WO2011147927A1 - Energiespeicher im bereich der elektroenergieübertragung und -verteilung - Google Patents

Energiespeicher im bereich der elektroenergieübertragung und -verteilung Download PDF

Info

Publication number
WO2011147927A1
WO2011147927A1 PCT/EP2011/058656 EP2011058656W WO2011147927A1 WO 2011147927 A1 WO2011147927 A1 WO 2011147927A1 EP 2011058656 W EP2011058656 W EP 2011058656W WO 2011147927 A1 WO2011147927 A1 WO 2011147927A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
voltage
series circuit
energy storage
voltage network
Prior art date
Application number
PCT/EP2011/058656
Other languages
English (en)
French (fr)
Inventor
Herbert Gambach
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011147927A1 publication Critical patent/WO2011147927A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a system for transmitting electrical energy with converters, each having an AC voltage connection and are connected to each other via a DC voltage network.
  • HVDC system high-voltage direct-current transmission system
  • a HVDC system comprises two ⁇ To judge which are connected to each other via a DC intermediate circuit or Gleichwoodszwi-.
  • Each inverter has an AC voltage terminal, with which the jewei ⁇ lige inverter is connected via a transformer or other inductance to an AC voltage network.
  • the HVDC system is usually used for low-loss transmission of high electrical power over long distances.
  • regenerati ⁇ ven energy sources In the future arises with increasing use of regenerati ⁇ ven energy sources to meet the demand for electrical energy more and more the task of finding a workable possibility of storing this energy.
  • regenera ⁇ tive energy source for example, wind energy or even solar energy comes into consideration.
  • these energy sources have the disadvantage that they are not always available when needed. For this reason, energy stores are required which can store the sporadically available amounts of energy over a certain period of time.
  • Currently known Energyspei ⁇ cher for example, batteries, accumulators, flywheels Disks, electrochemical capacitors, superconducting mag ⁇ genetic energy storage (SMES) or the like.
  • a converter which consists of a series connection of submodules, wherein each submodule has a power semiconductor circuit and an energy storage.
  • energy storage batteries are conveniently used.
  • DE 101 03 031 discloses a further converter with a series circuit of submodules, each submodule having a capacitor.
  • such systems also known as modular multi-stage converters, are not suitable for storing large amounts of energy for hours.
  • the object of the invention is therefore to provide a system of the type mentioned, with which the intermediate storage of high amounts of energy is made possible.
  • the invention solves this problem in that the DC voltage network ⁇ has a series circuit of energy storage.
  • a series circuit of Energyspei ⁇ manuals is switched directly in a direct voltage network of a HVDC transmission system. In this way it is possible to store aspiring güns ⁇ tig energy.
  • the converters of the HVDC system are used for regulated energy transmission, but in addition they also control the energy storage in the series connection. In this way, the energy can be stored inexpensively without further slightest ⁇ processing electronic control devices.
  • a switch-off capable DC switch or other safety device It is within the scope of the invention readily possible to integrate a series circuit of energy storage in existing HVDC systems.
  • the series connection of the energy store is connected directly between the poles of the DC voltage network. This is be ⁇ Sonder's affordable and easy and quick to implement.
  • the converters are expediently voltage-impressing converters.
  • Voltage-input inverters are known, for example, by the term “Voltage Source Converter (VSC).” They have controllable power semiconductors which can both be switched on and off.These voltage-influencing converters have various advantages over the so-called current source converters. thus, even weak networks can be supplied with energy at ⁇ play. in addition, when using voltage-inverters any ratio between reactive and active power ⁇ may be set at the power transmission.
  • VSC Voltage Source Converter
  • each submodule of such an voltage-impressing multistage converter has an additional energy store. According to this advantageous further development, not only one capacitor is provided for each submodule, which can likewise be regarded as an energy store. Rather, moreover, each submodule has a further energy storage, for example via a chemical energy storage, so that each submodule is set up for generating and feeding active power.
  • each energy storage of the series scarf ⁇ tion is a chemical energy storage.
  • chemical energy storage devices are, for example, accumulators, batteries or the like, which are available on the market as such. They have a high energy density compared to capacitors, so that a high amount of energy can be cached in a simple manner by their series connection and arrangement in the DC voltage network of a HVDC system. This is particularly the use of new sources of energy len for, such as wind energy, solar energy, and the like, signif ⁇ sam, whose power can be controlled only inadequately time.
  • the belonging to ⁇ inverter controls the charging of the chemical energy storage.
  • the energy stored in the energy stores can then be recalled, for example, at night or when the energy consumption is greater than the energy generated.
  • the discharging process is also controlled by the associated inverter.
  • FIG 1 shows an embodiment of the invention
  • FIG. 2 shows a phase component of the converter according to FIG.
  • FIG. 3 shows a submodule of a phase component according to FIG.
  • Figure 4 shows a further variant of a submodule of Pha ⁇ senbaustein according to FIG. 2
  • Figure 1 shows an embodiment of the system 1 according to the invention, comprising a first inverter 2 and a second inverter, not shown, which is connected to the inverter 2 via a DC voltage network 3.
  • the DC voltage network 3 has a positively charged pole 3 + and a negatively charged pole 3-.
  • the converter 2 has three phase components 4, 5 and 6, which are each equipped with two DC voltage terminals for connecting the positive pole 3 + and the negative pole 3-.
  • each phase module 4, 5, 6 is connected via its AC voltage terminal 7 with the interposition of a transformer, not shown, with an AC voltage network.
  • the system 1 is set up for the transmission of electrical energy from the connected AC voltage network via the converter 2, the DC voltage network 3 and the inverter, not shown in another not shown AC voltage network.
  • a series scarf ⁇ tion 8 of chemical energy storage 9 is arranged between the poles 3 + and 3 of the DC voltage network 3.
  • the series circuit 8 is connected directly and without the interposition of further voltage-carrying components with the respective pole 3 + or 3-. In this way, a particularly simple and cost-effective way of storing energy is provided.
  • the regulation of the charging and discharging process via at least one of the inverters, which are connected to each other via the DC voltage network.
  • the inverter 2 regulates the charging process.
  • a UN terbrecheraji 21 for disconnecting the series circuit 8 of the chemical energy storage of the DC power source 3 is a UN terbrecherü 21 in series with the series circuit 8 vorgese ⁇ hen.
  • the interrupter unit 21 is for example a mecha nical ⁇ DC switch which is known per se in the art, or an electronic switch, such as a semiconductor switch.
  • FIG. 2 shows the phase component 4 of the converter 2 in more detail. It can be seen that the phase module 2 between each
  • DC voltage terminal 3 + and 3- and the AC voltage connection 7 has two valve branches 10 and 11, wherein each valve branch 10,11 consists of a series circuit of n sub-modules 12.
  • Each submodule 12 in turn has a capacitor 13, a power semiconductor circuit 14, and electronics 15 for driving the power semiconductor switches of the power semiconductor circuit 14. All submodules 12 have an identical structure.
  • FIGS. 3 and 4 Examples of the structure of the submodules 12 are shown in FIGS. 3 and 4.
  • Figure 3 is seen that the Leis ⁇ tung semiconductor circuit 14 of a series connection of two switched on and off power semiconductor switches 15 and 16, which in each case a freewheeling diode 17 bezie ⁇ hurry 18 is connected in parallel opposite directions.
  • the Rei ⁇ henscrien the on and off power semiconductor switches 15 and 16 is maral ⁇ parallel to the capacitor 13.
  • a first terminal 19 is applied to the negative electrode of the capacitor 13.
  • a second terminal 20 is connected with the potential point between the catalogschlei ⁇ terschaltern. 15 and 16
  • either the capacitor voltage U c dropping across the capacitor 13 or a zero voltage can thus be generated at the output terminals 19 and 20.
  • Such an inverter is therefore also referred to as a modular multi-stage converter.
  • Modular multi-stage converters are known from the prior art, so that need not be discussed in more detail here at this point.
  • the submodule shown in FIG. 4 has, in addition to the components of the submodule according to FIG. 3, an energy store 22.
  • the energy storage 22 allows the system 1 energy not only in the rich circuit 8 of energy storage devices 9 store, but also in the inverter. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Um eine Anlage (1) zum Übertragen von elektrischer Energie mit Umrichtern (2), die jeweils einen Wechselspannungsanschluss aufweisen und über ein Gleichspannungsnetz (3) miteinander verbunden sind, bereitzustellen, mit der kostengünstig Energie gespeichert werden kann, wird vorgeschlagen, dass das Gleichspannungsnetz (3) eine Reihenschaltung (8) aus Energiespeichern (9) aufweist.

Description

Beschreibung
Energiespeicher im Bereich der Elektroenergieübertragung und -Verteilung
Die Erfindung betrifft eine Anlage zum Übertragen elektrischer Energie mit Umrichtern, die jeweils einen Wechselspan- nungsanschluss aufweisen und über ein Gleichspannungsnetz miteinander verbunden sind.
Eine solche Anlage ist beispielsweise unter dem Begriff Hoch- spannungsgleichstromübertragungsanlage (HGÜ-Anlage) aus der Praxis bekannt. Eine HGÜ-Anlage umfasst in der Regel zwei Um¬ richter, die über einen Gleichstrom- oder Gleichspannungszwi- schenkreis miteinander verbunden sind. Jeder Umrichter verfügt über einen Wechselspannungsanschluss , mit dem der jewei¬ lige Umrichter über einen Transformator oder eine sonstige Induktivität an ein Wechselspannungsnetz angeschlossen ist. Die HGÜ-Anlage dient in der Regel zum verlustarmen Übertragen hoher elektrischer Leistungen über weite Entfernungen.
In Zukunft stellt sich mit steigendem Einsatz von regenerati¬ ven Energiequellen zur Deckung des Bedarfs an elektrischer Energie mehr und mehr der Aufgabe, eine praktikable Möglich- keit zur Speicherung dieser Energie zu finden. Als regenera¬ tive Energiequelle kommt beispielsweise die Windenergie oder aber auch die Solarenergie in Betracht. Diese Energiequellen weisen jedoch den Nachteil auf, dass sie nicht immer dann zur Verfügung stehen, wenn sie gebraucht werden. Aus diesem Grun- de sind Energiespeicher erforderlich, welche die sporadisch zur Verfügung stehenden Energiemengen über eine gewisse Zeitdauer hinweg speichern können. Derzeit bekannte Energiespei¬ cher sind beispielsweise Batterien, Akkumulatoren, Schwung- Scheiben, elektrochemische Kondensatoren, supraleitende mag¬ netische Energiespeicher (SMES) oder dergleichen.
Aus der US 3,867,643 ist ein Umrichter bekannt, der aus einer Reihenschaltung von Submodulen besteht, wobei jedes Submodul über eine Leistungshalbleiterschaltung sowie einen Energiespeicher verfügt. Als Energiespeicher werden zweckmäßigerweise Batterien eingesetzt. Darüber hinaus ist aus der DE 101 03 031 ein weiterer Umrichter mit einer Reihenschaltung von Submodulen bekannt, wobei jedes Submodul einen Kondensator aufweist. Solche auch als modulare Mehrstufenumrichter bezeichneten Systeme eigenen sich jedoch nicht zur Speicherung hoher Energiemengen über Stunden hinweg.
Aufgabe der Erfindung ist es daher, eine Anlage der eingangs genannten Art bereitzustellen, mit der die Zwischenspeiche- rung hoher Energiemengen ermöglicht ist.
Die Erfindung löst diese Aufgabe dadurch, dass das Gleich¬ spannungsnetz eine Reihenschaltung aus Energiespeichern aufweist. Erfindungsgemäß wird eine Reihenschaltung aus Energiespei¬ chern direkt in ein Gleichspannungsnetz einer HGÜ-Anlage geschaltet. Auf diese Art und Weise ist es möglich, kostengüns¬ tig Energie zu speichern. Die Umrichter der HGÜ-Anlage werden einerseits zur geregelten Energieübertragung eingesetzt, ges- tatten es jedoch darüber hinaus auch die Steuerung der Ener- giespeicherung in der besagten Reihenschaltung. Auf diese Art und Weise kann die Energie kostengünstig ohne weitere leis¬ tungselektronische Stelleinrichtungen gespeichert werden. Aus Schutzgründen ist in Reihe zum Energiespeicher ein abschalt- fähiger DC-Schalter oder eine andere Sicherungseinrichtung zu verwenden. Dabei ist es im Rahmen der Erfindung ohne Weiteres möglich, eine Reihenschaltung aus Energiespeichern auch in bereits existierende HGÜ-Anlagen zu integrieren.
Vorteilhafterweise weist das Gleichspannungsnetz zwei entge¬ gen gesetzt zueinander polarisierte Pole auf, wobei die Pole über die Reihenschaltung von Energiespeichern miteinander verbunden sind. Mit dieser vorteilhaften Weiterentwicklung wird die Reihenschaltung der Energiespeicher direkt zwischen die Pole des Gleichspannungsnetzes geschaltet. Dies ist be¬ sonders kostengünstig und einfach und schnell realisierbar.
Zweckmäßigerweise sind die Umrichter spannungseinprägende Um- richter. Spannungseinprägende Umrichter sind beispielsweise unter dem Begriff „Voltage Source Converter (VSC) " bekannt. Sie weisen ansteuerbare Leistungshalbleiter auf, die sowohl an- als auch abgeschaltet werden können. Solche spannungsein- prägenden Umrichter weisen gegenüber den so genannten Current Source Convertern verschiedene Vorteile auf. So können bei¬ spielsweise auch schwache Netze mit Energie versorgt werden. Darüber hinaus kann bei Einsatz von spannungseinprägenden Umrichtern jedes beliebige Verhältnis zwischen Blind- und Wirk¬ leistung bei der Energieübertragung eingestellt werden.
Weitere Vorteile ergeben sich bei Einsatz eines modularen spannungseinprägenden Mehrstufenumrichters, der beispielswei¬ se aus der DE 201 22 923 Ul bekannt ist. Ein solcher Mehrstu¬ fenumrichter kann selbst im Hochspannungsbereich stufenweise im Mikrosekundenbereich getaktet werden. Für die einzelnen
Leistungshalbleiterschalter ergeben sich sehr geringe effektive Schaltfrequenzen, die Belastung der Halbleiter durch Schaltverluste ist daher sehr gering. Darüber hinaus werden weniger Filtermittel benötigt. Zweckmäßigerweise verfügt jedes Submodul eines solchen span- nungseinprägenden Mehrstufenumrichters über einen zusätzlichen Energiespeicher. Gemäß dieser vorteilhaften Weiterentwicklung ist für jedes Submodul nicht nur ein Kondensator vorgesehen, der ebenfalls als Energiespeicher betrachtet werden kann. Vielmehr verfügt darüber hinaus jedes Submodul über einen weiteren Energiespeicher, beispielsweise über einen chemischen Energiespeicher, so dass jedes Submodul zum Erzeugen und Einspeisen von Wirkleistung eingerichtet ist.
Zweckmäßigerweise ist jeder Energiespeicher der Reihenschal¬ tung ein chemischer Energiespeicher. Solche chemischen Energiespeicher sind beispielsweise Akkumulatoren, Batterien oder dergleichen, die als solche am Markt erhältlich sind. Sie weisen eine im Vergleich zu Kondensatoren hohe Energiedichte auf, so dass durch deren Reihenschaltung und Anordnung im Gleichspannungsnetz einer HGÜ-Anlage auf einfache Art und Weise eine hohe Energiemenge zwischengespeichert werden kann. Dies ist insbesondere für die Verwendung neuer Energiequel- len, wie Windenergie, Solarenergie und dergleichen, bedeut¬ sam, deren Energieerzeugung zeitlich nur unzulänglich gesteuert werden kann. Erfindungsgemäß kann somit beispielsweise bei hohem Windaufkommen oder tagsüber bei hoher Sonneneinstrahlung erzeugte Energie in den chemischen Energiespeichern der Reihenschaltung zwischengespeichert werden, wobei der zu¬ gehörige Umrichter die Regelung des Aufladens der chemischen Energiespeicher übernimmt. Die in den Energiespeichern gespeicherte Energie kann dann beispielsweise nachts bzw. wenn der Energieverbrauch größer als die erzeugte Energie ist ab- gerufen werden. Der Entladevorgang wird ebenfalls vom zugehörigen Umrichter geregelt.
Weitere Vorteile und Ausgestaltungen der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbei- spielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bautei¬ le verweisen und wobei
Figur 1 ein Ausführungsbeispiel der erfindungsgemäßen
Vorrichtung schematisch darstellt,
Figur 2 eine Phasenbaustein des Umrichters gemäß Figur
1 genauer zeigt,
Figur 3 ein Submodul eines Phasenbaustein gemäß Figur
2 schematisch verdeutlicht und
Figur 4 eine weitere Variante eines Submoduls des Pha¬ senbaustein gemäß Figur 2 zeigt.
Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Anlage 1, die einen ersten Umrichter 2 sowie einen zweiten nicht gezeigten Umrichter aufweist, der mit dem Umrichter 2 über ein Gleichspannungsnetz 3 verbunden ist. Das Gleichspannungsnetz 3 weist einen positiv geladenen Pol 3+ sowie einen negativ geladenen Pol 3- auf. Der Umrichter 2 verfügt über drei Phasenbausteine 4, 5 und 6, die jeweils mit zwei Gleich¬ spannungsanschlüssen zum Anschluss des positiven Pols 3+ sowie des negativen Pols 3- ausgestattet sind.
Darüber hinaus ist jeder Phasenbaustein 4, 5, 6 über seinen Wechselspannungsanschluss 7 unter Zwischenschaltung eines nicht gezeigten Transformators mit einem Wechselspannungsnetz verbunden. Die Anlage 1 ist zur Übertragung elektrischer Energie von dem angeschlossenen Wechselspannungsnetz über den Umrichter 2, das Gleichspannungsnetz 3 und den nicht gezeigten Umrichter in ein weiteres nicht gezeigtes Wechselspannungsnetz eingerichtet. Zum Zwischenspeichern von Energie, die beispielsweise nachts von einer Windenergieanlage erzeugt wird, ist zwischen den Polen 3+ und 3- des Gleichspannungsnetzes 3 eine Reihenschal¬ tung 8 von chemischen Energiespeichern 9 angeordnet. Dabei ist die Reihenschaltung 8 direkt und ohne Zwischenschaltung weiterer spannungsstellender Bauteile mit dem jeweiligen Pol 3+ beziehungsweise 3- verbunden. Auf diese Art und Weise ist eine besonders einfache und kostengünstige Art der Energie- speicherung bereitgestellt. Die Regelung des Lade- und Entla- devorganges erfolgt über wenigstens einen der Umrichter, die über das Gleichspannungsnetz miteinander verbunden sind. In dem gezeigten Ausführungsbeispiel regelt der Umrichter 2 den Ladevorgang. Zum Abkoppeln der Reihenschaltung 8 der chemischen Energiespeicher vom Gleichspannungsnetz 3 ist eine Un- terbrechereinheit 21 in Reihe zur Reihenschaltung 8 vorgese¬ hen. Die Unterbrechereinheit 21 ist beispielsweise ein mecha¬ nischer Gleichspannungsschalter, der als solcher dem Fachmann bekannt ist, oder ein elektronischer Schalter, wie beispielsweise ein Halbleiterschalter.
Figur 2 zeigt den Phasenbaustein 4 des Umrichters 2 genauer. Es ist erkennbar, dass das Phasenmodul 2 zwischen jedem
Gleichspannungsanschluss 3+ beziehungsweise 3- und dem Wech- selspannungsanschluss 7 zwei Ventilzweige 10 und 11 aufweist, wobei jeder Ventilzweig 10,11 aus einer Reihenschaltung von n Submodulen 12 besteht. Jedes Submodul 12 verfügt wiederum über einen Kondensator 13, eine Leistungshalbleiterschaltung 14 sowie eine Elektronik 15 zum Ansteuern der Leistungshalbleiterschalter der Leistungshalbleiterschaltung 14. Alle Sub- module 12 sind identisch aufgebaut.
Beispiele für den Aufbau der Submodule 12 sind in den Figuren 3 und 4 gezeigt. In Figur 3 ist erkennbar, dass die Leis¬ tungshalbleiterschaltung 14 aus einer Reihenschaltung von zwei an- und abschaltbaren Leistungshalbleiterschaltern 15 und 16 besteht, denen jeweils eine Freilaufdiode 17 bezie¬ hungsweise 18 gegensinnig parallel geschaltet ist. Die Rei¬ henschaltung der an- und abschaltbaren Leistungshalbleiter- Schalter 15 und 16 ist parallel zum Kondensator 13 geschal¬ tet. Eine erste Anschlussklemme 19 liegt an der negativen Elektrode des Kondensators 13 an. Eine zweite Anschlussklemme 20 ist mit dem Potenzialpunkt zwischen den Leistungshalblei¬ terschaltern 15 und 16 verbunden. Je nach Ansteuerung der Leistungshalbleiterschalter 15 und 16 ist somit an den Ausgangsklemmen 19 und 20 entweder die an dem Kondensator 13 abfallende Kondensatorspannung Uc oder aber eine Nullspannung erzeugbar. Mit einer Reihenschaltung solcher Submodule ist es daher möglich, einen stufenförmigen Spannungsverlauf zu er- zeugen. Ein solcher Umrichter wird daher auch als modularer Mehrstufenumrichter bezeichnet. Modulare Mehrstufenumrichter sind aus dem Stand der Technik bekannt, so dass an dieser Stelle hierauf nicht genauer eingegangen zu werden braucht. Das in Figur 4 gezeigte Submodul weist zusätzlich zu den Bau¬ teilen des Submoduls gemäß Figur 3 einen Energiespeicher 22 auf. Der Energiespeicher 22 ermöglicht der Anlage 1 Energie nicht nur in der Reichenschaltung 8 von Energiespeichern 9 zu speichern, sondern darüber hinaus im Umrichter 2.

Claims

Patentansprüche
1. Anlage (1) zum Übertragen von elektrischer Energie mit Umrichtern (2), die jeweils einen Wechselspannungsanschluss aufweisen und über ein Gleichspannungsnetz (3) miteinander verbunden sind,
d a d u r c h g e k e n n z e i c h n e t , dass
das Gleichspannungsnetz (3) eine Reihenschaltung (8) aus Energiespeichern (9) aufweist.
2. Anlage (1) nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
das Gleichspannungsnetz (3) zwei entgegengesetzt zueinander polarisierte Pole (3+,3_) aufweist, wobei die Pole (3+,3_) über die Reihenschaltung (8) miteinander verbunden sind.
3. Anlage (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass
die Umrichter spannungseinprägende Umrichter (2) sind.
4. Anlage (1) nach Anspruch 3,
d a d u r c h g e k e n n z e i c h n e t , dass
jeder spannungseinprägende Umrichter ein modularer Mehrstufe¬ numrichter (2) ist, der Reihenschaltungen aus Submodulen (12) aufweist, wobei jedes Submodul (12) eine Kondensatoreinheit (13) aufweist.
5. Anlage (1) nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t , dass
jedes Submodul (12) einen Energiespeicher (22) aufweist.
6. Anlage (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Energiespeicher der Reihenschaltung (8) chemische Energiespeicher (9) sind.
7. Anlage (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass
die Reihenschaltung (8) über eine Unterbrechungseinheit (21) mit dem Gleichspannungsnetz (3) verbunden ist.
PCT/EP2011/058656 2010-05-26 2011-05-26 Energiespeicher im bereich der elektroenergieübertragung und -verteilung WO2011147927A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010022043.4 2010-05-26
DE102010022043A DE102010022043A1 (de) 2010-05-26 2010-05-26 Energiespeicher im Bereich der Elektroenergieübertragung und -verteilung

Publications (1)

Publication Number Publication Date
WO2011147927A1 true WO2011147927A1 (de) 2011-12-01

Family

ID=44484081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/058656 WO2011147927A1 (de) 2010-05-26 2011-05-26 Energiespeicher im bereich der elektroenergieübertragung und -verteilung

Country Status (2)

Country Link
DE (1) DE102010022043A1 (de)
WO (1) WO2011147927A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136252A1 (en) * 2011-04-05 2012-10-11 Abb Research Ltd Modular multilevel converter with cell - connected battery storages
CN106030955A (zh) * 2014-02-19 2016-10-12 Abb瑞士股份有限公司 包括模块化多电平转换器的能量存储***
US9882243B2 (en) 2013-09-26 2018-01-30 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of reducing insoluble solid lithium-polysulfide depositions
US9991493B2 (en) 2013-10-15 2018-06-05 Eaglepicher Technologies, Llc High energy density non-aqueous electrochemical cell with extended operating temperature window
EP2810291B1 (de) * 2012-03-09 2018-12-05 Siemens Aktiengesellschaft Vorrichtung zum schalten von gleichströmen
US10840705B2 (en) 2017-02-13 2020-11-17 Siemens Aktiengesellschaft Converter configuration

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204046B3 (de) * 2012-03-15 2013-08-14 Siemens Aktiengesellschaft Multizellenkonverter
CN104518518B (zh) * 2014-11-27 2016-11-16 国家电网公司 一种基于mmc拓扑结构的混合储能***
DE102017202831A1 (de) 2017-02-22 2018-08-23 Siemens Aktiengesellschaft Umrichteranordnung
DE102017220599A1 (de) * 2017-11-17 2019-05-23 Siemens Aktiengesellschaft Umrichteranordnung zum Stabilisieren eines Wechselspannungsnetzes
EP3783783A1 (de) * 2019-08-23 2021-02-24 Siemens Energy Global GmbH & Co. KG Anordnung zum regeln eines leistungsflusses in einem wechselspannungsnetz und verfahren zum schutz der anordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867643A (en) 1974-01-14 1975-02-18 Massachusetts Inst Technology Electric power converter
DE10103031A1 (de) 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern
US20080205093A1 (en) * 2005-09-09 2008-08-28 Siemens Aktiengesellschaft Apparatus for Electrical Power Transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU639914B2 (en) * 1989-04-04 1993-08-12 Anthony Joseph Griffin Voltage regulation/conversion device and method
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
JP2004088900A (ja) * 2002-08-27 2004-03-18 Meidensha Corp 電源システム
JP3934518B2 (ja) * 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
DE102004016034A1 (de) * 2004-03-30 2005-10-20 Alstom Technology Ltd Baden Elektrische Anlage zur Kopplung eines Stromversorgungsnetzes und eines zentralen Gleichspannungsstrangs sowie Verfahren zum Betrieb einer solchen Anlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867643A (en) 1974-01-14 1975-02-18 Massachusetts Inst Technology Electric power converter
DE10103031A1 (de) 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern
DE20122923U1 (de) 2001-01-24 2010-02-25 Siemens Aktiengesellschaft Stromrichterschaltungen mit verteilten Energiespeichern
US20080205093A1 (en) * 2005-09-09 2008-08-28 Siemens Aktiengesellschaft Apparatus for Electrical Power Transmission

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136252A1 (en) * 2011-04-05 2012-10-11 Abb Research Ltd Modular multilevel converter with cell - connected battery storages
US8760122B2 (en) 2011-04-05 2014-06-24 Abb Research Ltd Modular multilevel converter with cell-connected battery storages
EP2810291B1 (de) * 2012-03-09 2018-12-05 Siemens Aktiengesellschaft Vorrichtung zum schalten von gleichströmen
US9882243B2 (en) 2013-09-26 2018-01-30 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of reducing insoluble solid lithium-polysulfide depositions
US9991493B2 (en) 2013-10-15 2018-06-05 Eaglepicher Technologies, Llc High energy density non-aqueous electrochemical cell with extended operating temperature window
CN106030955A (zh) * 2014-02-19 2016-10-12 Abb瑞士股份有限公司 包括模块化多电平转换器的能量存储***
US10840705B2 (en) 2017-02-13 2020-11-17 Siemens Aktiengesellschaft Converter configuration

Also Published As

Publication number Publication date
DE102010022043A1 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011147927A1 (de) Energiespeicher im bereich der elektroenergieübertragung und -verteilung
EP3025403B1 (de) Modularer mehrpunktstromrichter für hohe spannungen
EP1922803B1 (de) Vorrichtung für die elektroenergieübertragung
EP2425513B1 (de) Submodul für einen mehrstufigen umrichter mit zusätzlichem energiespeicher
EP3039764B1 (de) Anlage zum übertragen elektrischer leistung
EP1922804A1 (de) Vorrichtung für die elektroenergieübertragung
EP2107672A1 (de) Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises
EP2408081A1 (de) Modularer Multiniveau Umrichter
WO2013000522A1 (de) Kondensatoranordnung für einen zwischenkreis eines spannungswandlers
DE102010060957A1 (de) Verfahren zum Betreiben eines Gleichspannungswandlers
DE102013214693A1 (de) Anordnung zur Kompensation von Blindleistung und Wirkleistung in einem Hochspannungsnetz
DE102012109420A9 (de) Wechselrichter, insbesondere Photovoltaikwechselrichter, mit Generatoranschluss und Batterieanschluss
DE102011018357B4 (de) Gleichspannungswandler
EP2845288A1 (de) Ein- oder auskopplung einer leistung in einem abzweig eines gleichspannungsnetzknotens mit einer längsspannungsquelle
EP3361592B1 (de) Verfahren und vorrichtung zur stabilisierung einer frequenz in einem wechselspannungsnetz
WO2018172329A1 (de) Wechselrichter
WO2019121251A1 (de) Umrichter mit mindestens einem wandlermodul mit drei brückenzweigen, verfahren zum betreiben und verwendung eines solchen umrichters
DE102015007405A1 (de) Energiespeichersystem
DE102015111804B3 (de) Verfahren zum betrieb eines wechselrichters und wechselrichter, sowie photovoltaikanlage
DE102013109714A1 (de) Verfahren zum Betreiben einer elektrischen Schaltung sowie elektrische Schaltung
EP3656031B1 (de) Anordnung zur frequenzstabilisierung
WO2018113926A1 (de) Stromrichter
DE202010017471U1 (de) Schaltungsanordnung zur Steuerung einer Stromversorgung, basierend auf einer Kombination von energiebegrenzten Stromquellen
EP3656032B1 (de) Serienkompensationseinrichtung
DE102019208509A1 (de) Verfahren zur Fehlerbehandlung eines Fehlers in einer Gleichspannungsleitung sowie eine Stromrichteranordnung zum Durchführen des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11732391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732391

Country of ref document: EP

Kind code of ref document: A1