WO2011145723A1 - メタボリックシンドロームの予防又は治療方法 - Google Patents

メタボリックシンドロームの予防又は治療方法 Download PDF

Info

Publication number
WO2011145723A1
WO2011145723A1 PCT/JP2011/061653 JP2011061653W WO2011145723A1 WO 2011145723 A1 WO2011145723 A1 WO 2011145723A1 JP 2011061653 W JP2011061653 W JP 2011061653W WO 2011145723 A1 WO2011145723 A1 WO 2011145723A1
Authority
WO
WIPO (PCT)
Prior art keywords
aim
antibody
fas
protein
cells
Prior art date
Application number
PCT/JP2011/061653
Other languages
English (en)
French (fr)
Inventor
宮崎 徹
Original Assignee
Miyazaki Toru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Toru filed Critical Miyazaki Toru
Priority to JP2012515944A priority Critical patent/JPWO2011145723A1/ja
Priority to US13/698,881 priority patent/US20130115220A1/en
Priority to CN201180036214.9A priority patent/CN103648531A/zh
Priority to EP11783655.1A priority patent/EP2572730A4/en
Publication of WO2011145723A1 publication Critical patent/WO2011145723A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to a method for preventing or treating metabolic syndrome, which comprises administering an AIM inhibitor to a subject.
  • visceral fat type obesity that is, obesity with excessive accumulation of neutral fat in the abdominal cavity becomes the core of the pathological condition, and insulin resistance caused by obesity gradually increases hypertension, diabetes, hyperlipidemia, etc.
  • the onset and linkage cause atherosclerotic disease.
  • Such a phenomenon can be compared to defeating dominoes.
  • the concept of “metabolic dominoes” has been proposed. In other words, a series of pathological conditions progress unidirectionally in the same way that it is difficult to reverse once dominoes have been killed, and various diseases are continuously developed chronically over a long period of time.
  • metabolic syndrome is not aimed at alleviating symptoms, but is aimed at preventing the onset of various diseases that can subsequently develop, particularly arteriosclerotic diseases.
  • arteriosclerotic diseases As described above, under the concept of metabolic domino, since it is difficult to restore what has once progressed, it is desirable to suppress the progress further upstream.
  • M1 is also called classically activated macrophages, and production of inflammatory cytokines such as TNF- ⁇ , IL-6, and IL-12 and inducible nitric oxide synthase (iNOS) is increased.
  • iNOS inducible nitric oxide synthase
  • M2 is also called alternatively activated macrophages, and the production of inflammatory cytokines is decreased, and the production of anti-inflammatory cytokines such as IL-10 and arginase that inhibits iNOS activity is increased. It has been found that macrophages infiltrating adipose tissue are mainly M2 in the case of non-obesity, and M1 is mainly used as obesity progresses (for example, see Non-Patent Document 3).
  • Non-patent Document 4 Deterioration of glucose tolerance and insulin resistance in skeletal muscle and liver occur in non-obese mice in standard diet (Non-patent Document 5); Mice lacking Cap (Cbl-associated protein) in macrophages It has been reported that invasion is reduced and the expression of insulin resistance due to high-fat diet load is attenuated (Non-patent Document 6), and M1 macrophages that have infiltrated adipose tissue play an important role in the expression of insulin resistance. It has been suggested.
  • MCP-1 and CCR2 and the induction and causal relationship of macrophages are controversial, and are not considered to be at least an essential and fundamental factor. Therefore, as a matter of course, a method for suppressing the root cause of infiltration of adipose tissue into macrophages and stopping the progression at the uppermost stream of metabolic domino has not been found.
  • AIM Apoptosis Inhibitor of Macrophage
  • tissue macrophage tissue macrophage
  • AIM is a soluble protein and a member of the Scavenger Receptor Cysteine-Rich (SRCR) superfamily.
  • SRCR Scavenger Receptor Cysteine-Rich
  • AIM was originally found as an apoptosis inhibitor that protects macrophages from various apoptosis-inducing factors (see Non-Patent Document 9).
  • AIM is also called CD5L (CD5-like) because its structure with three SRCR domains resembles the extracellular domain of CD5.
  • An object of the present invention is to provide a method for preventing or treating metabolic syndrome, which can suppress the domino-inversible disease chain in the metabolic syndrome upstream by suppressing macrophage infiltration into adipose tissue.
  • AIM is also expressed in macrophages that infiltrate obese adipose tissue, as shown in Reference Examples described later.
  • AIM differentiation of preadipocytes into mature adipocytes is suppressed; in the presence of AIM, lipolysis of lipid droplets is induced in mature fat cells; in the presence of AIM, It has been found that the size of adipocytes tends to be small; therefore, AIM itself is useful as an anti-obesity drug.
  • AIM produced in adipose tissue binds to CD36 on the cell surface and is taken up into adipocytes by endocytosis; it binds to fatty acid synthase (FAS) and activates its activity in the cell. It was also found that the direct target molecule of AIM is FAS, and that AIM induces suppression of differentiation of preadipocytes into mature adipocytes and induction of lipid droplet thawing through suppression of FAS activity.
  • FAS fatty acid synthase
  • AIM knockout mice do not deteriorate glucose metabolism even if they are obese with a high-fat diet. Therefore, if AIM is inhibited, obesity leads to a series of metabolic syndromes that subsequently cause dominoes. As a result, the present invention was completed.
  • the present invention [1] A method for preventing or treating metabolic syndrome or a related disease, comprising a step of administering an AIM inhibitor to a subject; [2] The method according to [1] above, wherein the AIM inhibitor reduces the stability of AIM in blood; [3] The method according to [1] above, wherein the AIM inhibitor inhibits binding between AIM and CD36; [4] The method according to [1] above, wherein the AIM inhibitor inhibits AIM from being taken into target cells; [5] The method according to [1] above, wherein the AIM inhibitor inhibits AIM from transferring from endosome to cytoplasm; [6] The method according to [1] above, wherein the AIM inhibitor inhibits AIM from binding to fatty acid synthase (FAS); [7] The method according to [1] above, wherein the AIM inhibitor suppresses the expression of AIM; [8]
  • the metabolic syndrome or its related diseases are metabolic syndrome, obesity, insulin resistance, diabetes, hyperlipidemia, hypertension, arteriosc
  • the therapeutic agent according to 1; [18] The therapeutic agent according to any one of [15] to [17] above, wherein the AIM fragment is selected from fragments containing a functional domain and a conserved region of an AIM protein; [19]
  • the metabolic syndrome or related diseases are metabolic syndrome, obesity, insulin resistance, diabetes, hyperlipidemia, hypertension, arteriosclerotic disease, liver disease, liver dysfunction, cerebrovascular disorder, ischemic heart disease [12] to [18], which is at least one selected from the group consisting of heart failure, dementia, stroke, neurosis, kidney disease, abnormal secretion of adipocytokines, and abnormal free fatty acid level in blood
  • the therapeutic agent according to any one of the above; [20] The therapeutic agent according to any one of [12] to [19], wherein the subject is a human; [21] The therapeutic agent according to any one of [12] to [19] above, wherein the subject is a non-human mammal or a bird; [22] The therapeutic agent according to [21] above
  • the developmental chain of fatal disease group of metabolic syndrome is upstream in the Can be stopped.
  • FIG. 1 shows the results of measuring blood AIM concentrations in obese and normal mice.
  • FIG. 2 shows the results of detecting macrophage infiltration in the visceral adipose tissue of obese AIM + / + mice and obese AIM ⁇ / ⁇ mice with an anti-macrophage monoclonal antibody (F4 / 80) or the like.
  • FIG. 3 shows the results of systemic administration of rAIM to AIM ⁇ / ⁇ mice, and detection of macrophage infiltration in visceral adipose tissue with anti-macrophage monoclonal antibody (F4 / 80) or the like after 3 weeks.
  • FIG. 4 shows the results of measuring macrophage migration ability.
  • FIG. 5 is a photograph showing the results of dissection of AIM + / + mice and AIM ⁇ / ⁇ mice after loading with HFD for 12 weeks.
  • FIG. 6 shows the results of measurement of body weight and total fat mass after loading AFD + / + mice and AIM ⁇ / ⁇ mice with HFD for 12 weeks.
  • FIG. 7 shows the results of a glucose tolerance test on AIM + / + mice and AIM ⁇ / ⁇ mice before HFD loading.
  • FIG. 8 shows the results of a glucose tolerance test performed on AIM + / + mice and AIM ⁇ / ⁇ mice after HFD loading.
  • FIG. 9 shows the results of an insulin tolerance test performed on AIM + / + mice and AIM ⁇ / ⁇ mice before HFD loading.
  • FIG. 10 shows the results of an insulin tolerance test performed on AIM + / + mice and AIM ⁇ / ⁇ mice after HFD loading.
  • FIG. 11 shows the results of an insulin sensitivity test performed on AIM + / + mice and AIM ⁇ / ⁇ mice after HFD loading.
  • FIG. 12 shows sections prepared from visceral adipose tissues of normal mice (mouse not loaded with high fat diet) and obese mice stained with anti-macrophage monoclonal antibody, anti-mouse AIM polyclonal antibody, and anti-IL-6 antibody. Results are shown.
  • FIG. 13 shows the schedule of rAIM loading in the culture of 3T3-L1 cells.
  • FIG. 14 shows the result of staining cells with oil-red-O on day 12 of the schedule shown in FIG.
  • FIG. 15 shows the results of measuring the expression of adipocyte markers by quantitative real-time PCR on day 12 of the schedule shown in FIG.
  • FIG. 16A shows the results of rAIM loading on mature adipocytes and oil-red-O staining.
  • FIG. 16B shows the size of lipid droplets, and
  • FIG. 16C shows the number of lipid droplet-containing cells per unit area.
  • FIG. 17 shows the result of measuring mature lipocytes with rAIM and measuring glycerol and free fatty acids in the culture supernatant.
  • FIG. 18 shows the result of performing rAIM loading of mature adipocytes and measuring the expression of lipid droplet formation-related genes by quantitative real-time PCR.
  • FIG. 19 shows the result of HE-staining a section of adipose tissue after giving HFD to AIM + / + mice and AIM ⁇ / ⁇ mice for 20 days.
  • FIG. 20A shows the results of staining differentiated or uncultured 3T3-L1 cells with rAIM and staining AIM, PPAR ⁇ 2, and DAPI.
  • FIG. 20B shows the results of classifying cells for each expression level of PPAR ⁇ 2 based on the results of FIG. 20A and measuring the number of rAIM-containing cells per 100 cells.
  • FIG. 20A shows the results of classifying cells for each expression level of PPAR ⁇ 2 based on the results of FIG. 20A and measuring the number of rAIM-containing cells per 100 cells.
  • FIG. 20C shows the results of carrying out rAIM loading on 3T3-L1 cells and staining AIM and endosomes or AIM and lysosomes.
  • FIG. 21 shows the result of using a sample similar to that in FIG. 20 and labeling AIM with gold fine particles and observing it with an electron microscope.
  • FIG. 22 shows the results of treating 3T3-L1 cells with a CD36 neutralizing antibody and examining the effect of rAIM on endocytosis.
  • FIG. 23 shows the results of intravenous injection of rAIM into CD36 + / + mice and CD36 ⁇ / ⁇ mice, and staining of AIM and macrophages in sections prepared from adipose tissue.
  • FIG. 24 shows that AIM ⁇ / ⁇ mouse adipose tissue was directly injected with HA-tagged rAIM, and co-immunoprecipitation was performed using an anti-HA antibody using the adipose tissue. The result of detecting FAS is shown.
  • FIG. 25 shows the result of co-immunoprecipitation using anti-Flag antibody or anti-HA antibody to confirm the binding of rAIM with HA tag and FAS with FLAG tag in HEK 293T cells.
  • FIG. 26 shows that each domain of FAS is labeled with a Flag tag, expressed in HEK 293T cells that stably express AIM-HA, and co-immunoprecipitation using anti-Flag antibody or anti-HA antibody.
  • FIG. 27 shows the results of measurement of FAS activity in 3T3-L1 cells treated for 6 days in the presence, absence, and C75 (25 ⁇ M) of rAIM (5 ⁇ g / ml).
  • FIG. 28 shows the results of measuring FAS activity in adipose tissue of AIM + / + mice and AIM ⁇ / ⁇ mice.
  • FIG. 29 shows the results of measurement of FAS activity in adipose tissue of AIM ⁇ / ⁇ mice to which rAIM or BSA was administered 3 hours ago by local injection in fat.
  • FIG. 30 shows the amino acid sequences and consensus of human AIM and mouse AIM.
  • FIG. 31 is a conceptual diagram showing the structure of FAS.
  • FIG. 31 is a conceptual diagram showing the structure of FAS.
  • FIG. 32 shows the results of measuring changes in visceral fat mass and subcutaneous fat mass in AIM + / + mice fed with HFD for 12 weeks and AIM ⁇ / ⁇ mice.
  • FIG. 33 shows the results of measuring changes in body weight by administering rAIM or BSA twice a week while giving HFD to AIM ⁇ / ⁇ mice for 5 weeks.
  • FIG. 34 shows the results of measuring changes in visceral fat mass and subcutaneous fat mass by administering rAIM or BSA twice a week while giving HFD to AIM ⁇ / ⁇ mice for 5 weeks.
  • FIG. 35 shows the results of measuring mRNA levels of adipocyte markers and the like in the visceral fat of AIM ⁇ / ⁇ mice after the experiments shown in FIGS.
  • FIG. 35 shows the results of measuring mRNA levels of adipocyte markers and the like in the visceral fat of AIM ⁇ / ⁇ mice after the experiments shown in FIGS.
  • FIG. 36 shows the results of detecting AIM protein in dog, cat and mouse serum by Western blotting.
  • FIG. 37 shows the results of evaluating the AIM inhibitory activity of low molecular weight compounds obtained by screening based on the expression of FSP27.
  • FIG. 38 shows the results of evaluating the AIM inhibitory activity of low molecular weight compounds obtained by screening using the expression of FSP27.
  • FIG. 39 shows the results of evaluating the neutralizing activity against AIM by the anti-AIM antibody obtained by screening, based on the expression of FSP27.
  • FIG. 40 shows the results of measuring the blood AIM concentration of about 550 medical examinees.
  • FIG. 41 shows the results of measuring blood AIM concentrations by randomly selecting persons with a BMI of 18 to 25 and persons with a blood mass of 35 or more from blood donors (including foreigners).
  • the method for preventing or treating metabolic syndrome and related diseases according to the present invention includes a step of administering an AIM inhibitor to a subject.
  • metabolic syndrome usually begins with visceral fat type obesity (accumulation of visceral fat), chronic inflammation of adipose tissue, abnormal secretion of adipocytokines from adipocytes, abnormal blood free fatty acid amount, etc. It is a concept that represents a series of disease chains that induce insulin resistance, then cause lifestyle-related diseases such as diabetes, hyperlipidemia, and hypertension, and eventually lead to the onset of various arteriosclerotic diseases. is there.
  • Downstream of the disease chain may include liver disease, liver dysfunction, cerebrovascular disorder, ischemic heart disease, heart failure, dementia, stroke, neurosis, kidney disease and the like.
  • metabolic syndrome and related diseases include all diseases, symptoms and abnormalities based on the mechanism of development or progression of metabolic syndrome and various abnormalities that occur in the process of development or progression of metabolic syndrome. For example, metabolic syndrome, obesity, insulin resistance, diabetes, hyperlipidemia, hypertension, arteriosclerotic disease, liver disease (including fatty liver, liver cancer), liver dysfunction, cerebrovascular disorder, ischemic heart disease, heart failure Including, but not limited to, dementia, stroke, neurosis, kidney disease, abnormal secretion of adipocytokines, and abnormal blood free fatty acid levels.
  • the prevention or treatment of metabolic syndrome and its related diseases is used in its broadest sense, for example, prevention, delay or improvement of insulin resistance; delay or prevention of onset of metabolic syndrome and related diseases. Improvement; alleviation of one or more symptoms related to metabolic syndrome and related diseases; improvement of numerical values of each item in the diagnostic criteria of metabolic syndrome and related diseases.
  • the items in the diagnostic criteria for metabolic syndrome include, for example, waist diameter, serum triglyceride level, HDL cholesterol level, blood pressure, fasting blood glucose level, glucose tolerance, insulin resistance, urinary albumin level, etc. Can be mentioned.
  • an AIM inhibitor means a substance that inhibits the activity of an AIM protein in vivo by suppressing the function or expression of the AIM protein.
  • a low molecular compound, a high molecular compound, a peptide examples include, but are not limited to, proteins and nucleic acids.
  • AIM is a soluble protein that is a member of the SRCR superfamily.
  • amino acid sequences of human AIM and mouse AIM are shown in FIG.
  • the blood AIM concentration is 5 to 20 ⁇ g / ml in many healthy persons (those who are under medical care who receive a medical checkup).
  • blood AIM concentration is significantly higher in people with BMI35 or higher than those with BMI18-25.
  • the AIM inhibitor of the present invention may inhibit AIM in any species.
  • an inhibitor of AIM homologous protein in humans, mammals other than humans eg, mice, rats, guinea pigs, rabbits, dogs, cats, pigs, cows, horses, monkeys
  • AIM inhibitor of the present invention It corresponds to.
  • a person skilled in the art can determine whether or not a certain protein is a homologous protein of AIM in other mammals or birds by high sequence similarity or functional analysis.
  • mouse AIM and human AIM have a high amino acid sequence homology of about 80%.
  • SRCR domains amino acid sequences conserved in other molecules having SRCR domains such as CD5 and CD6 completely match between mouse AIM and human AIM.
  • amino acid sequences of human, chimpanzee, dog, mouse, and rat AIM are shown in SEQ ID NOs: 1, 22, 23, 24, and 25, respectively.
  • the AIM inhibitor of the present invention may inhibit an AIM analog or mutant.
  • AIM analogs and mutants include proteins in which one or several amino acids are deleted, substituted, or added in the amino acid sequence of AIM and that retain the function of AIM. Those skilled in the art can determine whether or not a certain protein is an AIM analog or mutant by the high sequence similarity or functional analysis.
  • the function of AIM inhibited by an AIM inhibitor is necessary for infiltrating macrophages into adipose tissue and macrophages into adipose tissue, and AIM exerts directly or indirectly Means every function.
  • Any function that is necessary to infiltrate macrophages into adipose tissue and that AIM directly or indirectly exerts for example, a function that binds to CD36 on the surface of adipocytes; incorporation into adipocytes by endocytosis A function that binds to FAS in adipocytes; a function that suppresses the enzyme activity of FAS; a function that promotes lipid droplet melting; a function that causes macrophage migration by lipid droplet melting, and the like.
  • By inhibiting the function of any of these AIMs it is possible to prevent macrophages from infiltrating the adipose tissue and causing chronic inflammation in the adipose tissue and the whole body. As a result, even when obese, insulin resistance is not caused, and the onset of a metabolic syndrome-related disease can be stopped upstream.
  • An AIM inhibitor that suppresses the function of AIM suppresses all or part of the function of AIM by acting directly or indirectly on AIM.
  • Examples of the mechanism that suppresses the function of AIM include, for example, reducing the stability of AIM in blood, inhibiting the binding of AIM to CD36, inhibiting AIM from being taken into target cells, Examples include, but are not limited to, inhibiting AIM from being taken into target cells, inhibiting AIM from transferring from the endosome to the cytoplasm, inhibiting AIM from binding to FAS, and the like.
  • AIM inhibitor that reduces the stability of AIM in blood is administered, AIM is degraded in a short time without performing its function.
  • an AIM inhibitor that inhibits the binding between AIM and CD36 When an AIM inhibitor that inhibits the binding between AIM and CD36 is administered, the function of AIM can be inhibited by suppressing AIM from being taken into the target cell by endocytosis.
  • the substance that inhibits the binding between AIM and CD36 any substance that inhibits the binding between proteins can be used, and examples thereof include an anti-AIM antibody and an anti-CD36 antibody.
  • administration of an anti-CD36 antibody can inhibit AIM from being taken into target cells.
  • the anti-AIM antibody preferably recognizes the binding site with CD36 in AIM as an epitope
  • the anti-CD36 antibody preferably recognizes the binding site with AIM in CD36 as an epitope.
  • antibody includes antibody fragments, monoclonal antibodies, polyclonal antibodies, recombinant antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, Fab fragments, F (ab ′) 2 antibodies, scFv , Bispecific antibodies, synthetic antibodies and the like.
  • anti-AIM monoclonal antibodies are obtained by isolating antibody-producing cells from non-human mammals immunized with AIM, fusing them with myeloma cells, etc. to produce hybridomas, and purifying the antibodies produced by the hybridomas.
  • Polyclonal antibodies can be obtained from the sera of animals immunized with AIM.
  • the AIM used for immunization may be a full length or a fragment, and can be appropriately determined by those skilled in the art. When it is a fragment, it is preferably a fragment containing a binding site to CD36.
  • a non-human monoclonal antibody that efficiently inhibits the binding between AIM and CD36 can be produced by a genetic recombination method.
  • total RNA is prepared from a hybridoma that produces the anti-AIM monoclonal antibody by standard techniques, mRNA that encodes the anti-AIM antibody is prepared using a commercially available kit, and then cDNA is synthesized using reverse transcriptase. Then, DNA encoding an anti-AIM antibody can be obtained.
  • An anti-AIM antibody can be expressed by transfecting an appropriate host cell with an expression vector containing such DNA and culturing under an appropriate condition.
  • DNA encoding the CDR region of the anti-AIM antibody can be obtained by PCR using the above cDNA as a template.
  • a human antibody or a humanized antibody can also be prepared by a gene recombination method according to a conventional method using DNA encoding such CDR region. For example, a DNA encoding a CDR region derived from a non-human antibody and a DNA designed to link the framework region of a human antibody are synthesized by PCR, and further linked to a DNA encoding a human antibody constant region. Thus, DNA encoding a human antibody can be obtained.
  • Such DNA is expressed by a known method (a method using a restriction enzyme, etc.) and an expression vector (eg, plasmid, retrovirus, adenovirus, adeno-associated virus (AAV), plant virus such as cauliflower mosaic virus or tobacco mosaic virus, cosmid) , YAC, EBV-derived episome) and the expression vector is transfected into an appropriate host cell to obtain a transformant.
  • the expression vector may further contain a promoter that regulates the expression of the antibody gene, a replication origin, a selection marker gene, and the like. The promoter and origin of replication can be appropriately selected depending on the type of host cell and vector.
  • a human antibody of an anti-AIM antibody can be expressed by culturing the transformant under appropriate conditions.
  • host cells include eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.), E. coli (E. Coli), prokaryotic cells such as Bacillus subtilis can be used.
  • eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.), E. coli (E. Coli), prokaryotic cells such as Bacillus subtilis can be used.
  • the expressed antibody can be isolated and purified by appropriately combining known methods (for example, affinity columns using protein A, other chromatography columns, filters, ultrafiltration, salting out, dialysis, etc.). it can.
  • the anti-AIM antibody of the present invention is a low molecular antibody such as a Fab fragment, F (ab ′) 2 antibody, scFv, etc.
  • the antibody can be expressed by the above method using DNA encoding the low molecular antibody, Alternatively, the antibody can be prepared by treating with an enzyme such as papain or pepsin.
  • a protein that binds to an anti-AIM antibody and does not have FAS suppressing activity can also be used as an AIM inhibitor that inhibits the binding between AIM and CD36.
  • a protein that binds to an anti-AIM antibody and does not have FAS suppressing activity binds to CD36 antagonistically with AIM and inhibits AIM from binding to CD36 and suppressing the activity of FAS.
  • the protein that binds to the anti-AIM antibody and does not have FAS inhibitory activity include an AIM fragment, an AIM variant or a fragment thereof, and an AIM chimeric protein or a fragment thereof.
  • the AIM fragment is not particularly limited as long as it consists of a partial peptide of AIM, and examples thereof include a fragment of 5 to 150 amino acids containing the functional domain or conserved region of AIM.
  • the modified AIM examples include proteins in which 1 to 10 amino acids are deleted, substituted, or added in the amino acid sequence of AIM, and have no FAS inhibitory activity.
  • the AIM chimeric protein means a chimeric protein comprising a part of a human AIM protein and an AIM protein derived from another animal (for example, mouse).
  • Examples of the protein that binds to the anti-AIM antibody and does not have FAS inhibitory activity include AIM variants or fragments of AIM chimeric proteins.
  • a protein that binds to an anti-AIM antibody and does not have FAS inhibitory activity can be expressed by a gene recombination method by obtaining DNA encoding the protein by a conventional method.
  • amino acid sequence can be altered or modified as appropriate. If necessary, it may be expressed as a fusion protein with another protein or peptide.
  • AIM fragments, AIM variant fragments, and fragments of AIM chimeric proteins can also be obtained by treating each protein with a proteolytic enzyme after obtaining the respective full-length proteins.
  • an AIM inhibitor that inhibits the binding between AIM and CD36 a protein that binds to CD36 and does not have FAS suppressing activity can also be used.
  • a protein binds to CD36 antagonistically with AIM and inhibits AIM from binding to CD36 and suppressing the activity of FAS.
  • Examples of the protein that binds to CD36 and does not have FAS inhibitory activity include an AIM fragment, an AIM variant or a fragment thereof, and an AIM chimeric protein or a fragment thereof.
  • an AIM inhibitor that inhibits AIM from being taken into target cells is administered, the function of AIM binding to FAS in the target cells and suppressing its enzyme activity can be inhibited.
  • An AIM inhibitor that inhibits AIM from transferring from endosome to cytoplasm also inhibits AIM from binding to FAS in target cells and suppressing its enzyme activity.
  • an AIM inhibitor that inhibits the binding of AIM to FAS can directly inhibit the action of AIM on FAS, such as a protein that binds to FAS and does not have FAS-suppressing activity. be able to.
  • Such proteins bind to FAS in an antagonistic manner with AIM and inhibit AIM from binding to FAS and suppressing its activity.
  • Such a protein preferably binds to at least one FAS domain selected from the group consisting of DH, ER, TE and CC.
  • proteins that bind to FAS and do not have FAS inhibitory activity include AIM fragments, AIM variants or fragments thereof, and AIM chimeric proteins or fragments thereof.
  • the AIM inhibitor that suppresses the function of AIM described above is that AIM suppresses differentiation of preadipocytes into mature adipocytes, induces lipid droplet thawing in adipocytes, shrinks adipocytes, etc. Can be easily selected from candidate compounds.
  • AIM inhibitors are (i) culturing adipose precursor cells under conditions that differentiate into adipocytes, and adding AIM alone or AIM and a candidate compound to the medium; (ii) evaluating the differentiation of the preadipocytes into adipocytes; (iii) a step of selecting the one that increases the induction efficiency of differentiation when adding AIM and a candidate compound than when adding only AIM; It can be easily selected by a screening method including Step (ii) can be performed using, for example, the formation of lipid droplets in adipocytes and the expression of adipocyte markers, adipose precursor cell markers, and / or mesenchymal stem cell markers as indices.
  • AIM inhibitors are (a) culturing adipocytes and adding only AIM or AIM and a candidate compound to the medium; (b) evaluating the lipid droplet melting in the fat cells; (c) when adding AIM and a candidate compound, selecting the one having a lower lipid droplet melting efficiency than when adding only AIM; It can also be easily selected by a screening method including Step (b) can be performed using, for example, the amount of glycerol or free fatty acid in the culture supernatant of adipocytes, expression of a lipid droplet formation-related gene, and the like as an index.
  • AIM inhibitors are (1) culturing adipocytes and adding AIM alone or AIM and a candidate compound to the medium; (2) evaluating the size of the fat cells; (3) a step of selecting a compound that increases adipocytes when adding AIM and a candidate compound than when adding only AIM; It can also be easily selected by a screening method including Step (2) can be performed, for example, by staining the cells with hematoxylin-eosin.
  • AIM inhibitors Culturing adipocytes or adipose precursor cells by adding AIM to the medium in the presence or absence of the candidate compound; After the culture, evaluating AIM uptake into the cells; including. Incorporation of AIM into the cell can be detected by, for example, fixing the cell after the cell culturing step, adding permeabilization, and then adding a detectably labeled anti-AIM antibody and incubating. When uptake into cells is reduced in the presence of a candidate compound, the candidate compound can be evaluated as inhibiting AIM function by inhibiting AIM from being taken into cells.
  • AIM inhibitors are Culturing adipocytes or adipose precursor cells by adding AIM to the medium in the presence or absence of the candidate compound; Evaluating the binding of AIM and FAS in the cell; including.
  • the binding between AIM and FAS can be confirmed, for example, by preparing a cell lysate, performing immunoprecipitation using an anti-AIM antibody, and then performing immunoblotting using an anti-FAS antibody on the immunoprecipitate.
  • the binding between AIM and FAS is decreased in the presence of the candidate compound, it can be evaluated that the candidate compound inhibits the function of AIM by inhibiting the binding between AIM and FAS.
  • Examples of the low molecular weight compound that inhibits the function of AIM include the following compounds. As shown in Examples described later, it was confirmed that these compounds significantly suppressed the significant decrease in lipid droplet formation-related gene FSP27 mRNA expression that was originally induced by the addition of AIM and inhibited the function of AIM.
  • neutralizing antibodies (clone 11, 12, and 17) prepared in Example 9 described later can also be mentioned. It was confirmed that these neutralizing antibodies also significantly suppressed the significant decrease in lipid droplet formation-related gene FSP27P mRNA expression originally induced by the addition of AIM and inhibited the function of AIM.
  • AIM inhibitor that suppresses the expression of AIM An AIM inhibitor that suppresses the expression of AIM suppresses all or part of the function of AIM by reducing the expression level of AIM in macrophages.
  • AIM inhibitor that suppresses the expression of AIM include a double-stranded nucleic acid, an antisense nucleic acid, a ribozyme, and a nucleic acid that encodes these that have an RNAi effect on the AIM gene.
  • the RNAi effect is a sequence-specific gene expression suppression mechanism induced by a double-stranded nucleic acid.
  • the target specificity is very high, and it is highly safe because it uses a gene expression suppression mechanism that originally exists in vivo.
  • Examples of the double-stranded nucleic acid having an RNAi effect include siRNA.
  • siRNA When used for mammalian cells, siRNA is a double-stranded RNA of usually about 19 to 30 bases, preferably about 21 to 25 bases.
  • an enzyme Diicer
  • a double-stranded nucleic acid having an RNAi effect has one base sequence complementary to a part of the target nucleic acid and the other complementary sequence.
  • a double-stranded nucleic acid having an RNAi effect generally has two protruding bases (overhangs) at the 3 ′ end of each other, but may be of a blunt end type having no overhangs. .
  • a 25-base blunt-end RNA has the advantage of minimizing interferon-responsive gene activation, preventing off-target effects from the sense strand, and being very stable in serum for in vivo use Also suitable for.
  • a double-stranded nucleic acid having an RNAi effect can be designed according to a known method based on the base sequence of the target gene.
  • the double-stranded nucleic acid having an RNAi effect may be a double-stranded RNA or a DNA-RNA chimera-type double-stranded nucleic acid, and may be an artificial nucleic acid or a nucleic acid subjected to various modifications. There may be.
  • An antisense nucleic acid has a base sequence complementary to a target gene (basically a mRNA that is a transcription product), generally 10 to 100 bases long, preferably 15 to 30 bases long Single-stranded nucleic acid.
  • a target gene basically a mRNA that is a transcription product
  • the antisense nucleic acid may not be completely complementary to the target gene as long as the effect of inhibiting the expression of the target gene is obtained.
  • Antisense nucleic acids can be appropriately designed by those skilled in the art using known software or the like.
  • the antisense nucleic acid may be any of DNA, RNA, DNA-RNA chimera, and may be modified.
  • Ribozymes are nucleic acid molecules that catalytically hydrolyze target RNA, and are composed of an antisense region having a sequence complementary to the target RNA and a catalytic center region responsible for the cleavage reaction.
  • the ribozyme can be appropriately designed by those skilled in the art according to known methods. Ribozymes are generally RNA molecules, but DNA-RNA chimeric molecules can also be used.
  • a nucleic acid encoding any of the above-mentioned double-stranded nucleic acid, antisense nucleic acid, and ribozyme having the RNAi effect can also be used as the AIM inhibitor of the present invention.
  • a vector containing such a nucleic acid is introduced into a macrophage, a double-stranded nucleic acid, an antisense nucleic acid, and a ribozyme having an RNAi effect are expressed in the cell, and each exerts an AIM expression suppressing effect.
  • RNA As a nucleic acid encoding a double-stranded nucleic acid having an RNAi effect, a DNA encoding each of the double strands may be used, or a single-stranded nucleic acid formed by connecting double-stranded nucleic acids via a loop is encoded. DNA may be used. In the latter case, the single-stranded RNA obtained by transcription in the cell has a complementary structure hybridized in the molecule and takes a hairpin type structure. This RNA is called shRNA (short hairpin RNA). When shRNA moves into the cytoplasm, the loop part is cleaved by the enzyme (Dicer) to form double-stranded RNA and exert RNAi effect.
  • Dicer enzyme
  • the aforementioned AIM inhibitor is administered to a subject.
  • subject includes, but is not limited to, any organism that can suffer from metabolic syndrome caused by AIM causing macrophage infiltration into adipose tissue, such as a human or a non-human mammal (eg, Mouse, rat, rabbit, dog, cat, pig, cow, horse, monkey), bird and the like.
  • mouse AIM and human AIM have a high amino acid sequence homology of about 80%.
  • the mouse AIM and human AIM are completely identical in the consensus sequence in the SRCR domain (amino acid sequences conserved in other molecules having the SRCR domain such as CD5 and CD6). This method is understood to be effective in other animals.
  • metabolic syndrome has become a problem in recent years for pets such as dogs and cats due to excessive feeding of high-fat food and lack of exercise. Therefore, the method of the present invention is particularly useful for these animals.
  • the method according to the present invention is preferably used for a subject whose blood AIM concentration is higher than usual.
  • the blood concentration of AIM increases with obesity.
  • the present inventors have so far, when blood AIM concentration is low to medium concentration, AIM suppresses the differentiation of preadipocytes into adipocytes and promotes lipid droplet thawing in adipose tissue. I have found that. From these findings, AIM shows an anti-obesity effect in adipose tissue when the AIM concentration in the blood is low to medium, but when it is high, it induces macrophages into the adipose tissue and causes inflammation of the adipose tissue I can say that. Therefore, when an AIM inhibitor is used as a preventive or therapeutic agent for metabolic syndrome, it is preferable that the blood concentration of AIM is higher than usual in the subject.
  • the AIM inhibitor can be administered orally or parenterally, systemically or locally.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral enteric solvent, etc. can be selected, and the administration method should be selected appropriately depending on the age and symptoms of the patient Can do.
  • a pharmaceutically acceptable carrier such as a preservative or a stabilizer may be added.
  • a pharmaceutically acceptable carrier means a material that can be administered to a subject together with an AIM inhibitor (active ingredient).
  • the pharmaceutically acceptable carrier is not particularly limited as long as it is pharmacologically and pharmaceutically acceptable.
  • water, saline, phosphate buffer, dextrose, glycerol, ethanol and other pharmaceutically acceptable organic solvents collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate , Water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin , Mannitol, sorbitol, lactose, surfactant, excipient, flavor, preservative, stabilizer, buffer, suspension , Isotonizing agents, binders, disintegrants, lubricants, fluidity promoters, but flavoring agents and the like without limitation.
  • the AIM inhibitor of the present invention can be formulated into a normal medical preparation form.
  • the medical preparation is appropriately prepared using the carrier.
  • the form of the medical preparation is not particularly limited, and is appropriately selected depending on the purpose of treatment. Typical examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions) and the like. These preparations may be produced by a commonly used method.
  • the AIM inhibitor of the present invention contains a nucleic acid
  • it can be formulated by encapsulating the nucleic acid in a carrier such as a liposome, polymer micelle, or cationic carrier.
  • a nucleic acid carrier such as protamine may also be used. It is also preferable to target the affected area by binding an antibody or the like to these carriers. It is also possible to increase the retention in blood by binding cholesterol or the like to the nucleic acid.
  • the AIM inhibitor of the present invention contains a nucleic acid encoding siRNA or the like and is expressed in a cell after administration, the nucleic acid may be a viral vector such as a retrovirus, adenovirus, or Sendai virus, or a liposome. It can also be inserted into non-viral vectors such as and introduced into cells.
  • the amount of the active ingredient contained in the AIM inhibitor of the present invention can be appropriately determined by those skilled in the art according to the type of the active ingredient.
  • the dose is 0.025 to 50 mg / kg, preferably 0.1 to 50 mg / kg, more preferably 0.1 to 25 mg / kg, still more preferably 0.1 to 10 mg / kg or 0.1 It can be ⁇ 3 mg / kg, but is not limited thereto.
  • the AIM inhibitor of the present invention is also preferably administered in combination with other drugs having the same effect as the AIM inhibitor, such as anti-arteriosclerotic drugs, lipid lowering drugs, FAS inhibitors and the like.
  • Examples of the medicament that can be administered in combination with an AIM inhibitor include, for example, at least one anti-arteriosclerotic agent selected from the group consisting of Probucol, Fibrates, Statins, Aspirin, and Coxibs, C75, C93, Cerulenin, PHS11A, 2-octanoic acid Thiolactomycin and at least one FAS inhibitor selected from the group consisting of a compound represented by the following formula (1) (R 1 represents a hydrogen atom or a methyl group) or a pharmacologically acceptable salt thereof:
  • R 1 represents a hydrogen atom or a methyl group
  • a pharmacologically acceptable salt thereof pharmacologically acceptable salt thereof:
  • the combined administration means that the administration time or dose of each is not limited as long as two or more drugs administered are additively or synergistically, and may be administered simultaneously or separately. Good.
  • an AIM protein that has so far inhibited the differentiation of fat cells and caused lipolysis, and has been recognized as an anti-obesity effect itself. It was confirmed to induce macrophage infiltration into adipose tissue. Moreover, it was shown that when AIM protein is knocked out, glucose metabolism does not deteriorate even when it becomes visceral fat obesity. Therefore, according to the method for preventing or treating metabolic syndrome according to the present invention, administration of an AIM inhibitor prevents chronic inflammation of the adipose tissue and the whole body by preventing infiltration of M1 macrophages into the adipose tissue. Thus, the chain of diseases that progress in a domino manner can be stopped upstream, so that metabolic syndrome can be fundamentally prevented and treated.
  • the present invention also includes a method for producing an AIM inhibitor.
  • a method for producing an AIM inhibitor A step of treating AIM with a protease to obtain a partial peptide of AIM, and a step of purifying the partial peptide with an affinity column fixed with an anti-AIM antibody that binds to a functional domain or a conserved region of AIM.
  • Example 1 Increased blood AIM concentration associated with obesity Serum AIM concentrations were measured in obese mice fed a high-fat diet (HFD, fat calorie: 60%) to C57BL ⁇ 6 (B6) mice for 20 weeks and normal mice. The results are shown in FIG. The serum AIM concentration of obese mice (obese) was more than 4 times that of normal mice (lean).
  • HFD high-fat diet
  • B6 C57BL ⁇ 6
  • Example 2 Induction of macrophage infiltration into adipose tissue by AIM Visceral adipose tissue was collected from AIM + / + mice and AIM ⁇ / ⁇ mice obese by giving HFD, and paraffin sections prepared from this adipose tissue were treated with anti-macrophage monoclonal antibody (F4 / 80), anti-mouse AIM polyclonal antibody (SA-1), and anti-IL-6 antibody (MP520F3, R & D systems). The results are shown in FIG. As shown in FIG.
  • AIM + / + M1 macrophages infiltrated into adipose tissue in normal mice expressing AIM
  • AIM knockout mice AIM ⁇ / ⁇ .
  • AIM has a function of suppressing apoptosis of macrophages. Therefore, the macrophages could not be detected in the adipose tissue of AIM knockout mice, possibly due to apoptosis occurring after macrophages infiltrated into the adipose tissue.
  • rAIM was systemically administered to AIM knockout mice by intravenous injection (50 ⁇ g / body / injection). After administration for 3 weeks, sections prepared from visceral adipose tissue were stained with anti-macrophage monoclonal antibody (F4 / 80). The results are shown in FIG. As shown in the figure, macrophages were infiltrated into adipose tissue when rAIM was systemically administered to AIM knockout mice. From the above results, it was shown that AIM induces macrophage infiltration into adipose tissue. Therefore, if AIM is inhibited, macrophage infiltration into adipose tissue can be suppressed even in visceral fat obesity.
  • FIG. Elucidation of the mechanism of macrophage migration The migration ability of the mouse macrophage cell line RAW264.8 1x10 5 / well in 24 hours was analyzed.
  • Fatty Acids Cocktail consists of Myristoleic acid, Palmitic acid, Oleic acid and Linoleic acid.
  • CM Cell supernatant obtained by culturing mature 3T3-L1 adipocytes on differentiation induction day 8 for 6 days, supernatant cultured with rAIM (3T3-L1 + AIM CM), supernatant cultured with C75 ( 3T3-L1 + C75 CM) was used.
  • CM conditioned medium
  • ND not detected. **: p ⁇ 0.01
  • AIM induces lipid droplet thawing in mature adipocytes. As a result, free fatty acid and glycerol derived from lipid droplets are released into the culture supernatant.
  • Example 4 Suppression of deterioration of glucose metabolism in obese AIM knockout mice
  • Wild-type mice and AIM knockout mice were loaded with HFD for 12 weeks, and before and after (Lean) and after (Obese) glucose tolerance test and insulin tolerance test, In addition to measuring metabolism, an insulin sensitivity test was performed.
  • the glucose tolerance test measures blood glucose level every 30 minutes for 120 minutes after glucose load (3 g / kg body; intraperitoneal injection), and the insulin tolerance test after insulin load (0.75 U / kg body; intraperitoneal injection) Blood glucose levels were measured every 30 minutes for 120 minutes.
  • Insulin sensitivity test was performed by administering insulin to AIM + / + and AIM ⁇ / ⁇ mice after HFD loading (0.75 U / kg body; intravenous injection), and 2 hours later, tissues (white adipose tissue, gastrocnemius muscle, and liver) ) was collected to purify the protein, and phosphorylated AKT and phosphorylated GSK3 ⁇ were measured by Western blotting.
  • body weight and total fat mass after HFD loading were measured.
  • FIG. 5 shows the results of anatomy after loading
  • FIG. 6 shows the results of measurement of body weight and total fat
  • FIGS. 7 to 10 show the results of glucose metabolism
  • FIG. 11 shows the results of the insulin sensitivity test. As shown in FIGS.
  • HFD loading caused visceral obesity in both AIM knockout mice (AIM ⁇ / ⁇ ) and normal mice (AIM + / + ). Increases in body weight and adipose tissue mass were more prominent in AIM knockout mice.
  • FIGS. 7 to 10 glucose metabolism was significantly deteriorated in obese normal mice, whereas no deterioration of glucose metabolism was observed in obese AIM knockout mice.
  • FIG. 11 AIM ⁇ / ⁇ mice showed the expression of phosphorylated AKT and phosphorylated GSK3 ⁇ after insulin administration, and that signal transduction via the insulin receptor is functioning, that is, insulin sensitivity. was confirmed to be normal.
  • phosphorylated AKT and phosphorylated GSK3 ⁇ were not detected in wild-type mice, confirming insulin resistance.
  • AIM ⁇ / ⁇ mice were also confirmed to have normal insulin sensitivity by the hyperinsulinemic-euglycemic clamp test (data not shown).
  • the above results support the results that obese AIM knockout mice do not infiltrate macrophages into the adipose tissue, so that the inflammatory reaction of the adipose tissue and the whole body is suppressed and insulin sensitivity does not decrease.
  • pancreatic islets of Langerhans were isolated from obese AIM knockout mice or normal mice, and the production and secretion of insulin were examined by glucose load, there was no difference between the two. Therefore, it was confirmed that the difference in glucose tolerance is not based on insulin production / secretion but on the difference in insulin sensitivity.
  • Reference example 1 Expression of AIM in macrophages in adipose tissue
  • F4 / 80 anti-macrophage monoclonal antibody
  • SA-1 anti-mouse AIM polyclonal antibody
  • SA-1 anti-IL- Double staining was performed with 6 antibodies (MP520F3, R & D systems).
  • FIG. 12 shows an example of the result of observing the stained section with a fluorescence microscope.
  • Macrophages in adipose tissue of obese mice stained with anti-macrophage antibody were also stained with an AIM-specific antibody (obese left lane). Since AIM positive macrophages were also positive for IL-6 (obese right lane), they were considered to be inflammatory macrophages (M1). On the other hand, macrophages in adipose tissue collected from lean mice were negative for both AIM and IL-6.
  • adipose tissue from obese mice was fractionated after collagenase treatment, and RT-PCR was used to fractionate AIM. Expression was examined and AIM expression was not observed in purified adipocytes. Furthermore, after 3T3-L1 cells were treated with insulin, DEX and IBMX, the expression of AIM was examined, but no expression was observed. From the above results, it was confirmed that macrophages infiltrating the adipose tissue strongly expressed AIM.
  • rAIM mouse recombinant AIM protein
  • rAIM is a human-derived HEK293T cell transfected with a mouse AIM-expressing vector (pCAGGS-mAIM-HA plasmid), cultured in serum-free medium (FreeStyle TM 293 Expression Medium; Invitrogen), and anti-HA antibody from the culture supernatant. It was prepared by isolation and purification on a column. In other reference examples shown below, the same rAIM protein was used as AIM. AIM loading was performed by adding AIM at a concentration of 5 ⁇ g / ml to the culture medium.
  • differentiation induction of 3T3-L1 cells was performed by first culturing and growing 3T3-L1 cells for 4 days (day (-2) -day2), and then insulin, dexamethasone (DEX), Differentiation-inducing stimulation was started by culturing for 2 days (day2-day4) in a culture solution containing isobutylmethylxanthine (IBMX), followed by culturing for 2 days (day4-day6) in a culture solution containing insulin. It was.
  • the culture was continued in a culture solution not containing these differentiation induction stimulation factors. Then, cells on the 10th day (day 12) from the start of differentiation induction stimulation were stained with oil-red-O, and the state of differentiation from 3T3-L1 cells to mature adipocytes was observed.
  • FIG. 14 shows micrographs of the cells after staining for each of the four schedules A to D.
  • the ability to differentiate 3T3-L1 cells by the differentiation-inducing factor is not limited to the case where AIM is removed from the culture by using a purification column after preparing the culture medium containing the differentiation-inducing factor and AIM. It was not lost (data not shown). Therefore, it was considered that there was substantially no chemical interaction between the differentiation-inducing factor and AIM.
  • AIM suppresses differentiation from preadipocytes into adipocytes.
  • the degree of differentiation can be easily examined by observing the formation of lipid droplets or detecting an adipocyte marker, a preadipocyte marker, or a mesenchymal stem cell marker. Therefore, as a result of lipid droplet generation and marker detection, when AIM and a candidate compound are added, if the induction efficiency of differentiation is increased compared to when AIM alone is added, the candidate compound Is a compound that suppresses the function of AIM, and when the induction efficiency of differentiation is reduced, the candidate compound can be evaluated as a compound that enhances the function of AIM.
  • Reference example 3 Melting function of fat droplets of fat cells by AIM [Evaluation by oil-red-O] Differentiated 3T3-L1 cells were subjected to rAIM loading (5 ⁇ g / ml) according to the schedule shown in E of FIG. Oil-red-O staining was performed before and after rAIM loading. A representative photograph is shown in FIG. 16A. Intracellular lipid droplets were significantly reduced after 6 days of culture with rAIM loading (rAIM (+)). Further, the relative droplet size (Relative droplet size) was determined from the average of the diameters of 50 lipid droplets. Error bars indicate standard error. The number of lipid droplet-containing cells per unit area was measured in five different fields of view and the average was determined.
  • FIGS. 16B and 16C The respective results are shown in FIGS. 16B and 16C. Both the relative size of the lipid droplets and the number of lipid droplet-containing cells were significantly reduced. This result suggests that rAIM caused lipid droplet melting and that glycerol and free fatty acids contained in the lipid droplets were released into the supernatant.
  • AIM melts lipid droplets in mature adipocytes.
  • the degree of melting of the lipid droplets can be easily examined by observation with a microscope, measurement of the amount of glycerol or free fatty acid in the culture supernatant, measurement of expression of lipid droplet formation-related genes, and the like. Therefore, as a result of detecting glycerol and the like in the culture supernatant, when AIM and a candidate compound are added, when the efficiency of lipid droplet melting is lower than when only AIM is added, A candidate compound is a compound that suppresses the function of AIM. When the efficiency of lipid droplet melting is increased, the compound can be evaluated as a compound that enhances the function of AIM.
  • AIM reduction function by AIM [Evaluation by HE staining] AIM + / + mice (+ / +) and AIM ⁇ / ⁇ mice ( ⁇ / ⁇ ) (see Non-Patent Document 1) were given a high fat diet (HFD) for 20 days, and a section of adipose tissue was obtained. HE stained. In various fields of the microscope, the distance of 50 adipocytes was measured and the mean ⁇ standard error was determined. The results are shown in FIG. 19A and a representative photograph is shown in FIG. 19B. Visceral fat cells of AIM ⁇ / ⁇ mice were significantly larger compared to AIM + / + mice.
  • AIM reduces the size of adipocytes.
  • the degree of reduction can be easily examined with a microscope. Therefore, as a result of measuring the size of adipocytes, when AIM and a candidate compound are added, if the cell size is larger than when AIM alone is added, the compound is When the cell size is small, the compound can be evaluated as a compound that enhances the function of AIM.
  • the upper row shows the result of staining the nucleus with AIM and DAPI
  • the middle row shows the result of staining with AIM and PPAR ⁇ 2
  • the lower row shows the phase contrast image of the result of staining with AIM, PPAR ⁇ 2, and DAPI.
  • AIM was scattered in the cytoplasm of adipocytes.
  • cells in which PPAR ⁇ 2 is highly expressed contain many lipid droplets. It is a cell that highly expresses PPAR ⁇ 2, a fully differentiated mature adipocyte.
  • the right lane labeled “pre” is an undifferentiated 3T3-L1 adipose precursor cell that has not undergone differentiation-inducing stimulation.
  • 20B shows the number of cells containing rAIM per 100 cells by classifying the cells according to the expression level of PPAR ⁇ 2. As shown in the figure, it was found that rAIM was efficiently taken up in mature adipocytes in which PPAR ⁇ 2 was highly expressed, and rAIM uptake efficiency was remarkably low in cells that had low PPAR ⁇ 2 expression and were not sufficiently differentiated. Preadipocytes (pre) that did not undergo differentiation-inducing stimulation did not take up rAIM.
  • 3T3-L1 adipocytes were treated with rAIM for 3 hours, and AIM and endosome (FM 1-43FX, using Invitrogen), AIM and lysosome (Lyso Tracker Red DND-99, using Invitrogen) were stained, Observed with a confocal microscope.
  • AIM and endosome FM 1-43FX, using Invitrogen
  • AIM and lysosome Lyso Tracker Red DND-99, using Invitrogen
  • AIM was labeled with fine gold particles and observed with an electron microscope. Specifically, cells pretreated with normal goat serum for 30 minutes were fixed with paraformaldehyde and incubated overnight with SA-1 rabbit anti-AIM polyclonal antibody (1: 600 dilution). Subsequently, it was reacted with goat anti-rabbit IgG to which 1 nm gold fine particles (1: 200; Nanoprobes) were covalently bonded. Silver sensitization was performed using HQ silver (Nanoprobes), osmificate, dehydrated, and directly embedded in Epon (Nisshin EM).
  • RAIM labeled with gold particles had an endosome-like structure and was particularly accumulated near the limiting membrane (upper left). In the cell membrane, rAIM endocytosis was observed (upper center). Some particles containing rAIM were found near the nucleus and considered late endosomes (upper right). Late endosomes degenerate and concomitantly rAIM can be released into the cytoplasm.
  • AIM was not detected in irregularly-shaped phagosomes with large diameters, phagolysosomes, mitochondria, and lipid droplets (lower panel). Taken together, these results suggest that AIM is incorporated into adipocytes by endocytosis and functions in the cells.
  • FIG. 22 shows representative photographs when the neutralizing antibody is treated and when it is not treated, and the number of cells incorporating rAIM per 100 cells. As shown in the figure, rAIM uptake was remarkably suppressed by treatment with a CD36 neutralizing antibody.
  • rAIM 300 ⁇ g / mouse in PBS
  • CD36 + / + mice wild type mice
  • CD36 ⁇ / ⁇ mice Febbraio et al., J. Biol. Chem., 1999, 274: 19055-19062
  • FIG. As shown, AIM is signal CD36 - / - has been significantly reduced in adipocytes, CD36 - / - in adipocytes has been shown that rAIM uptake is lost.
  • AIM is taken up by adipocytes via CD36 on the cell surface.
  • the degree of AIM uptake by adipocytes can be easily examined by, for example, visualizing intracellular AIM using a detectably labeled anti-AIM antibody. Therefore, by using this method, the action mechanism of a candidate compound that suppresses the function of AIM can be clarified, and the effect of the compound can be verified. For example, when AIM and a candidate compound that suppresses the function of AIM are added, if the uptake of AIM into the cell is reduced compared to when AIM alone is added, the compound is It is considered that the function of AIM is suppressed by inhibiting the uptake of AIM.
  • HA-tagged rAIM and FLAG-tagged FAS were co-expressed, and the binding between rAIM and FAS was confirmed by co-immunoprecipitation using anti-Flag antibody or anti-HA antibody.
  • the results are shown in FIG. rAIM and FAS co-precipitated, indicating the ability of AIM to bind to FAS.
  • FAS consists of ketoacyl synthase (KS), malonyl / acetyltransferase (MAT), dehydrase (DH), central core (CC), enoyl reductase (ER), ketoreductase (KR), acyl carrier protein (ACP), thiol Contains eight domains of esterase (TE).
  • KS ketoacyl synthase
  • MAT malonyl / acetyltransferase
  • DH dehydrase
  • CC central core
  • ER enoyl reductase
  • KR ketoreductase
  • ACP acyl carrier protein
  • TE thiol
  • Binding between AIM-HA and each domain of FAS was confirmed by co-immunoprecipitation using anti-Flag antibody or anti-HA antibody.
  • the results are shown in FIG. Domains that bind to AIM were found to be ER, DH, TE and CC.
  • the sequence encoding the full-length FAS cDNA (nucleotide: +1 to 7515) with a FLAG tag was cloned by RT-PCR with a part of the cDNA clone provided by Dr. Ohara (Kazusa DNA Research Institute). These fragments were constructed using the pFLAG-CMV2 vector (Sigma).
  • a cDNA fragment encoding KS, MAT, DH, CC, ER, KR, ACP, or TE was prepared by subcloning into a pFLAG-CMV2 vector using full-length FAS cDNA as a template.
  • n 6 and error bars indicate standard errors.
  • rAIM treatment significantly suppressed FAS activity in 3T3-L1 adipocytes. The degree of suppression was similar to C75, which specifically inhibits FAS.
  • adipose tissue was significantly increased in AIM ⁇ / ⁇ mice compared to AIM + / + mice (FIG. 28).
  • rAIM was directly administered to the adipose tissue of AIM ⁇ / ⁇ mice, FAS activity decreased.
  • AIM binds to FAS and suppresses its activity.
  • the degree of binding between AIM and FAS can be easily examined by immunoprecipitation or the like. Therefore, by using this method, the action mechanism of a candidate compound that suppresses the function of AIM can be clarified, and the effect of the compound can be verified. For example, when a candidate compound that suppresses the function of AIM and AIM is added and the binding between AIM and FAS is reduced compared to when AIM alone is added, the compound is It is thought that the function of AIM is suppressed by inhibiting the binding of. In addition, the degree of activity suppression can be easily examined by a usual method for measuring FAS activity.
  • the action mechanism of a candidate compound that suppresses the function of AIM can be clarified, and the effect of the compound can be verified.
  • the compound when adding a candidate compound that suppresses AIM and the function of AIM, when the suppression of FAS activity is suppressed compared to when only AIM is added, the compound may have FAS activity of AIM. It is thought that the function of AIM is suppressed by inhibiting the suppressor function.
  • the mRNA levels of the adipocyte marker, preadipocyte marker, and lipid droplet formation-related genes in RNA extracted from the visceral adipose tissue of mice in the rAIM administration group and BSA administration group were measured by QPCR. The results are shown in FIG. The measured value was normalized by the measured value of GAPDH and expressed as a relative expression level with respect to the adipose tissue administered with BSA.
  • mRNA levels of FSP27, Perilipin, and Adipophilin in visceral fat were also low.
  • the mRNA level of PREF-1 was increased by administration of rAIM, but there was no difference in the mRNA of PPAR ⁇ 2, C / EBP ⁇ , and GLUT4 between the rAIM administration group and the BSA administration group.
  • Example 8 AIM inhibitor An AIM inhibitor was searched for by the following screening method. ⁇ Cell> 3T3-L1 (DS Biopharma Cat No. EC86052701) ⁇ Reagent> ⁇ Medium Subculture DMEM (Invitrogen Cat No. 11995-081) / 10% CS / PS SM For assay: DMEM / 10% FBS / penicillin + streptomycin For differentiation induction: DMEM / 10% FBS / penicillin + streptomycin / 1ug / mL Insulin / 1uM Dexamethasone / 0.5mM IBMX ⁇ RT-PCR TaqMan Gene Expression Cells-to-Ct kit (Applied Biosystems Cat No.
  • the culture was moved to 29 ° C., and the culture was continued for 7 days when the CMV promoter was used and for 9 days when the PGK promoter was used, and the culture supernatant was collected.
  • the collected culture supernatant was applied to a HisTrap HP column (5 mL, manufactured by GE Healthcare), washed with 20 mM imidazole, and then eluted with 300 mM imidazole. The collected solution was replaced with PBS and concentrated to obtain purified mAIM.
  • Test compound 10 mM DMSO solution ⁇ Method> (1) Cell Passage • Cells cultured in Dish were washed with PBS ( ⁇ ) and then detached by treating with 1/10 concentration of trypsin, suspended in a subculture medium, and the number of cells was counted. -Usually, the cells were subcultured at 5x10 5 to 1x10 6 cells / dish in a 10 cm dish. • Seed cells in a new 10cm dish. 2x10 5 cells / dish for subculture in a day, When subcultured in 2 days, seeding was performed at 1 ⁇ 10 5 cells / dish.
  • Example 9 Neutralizing antibody A neutralizing antibody was prepared by the following materials and methods. ⁇ Animal sensitization> Mouse AIM (2 mg / ml) as an antigen was mixed with an equal amount of TiterMaxGold (G-1 Funakoshi) to prepare an emulsion. Two 6-week-old females of Jcl: Wistar rats (Clea Japan Co., Ltd.) were used as immunized animals, and 50 ⁇ L was administered to the sole of the hind paw. Two weeks later, the same administration was carried out, and after 2 weeks or more, 50 ⁇ g of the antigen solution was administered to the sole of the foot to prepare for cell fusion after 3 days.
  • ⁇ Myeloma cells Mouse P3U1 was used for myeloma cells, and for growth culture, a medium in which glutamine and pyruvic acid were added to RPMI1640 (11875-119 GIBCO) and FBS (S1560 BWT) was added to 10% was used. As antibiotics, penicillin and streptomycin were added in appropriate amounts.
  • the myeloma cells in the logarithmic growth phase were collected by centrifugation, washed, adjusted to 5 to 1 with respect to lymphocytes, and mixed and centrifuged.
  • Cell fusion was performed using PEG1500 (783641 Roche). That is, 1 mL of PEG solution was allowed to react with the cell pellet over 3 minutes, then diluted in stages and washed by centrifugation. Then, the medium was added and 200 ⁇ L each was added to 15 96-well plates and cultured for 1 week. .
  • the medium used was a myeloma cell culture medium with HAT supplement (21060-017 GIBCO) added to a FBS concentration of 15%.
  • the electrophoresis conditions were 0.05M Barbital Na Buffer pH8.6 (020-13415 Wako Pure Chemical Industries), SELECA-V (ADVANTEC), 1mA / cm, 25min. Fix and stain with 0.1% nigrosine (2% acetic acid).
  • ⁇ Antibody assay> 24 anti-mouse AIM rat monoclonal antibodies, each treated with rAIM at a concentration of 200 mg / ml for 30 minutes at room temperature, then added to 3T3-L1 adipocytes (differentiation induction day 4) differentiated at a final rAIM concentration of 5 mg / ml And cultured for 24 hours.
  • Example 10 Measurement of blood hAIM concentration of a human dock examinee An anti-AIM antibody was obtained in the same manner as in Example 9 except that human rAIM was used as an antigen. Among the obtained clones, AIM-CL-6 and AIM-CL-7 were deposited according to the provisions of the Budapest Treaty. The accession numbers are NITE BP-1092 and NITE BP-1093, respectively. Trustee: National Institute of Technology and Evaluation, Patent Microorganisms Depositary (NPMMD: 2-5-8 Kazusa Kamashi, Kisarazu, Chiba, Japan) Date of entrustment: May 2, 2011 Using AIM-CL-6 and AIM-CL-7, the blood hAIM concentration was measured in about 550 medical examinees.
  • AIM-CL-6 was used for capture
  • AIM-CL-7 was used for detection
  • 50 ⁇ L of serum was used for analysis in duplicate.
  • the concentration was determined by diluting human rAIM and providing a quantitative line.
  • Human rAIM is produced by producing HA-tagged human AIM protein in HEK293T cells and purifying the column from the culture supernatant using an anti-HA antibody. The results are shown in FIG.
  • Example 11 Relationship between BMI and AIM blood concentration From blood donors (including foreigners), a person with a BMI of 18-25 and a population of 35 or more were randomly selected and used in the same manner as in FIG. The blood AIM concentration was measured. In general, the higher the BMI, the higher the risk of metabolic syndrome. The results are shown in FIG. Those with a BMI of 35 or higher had significantly higher blood AIM levels than those with a BMI of 18-25. This strongly suggests that the blood concentration of AIM correlates with the risk of metabolic syndrome, and inhibition or treatment of metabolic syndrome can be achieved by inhibiting AIM.
  • SEQ ID NO: 1 is the amino acid sequence of human AIM.
  • SEQ ID NO: 2 is the DNA sequence of the forward primer used for the PPAR ⁇ 1 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 3 is the DNA sequence of the reverse primer used for the PPAR ⁇ 1 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 4 is the DNA sequence of forward primer used for the PPAR ⁇ 2 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 5 is the DNA sequence of the reverse primer used for the PPAR ⁇ 2 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 6 is the DNA sequence of the forward primer used for the C / EBP ⁇ expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 7 is the DNA sequence of the reverse primer used for the C / EBP ⁇ expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 8 is the DNA sequence of forward primer used for the CD36 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 9 is the DNA sequence of reverse primer used for the CD36 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 10 is the DNA sequence of forward primer used for the GLUT4 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 11 is the DNA sequence of reverse primer used for the GLUT4 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 12 is the DNA sequence of forward primer used for the Fsp27 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 13 is the DNA sequence of reverse primer used for the Fsp27 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 14 is the DNA sequence of forward primer used for the Perilipin expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 15 is the DNA sequence of reverse primer used for the Perilipin expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 16 is the DNA sequence of the forward primer used for the Adipophilin expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 17 is the DNA sequence of the reverse primer used for the Adipophilin expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 18 is the DNA sequence of forward primer used for the GAPDH expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 19 is the DNA sequence of reverse primer used for the GAPDH expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 20 is the DNA sequence of forward primer used for the PREF1 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 21 is the DNA sequence of the reverse primer used for the PREF1 expression analysis by quantitative real-time PCR.
  • SEQ ID NO: 22 is the amino acid sequence of chimpanzee AIM.
  • SEQ ID NO: 23 is the amino acid sequence of canine AIM.
  • SEQ ID NO: 24 is the amino acid sequence of mouse AIM.
  • SEQ ID NO: 25 is the amino acid sequence of rat AIM.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Diabetes (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Child & Adolescent Psychology (AREA)

Abstract

 本発明は、脂肪組織へのマクロファージの浸潤を抑制することにより、メタボリックシンドロームにおけるドミノ倒し的な疾患の連鎖を、その上流において停止させることができるメタボリックシンドロームの予防又は治療方法を提供することを目的とする。本発明は、AIM阻害剤を対象に投与する工程を含む、メタボリックシンドロームの予防又は治療方法を提供する。

Description

メタボリックシンドロームの予防又は治療方法
 本発明は、AIM阻害剤を対象に投与することを特徴とするメタボリックシンドロームの予防又は治療方法に関する。
 従来、糖尿病、高脂血症、高血圧、肥満症といった生活習慣病は、一個人に重積して生じやすいことが知られていた。また、これらの疾患は個別にも動脈硬化症のリスクとなるが、重積するとそのリスクが非常に高くなることから、これらの疾患が重積した病態を表す名称が複数提唱されてきた。
 現在では、糖尿病、高脂血症、高血圧症、肥満、インスリン抵抗性を基本的な構成要因とし、これらが一個人に重積しやすく、そのことが動脈硬化性疾患の高いリスクとなるという疾患概念が、メタボリックシンドロームという名称で統一されている。
 一般に、メタボリックシンドロームにおいては、内臓脂肪型肥満、即ち腹腔内に中性脂肪が過剰に蓄積する肥満が病態の中核となり、肥満によって生じたインスリン抵抗性が高血圧、糖尿病、高脂血症などを順次発症し、その重積と連鎖によって動脈硬化性疾患が引き起こされる。このような現象をドミノ倒しにたとえ、近年「メタボリックドミノ」という概念が提唱されている。
 つまり、一連の病態は、一度ドミノ倒しが進むと元に戻すのが難しいのと同様に一方向性に進展し、長期間慢性的に様々な疾患が持続的に発症するのである。
 メタボリックシンドロームの治療は、症状の緩和を目的とするのではなく、その後発症しうる様々な疾患、特に動脈硬化性疾患の発症の予防が目標となる。
 上述のとおり、メタボリックドミノの概念の下では、一度進行したものを元通りに戻すのが難しいことから、より上流で進行を抑制することが望ましい。
 これまでの研究で、メタボリックシンドロームにおいては、腹腔内の脂肪細胞に過剰に中性脂肪が蓄積すると、脂肪細胞からのアディポサイトカインの分泌量の異常、血中遊離脂肪酸の増加、及び脂肪組織における慢性炎症が生じ、その結果インスリン抵抗性、糖尿病、高脂血症、高血圧等の生活習慣病とその後に続く疾患が連鎖的に惹起されることが判明してきた。
 従って、メタボリックシンドロームの予防や治療においては、アディポサイトカインの分泌、血中遊離脂肪酸、脂肪組織の慢性炎症といった上流のイベントを標的とすることが好適であると考えられる。
 この中で、脂肪組織の慢性炎症は、肥満に伴って脂肪組織に浸潤するマクロファージの増加が原因となることが判明している(例えば、非特許文献1及び2を参照)
 マクロファージの活性化状態にはM1とM2の2種類がある。M1は、classically activated マクロファージとも呼ばれ、TNF-α、IL-6、IL-12などの炎症性サイトカインや、誘導型一酸化窒素合成酵素(iNOS)の産生が増加している。M2は、alternatively activated マクロファージとも呼ばれ、炎症性サイトカインの産生は低下しており、IL-10などの抗炎症性サイトカインやiNOS活性を阻害するアルギナーゼの産生が増加している。
 脂肪組織に浸潤しているマクロファージは、非肥満の場合はM2が主体であり、肥満が進行するにつれてM1が主体となることがわかっている(例えば、非特許文献3を参照)。
 また、マクロファージ特異的にPPARγを欠失したマウスでは、M2が存在せず、高脂肪食負荷による肥満やインスリン抵抗性が増強されること(非特許文献4);マクロファージのPPARγを不活化すると、標準食の非肥満マウスで耐糖能の悪化と骨格筋及び肝臓におけるインスリン抵抗性を生じること(非特許文献5);マクロファージでCap(Cbl-associated protein)を欠損したマウスは、脂肪組織におけるマクロファージの浸潤が低下し、高脂肪食負荷によるインスリン抵抗性の発現が減弱すること(非特許文献6)等が報告され、脂肪組織に浸潤したM1マクロファージがインスリン抵抗性の発現に重要な役割を果たしていることが示唆されている。
 脂肪組織の慢性炎症がメタボリックシンドロームの成因に深く関与していることは、メタボリックシンドロームの患者では軽度の炎症の存在を示す高感度CRP陽性者が多く、抗炎症作用をもつサリチン酸やチアゾリジン系薬剤の投与によりインスリン抵抗性が改善するという報告とも一致する。
 また、脂肪組織へのマクロファージの浸潤が減少したCCR2(C-C chemokine receptor 2)ノックアウトマウスでは、野生型マウスと比較して、肥満に伴うアディポサイトカインの産生調節異常が改善される(非特許文献7)。従って、脂肪組織に浸潤したマクロファージは、アディポサイトカイン産生調節の破綻にも関与すると考えられる。
 以上より、メタボリックシンドロームの予防又は治療において、脂肪組織に浸潤した炎症性マクロファージを標的とすれば、アディポサイトカインの産生調節の破綻、脂肪組織における慢性炎症といった、メタボリックドミノの最上流でその進行を止めることができるものと考えられる。
 しかしながら、これまで、肥満に伴って脂肪組織にマクロファージが誘導されるメカニズムは解明されていない。
 例えば、単球走化性因子MCP-1のノックアウトマウスや、CCR2のノックアウトマウスでは、マクロファージの誘導効率が減少するとの報告があるが、報告によってその効率が大きく異なる。また、MCP-1のノックアウトマウスでは、かえってマクロファージ浸潤が亢進するとの報告も存在する。
 そのため、MCP-1やCCR2と、マクロファージの誘導と因果関係には議論の余地があり、少なくとも一義的(essential)且つ根本的な因子であるとは考えられない。
 従って、当然のことながら、脂肪組織のマクロファージへの浸潤を引き起こす根本的な原因を抑制して、メタボリックドミノの最上流でその進行を止める方法も見出されていなかった。
 ところで、本発明者は、Apoptosis Inhibitor of Macrophage(AIM)を組織マクロファージから発見した(非特許文献9参照)。AIMは、可溶性タンパク質であり、スカベンジャー受容体システインリッチ(Scavenger Receptor Cysteine-Rich; SRCR)スーパーファミリーのメンバーである。AIMは当初、様々なアポトーシス誘導因子からマクロファージを守るアポトーシスインヒビターとして見出された(非特許文献9参照)。
 AIMは、SRCRドメインを3つ有する構造がCD5の細胞外ドメインに似ていることから、CD5L(CD5-like)とも呼ばれている。
Weisberg, S.P. et al., J. Clin. Invest., 2003, 112:1796-1808 Xu, H. et al., J. Clin. Invest., 2006, 116:115-124 Lumeng, C.N. et al., J. Clin. Invest., 2007, 117:175-184 Odegaard, J.L. et al., Nature, 2007, 447:1116-1121 Hevener, A.L. et al., J. Clin. Invest., 2007, 117:1658-1669 Lesniewski, L.A. et al., Nature Med., 2007, 13:455-462 Weisberg, S.P. et al., J. Clin. Invest., 2006, 116:115-124 Kanda, H. et ao., J. Clin. Invest., 2006, 116:1494-1505 Miyazaki, T. et al., J. Exp. Med. 189, 413-422 (1999) Arai, S. et al., Cell Metab. 1, 201-213 (2005)
 本発明は、脂肪組織へのマクロファージの浸潤を抑制することにより、メタボリックシンドロームにおけるドミノ倒し的な疾患の連鎖を、その上流において停止させることができるメタボリックシンドロームの予防又は治療方法を提供することを目的とする。
 本発明者らは、AIMについてさらに研究を進めていく中で、アテローム性動脈硬化病巣においては脂質を取り込んだマクロファージがAIMを産生すること、また、産生されたAIMは、病巣におけるマクロファージのアポトーシス抵抗性をサポートすることによってアテローム性動脈硬化の発生にも関与することを見出した。さらに、AIM欠損マウスを作製し、AIM欠損が動脈硬化を著しく軽減させることを確認した(Arai, S. et al., Cell Metab. 1, 201-213 (2005))。
 一方で、本発明者らは、後述する参考例に示すとおり、肥満脂肪組織に浸潤するマクロファージにおいてもAIMが発現していることを見出した。そして、AIM存在下では、脂肪前駆細胞の成熟脂肪細胞への分化が抑制されること;AIM存在下では、成熟脂肪細胞において脂肪滴の融解(lipolysis)が誘導されること;AIM存在下では、脂肪細胞の大きさが小さくなる傾向があること;従って、AIM自体が抗肥満薬として有用であることを見出した。
 さらに、脂肪組織において産生されたAIMは、細胞表面のCD36に結合し、エンドサイトーシスによって脂肪細胞中に取り込まれること;細胞内において脂肪酸合成酵素(Fatty Acid Synthase; FAS)に結合しその活性を抑制すること、即ちAIMの直接の標的分子がFASであり、AIMが、FAS活性抑制を通じて脂肪前駆細胞の成熟脂肪細胞への分化抑制や脂肪滴融解の誘導が惹起することも見出した。
 しかしながら、今般、本発明者は、上記知見とは一見逆とも思われる現象、即ち、AIMがメタボリックシンドロームの成因に直接関与していることを見出した。
 具体的には、肥満と共にAIMの血中濃度が上昇すること;肥満してもAIMノックアウトマウスの脂肪組織にはマクロファージ浸潤がほとんど見られないこと;AIMノックアウトマウスに組換えAIMを全身投与すると、脂肪組織に炎症性マクロファージが浸潤することをin vivoの研究によって確認した。
 また、脂肪組織に炎症性マクロファージが浸潤するのは、肥満に伴って血中濃度が上昇したAIMが、FAS活性抑制を通じて脂肪滴融解を誘導する結果、マクロファージ遊走を引き起こすことに起因することをin vitroの研究によって確認した。
 さらに、AIMノックアウトマウスは、高脂肪食を与えて肥満しても糖代謝が悪化しないこと、従って、AIMを阻害すれば、肥満に至っても、その後ドミノ倒し的にメタボリックシンドロームの一連の疾患が連鎖的に発症し進行するのを止めることができることを見出し、本発明を完成するに至った。
 即ち、本発明は、
〔1〕AIM阻害剤を対象に投与する工程を含む、メタボリックシンドローム又はその関連疾患の予防又は治療方法;
〔2〕前記AIM阻害剤は、AIMの血液中での安定性を低下させる、上記〔1〕に記載の方法;
〔3〕前記AIM阻害剤は、AIMとCD36との結合を阻害する、上記〔1〕に記載の方法;
〔4〕前記AIM阻害剤は、AIMが標的細胞に取り込まれることを阻害する、上記〔1〕に記載の方法;
〔5〕前記AIM阻害剤は、AIMがエンドソームから細胞質に移行することを阻害する、上記〔1〕に記載の方法;
〔6〕前記AIM阻害剤は、AIMが脂肪酸合成酵素(FAS)と結合することを阻害する、上記〔1〕に記載の方法;
〔7〕前記AIM阻害剤は、AIMの発現を抑制する、上記〔1〕に記載の方法;
〔8〕前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、肝疾患、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、上記〔1〕から〔7〕のいずれか1項に記載の方法;
〔9〕前記対象は、ヒトである、上記〔1〕から〔8〕のいずれか1項に記載の方法;
〔10〕前記対象は、非ヒト哺乳動物又は鳥類である、上記〔1〕から〔8〕のいずれか1項に記載の方法;
〔11〕前記対象は、イヌ又はネコである、上記〔10〕に記載の方法;
〔12〕以下の群から選択される少なくとも一つを含む、メタボリックシンドローム又はその関連疾患の予防又は治療剤:
 抗AIM抗体;
 抗CD36抗体;
 AIM遺伝子に対するRNAi効果を有する二本鎖核酸;
 AIM遺伝子に対するアンチセンス核酸;
 AIM遺伝子に対するリボザイム;
 抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質;
 CD36と結合し、且つFAS抑制活性を有しないタンパク質;
 FASと結合し、且つFAS抑制活性を有しないタンパク質;及び
 可溶型CD36;
〔13〕前記抗体が、モノクローナル抗体、ポリクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、又は抗体のフラグメントである、上記〔12〕に記載の治療剤;
〔14〕前記FASと結合し、且つFAS抑制活性を有しないタンパク質は、DH、ER、TE、及びCCからなる群より選択される少なくとも一つのドメインと結合する、上記〔12〕又は〔13〕に記載の治療剤;
〔15〕前記抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM改変体若しくはそのフラグメント、及び、AIMキメラタンパク質若しくはそのフラグメント、からなる群より選択される、上記〔12〕又は〔13〕に記載の治療剤;
〔16〕前記CD36と結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM改変体、及びAIMキメラタンパク質からなる群より選択される、上記〔12〕又は〔13〕に記載の治療剤;
〔17〕前記FASと結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM類縁体、AIM変異体、及びAIMキメラタンパク質からなる群より選択される、上記〔12〕又は〔13〕に記載の治療剤;
〔18〕前記AIMフラグメントは、AIMタンパク質の機能ドメイン及び保存領域を含むフラグメントから選択される、上記〔15〕から〔17〕のいずれか1項に記載の治療剤;
〔19〕前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、肝疾患、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、上記〔12〕から〔18〕のいずれか1項に記載の治療剤;
〔20〕前記対象は、ヒトである、上記〔12〕から〔19〕のいずれか1項に記載の治療剤;
〔21〕前記対象は、非ヒト哺乳動物又は鳥類である、上記〔12〕から〔19〕のいずれか1項に記載の治療剤;
〔22〕前記対象は、イヌ又はネコである、上記〔21〕に記載の治療剤;
〔23〕上記〔12〕から〔22〕のいずれか1項に記載の治療剤を投与する工程を含む、メタボリックシンドローム又はその関連疾患の予防又は治療方法;及び
〔24〕AIM阻害剤の製造方法であって、
 AIMをプロテアーゼにより処理し、AIMフラグメントを得る工程と、
 前記AIMフラグメントを、AIMの機能ドメイン又は保存領域に結合する抗AIM抗体を固定したアフィニティカラムで精製する工程と、を含む、方法、
に関する。
 本発明に係る方法によれば、AIMを阻害することにより、肥満した個体で脂肪組織にマクロファージが浸潤するのを抑制することを通じて、メタボリックシンドロームの致死的な疾患群の発症の連鎖をその上流において止めることができる。
図1は、肥満マウスと正常マウスの血中AIM濃度を測定した結果を示す。 図2は、肥満AIM+/+マウスと肥満AIM-/-マウスの内臓脂肪組織におけるマクロファージ浸潤を抗マクロファージモノクローナル抗体(F4/80)等によって検出した結果を示す。 図3は、AIM-/-マウスにrAIMを全身投与し、3週間後に内臓脂肪組織におけるマクロファージ浸潤を抗マクロファージモノクローナル抗体(F4/80)等によって検出した結果を示す。 図4は、マクロファージ遊走能を測定した結果を示す。 図5は、AIM+/+マウス及びAIM-/-マウスにHFDを12週間負荷後、解剖した結果を示す写真である。 図6は、AIM+/+マウス及びAIM-/-マウスにHFDを12週間負荷後、体重及び総脂肪量を測定した結果を示す。 図7は、HFD負荷前のAIM+/+マウス及びAIM-/-マウスに対し、グルコース負荷試験を行った結果を示す。 図8は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、グルコース負荷試験を行った結果を示す。 図9は、HFD負荷前のAIM+/+マウス及びAIM-/-マウスに対し、インスリン負荷試験を行った結果を示す。 図10は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、インスリン負荷試験を行った結果を示す。 図11は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、インスリン感受性試験を行った結果を示す。 図12は、正常マウス(高脂肪食負荷を行っていないマウス)及び肥満マウスの内臓脂肪組織から作製した切片を、抗マクロファージモノクローナル抗体、抗マウスAIMポリクローナル抗体、及び抗IL-6抗体で染色した結果を示す。 図13は、3T3-L1細胞の培養におけるrAIM負荷のスケジュールを示す。 図14は、図13に示すスケジュールのday 12において、細胞をoil-red-Oで染色した結果を示す。 図15は、図13に示すスケジュールのday 12において、定量的リアルタイムPCRによって脂肪細胞マーカーの発現を測定した結果を示す。 図16Aは、成熟脂肪細胞にrAIM負荷を行い、oil-red-O染色した結果を示す。図16Bは脂肪滴のサイズ、図16Cは単位面積当たりの脂肪滴含有細胞の数を示す。 図17は、成熟脂肪細胞にrAIM負荷を行い、培養上清中のグリセロール及び遊離脂肪酸を測定した結果を示す。 図18は、成熟脂肪細胞のrAIM負荷を行い、定量的リアルタイムPCRによって脂肪滴形成関連遺伝子の発現を測定した結果を示す。 図19は、AIM+/+マウスとAIM-/-マウスに、HFDを20日間与えた後、脂肪組織の切片をHE染色した結果を示す。 図20Aは、分化した、又は未文化の3T3-L1細胞にrAIM負荷を行い、AIM、PPARγ2、及びDAPIを染色した結果を示す。図20Bは、図20Aの結果に基づいて、PPARγ2の発現量ごとに細胞を分類し、各細胞100個当たりのrAIM含有細胞の数を計測した結果を示す。図20Cは、3T3-L1細胞にrAIM負荷を行い、AIMとエンドソーム、又はAIMとリソソームを染色した結果を示す。 図21は、図20と同様のサンプルを使用して、AIMを金微粒子で標識し、電子顕微鏡で観察した結果を示す。 図22は、3T3-L1細胞をCD36中和抗体で処理し、rAIMのエンドサイトーシスへの効果を調べた結果である。 図23は、CD36+/+マウスとCD36-/-マウスにrAIMを静注し、脂肪組織から調製した切片においてAIMとマクロファージを染色した結果を示す。 図24は、AIM-/-マウスの脂肪組織に、HAタグを付けたrAIMを直接注射投与し、脂肪組織を用いて抗HA抗体を用いて共免疫沈降を行い、ウエスタンブロッティングで沈降物中のFASを検出した結果を示す。 図25は、HEK 293T細胞内において、HAタグを付けたrAIMと、FLAGタグを付けたFASとの結合を、抗Flag抗体又は抗HA抗体を用いて共免疫沈降によって確認した結果である。 図26は、FASの各ドメインをFlagタグで標識し、AIM-HAを安定的に発現するHEK 293T細胞内で発現させ、抗Flag抗体又は抗HA抗体を用いた共免疫沈降で、FASとAIMの結合を確認した結果である。 図27は、rAIM(5μg/ml)の存在下、非存在下、及びC75(25μM)存在下で6日間処理した3T3-L1細胞におけるFAS活性を測定した結果である。 図28は、AIM+/+マウス及びAIM-/-マウスの脂肪組織におけるFAS活性を測定した結果である。 図29は、脂肪内局所注射によってrAIM又はBSAを3時間前に投与したAIM-/-マウスの脂肪組織におけるFAS活性を測定した結果である。 図30は、ヒトAIMとマウスAIMのアミノ酸配列とコンセンサスを示す。 図31は、FASの構造を示す概念図である。 図32は、HFDを12週間与えたAIM+/+マウスと、AIM-/-マウスにおける内臓脂肪量及び皮下脂肪量の変化を測定した結果を示す。 図33は、AIM-/-マウスに、5週間、HFDを与えながらrAIM又はBSAを週2回投与し、体重の変化を測定した結果を示す。 図34、AIM-/-マウスに、5週間、HFDを与えながらrAIM又はBSAを週2回投与し、内臓脂肪量及び皮下脂肪量の変化を測定した結果を示す。 図35は、図33及び34に示す実験の後、AIM-/-マウスの内臓脂肪における、脂肪細胞マーカー等のmRNAレベルを測定した結果を示す。 図36は、イヌ、ネコ及びマウス血清中のAIMタンパク質をウエスタンブロッティングによって検出した結果を示す。 図37は、スクリーニングによって得られた低分子化合物によるAIM抑制活性をFSP27の発現で評価した結果である。 図38は、スクリーニングによって得られた低分子化合物によるAIM抑制活性をFSP27の発現で評価した結果である。 図39は、スクリーニングによって得られた抗AIM抗体によるAIMに対する中和活性をFSP27の発現で評価した結果である。 図40は、人間ドック受診者約550名の血中AIM濃度を測定した結果を示す。 図41は、血液提供者(外国人を含む)の中から、BMIが18~25の人、及び35以上の人を無作為に選択し、血中AIM濃度を測定した結果を示す。
 本発明に係るメタボリックシンドローム及びその関連疾患の予防又は治療方法は、AIM阻害剤を対象に投与する工程を含む。
 本明細書において、メタボリックシンドロームとは、通常内臓脂肪型肥満(内臓脂肪の蓄積)を端緒とし、脂肪組織の慢性炎症、脂肪細胞からのアディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常等を経て、インスリン抵抗性を惹起し、その後糖尿病、高脂血症、高血圧等の生活習慣病を引き起こし、最終的には各種の動脈硬化性疾患の発症に至りうる一連の疾患連鎖を表す概念である。疾患連鎖の下流には、肝疾患、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患等が含まれうる。
 本明細書において、メタボリックシンドローム及び関連疾患とは、メタボリックシンドロームの発症又は進行の機序、及びメタボリックシンドロームの発症又は進行の過程で生じる様々な異常に基づくあらゆる疾患、症状及び異常を含む。例えば、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、肝疾患(脂肪肝、肝癌を含む)、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常を含むがこれらに限定されない。
 本明細書において、メタボリックシンドローム及びその関連疾患の予防又は治療とは、その最も広い意味で用いられ、例えば、インスリン抵抗性の防止、遅延、改善;メタボリックシンドローム及びその関連疾患の発症の遅延、防止、改善;メタボリックシンドローム及びその関連疾患に関連する一つ又は複数の症状の緩和;メタボリックシンドローム及びその関連疾患の診断基準における各項目の数値の改善、等を意味する。
 メタボリックシンドロームの診断基準における項目としては、例えば、腹部肥満の指標となるウエスト径、血清トリグリセリド値、HDLコレステロール値、血圧、空腹時血糖値、耐糖能、インスリン抵抗性、尿中アルブミン量、等が挙げられる。
 本明細書において、AIM阻害剤とは、AIMタンパク質の機能又は発現を抑制することによって、生体内におけるAIMタンパク質の活性を阻害する物質を意味し、例えば、低分子化合物、高分子化合物、ペプチド、タンパク質、核酸等が挙げられるがこれらに限定されない。
 本明細書において、「AIM」とは、上述のとおり、SRCRスーパーファミリーのメンバーである可溶性タンパク質である。一例として、ヒトAIM及びマウスAIMのアミノ酸配列を図30に示す。
 後述する実施例10に示すとおり、健常人(人間ドックを受けるような、病気療養中でない者)の多くにおいて、血中AIM濃度は5~20μg/mlである。また、実施例11に示すとおり、BMI35以上の人は、BMI18~25の人に比較して、血中AIM濃度が有意に高い。
 本発明のAIM阻害剤はどのような種におけるAIMを阻害するものであってもよい。例えば、ヒト、ヒト以外の哺乳類(例えば、マウス、ラット、モルモット、ウサギ、イヌ、ネコ、ブタ、ウシ、ウマ、サル)、鳥類等におけるAIMの相同タンパク質に対する阻害剤も、本発明のAIM阻害剤に該当する。当業者は、他の哺乳動物又は鳥類において、あるタンパク質がAIMの相同タンパク質であるか否か、配列類似性の高さや機能解析により判断することができる。例えば、マウスAIMとヒトAIMとではアミノ酸配列の相同性が80%程度と高い。また、マウスAIMとヒトAIMとでは、SRCRドメインにおけるコンセンサスなシーケンス(CD5、CD6など、SRCRドメインを有する他の分子においても保存されているアミノ酸配列)が完全に一致している。
 例として、ヒト、チンパンジー、イヌ、マウス、及びラットのAIMのアミノ酸配列を、それぞれ配列番号:1、22、23、24及び25に示す。
 また、本発明のAIM阻害剤は、AIMの類縁体や変異体を阻害するものであってもよい。AIMの類縁体や変異体としては、例えば、AIMのアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換又は付加されたタンパク質であって、且つAIMの機能を保持するものが挙げられる。当業者は、あるタンパク質がAIMの類縁体又は変異体であるか否か、配列類似性の高さや機能解析によって判断することができる。
 本発明においてAIM阻害剤が阻害するAIMの機能は、脂肪組織にマクロファージを浸潤させる機能、及び、脂肪組織にマクロファージを浸潤させるために必要であって、AIMが直接的に又は間接的に発揮するあらゆる機能を意味する。脂肪組織にマクロファージを浸潤させるために必要であって、AIMが直接的に又は間接的に発揮するあらゆる機能としては、例えば、脂肪細胞表面のCD36に結合する機能;エンドサイトーシスにより脂肪細胞に取り込まれる機能;脂肪細胞内でFASと結合する機能;FASの酵素活性を抑制する機能;脂肪滴融解を促進する機能;脂肪滴融解により、マクロファージ遊走を引き起こす機能、等が挙げられる。
 これらのいずれかのAIMの機能を阻害することによって、マクロファージが脂肪組織に浸潤し、脂肪組織及び全身に慢性的な炎症が生じるのを防ぐことができる。その結果、肥満しても、インスリン抵抗性が引き起こされず、メタボリックシンドロームの連鎖的な疾患の発症を上流で止めることができる。
(AIMの機能を抑制するAIM阻害剤)
 AIMの機能を抑制するAIM阻害剤は、AIMに直接的に又は間接的に作用することによって、AIMの機能の全部又は一部を抑制する。AIMの機能を抑制する機序としては、例えば、AIMの血液中での安定性を低下させること、AIMとCD36との結合を阻害すること、AIMが標的細胞に取り込まれるのを阻害すること、AIMが標的細胞に取り込まれることを阻害すること、AIMがエンドソームから細胞質に移行することを阻害すること、AIMがFASと結合することを阻害すること、等が挙げられるがこれらに限定されない。
 AIMの血液中での安定性を低下させるAIM阻害剤を投与すれば、AIMはその機能を果たすことなく短時間で分解される。
 AIMとCD36との結合を阻害するAIM阻害剤を投与すれば、AIMがエンドサイトーシスで標的細胞に取り込まれるのを抑制することにより、AIMの機能を阻害することができる。
 AIMとCD36との結合を阻害するものとしては、タンパク質間の結合を阻害するあらゆる物質を使用することができるが、例えば、抗AIM抗体又は抗CD36抗体が挙げられる。後述する参考例に示されるとおり、抗CD36抗体を投与することにより、AIMが標的細胞に取り込まれるのを抑制することができる。抗AIM抗体は、AIMにおけるCD36との結合部位をエピトープとして認識するものが好ましく、抗CD36抗体は、CD36におけるAIMとの結合部位をエピトープとして認識するものが好ましい。
 本明細書において「抗体」は抗体断片も含むものとし、モノクローナル抗体、ポリクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、単鎖抗体、Fab断片、F(ab')2抗体、scFv、二重特異抗体、合成抗体等であり得る。
 これらの抗体は、当業者に公知の方法に従って作製することができる。例えば、抗AIMモノクローナル抗体は、AIMで免疫した非ヒト哺乳動物から抗体産生細胞を単離し、これを骨髄腫細胞等と融合させてハイブリドーマを作製し、このハイブリドーマが産生した抗体を精製することによって得ることができる。また、ポリクローナル抗体は、AIMで免疫した動物の血清等から得ることができる。
 ここで、免疫に用いるAIMは、全長であっても断片であってもよく、当業者が適宜決定することができる。断片である場合、CD36との結合部位を含む断片であることが好ましい。
 また、一旦AIMとCD36との結合を効率よく阻害する非ヒトモノクローナル抗体が得られれば、これを遺伝子組換え法により産生させることもできる。例えば、当該抗AIMモノクローナル抗体を産生するハイブリドーマから標準的な手法により全RNAを調製し、市販のキットを用いて抗AIM抗体をコードするmRNAを調製した後、逆転写酵素を用いてcDNAを合成すれば、抗AIM抗体をコードするDNAを得ることができる。かかるDNAを含む発現ベクターを適当な宿主細胞にトランスフェクトし、適当な条件で培養することにより、抗AIM抗体を発現させることができる。
 また、上記cDNAを鋳型とするPCR法によって、抗AIM抗体のCDR領域をコードするDNAを得ることもできる。かかるCDR領域をコードするDNAを利用して、常法に従って遺伝子組換え法によりヒト抗体やヒト化抗体を作製することもできる。例えば、非ヒト抗体に由来するCDR領域をコードするDNAと、ヒト抗体のフレームワーク領域を連結するように設計したDNAをPCR法により合成し、さらにヒト抗体定常領域をコードするDNAと連結することによって、ヒト抗体をコードするDNAを得ることができる。
 かかるDNAを公知の方法(制限酵素を利用する方法等)で、発現ベクター(例えば、プラスミド、レトロウイルス、アデノウイルス、アデノ随伴ウイルス(AAV)、カリフラワーモザイクウイルスやタバコモザイクウイルスなどの植物ウイルス、コスミド、YAC、EBV由来エピソーム)に挿入し、当該発現ベクターを適当な宿主細胞にトランスフェクトさせ、形質転換体を得る。なお、発現ベクターは、さらに抗体遺伝子の発現を調節するプロモータ、複製起点、選択マーカー遺伝子等を含むことができる。プロモータ及び複製起点は、宿主細胞とベクターの種類によって適宜選択することができる。
 次に、形質転換体を適当な条件で培養することにより、抗AIM抗体のヒト抗体を発現させることができる。
 宿主細胞としては、例えば、哺乳類細胞(CHO細胞、COS細胞、ミエローマ細胞、HeLa細胞、Vero細胞等)、昆虫細胞、植物細胞、真菌細胞(サッカロミセス属、アスペルギルス属等)といった真核細胞や、大腸菌(E.Coli)、枯草菌などの原核細胞を用いることができる。
 発現させた抗体は、公知の方法(例えば、プロテインA等を用いたアフィニティカラム、その他のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等)を適宜組み合わせて単離・精製することができる。
 本発明の抗AIM抗体が、Fab断片、F(ab')2抗体、scFv等の低分子抗体である場合は、低分子抗体をコードするDNAを用いて上記方法で発現させることもでき、また、抗体をパパイン、ペプシン等の酵素で処理して作製することもできる。
 また、AIMとCD36との結合を阻害するAIM阻害剤として、抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質を用いることもできる。かかるタンパク質は、AIMと拮抗的にCD36に結合し、AIMがCD36に結合してFASの活性を抑制することを阻害する。
 抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質としては、例えば、AIMフラグメント、AIM改変体又はそのフラグメント、AIMキメラタンパク質又はそのフラグメントが挙げられる。
 AIMフラグメントは、AIMの部分ペプチドからなる限り特に限定されないが、例えば、AIMの機能ドメイン又は保存領域を含む5~150アミノ酸のフラグメントが挙げられる。
 また、AIM改変体としては、AIMのアミノ酸配列において、1~10個のアミノ酸が欠失、置換又は付加されたタンパク質であって、FAS抑制活性を有しないものが挙げられる。
 AIMキメラタンパク質としては、ヒトのAIMタンパク質の一部と他の動物(例えば、マウス)に由来するAIMタンパク質とのキメラタンパク質を意味する。
 抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質としては、AIM改変体又はAIMキメラタンパク質のフラグメントも含まれる。
 抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質は、常法により、これをコードするDNAを得て、遺伝子組み換え法によって発現させることができる。CD36に対する親和性や血中安定性を高めるため、アミノ酸配列の改変や、修飾を適宜加えることができる。必要に応じて、他のタンパク質やペプチドとの融合タンパク質として発現させてもよい。
 また、AIMフラグメント、AIM改変体フラグメント、AIMキメラタンパク質のフラグメントは、それぞれの全長タンパク質を得てから、タンパク質分解酵素で処理することによって得ることも可能である。
また、AIMとCD36との結合を阻害するAIM阻害剤として、CD36と結合し、且つFAS抑制活性を有しないタンパク質を用いることもできる。かかるタンパク質は、AIMと拮抗的にCD36に結合し、AIMがCD36に結合してFASの活性を抑制することを阻害する。
 CD36と結合し、且つFAS抑制活性を有しないタンパク質としては、例えば、AIMフラグメント、AIM改変体又はそのフラグメント、AIMキメラタンパク質又はそのフラグメントが挙げられる。
 また、AIMが標的細胞に取り込まれるのを阻害するAIM阻害剤を投与すれば、AIMが標的細胞中でFASと結合しその酵素活性を抑制する機能を阻害することができる。
 また、AIMがエンドソームから細胞質に移行することを阻害するAIM阻害剤も、AIMが標的細胞中でFASと結合しその酵素活性を抑制するのを阻害する。
 AIMがFASと結合することを阻害するAIM阻害剤を投与すれば、AIMのFASに対する作用を直接的に阻害することができ、例えば、FASに結合し、且つFAS抑制活性を有しないタンパク質を挙げることができる。かかるタンパク質は、AIMと拮抗的にFASに結合し、AIMがFASに結合してその活性を抑制することを阻害する。
 かかるタンパク質としては、DH、ER、TE及びCCからなる群より選択される少なくとも一つのFASのドメインと結合するものが好ましい。
 FASと結合し、且つFAS抑制活性を有しないタンパク質としては、例えば、AIMフラグメント、AIM改変体又はそのフラグメント、AIMキメラタンパク質又はそのフラグメントが挙げられる。
 以上説明したAIMの機能を抑制するAIM阻害剤は、AIMが、脂肪前駆細胞の成熟脂肪細胞への分化を抑制すること、脂肪細胞における脂肪滴融解を誘導すること、脂肪細胞を縮小させること等を利用したスクリーニング方法で、候補化合物の中から容易に選択することができる。
 例えば、AIM阻害剤は、
 (i) 脂肪前駆細胞を、脂肪細胞に分化する条件で培養し、培地にAIMのみ、又は、AIMと候補化合物を加える工程と、
 (ii) 前記脂肪前駆細胞の脂肪細胞への分化を評価する工程と、
 (iii) AIMと候補化合物を加えたときに、AIMのみを加えたときよりも分化の誘導効率が上昇するものを選択する工程と、
を含むスクリーニング方法により、容易に選択することができる。
 工程(ii)は、例えば、脂肪細胞中の脂肪滴の生成や、脂肪細胞マーカー、脂肪前駆細胞マーカー、及び/又は間葉系幹細胞マーカーの発現を指標として行うことができる。
 また、AIM阻害剤は、
 (a) 脂肪細胞を培養し、培地にAIMのみ、又は、AIMと候補化合物を加える工程と、
 (b) 前記脂肪細胞中の脂肪滴融解を評価する工程と、
 (c) AIMと候補化合物を加えたときに、AIMのみを加えたときよりも脂肪滴融解効率が低下ものを選択する工程と、
を含むスクリーニング方法によっても、容易に選択することができる。
 工程(b)は、例えば、脂肪細胞の培養上清中のグリセロール又は遊離脂肪酸量、脂肪滴形成関連遺伝子の発現等を指標として行うことができる。
 また、AIM阻害剤は、
 (1) 脂肪細胞を培養し、培地にAIMのみ、又は、AIMと候補化合物を加える工程と、
 (2) 前記脂肪細胞の大きさを評価する工程と、
 (3) AIMと候補化合物を加えたときに、AIMのみを加えたときよりも脂肪細胞が大きくなる化合物を選択する工程と、
を含むスクリーニング方法によっても、容易に選択することができる。
 工程(2)は、例えば、細胞をヘマトキシリン-エオシン染色することによって行うことができる。
 またAIM阻害剤は、
 候補化合物の存在下又は非存在下で、AIMを培地に加えて脂肪細胞又は脂肪前駆細胞を培養する工程と、
 前記培養後、前記細胞へのAIMの取り込みを評価する工程と、
を含む。
 細胞へのAIMの取り込みは、例えば、細胞の培養工程後、細胞を固定し、透過性を付与してから検出可能に標識した抗AIM抗体を加えてインキュベートすることによって検出することができる。
 候補化合物の存在下で細胞への取り込みが減少している場合、当該候補化合物はAIMが細胞に取り込まれるのを阻害することによって、AIMの機能を阻害していると評価することができる。
 また、AIM阻害剤は、
 候補化合物の存在下又は非存在下で、AIMを培地に加えて脂肪細胞又は脂肪前駆細胞を培養する工程と、
 前記細胞中でのAIMとFASの結合を評価する工程と、
を含む。
 AIMとFASの結合は、例えば細胞のライゼートを調製し、抗AIM抗体を用いて免疫沈降を行ってから、免疫沈降物に対して抗FAS抗体を用いたイムノブロッティングを行うことにより確認できる。
 候補化合物の存在下で、AIMとFASの結合が減少している場合、当該候補化合物はAIMとFASの結合を阻害することによって、AIMの機能を阻害していると評価することができる。
 AIMの機能を阻害する低分子化合物として、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 後述する実施例に示すとおり、これらの化合物は、本来AIMの添加によって誘導される脂肪滴形成関連遺伝子FSP27 mRNA発現の著しい減少を有意に抑制し、AIMの機能を阻害することが確認された。
 また、AIMの機能を阻害する分子として、後述する実施例9で作製した中和抗体(クローン11、12及び17)も挙げられる。これらの中和抗体も、本来AIMの添加によって誘導される脂肪滴形成関連遺伝子FSP27 mRNA発現の著しい減少を有意に抑制し、AIMの機能を阻害することが確認された。
(AIMの発現を抑制するAIM抑制剤)
 AIMの発現を抑制するAIM阻害剤は、マクロファージにおけるAIMの発現量を低下させることによって、AIMの機能の全部又は一部を抑制するものである。
 AIMの発現を抑制するAIM阻害剤としては、例えば、AIM遺伝子に対してRNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、及びこれらをコードする核酸を挙げることができる。
 RNAi効果は、二本鎖核酸によって誘導される配列特異的な遺伝子発現抑制機構である。標的特異性が非常に高く、生体内にもともと存在する遺伝子発現抑制メカニズムを利用する方法なので安全性が高い。
 RNAi効果を有する二本鎖核酸としては、例えば、siRNAが挙げられる。siRNAは、哺乳動物細胞に用いられる場合、通常19~30塩基程度、好ましくは21塩基~25塩基程度の二本鎖RNAである。また、本発明のAIM阻害剤としては、酵素(Dicer)により切断されてsiRNAとなり得るより長い二本鎖RNAを用いることもできる。
 RNAi効果を有する二本鎖核酸は、一般に、その一方が標的核酸の一部と相補的な塩基配列を有し、他方がこれに相補的な配列を有する。RNAi効果を有する二本鎖核酸は、互いに3’末端に2塩基の突出塩基(オーバーハング)を有していることが一般的であるが、オーバーハングを有しないブラントエンド型であってもよい。例えば、25塩基のブラントエンドRNAは、インターフェロン応答遺伝子の活性化を最小にし、センス鎖由来のオフターゲット効果を防ぎ、血清中で安定性が非常に高いという利点を有し、in vivoでの使用にも適している。
 RNAi効果を有する二本鎖核酸は、標的遺伝子の塩基配列に基づき、公知の方法に従って設計することができる。また、RNAi効果を有する二本鎖核酸は、二本鎖RNAであってもよいし、DNA-RNAキメラ型二本鎖核酸であってもよく、人工核酸や各種の修飾が施された核酸であってもよい。
 アンチセンス核酸は、標的遺伝子(基本的には転写産物であるmRNA)に相補的な塩基配列を有し、一般的には10塩基長~100塩基長、好ましくは15塩基長~30塩基長の一本鎖核酸である。アンチセンス核酸を細胞内に導入し、標的遺伝子にハイブリダイズさせることによって遺伝子の発現が阻害される。アンチセンス核酸は、標的遺伝子の発現阻害効果が得られる限り、標的遺伝子と完全に相補的でなくてもよい。アンチセンス核酸は、公知のソフトウエア等を用いて当業者が適宜設計することができる。アンチセンス核酸は、DNA、RNA、DNA-RNAキメラのいずれであってもよく、また修飾されていてもよい。
 リボザイムは、標的RNAを触媒的に加水分解する核酸分子であり、標的RNAと相補的な配列を有するアンチセンス領域と、切断反応を担う触媒中心領域から構成されている。リボザイムは当業者が公知の方法に従って適宜設計することができる。リボザイムは一般的にはRNA分子であるが、DNA-RNAキメラ型分子を用いることもできる。
 上述したRNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイムのいずれかをコードする核酸も、本発明のAIM阻害剤として用いることができる。かかる核酸を含むベクターをマクロファージ内に導入すれば、細胞内でRNAi効果を有する二本鎖核酸、アンチセンス核酸、及びリボザイムが発現し、それぞれAIMの発現抑制効果を発揮する。
 RNAi効果を有する二本鎖核酸をコードする核酸としては、二本鎖のそれぞれをコードするDNAを用いてもよいし、二本鎖核酸がループを介して連結されてできる一本鎖核酸をコードするDNAを用いてもよい。後者の場合、細胞内で転写により得られる一本鎖RNAは、その相補的な部分が分子内でハイブリダイズし、ヘアピン型の構造を取る。このRNAはshRNA(short hairpin RNA)と呼ばれる。shRNAは細胞質に移行すると酵素(Dicer)によってループ部分が切断され、二本鎖RNAとなって、RNAi効果を発揮する。
 本発明に係るメタボリックシンドロームの予防又は治療方法は、上述したAIM阻害剤を対象に投与する。
 本明細書において「対象」は、脂肪組織へのマクロファージの浸潤をAIMが引き起こすことによってメタボリックシンドロームを罹患し得るすべての生物を含み、特に限定されないが、例えば、ヒト又はヒト以外の哺乳動物(例えば、マウス、ラット、ウサギ、イヌ、ネコ、ブタ、ウシ、ウマ、サル)、鳥類等が挙げられる。
 例えば、マウスAIMとヒトAIMとではアミノ酸配列の相同性が80%程度と高い。また、マウスAIMとヒトAIMとでは、SRCRドメインにおけるコンセンサスなシーケンス(CD5、CD6など、SRCRドメインを有する他の分子においても保存されているアミノ酸配列)が完全に一致していることから、本発明の方法は、他の動物においても有効であるものと理解される。
 また、イヌ、ネコ等のペットも、高脂肪な餌の与えすぎや運動不足によって近年メタボリックシンドロームが問題となっている。従って、本発明の方法はこれらの動物にも特に有用である。
 本発明に係る方法は、血中AIM濃度が通常より上昇している対象に用いることが好ましい。後述する実施例に示すとおり、AIMの血液中の濃度は肥満に伴って上昇する。
 一方で、本発明者らはこれまでに、血中AIM濃度が低~中濃度の場合には、AIMは脂肪組織において脂肪前駆細胞の脂肪細胞への分化を抑制し、脂肪滴融解を促進することを見出している。
 これらの知見から、AIMは、血中AIM濃度が低~中濃度の場合、脂肪組織において抗肥満効果を示すが、高濃度になると、脂肪組織へマクロファージを誘導し、脂肪組織の炎症を惹起するといえる。
 従って、AIM阻害剤をメタボリックシンドロームの予防又は治療剤として用いる場合、対象において、AIMの血中濃度が通常より上昇していることが好ましい。
 本発明において、AIM阻害剤は、経口的又は非経口的に、全身にあるいは局所的に投与することができる。例えば、点滴などの静脈内注射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤などを選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。
 また、本発明のAIM阻害剤には、保存剤や安定剤等の製剤上許容しうる担体が添加されていてもよい。製剤上許容しうる担体とは、AIM阻害剤(有効成分)とともに対象に投与可能な材料を意味する。製剤上許容しうる担体は、薬理学的及び製剤学的に許容されるものであればよく、特に制限されない。例えば、水、食塩水、リン酸緩衝液、デキストロース、グリセロール、エタノール等薬学的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、界面活性剤、賦形剤、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるがこれらに限定されない。
 本発明のAIM阻害剤は、通常の医療製剤の形態に製剤化することができる。当該医療製剤は、上記担体を用いて適宜調製される。医療製剤の形態としては特に限定はなく、治療目的に応じて適宜選択して使用される。その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、坐剤、注射剤(液剤、懸濁剤、乳剤)等が挙げられる。これら製剤は、通常用いられる方法により製造すればよい。
 本発明のAIM阻害剤が核酸を含む場合は、リポソーム、高分子ミセル、カチオン性キャリア等のキャリアに核酸を封入して製剤化することができる。また、プロタミンのような核酸キャリアを利用してもよい。これらのキャリアに抗体等を結合させて、患部を標的化することも好ましい。また、核酸にコレステロール等を結合させて血中滞留性を高めることも可能である。また、本発明のAIM阻害剤が、siRNA等をコードする核酸を含み、投与した後に細胞内で発現させるものである場合、当該核酸を、レトロウイルス、アデノウイルス、センダイウイルスなどのウイルスベクターやリポソームなどの非ウイルスベクターに挿入して細胞内に導入することもできる。
 また、本発明のAIM阻害剤に含まれる有効成分の量は、当業者が有効成分の種類に応じて適宜決定することができる。例えば、抗AIM抗体等の抗体の場合、投与量は、0.025~50mg/kg、好ましくは0.1~50mg/kgであり、より好ましくは0.1~25mg/kg、さらに好ましくは0.1~10mg/kg又は0.1~3mg/kgとすることができるが、これに限定されない。
 また、本発明のAIM阻害剤は、抗動脈硬化薬、脂質降下薬、FAS阻害剤等、AIM阻害剤と同じ作用効果を有する他の医薬と併用投与することも好ましい。AIM阻害剤と併用投与できる医薬としては、例えば、Probucol、Fibrates、Statins、Aspirin、Coxibsからなる群より選択される少なくとも一つの抗動脈硬化薬、、C75、C93、Cerulenin、PHS11A、2-octanoic acid、thiolactomycin、及び、下記式(1)で表される化合物(R1は水素原子またはメチル基を示す)若しくはその薬理学的に許容される塩からなる群より選択される少なくとも一つのFAS阻害剤が挙げられるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000005
 なお、併用投与とは、投与した2以上の薬剤が相加的又は相乗的に効果を示す限り、それぞれの投与時期又は投与量は限定されず、同時に投与しても、別々に投与してもよい。
 上述のとおり、これまでは脂肪細胞の分化の抑制や脂肪滴融解(lipolysis)を引き起こし、それ自体に抗肥満効果が認められていたAIMタンパク質であるが、今般、後述する実施例に示されるとおり、マクロファージの脂肪組織への浸潤を誘導することが確認された。また、AIMタンパク質をノックアウトすると内臓脂肪型肥満になっても糖代謝は悪化しないことが示された。
 従って、本発明に係るメタボリックシンドロームの予防又は治療方法によれば、AIM阻害剤を投与することによって、脂肪組織にM1マクロファージが浸潤するのを防ぐことを通じて脂肪組織及び全身の慢性的な炎症を防ぐことにより、ドミノ倒し的に進行する疾患の連鎖をその上流で止めることができるので、メタボリックシンドロームを根本的に予防、治療することが可能である。
 また、本発明は、AIM阻害剤の製造方法も包含する。
 AIM阻害剤の製造方法としては、
 AIMをプロテアーゼによって処理し、AIMの部分ペプチドを得る工程と、当該部分ペプチドをAIMの機能ドメイン又は保存領域に結合する抗AIM抗体を固定したアフィニティカラムで精製する工程と、を含む。
 以下、本発明を実施例に基づいて具体的に説明するが何らこれらに限定されるものではない。
実施例1.肥満に伴う血中AIM濃度の上昇
 C57BL・6(B6)マウスに高脂肪食(HFD, fat calorie: 60%)を20週間与えた肥満マウスと、正常マウスの血清中のAIM濃度を測定した。結果を図1に示す。
 肥満マウス(obese)の血清AIM濃度は、正常マウス(lean)に比較して、4倍以上であった。
実施例2.AIMによる脂肪組織へのマクロファージ浸潤の誘導
 HFDを与えて肥満させたAIM+/+マウス及びAIM-/-マウスから内臓脂肪組織を採取し、この脂肪組織から作製したパラフィン切片を、抗マクロファージモノクローナル抗体(F4/80)、抗マウスAIMポリクローナル抗体(SA-1)、抗IL-6抗体(MP520F3, R & D systems)にて染色した。
 結果を図2に示す。図2に示すとおり、AIMを発現する正常なマウス(AIM+/+)においてはM1マクロファージが脂肪組織に浸潤したが、AIMノックアウトマウス(AIM-/-)においては、脂肪組織へのマクロファージの浸潤はほとんど見られなかった。
 なお、上述のとおり、AIMはマクロファージのアポトーシス抑制機能を有する。従って、AIMノックアウトマウスの脂肪組織でマクロファージが検出されないのは、脂肪組織にマクロファージが浸潤した後、アポトーシスが生じたことによる可能性があった。この可能性を確認するため、肥満したAIMノックアウトマウスと肥満した正常マウスの脂肪組織中におけるマクロファージのアポトーシスを測定したところ、その程度に差はなかった(data not shown)。
 従って、脂肪組織でマクロファージが検出されなかったのは、マクロファージが脂肪組織に浸潤しなかったためであることが確認された。
 次に、AIMノックアウトマウスにrAIMを静脈注射により全身投与した(50μg/body/injection)。3週間投与後、内臓脂肪組織から作製した切片を、抗マクロファージモノクローナル抗体(F4/80)で染色した。
 結果を図3に示す。図示されたとおり、AIMノックアウトマウスにrAIMを全身投与すると、脂肪組織にマクロファージが浸潤することが観察された。
 以上の結果から、AIMが脂肪組織へのマクロファージ浸潤を誘導していること、従って、AIMを阻害すれば、内臓脂肪型肥満においても脂肪組織へのマクロファージ浸潤を抑制できることが示された。
実施例3.マクロファージ遊走のメカニズムの解明
 マウスマクロファージ細胞株RAW264.8 1x105/wellの24時間での遊走能を解析した。
 CELL BIOLABS社、CytoSelectTM96-Well Cell Migration Assay (5 mm, Fluorometric format)を使用した。結果を図4に示す。それぞれのRFU値からバックグラウンド(medium only)を差し引いた値を示す。Fatty Acids CocktailはMyristoleic acid、Palmitic acid、Oleic acid、Linoleic acidからなる。
 分化誘導8日目の成熟した3T3-L1脂肪細胞を6日間培養した細胞上清(3T3-L1 CM)、rAIMと共に培養した上清(3T3-L1+AIM CM)、C75と共に培養した上清(3T3-L1+C75 CM)を用いた。CM: conditioned medium, ND: not detected. **: p<0.01
 後述する参考例に示すとおり、AIMは成熟脂肪細胞における脂肪滴融解を誘導する。その結果、培養上清中に脂肪滴由来の遊離脂肪酸とグリセロールが放出される。
 マクロファージ遊走実験の結果と併せると、肥満に伴って血中濃度が上昇したAIMが脂肪組織において脂肪滴融解を誘導し、これによって脂肪組織へのマクロファージ浸潤が誘導されていることが強く示唆された。
実施例4.肥満したAIMノックアウトマウスにおける糖代謝の悪化の抑制
 野生型マウスと、AIMノックアウトマウスについて、HFDを12週間負荷し、前(Lean)と後(Obese)において、グルコース負荷試験とインスリン負荷試験により、糖代謝を測定するとともに、インスリン感受性試験を行った。
 グルコース負荷試験は、グルコース負荷(3g/kg body;腹腔内注射)後120分間、血糖値を30分ごとに測定し、インスリン負荷試験は、インスリン負荷(0.75U/kg body;腹腔内注射)後120分間、血糖値を30分ごとに測定した。
 インスリン感受性試験は、HFD負荷後のAIM+/+マウスとAIM-/-マウスにインスリンを投与し(0.75U/kg body;静脈注射)、2時間後、組織(白色脂肪組織、腓腹筋、及び肝臓)を採取してタンパク質を精製し、ウエスタンブロッティングにより、リン酸化AKT及びリン酸化GSK3βを測定することにより行った。
 また、それぞれのマウスについて、HFD負荷後の体重及び総脂肪量を測定した。
 図5に負荷後の解剖の結果を、図6に体重及び総脂肪量の測定結果を、図7~10に糖代謝の測定結果を、図11に、インスリン感受性試験の結果を示す。
 図5及び6に示されるとおり、HFD負荷により、AIMノックアウトマウス(AIM-/-)及び正常マウス(AIM+/+)の双方において、内蔵型肥満を生じた。体重及び脂肪組織量の増加はAIMノックアウトマウスのほうが顕著していた。
 しかしながら、図7~10に示されるとおり、肥満した正常マウスにおいては糖代謝が著しく悪化していたところ、肥満したAIMノックアウトマウスにおいては、糖代謝の悪化が見られなかった。
 さらに図11に示されるとおり、AIM-/-マウスは、インスリン投与後、リン酸化AKTとリン酸化GSK3βの発現が見られ、インスリン受容体を介したシグナル伝達が機能していること、即ちインスリン感受性が正常であることが確認された。一方、野生型マウスでは、リン酸化AKTとリン酸化GSK3βが検出されず、インスリン抵抗性を示すことが確認された。
 また、正常血糖高インスリンクランプ法(hyperinsulinemic-euglycemic clamp test)によっても、AIM-/-マウスはインスリン感受性が正常であることを確認した(data not shown)。
 以上の結果は、肥満したAIMノックアウトマウスにおいては脂肪組織にマクロファージが浸潤せず、従って脂肪組織及び全身の炎症反応が抑制され、インスリン感受性が低下しないという結果を裏付けるものであった。
 なお、肥満したAIMノックアウトマウス又は正常マウスから、すい臓ランゲルハンス島を分離し、グルコース負荷によりインスリンの産生及び分泌を調べたところ、両者に差は見られなかった。従って、耐糖能の違いは、インスリン産生・分泌に基づくものではなく、インスリン感受性の差によるものであることが確認された。
参考例1. 脂肪組織中のマクロファージにおけるAIMの発現
 野生型B6マウスに通常の餌を与えた痩せ型マウス(lean)と、高脂肪食(High Fat Diet:HFD、fat calorie 60%)を20週間与えた肥満マウス(obese)から、内臓脂肪組織を採取し、この脂肪組織から作製したパラフィン切片を抗マクロファージモノクローナル抗体(F4/80)、抗マウスAIMポリクローナル抗体(SA-1)、または抗IL-6抗体(MP520F3, R & D systems)にて二重染色した。
 図12に、染色された切片を蛍光顕微鏡で観察した結果の一例を示す。
 抗マクロファージ抗体で染色された肥満マウスの脂肪組織中のマクロファージは、AIM特異的な抗体によっても染色された(obese 左レーン)。AIM陽性マクロファージは、IL-6も陽性であったことから(obese 右レーン)、炎症性マクロファージ(M1)であるものと考えられた。
 一方、痩せ型マウスから採取した脂肪組織内のマクロファージは、AIM、IL-6のいずれも陰性であった。
 また、脂肪細胞でAIMが発現されていないことを確かめるため、肥満マウス由来の脂肪組織(内臓組織の代表として精巣上体脂肪組織を使用)をコラゲナーゼ処理後に分画し、RT-PCRでAIMの発現を調べたが、精製された脂肪細胞においてAIMの発現は見られなかった。さらに、3T3-L1細胞をインスリン、DEX及びIBMXで処理した後、AIMの発現を調べたが、やはり発現は見られなかった。
 以上の結果から、脂肪組織に浸潤したマクロファージがAIMを強く発現していることが確認された。
参考例2. AIMによる脂肪前駆細胞から脂肪細胞への分化の抑制機能
[脂肪滴形成による評価]
 脂肪組織に浸潤したマクロファージが産生するAIMが周辺の脂肪細胞に対してどのような働きをしているのかを調べるため、3T3-L1脂肪前駆細胞(preadipocyte)を成熟脂肪細胞に分化させる培養過程でAIMを負荷する実験を行った。
 図13に示すように、4つのスケジュールA~Dにて3T3-L1細胞の培養を行った。(A)はAIMを負荷せず、(B)は分化誘導刺激開始から10日間(day2-day12)AIMを負荷し、(C)は分化誘導刺激の初期のみ(day2-day4)AIMを負荷し、(D)は分化誘導前の増殖(clonal expansion)期間のみ(day(-2)-day2)AIMを負荷した。
 AIMとしては、マウスの組換えAIMタンパク質(rAIM)を用いた。rAIMは、マウスAIMを発現するベクター(pCAGGS-mAIM-HAプラスミド)をトランスフェクションしたヒト由来HEK293T細胞を無血清培地(FreeStyleTM 293 Expression Medium; Invitrogen)で培養し、その培養上清から抗HA抗体カラムで単離精製することにより調製した。なお、以下に示す他の参考例においても、AIMとしては同様のrAIMタンパクを使用した。AIMの負荷は、培養液に5μg/mlの濃度でAIMを添加することにより行った。
 また、3T3-L1細胞の分化誘導は、図13に示すように、まず3T3-L1細胞を4日間(day(-2)-day2)培養して増殖させ、その後、インスリン、デキサメタゾン(DEX)、イソブチルメチルキサンチン(IBMX)を含有する培養液で2日間(day2-day4)培養することで分化誘導刺激を開始し、さらにインスリンを含有する培養液で2日間(day4-day6)培養することにより行った。
 分化誘導刺激期間(day2-day6)後は、これら分化誘導刺激因子を含有しない培養液にて培養を継続した。そして、分化誘導刺激開始から10日目(day12)の細胞をoil-red-Oにて染色し、3T3-L1細胞から成熟脂肪細胞への分化の状況を観察した。
 図14に、4つのスケジュールA~Dのそれぞれについて、染色後の細胞の顕微鏡写真を示す。
 図14に示すように、スケジュールCにてAIMを分化誘導刺激の初期のみ(day2-day4)負荷した場合には、脂肪滴を有する細胞はほとんど観察されず、3T3-L1細胞の分化はほぼ完全に抑制されていた。すなわち、AIMは、上述の分化誘導因子の存在下で、3T3-L1細胞の分化を抑制した。
 なお、分化誘導因子とAIMとを含有する培養液を調製後、当該培養液から精製カラムを用いてAIMを除去した場合であっても、当該分化誘導因子による3T3-L1細胞を分化させる能力は失われなかった(data not shown)。したがって、分化誘導因子とAIMとの間では実質的に化学的な相互作用はないと考えられた。
 また、スケジュールBにてAIMを分化誘導刺激開始から10日間(day2-day12)負荷した場合も、脂肪滴を有する細胞はほとんど観察されず、3T3-L1細胞の分化はほぼ完全に抑制されていた。また、このようなAIMによる分化抑制効果は、AIMの濃度に依存することも確認された(data not shown)。3T3-L1細胞に負荷するAIMの濃度を1μg/ml、0.1μg/mlと減少させると、AIMによる分化抑制効果も低減された。
 また、AIMの負荷による死細胞数の増加は認められなかった。したがって、AIMによる分化抑制は、細胞死を誘導することなく、成熟脂肪細胞に分化する3T3-L1細胞の数を減少させることによるものと考えられた。
 一方、スケジュールDにてAIMを分化誘導前にのみ(day(-2)-day2)負荷した場合には、スケジュールAにてAIMを負荷しなかった場合と同様、ほとんどの細胞が脂肪滴を有しており、ほとんどの3T3-L1細胞が成熟脂肪細胞に分化していることが確認された。すなわち、AIMを分化誘導前のみに負荷しても、3T3-L1細胞の成熟脂肪細胞への分化は抑制されなかった。ただし、AIMを分化誘導前から分化誘導期間を経てその後も継続的に(day(-2)-day12)負荷した場合には、3T3-L1細胞の脂肪細胞への分化は完全に抑制された(data not shown)。
 また、ヒトrAIMを用いてAIM負荷をいったところ、同様にマウス由来3T3-L1細胞の分化を抑制した。これにより、ヒトとマウスの間で、AIMの機能について互換性のあることが示された。
[脂肪細胞マーカーの発現による評価]
 図13に示すスケジュールA~Dにて培養された細胞を分化誘導刺激開始から10日目(day12)に回収し、脂肪細胞マーカー(C/EBPα, PPARγ1, PPARγ2, CD36, Glut4)のmRNAレベルの発現を、7500 Fast Real-Time PCR system (Invitrogen; CA, USA)を用いてΔΔCT法により測定した。使用したプライマーを表1に示す。
Figure JPOXMLDOC01-appb-T000006
 結果を図15に示す。スケジュールA及びDでは脂肪細胞マーカーが発現し、脂肪前駆細胞が脂肪細胞に分化していることが示された。一方、分化誘導刺激と同時にAIMを投与したスケジュールB及びDでは、脂肪細胞マーカーの発現が抑制されており、脂肪細胞への分化が抑制されていることが示唆された。この結果は、スケジュールA及びDでは脂肪滴が形成され、スケジュールB及びDでは形成されなかったことと一致する。
 以上のとおり、AIMは脂肪前駆細胞から脂肪細胞への分化を抑制する。また、分化の程度は、脂肪滴の生成の観察、又は、脂肪細胞マーカー、脂肪前駆細胞マーカー、間葉系幹細胞マーカーの検出によって、容易に調べることができる。
 従って、脂肪滴の生成やマーカーの検出の結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、分化の誘導効率が上昇している場合には、当該候補化合物はAIMの機能を抑制する化合物であり、分化の誘導効率が低下している場合には、当該候補化合物はAIMの機能を亢進させる化合物であると評価することができる。
参考例3. AIMによる脂肪細胞の脂肪滴の融解機能
[oil-red-Oによる評価]
 分化した3T3-L1細胞に、図13のEに示すスケジュールでrAIM負荷(5μg/ml)を行った。rAIM負荷の前後でoil-red-O染色を行った。代表的な写真を図16Aに示す。細胞内の脂肪滴は、rAIM負荷を行って6日間培養した後、著しく減少した(rAIM(+))。
 また、脂肪滴の相対サイズ(Relative droplet size)は、50個の脂肪滴の直径の平均から求めた。エラーバーは、標準誤差を示す。単位面積当たりの脂肪滴含有細胞の数は、5つの異なる視野において計測し、平均を求めた。それぞれの結果を図16B、Cに示す。
 脂肪滴の相対サイズ、脂肪滴含有細胞の数のいずれも有意に減少した。
 この結果は、rAIMが脂肪滴融解を引き起こし、脂肪滴に含まれるグリセロールや遊離脂肪酸が上清中に放出されたことを示唆する。
[培養上清中のグリセロール又は遊離脂肪酸量による評価]
 3T3-L1脂肪細胞にrAIM負荷(5μg/ml)を開始した後、2日目、4日目、及び6日目における培養上清中のグリセロール又は遊離脂肪酸の放出量を測定した。rAIM負荷後、PBSで2回洗浄し、無血清培地(FreeStyleTM293 Expression Medium; Invitrogen)中で5時間インキュベートした。バッファーを回収し、グリセロールアッセイキット、脂肪酸アッセイキット(いずれもBio Vision Inc.)を使用して、取扱説明書に従って測定した。
 結果を図17に示す。rAIMを加えて培養すると、培養上清中のグリセロール及び遊離脂肪酸のいずれの量も有意に増加した。
 この結果は、rAIMが脂肪滴融解を引き起こし、脂肪滴に含まれるグリセロールや遊離脂肪酸が上清中に放出されたことを示唆する。
[脂肪滴形成関連遺伝子の発現による評価]
 3T3-L1脂肪細胞にrAIM負荷(5μg/ml)を開始した後、2日目、4日目、及び6日目における脂肪滴形成関連遺伝子(FSP27、Perilipin、及びAdipophilin)のmRNAを、7500 Fast Real-Time PCR system (Invitrogen; CA, USA)を用いてΔΔCT法により測定した(それぞれにつきn=3)。
 また、同様に、脂肪前駆細胞マーカーのPREF-1のmRNAも測定した。測定値はGAPDHで標準化した。使用したプライマーを表2に示す。
Figure JPOXMLDOC01-appb-T000007
 結果を図18に示す。0日目を1.0として相対的発現量を求めた。エラーバーは標準誤差を示す。
 脂肪滴形成関連遺伝子の発現は、rAIM処理後2日目ですでに著しく低下していた。一方、脂肪前駆細胞マーカーの発現はrAIM処理の間増加しなかった。このことは、AIMが成熟脂肪細胞を脱分化させるものではないことを示唆する。
 以上のとおり、AIMは成熟脂肪細胞において脂肪滴を融解させる。また、脂肪滴の融解の程度は、顕微鏡による観察、培養上清中のグリセロール又は遊離脂肪酸量の測定、脂肪滴形成関連遺伝子の発現の測定等によって、容易に調べることができる。
 従って、培養上清中のグリセロール等を検出した結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、脂肪滴融解の効率が低下している場合には、当該候補化合物はAIMの機能を抑制する化合物であり、脂肪滴融解の効率が上昇している場合には、当該化合物はAIMの機能を亢進させる化合物であると評価することができる。
参考例4. AIMによる脂肪細胞の縮小機能
[HE染色による評価]
 AIM+/+マウス(+/+)とAIM-/-マウス(-/-)(非特許文献1参照)に、高脂肪食(High Fat Diet; HFD)を20日間与え、脂肪組織の切片をHE染色した。顕微鏡の様々な視野において、50個の脂肪細胞の距離を測定し、平均±標準誤差を求めた。結果を図19Aに示し、代表的な写真を図19Bに示す。AIM-/-マウスの内臓脂肪細胞は、AIM+/+マウスと比較して有意に大きかった。
 以上のとおり、AIMは脂肪細胞の大きさを縮小する。縮小の程度は、顕微鏡によって容易に調べることができる。
 従って、脂肪細胞の大きさを測定した結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、細胞の大きさが大きくなっている場合には、当該化合物はAIMの機能を抑制する化合物であり、細胞の大きさが小さくなっている場合には、当該化合物は、AIMの機能を亢進させる化合物であると評価することができる。
参考例5. 細胞表面のCD36を介した脂肪細胞へのAIMの取り込み
 分化した3T3-L1細胞(ins/DEX/IBMX stimulation (+))と、未分化の3T3-L1細胞(ins/DEX/IBMX stimulation (-))を、rAIM(5μg/ml)と共に3時間インキュベートし、AIM、PPARγ2、及びDAPIを染色した。PPARγ2の染色にはウサギ抗PPARγ2ポリクローナル抗体(Abcam社)を用いた。結果を図20Aに示す。
 上段にAIMとDAPIで核を染色した結果を、中段にAIMとPPARγ2を染色した結果を、下段にAIM、PPARγ2、DAPIを染色した結果の位相コントラスト像を示す。AIMが脂肪細胞の細胞質に散在していることが観察された。
 下段からわかるように、PPARγ2が高発現している細胞は、多くの脂肪滴を含んでいる。PPARγ2を高発現している細胞、十分に分化した成熟脂肪細胞である。”pre”と表記された右のレーンは、分化誘導刺激を行っていない未分化の3T3-L1脂肪前駆細胞である。
 また図20Bに、PPARγ2の発現量ごとに細胞を分類し、各細胞100個当たりのrAIMが含まれる細胞数を示す。図示されたとおり、PPARγ2が高発現している成熟脂肪細胞ではrAIMが効率よく取り込まれ、PPARγ2の発現が低く十分に分化していない細胞ではrAIMの取り込み効率が著しく低いことがわかった。分化誘導刺激を行わなかった脂肪前駆細胞(pre)は、rAIMを取り込まなかった。
 また、3T3-L1脂肪細胞をrAIMで3時間処理し、AIMとエンドソーム(FM 1-43FX, Invitrogen社を使用)、AIMとリソソーム(Lyso Tracker Red DND-99, Invitrogen社を使用)を染色し、共焦点顕微鏡で観察した。結果を図20Cに示す。
 脂肪細胞内に取り込まれたrAIMは、エンドソームと共局在化しており、リソソームとの共局在化は見られなかった。
 同じサンプルを使って、AIMを金微粒子で標識し、電子顕微鏡で観察した。具体的には、正常ヤギ血清で30分前処理した細胞をパラホルムアルデヒドで固定し、SA-1ウサギ抗AIMポリクローナル抗体(1:600希釈)と共に一晩インキュベートした。続いて、1nm金微粒子(1:200; Nanoprobes社)を共有結合させたヤギ抗ウサギIgGと反応させた。HQ silver(Nanoprobes社)を使用して銀増感を行い、osmificateし、脱水し、Epon(Nisshin EM社)に直接埋め込んだ。極薄切片を調製し、酢酸ウラニルとクエン酸鉛で染色し、電子顕微鏡(H-7100; Hitachi Inc.)で観察した。
 結果を図21に示す。Eはエンドソーム、Pはファゴソーム又はファゴリソソーム、Mはミトコンドリア、Nは核、LDは脂肪滴を示す。
 金粒子で標識されたrAIMはエンドソーム様の構造をとり、その限界膜付近に特に集積していた(上段左)。細胞膜においては、rAIMのエンドサイトーシスが観察された(上段中央)。rAIMを含むいくつかの粒子は核付近に見られ、後期エンドソームと考えられた(上段右)。後期エンドソームは変性し、これに伴ってrAIMが細胞質に放出され得る。
 大きな径を有する不規則な形状のファゴソーム及びファゴリソソーム、ミトコンドリア、脂肪滴では、AIMは検出されなかった(下段)。
 以上の結果を総合すると、AIMは、エンドサイトーシスによって脂肪細胞内に取り込まれ、細胞内で機能を発揮することが示唆された。
 次に、AIMの取り込みに関与する細胞表面分子を特定した。リポタンパク質や脂肪酸等の取り込みを促進すること、及び、AIMの機能のターゲットとなる脂肪細胞とマクロファージの双方で発現していることから、CD36に注目した。
 CD36中和抗体(Abcam社;Clone JC63.1 マウスIgA)で3T3-L1脂肪細胞を処理し、rAIMのエンドサイトーシスを阻害した。図22に、中和抗体で処理した場合と処理しなかった場合の代表的な写真と、細胞100個当たりのrAIMを取り込んだ細胞数を示す。
 図示されるとおり、CD36中和抗体で処理することにより、rAIMの取り込みは著しく抑制された。
 次に、CD36+/+マウス(野生型)とCD36-/-マウス(Febbraio et al., J. Biol. Chem., 1999, 274:19055-19062)にrAIM(300μg/mouse in PBS)を静注し、16時間後に犠牲死させ、脂肪組織から切片を調製した。切片におけるAIM、マクロファージF4/80を染色した。結果を図23に示す。
 図示されるとおり、AIMのシグナルはCD36-/-脂肪細胞において著しく低下しており、CD36-/-脂肪細胞ではrAIM取り込み能が失われることが示された。
 これらの結果は、CD36がrAIMの取り込みの原因となっていることを強く示唆する。
 以上のとおり、AIMは細胞表面のCD36を介して、脂肪細胞に取り込まれる。脂肪細胞によるAIMの取り込みの程度は、例えば、検出可能に標識した抗AIM抗体を用いて細胞内のAIMを可視化することによって、容易に調べることができる。
 従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。
 例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、細胞内へのAIMの取り込みが低下している場合には、当該化合物は、細胞内へのAIMの取り込みを阻害することによってAIMの機能を抑制していると考えられる。
参考例6. AIMとFASの結合
[免疫沈降による評価]
 AIM-/-マウスの脂肪組織に、HAタグを付けたrAIMを直接注射した(数箇所に計100μg)。3時間後、rAIM-HAと内因性FASの結合を確認するため、脂肪組織を用いて抗HA抗体による共免疫沈降を行った。沈降物中のFASの存在を、ウエスタンブロッティングによって解析した(WB)。
 結果を図24に示す。図示されるとおり、FASとrAIMは共沈し、取り込まれたAIMと細胞質のFASが結合することが確認された。
 HEK 293T細胞内において、HAタグを付けたrAIMと、FLAGタグを付けたFASを共発現させ、rAIMとFASとの結合を抗Flag抗体又は抗HA抗体を用いた共免疫沈降によって確認した。
 結果を図25に示す。rAIMとFASは共沈し、FASに対するAIMの結合能が示された。
 次に、FASにおけるAIMの結合領域を調べた。FASは、ケトアシルシンターゼ(KS)、マロニル/アセチルトランスフェラーゼ(MAT)、デヒドラーゼ(DH)、セントラルコア(CC)、エノイルレダクターゼ(ER)、ケトレダクターゼ(KR)、アシルキャリアタンパク質(ACP)、チオエステラーゼ(TE)の8つのドメインを含む。
 FASの構造を図31に示す。
 FASの各ドメインのN末端をFlag配列で標識し、AIM-HAを安定的に発現するHEK293T細胞内で発現させた。AIM-HAとFASの各ドメインとの結合を、抗Flag抗体又は抗HA抗体を使った共免疫沈降で確認した。
 結果を図26に示す。AIMと結合するドメインは、ER、DH、TE及びCCであることがわかった。
 なお、FLAGタグを付けた全長FAS cDNA(ヌクレオチド:+1~7515)をコードする配列は、Dr. Ohara(かずさDNA研究所)から提供を受けたcDNAクローンの一部と、RT-PCRでクローニングしたいくつかのフラグメントと、pFLAG-CMV2ベクター(Sigma社)を使用して構築した。
 KS、MAT、DH、CC、ER、KR、ACP、又はTEをコードするcDNAフラグメントは、全長FAS cDNAをテンプレートとし、pFLAG-CMV2ベクターにサブクローニングして作製した。
[AIMによるFAS酵素活性の抑制]
 脂肪細胞または脂肪組織のFAS活性に対するAIMの影響を調べた。FASの活性の測定は、Kelleyらの方法(Kelley et al., Biochem. J., 1986, 235:87-90)にわずかに修正を加えて行った。3T3-L1脂肪細胞、又は肥満マウスの脂肪組織のライゼートを、アセチル-CoA及びNADPH(0.4mM EDTAを含む0.2M リン酸カルシウムバッファー[pH 7.0]中)と混合し、分光光度計のキュベットに入れて、30℃に維持した。20μlのマロニル-CoA溶液(0.2mM)を加えて酵素反応を開始させ、ODの減少をチャートスピード2cm/minで測定した。その結果に基づき、酸化NADPHのモル吸光係数を6220としてFASの酵素活性を評価した。
 まず、rAIM(5μg/ml)の存在下、非存在下、及びC75(25μM)存在下で6日間処理した3T3-L1細胞におけるFAS活性を測定した。結果を図27に示す。また、AIM+/+マウス及びAIM-/-マウスの脂肪組織におけるFAS活性、及び、脂肪内局所注射によってrAIM又はBSAを3時間前に投与したAIM-/-マウスの脂肪組織におけるFAS活性を、それぞれ図28及び29に示す。
 すべてのマウスにはHFDを20週間与えた。サンプルは溶解(lyse)させてFAS活性を測定した。データは、同じサンプルを用いて行ったWBの結果に基づき、FASタンパク質当たりに換算した。各グループn=6とし、エラーバーは標準誤差を示す。
 図27に示されるとおり、rAIM処理によって、3T3-L1脂肪細胞におけるFAS活性は著しく抑制された。抑制の程度は、FASを特異的に阻害するC75と同程度であった。
 in vivoにおいては、AIM+/+マウスに比較して、AIM-/-マウスでは、脂肪組織が有意に増加していた(図28)。また、AIM-/-マウスの脂肪組織にrAIMを直接投与するとFAS活性は低下した。
 以上のとおり、AIMはFASと結合し、その活性を抑制する。
 AIMとFASとの結合の程度は、免疫沈降等により容易に調べることができる。従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、AIMとFASの結合が低下している場合には、当該化合物は、AIMとFASの結合を阻害することによって、AIMの機能を抑制していると考えられる。
 また、活性抑制の程度は、FAS活性を測定する通常の方法で容易に調べることができる。従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、FAS活性の抑制が抑制されている場合には、当該化合物は、AIMのFAS活性抑制機能を阻害することによって、AIMの機能を抑制していると考えられる。
参考例7. AIMによる体重、脂肪量の変化(in vivo)
 AIM+/+マウス(n=7)と、AIM-/-マウス(n=6)にHFDを12週間与え、内蔵脂肪及び皮下脂肪量の変化を測定した。結果を図32に示す。内臓脂肪(精巣上体脂肪)及び皮下脂肪のいずれも、AIM-/-マウスのほうが増加量が多かった。
 次に、AIM-/-マウスに、5週間、HFDを与えながらrAIMを週2回腹腔内投与し(n=6; 300μg/injection/mouse)、体重及び脂肪組織量を測定した。結果を図33及び34に示す。rAIM投与群は、ウシ血清アルブミンを投与したコントロール(n=5; 300μg/injection/mouse)に比較して、体重、内臓脂肪、及び皮下脂肪のいずれの増加も有意に少なかった。
 rAIM投与群及びBSA投与群のマウスの内臓脂肪組織から抽出したRNAにおける、脂肪細胞マーカー、脂肪前駆細胞マーカー、及び脂肪滴形成関連遺伝子のmRNAレベルをQPCRで測定した。結果を図35に示す。測定値は、GAPDHの測定値で標準化し、BSA投与した脂肪組織に対する相対的発現量で表した。
 rAIM投与群においては、内臓脂肪におけるFSP27、Perilipin、及びAdipophilinのmRNAレベルも低かった。一方、PREF-1のmRNAレベルはrAIMの投与により上昇したが、PPARγ2、C/EBPα、GLUT4のmRNAは、rAIM投与群とBSA投与群で差が見られなかった。
参考例8. イヌ、ネコにおけるAIMの発現
 イヌ、ネコ及びマウスの血清中のAIMタンパク質を、抗AIM抗体(SA-1)を用いたウエスタンブロッティング(還元状態)によって検出した。
 結果を図36に示す。図示されるとおり、いずれの動物においてもAIMタンパク質が検出された。種間の分子量の違いは、糖鎖等の修飾によるものと考えられる。 
実施例8. AIM阻害剤
 以下のスクリーニング方法により、AIM阻害剤を探索した。
<細胞>
 3T3-L1(DSバイオファーマ Cat No. EC86052701)
<試薬>
・培地
 継代用
 DMEM(Invitrogen Cat No. 11995-081)/ 10% CS/ PS SM
 アッセイ用・・・DMEM/ 10% FBS/ ペニシリン+ストレプトマイシン 
 分化誘導用・・・DMEM/ 10% FBS/ペニシリン+ストレプトマイシン/ 1ug/mL Insulin/ 1uM Dexamethasone/ 0.5mM IBMX 
・RT-PCR TaqMan Gene Expression Cells-to-Ct kit (Applied Biosystems Cat No. AM1729) 
・Probe mouse FSP27, mouse GAPDH(Applied Biosystems Cat No. AM1729) 
・mAIM FreeStyle CHO Expression Medium(Invitrogen Cat No. 12651-014)を用いて37℃で震盪培養しているCHO-S細胞を106 cells/mLに調製し、終濃度1.25%になるようにDMSOを添加して、37℃で3時間震盪培養した。マウスmAIMのC末端にHis6タグを付加し、CMVあるいはPGKプロモーター下流に連結したプラスミドでCHO-S細胞をトランスフェクションした。37℃で2時間震盪培養した後、29℃に移し、CMVプロモーターを用いた場合は7日間、PGKプロモーターを用いた場合は9日間培養を継続し、培養上清を回収した。回収した培養上清をHisTrap HPカラム(5mL、GEヘルスケア社製)にアプライし、20mMイミダゾールで洗浄した後、300mMイミダゾールで溶出した。回収した溶液をPBSで置換し、濃縮して精製mAIMとした。
<被検化合物>
・被検化合物 10 mM DMSO溶液 
<方法>
(1)細胞の継代
・Dishで培養中の細胞をPBS(-)で洗浄後、1/10濃度のトリプシンで処理することにより剥がし、継代用培地に懸濁し細胞数をカウントした。
・通常、10cm dishで5x105~1x106 cells/dishで継代を行った。
・新しい10cm dishに細胞を播種する。
    中一日で継代する場合は2x105 cells/dishで、 
    中二日で継代する場合は1x105 cells/dishで播種した。 
(2)分化誘導
- Day 1 
・Dishで培養中の細胞をPBS(-)で洗浄後、1/10濃度のトリプシンで処理することにより剥がし、アッセイ用培地に懸濁し細胞数をカウントした。
・5x104 cells/mLに調製し、96 well plate (IWAKI)に100uL/well (5000cells/well)で播種した。
- Day 3 
・mAIM(final 400ug/mL)及び希釈した被検化合物(最終濃度10uM)を添加した分化誘導培地を調整した。
・96 well plateの培地を除去し、上記分化誘導培地100uL/wellを添加した。
- Day 5
・培地を除去し、100uL/wellの4℃に冷却したPBS(-)で洗浄した。
・25uL/wellのLysis Buffer(+1/100 DNase)を添加し、Plate Shakerで細胞を完全に溶解した(室温1分)。
・さらに室温で5分静置した。
・2.5uL/wellのStop Solutionを添加し、Plate Shakerで混合した(室温2分)。
(3)RT-PCRアッセイ
 96 well PCR Plateに、下記逆転写反応溶液を調製した。
  2xRT Buffer    10 
  20xRT Enzyme Mix 1 
  Nuclease-free water 5 
  Cell lysate     4 
  Total        20uL/well 
・ 逆転写反応
  37℃ 60min 
  95℃ 5min 
  4℃ hold 
・384 well PCR Plateに、下記RT-PCR反応溶液を調製した。
  TaqMan Gene Expression Master Mix   5
  20x TaqMan Probe (mFSP27)       0.5
  20x TaqMan Probe (mGAPDH)      0.5
  Nuclease-free water           2
  cDNA sample              2
  Total                  10uL/well 
・ABI7900HTにてRT-PCR反応を行った。
  50℃ 2min 
  95℃ 10min 
  以下40サイクル 
  95℃ 15sec 
  60℃ 1min 
 1280点で1次スクリーニング(n=1、10μM)を行い、FSP27の発現量(GAPDで標準化)が、(-)AIM+3SD以下のヒットで、各96プレート上位2点の32点を1次ヒットとした。
 再現性試験(n=3、10μM、AIM4Lot)を行い、FSP27の発現量(GAPDで標準化)が、AIMタンパク質の4Lotすべてで(+)AIM+3×SD以上活性化したものを選択し、以下の化合物を得た。順に、DST-1、DST-2、DST-3、DST-4と呼ぶ。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 DST-1~DST-4の再現性試験の結果を図37、38に示す。いずれの化合物も、本来AIMの添加により誘導されるFSP27 mRNA発現の著しい減少を有意に抑制し、AIMの機能を阻害することが確認された。
実施例9. 中和抗体
 以下の材料及び方法で中和抗体を作製した。
<動物感作>
 抗原としてマウスAIM(2mg/ml)を等量のTiterMaxGold(G-1フナコシ)と混合しエマルジョンを作製した。免疫動物にはJcl:Wistarラット(日本クレア(株))6週齢のメス2匹を用い、後ろ足底部へ50μLを投与した。2週間後に同様の投与を行い、更に2週間以上をおいて抗原溶液50μgを足底部へ投与し3日後の細胞融合に備えた。
<ミエローマ細胞>
 ミエローマ細胞にはマウスP3U1を用い、増殖培養には、RPMI1640(11875-119 GIBCO)にグルタミンとピルビン酸を加えFBS(S1560 BWT社)を10%になるように添加した培地を用いた。抗生物質としてはペニシリン、ストレプトマイシンを適量加えた。
<細胞融合>
 麻酔下にて心臓採血を行ったラットから無菌的に膝窩リンパ節を摘出し、#200メッシュ付ビーカーにのせシリコン棒で押しながら細胞浮遊液を調整した。細胞はRPMI1640にて2回の遠心洗浄を行った後、細胞数をカウントした。
 対数増殖期の状態のミエローマ細胞を遠心により集め洗浄後、リンパ細胞に対して5対1となるように調整し、混合遠心を行った。
 細胞融合はPEG1500(783641 ロシュ)を用いて行った。すなわち細胞ペレットへ1mLのPEG液を3分間かけて反応させ、その後段階的に希釈を行い遠心にて洗浄した後、培地を加え96ウェルプレート15枚へ200μLずつ入れ、1週間の培養を行った。培地にはミエローマ細胞用培地にHATサプリメント(21060-017 GIBCO)を加え、FBS濃度を15%にしたものを用いた。
<マウス腹水採取>
 凍結保存された細胞を解凍し、増殖培養を行った後、1週間以上前に0.5mlのプリスタン(42-002 コスモバイオ)を腹腔内投与したヌードマウス(BALB/cAJcl-nu/nu 日本クレア)の腹腔へ1×10乗個を投与し、およそ2週間後に4~12mlの腹水を得た。遠心処理にて固形物を除去した後、凍結保存を行った。
<電気泳動解析>
 解凍し5μmのフィルターにて腹水を処理した後、セルロースアセテート膜電気泳動にて腹水中に含まれるモノクローナル抗体のバンドの確認を行った。
 電気泳動条件は、0.05MBarbital Na Buffer pH8.6(020-13415 和光純薬)、SELECA-V(ADVANTEC)、1mA/cm、25min で行い、固定、染色には0.1%ニグロシン(2%酢酸)を用いた。
<抗体アッセイ>
 24個の抗マウスAIMラットモノクローナル抗体を、それぞれ200mg/mlの濃度でrAIMと室温30分間処理したのち、rAIM最終濃度5mg/mlで分化した3T3-L1脂肪細胞(分化誘導4日目)に添加し、24時間培養した。RNAを細胞より単離し、quantitative RT-PCRにて、FSP27のmRNA量を定量化した。
 結果を図39に示す。
 Clone11, 12, 17の3クローンについては、本来rAIM添加により誘導されるFSP27 mRNA発現の著しい減少が有意に抑制された。Control rat IgGやclone15との処理では抑制されなかった。
実施例10. 人間ドック受診者の血中hAIM濃度の測定
 抗原としてヒトrAIMを用いたこと以外実施例9と同様に抗AIM抗体を得た。
 得られたクローンのうち、AIM-CL-6及びAIM-CL-7はブダペスト条約の規定に従って寄託した。受託番号は、それぞれNITE BP-1092、NITE BP-1093である。
 受託機関:独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(NPMD:National Institute of Technology and Evaluation, Patent Microorganisms Depositary;日本国千葉県木更津市かずさ鎌足2-5-8)
 受託日:2011年5月2日
 AIM-CL-6及びAIM-CL-7を用いて、約550名の人間ドック受診者の血中hAIM濃度を測定した。具体的には、AIM-CL-6を捕捉用、AIM-CL-7を検出用とし、血清を50μL使用してduplicateで解析した。濃度は、ヒトrAIMを倍率希釈して定量線を設け、それによって決定した。
 ヒトrAIMはHAタグをつけたヒトAIMタンパク質をHEK293T細胞で産生させ、培養上清から抗HA抗体を用いカラム精製したものである。
 結果を図40に示す。
実施例11. BMIと血中AIM濃度との関係
 血液提供者(外国人を含む)から、BMIが18~25の人と35以上の人を無作為に選択し、図6と同様の方法で血中AIM濃度を測定した。一般に、BMIが高いほどメタボリックシンドロームのリスクは高くなるといわれる。
 結果を図41に示す。BMI35以上の人は、BMI18~25の人に比較して、血中AIM濃度が有意に高かった。このことは、AIMの血中濃度がメタボリックシンドロームのリスクと相関し、AIMを阻害することによりメタボリックシンドロームの予防又は治療が可能であることを強く示唆する。
 配列番号:1は、ヒトAIMのアミノ酸配列である。
 配列番号:2は、定量的リアルタイムPCRによるPPARγ1発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:3は、定量的リアルタイムPCRによるPPARγ1発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:4は、定量的リアルタイムPCRによるPPARγ2発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:5は、定量的リアルタイムPCRによるPPARγ2発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:6は、定量的リアルタイムPCRによるC/EBPα発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:7は、定量的リアルタイムPCRによるC/EBPα発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:8は、定量的リアルタイムPCRによるCD36発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:9は、定量的リアルタイムPCRによるCD36発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:10は、定量的リアルタイムPCRによるGLUT4発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:11は、定量的リアルタイムPCRによるGLUT4発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:12は、定量的リアルタイムPCRによるFsp27発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:13は、定量的リアルタイムPCRによるFsp27発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:14は、定量的リアルタイムPCRによるPerilipin発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:15は、定量的リアルタイムPCRによるPerilipin発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:16は、定量的リアルタイムPCRによるAdipophilin発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:17は、定量的リアルタイムPCRによるAdipophilin発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:18は、定量的リアルタイムPCRによるGAPDH発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:19は、定量的リアルタイムPCRによるGAPDH発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:20は、定量的リアルタイムPCRによるPREF1発現解析に用いたフォワードプライマーのDNA配列である。
 配列番号:21は、定量的リアルタイムPCRによるPREF1発現解析に用いたリバースプライマーのDNA配列である。
 配列番号:22は、チンパンジーAIMのアミノ酸配列である。
 配列番号:23は、イヌAIMのアミノ酸配列である。
 配列番号:24は、マウスAIMのアミノ酸配列である。
 配列番号:25は、ラットAIMのアミノ酸配列である。

Claims (24)

  1.  AIM阻害剤を対象に投与する工程を含む、メタボリックシンドローム又はその関連疾患の予防又は治療方法。
  2.  前記AIM阻害剤は、AIMの血液中での安定性を低下させる、請求項1に記載の方法。
  3.  前記AIM阻害剤は、AIMとCD36との結合を阻害する、請求項1に記載の方法。
  4.  前記AIM阻害剤は、AIMが標的細胞に取り込まれることを阻害する、請求項1に記載の方法。
  5.  前記AIM阻害剤は、AIMがエンドソームから細胞質に移行することを阻害する、請求項1に記載の方法。
  6.  前記AIM阻害剤は、AIMが脂肪酸合成酵素(FAS)と結合することを阻害する、請求項1に記載の方法。
  7.  前記AIM阻害剤は、AIMの発現を抑制する、請求項1に記載の方法。
  8.  前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、肝疾患、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、請求項1から7のいずれか1項に記載の方法。
  9.  前記対象は、ヒトである、請求項1から8のいずれか1項に記載の方法。
  10.  前記対象は、非ヒト哺乳動物又は鳥類である、請求項1から8のいずれか1項に記載の方法。
  11.  前記対象は、イヌ又はネコである、請求項10に記載の方法。
  12.  以下の群から選択される少なくとも一つを含む、メタボリックシンドローム又はその関連疾患の予防又は治療剤:
     抗AIM抗体;
     抗CD36抗体;
     AIM遺伝子に対するRNAi効果を有する二本鎖核酸;
     AIM遺伝子に対するアンチセンス核酸;
     AIM遺伝子に対するリボザイム;
     抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質;
     CD36と結合し、且つFAS抑制活性を有しないタンパク質;
     FASと結合し、且つFAS抑制活性を有しないタンパク質;及び
     可溶型CD36。
  13.  前記抗体が、モノクローナル抗体、ポリクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、又は抗体のフラグメントである、請求項12に記載の治療剤。
  14.  前記FASと結合し、且つFAS抑制活性を有しないタンパク質は、DH、ER、TE、及びCCからなる群より選択される少なくとも一つのドメインと結合する、請求項12又は13に記載の治療剤。
  15.  前記抗AIM抗体と結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM改変体若しくはそのフラグメント、及び、AIMキメラタンパク質若しくはそのフラグメント、からなる群より選択される、請求項12又は13に記載の治療剤。
  16.  前記CD36と結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM改変体、及びAIMキメラタンパク質からなる群より選択される、請求項12又は13に記載の治療剤。
  17.  前記FASと結合し、且つFAS抑制活性を有しないタンパク質は、AIMフラグメント、AIM類縁体、AIM変異体、及びAIMキメラタンパク質からなる群より選択される、請求項12又は13に記載の治療剤。
  18.  前記AIMフラグメントは、AIMタンパク質の機能ドメイン及び保存領域を含むフラグメントから選択される、請求項15から17のいずれか1項に記載の治療剤。
  19.  前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、肝疾患、肝機能障害、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、請求項12から18のいずれか1項に記載の治療剤。
  20.  前記対象は、ヒトである、請求項12から19のいずれか1項に記載の治療剤。
  21.  前記対象は、非ヒト哺乳動物又は鳥類である、請求項12から19のいずれか1項に記載の治療剤。
  22.  前記対象は、イヌ又はネコである、請求項21に記載の治療剤。
  23.  請求項12から22のいずれか1項に記載の治療剤を投与する工程を含む、メタボリックシンドローム又はその関連疾患の予防又は治療方法。
  24.  AIM阻害剤の製造方法であって、
     AIMをプロテアーゼにより処理し、AIMフラグメントを得る工程と、
     前記AIMフラグメントを、AIMの機能ドメイン又は保存領域に結合する抗AIM抗体を固定したアフィニティカラムで精製する工程と、を含む、方法。
PCT/JP2011/061653 2010-05-20 2011-05-20 メタボリックシンドロームの予防又は治療方法 WO2011145723A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012515944A JPWO2011145723A1 (ja) 2010-05-20 2011-05-20 メタボリックシンドロームの予防又は治療方法
US13/698,881 US20130115220A1 (en) 2010-05-20 2011-05-20 Method for prevention or treatment of metabolic syndrome
CN201180036214.9A CN103648531A (zh) 2010-05-20 2011-05-20 用于预防或治疗代谢综合症的方法
EP11783655.1A EP2572730A4 (en) 2010-05-20 2011-05-20 PROCESS FOR PROPHYLAXIS OR TREATMENT OF METABOLIC SYNDROME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34684310P 2010-05-20 2010-05-20
US61/346,843 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145723A1 true WO2011145723A1 (ja) 2011-11-24

Family

ID=44991809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061653 WO2011145723A1 (ja) 2010-05-20 2011-05-20 メタボリックシンドロームの予防又は治療方法

Country Status (5)

Country Link
US (1) US20130115220A1 (ja)
EP (1) EP2572730A4 (ja)
JP (1) JPWO2011145723A1 (ja)
CN (1) CN103648531A (ja)
WO (1) WO2011145723A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162021A1 (ja) * 2012-04-27 2013-10-31 大日本住友製薬株式会社 肝疾患の予防または治療剤
WO2015119253A1 (ja) * 2014-02-07 2015-08-13 宮崎 徹 腎疾患の予防または治療剤
WO2019097898A1 (ja) * 2017-11-16 2019-05-23 宮崎 徹 変異型aim
JP2020158437A (ja) * 2019-03-26 2020-10-01 宮崎 徹 血中フリー体aim増加用組成物
JP2021501177A (ja) * 2017-10-30 2021-01-14 フンダシオ インスティテュート ディンベスティガシオ エン シエンシエス デ ラ サリュ ジャーマンス トライアス アイ プジョル 抗cd5l抗体及びその使用
WO2023008555A1 (ja) * 2021-07-30 2023-02-02 徹 宮崎 虚血性疾患の治療剤

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666916B2 (ja) * 2015-08-06 2020-03-18 積水メディカル株式会社 腎疾患の検査方法
CN108351358B (zh) * 2015-09-10 2021-05-07 积水医疗株式会社 肝癌测试方法
WO2018232057A1 (en) 2017-06-15 2018-12-20 Ohio University Methods for regulating free fatty acid flux using fat specific protein 27 (fsp27) compositions
KR20200063165A (ko) * 2017-10-05 2020-06-04 내셔날 헬스 리서치 인스티튜트 지질 항상성을 조절함으로써 바이러스 감염없이 간세포 암종을 치료하기 위한 방법 및 조성물
WO2020023456A1 (en) * 2018-07-25 2020-01-30 Ohio University Methods and compositions for treating cardiovascular diseases using fat specific protein 27 (fsp27) compositions
WO2020158856A1 (ja) * 2019-01-31 2020-08-06 積水メディカル株式会社 生物学的試料中の遊離aimの免疫学的分析方法
CN114392266B (zh) * 2022-01-22 2022-11-15 暨南大学附属第一医院(广州华侨医院) 包含PPARγ抑制剂的药物组合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235447A (ja) * 2007-07-30 2010-10-21 Igaku Seibutsugaku Kenkyusho:Kk 炎症性サイトカインの抑制剤
WO2011145722A1 (ja) * 2010-05-20 2011-11-24 Miyazaki Toru Aimの機能を制御する化合物のスクリーニング方法
WO2011145725A1 (ja) * 2010-05-20 2011-11-24 Miyazaki Toru Aim関連疾患の診断方法及び診断用キット

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
ARAI, S. ET AL., CELL METAB., vol. 1, 2005, pages 201 - 213
FEBBRAIO ET AL., J. BIOL. CHEM., vol. 274, 1999, pages 19055 - 19062
HEVENER, A.L. ET AL., J. CLIN. INVEST., vol. 117, 2007, pages 1658 - 1669
KANDA, H. ET AL., J. CLIN. INVEST., vol. 116, 2006, pages 1494 - 1505
KELLEY ET AL., BIOCHEM. J., vol. 235, 1986, pages 87 - 90
KUROKAWA, J. ET AL.: "Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity", CELL METABOLISM, vol. 11, 9 June 2010 (2010-06-09), pages 479 - 492, XP009172534 *
LESNIEWSKI, L.A. ET AL., NATURE MED., vol. 13, 2007, pages 455 - 462
LUMENG, C.N. ET AL., J. CLIN. INVEST., vol. 117, 2007, pages 175 - 184
MIYAZAKI, T. ET AL., J. EXP. MED., vol. 189, 1999, pages 413 - 422
ODEGAARD, J.L. ET AL., NATURE, vol. 447, 2007, pages 1116 - 1121
SATOKO ARAI ET AL.: "AIM o Kaishita Ensho to Metabolic Syndrome", INFLAMMATION & IMMUNOLOGY, vol. 19, no. L, 20 December 2010 (2010-12-20), pages 75 - 81 *
SATOKO ARAI ET AL.: "II. 4. Macrophage no Bunpitsu suru Tanpakushitsu AIM no Kino to Metabolic Syndrome", THE LIPID, vol. 22, no. 2, 20 April 2011 (2011-04-20), pages 65 - 71 *
SATOKO ARAI ET AL.: "Saiboshi no Jikko Mechanism Macrophage no Apoptosis Seigyo ni yoru Atarashii Domyaku Koka Chiryo no Kanosei", EXPERIMENTAL MEDICINE, vol. 26, no. 19, 2008, pages 3030 - 3036, XP009172646 *
SATOKO ARAI ET AL.: "Shikkan ni Okeru Macrophage no Atarashii Yakuwari -AIM o Kaishite", KOKYU, vol. 29, no. L, 15 January 2010 (2010-01-15), pages 22 - 27, XP009172620 *
SATOKO ARAI ET AL.: "Tokushu Aratana Chiryo Senryaku ni Tsunagaru Tonyobyo no Bunshi Hyoteki Insulin Teikosei ni Okeru Shibo Bunkai Tanpakushitsu AIM no Kino", EXPERIMENTAL MEDICINE, vol. 29, no. 8, 1 May 2011 (2011-05-01), pages 1245 - 1249 *
See also references of EP2572730A4
TORU MIYAZAKI ET AL.: "AIM ga Tsunagu Seikatsu Shukanbyo to Shokaki Shikkan", BIO CLINICA, vol. 26, no. 2, 10 February 2011 (2011-02-10), pages 18 - 23 *
TORU MIYAZAKI: "Kekkan Byosobu Macrophage no Kino Seigyo ni yoru Domyaku Koka no Atarashii Chiryoho Kaihatsu o Mezashite", RESEARCH PAPERS OF THE SUZUKEN MEMORIAL FOUNDATION, vol. 26, 2009, pages 356 - 359, XP009173189 *
TRAVES, P.G. ET AL.: "Selective activation of liver X receptors by acanthoic acid-related diterpenes", MOL. PHARMACOL., vol. 71, no. 6, 2007, pages 1545 - 1553, XP055098851 *
WEISBERG, S.P. ET AL., J. CLIN. INVEST., vol. 112, 2003, pages 1796 - 1808
WEISBERG, S.P. ET AL., J. CLIN. INVEST., vol. 116, 2006, pages 115 - 124
XU, H. ET AL., J. CLIN. INVEST., vol. 116, 2006, pages 115 - 124

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993524B2 (en) 2012-04-27 2018-06-12 Toru Miyazaki Prophylactic or therapeutic agent for hepatic diseases
CN104470531A (zh) * 2012-04-27 2015-03-25 宫崎彻 用于肝脏疾病的预防剂或治疗剂
WO2013162021A1 (ja) * 2012-04-27 2013-10-31 大日本住友製薬株式会社 肝疾患の予防または治療剤
JPWO2013162021A1 (ja) * 2012-04-27 2015-12-24 宮崎 徹 肝疾患の予防または治療剤
US10349640B2 (en) 2014-02-07 2019-07-16 Toru Miyazaki Preventive or therapeutic agent for kidney disease
WO2015119253A1 (ja) * 2014-02-07 2015-08-13 宮崎 徹 腎疾患の予防または治療剤
US11253571B2 (en) 2014-02-07 2022-02-22 Toru Miyazaki Preventive or therapeutic agent for kidney disease
JP2021501177A (ja) * 2017-10-30 2021-01-14 フンダシオ インスティテュート ディンベスティガシオ エン シエンシエス デ ラ サリュ ジャーマンス トライアス アイ プジョル 抗cd5l抗体及びその使用
JP7487938B2 (ja) 2017-10-30 2024-05-21 フンダシオ インスティテュート ディンベスティガシオ エン シエンシエス デ ラ サリュ ジャーマンス トライアス アイ プジョル 抗cd5l抗体及びその使用
WO2019097898A1 (ja) * 2017-11-16 2019-05-23 宮崎 徹 変異型aim
JPWO2019097898A1 (ja) * 2017-11-16 2021-02-04 宮崎 徹 変異型aim
JP7231230B2 (ja) 2017-11-16 2023-03-01 徹 宮崎 変異型aim
JP2020158437A (ja) * 2019-03-26 2020-10-01 宮崎 徹 血中フリー体aim増加用組成物
JP7159093B2 (ja) 2019-03-26 2022-10-24 徹 宮崎 血中フリー体aim増加用組成物
WO2023008555A1 (ja) * 2021-07-30 2023-02-02 徹 宮崎 虚血性疾患の治療剤

Also Published As

Publication number Publication date
US20130115220A1 (en) 2013-05-09
CN103648531A (zh) 2014-03-19
JPWO2011145723A1 (ja) 2013-07-22
EP2572730A4 (en) 2013-11-06
EP2572730A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011145723A1 (ja) メタボリックシンドロームの予防又は治療方法
JP4659736B2 (ja) スクリーニング方法
JP5299900B2 (ja) 糖尿病関連肝臓由来分泌タンパク質の2型糖尿病または血管障害の診断または治療への利用
US20140303078A1 (en) Modulation of pancreatic beta cell proliferation
WO2006137597A1 (ja) 新規生理物質nesfatinとその関連物質、およびそれらの用途
WO2011145725A1 (ja) Aim関連疾患の診断方法及び診断用キット
CN107531798B (zh) Pcsk9的抑制剂用于脂蛋白代谢病症的治疗
KR20120090931A (ko) 심혈관 및 대사성 질환, 예컨대 제2형 당뇨병의 치료를 위한 nkg2d 억제제의 용도
JP6998055B2 (ja) 筋萎縮抑制剤
EP2623119B1 (en) Drug used in glioma treatment method, glioma examination method, method of delivering a desired material to a glioma
US11999776B2 (en) IGFR-like 2 receptor and uses thereof
AU2009233718A2 (en) Regulation of fatty acid transporters
JPWO2008143151A1 (ja) サリューシンをターゲットとする動脈硬化性疾患の治療剤及び検出薬
WO2011145722A1 (ja) Aimの機能を制御する化合物のスクリーニング方法
US9101618B2 (en) Method for treating and/or preventing neurodegenerative disease by adiponectin receptor agonist
WO2016004208A1 (en) Cthrc1 receptor and methods of use thereof
WO2007000924A1 (ja) プログラニュリン活性を抑制または促進する物質を含む医薬組成物、およびプログラニュリン活性を抑制または促進する物質のスクリーニング方法
JP2017171682A (ja) 糖尿病および循環器病の診断および治療のための新たな標的
KR101834615B1 (ko) Cd9 항체를 유효성분으로 함유하는 세포노화 또는 노화 관련 질환 예방 또는 치료용 약학조성물
US20100212037A1 (en) Mia-2 protein
US20040076965A1 (en) MIA-2 protein
JP2005015358A (ja) 摂食障害の治療に供される医薬組成物
JP5866138B2 (ja) 骨粗鬆症の予防及び/又は治療剤、骨吸収抑制剤、骨形成促進剤及びそれらのスクリーニング方法
WO2018204976A1 (en) Anti-inflammatory agents and methods of treatment
US20080096833A1 (en) Polytpeptide Specific To Liver Cancer, Polynucleotide Coding For The Polypeptide, And Rna Molecule Inhibiting Expression Of The Polypeptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515944

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011783655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13698881

Country of ref document: US