を一括して形成した後にダイシングで個片化することにより半導体装置200を複数個製造する場合、ダイシングブレードにて裁断する位置であるダイシングライン上に樹脂(透明樹脂)206が位置しない。これにより、ダイシングにて個片に裁断された後の半導体装置200の端面に発生するバリやダレを一層防止できる。
 樹脂(透明樹脂)206の天面(図中上の面)には、金型で成形するときに樹脂(透明樹脂)206をピンで押し上げた跡219が設けられる。この跡は凸でも凹でも良い。つまり、ピンが押圧されたことによって型取られた跡がある。
 ~半導体装置の製造方法~
 次に、実施形態2に係る半導体装置200の製造方法について説明する。半導体装置200の製造方法は、実施形態1に係る半導体装置100の製造方法と比較し、下金型が凹部を有し、この凹部に成形された樹脂(透明樹脂)206の一部を入れ込むことにより、樹脂(透明樹脂)206を下金型に保持させる点と、下金型が、当該下金型を貫通し、成形された樹脂(透明樹脂)206に接するピンを有し、ピンを上金型方向へ稼動することにより、樹脂(透明樹脂)206をセンサ機能領域(受光機能領域)103に当接させる点が異なる。以下、図面を用いて、半導体装置200の製造方法について詳細に説明する。
 図12A~図19は、実施形態2に係る半導体装置200の製造方法の一部を示す図である。
 図12Aは、実施形態2に係る半導体装置200の金型による製造方法のうち、配線基板及び樹脂(透明樹脂)206を金型に設置した時の略断面図である。
 まず、図3Aに示した半導体装置100の製造方法と同様に、上金型104に、複数の半導体素子102が一定寸法間隔で搭載された、連続した配線基板118を保持させる。
 一方、樹脂(透明樹脂)206を金型で成形する。樹脂(透明樹脂)206の形状の一例を図12Bに示す。樹脂(透明樹脂)206の天面は、図3Bに示した凸部の天面の形状と同様に、凸状にすることでセンサ機能領域(受光機能領域)103との密着性を向上させている。
 その他、樹脂(透明樹脂)206の凸部の形状は、図12C~図12Eに示すような形状でもよい。
 この樹脂(透明樹脂)206は粘弾性を有する熱硬化性樹脂であり、その粘弾性は硬化反応率で制御できる。また、粘弾性は自重で形状が保持される程度が望ましい。樹脂(透明樹脂)206の高さは、下金型205の掘り込み高さから連続した配線基板118と半導体素子102の高さを差し引いた長さよりもやや長い長さとする。望ましくは50マイクロメートルから200マイクロメートルである。
 ここで、樹脂(透明樹脂)206は、具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂が好適に用いられる。シリコーン樹脂を用いることが特に好ましい。
 次に、図12Aに示すように連続した配線基板118を上金型104に保持する(配線基板保持工程)。その連続した配線基板118の固定は上金型104内に設置した後、真空吸着で行った。その他、冶具により連続した配線基板118の端部を保持してもよい。
 また、上金型104に対向する面に下金型205が設置されている。この下金型205は、本発明の凹部に相当するポット270が形成され、このポット270に成形された樹脂(透明樹脂)206を入れ込むことにより、樹脂(透明樹脂)206を保持する。つまり、センサ機能領域(受光機能領域)103に対向し、下金型205に掘り込んだポット270に樹脂(透明樹脂)206を設置する。このとき、樹脂(透明樹脂)206の凸状に形成された天面が上方向に向くように設置する。ここで、上金型104及び下金型105は150℃から190℃に加熱されている。
 次に、図13に示すように上金型104と下金型105とを閉じ、連続した配線基板118の周辺部を上金型104と下金型105とでクランプし、その後の工程で封止樹脂107が注入されても上金型104と下金型105とが開かないように圧力を付与する。
 その後、図14に示すように、下金型105に設けられ、ピン保持板290に保持されたピン280を稼動させて樹脂(透明樹脂)206を突き上げる。これにより樹脂(透明樹脂)206とセンサ機能領域(受光機能領域)103とは隙間なく接触する。言い換えると、ピン保持板290を稼動することによりピン280を上金型104へ稼動させ、樹脂(透明樹脂)206をセンサ機能領域(受光機能領域)103に当接させる。このとき、樹脂(透明樹脂)206の天面は押しつぶされ変形する。
 ここで、樹脂(透明樹脂)206は弾性体であるため半導体素子102よりも柔らかく、接触しても半導体素子102を傷つけたり、破壊することはない。
 次に、図15に示すように、下金型205に設けられた封止樹脂注入口113から封止樹脂107を金型内に充填させる。封止樹脂充填方法は一般に用いられるトランスファー成型である。言い換えると、上金型104と下金型105との隙間に封止樹脂107を充填する(封止樹脂形成工程)。これにより、連続した配線基板118の半導体素子102の搭載面、半導体素子102、ワイヤ109、樹脂(透明樹脂)206の天面を除く側面は封止樹脂107によって封止される。ここで、樹脂(透明樹脂)106とセンサ機能領域(受光機能領域)103とは隙間なく接触しているため、樹脂(透明樹脂)106とセンサ機能領域(受光機能領域)103との間に封止樹脂107が入り込むことはない。
 次に、図16に示すように、上金型104と下金型105との隙間への封止樹脂107の充填が完了後、封止樹脂107を硬化させる。
 次に、図17に示すように、上金型104と下金型105とを開き、連続した配線基板118を取り出す。図18に、上金型104から取り出した連続した配線基板118、樹脂(透明樹脂)206及び封止樹脂107の構成を示す上面図である。なお、この上面図は、連続した配線基板118を下金型105側から見た図である。
 次に、図19に示すように、連続した配線基板118を、ダイシングライン111においてダイシングブレード114で切断し、個々の配線基板101からなる図10Aに示す半導体装置200が複数個出来上がる。言い換えると、連続した配線基板118をセンサ機能領域(受光機能領域)103ごとに分割することにより、複数の半導体装置200に分割する。このとき、ダイシングライン111上に樹脂(透明樹脂)206は位置しない。これにより、ダイシングにて個片に裁断された後の半導体装置200の端面に発生するバリやダレを一層防止できる。
 以上のように、本実施形態に係る半導体装置200の製造方法は、実施形態1に係る半導体装置100の製造方法と比較して、下金型205がポット270を有し、このポット270に成形された樹脂(透明樹脂)206の一部を入れ込むことにより、樹脂(透明樹脂)206を下金型205に保持させる点と、下金型205に当該下金型205を貫通し、成形された樹脂(透明樹脂)206に接するピン280を有し、ピン280を上金型104方向へ稼動することにより、樹脂(透明樹脂)206をセンサ機能領域(受光機能領域)103に当接させる点が異なる。
 これにより、実施形態2においては、樹脂(透明樹脂)206の使用量を更に低減させることができ、さらに、ダイシングライン111上に樹脂(透明樹脂)206が位置しないため、ダイシングにて個片に裁断後の半導体装置200の端面のバリやダレを一層防止できる。また、高価な樹脂(透明樹脂)6の使用量を減らすことができるので製造コストを低くできる。
 (実施形態3)
 本実施形態に係る半導体装置は、実施形態2に係る半導体装置200と比較してほぼ同じであるが、半導体素子が複数のセンサ機能領域(受光領域)を含む点が異なる。以下、本実施形態に係る半導体装置について、実施形態2に係る半導体装置200と異なる点を中心に述べる。
 ~半導体装置の構造~
 本実施形態に係る半導体装置の構造を図20及び図21を用いて説明する。
 図20は、実施形態3に係る半導体装置の構成を示す断面図であり、図21は、実施形態3に係る半導体装置の構成を示す上面図である。なお、図20は、図21のC-C’断面での断面構成を示している。
 本実施形態に係る半導体装置300は、実施形態2に係る半導体装置200と比較して、半導体素子102に代わり、複数のセンサ機能領域303a及び303bが形成された半導体素子302を備える。このセンサ機能領域303a及び303bは、本発明のサブセンサ機能領域に相当する。
 また、樹脂(透明樹脂)206は、各センサ機能領域303a及び303bに対応して形成されている。
 ~半導体装置の製造方法~
 次に、実施形態3に係る半導体装置300の製造方法について説明する。なお、本実施の形態に係る半導体装置300の製造方法は、実施形態2に係る半導体装置200の製造方法とほぼ同じである。
 図22~図26は、実施形態3に係る半導体装置300の製造方法の一部を示す図である。
 図22は、実施形態3に係る半導体装置300の金型による製造方法のうち、配線基板及び樹脂(透明樹脂)206を金型に設置した時の略断面図である。
 まず、図3Aに示した半導体装置100の製造方法と同様に、上金型104に、複数の半導体素子302が一定寸法間隔で搭載された、連続した配線基板118を保持させる。
 一方、樹脂(透明樹脂)206を金型で成形する。
 次に、図22に示すように連続した配線基板118を上金型104に保持する。その連続した配線基板118の固定は上金型104内に設置した後、真空吸着することにより行った。
 また、上金型104に対向する面に下金型305が設置されている。この下金型305は、本発明の凹部に相当するポット270が形成され、このポット270に成形された樹脂(透明樹脂)206を入れ込むことにより、樹脂(透明樹脂)206を保持する。つまり、各センサ機能領域(受光機能領域)303a及び303bに対向し、下金型305に掘り込んだポット270に樹脂(透明樹脂)206を設置する。このとき、樹脂(透明樹脂)206の凸状に形成された天面が上方向に向くように設置する。ここで、上金型104及び下金型305は150℃から190℃に加熱されている。
 次に、図23に示すように上金型104と下金型305とを閉じ、連続した配線基板118の周辺部を上金型104と下金型305とでクランプし、その後の工程で封止樹脂107が注入されても上金型104と下金型305とが開かないように圧力を付与する。
 その後、図24に示すように、下金型305に設けられ、ピン保持板390に保持されたピン380を稼動させて樹脂(透明樹脂)206を突き上げる。これにより樹脂(透明樹脂)206とセンサ機能領域(受光機能領域)303a及び303bは隙間なく接触する。このとき、樹脂(透明樹脂)206の天面は押しつぶされ変形する。
 ここで、樹脂(透明樹脂)206は弾性体であるため半導体素子302よりも柔らかく、接触しても半導体素子302を傷つけたりや破壊することはない。
 次に、図25に示すように下金型305に設けられた封止樹脂注入口113から封止樹脂107を金型内に充填させる。封止樹脂充填方法は一般に用いられるトランスファー成型である。言い換えると、上金型104と下金型305との隙間に封止樹脂107を充填する(封止樹脂形成工程)。これにより、連続した配線基板118の半導体素子302の搭載面、半導体素子302、ワイヤ109、樹脂(透明樹脂)206の天面を除く側面は封止樹脂107によって封止される。樹脂(透明樹脂)206とセンサ機能領域303a及び303bは隙間なく接触しているため、樹脂(透明樹脂)206とセンサ機能領域303a及び303bとの間に封止樹脂107が入り込むことはない。
 次に、封止樹脂107の金型内への充填が完了後、封止樹脂107を硬化させる。
 次に、上金型104と下金型305とを開き、連続した配線基板118を取り出す。
 次に、図26に示すように連続した配線基板118をダイシングブレード114で切断し、個々の配線基板101からなる図20に示す半導体装置300が複数個出来上がる。言い換えると、連続した配線基板118をセンサ機能領域(受光機能領域)303a及び303bからなる複数のセンサ機能領域ごとに分割することにより、複数の半導体装置300に分割する。
 本実施形態3においては、樹脂(透明樹脂)206の形状が逆テーパーにできるため側面で信号が乱反射し干渉することなく、複数のセンサ機能領域303a及び303b間の距離を短く配置できる。例えば、複数の波長レーザーを受光する機能を有する同一半導体素子を小型にできるため、その半導体製造装置も小型化することができる。これによって製造コストも低く抑えることができる。
 なお、本実施形態において、サブセンサ機能領域は2つであったが、サブセンサ領域は複数であればよく、3つでも4つでも構わない。
 以上、本発明に係る半導体装置及びその製造方法について、実施形態1~3に基づき説明したが、本発明は、これら実施形態に限定されるものではない。本発明の趣旨を逸脱しない限り、異なる実施形態の組み合わせや、当業者が思いつく各種変形を本実施形態に施したものも、本発明の範囲内に含まれる。
 例えば、上記各実施形態では、センサ機能領域を受光機能領域としたが、これに限らない。例えば、上述したように、センサ機能領域は、発光機能領域であってもよいし、圧力感知機能領域であってもよいし、磁気感知機能領域であってもよい。以下、センサ機能領域が圧力感知機能領域である場合の半導体装置について述べる。センサ機能領域が圧力感知機能領域である場合、圧力感知機能領域上を覆う樹脂106は弾性体であるため、この樹脂106は外部からの圧力信号を圧力感知機能領域に伝えることが可能である。これにより、半導体素子に搭載された圧力感知機能領域に埃などの異物が付着することがなく、小型で接続信頼性の高い圧力感知機能を有した半導体装置を提供できる。なお、上記各実施形態では、樹脂106は透明であるとしたが、センサ機能領域が圧力感知機能領域及び磁気感知機能領域である場合、樹脂106は光を透過しなくてもよい。
 以上説明したように、本発明に係る半導体装置の製造方法は、例えば光ピックアップ装置の製造方法といった種々の電子機器の製造方法に有用である。
100、200、300 半導体装置
101 配線基板
102、302 半導体素子
103、303a、303b センサ機能領域(受光機能領域)
104 上金型
105、205、305 下金型
106、206 樹脂(透明樹脂)
106a 柱状構造
106b 平板状構造
107 封止樹脂
108a 貫通電極
108b 外部接続電極
108c 電極部
109 ワイヤ
110 ダイボンド材
111 ダイシングライン
112 真空吸着穴
113 封止樹脂注入口
114 ダイシングブレード
117 樹脂を固定した跡
118 連続した配線基板
219 ピンで押し上げた跡
270 ポット
280、380 ピン
290、390 ピン保持板

Claims (20)

  1.  配線を有する配線基板と、前記配線基板上に搭載され、表面に前記配線と電気的に接続されたセンサ機能領域を有する少なくとも1つの半導体素子と、前記少なくとも1つの半導体素子上に設けられ、前記センサ機能領域を覆う第1樹脂層と、前記少なくとも1つの半導体素子を封止する第2樹脂層とを備える半導体装置の製造方法であって、
     表面に前記少なくとも1つの半導体素子が搭載された前記配線基板の裏面が第1の金型に接するように、前記第1の金型に前記配線基板を保持させる基板保持工程と、
     前記第1樹脂層の材料である第1樹脂材料であって、少なくとも一部が柱状に成形された前記第1樹脂材料を第2の金型に保持させる第1樹脂保持工程と、
     前記基板保持工程及び前記第1樹脂保持工程の後、前記第1の金型と前記第2の金型とを、前記センサ機能領域と前記柱状に成形された前記第1樹脂材料とが当接するようにクランプすることにより前記第1樹脂層を形成する工程と、
     前記第1樹脂層を形成する工程の後、前記第1の金型と前記第2の金型との隙間に前記第2樹脂層の材料である第2樹脂材料を充填することにより前記第2樹脂層を形成する工程とを含む
     半導体装置の製造方法。
  2.  前記第1樹脂層は、側面が前記第2樹脂層で覆われ、底面が前記センサ機能領域に当接する柱状構造を有し、
     前記柱状構造の底面は、当該底面に対向する前記柱状構造の天面より大きく、
     前記第1樹脂層を形成する工程では、
     前記センサ機能領域と前記第1樹脂材料とが当接することにより前記第1樹脂材料の前記センサ機能領域側の端部が変形されて前記第1樹脂層を形成する
     請求項1記載の半導体装置の製造方法。
  3.  さらに、前記第1樹脂保持工程の前に、前記第1樹脂材料の少なくとも一部を、一方の端面が他方の端面より小さい柱状に成形する第1樹脂材料成形工程を含み、
     前記第1樹脂層を形成する工程では、前記柱状に成形された前記第1樹脂材料の前記一方の端面が前記センサ機能領域に当接される
     請求項1又は2記載の半導体装置の製造方法。
  4.  前記第1樹脂層の前記少なくとも1つの半導体素子に接する面は、前記少なくとも1つの半導体素子の表面よりも小さく、かつ、前記センサ機能領域の表面よりも大きい
     請求項1~3のいずれか1項に記載の半導体装置の製造方法。
  5.  前記少なくとも1つの半導体素子は、複数の半導体素子を含み、
     前記第1樹脂保持工程では、前記第1樹脂材料の他部は前記第2の金型上に平板状に成形して保持され、
     前記第2樹脂層を形成する工程では、前記基板、前記第1樹脂材料の他部及び前記第2樹脂材料を、前記複数の半導体素子のうち1つ以上の半導体素子ごとに分割する
     請求項1~4のいずれか1項に記載の半導体装置の製造方法。
  6.  前記第2の金型は貫通孔を有し、
     前記第1樹脂層を形成する工程では、成形された前記第1樹脂材料を、前記貫通孔を用いて真空吸着することにより前記第1樹脂材料を前記第2の金型に保持させる
     請求項1~5のいずれか1項に記載の半導体装置の製造方法。
  7.  前記第2の金型は凹部を有し、
     前記第1樹脂層を形成する工程では、成形された前記第1樹脂材料の少なくとも一部を前記凹部に入れ込むことにより前記第1樹脂材料を前記第2の金型に保持させる
     請求項1~6のいずれか1項に記載の半導体装置の製造方法。
  8.  前記第2の金型は、当該第2の金型を貫通し、前記第1樹脂材料に接するピンを有し、
     前記第1樹脂層を形成する工程では、前記ピンを前記第1の金型方向へ稼動することにより、前記第1樹脂材料を前記センサ機能領域に当接させる
     請求項1~7のいずれか1項に記載の半導体装置の製造方法。
  9.  前記第1樹脂は光を透過する
     請求項1~8のいずれか1項に記載の半導体装置の製造方法。
  10.  前記第1樹脂は熱硬化性樹脂である
     請求項1~9のいずれか1項に記載の半導体装置の製造方法。
  11.  前記第1樹脂は粘弾性を有する
     請求項1~10のいずれか1項に記載の半導体装置の製造方法。
  12.  前記センサ機能領域は光学機能領域である
     請求項1~11のいずれか1項に記載の半導体装置の製造方法。
  13.  前記光学機能領域は受光機能領域である
     請求項12記載の半導体装置の製造方法。
  14.  前記光学機能領域は発光機能領域である
     請求項12記載の半導体装置の製造方法。
  15.  前記センサ機能領域は圧力感知機能領域である
     請求項1~11のいずれか1項に記載の半導体装置の製造方法。
  16.  前記センサ機能領域は磁気感知機能領域である
     請求項1~11のいずれか1項に記載の半導体装置の製造方法。
  17.  前記センサ機能領域は、複数のサブセンサ機能領域を含む
     請求項1~16のいずれか1項に記載の半導体装置の製造方法。
  18.  配線を有する配線基板と、
     前記配線基板上に搭載され、表面に前記配線と電気的に接続されたセンサ機能領域を有する半導体素子と、
     前記半導体素子上に形成され、前記センサ機能領域を覆う第1樹脂層と、
     前記配線基板上及び前記半導体素子上に形成され、前記半導体素子を封止する第2樹脂層とを備え、
     前記第1樹脂層は、側面が前記第2樹脂層で覆われ、底面が前記センサ機能領域に当接する柱状構造を有し、
     前記柱状構造の底面は、当該底面に対向する前記柱状構造の天面より大きい
     半導体装置。
  19.  前記第1樹脂層には、真空吸着穴によって型取られた凸状の跡がある
     請求項18記載の半導体装置。
  20.  前記第1樹脂層には、ピンが押圧されたことによって型取られた跡がある
     請求項18又は19記載の半導体装置。
PCT/JP2010/006846 2010-05-25 2010-11-24 半導体装置の製造方法及び半導体装置 WO2011148441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-119855 2010-05-25
JP2010119855A JP2011249484A (ja) 2010-05-25 2010-05-25 半導体装置の製造方法及び半導体装置

Publications (1)

Publication Number Publication Date
WO2011148441A1 true WO2011148441A1 (ja) 2011-12-01

Family

ID=45003451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006846 WO2011148441A1 (ja) 2010-05-25 2010-11-24 半導体装置の製造方法及び半導体装置

Country Status (2)

Country Link
JP (1) JP2011249484A (ja)
WO (1) WO2011148441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881724A1 (en) * 2013-12-09 2015-06-10 BAE Systems PLC Manufacturing method for a corrosion sensor having double-encapsulated wire connections
WO2015086284A1 (en) * 2013-12-09 2015-06-18 Bae Systems Plc Corrosion sensor having double-encapsulated wire connections and manufacturing method for it
CN110071077A (zh) * 2014-02-04 2019-07-30 艾普凌科有限公司 光传感器装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840933B2 (ja) * 2011-11-15 2016-01-06 トヨタ自動車株式会社 半導体装置
JP2013191690A (ja) * 2012-03-13 2013-09-26 Shin Etsu Chem Co Ltd 半導体装置及びその製造方法
JP2017092426A (ja) * 2015-11-17 2017-05-25 株式会社デンソー 電子装置
JP2017208421A (ja) * 2016-05-17 2017-11-24 ローム株式会社 半導体装置
JP7368081B2 (ja) * 2018-10-23 2023-10-24 旭化成エレクトロニクス株式会社 光デバイス
JP2022075360A (ja) * 2020-11-06 2022-05-18 東洋インキScホールディングス株式会社 電子デバイスパッケージ及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229509A (ja) * 1983-05-18 1984-12-24 Rohm Co Ltd 光フアイバ用光電変換素子
JPH04329328A (ja) * 1991-05-02 1992-11-18 Fuji Electric Co Ltd 接触圧力センサおよびその測定方法
JPH0851168A (ja) * 1994-08-05 1996-02-20 Apic Yamada Kk Bgaパッケージ及びその製造に用いるモールド金型
JPH10163533A (ja) * 1996-11-27 1998-06-19 Omron Corp 投光装置
JPH11150216A (ja) * 1997-11-19 1999-06-02 Denso Corp 樹脂封止型半導体部品及びその製造方法
JP2000164803A (ja) * 1998-11-27 2000-06-16 Sanyo Electric Co Ltd 半導体装置およびその製造方法
WO2007054819A2 (en) * 2005-11-10 2007-05-18 Hymite A/S Sealed package with glass window for optoelectronic components and assemblies incorporating the same
JP2009152299A (ja) * 2007-12-19 2009-07-09 Panasonic Corp 光学デバイス及び光学デバイスの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229509A (ja) * 1983-05-18 1984-12-24 Rohm Co Ltd 光フアイバ用光電変換素子
JPH04329328A (ja) * 1991-05-02 1992-11-18 Fuji Electric Co Ltd 接触圧力センサおよびその測定方法
JPH0851168A (ja) * 1994-08-05 1996-02-20 Apic Yamada Kk Bgaパッケージ及びその製造に用いるモールド金型
JPH10163533A (ja) * 1996-11-27 1998-06-19 Omron Corp 投光装置
JPH11150216A (ja) * 1997-11-19 1999-06-02 Denso Corp 樹脂封止型半導体部品及びその製造方法
JP2000164803A (ja) * 1998-11-27 2000-06-16 Sanyo Electric Co Ltd 半導体装置およびその製造方法
WO2007054819A2 (en) * 2005-11-10 2007-05-18 Hymite A/S Sealed package with glass window for optoelectronic components and assemblies incorporating the same
JP2009152299A (ja) * 2007-12-19 2009-07-09 Panasonic Corp 光学デバイス及び光学デバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881724A1 (en) * 2013-12-09 2015-06-10 BAE Systems PLC Manufacturing method for a corrosion sensor having double-encapsulated wire connections
WO2015086284A1 (en) * 2013-12-09 2015-06-18 Bae Systems Plc Corrosion sensor having double-encapsulated wire connections and manufacturing method for it
AU2014361093B2 (en) * 2013-12-09 2016-12-15 Bae Systems Plc Corrosion sensor having double-encapsulated wire connections and manufacturing method for it
US9952137B2 (en) 2013-12-09 2018-04-24 Bae Systems Plc Corrosion sensor having double-encapsulated wire connections and manufacturing method for it
CN110071077A (zh) * 2014-02-04 2019-07-30 艾普凌科有限公司 光传感器装置

Also Published As

Publication number Publication date
JP2011249484A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2011148441A1 (ja) 半導体装置の製造方法及び半導体装置
US7939901B2 (en) Optical device for reducing disturbance light and manufacturing method thereof
US8350216B2 (en) Miniaturized optical proximity sensor
US8502151B2 (en) Optical proximity sensor package with lead frame
JP4234269B2 (ja) 半導体装置及びその製造方法
US20090086449A1 (en) Optical device and manufacturing method thereof
CN102939669A (zh) 可表面安装的光电子器件和用于制造可表面安装的光电子器件的方法
US20110266587A1 (en) Semiconductor device and production method thereof
JP2012109475A (ja) 発光装置、発光装置の製造方法、および光学装置
JP6204577B2 (ja) オプトエレクトロニクス部品およびその製造方法
JP2010052086A (ja) 半導体装置及びその製造方法
TWI633639B (zh) 具有發光功能的指紋辨識模組及其製造方法
JP2009152299A (ja) 光学デバイス及び光学デバイスの製造方法
US20060273437A1 (en) Optoelectronic semiconductor assembly with an optically transparent cover, and a method for producing optoelectronic semiconductor assembly with an optically transparent cover
TW200822315A (en) Sensor type semiconductor package and fabrication method thereof
US7350988B2 (en) Optical module and method of manufacturing the same
JP2011529628A (ja) オプトエレクトロニクス半導体素子
WO2017134972A1 (ja) 撮像素子パッケージ及び撮像装置
JP2006179718A (ja) 青色光学素子パッケージ及び光学素子パッケージの製造方法
JP2018157088A (ja) リードフレーム
CN101005192A (zh) 半导体激光装置及其制造方法和光学拾波装置
CN116246542A (zh) 一种用于拼接的led显示模组及其制作方法
US20050082646A1 (en) Semiconductor apparatus
CN111180346B (zh) 具有挡墙的光电机构的制作方法
JP4569537B2 (ja) チップ型半導体レーザ装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852112

Country of ref document: EP

Kind code of ref document: A1