WO2011142575A2 - 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2011142575A2
WO2011142575A2 PCT/KR2011/003453 KR2011003453W WO2011142575A2 WO 2011142575 A2 WO2011142575 A2 WO 2011142575A2 KR 2011003453 W KR2011003453 W KR 2011003453W WO 2011142575 A2 WO2011142575 A2 WO 2011142575A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
lithium secondary
carbon
negative electrode
Prior art date
Application number
PCT/KR2011/003453
Other languages
English (en)
French (fr)
Other versions
WO2011142575A3 (ko
WO2011142575A9 (ko
Inventor
홍지준
변기택
김효원
Original Assignee
주식회사 루트제이제이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이제이 filed Critical 주식회사 루트제이제이
Priority to US13/696,916 priority Critical patent/US20130059203A1/en
Priority to JP2013510022A priority patent/JP2013528907A/ja
Priority to CN2011800285886A priority patent/CN102934265A/zh
Priority to EP11780792.5A priority patent/EP2571084A4/en
Publication of WO2011142575A2 publication Critical patent/WO2011142575A2/ko
Publication of WO2011142575A3 publication Critical patent/WO2011142575A3/ko
Publication of WO2011142575A9 publication Critical patent/WO2011142575A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same. More particularly, the charge is generated by cracking and destruction of active material particles due to volume change caused by reaction with lithium during charging / discharging. As the discharge cycle progresses, a phenomenon in which the capacity decreases rapidly is prevented, and thus the cycle life is extended, and thus, a negative active material for a lithium secondary battery capable of securing a high energy density suitable for a high capacity battery, a method of manufacturing the same, and lithium including the same It relates to a secondary battery.
  • lithium secondary batteries as a power source and power source for portable small electronic devices such as mobile phones, portable personal digital assistants (PDAs), notebook PCs, MP3s, and electric vehicles has been increasing rapidly. Accordingly, the demand for higher capacity and longer cycle life of lithium secondary batteries is increasing.
  • the negative electrode active material of the lithium secondary battery As the negative electrode active material of the lithium secondary battery, a carbon-based material is mainly used. However, the maximum theoretical capacity of the carbon-based negative electrode active material is limited to 372 mAh / g, and has a problem of severe life deterioration. Therefore, there have been many researches and proposals on lithium bipolar materials that can exhibit high capacity and replace lithium metal, and one of them is using silicon (Si).
  • silicon reversibly occludes and releases lithium through compound formation reaction with lithium, and the theoretical maximum capacity is about 4020 mAh / g (9800 mAh / cc), which is very large compared to carbon material, and thus is a high capacity cathode material. It is known to be promising. However, in the case of silicon, as the charge / discharge cycle progresses due to the cracking and the silicon active material particles being destroyed due to the volume change caused by the reaction with lithium during the charge / discharge, the cycle life is shortened.
  • anode active material having an energy density suitable for high capacity battery, excellent stability and safety, and long cycle life while maintaining excellent battery characteristics, and an economical manufacturing method of the anode active material.
  • a method of mechanically grinding graphite in silicon or mixing carbon material in silicon together and firing has been proposed.
  • graphite is added to silicon, although the capacity is smaller than that of silicon, there is an advantage in that the cycle life can be greatly improved, but a secondary battery negative electrode active material and a manufacturing method coated with silicon hollow fiber type carbon, LTO, and carbon-based material simultaneously There was no suggestion.
  • an object of the present invention is to provide an anode active material for a lithium secondary battery and precursors thereof having improved electrical conductivity, energy density, stability, safety, and cycle life characteristics.
  • Another object of the present invention is to provide a method of manufacturing the negative electrode active material for the lithium secondary battery.
  • Another object of the present invention is to provide a lithium secondary battery including the negative electrode active material for the lithium secondary battery.
  • the present invention is a negative electrode active material for a lithium secondary battery, the present invention active particles that can be absorbed / released lithium ions; And a coating layer coated on the surface of the active particles, wherein the coating layer provides a first material that is a nano hollow fiber and a second material that is a carbon precursor or LTO.
  • the active particle is one selected from the group consisting of silicon, silicon oxide, metal, metal oxide and mixtures thereof, wherein the metal is Sn, Al, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Pt , Pd, Ir, Rh, Ru, Ni, Mo, Cr, Cu, Ti, W, Co, V and Ge may be one or more selected from the group consisting of.
  • the nano hollow fiber is nano hollow fiber carbon, and may be a single wall carbon nanotube, a multiwall carbon nanotube, a carbon nanofiber, graphene or a mixture thereof.
  • the carbon precursor is a kind of glucose, scurose, polyethylene glycol, poly vinyl alcohol, poly vinyl chloride, poly vinyl chloride, citric acid or heterogeneous. Or more, preferably one or more selected from the group consisting of glucose, squarose and citric acid.
  • the diameter of the nano-hollow fibrous carbon is 2 to 100 nm, and the composite anode active material coated with the carbon precursor or the second material of LTO and the first material of the nano hollow fibrous carbon has an average particle diameter of 5 nm to It is 400 nm and the crystal whose average particle diameter of a secondary particle is 3 micrometers-30 micrometers.
  • the present invention comprises the steps of preparing a dispersion by incorporating (a) the active particles for the negative electrode active material, the carbon precursor and the nano-hollow fibrous carbon in an aqueous solution, and then dispersed; (b) stirring the reaction system in the reactor or having an ultrasonic wave in the reaction system (acoustic chemistry, Sonochemistry) to uniformly coat the surface of the active particles with a coating layer composed of the nano hollow fibrous carbon and a carbon precursor.
  • the ultrasonic wave excitation process is performed under multibubble golwlgmunjlhhf snuiescence (MBSL) conditions.
  • the method comprises the steps of drying the mixture after the coating step;
  • the method may further include obtaining a composite anode active material by firing the dried mixture in an inert gas atmosphere.
  • the content of the nano-hollow fibrous carbon in the dispersion of step (a) is 0.5 to 8% by weight based on the total weight of the dispersion, and in the step of preparing the dispersion of the step (a) of the nano-hollow fibrous carbon Dispersion may be carried out using an ultrasonic dispersion method or a high pressure dispersion method.
  • the coating layer is carried out at a temperature range of 10 to 50 °C under an inert gas atmosphere
  • the firing is carried out at a temperature range of 500 to 900 °C under an inert gas atmosphere.
  • the present invention provides a lithium secondary battery comprising the above-described negative electrode active material in order to solve the above another problem.
  • the negative electrode active material for a lithium secondary battery of the present invention prevents a phenomenon in which the capacity decreases rapidly as the charge / discharge cycle progresses due to the occurrence of cracking due to the volume change caused by the reaction with lithium during charge / discharge and destruction of the active material particles. As a result, since the cycle life is extended, a high energy density suitable for a high capacity battery can be ensured. Therefore, the lithium secondary battery manufactured by using the negative electrode active material for a lithium secondary battery of the present invention can improve stability and safety while maintaining excellent basic electrical characteristics, and can improve cycle life characteristics. In addition, according to the method for manufacturing a composite negative electrode active material for a lithium secondary battery of the present invention, a composite negative electrode active material having the above characteristics can be produced with excellent reproducibility and productivity.
  • FIG. 1 is a schematic diagram of a cross section of a negative electrode active material for a lithium secondary battery prepared in Example 1.
  • FIG. 1 is a schematic diagram of a cross section of a negative electrode active material for a lithium secondary battery prepared in Example 1.
  • FIG. 2 is a schematic view of a cross section of a negative electrode active material for a lithium secondary battery prepared in Example 2.
  • FIG. 2 is a schematic view of a cross section of a negative electrode active material for a lithium secondary battery prepared in Example 2.
  • Figure 3 is a flow chart for explaining the negative electrode active material manufacturing step in the wet manufacturing method of the negative electrode active material prepared in Example 1.
  • Figure 4 is a flow chart for explaining the negative electrode active material manufacturing step in the wet manufacturing method of the negative electrode active material prepared in Example 2.
  • Example 5 is a view showing the results of the electric field scanning microscope analysis of the composite positive electrode active material for a lithium secondary battery prepared in Example 1 of the present invention.
  • Example 6 is a view showing the results of the electric field scanning microscope analysis of the composite positive electrode active material for a lithium secondary battery prepared in Example 2 of the present invention.
  • FIG. 7 is a view showing the charge and discharge results of the negative electrode active material for a lithium secondary battery prepared in an embodiment of the present invention.
  • the negative electrode active material for a lithium secondary battery according to the present invention includes a core and a coating layer coating the core, and the coating layer includes a first material which is a nano hollow fiber and a second material which is mixed with the first material.
  • the core may be silicon, metal or metal oxide and mixed alloys thereof in which lithium ions may be absorbed / released.
  • the second material is a carbon-based material, and in another embodiment of the present invention, the second material is LTO (Lithium Titanium Oxide, Li 4 Ti 5 O 12 ).
  • the negative electrode active material is divided into a core and a coating layer, and as the coating layer component, the fiber (first material) having a hollow structure, which is a passage of lithium ions, and the particle size of the negative electrode active material and the volume according to the reaction between the lithium ions Use materials (second material) that can minimize changes simultaneously.
  • the coating layer according to the present invention can be coated on the metal oxide which is the core through the simultaneous coating of the first material and the second material, so that the economy is excellent.
  • FIG. 1 and 2 are cross-sectional views of a composite negative electrode active material precursor for a lithium secondary battery or a composite metal negative electrode active material for a lithium secondary battery according to an aspect of the present invention.
  • a coating layer for coating the active particles 102 and the active particles 102 as a core the coating layer is a coating layer together with the first material 101 and the first material is a nano hollow fiber
  • a second material used as is disclosed, the second material is a carbon-based material 100 or LTO (103).
  • the active particles refer to particles made of any material having a certain form (a shape of a sphere, a tube, etc.) and capable of absorbing / releasing lithium ions.
  • the active particles may be selected from the group consisting of silicon, silicon oxide, metals, metal oxides and mixtures thereof, wherein the metal is Sn, Al, Pb, Zn, Bi, In, Mg, Ga, Cd , Ag, Pt, Pd, Ir, Rh, Ru, Ni, Mo, Cr, Cu, Ti, W, Co, V and Ge may be one or more selected from the group consisting of.
  • the active particles may be silicon, in which case the anode active material according to an embodiment of the present invention is in the form of silicon (core)-(nano hollow fiber + carbon-based compound) (coating layer), or silicon (core) )-(Nano hollow fiber + LTO) (coating layer).
  • the nano hollow fiber 101 is preferably a carbon material having a nano-sized hollow, and may be a single wall carbon nanotube, a multiwall carbon nanotube, a carbon nanofiber, graphene, or a mixture thereof.
  • the scope of the present invention is not limited thereto, and any and all fibers having a structure (hollow or channel) in which a migration path of lithium ions can be provided are within the scope of the present invention.
  • the second precursor carbon precursor is glucose, scurose, polyethylene glycol, poly vinyl alcohol, poly vinyl chloride, citric acid Any one or two or more, preferably any one containing glucose, squarose, citric acid, and can be uniformly coated on the surface of the negative electrode active material 102 through the reaction of the first step with the nano hollow fiber. have.
  • the carbon precursor is coated on the surface of the active particles such as silicon
  • a portion of carbon and oxygen contained in a subsequent heat treatment process (firing process) is converted to carbon dioxide or carbon monoxide to evaporate.
  • firing process is converted to carbon dioxide or carbon monoxide to evaporate.
  • only carbon remains on the surface of the active particles.
  • An example of the reaction is as follows.
  • the second material 100 which is the carbon precursor or LTO, is preferably 5 to 50% by weight of the negative electrode active material, more preferably 10 to 40% by weight, and most preferably 20 to 30% by weight.
  • the weight ratio of the carbon precursor or the LTO is less than 5%, there is a problem that the safety and battery life of the negative electrode active material is reduced, and when it exceeds 50%, the energy density and the tap density are low.
  • Lithium salts in the precursor 100 for preparing LTO are acetate, nitrate, sulfate, carbonate, hydroxide and lithium phosphate (Li 3 PO 4 ).
  • Phosphate such as may be used, and the type of titanium salt is bis ammonium lactato dihydroxide (bis (ammonium lactato) dihydroxide), boride (boride), bromide (bromide), butoxide (butoxide), tertiary- Tert-butoxide, chloride, chloride tetrahydrofuran, diisopropoxide bis (acetylacetonate), ethoxide, ethylhexyloxide ), Fluoride, hydride, iodide, isopropoxide, methoxide, oxysulfate, propoxy (Propoxide), it may be used, and sulfate (sulfate), so long as it can be obtained on a commercial scale is not particularly
  • the present invention provides a nano hollow fiber as a first material and an LTO as a second material in active particles such as silicon, tin dioxide, silicon oxide, a metal oxide containing the same, and a metal compound of the negative electrode active material.
  • FIG. 3 is a step diagram for a method of manufacturing a negative electrode active material using a carbon-based material as a second material.
  • a carbon nanotube which is a nano hollow fibrous carbon material that is a first material of the coating layer is dispersed in an aqueous carbon precursor solution that is a second material of the coating layer.
  • the content of the nano-hollow fibrous carbon is preferably 0.5 to 8% by weight based on the total weight of the dispersion, and if less than the above range, the movement of lithium ions is limited, and when it exceeds the weight%, volume expansion by heat Problems may arise.
  • active particles such as silicon or silicon oxide are mixed and dispersed. That is, after dissolving the carbon precursor in distilled water, the carbon nanotubes, which are nano hollow fibrous carbon materials, and silicon or silicon dioxide, which are active particles, are continuously mixed. At this time, the mixing was performed by transferring the mixed material to the reactor using a metering pump.
  • the reaction system in the reactor is sufficiently stirred at low speed or with ultrasonic waves in the reaction system (acoustic chemistry, Sonochemistry), so that the silicon composite anode active material coated with the carbon precursor, the second material, and the nano hollow fiber type carbon, the first material, or A silicon oxide composite negative electrode active material coated with a carbon precursor and nano hollow fiber type carbon was simultaneously synthesized.
  • the kind of the active particles of the present invention is not limited to silicon or silicon oxide, and various other metals or metal oxides may be used.
  • the operating frequency is 28 kHz to 400 kHz and the intensity is preferably maintained at 100 W to 800 W.
  • the precipitation of crystals proceeds more easily through multibubble sonoluminescence (MBSL) conditions.
  • an embodiment of the present invention is to adjust the operating frequency to 20 kHz to 300 kHz, operating intensity to 160 W to 600 W, while maintaining the temperature in the reactor at 15 to 35 °C the pressure in the reactor Constant pressure was applied at 1 to 5 atm.
  • inert gas selected from the group consisting of nitrogen gas, argon gas, and combinations thereof into the reactor. Injecting nitrogen gas and / or argon gas into the reactor, the silicon composite anode active material coated with carbon-based and nano hollow fiber-type carbon simultaneously or the silicon dioxide composite anode active material coated with carbon-based and nano hollow fiber-like carbon simultaneously
  • the size of can be made small and therefore the tap density can be further increased. This is an effect obtained from the sound wave emission phenomenon, and the above-described effect occurs because the reaction is performed by the high temperature and high pressure appearing in the sound wave emission shape.
  • the particle size of the particles has an average particle diameter of 1 to 30 ⁇ m, preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. to be.
  • the average particle diameter of the particles before the reaction (primary particles) is 5 nm to 400 nm
  • the average particle diameter of the particles (secondary particles) fired after coating is 1 ⁇ m to 30 ⁇ m.
  • the shape of the particles is preferably spherical.
  • the mixture is dried, a silicon composite negative electrode active material or carbon-based and nano-hollow fibers simultaneously coated with carbon-based (carbon precursor) and nano-hollow-fiber carbon suitable for the negative electrode active material of a high capacity lithium secondary battery Firing to obtain a silicon dioxide composite negative electrode active material coated with a carbon simultaneously at the same time in the temperature range of 400 to 800 °C, preferably 500 to 700 °C under an inert gas atmosphere for the reason that it can achieve a desirable structure while suppressing the growth of the particle size Can be implemented.
  • the inert gas atmosphere inside the kiln can be formed by blowing a gas selected from the group consisting of nitrogen gas, argon gas, and combinations thereof.
  • the composite anode active material for a secondary battery obtained here includes a coating layer made of a carbon-based second material and a first hollow nanofiber-type carbon, and active particles inside the coating layer, as shown in FIG. 1.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a negative electrode active material using LTO as a second material according to another embodiment of the present invention.
  • glacial acetic acid and titanium salt in which carbon nanotubes are dispersed are mixed. Possible examples of such titanium salts are as listed above.
  • silicon or silicon oxide as active particles is mixed into the mixed solution, mixed, and then distilled water is added.
  • the first and second materials are then coated on the surface of the active particles.
  • a heat treatment process is performed after the drying process, and the heat treatment firing process conditions are as described above.
  • a negative electrode active material having a core-coating layer structure of silicon (active particle) -carbon nanotube (CNT, first material) / LTO (second material) is manufactured.
  • a composite anode active material having the above characteristics can be produced with excellent reproducibility and productivity.
  • the present invention relates to a lithium secondary battery including a lithium secondary battery negative electrode active material prepared by the above method as another means for solving the above problems.
  • the lithium secondary battery of the present invention is a lithium battery having a positive electrode and a negative electrode capable of absorbing and discharging lithium ions, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the negative electrode includes the active material described above. Therefore, the lithium secondary battery according to the present invention exhibits excellent characteristics compared to the conventional lithium secondary battery due to the excellent reproducibility, life characteristics, etc. of the negative electrode.
  • Na 2 cation was substituted with H cation in a Na 2 SiO 3 1M aqueous solution to prepare an H 2 SiO 3 aqueous solution.
  • 3 wt% of nano hollow fiber carbon multi-walled carbon nanotubes, MWCNT
  • MWCNT multi-walled carbon nanotubes
  • Dispersion of nano hollow fiber type carbon was used by ultrasonic dispersion method and high pressure dispersion method. After adding sucrose and citric acid aqueous solution to the H 2 SiO 3 aqueous solution, the mixture was stirred for 1 hour and then the reaction system in the reactor was sufficiently stirred at low speed, or with ultrasonic wave for 1 hour (acoustics, Sonochemistry).
  • the temperature in the reactor was maintained at 30 ° C. by using a circulating thermostat, the operating frequency was 200 kHz, the intensity was 300 W, the pressure in the reactor was constantly pressurized to 3 atm, and argon gas was used inside the reactor.
  • the reaction was dried at 150 degrees in a spray dryer. After drying, the mixture was calcined at 700 to 1100 ° C. for 24 hours in a nitrogen atmosphere, whereby silicon / silicon oxide was used as an active particle, and a cathode active material was prepared in which a CNT and a carbon precursor (sucrose), which are nano hollow fibers, form a coating layer.
  • Example 2 In the same manner as in Example 1, except that TiO 2 and LiOH were added to prepare LTO instead of sucrose and citric acid aqueous solution.
  • Example 1 is the same as Example 1 except that sucrose and citric acid and carbon nanotubes (CNT) are not included.
  • sucrose and citric acid and carbon nanotubes (CNT) are not included.
  • the CNTs are well dispersed in the particles of the negative electrode active material, and the particle average particle size is about 10 micrometers.
  • the particle size analysis of the material was performed using a laser diffraction particle size distribution meter. From the result of the cumulative particle size distribution, the particle size at the point where the cumulative volume reaches 10%, 50%, and 90% was confirmed, and was set as d10, d50, and d90, respectively. The results are shown in Table 1 below.
  • the tap density was calculated by tapping 50 g of material into the cylinder, measuring the volume after 2000 taps, and calculating the tap density. The results are shown in Table 1 above.
  • a negative electrode active material: conductive material: binder was weighed in a weight ratio of 80: 12: 8. After mixing the slurry of the mixed material to the aluminum thin film and dried for 8 hours at 120 °C to prepare a pole plate, and then press the prepared pole plate. Li metal was used as a negative electrode, a 2030 type coin cell was prepared, and 1M-LiPF6 dissolved in EC-DEC (volume ratio 1: 1) was used as an electrolyte. Charge and discharge were performed at 1.5 V for charging conditions and 0.02 V for discharge conditions, and the results are shown in FIG. 7.
  • the negative electrode active material simultaneously containing the carbon material and the CNT has a very good discharge specific amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지가 제공된다. 본 발명에 따른 리튬 이차전지용 음극 활물질은 리튬 이온이 흡수/방출될 수 있는 활성 입자; 및 상기 활성 입자 표면에 코팅된 코팅층을 포함하며, 여기에서 상기 코팅층은 나노 중공 섬유인 제 1 물질과 탄소전구체 또는 LTO인 제 2 물질을 포함하는 것을 특징으로 하며, 본 발명의 리튬 이차전지용 음극 활물질은 실리콘의 경우 충/방전시 리튬과의 반응에 의한 체적 변화로 균열이 발생하고 활물질 입자가 파괴됨으로 충/방전 사이클 진행됨에 따라 용량이 급격하게 저하되는 현상을 방지하며, 이로써 사이클 수명이 길어지므로, 고용량 전지에 적합한 고에너지 밀도를 확보할 수 있다.

Description

리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
본 발명은 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 충/방전시 리튬과의 반응에 의한 체적 변화로 균열이 발생하고 활물질 입자가 파괴됨으로 충/방전 사이클 진행됨에 따라 용량이 급격하게 저하되는 현상을 방지하며, 이로써 사이클 수명이 길어지므로, 고용량 전지에 적합한 고에너지 밀도를 확보할 수 있는 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 휴대용 개인정보단말기(PDA), 노트북 PC, MP3 등의 휴대용 소형 전자기기 및 전기 자동차 등의 전원 및 동력원으로서의 리튬 이차전지의 수요가 급격히 늘어나고 있다. 이에 따라 리튬 이차전지의 고용량화와 사이클 수명 연장에 대한 요구도 증가하고 있다.
리튬 이차전지의 음극 활물질로서는 탄소계 물질이 주로 사용되고 있다. 하지만 탄소계 음극 활물질의 최대 이론용량이 372 mAh/g로 제한되어 있고, 수명열화가 심하다는 문제점을 가지고 있다. 따라서 고용량을 나타내고 리튬 금속을 대치할 수 있는 리튬 합극 물질에 대한 많은 연구와 제안이 있었으며, 이 중 하나는 실리콘(Si)을 이용하는 것이다.
일반적으로, 실리콘은 리튬과의 화합물 형성반응을 통해 리튬을 가역적으로 흡장, 방출하며 이론적 최대 용량은 약 4020 mAh/g(9800 mAh/cc)인데, 이는 탄소재에 비해서 매우 크기 때문에 고용량 음극 재료로서 유망하다고 알려져 있다. 하지만, 실리콘의 경우 충/방전시 리튬과의 반응에 의한 체적 변화로 균열이 발생하고 실리콘 활물질 입자가 파괴됨으로 충/방전 사이클 진행됨에 따라 용량이 급격하게 저하되어 사이클 수명이 짧아진다.
따라서, 고용량 전지에 적용하기 적합한 에너지 밀도를 가지고, 안정성과 안전성이 뛰어나며, 우수한 전지특성을 유지하면서도 사이클 수명이 긴 음극 활물질 및 상기 음극 활물질의 경제성 있는 제조방법에 대한 개발이 요구되고 있다. 이를 위해 실리콘에 흑연을 기계적으로 분쇄하여 사용하거나 실리콘에 탄소물질을 같이 섞은 후 소성하는 방법이 제안되어 왔다. 실리콘에 흑연을 첨가한 경우 실리콘보다 용량은 적지만 사이클 수명을 월등히 향상시킬 수가 있는 장점이 있으나, 하지만 실리콘에 나노 중공 섬유형 탄소 또는 LTO, 탄소계 물질을 동시에 코팅한 이차 전지 음극 활물질 및 제조 방법의 제안은 없었다.
따라서 본 발명이 해결하려는 과제는 전기 전도성, 에너지 밀도, 안정성과 안전성 및 사이클 수명 특성이 향상된 리튬 이차전지용 음극 활물질 및 이의 전구체를 제공하는 것이다.
본 발명이 해결하려는 또 다른 과제는 상기 리튬 이차전지용 음극 활물질의 제조방법을 제공하는 것이다.
본 발명이 해결하려는 또 다른 과제는 상기 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리튬 이차전지용 음극 활물질로서, 본 발명은 리튬 이온이 흡수/방출될 수 있는 활성 입자; 및 상기 활성 입자 표면에 코팅된 코팅층을 포함하며, 여기에서 상기 코팅층은 나노 중공 섬유인 제 1 물질과 탄소전구체 또는 LTO인 제 2 물질을 포함하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질을 제공한다.
상기 활성 입자는 실리콘, 실리콘 산화물, 금속, 금속 산화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나이며, 이때 상기금속은 Sn, Al, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Pt, Pd, Ir, Rh, Ru, Ni, Mo, Cr, Cu, Ti, W, Co, V 및 Ge로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 나노 중공 섬유는 나노 중공 섬유 탄소이며, 단일벽 탄소 나노 튜브, 다중벽 탄소 나노 튜브, 탄소 나노 섬유, 그래핀 또는 이들의 혼합물일 수 있다.
상기 탄소 전구체는 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)의 일종 또는 이종 이상, 바람직하게는 글루코스, 스쿠로스 및 구연산으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
상기 나노 중공 섬유형 탄소의 직경은 2 내지 100 nm이고 및 탄소전구체 또는 LTO인 제 2 물질과 나노 중공 섬유형 탄소인 제 1 물질로 코팅된 복합 음극 활물질은 1차 입자의 평균 입경이 5 nm 내지 400 nm이고 및 2차 입자의 평균 입경이 3㎛ 내지 30㎛인 결정이다.
상기 또 다른 과제를 해결하기 위하여, 본 발명은 (a) 음극 활물질용 활성입자, 탄소 전구체 및 나노 중공 섬유형 탄소를 수용액에 혼입한 후, 분산시켜 분산액을 제조하는 단계; (b) 상기 반응기 내의 반응계를 교반하거나 또는 상기 반응계에 초음파를 가진(음향화학, Sonochemistry)하여 상기 나노 중공 섬유형 탄소와 탄소 전구체로 이루어진 코팅층을 상기 활성입자 표면에 균일하게 코팅시키는 단계를 포함한다. 상기 초음파 가진 공정은 다중기포 소노루미네센스(multibubble golwlgmunjlhhf snuiescence: MBSL) 조건에서 수행된다.
상기 방법은 상기 코팅 단계 후, 상기 혼합물을 건조하는 단계; 상기 건조된 혼합물을 불활성 기체 분위기 중에서 소성함으로써 복합 음극 활물질을 얻는 단계를 더 포함한다. 상기 (a) 단계의 분산액 중에서 상기 나노 중공 섬유형 탄소의 함량은 상기 분산액의 총중량을 기준으로 0.5 내지 8 중량%이며, 상기 (a) 단계의 분산액을 제조하는 단계에서 상기 나노 중공 섬유형 탄소의 분산은 초음파 분산 방법 또는 고압분산 방법을 이용하여 실시될 수 있다.
상기 (b) 단계에서 상기 코팅층은 불활성 기체 분위기 하에서 10 내지 50℃의 온도 범위에서 실시되며, 상기 소성은 불활성 기체 분위기 하에서 500 내지 900℃의 온도 범위에서 실시된다.
본 발명은 상기 또 다른 과제를 해결하기 위하여, 상술한 음극 활물질을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 리튬 이차전지용 음극 활물질은 실리콘의 경우 충/방전시 리튬과의 반응에 의한 체적 변화로 균열이 발생하고 활물질 입자가 파괴됨으로 충/방전 사이클 진행됨에 따라 용량이 급격하게 저하되는 현상을 방지하며, 이로써 사이클 수명이 길어지므로, 고용량 전지에 적합한 고에너지 밀도를 확보할 수 있다. 따라서, 본 발명의 리튬 이차전지용 음극 활물질을 이용하여 제조된 리튬 이차전지는 기본적인 전기적 특성을 우수하게 유지하면서도 안정성 및 안전성을 개선할 수 있으며, 사이클 수명 특성을 향상시킬 수 있다. 또한, 본 발명의 리튬 이차전지용 복합 음극 활물질의 제조방법에 따르면 상기한 특성을 갖는 복합 음극 활물질을 우수한 재현성 및 생산성을 가지며 제조할 수 있다.
도 1은 실시예 1에서 제조된 리튬 이차 전지용 음극 활물질 단면의 모식도이다.
도 2은 실시예 2에서 제조된 리튬 이차 전지용 음극 활물질의 단면의 모식도이다.
도 3는 실시예 1에서 제조되는 음극 활물질의 습식 제조방법으로 상기 음극 활물질제조 단계를 설명하기 위한 흐름도이다.
도 4은 실시예 2에서 제조되는 음극 활물질의 습식 제조방법으로 상기 음극 활물질제조 단계를 설명하기 위한 흐름도이다.
도 5는 본 발명의 실시예 1에서 제조된 리튬 이차 전지용 복합 양극 활물질의 전계 주사현미경 분석 결과를 나타내는 도면이다.
도 6은 본 발명의 실시예 2에서 제조된 리튬 이차 전지용 복합 양극 활물질의 전계 주사현미경 분석 결과를 나타내는 도면이다.
도 7은 본 발명의 실시예에서 제조된 리튬 이차 전지용 음극 활물질의 충방전 결과를 나타내는 도면이다.
본 발명에 따른 리튬 이차전지용 음극 활물질은 코어와 상기 코어를 코팅하는 코팅층으로 이루어지며, 상기 코팅층은 나노 중공 섬유인 제 1 물질과 상기 제 1 물질에 혼합되는 제 2 물질을 포함한다. 본 발명에서 상기 코어는 리튬 이온이 흡수/방출될 수 있는 실리콘, 금속 또는 금속 산화물 및 이들의 혼합 합금이 될 수 있다. 또한, 본 발명의 일 실시예에서 상기 제 2 물질은 탄소계 물질이었으며, 본 발명의 또 다른 일 실시예에서 상기 제 2 물질은 LTO(Lithium Titanium Oxide, Li4Ti5O12)이다.
본 발명은 이와 같이 음극 활물질을 코어와 코팅층으로 구분하고, 상기 코팅층 성분으로 리튬 이온의 이동 통로인 중공 구조를 갖는 섬유(제 1 물질)와 음극 활물질의 입자 크기 및 리튬 이온과의 반응에 따른 체적 변화를 최소화시킬 수 있는 물질(제 2 물질)을 동시에 사용한다. 이로써, 충/방전시 리튬과의 반응에 의한 체적 변화로 균열이 발생하고 활물질 입자가 파괴됨으로 충/방전 사이클 진행됨에 따라 용량이 급격하게 저하되는 현상을 방지할 수 있다. 더 나아가, 본 발명에 따른 코팅층은 제 1 물질과 제 2 물질의 동시 코팅을 통하여, 코어인 금속 산화물에 코팅될 수 있으므로, 경제성이 우수하다.
이하 도면 및 실시예를 통하여 본 발명은 보다 상세히 설명한다.
도 1 및 2는 본 발명의 일 측면에 따른 리튬 이차 전지용 복합 음극 활물질 전구체 또는 리튬 이차 전지용 복합금속 음극 활물질 단면의 모식도이다.
도 1 및 2를 참조하면, 코어인 활성입자(102) 및 상기 활성입자(102)를 코팅하는 코팅층이 도시되며, 상기 코팅층은 나노 중공 섬유인 제 1 물질(101)과 제 1 물질과 함께 코팅층으로 사용되는 제 2 물질이 개시되며, 제 2 물질은 탄소계 물질(100) 또는 LTO(103)이다.
여기에서 활성 입자라 함은 일정한 형태(구립체, 튜브 등이 형상)를 가지며, 리튬 이온이 흡수/방출될 수 있는 임의의 물질로 이루어진 입자를 지칭한다. 예를 들면, 상기 활성입자는 실리콘, 실리콘 산화물, 금속, 금속 산화물 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으며, 상기금속은 Sn, Al, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Pt, Pd, Ir, Rh, Ru, Ni, Mo, Cr, Cu, Ti, W, Co, V 및 Ge로 이루어진 군에서 선택되는 1종 이상일 수 있다.
예를 들면 상기 활성 입자는 실리콘일 수 있는데, 이 경우 본 발명의 일 실시예에 따른 음극 활물질은 실리콘(코어)-(나노 중공 섬유 + 탄소계 화합물)(코팅층)의 형태이거나, 또는 실리콘(코어)-(나노 중공 섬유 + LTO)(코팅층)의 구조를 갖는다. 상기 나노 중공 섬유(101)는 바람직하게는 나노 크기의 중공을 갖는 탄소 물질로서, 단일벽 탄소 나노 튜브, 다중벽 탄소 나노 튜브, 탄소 나노 섬유, 그래핀 또는 이들의 혼합물일 수 있다. 하지만, 본 발명의 범위는 이에 제한되지 않으며, 리튬 이온의 이동 경로가 제공될 수 있는 구조(중공 또는 채널)인 임의의 모든 섬유가 본 발명의 범위에 속한다.
상기 제 2 물질인 탄소 전구체는 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)의 일종 또는 이종 이상, 바람직하게는 글루코스, 스쿠로스, 구연산을 포함하고, 나노 중공 섬유와의 제 1단계의 반응을 거쳐 음극 활물질(102)의 표면에 균일하게 코팅될 수 있는 것이라면 어느 것이나 사용할 수 있다. 본 발명에서 상기 탄소 전구체는 실리콘과 같은 활성 입자 표며에 코팅된 후, 후속하여 진행되는 열처리 공정(소성 공정)에서 포함된 탄소 일부 및 산소는 이산화탄소나 일산화탄소로 전환되어 증발하게 된다. 그 결과 탄소만이 활성 입자 표면에 잔류하게 되는데, 상기 반응의 예는 다음과 같다.
[화학식 1]
Figure PCTKR2011003453-appb-I000001
상기 탄소 전구체 또는 LTO인 제 2 물질(100)은 음극 활물질의 5 내지 50 중량%인 것이 바람직하며, 10 내지 40 중량%인 것이 더욱 바람직하고, 20 내지 30 중량%인 것이 가장 바람직하다. 탄소 전구체 또는 LTO의 중량비가 5% 미만인 겨우는 음극 활물질의 안전성 및 전지 수명이 작아지는 문제가 있고, 50%를 초과할 경우 에너지 밀도와 tap density가 낮아지는 문제가 있다.
LTO를 제조하기 위한 전구체(100)에서 리튬염의 종류는 아세테이트(acetate), 나이트레이트(nitrate), 설페이트(sulfate), 카보네이트(carbonate), 하이드록사이드(hydroxide) 및 인산리튬(Li3PO4)과 같은 포스페이트 등을 이용할 수 있으며, 티타늄염의 종류로는 비스암모늄 락타토디하이드록사이드(bis(ammonium lactato)dihydroxide), 보라이드(boride), 브로마이드(bromide), 부톡사이드(butoxide), 터셔리-부톡사이드(tert-butoxide), 클로라이드(chloride), 클로라이드 테트라하이드로퓨란(chloride tetrahydrofuran), 디이소프로폭사이드 비스아세틸아세토네이트(diisopropoxide bis(acetylacetonate)), 에톡사이드(ethoxide), 에틸헥실옥사이드(ethylhexyloxide), 플루오라이드(fluoride), 하이드라이드(hydride), 아이오아이드(iodide), 이소프로폭사이드(isopropoxide), 메톡사이드(methoxide), 옥시설페이트(oxysulfate), 프로폭사이드(propoxide), 설페이트(sulfate) 등을 이용할 수 있으며, 공업적으로 입수할 수 있는 것이라면 특별히 제한되지 않는다.
상기 또 다른 과제를 해결하기 위하여 본 발명은 음극 활물질의 상술한 실리콘, 이산화주석, 실리콘산화물, 이를 포함하는 금속 산화물, 금속 화합물과 같은 활성 입자에 제 1 물질인 나노 중공 섬유와 제 2 물질인 LTO 전구체 또는 탄소계 물질을 동시에 투입한 상태에서, 상기 물질들을 반응시키는 제 1단계; 및 제 1단계를 거친 반응물을 건조하여 300℃ 내지 1000℃의 온도에서 열처리하는 제 2단계를 포함하는 리튬 이차전지 음극 활물질의 제조 방법을 제공한다.
상기 제조 방법을 아래에서 보다 상세히 설명한다.
도 3은 제 2 물질로 탄소계 물질을 사용한 음극 활물질의 제조방법에 대한 단계도이다.
도 3을 참조하면, 먼저 코팅층의 제 2 물질인 탄소 전구체 수용액에 코팅층의 제 1 물질인 나노 중공 섬유형 탄소 물질인 탄소 나노 튜브를 분산시킨다. 상기 나노 중공 섬유형 탄소의 함량은 상기 분산액의 총중량을 기준으로 0.5 내지 8 중량%인 것이 바람직한데, 만약 상기 범위 미만인 경우 리튬 이온의 이동이 제한되고, 상기 중량%를 초과하는 경우 열에 의한 부피 팽창 문제가 발생할 수 있다. 이후 실리콘 또는 실리콘 산화물과 같은 활성입자를 혼입하여 분산시키게 된다. 즉, 증류수에 탄소 전구체를 녹인 후 나노 중공 섬유형 탄소 물질인 탄소 나노 튜브와 활성입자인 실리콘 또는 이산화 실리콘을 연속적으로 혼합하는 것입니다. 이때 혼합은 정량 펌프를 이용하여 반응기로 혼합 물질을 이송시키는 방식이었다.
이어서 반응기 내의 반응계를 저속으로 충분히 교반하거나 또는 상기 반응계에 초음파를 가진하여(음향화학, Sonochemistry), 제 2 물질인 탄소 전구체와 제 1 물질인 나노 중공 섬유형 탄소가 동시에 코팅된 실리콘 복합 음극 활물질 혹은 탄소 전구체와 나노 중공 섬유형 탄소가 동시에 코팅된 실리콘 산화물 복합 음극 활물질을 합성한다. 상술한 바와 같이 실리콘 또는 실리콘 산화물로 본 발명의 활성 입자의 종류가 제한되지 않으며, 다양한 다른 금속 또는 금속 산화물이 사용될 수 있다.
이때 순환식 항온조를 이용하여 반응기 내의 온도를 5 내지 70℃로 유지하는 한편, 운전 주파수는 28 kHz 내지 400 kHz이고 강도는 100 W 내지 800 W로 유지하는 것이 바람직하다. 또한, 본 발명의 보다 바람직한 실시예에서는 다중기포 소노루미네센스(multibubble sonoluminescence: MBSL) 조건을 통하여 결정의 석출을 보다 용이하게 진행하다. 이를 위하여, 본 발명의 일 실시예는 운전 주파수를 20 kHz 내지 300 kHz로 조절하고, 운전 강도를 160 W 내지 600 W로 하고, 반응기 내의 온도를 15 내지 35℃로 유지한 상태에서 반응기 내의 압력을 1 내지 5 atm으로 일정하게 가압하였다.
더 나아가, 반응기 내부에는 질소 가스, 아르곤 가스, 및 이들의 조합으로 이루어진 군에서 선택되는 불활성 가스를 불어 넣어 주는 것이 바람직하다. 반응기 내부에 질소 가스 및/또는 아르곤 가스를 주입하면 제조된 탄소계와 나노 중공 섬유형 탄소가 동시에 코팅된 실리콘 복합 음극 활물질 혹은 탄소계와 나노 중공 섬유형 탄소가 동시에 코팅된 이산화실리콘 복합 음극 활물질 입자의 크기를 작게 할 수 있으며, 따라서 탭 밀도 또한 더욱 증가시킬 수 있다. 이는 음파 발광 현상으로부터 얻어지는 효과로서, 음파 발광형상시 나타나는 고온 고압에 의해서 반응이 이루어지기 때문에 상술한 효과가 발생한다.
이와 같이 하여 얻은 탄소계와 나노 중공 섬유형 탄소가 동시에 코팅된 실리콘 복합 음극 활물질은 입자의 입경이 평균 입경은 1 내지 30 ㎛이고, 바람직하게는 1 내지 10 ㎛, 더욱 바람직하게는 1 내지 5 ㎛이다. 이때 반응 전 입자(1차 입자)의 평균 입경이 5 nm 내지 400 nm인데 비해, 코팅 후 소성된 입자(2차 입자)의 평균 입경이 1㎛ 내지 30㎛수준이다. 또한 상기 입자의 형상은 구형이 바람직하다.
*도 3을 다시 참조하면, 상기 혼합물을 건조하고, 고용량 리튬 이차전지의 음극 활물질에 적합한 탄소계(탄소 전구체)와 나노 중공 섬유형 탄소가 동시에 코팅된 실리콘 복합 음극 활물질 혹은 탄소계와 나노 중공 섬유형 탄소가 동시에 코팅된 이산화실리콘 복합 음극 활물질을 얻기 위한 소성은 입경의 성장을 억제하면서도 바람직한 구조를 이룰 수 있는 이유에서 불활성 기체 분위기 하에서 400 내지 800℃, 바람직하게는 500 내지 700℃의 온도 범위에서 실시될 수 있다. 소성로 내부의 불활성 기체 분위기는 질소 가스, 아르곤 가스, 및 이들의 조합으로 이루어진 군에서 선택되는 가스를 불어 넣어 주는 것에 의하여 형성될 수 있다. 여기서 얻어진 이차전지용 복합 음극 활물질은 탄소계인 제 2 물질과 제 1 물질인 나노 중공 섬유형 탄소로 이루어진 코팅층 및 상기 코팅층 내부의 활성 입자를 포함하며, 이는 도 1에서 도시된 바와 같다.
도 4는 본 발명의 또 다른 일 실시예에 따라 LTO를 제 2 물질로 사용한 음극 활물질의 제조방법에 대한 단계도이다.
도 4를 참조하면, 탄소나노튜브가 분산된 빙초산과 티타늄염을 혼입한다. 상기 티타늄염 등의 가능한 예는 상기 열거한 바에 따른다. 이후 활성 입자인 실리콘 또는 실리콘산화물을 상기 혼합액에 혼입하고, 혼합한 후, 증류수를 첨가한다. 이후 제 1 물질과 제 2 물질이 활성입자 표면에 코팅된다. 이후, 건조 공정 후 열처리 공정이 진행되는데, 상기 열처리 소성 공정 조건은 상술한 바와 같다. 이로써, 실리콘(활성입자) - 탄소나노튜브(CNT, 제 1 물질)/LTO(제 2물질)의 코어-코팅층 구조의 음극 활물질이 제조된다.
상기한 본 발명의 리튬 이차전지용 복합 음극 활물질의 제조방법에 따르면 상기한 특성을 갖는 복합 음극 활물질을 우수한 재현성 및 생산성을 가지며 제조할 수 있다.
발명은 상기 과제를 해결하기 위한 다른 수단으로서, 전술한 방법에 의해 제조된 리튬 이차전지 음극 활물질이 포함된 리튬 이차전지 제조에 관한 것이다.
본 발명의 리튬 이차 전지는 리튬 이온의 흡방출이 가능한 양극과 음극, 상기 양극과 음극의 사이에 개재된 세퍼레이터, 및 전해질을 구비한 리튬 전지이며, 상기 음극은 상술한 활물질을 포함한다. 따라서, 상기 음극의 우수한 재현성, 수명 특성 등에 의하여 본 발명에 따른 리튬 이차전지는 종래 리튬 이차전지에 비하여 우수한 특성을 나타낸다.
이하, 본 발명에 따른 실시예 및 본 발명에 따르지 않는 비교예를 통하여, 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
Na2SiO3 1M 수용액에서 Na 양이온을 양이온 교환수지를 이용하여 H 양이온과 치환하여 H2SiO3 수용액을 제조하였다. 이후 H2SiO3 수용액에 나노 중공 섬유형 탄소(다중벽 탄소나노튜브, MWCNT) 3중량%을 균일하게 분산시켜 분산액을 제조한다. 나노 중공 섬유형 탄소의 분산은 초음파 분산 방법과 고압분산 방법을 이용하였다. 상기 H2SiO3 수용액에 sucrose, citric acid 수용액을 첨가한 후 1시간 교반 후 반응기 내의 반응계를 저속으로 충분히 교반하거나 또는 상기 반응계에 초음파를 1시간 가진(음향화학, Sonochemistry)하였다. 이때 순환식 항온조를 이용하여 반응기 내의 온도를 30℃로 유지하고, 운전 주파수는 200 kHz 강도는 300 W, 반응기 내의 압력을 3 atm으로 일정하게 가압하였으며, 반응기 내부에는 아르곤 가스를 이용하였다. 반응 후 스프레이 건조기에서 150도에서 건조하였다. 건조 후 질소 분위기에서 700~1100℃에서 24시간 소성하였으며, 이로써 실리콘/실리콘 산화물을 활성입자로 하며, 나노 중공 섬유인 CNT 및 탄소전구체(sucrose)가 코팅층을 이루는 음극 활물질을 제조하였다.
실시예 2
실시예 1과 동일방식이나, sucrose, citric acid 수용액 대신 LTO를 제조하기 위하여 TiO2와 LiOH 첨가하였다는 점을 달리하였다.
비교예 1
실시예 1에서 sucrose와 citric acid 및 탄소나노튜브(CNT)를 포함되지 않은 것 외에 실시예1 과 동일하다.
시험예 1
FE-SEM
상기 실시예에서 제조된 음극 활물질의 입자형태 관찰은 FE-SEM(전계 주사현미경)으로 실시하였으며, 그 결과를 도 5 및 6에 나타내었다.
도 5 및 6을 참조하면, 음극 활물질의 입자에 CNT가 잘 분산되어 있으며, 입자 평균 입자 크기가 약 10 마이크로 미터로 나타나는 것을 알 수 있다.
시험예 3
입도 분석
레이져 회절식의 입도 분포계를 이용하여 재료의 입도 분석을 하였다. 누적 입도 분포의 결과로부터 누적 체적이 10%, 50% 및 90%에 도달하는 지점에서의 입도를 확인하고, 각각 d10, d50, 및 d90으로 하였다. 이에 대한 결과는 하기 표 1에 나타내었다.
표 1
Sample 입자 크기(μm) Tap density(g/cc)
실시예 1 d10 5.6 1.5
d50 11.2
d90 15.3
실시예 2 d10 5.3 1.6
d50 10.2
d90 15.0
비교예 1 d10 4.9 1.8
d50 9.0
d90 13.9
시험예 4
탭 밀도
탭 밀도는 실린더에 재료 50g을 투입하고, 탭 횟수 2000회 후의 부피를 측정하여 탭 밀도를 계산하였으며, 그 결과를 상기 표 1에 나타내었다.
표 1의 결과를 참조하면, 음극 활물질에 탄소물질과 CNT가 포함될수록 탭 밀도는 감소하는 것을 알 수 있다. 하지만 전지 평가에서 전지 성능은 탄소물질과 CNT가 포함될수록 향상되었다.
시험예 5
전지 평가
음극 활물질 : 도전재 : 바인더를 80 : 12 : 8의 중량 비율로 칭량하였다. 혼합된 물질을 슬러리화한 후 알루미늄 박막에 도포 후 120℃에서 8시간 건조하여 극판을 제조하였으며, 이후 제조된 극판을 프레스 하였다. 음극으로는 Li 메탈을 이용하고, 2030형 코인 셀을 제조하였으며, 전해액으로 1M-LiPF6를 EC-DEC(체적비 1 : 1)에 용해시킨 것을 이용하였다. 충전 조건을 1.5V, 방전 조건을 0.02V로 충방전을 실시하였고, 그 결과를 도 7에 나타내었다.
도 7을 참조하면, 탄소물질과 CNT가 동시에 포함된 음극 활물질이 아주 좋은 방전 비용량을 가짐을 알 수 있다.

Claims (13)

  1. 리튬 이차전지용 음극 활물질로서,
    상기 활물질은
    리튬 이온이 흡수/방출될 수 있는 활성 입자; 및
    상기 활성 입자 표면에 코팅된 코팅층을 포함하며, 여기에서 상기 코팅층은 나노 중공 섬유인 제 1 물질과 탄소전구체 또는 LTO인 제 2 물질을 포함하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질.
  2. 제 1항에 있어서,
    상기 활성 입자는 실리콘, 실리콘 산화물, 금속, 금속 산화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나이며, 이때 상기금속은 Sn, Al, Pb, Zn, Bi, In, Mg, Ga, Cd, Ag, Pt, Pd, Ir, Rh, Ru, Ni, Mo, Cr, Cu, Ti, W, Co, V 및 Ge로 이루어진 군에서 선택되는 1종 이상일 수 있는 것을 특징으로 하는 리튬 이차전지용 음극 활물질.
  3. 제 1항에 있어서,
    상기 나노 중공 섬유는 나노 중공 섬유 탄소이며, 단일벽 탄소 나노 튜브, 다중벽 탄소 나노 튜브, 탄소 나노 섬유, 그래핀 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.
  4. 제 1항에 있어서,
    상기 탄소 전구체는 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)의 일종 또는 이종 이상, 바람직하게는 글루코스, 스쿠로스 및 구연산으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.
  5. 제 3항에 있어서,
    상기 나노 중공 섬유형 탄소의 직경은 2 내지 100 nm이고 및 탄소전구체 또는 LTO인 제 2 물질과 나노 중공 섬유형 탄소인 제 1 물질로 코팅된 복합 음극 활물질은 1차 입자의 평균 입경이 5 nm 내지 400 nm이고 및 2차 입자의 평균 입경이 3㎛ 내지 30㎛인 결정인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.
  6. (a) 음극 활물질용 활성입자, 탄소 전구체 및 나노 중공 섬유형 탄소를 수용액에 혼입한 후, 분산시켜 분산액을 제조하는 단계; 및
    (b) 상기 반응기 내의 반응계를 교반하거나 또는 상기 반응계에 초음파를 가진(음향화학, Sonochemistry)하여 상기 나노 중공 섬유형 탄소와 탄소 전구체로 이루어진 코팅층을 상기 활성입자 표면에 균일하게 코팅시키는 단계를 포함하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  7. 제 6항에 있어서,
    상기 초음파 가진 공정은 다중기포 소노루미네센스(multibubble golwlgmunjlhhf snuiescence: MBSL) 조건에서 수행되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  8. 제 6항에 있어서, 상기 방법은
    상기 코팅 단계 후,
    상기 혼합물을 건조하는 단계;
    상기 건조된 혼합물을 불활성 기체 분위기 중에서 소성함으로써 복합 음극 활물질을 얻는 단계를 더 포함하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  9. 제 6항에 있어서,
    상기 (a) 단계의 분산액 중에서 상기 나노 중공 섬유형 탄소의 함량은 상기 분산액의 총중량을 기준으로 0.5 내지 8 중량%인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  10. 제6항에 있어서,
    상기 (a) 단계의 분산액을 제조하는 단계에서 상기 나노 중공 섬유형 탄소의 분산은 초음파 분산 방법 또는 고압분산 방법을 이용하여 실시되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  11. 제7항에 있어서,
    상기 (b) 단계에서 상기 코팅층은 불활성 기체 분위기 하에서 10 내지 50℃의 온도 범위에서 실시되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  12. 제8항에 있어서, 상기 소성은 불활성 기체 분위기 하에서 500 내지 900℃의 온도 범위에서 실시되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  13. 제 1항 내지 제5항 중 어느 한 항에 따른 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차 전지.
PCT/KR2011/003453 2010-05-11 2011-05-11 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2011142575A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/696,916 US20130059203A1 (en) 2010-05-11 2011-05-11 Anode active material for a lithium secondary battery, method for preparing same, and lithium secondary battery including same
JP2013510022A JP2013528907A (ja) 2010-05-11 2011-05-11 リチウム二次電池用負極活物質、その製造方法及びそれを含むリチウム二次電池
CN2011800285886A CN102934265A (zh) 2010-05-11 2011-05-11 用于锂二次电池的阳极活性物质,制备这种物质的方法和包含这种物质的锂二次电池
EP11780792.5A EP2571084A4 (en) 2010-05-11 2011-05-11 ANODEACTIVE MATERIAL FOR A LITHIUM SUBSTANCE BATTERY, METHOD OF MANUFACTURING THEREOF AND LITHIUM SUBSTITUTING BATTERY THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100043798 2010-05-11
KR10-2010-0043798 2010-05-11

Publications (3)

Publication Number Publication Date
WO2011142575A2 true WO2011142575A2 (ko) 2011-11-17
WO2011142575A3 WO2011142575A3 (ko) 2012-03-01
WO2011142575A9 WO2011142575A9 (ko) 2012-04-19

Family

ID=44914810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003453 WO2011142575A2 (ko) 2010-05-11 2011-05-11 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20130059203A1 (ko)
EP (1) EP2571084A4 (ko)
JP (1) JP2013528907A (ko)
KR (1) KR20110124728A (ko)
CN (1) CN102934265A (ko)
WO (1) WO2011142575A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054792A1 (ja) * 2012-10-05 2014-04-10 ソニー株式会社 活物質、活物質の製造方法、電極および二次電池
CN109326788A (zh) * 2018-11-20 2019-02-12 青海大学 负极材料和锂离子电池及其制备方法
KR20190060792A (ko) * 2016-09-19 2019-06-03 유미코아 재충전이 가능한 전기화학 셀 및 배터리(rechargeable electrochemical cell and battery)
US10615409B2 (en) 2015-10-22 2020-04-07 Samsung Electronics Co., Ltd. Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191529A (ja) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd 複合材料、複合材料の製造方法、リチウムイオン二次電池用電極材料、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2014027845A1 (ko) * 2012-08-16 2014-02-20 충남대학교산학협력단 리튬이차전지용 실리콘 복합재 음극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
KR101456201B1 (ko) * 2012-10-16 2014-10-31 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 리튬 이차 전지용 음극 활물질의 제조 방법 및 상기 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
KR101906973B1 (ko) * 2012-12-05 2018-12-07 삼성전자주식회사 표면 개질된 음극 활물질용 실리콘 나노입자 및 그 제조방법
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
WO2014098419A1 (ko) * 2012-12-21 2014-06-26 주식회사 엘지화학 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101463171B1 (ko) * 2013-01-11 2014-11-21 주식회사 예일전자 이차전지의 음극재용 탄소코팅 실리콘산화물 분말의 제조방법
KR101687055B1 (ko) 2013-05-16 2016-12-15 주식회사 엘지화학 중공형 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
JP6193184B2 (ja) * 2013-07-08 2017-09-06 株式会社東芝 非水電解質二次電池用負極活物質、非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池、電池パック及び車
CN104282881B (zh) * 2013-07-11 2017-03-08 万向一二三股份公司 一种软包锂离子电池硅负极及其制造方法
US9959947B2 (en) 2013-09-30 2018-05-01 Samsung Electronics Co., Ltd. Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
CN103872326A (zh) * 2014-04-08 2014-06-18 福建师范大学 锂离子电池负极材料的套环状氧化物修饰碳纳米纤维
KR102161625B1 (ko) 2014-05-09 2020-10-05 삼성에스디아이 주식회사 음극, 이를 채용한 리튬 전지 및 리튬 전지의 제조 방법
KR102234287B1 (ko) * 2014-08-08 2021-03-31 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법
US20160181603A1 (en) * 2014-09-12 2016-06-23 Johnson Controls Technology Company Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells
US20160181604A1 (en) * 2014-09-12 2016-06-23 Johnson Controls Technology Company Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells
JP6438287B2 (ja) 2014-12-05 2018-12-12 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池および電池パック
KR101942496B1 (ko) 2015-08-20 2019-01-25 주식회사 엘지화학 진동을 이용한 전지셀 제조용 가스 트랩 제거 장치
KR101997746B1 (ko) 2015-09-24 2019-07-08 삼성전자주식회사 전지 팩 및 이의 충/방전 제어 방법
KR102537224B1 (ko) * 2015-10-12 2023-05-26 삼성에스디아이 주식회사 복합 전극 활물질, 이를 포함하는 리튬 전지, 및 상기 복합 전극 활물질의 제조방법
KR102537225B1 (ko) * 2015-10-23 2023-05-30 삼성전자주식회사 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
US20170214038A1 (en) * 2016-01-25 2017-07-27 Ford Cheer International Limited Lithium titanate electrode material, producing method and applications of same
WO2017209561A1 (ko) * 2016-06-02 2017-12-07 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
PL3343677T3 (pl) 2016-06-02 2023-10-30 Lg Energy Solution, Ltd. Materiał aktywny katody, zawierająca go katoda i zawierająca go litowa bateria akumulatorowa
KR102026918B1 (ko) * 2016-07-04 2019-09-30 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
EP3324419B1 (en) 2016-11-18 2020-04-22 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
WO2018097212A1 (ja) 2016-11-22 2018-05-31 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
WO2018098506A1 (en) * 2016-11-28 2018-05-31 Sila Nanotechnologies Inc. High-capacity battery electrodes with improved binders, construction, and performance
CN106848225B (zh) * 2017-01-20 2020-03-10 祝巧凤 提高锂离子电池安全性的涂层材料及其制法和电池应用
JP6986199B2 (ja) * 2017-11-08 2021-12-22 トヨタ自動車株式会社 負極材料とこれを用いたリチウム二次電池
JP6876257B2 (ja) * 2018-09-14 2021-05-26 トヨタ自動車株式会社 リチウムイオン二次電池用負極
KR20200047879A (ko) 2018-10-25 2020-05-08 삼성전자주식회사 다공성 실리콘 함유 복합체, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자
JP7451012B2 (ja) 2019-09-30 2024-03-18 エルジー エナジー ソリューション リミテッド 複合負極活物質、その製造方法およびそれを含む負極
KR102362667B1 (ko) * 2019-12-20 2022-02-14 주식회사 포스코 리튬이온 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN114275823B (zh) * 2021-12-15 2024-02-13 欣旺达惠州动力新能源有限公司 一种中空纳米球复合材料、其制备方法和锂电池
CN114907613B (zh) * 2022-03-23 2023-10-31 上海工程技术大学 碳纳米管/聚多巴胺-还原氧化石墨烯/三维互联多孔硅橡胶复合材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851517B1 (en) * 1996-12-26 2001-03-21 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristics and battery using the same
JPWO2006067891A1 (ja) * 2004-12-22 2008-06-12 松下電器産業株式会社 複合負極活物質およびその製造法ならびに非水電解質二次電池
KR100759556B1 (ko) * 2005-10-17 2007-09-18 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR101064767B1 (ko) * 2007-07-26 2011-09-14 주식회사 엘지화학 코어-쉘 구조의 전극활물질
KR100888685B1 (ko) * 2007-11-05 2009-03-13 주식회사 코캄 코어-쉘형 리튬 이차전지용 음극 활물질 및 그 제조방법과이를 포함하는 리튬 이차전지
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
KR20100073506A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2571084A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054792A1 (ja) * 2012-10-05 2014-04-10 ソニー株式会社 活物質、活物質の製造方法、電極および二次電池
US10615409B2 (en) 2015-10-22 2020-04-07 Samsung Electronics Co., Ltd. Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
KR20190060792A (ko) * 2016-09-19 2019-06-03 유미코아 재충전이 가능한 전기화학 셀 및 배터리(rechargeable electrochemical cell and battery)
KR102271220B1 (ko) 2016-09-19 2021-07-01 유미코아 재충전이 가능한 전기화학 셀 및 배터리(rechargeable electrochemical cell and battery)
CN109326788A (zh) * 2018-11-20 2019-02-12 青海大学 负极材料和锂离子电池及其制备方法

Also Published As

Publication number Publication date
US20130059203A1 (en) 2013-03-07
JP2013528907A (ja) 2013-07-11
WO2011142575A3 (ko) 2012-03-01
WO2011142575A9 (ko) 2012-04-19
EP2571084A4 (en) 2013-10-02
KR20110124728A (ko) 2011-11-17
EP2571084A2 (en) 2013-03-20
CN102934265A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
WO2011142575A2 (ko) 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
US8105716B2 (en) Active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2011155781A2 (ko) 리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2011068391A2 (ko) 나노 중공 섬유형 탄소를 포함하는 리튬 이차전지용 양극 활물질 전구체, 활물질 및 그 제조방법
WO2014182036A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2015005648A1 (ko) 리튬이차전지용 음극 활물질, 이를 포함하는 음극용 조성물 및 리튬이차전지
WO2014010970A1 (ko) 고밀도 음극 활물질 및 이의 제조방법
CN109103425A (zh) 负极材料、负极以及具有该负极的电池
WO2013129850A1 (ko) 리튬 이차전지용 전극활물질 및 그 제조방법
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
Xie et al. Microbelt–void–microbelt-structured SnO 2@ C as an advanced electrode with outstanding rate capability and high reversibility
WO2015093725A1 (ko) 비수계 리튬이차전지용 고용량 양극재료 및 그의 제조 방법
CN114464909A (zh) 一种纳米化复合正极补锂浆料以及正极
CN113950759A (zh) 负极、其制造方法以及包含其的二次电池
WO2014061974A1 (ko) 규소 산화물-탄소 복합체 및 이의 제조방법
Ji et al. Electrospinning preparation of one-dimensional Co 2+-doped Li 4 Ti 5 O 12 nanofibers for high-performance lithium ion battery
CN109904436B (zh) 一种钛酸钴二氧化钛复合物纳米线及其制备方法
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2015102201A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
CN114447329A (zh) 一种多孔碳材料及其制备方法和应用
WO2020085859A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
CN108832183B (zh) 一种锂离子电池制备方法
CN115799492A (zh) 制备改性硅碳复合材料的方法及改性硅碳复合材料
CN114789996A (zh) 高分散性的碳纳米管及其制备方法、二次电池
CN111864204A (zh) 自支撑石墨烯碳导电网络材料及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028588.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780792

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13696916

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013510022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011780792

Country of ref document: EP