WO2011142211A1 - Communication sensor apparatus - Google Patents

Communication sensor apparatus Download PDF

Info

Publication number
WO2011142211A1
WO2011142211A1 PCT/JP2011/059446 JP2011059446W WO2011142211A1 WO 2011142211 A1 WO2011142211 A1 WO 2011142211A1 JP 2011059446 W JP2011059446 W JP 2011059446W WO 2011142211 A1 WO2011142211 A1 WO 2011142211A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
communication
transmission
reception
Prior art date
Application number
PCT/JP2011/059446
Other languages
French (fr)
Japanese (ja)
Inventor
元珠 竇
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2011546516A priority Critical patent/JPWO2011142211A1/en
Publication of WO2011142211A1 publication Critical patent/WO2011142211A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection

Definitions

  • the present invention relates to a communication sensor device having a sensor function of detecting the presence or absence of movement of an object by a radio wave reflection method and a communication function of performing data communication with a communication partner.
  • a sensor device which realizes a distance measurement function using radio waves.
  • a wireless communication system of UWB Ultra Wide Band
  • the UWB wireless communication system transmits impulses of about nanoseconds, receives a reflected wave reflected by an object, and measures the distance to the object from transmission time and reception time.
  • a communication sensor device in which a communication function and a distance measuring function are integrated has been proposed (see, for example, Patent Document 1).
  • Such a communication sensor device is a wireless communication system that enables distance measurement and communication using ultra-fine pulses (impulses), and first measures the size of the room by distance measurement, and infers from it all in the room It performs normal data communication with transmission power that can be covered but does not reach the next room. This realizes an interference avoidance function that does not leak radio waves to the next room.
  • ultra-fine pulses impulses
  • the communication sensor device having both the communication function and the distance measuring function since the communication function and the distance measuring function are separately prepared and combined, there is a problem that the size and cost of the device are increased. .
  • data communication with the other party of communication and sensing of an object have to be performed in a time division manner (different timings).
  • the present invention has been made in view of the foregoing points, and can realize the communication function and the sensing function at the same frequency, and can miniaturize the apparatus and reduce the cost, as well as the data communication with the communication partner and the object It is an object of the present invention to provide a communication sensor device capable of simultaneously performing sensing on the
  • a communication sensor device includes a transmission circuit for transmitting a high frequency signal digitally modulated by a modulation circuit, a transmission antenna for emitting the high frequency signal, and a reception for receiving a signal from a communication partner and a reflected wave from an object.
  • An antenna a reception circuit for demodulating a reception signal output from the reception antenna by a demodulation circuit to take in a signal from the other party as reception data, and feeding the reception antenna during high frequency signal transmission from the transmission circuit
  • a phase detection circuit for detecting a phase of a composite signal in which a part of a high frequency signal interferes with a reflected wave reception signal which is a reflected wave from the object received by the reception antenna, and output from the phase detection circuit
  • a signal processing circuit that performs signal processing on the detection signal to detect a change in the position of the object.
  • phase detection is performed on a combined signal in which a part of the high-frequency signal fed to the receiving antenna interferes with the reflected wave reception signal received by the receiving antenna.
  • Data communication and sensing can be performed at the same time using signals used for communication, which allows downsizing and cost reduction of the device.
  • a low pass filter is provided between the phase detection circuit and the signal processing circuit, and a cutoff frequency of the low pass filter is smaller than a modulation frequency of the modulation circuit.
  • the transmission circuit and the reception circuit may perform packet communication for transmitting and receiving packet data.
  • the modulation circuit can be configured by an FSK modulation circuit that performs FSK modulation as digital modulation.
  • the modulation circuit may be configured by an ASK modulation circuit that performs ASK modulation as digital modulation.
  • the reception circuit uses the phase detection circuit as a part of a demodulation circuit, and the ASK-modulated signal from the communication partner is received by the reception antenna.
  • the ASK modulated reception signal is phase-detected by the phase detection circuit, and the detection signal is ASK-demodulated.
  • the reception circuit uses the phase detection circuit as a part of the demodulation circuit, thereby reducing the cost and the size of the device by reducing the number of parts.
  • the transmission antenna and the reception antenna can be shared by one antenna.
  • the high frequency signal may be a frequency hopping spread spectrum signal.
  • the communication function and the sensing function can be realized at the same frequency, and the apparatus can be miniaturized and the cost can be reduced, and data communication with the other party of communication and sensing of the object can be simultaneously performed. .
  • FIG. 1 is an overall configuration diagram of a communication sensor device according to a first embodiment of the present invention.
  • the communication sensor device according to the present embodiment detects a composite signal in which the transmission wave transmitted from the digital communication transmission / reception unit 1 and the reflected wave from the object interfere with the digital communication transmission / reception unit 1 having a packet communication function.
  • a reflection type phase interferometer 2 is an overall configuration diagram of a communication sensor device according to a first embodiment of the present invention.
  • the digital communication transmission / reception unit 1 includes a microprocessor unit (hereinafter referred to as "MCU") 11 configured by a built-in microprocessor in which a computer system is integrated into one integrated circuit and controlling packet communication.
  • the MCU 11 supplies the transmission data to the packet data forming unit 12 to generate packet data (substantially realized by software incorporated in the MCU).
  • the packet data includes, for example, a preamble, an address, a packet ID, a payload, and a CRC, and transmission data is written to the payload.
  • the generated packet data is supplied to a GFSK (Gaussian filtered frequency shift keying) modulator 13.
  • GFSK Gausian filtered frequency shift keying
  • the GFSK modulator 13 band-limits the baseband signal with a Gaussian filter and adds FSK modulation according to packet data (0 or 1) to the baseband signal.
  • the PLL circuit 14 generates a high frequency signal locked to a desired high frequency from an oscillation signal output from the built-in oscillator and supplies the high frequency signal to the mixer 15.
  • the mixer 15 mixes the high frequency signal supplied from the PLL circuit 14 and the FSK modulated signal input from the GFSK modulator 13 to generate an FSK modulated signal (packet data component) as an RF signal (hereinafter referred to as “high frequency transmission signal”). Up convert to The high frequency transmission signal is amplified by the amplifier 16 and then radiated from the transmission / reception antenna 18 which functions as a transmission antenna.
  • the radio wave to be emitted has a center frequency of 2.45 GHz and is frequency hopping to spread spectrum. Signal.
  • the digital communication transmission / reception unit 1 performs pulse transmission which repeats a burst state (burst ON) in which packet data is burst transmitted and a state in which data transmission is not performed (burst OFF).
  • the pulse transmission of packet data is performed under the control of the packet transmission pulse control unit 17.
  • the packet transmission pulse control unit 17 intermittently operates the PLL circuit 14 and the amplifier 16 in accordance with the pulse transmission cycle.
  • the burst ON time corresponding to the pulse width of pulse transmission is from several microseconds to several hundreds of microseconds, and the repetition cycle corresponding to the pulse cycle can be set to about 1 kHz.
  • the radio wave radiated from the transmitting / receiving antenna 18 which functions as a transmitting antenna is received by the communicating party if the other party (near-field communication device) exists in the communicable range, and is reflected by the object when the object exists.
  • the reflected wave is received by the transmitting / receiving antenna 18 which functions as a receiving antenna.
  • the received signal output from the transmitting and receiving antenna 18 which has received the reflected wave from the object is referred to as a reflected wave received signal.
  • a transmission signal transmitted from the other party of communication is received by the transmission / reception antenna 18.
  • the received signal output from the transmitting and receiving antenna 18 which has received the transmission signal from the communication partner will be referred to as a communication received signal.
  • the reception system of the digital communication transmission / reception unit 1 comprises a transmission / reception antenna 18 functioning as a reception antenna, a mixer 19 for down-converting a communication reception signal output from the transmission / reception antenna 18, and a GFSK reception signal down-converted by the mixer 19. It comprises a GFSK demodulation circuit 20 for demodulation, and a data output unit 21 (substantially realized by software incorporated in the MCU) which extracts data from packet data obtained from the GFSK demodulation circuit and outputs the data to the MCU 11. Communication between the MCU 11 and the outside of the digital communication transceiver unit 1 is performed via a general purpose input / output unit (GPI / O) 22 or a dedicated communication PORT.
  • a general purpose input / output unit GPS / O
  • the mixer 19 is a mixer in a broad sense and functions as a modulator. Since no modulation is performed in the reception mode, the oscillation signal of the PLL can be output from the mixer 19 as it is, and the intermittent operation of the PLL is not performed in the reception mode. Furthermore, it does not act as a sensor in receive mode.
  • the reflection type phase interferometer 2 includes a phase detector 31 that detects a composite signal in which the high frequency transmission signal transmitted from the digital communication transmission / reception unit 1 interferes with the reflected wave reception signal.
  • the digital communication transmitting / receiving unit 1 receives the reflected wave from the object by the transmitting / receiving antenna 18 during the communication period, the high frequency transmission signal interferes with the reflected wave reception signal.
  • the high frequency transmission signal that interferes with the reflected wave reception signal will be referred to as a "transmission reference signal”.
  • the phase detector 31 performs phase detection of a combined signal obtained by combining (interfering) the transmission reference signal and the reflected wave reception signal.
  • the phase detector 31 is, for example, a diode detector, and outputs a phase detection signal obtained by converting the envelope of the combined signal into a DC component. Since a large diode detection DC voltage is included in the phase detection signal, the DC voltage is cut by the DC cut circuit 32 and then input to the LPF 33.
  • the LPF 33 is set to a cutoff frequency lower than the repetition frequency of the transmission reference signal pulse-transmitted from the digital communication transmission / reception unit 1.
  • the phase detection signal that has passed through the LPF 33 is amplified by the low frequency amplifier (LFA) 34 and input to the signal processing circuit 35.
  • the signal processing circuit 35 processes the phase detection signal to determine the presence or absence of the movement of the object.
  • the movement determination result of the object output from the signal processing circuit 35 may be sent to the MCU 11 or may be output to a local processing unit (not shown).
  • a data forming unit 12 (substantially realized by software incorporated in an MCU) converts transmission data supplied from the MCU 11 into a packet data format and supplies the packet data to the GFSK modulator 13.
  • the payload of the packet data may include the detection result detected by the reflection type phase interferometer 2 or may include external data input from the general purpose input / output unit (GPI / O) 22. If there is no data to be sent to the communication partner, it is not necessary to enter data.
  • FIG. 2 is a diagram showing a frequency spectrum of radio waves radiated from the transmitting and receiving antenna 18 to which the high frequency transmission signal is fed. Although there is a peak around 2.45 GHz of the center frequency, it has a frequency spectrum in which side lobes are formed on both sides of the center frequency.
  • FSK modulation method in which Packet Data is subjected to band limitation processing with an FIR Filter (frequency band restriction filter) and then directly applied to the transmitter, and other modulation methods.
  • the packet transmission pulse control unit 17 performs intermittent operation control so that packet data is pulse transmitted in synchronization with packet data formation.
  • FIG. 3 shows a pulse transmission waveform of packet data. The power is supplied to the PLL circuit 14 and the amplifier 16 to transmit data during the burst ON period, and the power of the PLL circuit 14 and the amplifier 16 is lowered to the standby power during the burst OFF period. Power consumption can be suppressed by pulse transmission (intermittent operation) of packet data.
  • the reflection type phase interferometer 2 receives a transmission reference signal transmitted as a high frequency transmission signal during packet communication by the digital communication transmission / reception unit 1 and receives a reflected wave reception signal which is a reflected wave from an object. Is input. Since the transmission reference signal and the reflected wave reception signal interfere with each other in the input stage to the phase detector 31 to generate a composite signal, the envelope of the composite signal is detected by the phase detector 31.
  • the composite signal amplitude is maximized when the reflected wave reception signal and the transmission reference signal are in phase, and the composite signal amplitude is minimized when the phase is in reverse.
  • the phase of the reflected wave reception signal changes, the in-phase and the anti-phase repeatedly appear, and radio interference fringes appear in the combined signal. If the target is stopped, the phase of the reflected wave reception signal does not change, and thus no radio interference fringes appear in the combined signal.
  • the phase detector 31 outputs a DC component proportional to the amplitude of the combined signal as a detection signal.
  • the detection signal of the combined signal is superimposed as a low frequency signal on the detection voltage which is a DC voltage.
  • the DC voltage of the detection signal is cut by the DC cut circuit 32, and the high frequency component is cut by the LPF 33 to extract a low frequency signal proportional to the amplitude of the composite signal.
  • the signal processing circuit 35 processes the detection signal to determine the presence or absence of the movement of the object. For example, if the low frequency periodic component is included in the detection signal, it can be determined that the object is moving, and the movement amount of the object can also be calculated from the period of the detection signal. In addition, if the low frequency periodic component is not included in the detection signal, it can be determined that the object is stopped.
  • the determination result or calculation result of the signal processing circuit 35 is supplied to the MCU 11 and transmitted as digital data from the digital communication transceiver unit 1 Packet communication may be performed with another communication partner.
  • the digital communication transmission / reception unit 1 can control the pulse width of the transmission reference signal (burst ON interval) as shown in FIGS. 4 (a) and 4 (b).
  • the sensitivity of the sensor function can be increased as the pulse width of the transmission reference signal is larger, and conversely, the pulse width of the transmission reference signal may be reduced as shown in FIG.
  • the sensitivity of the sensor function can be reduced.
  • the sensitivity is improved by increasing the pulse width of the transmission reference signal because the average transmission power can be increased by increasing the pulse width, and the reflected wave intensity also increases as the average transmission power increases.
  • packet communication and sensing of an object can be simultaneously performed using radio waves of packet communication without making the operating frequency different, and the communication function and the sensing function are integrated into an apparatus. And cost reduction can be achieved.
  • the RF radio wave is output only for packet transmission and the intermittent operation is performed to lower the RF radio wave at the time of packet formation, the current consumption can also be reduced.
  • packets are transmitted by GFSK modulation, but ASK modulation can also be applied.
  • FIG. 5 is an overall view of an ASK modulation type communication sensor device.
  • the same parts as those of the communication sensor device shown in FIG. 5 is configured to include a digital communication transmission / reception unit 41 that performs data modulation by the digital ASK modulation method, and the reflective phase interferometer 2.
  • the transmission system of the digital communication transmission / reception unit 41 includes an MCU 11, a PLL circuit 14, a voltage control oscillator 42, an amplifier 16, an ASK modulation control unit 43, and a transmission / reception antenna 18 functioning as a transmission antenna.
  • the oscillation frequency of the voltage control oscillator 42 is locked to a predetermined frequency by the PLL circuit 14.
  • Transmission data (0 or 1) is supplied from the MCU 11 to the ASK modulation control unit 43, and the ASK modulation control unit 43 controls the transmission power of the amplifier 16 to digitally modulate the amplitude of the high frequency transmission signal in accordance with the transmission data.
  • the reception system of the digital communication transmission / reception unit 41 includes a transmission / reception antenna 18 which functions as a reception antenna, a phase detector 31 which performs phase detection on the communication reception signal output from the transmission / reception antenna 18, and a low detection signal of the communication reception signal. It comprises a low frequency amplifier 44 for frequency amplification, an ASK demodulator 45 and a data output unit 46.
  • ASK demodulation since a complex demodulation circuit for extracting a frequency deviation like FSK demodulation is unnecessary, the phase detector 31 of the reflection type phase interferometer 2 can be used as a part of the demodulation circuit. .
  • the operation of the communication sensor device configured as described above will be described.
  • the ASK modulation operation of transmission data by the digital communication transmission / reception unit 41 will be described.
  • the PLL circuit 14 and the voltage control oscillator 42 continuously output, for example, a high frequency oscillation signal with a center frequency of 2.45 GHz from the start of communication to the end of communication.
  • FIG. 6 shows the measurement results of the frequency spectrum of the radiation wave of the high frequency oscillation signal. As shown in the figure, there is a peak centered at 2.45 GHz of the center frequency, but it has a frequency spectrum in which side lobes are formed on both sides of the center frequency.
  • the ASK modulation control unit 43 receives transmission data from the MCU 11 and controls the transmission power of the amplifier 16 so that the amplitude changes corresponding to the transmission data.
  • the ASK modulation control unit 43 does not completely turn off the transmission power of the amplifier 16 but performs power control so as to decrease by about several dB.
  • FIG. 7 is a waveform diagram of an ASK modulated high frequency transmission signal. As shown in the figure, since the amplitude is attenuated by about several dB corresponding to "0" of the transmission data, the portion corresponding to "1" of the transmission data has a pulse-like convex waveform. If the ASK modulation rate is set to about 500 Hz or more, the pulse width can be set to about 1 ms or less. In the packet communication described above, a transmission rate of about 2 Mbps can be realized by FSK modulation, but in this example, it is 1 kbps in ASK modulation. However, high sensitivity can be realized in the reflection type phase interferometer 2.
  • the ASK modulated high frequency transmission signal is radiated from the transmitting and receiving antenna 18.
  • the object receives radio waves radiated from the transmitting / receiving antenna 18 to which the ASK-modulated high frequency transmission signal is fed, and returns a reflected wave.
  • ASK modulation communication and sensing of an object are simultaneously performed by inputting a synthesized signal that is generated by interference of the transmission reference signal and the reflected wave signal. If the object is moving, radio interference fringes resulting from the phase difference between the transmission reference signal and the reflected wave signal appear as a low frequency signal, and the signal processing circuit 35 detects the movement of the object.
  • the ASK modulation signal transmitted from the other device is received by the transmission / reception antenna 18. Since the communication reception signal is an ASK modulated signal, phase detection can be performed by the phase detector 31 of the reflection type phase interferometer 2 for demodulation.
  • the detection signal of the communication reception signal is input to the ASK demodulation circuit 45 via the low frequency amplifier 44.
  • the ASK demodulation circuit 45 ASK-demodulates based on the amplitude of the detection signal to obtain received data.
  • the received data is input to the MCU 11 via the data output unit 46.
  • the phase detector 31 of the reflection type phase interferometer 2 can be used as part of the demodulation circuit of the data reception system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transceivers (AREA)

Abstract

This invention is directed to allowing both a communication function and a sensing function to be simultaneously active at the same frequency, thereby reducing the apparatus size and cost. This communication sensor apparatus comprises: a transmission circuit for transmitting a high frequency signal that has been GFSK-digital-modulated; an transmission/reception antenna (18) for radiating the high frequency signal, receiving a signal from the other end of communication and for also receiving reflected waves from an object; a reception circuit for demodulating the received signal, by use of a GFSK demodulation circuit (20), to take in the received signal as received data; a phase detector (31) for phase-detecting a combined signal obtained by causing a part of the high frequency signal supplied to the transmission/reception antenna (18) to interfere with a reflected-wave received signal, which is the reflected waves from the object, during the transmission of the high frequency signal from the transmission circuit; and a signal processing circuit (35) for processing a detection signal output from the phase detector (31), thereby detecting the object.

Description

通信センサ装置Communication sensor device
 本発明は、対象物の移動の有無等を電波反射方式で検出するセンサ機能と、通信相手との間でデータ通信する通信機能とを併せ持つ通信センサ装置に関する。 The present invention relates to a communication sensor device having a sensor function of detecting the presence or absence of movement of an object by a radio wave reflection method and a communication function of performing data communication with a communication partner.
 電波を用いて測距機能を実現したセンサ装置が提案されている。例えば、数GHz帯を利用するUWB(Ultra Wide Band)の無線通信システムをセンサ装置に適用したものがある。UWB無線通信システムは、ナノ秒程度のインパルスを送信し、対象物で反射した反射波を受信し、送信時刻と受信時刻とから対象物までの距離を測定する。一方で、通信機能と測距機能とを融合させた通信センサ装置が提案されている(例えば、特許文献1参照)。かかる通信センサ装置は、超極細パルス(インパルス)を用いて測距と通信を可能にした無線通信システムであり、まず測距により部屋の大きさを測定し、そこから推測した、部屋内はすべてカバーできるが、隣の部屋には届かないような送信出力で通常のデータ通信を行う。これにより、隣の部屋へ電波を漏れさせない干渉回避機能を実現している。 There has been proposed a sensor device which realizes a distance measurement function using radio waves. For example, there is one in which a wireless communication system of UWB (Ultra Wide Band) using several GHz band is applied to a sensor device. The UWB wireless communication system transmits impulses of about nanoseconds, receives a reflected wave reflected by an object, and measures the distance to the object from transmission time and reception time. On the other hand, a communication sensor device in which a communication function and a distance measuring function are integrated has been proposed (see, for example, Patent Document 1). Such a communication sensor device is a wireless communication system that enables distance measurement and communication using ultra-fine pulses (impulses), and first measures the size of the room by distance measurement, and infers from it all in the room It performs normal data communication with transmission power that can be covered but does not reach the next room. This realizes an interference avoidance function that does not leak radio waves to the next room.
特開2003-174368号公報Japanese Patent Application Publication No. 2003-174368
 しかしながら、通信機能と測距機能とを併せ持つ通信センサ装置を構成した場合、通信機能と測距機能とを別々に用意して組み合わせていたので、装置の大型化及びコストアップを招く問題があった。また、通信機能と測距機能との間の干渉を防止するため、通信相手との間のデータ通信と対象物に対するセンシングとを時分割(異なるタイミング)で行わなければならなかった。 However, when the communication sensor device having both the communication function and the distance measuring function is configured, since the communication function and the distance measuring function are separately prepared and combined, there is a problem that the size and cost of the device are increased. . In addition, in order to prevent interference between the communication function and the distance measurement function, data communication with the other party of communication and sensing of an object have to be performed in a time division manner (different timings).
 本発明は、かかる点に鑑みてなされたものであり、通信機能とセンシング機能とを同一周波数で実現でき、装置の小型化及びコストダウンが可能であると共に、通信相手とのデータ通信と対象物に対するセンシングとを同時に行うことができる通信センサ装置を提供することを目的とする。 The present invention has been made in view of the foregoing points, and can realize the communication function and the sensing function at the same frequency, and can miniaturize the apparatus and reduce the cost, as well as the data communication with the communication partner and the object It is an object of the present invention to provide a communication sensor device capable of simultaneously performing sensing on the
 本発明の通信センサ装置は、変調回路によりデジタル変調された高周波信号を送信する送信回路と、前記高周波信号を放射する送信アンテナと、通信相手からの信号と対象物からの反射波を受信する受信アンテナと、前記受信アンテナから出力される受信信号を復調回路により復調して前記通信相手からの信号を受信データとして取り込む受信回路と、前記送信回路から高周波信号送信中に、前記受信アンテナへ給電した高周波信号の一部と前記受信アンテナで受信された前記対象物からの反射波である反射波受信信号とを干渉させた合成信号を位相検波する位相検波回路と、前記位相検波回路から出力される検波信号を信号処理して前記対象物の位置変化検出を行う信号処理回路とを具備したことを特徴とする。 A communication sensor device according to the present invention includes a transmission circuit for transmitting a high frequency signal digitally modulated by a modulation circuit, a transmission antenna for emitting the high frequency signal, and a reception for receiving a signal from a communication partner and a reflected wave from an object. An antenna, a reception circuit for demodulating a reception signal output from the reception antenna by a demodulation circuit to take in a signal from the other party as reception data, and feeding the reception antenna during high frequency signal transmission from the transmission circuit A phase detection circuit for detecting a phase of a composite signal in which a part of a high frequency signal interferes with a reflected wave reception signal which is a reflected wave from the object received by the reception antenna, and output from the phase detection circuit And a signal processing circuit that performs signal processing on the detection signal to detect a change in the position of the object.
 この構成によれば、送信回路から高周波信号送信中に、受信アンテナへ給電した高周波信号の一部と受信アンテナで受信された反射波受信信号とを干渉させた合成信号を位相検波するので、データ通信に使用している信号を用いてデータ通信とセンシングとを同時に行うことができ、装置の小型化及びコストダウンが可能である。 According to this configuration, during high-frequency signal transmission from the transmission circuit, phase detection is performed on a combined signal in which a part of the high-frequency signal fed to the receiving antenna interferes with the reflected wave reception signal received by the receiving antenna. Data communication and sensing can be performed at the same time using signals used for communication, which allows downsizing and cost reduction of the device.
 また本発明は、上記通信センサ装置において、前記位相検波回路と前記信号処理回路との間にローパスフィルタを設け、当該ローパスフィルタのカットオフ周波数を前記変調回路の変調周波数より小さくしたことを特徴とする。 In the communication sensor device according to the present invention, a low pass filter is provided between the phase detection circuit and the signal processing circuit, and a cutoff frequency of the low pass filter is smaller than a modulation frequency of the modulation circuit. Do.
 この構成により、変調回路の変調周波数成分が前記位相検波回路にノイズとなって混入することを防止でき、高精度のセンシングが実現できる。 With this configuration, it is possible to prevent the modulation frequency component of the modulation circuit from being mixed into the phase detection circuit as noise, and highly accurate sensing can be realized.
 上記通信センサ装置において、前記送信回路及び前記受信回路は、パケットデータを送受信するパケット通信を行うようにしても良い。このとき、前記変調回路は、デジタル変調としてFSK変調するFSK変調回路で構成することができる。 In the communication sensor device, the transmission circuit and the reception circuit may perform packet communication for transmitting and receiving packet data. At this time, the modulation circuit can be configured by an FSK modulation circuit that performs FSK modulation as digital modulation.
 上記通信センサ装置において、前記変調回路は、デジタル変調としてASK変調するASK変調回路で構成することもできる。 In the communication sensor device, the modulation circuit may be configured by an ASK modulation circuit that performs ASK modulation as digital modulation.
 また本発明は、上記通信センサ装置において、前記受信回路は、前記位相検波回路を復調回路の一部として使用し、前記通信相手からASK変調された信号が前記受信アンテナで受信されると、前記ASK変調された受信信号を前記位相検波回路で位相検波し、その検波信号をASK復調することを特徴とする。 Also, in the communication sensor device according to the present invention, the reception circuit uses the phase detection circuit as a part of a demodulation circuit, and the ASK-modulated signal from the communication partner is received by the reception antenna. The ASK modulated reception signal is phase-detected by the phase detection circuit, and the detection signal is ASK-demodulated.
 この構成により、前記送信回路及び前記受信回路がASK変調通信する場合には、受信回路が位相検波回路を復調回路の一部として使用するので、部品点数の削減によるコストダウンおよび装置の小型化を図ることができる。 With this configuration, when the transmission circuit and the reception circuit perform ASK modulation communication, the reception circuit uses the phase detection circuit as a part of the demodulation circuit, thereby reducing the cost and the size of the device by reducing the number of parts. Can be
 上記通信センサ装置において、前記送信アンテナと前記受信アンテナとを1つのアンテナで兼用することができる。また、前記高周波信号は周波数ホッピングされたスペクトル拡散信号であっても良い。 In the above communication sensor device, the transmission antenna and the reception antenna can be shared by one antenna. The high frequency signal may be a frequency hopping spread spectrum signal.
 本発明によれば、通信機能とセンシング機能とを同一周波数で実現でき、装置の小型化及びコストダウンが可能であると共に、通信相手とのデータ通信と対象物に対するセンシングとを同時に行うことができる。 According to the present invention, the communication function and the sensing function can be realized at the same frequency, and the apparatus can be miniaturized and the cost can be reduced, and data communication with the other party of communication and sensing of the object can be simultaneously performed. .
第1の実施の形態に係る通信センサ装置の全体構成図The whole block diagram of the communication sensor device concerning a 1st embodiment 第1の実施の通信センサ装置から放射される電波の周波数スペクトラムを示す図Diagram showing the frequency spectrum of radio waves radiated from the communication sensor device of the first embodiment 第1の実施の通信センサ装置から放射される送信基準信号のパルス送信波形図Pulse transmission waveform diagram of the transmission reference signal radiated from the communication sensor device of the first embodiment パルス幅の異なる送信基準信号のパルス送信波形図Pulse transmission waveform of transmission reference signal with different pulse width ASK変調型の通信センサ装置の全体構成図Overall configuration diagram of ASK modulation type communication sensor device 図5に示す通信センサ装置から放射される電波の周波数スペクトラムを示す図The figure which shows the frequency spectrum of the electromagnetic wave radiated from the communication sensor apparatus shown in FIG. 図5に示す通信センサ装置でASK変調された高周波送信信号の波形図Waveform chart of a high frequency transmission signal ASK modulated by the communication sensor device shown in FIG. 5
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1は本発明の第1の実施の形態に係る通信センサ装置の全体構成図である。
 本実施の形態の通信センサ装置は、パケット通信機能を有するデジタル通信送受信部1と、デジタル通信送受信部1から送信された送信波と対象物からの反射波とを干渉させた合成信号を検波する反射式位相干渉計2とを備えて構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
FIG. 1 is an overall configuration diagram of a communication sensor device according to a first embodiment of the present invention.
The communication sensor device according to the present embodiment detects a composite signal in which the transmission wave transmitted from the digital communication transmission / reception unit 1 and the reflected wave from the object interfere with the digital communication transmission / reception unit 1 having a packet communication function. And a reflection type phase interferometer 2.
 デジタル通信送受信部1は、1つの集積回路にコンピュータシステムをまとめた組み込み用のマイクロプロセサで構成されパケット通信を制御するマイクロプロセサユニット(以下、「MCU」という)11を備える。MCU11は、送信データをパケットデータ形成部12へ与えてパケットデータを生成する(実質的にはMCUに組み込まれたソフトで実現)。パケットデータは、たとえば、プリアンブル、アドレス、パケットID、ペイロード、CRCで構成され、ペイロードに送信データが書き込まれる。生成したパケットデータがGFSK(Gaussian filtered frequency shift keying)変調器13に与えられる。GFSK変調器13は、ベースバンド信号をガウスフィルタで帯域制限し、パケットデータ(0又は1)に応じたFSK変調をベースバンド信号に加える。一方、PLL回路14は、内蔵した発振器が出力する発振信号から所望の高周波数にロックした高周波信号を生成してミキサ15へ供給している。ミキサ15は、PLL回路14から供給される高周波信号とGFSK変調器13から入力するFSK変調信号とを混合してFSK変調信号(パケットデータ成分)をRF信号(以下、「高周波送信信号」という)にアップコンバートする。高周波送信信号は増幅器16で増幅されてから送信アンテナとして機能する送受信アンテナ18から放射される。たとえば、デジタル通信送受信部1が、近距離無線通信の1つであるブルーツース(登録商標)通信モジュールの場合、放射される電波は、中心周波数が2.45GHzであり、周波数ホッピングしてスペクトル拡散された信号となる。 The digital communication transmission / reception unit 1 includes a microprocessor unit (hereinafter referred to as "MCU") 11 configured by a built-in microprocessor in which a computer system is integrated into one integrated circuit and controlling packet communication. The MCU 11 supplies the transmission data to the packet data forming unit 12 to generate packet data (substantially realized by software incorporated in the MCU). The packet data includes, for example, a preamble, an address, a packet ID, a payload, and a CRC, and transmission data is written to the payload. The generated packet data is supplied to a GFSK (Gaussian filtered frequency shift keying) modulator 13. The GFSK modulator 13 band-limits the baseband signal with a Gaussian filter and adds FSK modulation according to packet data (0 or 1) to the baseband signal. On the other hand, the PLL circuit 14 generates a high frequency signal locked to a desired high frequency from an oscillation signal output from the built-in oscillator and supplies the high frequency signal to the mixer 15. The mixer 15 mixes the high frequency signal supplied from the PLL circuit 14 and the FSK modulated signal input from the GFSK modulator 13 to generate an FSK modulated signal (packet data component) as an RF signal (hereinafter referred to as “high frequency transmission signal”). Up convert to The high frequency transmission signal is amplified by the amplifier 16 and then radiated from the transmission / reception antenna 18 which functions as a transmission antenna. For example, in the case where the digital communication transceiver unit 1 is a Bluetooth (registered trademark) communication module, which is one of the short distance wireless communication, the radio wave to be emitted has a center frequency of 2.45 GHz and is frequency hopping to spread spectrum. Signal.
 デジタル通信送受信部1は、パケットデータをバースト送信するバースト状態(バーストON)とデータ送信しない状態(バーストOFF)とを繰り返すパルス送信を行う。パケットデータのパルス送信はパケット送信パルス制御部17の制御下で行われる。パケット送信パルス制御部17が、パルス送信周期に合わせてPLL回路14及び増幅器16を間欠動作させている。パルス送信のパルス幅に相当するバーストON時間は数μSから数百μSであり、パルス周期に相当する繰り返し周期は1kHz程度に設定することができる。 The digital communication transmission / reception unit 1 performs pulse transmission which repeats a burst state (burst ON) in which packet data is burst transmitted and a state in which data transmission is not performed (burst OFF). The pulse transmission of packet data is performed under the control of the packet transmission pulse control unit 17. The packet transmission pulse control unit 17 intermittently operates the PLL circuit 14 and the amplifier 16 in accordance with the pulse transmission cycle. The burst ON time corresponding to the pulse width of pulse transmission is from several microseconds to several hundreds of microseconds, and the repetition cycle corresponding to the pulse cycle can be set to about 1 kHz.
 送信アンテナとして機能する送受信アンテナ18から放射された電波は、通信可能範囲に通信相手(近距離通信装置)が存在すれば通信相手に受信されると共に、対象物が存在すれば対象物で反射して反射波が受信アンテナとして機能する送受信アンテナ18に受信される。対象物からの反射波を受信した送受信アンテナ18から出力される受信信号を反射波受信信号と呼ぶこととする。また、通信相手から送信された送信信号が送受信アンテナ18で受信される。通信相手からの送信信号を受信した送受信アンテナ18から出力される受信信号を通信用受信信号と呼ぶこととする。 The radio wave radiated from the transmitting / receiving antenna 18 which functions as a transmitting antenna is received by the communicating party if the other party (near-field communication device) exists in the communicable range, and is reflected by the object when the object exists. The reflected wave is received by the transmitting / receiving antenna 18 which functions as a receiving antenna. The received signal output from the transmitting and receiving antenna 18 which has received the reflected wave from the object is referred to as a reflected wave received signal. In addition, a transmission signal transmitted from the other party of communication is received by the transmission / reception antenna 18. The received signal output from the transmitting and receiving antenna 18 which has received the transmission signal from the communication partner will be referred to as a communication received signal.
 デジタル通信送受信部1の受信系は、受信アンテナとして機能する送受信アンテナ18と、送受信アンテナ18から出力される通信用受信信号をダウンコンバートするミキサ19と、ミキサ19でダウンコンバートされた受信信号をGFSK復調するGFSK復調回路20と、GFSK復調回路から得たパケットデータからデータを抽出してMCU11へ出力するデータ出力部21(実質上MCUに組み込まれたソフトで実現)を備える。なお、MCU11とデジタル通信送受信部1の外部との通信は汎用入出力部(GPI/O)22 又は専用通信PORTを介して行われる。ここでミキサ19は広い意味でのミキサであり、変調器として機能する。受信モードでは変調しないのでPLLの発振信号はそのままミキサ19から出力するようにでき、又、受信モードではPLLの間欠動作はしない。更に、受信モードではセンサとして動作しない。 The reception system of the digital communication transmission / reception unit 1 comprises a transmission / reception antenna 18 functioning as a reception antenna, a mixer 19 for down-converting a communication reception signal output from the transmission / reception antenna 18, and a GFSK reception signal down-converted by the mixer 19. It comprises a GFSK demodulation circuit 20 for demodulation, and a data output unit 21 (substantially realized by software incorporated in the MCU) which extracts data from packet data obtained from the GFSK demodulation circuit and outputs the data to the MCU 11. Communication between the MCU 11 and the outside of the digital communication transceiver unit 1 is performed via a general purpose input / output unit (GPI / O) 22 or a dedicated communication PORT. Here, the mixer 19 is a mixer in a broad sense and functions as a modulator. Since no modulation is performed in the reception mode, the oscillation signal of the PLL can be output from the mixer 19 as it is, and the intermittent operation of the PLL is not performed in the reception mode. Furthermore, it does not act as a sensor in receive mode.
 反射式位相干渉計2は、デジタル通信送受信部1から送信された高周波送信信号と反射波受信信号とを干渉させた合成信号を検波する位相検波器31を備える。デジタル通信送受信部1が通信期間中に送受信アンテナ18で対象物からの反射波を受信すると、高周波送信信号と反射波受信信号とが干渉する。以下の説明では反射波受信信号と干渉する高周波送信信号のことを「送信基準信号」と呼ぶこととする。位相検波器31は送信基準信号と反射波受信信号とを合成(干渉)した合成信号の位相検波を行う。位相検波器31は、例えばダイオード検波器で構成され、合成信号の包絡をDC成分に変換した位相検出信号を出力する。位相検出信号には大きなダイオード検波DC電圧が含まれているので、直流カット回路32でDC電圧をカットしてからLPF33へ入力する。LPF33は、デジタル通信送受信部1からパルス送信される送信基準信号の繰り返し周波数よりも低いカットオフ周波数に設定される。LPF33を通過した位相検出信号は低周波増幅器(LFA)34で増幅され信号処理回路35へ入力される。信号処理回路35は、位相検出信号を処理して対象物の動きの有無を判定する。信号処理回路35から出力される対象物の動き判定結果はMCU11へ送られても良いし、不図示のローカル処理部へ出力しても良い。 The reflection type phase interferometer 2 includes a phase detector 31 that detects a composite signal in which the high frequency transmission signal transmitted from the digital communication transmission / reception unit 1 interferes with the reflected wave reception signal. When the digital communication transmitting / receiving unit 1 receives the reflected wave from the object by the transmitting / receiving antenna 18 during the communication period, the high frequency transmission signal interferes with the reflected wave reception signal. In the following description, the high frequency transmission signal that interferes with the reflected wave reception signal will be referred to as a "transmission reference signal". The phase detector 31 performs phase detection of a combined signal obtained by combining (interfering) the transmission reference signal and the reflected wave reception signal. The phase detector 31 is, for example, a diode detector, and outputs a phase detection signal obtained by converting the envelope of the combined signal into a DC component. Since a large diode detection DC voltage is included in the phase detection signal, the DC voltage is cut by the DC cut circuit 32 and then input to the LPF 33. The LPF 33 is set to a cutoff frequency lower than the repetition frequency of the transmission reference signal pulse-transmitted from the digital communication transmission / reception unit 1. The phase detection signal that has passed through the LPF 33 is amplified by the low frequency amplifier (LFA) 34 and input to the signal processing circuit 35. The signal processing circuit 35 processes the phase detection signal to determine the presence or absence of the movement of the object. The movement determination result of the object output from the signal processing circuit 35 may be sent to the MCU 11 or may be output to a local processing unit (not shown).
 次に、以上のように構成された本実施の形態の通信センサ装置の動作について説明する。
 まず、デジタル通信送受信部1によるパケットデータのパルス送信動作について説明する。データ形成部12(実質的にはMCUに組み込まれたソフトで実現)がMCU11から与えられる送信データをパケットデータ形式に変換してGFSK変調器13に与える。パケットデータのペイロードには反射式位相干渉計2で検出された検出結果を入れても良いし、汎用入出力部(GPI/O)22から入力される外部データを入れても良い。通信相手に送信するデータがなければ、データを入れなくても良い。パケットデータのGFSK変調信号がミキサ15に入力されると共に、PLL回路14で生成された発振信号がミキサ15に入力され、GFSK変調信号と発振信号とが混合されてアップコンバートされて高周波送信信号として増幅器16で増幅され送受信アンテナ18から放射される。図2は高周波送信信号が給電された送受信アンテナ18から放射される電波の周波数スペクトラムを示す図である。中心周波数の2.45GHzを中心にピークがあるが、中心周波数の両側にサイドローブが形成された周波数スペクトラムとなっている。なお、変調回路の構成については、Packet DataをFIR Filter(周波数帯域制限Filter)で帯域制限処理後、直接発信器に掛けるFSK変調手法、及び他の変調手法もある。
Next, the operation of the communication sensor device of the present embodiment configured as described above will be described.
First, the pulse transmission operation of packet data by the digital communication transmission / reception unit 1 will be described. A data forming unit 12 (substantially realized by software incorporated in an MCU) converts transmission data supplied from the MCU 11 into a packet data format and supplies the packet data to the GFSK modulator 13. The payload of the packet data may include the detection result detected by the reflection type phase interferometer 2 or may include external data input from the general purpose input / output unit (GPI / O) 22. If there is no data to be sent to the communication partner, it is not necessary to enter data. A GFSK modulated signal of packet data is input to the mixer 15, and an oscillation signal generated by the PLL circuit 14 is input to the mixer 15, and the GFSK modulation signal and the oscillation signal are mixed and up-converted to obtain a high frequency transmission signal. The signal is amplified by the amplifier 16 and emitted from the transmitting and receiving antenna 18. FIG. 2 is a diagram showing a frequency spectrum of radio waves radiated from the transmitting and receiving antenna 18 to which the high frequency transmission signal is fed. Although there is a peak around 2.45 GHz of the center frequency, it has a frequency spectrum in which side lobes are formed on both sides of the center frequency. As to the configuration of the modulation circuit, there is also an FSK modulation method in which Packet Data is subjected to band limitation processing with an FIR Filter (frequency band restriction filter) and then directly applied to the transmitter, and other modulation methods.
 このとき、パケット送信パルス制御部17がパケットデータ形成と同期してパケットデータがパルス送信されるように間欠動作制御している。図3にパケットデータのパルス送信波形を示す。バーストONの期間にPLL回路14及び増幅器16にパワーが供給されてデータ送信し、バーストOFFの期間にPLL回路14及び増幅器16のパワーが待機パワーに下げられる。パケットデータをパルス送信(間欠動作)することにより、消費電力を抑制することができる。 At this time, the packet transmission pulse control unit 17 performs intermittent operation control so that packet data is pulse transmitted in synchronization with packet data formation. FIG. 3 shows a pulse transmission waveform of packet data. The power is supplied to the PLL circuit 14 and the amplifier 16 to transmit data during the burst ON period, and the power of the PLL circuit 14 and the amplifier 16 is lowered to the standby power during the burst OFF period. Power consumption can be suppressed by pulse transmission (intermittent operation) of packet data.
 一方、反射式位相干渉計2は、デジタル通信送受信部1によるパケット通信中に、高周波送信信号として送信している送信基準信号が入力すると共に、対象物からの反射波である反射波受信信号とが入力する。位相検波器31への入力段において送信基準信号と反射波受信信号とが干渉して合成信号が生成されるので、この合成信号の包絡線が位相検波器31で検波される。 On the other hand, the reflection type phase interferometer 2 receives a transmission reference signal transmitted as a high frequency transmission signal during packet communication by the digital communication transmission / reception unit 1 and receives a reflected wave reception signal which is a reflected wave from an object. Is input. Since the transmission reference signal and the reflected wave reception signal interfere with each other in the input stage to the phase detector 31 to generate a composite signal, the envelope of the composite signal is detected by the phase detector 31.
 上記した通り、反射波受信信号は送信基準信号の反射波であるので、反射波受信信号と送信基準信号とが同位相の時に合成信号振幅が最大となり、逆位相の時に合成信号振幅が最小となる。対象物が移動していれば、反射波受信信号の位相が変化して、同相と逆相が繰り返し現れ、合成信号に電波干渉縞が現れる。対象物が停止していれば、反射波受信信号の位相が変化しないので、合成信号に電波干渉縞は現れない。 As described above, since the reflected wave reception signal is a reflection wave of the transmission reference signal, the composite signal amplitude is maximized when the reflected wave reception signal and the transmission reference signal are in phase, and the composite signal amplitude is minimized when the phase is in reverse. Become. If the object is moving, the phase of the reflected wave reception signal changes, the in-phase and the anti-phase repeatedly appear, and radio interference fringes appear in the combined signal. If the target is stopped, the phase of the reflected wave reception signal does not change, and thus no radio interference fringes appear in the combined signal.
 位相検波器31は、合成信号の振幅に比例したDC成分を検波信号として出力する。合成信号の検波信号は、DC電圧である検波電圧に低周波信号として重畳している。直流カット回路32で検波信号のDC電圧をカットし、LPF33で高周波成分をカットして合成信号の振幅に比例した低周波信号を抽出する。LPF33のカットオフ周波数を、図3に示すパルス周波数(バーストONとバーストOFFの繰り返し周期)よりも低く設定することにより、パケット通信をパルス送信化したことによるノイズを抑制することができる。DC電圧(検波電圧)及びノイズ除去された検波信号(低周波信号)を低周波増幅器34で増幅するが、DC電圧がカットされているため十分に大きな増幅率を確保できる。信号処理回路35は、検波信号を信号処理して対象物の動きの有無を判定する。たとえば、検波信号に低周波周期成分が含まれていれば対象物が動いていると判断でき、検波信号の周期から対象物の移動量を計算することもできる。また、検波信号に低周波周期成分が含まれていなければ、対象物が停止していると判断できる。複数の通信センサ装置を所定間隔で面的又は線状に配置してセンサネットワークを構築した場合、信号処理回路35の判定結果又は計算結果をMCU11へ供給し、デジタル通信送受信部1から送信データとして他の通信相手にパケット通信するようにしても良い。 The phase detector 31 outputs a DC component proportional to the amplitude of the combined signal as a detection signal. The detection signal of the combined signal is superimposed as a low frequency signal on the detection voltage which is a DC voltage. The DC voltage of the detection signal is cut by the DC cut circuit 32, and the high frequency component is cut by the LPF 33 to extract a low frequency signal proportional to the amplitude of the composite signal. By setting the cutoff frequency of the LPF 33 lower than the pulse frequency (the repetition cycle of burst ON and burst OFF) shown in FIG. 3, it is possible to suppress noise due to pulse transmission of packet communication. Although the DC voltage (detection voltage) and the noise-removed detection signal (low frequency signal) are amplified by the low frequency amplifier 34, since the DC voltage is cut, a sufficiently large amplification factor can be secured. The signal processing circuit 35 processes the detection signal to determine the presence or absence of the movement of the object. For example, if the low frequency periodic component is included in the detection signal, it can be determined that the object is moving, and the movement amount of the object can also be calculated from the period of the detection signal. In addition, if the low frequency periodic component is not included in the detection signal, it can be determined that the object is stopped. When a plurality of communication sensor devices are arranged at predetermined intervals in a planar or linear manner to construct a sensor network, the determination result or calculation result of the signal processing circuit 35 is supplied to the MCU 11 and transmitted as digital data from the digital communication transceiver unit 1 Packet communication may be performed with another communication partner.
 また、デジタル通信送受信部1は、図4(a)(b)に示すように送信基準信号のパルス幅(バーストONの区間)を制御することができる。図4(a)に示すように、送信基準信号のパルス幅が大きいほどセンサ機能の感度を上げることができ、逆に図4(b)に示すように、送信基準信号のパルス幅を小さくすればセンサ機能の感度を下げることができる。用途に応じて所望の感度を実現するパルス幅に設定された送信基準信号を生成することができる。送信基準信号のパルス幅を大きくすれば感度が改善される理由は、パルス幅を増やす事で平均送信電力を上げる事ができ、平均送信電力が増えると反射波強度も増えるからである。 In addition, the digital communication transmission / reception unit 1 can control the pulse width of the transmission reference signal (burst ON interval) as shown in FIGS. 4 (a) and 4 (b). As shown in FIG. 4A, the sensitivity of the sensor function can be increased as the pulse width of the transmission reference signal is larger, and conversely, the pulse width of the transmission reference signal may be reduced as shown in FIG. For example, the sensitivity of the sensor function can be reduced. Depending on the application, it is possible to generate a transmission reference signal set to a pulse width that achieves the desired sensitivity. The sensitivity is improved by increasing the pulse width of the transmission reference signal because the average transmission power can be increased by increasing the pulse width, and the reflected wave intensity also increases as the average transmission power increases.
 このように本実施の形態によれば、使用周波数を異ならせること無くパケット通信の電波を使ってパケット通信と対象物のセンシングを同時に行うことができ、通信機能とセンシング機能とを一体化して装置の小型化及びコストダウンを図ることができる。また、パケット送信のみRF電波を出力し、パケット形成時にはRF電波を下げる間欠動作としたので、消費電流を削減することもできる。 As described above, according to the present embodiment, packet communication and sensing of an object can be simultaneously performed using radio waves of packet communication without making the operating frequency different, and the communication function and the sensing function are integrated into an apparatus. And cost reduction can be achieved. In addition, since the RF radio wave is output only for packet transmission and the intermittent operation is performed to lower the RF radio wave at the time of packet formation, the current consumption can also be reduced.
 以上の説明では、GFSK変調してパケット送信したが、ASK変調を適用することもできる。 In the above description, packets are transmitted by GFSK modulation, but ASK modulation can also be applied.
 図5はASK変調型の通信センサ装置の全体図である。図1に示す通信センサ装置の各部と同一部分には同一符号を付している。
 図5に示す通信センサ装置は、デジタルASK変調方式でデータ変調するデジタル通信送受信部41と反射式位相干渉計2とを備えて構成される。デジタル通信送受信部41の送信系は、MCU11、PLL回路14、電圧制御発振器42、増幅器16、ASK変調制御部43、送信アンテナとして機能する送受信アンテナ18で構成される。電圧制御発振器42の発振周波数をPLL回路14にて所定周波数にロックする。MCU11からASK変調制御部43へ送信データ(0又は1)が供給され、ASK変調制御部43が増幅器16の送信パワーを制御して高周波送信信号の振幅を送信データに対応してデジタル変調する。
FIG. 5 is an overall view of an ASK modulation type communication sensor device. The same parts as those of the communication sensor device shown in FIG.
The communication sensor device shown in FIG. 5 is configured to include a digital communication transmission / reception unit 41 that performs data modulation by the digital ASK modulation method, and the reflective phase interferometer 2. The transmission system of the digital communication transmission / reception unit 41 includes an MCU 11, a PLL circuit 14, a voltage control oscillator 42, an amplifier 16, an ASK modulation control unit 43, and a transmission / reception antenna 18 functioning as a transmission antenna. The oscillation frequency of the voltage control oscillator 42 is locked to a predetermined frequency by the PLL circuit 14. Transmission data (0 or 1) is supplied from the MCU 11 to the ASK modulation control unit 43, and the ASK modulation control unit 43 controls the transmission power of the amplifier 16 to digitally modulate the amplitude of the high frequency transmission signal in accordance with the transmission data.
 デジタル通信送受信部41の受信系は、受信アンテナとして機能する送受信アンテナ18と、送受信アンテナ18から出力される通信用受信信号を位相検波する位相検波器31と、通信用受信信号の検波信号を低周波増幅する低周波増幅器44と、ASK復調器45及びデータ出力部46とから構成される。ASK復調では、FSK復調のように周波数偏差を抽出するための構成の複雑な復調回路が不要であるので、反射式位相干渉計2の位相検波器31を復調回路の一部として用いることができる。 The reception system of the digital communication transmission / reception unit 41 includes a transmission / reception antenna 18 which functions as a reception antenna, a phase detector 31 which performs phase detection on the communication reception signal output from the transmission / reception antenna 18, and a low detection signal of the communication reception signal. It comprises a low frequency amplifier 44 for frequency amplification, an ASK demodulator 45 and a data output unit 46. In ASK demodulation, since a complex demodulation circuit for extracting a frequency deviation like FSK demodulation is unnecessary, the phase detector 31 of the reflection type phase interferometer 2 can be used as a part of the demodulation circuit. .
 以上のように構成された通信センサ装置の動作について説明する。
 デジタル通信送受信部41による送信データのASK変調動作について説明する。通信開始から通信終了まで、PLL回路14及び電圧制御発振器42が例えば中心周波数2.45GHzの高周波発振信号を継続して出力する。図6に高周波発振信号の放射波の周波数スペクトラムの測定結果を示す。同図に示すように、中心周波数の2.45GHzを中心にピークがあるが、中心周波数の両側にサイドローブが形成された周波数スペクトラムとなっている。
The operation of the communication sensor device configured as described above will be described.
The ASK modulation operation of transmission data by the digital communication transmission / reception unit 41 will be described. The PLL circuit 14 and the voltage control oscillator 42 continuously output, for example, a high frequency oscillation signal with a center frequency of 2.45 GHz from the start of communication to the end of communication. FIG. 6 shows the measurement results of the frequency spectrum of the radiation wave of the high frequency oscillation signal. As shown in the figure, there is a peak centered at 2.45 GHz of the center frequency, but it has a frequency spectrum in which side lobes are formed on both sides of the center frequency.
 ASK変調制御部43は、MCU11から送信データを受け取り、送信データに対応して振幅が変化するように増幅器16の送信パワーを制御する。ここで、ASK変調制御部43は増幅器16の送信パワーを完全にOFFさせるのではなく、数dB程度だけ下がるようにパワー制御する。図7はASK変調された高周波送信信号の波形図である。同図に示すように、送信データの“0”に対応して振幅を数dB程度だけ減衰させるので、送信データの“1”に対応した部分はパルス状に凸な波形となる。ASK変調レートを500Hzほど以上に設定すれば、パルス幅は1ms程度以下に設定することができる。前述したパケット通信ではFSK変調により2Mbps程度の伝送レートを実現できるが、ここの例ではASK変調では1kbpsになる。ただし、反射式位相干渉計2では高感度を実現できる。 The ASK modulation control unit 43 receives transmission data from the MCU 11 and controls the transmission power of the amplifier 16 so that the amplitude changes corresponding to the transmission data. Here, the ASK modulation control unit 43 does not completely turn off the transmission power of the amplifier 16 but performs power control so as to decrease by about several dB. FIG. 7 is a waveform diagram of an ASK modulated high frequency transmission signal. As shown in the figure, since the amplitude is attenuated by about several dB corresponding to "0" of the transmission data, the portion corresponding to "1" of the transmission data has a pulse-like convex waveform. If the ASK modulation rate is set to about 500 Hz or more, the pulse width can be set to about 1 ms or less. In the packet communication described above, a transmission rate of about 2 Mbps can be realized by FSK modulation, but in this example, it is 1 kbps in ASK modulation. However, high sensitivity can be realized in the reflection type phase interferometer 2.
 以上のようにASK変調された高周波送信信号が送受信アンテナ18から放射される。ASK変調された高周波送信信号が給電された送受信アンテナ18から放射される電波を対象物が受けて反射波を返してくる。 As described above, the ASK modulated high frequency transmission signal is radiated from the transmitting and receiving antenna 18. The object receives radio waves radiated from the transmitting / receiving antenna 18 to which the ASK-modulated high frequency transmission signal is fed, and returns a reflected wave.
 反射式位相干渉計2では、送信基準信号と反射波信号とが干渉して合成された合成信号が入力することで、ASK変調通信と対象物のセンシングとが同時に行われる。対象物が移動していれば送信基準信号と反射波信号との位相差に起因した電波干渉縞が低周波信号として現れるので、信号処理回路35において対象物の移動が検出されることになる。 In the reflection type phase interferometer 2, ASK modulation communication and sensing of an object are simultaneously performed by inputting a synthesized signal that is generated by interference of the transmission reference signal and the reflected wave signal. If the object is moving, radio interference fringes resulting from the phase difference between the transmission reference signal and the reflected wave signal appear as a low frequency signal, and the signal processing circuit 35 detects the movement of the object.
 一方、相手装置から送信されたASK変調信号が送受信アンテナ18で受信される。かかる通信受信信号はASK変調された信号であるので反射式位相干渉計2の位相検波器31で復調のために位相検波することができる。通信受信信号の検波信号は低周波増幅器44を経由してASK復調回路45に入力される。ASK復調回路45で検波信号の振幅に基づいてASK復調して受信データを得る。受信データはデータ出力部46を経由してMCU11へ入力される。 On the other hand, the ASK modulation signal transmitted from the other device is received by the transmission / reception antenna 18. Since the communication reception signal is an ASK modulated signal, phase detection can be performed by the phase detector 31 of the reflection type phase interferometer 2 for demodulation. The detection signal of the communication reception signal is input to the ASK demodulation circuit 45 via the low frequency amplifier 44. The ASK demodulation circuit 45 ASK-demodulates based on the amplitude of the detection signal to obtain received data. The received data is input to the MCU 11 via the data output unit 46.
 このように、デジタル通信送受信部41がASK変調通信を行う場合には、反射式位相干渉計2の位相検波器31をデータ受信系の復調回路の一部に利用することができる。 As described above, when the digital communication transmission / reception unit 41 performs ASK modulation communication, the phase detector 31 of the reflection type phase interferometer 2 can be used as part of the demodulation circuit of the data reception system.
 本出願は、2010年5月11日出願の特願2010-109125に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-109125 filed on May 11, 2010. All this content is included here.

Claims (8)

  1.  変調回路によりデジタル変調された高周波信号を送信する送信回路と、
     前記高周波信号を放射する送信アンテナと、
     通信相手からの信号と対象物からの反射波を受信する受信アンテナと、
     前記受信アンテナから出力される受信信号を復調回路により復調して前記通信相手からの信号を受信データとして取り込む受信回路と、
     前記送信回路から高周波信号送信中に、前記受信アンテナへ給電した高周波信号の一部と前記受信アンテナで受信された前記対象物からの反射波である反射波受信信号とを干渉させた合成信号を位相検波する位相検波回路と、
     前記位相検波回路から出力される検波信号を信号処理して前記対象物の位置変化検出を行う信号処理回路と、
    を具備したことを特徴とする通信センサ装置。
    A transmission circuit for transmitting a high frequency signal digitally modulated by the modulation circuit;
    A transmitting antenna that radiates the high frequency signal;
    A receiving antenna for receiving a signal from a communication partner and a reflected wave from an object;
    A reception circuit that demodulates a reception signal output from the reception antenna by a demodulation circuit and takes in a signal from the communication partner as reception data;
    A composite signal in which a part of the high frequency signal fed to the receiving antenna interferes with a reflected wave received signal which is a reflected wave from the object received by the receiving antenna during high frequency signal transmission from the transmitting circuit A phase detection circuit for phase detection;
    A signal processing circuit that performs signal processing on a detection signal output from the phase detection circuit to detect a change in position of the object;
    A communication sensor device comprising:
  2.  前記位相検波回路と前記信号処理回路との間にローパスフィルタを設け、当該ローパスフィルタのカットオフ周波数を前記変調回路の変調周波数より小さくしたことを特徴とする請求項1記載の通信センサ装置。 The communication sensor device according to claim 1, wherein a low pass filter is provided between the phase detection circuit and the signal processing circuit, and a cutoff frequency of the low pass filter is smaller than a modulation frequency of the modulation circuit.
  3.  前記送信回路及び前記受信回路は、パケットデータを送受信するパケット通信を行うことを特徴とする請求項1又は請求項2記載の通信センサ装置。 The communication sensor device according to claim 1, wherein the transmission circuit and the reception circuit perform packet communication for transmitting and receiving packet data.
  4.  前記変調回路は、デジタル変調としてFSK変調するFSK変調回路で構成されたことを特徴とする請求項3記載の通信センサ装置。 The communication sensor device according to claim 3, wherein the modulation circuit is configured by an FSK modulation circuit that performs FSK modulation as digital modulation.
  5.  前記変調回路は、デジタル変調としてASK変調するASK変調回路で構成されたことを特徴とする請求項3記載の通信センサ装置。 The communication sensor device according to claim 3, wherein the modulation circuit is configured by an ASK modulation circuit that performs ASK modulation as digital modulation.
  6.  前記受信回路は、前記位相検波回路を復調回路の一部として使用し、前記通信相手からASK変調された信号が前記受信アンテナで受信されると、前記位相検波回路で前記ASK変調された受信信号をASK復調することを特徴とする請求項5記載の通信センサ装置。 The reception circuit uses the phase detection circuit as a part of a demodulation circuit, and the ASK-modulated reception signal is received by the phase detection circuit when the ASK-modulated signal from the communication party is received by the reception antenna. The communication sensor device according to claim 5, wherein ASK demodulation is performed.
  7.  前記送信アンテナと前記受信アンテナとを1つのアンテナで兼用することを特徴とする請求項1から請求項6のいずれかに記載の通信センサ装置。 The communication sensor device according to any one of claims 1 to 6, wherein the transmission antenna and the reception antenna are shared by one antenna.
  8.  前記高周波信号は周波数ホッピングされたスペクトル拡散信号であることを特徴とする請求項1から請求項7のいずれかに記載の通信センサ装置。 The communication sensor device according to any one of claims 1 to 7, wherein the high frequency signal is a frequency hopping spread spectrum signal.
PCT/JP2011/059446 2010-05-11 2011-04-15 Communication sensor apparatus WO2011142211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546516A JPWO2011142211A1 (en) 2010-05-11 2011-04-15 Communication sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109125 2010-05-11
JP2010-109125 2010-05-11

Publications (1)

Publication Number Publication Date
WO2011142211A1 true WO2011142211A1 (en) 2011-11-17

Family

ID=44914267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059446 WO2011142211A1 (en) 2010-05-11 2011-04-15 Communication sensor apparatus

Country Status (2)

Country Link
JP (1) JPWO2011142211A1 (en)
WO (1) WO2011142211A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061239A1 (en) * 2012-10-17 2014-04-24 アルプス電気株式会社 Communication sensor device
JP2014137347A (en) * 2013-01-18 2014-07-28 Toyota Central R&D Labs Inc Radio communication apparatus and radio communication method
JP2014236915A (en) * 2013-06-10 2014-12-18 アルプス電気株式会社 Communication sensor device
CN104704386A (en) * 2012-10-10 2015-06-10 阿尔卑斯电气株式会社 Wireless sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133445U (en) * 1986-02-12 1987-08-22
JPH05122120A (en) * 1991-07-31 1993-05-18 Mazda Motor Corp Inter-vehicle communication equipment
JP2004177340A (en) * 2002-11-28 2004-06-24 Aisin Seiki Co Ltd Short distance sensor
JP2007147350A (en) * 2005-11-25 2007-06-14 Hitachi Ltd Radio communications positioning system
WO2007139131A1 (en) * 2006-06-01 2007-12-06 The Furukawa Electric Co., Ltd. Burst oscillation device, burst oscillation method, and distance measurement communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247108A (en) * 1985-04-25 1986-11-04 Yokogawa Electric Corp Amplitude modulation and demodulation device
JP2000171543A (en) * 1998-12-09 2000-06-23 Japan Radio Co Ltd High-precision satellite navigation apparatus
JP3461498B2 (en) * 2001-03-01 2003-10-27 徹志 上保 Distance measuring device, distance measuring equipment and distance measuring method
JP2006180549A (en) * 2002-02-28 2006-07-06 Matsushita Electric Ind Co Ltd Communication apparatus and communication method
WO2005106525A1 (en) * 2004-04-27 2005-11-10 Brother Kogyo Kabushiki Kaisha Wireless tag communication apparatus
JP2006042201A (en) * 2004-07-29 2006-02-09 Advanced Telecommunication Research Institute International Distance measurement system, distance measuring method and communication equipment
JP2006107380A (en) * 2004-10-08 2006-04-20 Sony Corp Information processor, information processing method, memory device and computer program
JP2006119693A (en) * 2004-10-19 2006-05-11 Sony Corp Information processing device, information processing method, and computer program
JP4618082B2 (en) * 2004-11-19 2011-01-26 パナソニック株式会社 Transmitting apparatus, receiving apparatus, and communication system
JP3784823B1 (en) * 2005-07-15 2006-06-14 国立大学法人徳島大学 Distance measuring device, distance measuring method, and distance measuring program
JP4979413B2 (en) * 2006-03-06 2012-07-18 パナソニック株式会社 Pulse radio receiver
JP4609394B2 (en) * 2006-07-28 2011-01-12 ソニー株式会社 Demodulation circuit and receiver
JP4793372B2 (en) * 2007-11-05 2011-10-12 ソニー株式会社 Communication apparatus and demodulation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133445U (en) * 1986-02-12 1987-08-22
JPH05122120A (en) * 1991-07-31 1993-05-18 Mazda Motor Corp Inter-vehicle communication equipment
JP2004177340A (en) * 2002-11-28 2004-06-24 Aisin Seiki Co Ltd Short distance sensor
JP2007147350A (en) * 2005-11-25 2007-06-14 Hitachi Ltd Radio communications positioning system
WO2007139131A1 (en) * 2006-06-01 2007-12-06 The Furukawa Electric Co., Ltd. Burst oscillation device, burst oscillation method, and distance measurement communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704386A (en) * 2012-10-10 2015-06-10 阿尔卑斯电气株式会社 Wireless sensor
WO2014061239A1 (en) * 2012-10-17 2014-04-24 アルプス電気株式会社 Communication sensor device
CN104737031A (en) * 2012-10-17 2015-06-24 阿尔卑斯电气株式会社 Communication sensor device
JPWO2014061239A1 (en) * 2012-10-17 2016-09-05 アルプス電気株式会社 Communication sensor device
JP2014137347A (en) * 2013-01-18 2014-07-28 Toyota Central R&D Labs Inc Radio communication apparatus and radio communication method
JP2014236915A (en) * 2013-06-10 2014-12-18 アルプス電気株式会社 Communication sensor device

Also Published As

Publication number Publication date
JPWO2011142211A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
US9846226B2 (en) Motion detection device
US20070230701A1 (en) Chaotic signal transmitter using pulse shaping method
US20120280862A1 (en) Wireless location detection and/or tracking device and associated methods
US7676205B2 (en) Active receiver detection and ranging
JP2004258009A (en) Range-finding/positioning system, range-finding/ positioning method, and radio communication device
JP2008199411A (en) Frequency switcher, rfid system and distance measuring apparatus incorporating the frequency switcher
KR20100054639A (en) Radar system and method for signal processing used thereof
WO2011142211A1 (en) Communication sensor apparatus
US11762058B2 (en) Pulsed radar system and method with digital mixer for frequency hopping
JP6052841B2 (en) Communication sensor device
KR100730086B1 (en) Dual system transmitting and receiving device
US20060114969A1 (en) Data transmission device using SAW filters
JP2008122255A (en) Distance measuring device
JP4819067B2 (en) Distance measuring device
CN114157319B (en) Ultra-wideband sensing signal receiving and transmitting integrated system
CN114325676B (en) Low-power-consumption radar system, low-power-consumption radar device and monitoring device
JP2011145196A (en) Distance measuring device
JP4628992B2 (en) Wireless transceiver
JP6908678B2 (en) Transmitter / receiver with electronic chip
US20040166806A1 (en) Circuit arrangement for transmitting and receiving radio signals simultaneously
EP2353030B1 (en) A measurement agent, a tag, a method for measuring, a method for serving measuring and a computer program product
JP4061237B2 (en) RADIO TRANSMITTER, RADAR SYSTEM AND RADIO COMMUNICATION SYSTEM
JP2010008069A (en) System for transmitting radar information and radar device for it
JP2002174677A (en) Radar apparatus
WO2023104307A1 (en) Radar- based detection of hand gestures via a communication device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011546516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780468

Country of ref document: EP

Kind code of ref document: A1