WO2011142200A1 - Apparatus for producing methane from carbon dioxide - Google Patents

Apparatus for producing methane from carbon dioxide Download PDF

Info

Publication number
WO2011142200A1
WO2011142200A1 PCT/JP2011/058918 JP2011058918W WO2011142200A1 WO 2011142200 A1 WO2011142200 A1 WO 2011142200A1 JP 2011058918 W JP2011058918 W JP 2011058918W WO 2011142200 A1 WO2011142200 A1 WO 2011142200A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
reaction chamber
methane
oxygen
producing methane
Prior art date
Application number
PCT/JP2011/058918
Other languages
French (fr)
Japanese (ja)
Inventor
瓜生浩朗
柳田京子
鹿野行弥
Original Assignee
Uryu Kourou
Yanagida Kyoko
Kano Yukiya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uryu Kourou, Yanagida Kyoko, Kano Yukiya filed Critical Uryu Kourou
Publication of WO2011142200A1 publication Critical patent/WO2011142200A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0405Apparatus
    • C07C1/041Reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2403Geometry of the channels
    • B01J2219/2408Circular or ellipsoidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium

Definitions

  • the present invention relates to an apparatus for producing methane from carbon dioxide, and more particularly, contacting carbon dioxide with oxygen-deficient ferrite (AFe 2 O 4- ⁇ ) to form carbon from carbon dioxide, and then obtained
  • the present invention relates to an apparatus for producing methane from carbon dioxide, which produces methane by reacting carbon with hydrogen.
  • Nuclear power generation is expected to be one of the important measures to combat global warming because it emits less carbon dioxide.
  • a large amount of heat generated by nuclear power generation is released to the sea, and carbon dioxide staying in the atmosphere prevents the heat from dissipating, resulting in a rise in the temperature of seawater, and thus the average of the earth. This is causing the temperature to rise. Therefore, when using nuclear power generation, it is essential to first reduce the amount of carbon dioxide staying in the atmosphere.
  • Non-patent Document 1 discloses that carbon dioxide and hydrogen are simultaneously contained in a reactor containing a ferrite held at a temperature between 300 ° C. and 400 ° C. Disclosed is a carbon dioxide conversion method for reducing carbon dioxide to carbon by supplying it.
  • Patent Document 2 discloses that in a carbon recovery apparatus that recovers carbon from a carbon dioxide-containing exhaust gas, particulate oxygen-deficient magnetite and exhaust gas are brought into contact with each other, and particles are formed by a chemical reaction between the oxygen-deficient magnetite and carbon dioxide. And a magnetic separation means for recovering a non-magnetic substance containing carbon by separating and removing magnetite by magnetic separation from a mixture containing magnetite and carbon produced in the reaction chamber. , A carbon recovery device is disclosed. However, a plurality of reaction towers, a magnetic separator, a recovery device, and the like must be provided, which inevitably have to be large-scale, resulting in an increase in equipment costs. In addition, the energy balance and how to use the recovered carbon are unknown.
  • the present invention provides a novel apparatus for producing methane from carbon dioxide that is compact and therefore energy efficient and has low equipment costs.
  • the present invention (1) Carbon dioxide is brought into contact with oxygen-deficient ferrite (AFe 2 O 4- ⁇ , where A is selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr, and Ba) to form carbon. And then reacting the obtained carbon with hydrogen to produce methane, which is an apparatus for producing methane from carbon dioxide, comprising a reaction chamber having a cylindrical or polygonal column shape, In a reaction chamber having a prismatic shape, there are n reaction chamber blocks (n represents an integer of 2 or more) separated from each other radially from the center of the reaction chamber.
  • oxygen-deficient ferrite AFe 2 O 4- ⁇ , where A is selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr, and Ba
  • the reaction chamber block is filled with oxygen-deficient ferrite (AFe 2 O 4- ⁇ , where A is the same as above) to ferrite (AFe 2 O 4 , where A is the same as above).
  • AFe 2 O 4- ⁇ oxygen-deficient ferrite
  • AFe 2 O 4 ferrite
  • n reaction chamber blocks Means for rotating around the center of the reaction chamber having the shape of the cylinder or polygonal column, and introducing carbon dioxide sequentially into the n reaction chamber blocks at one or more positions in the rotation direction.
  • An apparatus for producing methane from carbon dioxide as described in (6) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at 1 to 3 positions, (7) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at one or two positions, (8) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at one position, (9) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at 1 to 3 positions, (10) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at one or two positions, (11) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at one position, (12) The apparatus for producing methane from carbon dioxide according to
  • the oxygen-deficient ferrite (AFe 2 O 4- ⁇ ) to ferrite (AFe 2 O 4 ) filled in the n reaction chamber blocks are applied to the honeycomb carrier and filled.
  • the apparatus of the present invention includes a reaction chamber having a cylindrical or polygonal column shape, and includes therein n reaction chamber blocks radially separated from each other, and each of the n reaction chamber blocks. During one rotation, the conversion reaction from carbon dioxide to methane is carried out in each reaction chamber block, and the cycle is repeated. Therefore, the apparatus for producing methane from carbon dioxide according to the present invention is compact, and therefore energy efficient and equipment costs are low. According to the apparatus of the present invention, carbon dioxide present in exhaust gas discharged by burning fossil fuel and carbon dioxide staying in the atmosphere can be separated into carbon and oxygen, and Since methane is produced using the carbon, it is possible to reduce these carbon dioxides and contribute to the prevention of global warming.
  • FIG. 1 is an explanatory view showing an embodiment of the apparatus of the present invention.
  • FIG. 2 is a schematic plan view of the apparatus shown in FIG.
  • FIG. 3 is a schematic elevational view of the apparatus shown in FIG.
  • FIG. 4 is a schematic view showing a state of oxygen-deficient magnetite to magnetite filled in the reaction chamber block.
  • FIG. 5 is an explanatory view showing an embodiment of the apparatus of the present invention including an apparatus for converting the produced methane into hydrogen and reusing it.
  • FIG. 6 is an explanatory view showing an embodiment when carbon dioxide contained in exhaust gas from an industrial facility or carbon dioxide contained in the atmosphere is treated using the apparatus of the present invention.
  • the apparatus of the present invention allows oxygen in carbon dioxide to be bonded to oxygen-deficient ferrite (AFe 2 O 4- ⁇ ) by contacting carbon dioxide with oxygen-deficient ferrite (AFe 2 O 4- ⁇ ).
  • the ferrite (AFe 2 O 4- ⁇ ) is changed from ferrite (AFe 2 O 4 ) to oxygen-deficient ferrite (AFe 2 O 4- ⁇ ′ , where ⁇ ′ ⁇ ).
  • A is a divalent ion, and is preferably selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr and Ba.
  • Oxygen-deficient ferrites (AFe 2 O 4- ⁇ and AFe 2 O 4- ⁇ ′ ) and ferrites (AFe 2 O 4 ) are both oxygen-deficient magnetites (Fe 3 O 4 ⁇ ) where A is Fe. ⁇ and Fe 3 O 4- ⁇ ′ ) and magnetite (Fe 3 O 4 ) are preferred.
  • carbon dioxide is not only pure carbon dioxide but also gas containing carbon dioxide, for example, exhaust gas containing carbon dioxide discharged from industrial facilities such as combustion furnaces and heating furnaces, vehicles such as automobiles, etc.
  • the carbon dioxide in the gas can be concentrated in advance to increase the carbon dioxide concentration.
  • Oxygen-deficient ferrite is a known substance, and is iron oxide represented by the general formula AFe 2 O 4- ⁇ .
  • oxygen-deficient magnetite which is a preferred embodiment, is a known substance, and is iron oxide represented by the general formula Fe 3 O 4- ⁇ .
  • iron oxide represented by the general formula Fe 3 O 4- ⁇ .
  • These production methods are also known. Taking oxygen-deficient magnetite as an example, for example, it is produced by reacting magnetite (Fe 3 O 4 ) with hydrogen and removing a part of oxygen bonded to iron as water. obtain.
  • oxygen-deficient ferrite for example, oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) reacts with carbon dioxide to generate magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite ( Change to Fe 3 O 4- ⁇ ′ , where ⁇ ′ ⁇ , followed by the magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4- ⁇ ′ , where ⁇ ′ ⁇ ) reacts with hydrogen and changes again to oxygen-deficient magnetite (Fe 3 O 4- ⁇ ).
  • carbon separated from carbon dioxide reacts with hydrogen and is extracted as methane, while oxygen also reacts with hydrogen and is extracted as water.
  • oxygen-deficient ferrite for example, oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) can be recycled.
  • the oxygen-deficient ferrite for example, oxygen-deficient magnetite is preferably in the form of particles, and is more preferably hollow and has a large surface area.
  • the apparatus of the present invention includes a reaction chamber having a cylindrical or polygonal column shape. Further, the reaction chamber has n reaction chambers having a cylindrical or polygonal column shape, that is, n pieces separated from each other by a side wall radially from the center axis of the reaction chamber having the cylindrical or polygonal column shape.
  • the number of reaction chamber blocks is not particularly limited, but the upper limit is preferably 20, more preferably 15, more preferably 10, and the lower limit is 2, preferably 3, more preferably. Four, more preferably five. If the above upper limit is exceeded, the production cost of the reaction chamber and the reaction chamber block is increased, and the volume of one reaction chamber block is reduced, so that the efficiency is also deteriorated.
  • the reaction chamber block can be formed over the entire length in the radial direction of the reaction chamber having the shape of a cylinder or a polygonal column, but other parts of the apparatus of the present invention described below, for example, methane and In view of the relationship with the means for taking out water, the means for rotating the reaction chamber block, etc., as shown in FIG. preferable.
  • the reaction chamber is a polygonal column
  • the number of corners of the polygonal column and the number of reaction chamber blocks are preferably the same. Thereby, it may be possible to reduce manufacturing costs.
  • the dimensions of the reaction chamber and the reaction chamber block can be determined as appropriate depending on the amount of carbon dioxide and the amount of gas containing carbon dioxide.
  • Each of the n reaction chamber blocks includes oxygen-deficient ferrite (AFe 2 O 4- ⁇ ) to ferrite (AFe 2 O 4 ), for example, oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) to magnetite (Fe 3 O 4 ) is filled.
  • the oxygen-deficient ferrite or ferrite for example, the oxygen-deficient magnetite or magnetite may be filled in a state in which the oxygen-deficient ferrite or ferrite can sufficiently react with the introduced carbon dioxide and hydrogen.
  • the oxygen-deficient ferrite or ferrite for example, the oxygen-deficient magnetite or magnetite
  • a honeycomb carrier that has been subjected to wash coating, dried, and fired as necessary
  • a ceramic carrier is preferably used as the honeycomb carrier.
  • a honeycomb carrier made of cordierite, mullite, ⁇ -alumina, zirconia, titanium, titanium phosphate, aluminum titanate, petalite, spodumene, aluminosilicate, magnesium silicate or the like is preferable.
  • oxygen-deficient ferrite or ferrite for example, oxygen-deficient magnetite or magnetite, can be filled in the form of particles or lumps.
  • an oxygen-deficient ferrite for example, an oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) is converted from ferrite (AFe 2 O 4 ) to oxygen-deficient ferrite with the introduction of carbon dioxide.
  • AFe 2 O 4- ⁇ ′ where ⁇ ′ ⁇
  • magnetite Fe 3 O 4
  • oxygen-deficient magnetite Fe 3 O 4- ⁇ ′
  • ⁇ ′ oxygen-deficient magnetite
  • the apparatus of the present invention comprises means for rotating the n reaction chamber blocks described above around the center of a cylindrical or polygonal column reaction chamber.
  • carbon dioxide is sequentially introduced into the reaction chamber blocks by means for introducing carbon dioxide, and subsequently, by means for introducing hydrogen.
  • hydrogen can be introduced into each reaction chamber block to complete one cycle of producing methane from carbon dioxide, and this cycle can be repeated.
  • the means for introducing carbon dioxide and the means for introducing hydrogen means usually used in a reaction apparatus can be adopted.
  • it is composed of a carbon dioxide or hydrogen supply pipe, a control valve connected thereto, a gas introduction valve installed in each reaction chamber block, and the like.
  • the apparatus of the present invention also includes means for maintaining the temperature of the reaction chamber block after carbon dioxide is introduced at 250 to 800 ° C., preferably 300 to 400 ° C., and the reaction chamber block after hydrogen is introduced.
  • the means usually used in the reaction apparatus can be adopted as described above.
  • a device that electrically heats and keeps heat a device that heats, keeps and cools with a heat medium or a refrigerant, and the like can be used.
  • carbon dioxide is finally converted into methane and water.
  • the produced methane and water are discharged from the reaction chamber block by means for taking out methane and water.
  • the reaction chamber block is preferably cooled to 10 to 50 ° C., more preferably to room temperature, and methane can be taken out in a gaseous state while water can be taken out in a liquid state. Further, without cooling the reaction chamber block, all of methane and water can be taken out in a gas state and separately cooled to separate them.
  • a gas containing carbon dioxide is used as carbon dioxide, other gas contained in the gas is contained together with methane, so that these other gases can be separated if necessary. .
  • unreacted carbon dioxide can also be separated and treated again using the apparatus of the present invention.
  • the produced methane can be used for various applications. It can also be decomposed to hydrogen again and recycled in the apparatus of the present invention.
  • FIG. 1 is an explanatory view showing an embodiment of the apparatus of the present invention for producing methane from carbon dioxide.
  • 2 is a schematic plan view of the apparatus shown in FIG. 1
  • FIG. 3 is a schematic elevation view of the apparatus shown in FIG. In FIG. 3, among the means for introducing hydrogen into the reaction chamber block, (4 ′) and (4 ′′) are omitted.
  • the reaction chamber (1) of the apparatus (A) for producing methane from carbon dioxide has a substantially cylindrical shape, and is separated from each other by eight side walls radially from the center of the cylinder. It has a reaction chamber block (2, respectively, located at positions a 1 to a 8 ).
  • These reaction chamber blocks (2) are arranged in a donut shape along the circumference of the substantially cylindrical reaction chamber (1).
  • each reaction chamber block (2) is filled with oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) to magnetite (Fe 3 O 4 ) applied to the honeycomb (8).
  • Each reaction chamber block (2) rotates in the direction of the arrow (clockwise) about the center of the reaction chamber (1) having a cylindrical shape as an axis.
  • the apparatus (A) for producing methane from carbon dioxide is provided with one means (3) for introducing carbon dioxide into each reaction chamber block (2), and hydrogen is supplied to each reaction chamber block (2 ) Is provided with three means (4, 4 ′, 4 ′′).
  • the produced methane and water are placed in the reaction chamber ( 1) is provided with means (5, 6) for removal from the side wall (2) of each reaction chamber block (2) facing in the direction of the central axis of the reaction chamber (1).
  • 18) is provided with means (not shown) for extracting methane, water, and unreacted carbon dioxide, if necessary, from each reaction chamber block (2), for example, a valve, and the like.
  • Gaseous methane, water, etc. are cooled in the cooling chamber (7) to condense the water. It is made into a liquid and then taken out of the apparatus by means (5, 6) for taking out methane and water from the reaction chamber (1).
  • carbon dioxide is introduced by means (3) for introducing carbon dioxide into each reaction chamber block (2) filled with oxygen-deficient magnetite (Fe 3 O 4- ⁇ ) at position a 1 .
  • the introduction of carbon dioxide is performed using a blower or a compressor (not shown) as necessary, and the pressure in the reaction chamber block (2) is preferably from atmospheric pressure to 5.0 MPa, more preferably 0.2 MPa. It is introduced so that the pressure becomes -1.0 MPa, more preferably 0.2-0.5 MPa.
  • the reaction chamber block (2) into which carbon dioxide has been introduced is immediately heated to 250 to 800 ° C., preferably 300 to 400 ° C., by a heating means such as an electric heater or a heat medium jacket. For example, the temperature is cooled to the above temperature and maintained at that temperature. However, for exhaust gas containing carbon dioxide exhausted from a combustion furnace, a heating furnace or the like that already has the above temperature, heating or cooling may not be required.
  • the reaction chamber block carbon dioxide is held is introduced and at a predetermined temperature (2) is moved to rotate in the direction of the arrow (clockwise) to the position of a 2. At this time, another reaction chamber block that existed at the position of a 8 (2) is moved to the position of a 1, carbon dioxide is introduced in a similar manner.
  • reaction chamber block (2) into which carbon dioxide has been introduced and maintained at a predetermined temperature has carbon dioxide and oxygen-deficient magnetite (Fe 3 O 4 ) at the positions a 2 and a 3 according to the following reaction formula (I).
  • - ⁇ reacts with oxygen-deficient magnetite (Fe 3 O 4- ⁇ ), which receives oxygen in carbon dioxide to generate magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4- ⁇ ′)
  • ⁇ ′ ⁇ oxygen-deficient magnetite
  • carbon separated from carbon dioxide is deposited on the surface of magnetite or the like.
  • the speed of the reaction is fast, and the progress of the reaction can be grasped by monitoring the pressure drop in the reaction chamber block (2).
  • the reaction time can be appropriately determined in consideration of the amount of carbon dioxide and a gas containing carbon dioxide, the concentration of carbon dioxide, and the like.
  • a gas present in the reaction chamber block (2) in, i.e., contained in the gas supplied carbon dioxide unreacted in the apparatus of the present invention Gas other than carbon dioxide can be discharged from the reaction chamber block (2) before introducing hydrogen gas.
  • the discharge can be carried out by means of taking out unreacted carbon dioxide provided in each reaction chamber block (2).
  • the means for taking out the unreacted carbon dioxide can be used in combination with the means for taking out methane and water provided in each reaction chamber block (2).
  • gas is extracted by a valve or the like provided on the side wall (18) of each reaction chamber reaction chamber block (2).
  • the reaction chamber block (2) is transferred to a position of a 4, in this position, the means for introducing hydrogen (4), hydrogen is introduced into the reaction chamber block (2) .
  • the introduction of hydrogen is performed using a blower or a compressor (not shown) as necessary, and the pressure in the reaction chamber block (2) is preferably from atmospheric pressure to 5.0 MPa, more preferably 0.2 MPa. It is introduced so that the pressure becomes -1.0 MPa, more preferably 0.2-0.5 MPa.
  • the reaction chamber block (2) into which hydrogen has been introduced is immediately heated to 500 to 800 ° C., preferably 600 to 700 ° C., by a heating means such as an electric heater or a heat medium jacket. To cool and hold at that temperature.
  • reaction chamber block (2) in which hydrogen is introduced and maintained at a predetermined temperature, carbon and hydrogen react to generate methane according to the following reaction formulas (II) and (III), while magnetite ( Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4- ⁇ ′ , where ⁇ ′ ⁇ ) reacts with oxygen to generate water to generate magnetite (Fe 3 O 4 ). Or oxygen-deficient magnetite (Fe 3 O 4- ⁇ ′ , where ⁇ ′ ⁇ ) loses oxygen and changes to oxygen-deficient magnetite (Fe 3 O 4- ⁇ ).
  • more hydrogen is introduced at positions a 5 and a 6 in order for the reaction to take place sufficiently.
  • reaction time can be appropriately determined in consideration of the relationship with the time for reacting carbon dioxide with oxygen-deficient magnetite (Fe 3 O 4- ⁇ ).
  • reaction chamber block (2) After being reacted in the manner described above, the reaction chamber block (2) is moved to the position of a 8, in this position, facing the center axis of the reaction chamber (1), each reaction chamber blocks (2) Methane, water, and the like are extracted from each reaction chamber block (2) in a gaseous state by a valve or the like (not shown) provided on the side wall (18), and then cooled to, for example, room temperature in the cooling chamber (7) Then, the water generated by the above reaction is discharged from the bottom of the reaction chamber by means (6) for taking out water in a liquid state. On the other hand, the methane produced by the above reaction is also in a gaseous state and is discharged from the top of the reaction chamber by means (5) for taking out methane.
  • unreacted gas or the like present in methane is taken out from the reaction chamber (1) and then separated by a gas separation means (not shown).
  • unreacted hydrogen is returned to the apparatus. Used cyclically.
  • the substance in the reaction chamber block (2) has been extracted, it can be discharged out of the reaction chamber in a gaseous state without cooling, and then cooled and separated into methane-containing gas and water. it can.
  • generated as FIG. 5 shows is stored in a methane storage tank (9), for example, it converts into hydrogen again by a hydrogen production apparatus (10), and can also be used in the apparatus of this invention. it can.
  • FIG. 6 is a graph showing any one of carbon dioxide existing in exhaust gas discharged from industrial facilities such as a combustion furnace and a heating furnace, so-called exhaust carbon dioxide, and carbon dioxide existing in the atmosphere, so-called stagnant carbon dioxide.
  • exhaust gas (11) discharged from industrial facilities such as a combustion furnace and a heating furnace is sent to a carbon dioxide concentrator, for example, an amine reaction tank (13) through a flue (12).
  • a carbon dioxide concentrator for example, an amine reaction tank (13) through a flue (12).
  • amine reaction tank (13) carbon dioxide is reacted with an aqueous amine solution to produce amine carbonate.
  • the amine carbonate is sent to the carbon dioxide separation tank (15) through the pipe (14).
  • the carbon dioxide separation tank (15) the amine carbonate is heated to about 150 ° C. and decomposed into an aqueous amine solution and carbon dioxide.
  • the aqueous amine solution is returned to the amine reaction vessel (13) through the pipe (16).
  • carbon dioxide is introduced into the apparatus (A) of the present invention, for example, the apparatus shown in FIG. 1, through the carbon dioxide discharge pipe (17) connected to the means (3) for introducing carbon dioxide. And converted to methane.
  • the carbon dioxide concentrator is not limited to the chemical absorption method using an alkaline solution such as amine, but uses other absorption methods such as a physical absorption method, adsorbents such as zeolite, activated carbon, and alumina.
  • a physical adsorption method, a membrane separation method using a porous polymer membrane such as cellulose acetate, a cryogenic separation method, or the like can be used.
  • the apparatus for producing methane from carbon dioxide according to the present invention is compact, and therefore has higher energy efficiency and lower equipment costs than the conventional apparatus. Therefore, it can be actively used to reduce carbon dioxide in the atmosphere, which is the main cause of global warming.
  • it is included in exhaust gas discharged from industrial facilities such as combustion furnaces and heating furnaces. It can be used to remove carbon dioxide contained in the atmosphere or carbon dioxide contained in the atmosphere and carbon dioxide contained in exhaust gas emitted from vehicles such as automobile engines, and contributes greatly to future global warming countermeasures. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a novel apparatus for producing methane from carbon dioxide that is compact, and therefore, has good energy efficiency and low equipment costs. Specifically disclosed is an apparatus for producing methane that forms carbon by bringing carbon dioxide into contact with oxygen-deficient ferrite and reacting the carbon that is obtained with hydrogen. This apparatus is provided with a round column or polygonal column reaction chamber, and n reaction chamber blocks separated from each other are disposed in a radial fashion at the center of that reaction chamber. Each reaction chamber block is filled with oxygen-deficient ferrite to ferrite, and these reaction chamber blocks are provided with a means for rotation around the central axis of the reaction chamber. In addition, a means for introducing carbon dioxide sequentially into these reaction chamber blocks is provided at one or more positions in the direction of rotation, and a means for maintaining the temperature of these reaction chamber blocks at a prescribed temperature is provided. Furthermore, a means for extracting the methane produced from these reaction chamber blocks is provided.

Description

二酸化炭素からメタンを製造する装置Equipment for producing methane from carbon dioxide
本発明は、二酸化炭素からメタンを製造する装置に関し、更に詳しくは、二酸化炭素を酸素欠乏フェライト(AFe4-δ)に接触させて、二酸化炭素から炭素を形成し、次いで、得られた炭素を水素と反応させてメタンを製造する、二酸化炭素からメタンを製造する装置に関する。 The present invention relates to an apparatus for producing methane from carbon dioxide, and more particularly, contacting carbon dioxide with oxygen-deficient ferrite (AFe 2 O 4-δ ) to form carbon from carbon dioxide, and then obtained The present invention relates to an apparatus for producing methane from carbon dioxide, which produces methane by reacting carbon with hydrogen.
昨今問題となっている地球温暖化、即ち、地球の平均気温の上昇は、石油、石炭等の化石燃料を大量に燃焼(酸化)することにより排出される二酸化炭素が大気中に滞留して、これが地上から発生する熱を封じ込めていることが主な原因であると言われている。現在、排出された二酸化炭素は、その一部が森林及び海洋等により吸収される以外は、殆どが大気中に滞留しており、大気中の二酸化炭素濃度は増え続けている。従って、地球の平均気温の上昇を防止するためには、大気中に滞留する二酸化炭素の量を可能な限り、例えば、産業革命以前の値(二酸化炭素濃度280ppm程度と言われている)までに低減する必要がある。 The global warming that has become a problem in recent years, that is, the rise in the average temperature of the earth, is that carbon dioxide emitted by burning (oxidizing) a large amount of fossil fuels such as oil and coal stays in the atmosphere. It is said that this is mainly due to the containment of heat generated from the ground. At present, most of the discharged carbon dioxide remains in the atmosphere except that part of it is absorbed by forests and oceans, and the concentration of carbon dioxide in the atmosphere continues to increase. Therefore, in order to prevent an increase in the global average temperature, the amount of carbon dioxide that stays in the atmosphere should be reduced to the value before the industrial revolution, for example, as much as possible (it is said to have a carbon dioxide concentration of about 280 ppm). There is a need to reduce.
原子力発電は二酸化炭素の排出量が少なく、地球温暖化対策の重要な手段の一つとして期待されている。しかし、現実には、原子力発電により発生した大量の熱を海に放出しており、そして、大気中に滞留する二酸化炭素がこの熱の放散を妨げて、海水の温度上昇、ひいては、地球の平均気温の上昇を引き起こしている。従って、原子力発電を使用するにあたっても、まず、大気中に滞留する二酸化炭素の量を低減させることが必須である。 Nuclear power generation is expected to be one of the important measures to combat global warming because it emits less carbon dioxide. However, in reality, a large amount of heat generated by nuclear power generation is released to the sea, and carbon dioxide staying in the atmosphere prevents the heat from dissipating, resulting in a rise in the temperature of seawater, and thus the average of the earth. This is causing the temperature to rise. Therefore, when using nuclear power generation, it is essential to first reduce the amount of carbon dioxide staying in the atmosphere.
二酸化炭素を低減するために、電力業界において、石炭火力発電から発生する二酸化炭素を抑える低炭素化技術(二酸化炭素回収プラント)の実用化が試みられている。また、ドイツ東部では、二酸化炭素の地下貯留施設が稼働を開始した。しかし、いずれもコスト高、貯留場所の確保困難等の問題が山積されている。これらの技術は、革新的な二酸化炭素の削減技術が見つかるまでの「つなぎ技術」と考えられている。 In order to reduce carbon dioxide, the electric power industry has attempted to put into practical use a low carbonization technology (carbon dioxide recovery plant) that suppresses carbon dioxide generated from coal-fired power generation. In eastern Germany, an underground storage facility for carbon dioxide has begun operation. However, there are piles of problems such as high cost and difficulty in securing a storage location. These technologies are considered “connecting technologies” until innovative carbon dioxide reduction technologies are found.
我国における2008年度の二酸化炭素排出量の主な内訳は、国立環境研究所の算定によれば、総排出量12億1600万トンに対して、家庭自家用車が6%、貨物車等が13%、製造業及び建設業等の産業が34%を占めている。とりわけ、自家用車を含む家庭部門が、1900年から42.5%増加しており、他部門と比較すると高い増加率を示している。この対策として、電気製品及び自動車の省エネルギー化を図るための「トップランナー制度」及び家庭における電気製品等の買い替え支援としての「エコポイント制度」等を導入したが、これらは景気浮上には役立ったが、二酸化炭素の削減に関しては、その効果は低いものであった。 According to the calculation of the National Institute for Environmental Studies, the main breakdown of carbon dioxide emissions in Japan in fiscal 2008 is 6% for private cars and 13% for freight cars, etc. Industries such as manufacturing and construction account for 34%. In particular, the household sector, including private cars, has increased by 42.5% since 1900, showing a high rate of increase compared to other sectors. As countermeasures, we introduced the “Top Runner System” to save energy in electrical products and automobiles and the “Eco Point System” to support replacement of electrical products at home. Regarding the reduction of carbon dioxide, the effect was low.
今後、化石燃料を燃焼することにより排出される二酸化炭素、及び、大気中に滞留する二酸化炭素の削減を自然生態系、例えば、森林及び海洋等に依存するのみでは限界がある。一般に植物は、光合成により二酸化炭素を炭素と酸素に分解して、炭素をその体内に炭水化物として固定化することで成長し、呼吸をするときに分解して炭素を二酸化炭素として放出する。従って、成長期には炭素の固定化が炭素の放出を上回るが、成熟期になると炭素の固定化量が減少して二酸化炭素の吸収量が低下すると言う問題がある。また、植物には、高温環境下で植物葉緑体が枯死する等のほか、大気中の二酸化炭素濃度が0.03%であること及び夜間における光源の少ない環境が必要であることが限定要因となっている。従って、自然生態系に依存しない画期的な二酸化炭素の削減方法の確立が急務である。 In the future, there is a limit to simply relying on natural ecosystems, such as forests and oceans, for the reduction of carbon dioxide emitted by burning fossil fuels and carbon dioxide remaining in the atmosphere. In general, plants grow by decomposing carbon dioxide into carbon and oxygen by photosynthesis, immobilizing carbon as a carbohydrate in the body, and decomposing and releasing carbon as carbon dioxide when breathing. Therefore, although the carbon fixation exceeds the carbon release in the growth period, there is a problem that the carbon fixation amount decreases and the carbon dioxide absorption amount decreases in the mature period. In addition to the fact that the plant chloroplasts die off in a high temperature environment, the plant must have an atmospheric carbon dioxide concentration of 0.03% and an environment with a low light source at night. It has become. Therefore, there is an urgent need to establish a revolutionary carbon dioxide reduction method that does not depend on natural ecosystems.
二酸化炭素の削減技術の一つとして、二酸化炭素を酸素欠乏マグネタイト(Fe4-δ)に接触させて炭素を形成せしめる方法が知られている(非特許文献1)。該方法を使用すれば、約300℃の温度でほぼ100%の効率で二酸化炭素を炭素に還元することができる。該方法を応用して二酸化炭素を削減する方法として、例えば、特許文献1には、300℃から400℃の間の温度に保持されたフェライトを内蔵した反応炉中に二酸化炭素と水素とを同時に供給することにより二酸化炭素を炭素に還元する二酸化炭素の変換方法が開示されている。該方法においては、複数の反応槽を利用して、ある反応槽で二酸化炭素の炭素への変換を実施し、一方、他の反応槽で炭素のメタンへの変換を実施して、適当な時期にこれらの反応層の役割を切り替えるか、あるいは、これらの反応層の役割を切り替えずに、反応槽間でフェライトを移送して、連続的な運転を可能にするものである。しかし、このように複数の反応槽を使用することから装置が複雑かつ大規模になり設備のコストの高騰を招く。また、二酸化炭素からメタンへの連続的な変換が行われない等の欠点がある。 As one of the carbon dioxide reduction techniques, a method is known in which carbon is formed by contacting carbon dioxide with oxygen-deficient magnetite (Fe 3 O 4-δ ) (Non-patent Document 1). Using this method, carbon dioxide can be reduced to carbon at a temperature of about 300 ° C. with nearly 100% efficiency. As a method of reducing carbon dioxide by applying this method, for example, Patent Document 1 discloses that carbon dioxide and hydrogen are simultaneously contained in a reactor containing a ferrite held at a temperature between 300 ° C. and 400 ° C. Disclosed is a carbon dioxide conversion method for reducing carbon dioxide to carbon by supplying it. In this method, conversion of carbon dioxide to carbon is performed in a certain reaction tank using a plurality of reaction tanks, while conversion of carbon to methane is performed in another reaction tank at an appropriate time. The roles of these reaction layers are switched, or the ferrite is transferred between reaction tanks without switching the roles of these reaction layers, thereby enabling continuous operation. However, since a plurality of reaction vessels are used in this way, the apparatus becomes complicated and large-scale, and the cost of the equipment increases. In addition, there is a drawback that continuous conversion from carbon dioxide to methane is not performed.
また、特許文献2には、二酸化炭素含有の排ガスから炭素を回収する炭素回収装置において、粒子状の酸素欠損型マグネタイトと排ガスとを接触させ、酸素欠損型マグネタイトと二酸化炭素との化学反応によって粒子状のマグネタイト及び炭素を生成する反応室と、前記反応室で生成されたマグネタイト及び炭素を含む混合物のうち、マグネタイトを磁力選別によって分離除去して炭素を含有する非磁性物を回収する磁選手段と、を備える炭素回収装置が開示されている。しかし、複数の反応塔、磁力選別器、回収装置等を備えなければならず、必然的に大規模とならざるを得ず設備のコストの高騰を招く。また、エネルギー収支及び回収した炭素の利用法が不明である。 Patent Document 2 discloses that in a carbon recovery apparatus that recovers carbon from a carbon dioxide-containing exhaust gas, particulate oxygen-deficient magnetite and exhaust gas are brought into contact with each other, and particles are formed by a chemical reaction between the oxygen-deficient magnetite and carbon dioxide. And a magnetic separation means for recovering a non-magnetic substance containing carbon by separating and removing magnetite by magnetic separation from a mixture containing magnetite and carbon produced in the reaction chamber. , A carbon recovery device is disclosed. However, a plurality of reaction towers, a magnetic separator, a recovery device, and the like must be provided, which inevitably have to be large-scale, resulting in an increase in equipment costs. In addition, the energy balance and how to use the recovered carbon are unknown.
特開平5-193920号公報Japanese Patent Laid-Open No. 5-193920 特開2009-249247号公報JP 2009-249247 A
本発明は、コンパクトであり、従って、エネルギー効率がよく、かつ、設備コストが小さい、二酸化炭素からメタンを製造する新規な装置を提供するものである。 The present invention provides a novel apparatus for producing methane from carbon dioxide that is compact and therefore energy efficient and has low equipment costs.
本発明者らは、地球温暖化の主原因と考えられている二酸化炭素を削減する手段として、二酸化炭素を酸素欠乏フェライト、例えば、酸素欠乏マグネタイトに接触させて、二酸化炭素から炭素を形成し、得られた炭素を水素と反応させてメタンを製造する方法が実現化していないのは、現在に至るまで、該方法を実施するための効率的な装置が完成されていないためと考え、該装置を完成すべく種々の検討を試みた。その結果、該装置において、下記所定の回転式構造の装置を採用すれば、装置がコンパクトになるのみならず、酸素欠乏フェライト、例えば、酸素欠乏マグネタイトを効率よく循環使用でき、かつ生成した炭素を効率よくメタンに転換することができて、上記の課題を解決し得ることを見出し、本発明を完成するに至った。 As a means of reducing carbon dioxide, which is considered to be the main cause of global warming, the present inventors contact carbon dioxide with oxygen-deficient ferrite, for example, oxygen-deficient magnetite, to form carbon from carbon dioxide, The reason why a method for producing methane by reacting the obtained carbon with hydrogen has not been realized is that, until now, an efficient device for carrying out the method has not been completed. Various studies were attempted to complete the project. As a result, if the apparatus having the predetermined rotary structure described below is adopted in the apparatus, the apparatus is not only compact, but also oxygen-deficient ferrite, for example, oxygen-deficient magnetite can be efficiently circulated and produced carbon can be used. It discovered that it could convert into methane efficiently and could solve said subject, and came to complete this invention.
即ち、本発明は、
(1)二酸化炭素を酸素欠乏フェライト(AFe4-δ、ここで、Aは、Fe、Mn、Co、Ni、Cu、Zn、Sr及びBaより成る群から選ばれる)に接触させて炭素を形成し、次いで、得られた炭素を水素と反応させてメタンを製造する、二酸化炭素からメタンを製造する装置であって、円柱又は多角柱の形状を有する反応室を備え、該円柱又は多角柱の形状を有する反応室中に、該反応室の中心から放射状に、互いに隔離されたn個(ここで、nは2以上の整数を示す)の反応室ブロックを有し、該n個の反応室ブロックには酸素欠乏フェライト(AFe4-δ、ここで、Aは上記と同じである)乃至フェライト(AFe、ここで、Aは上記と同じである)が充填されており、かつ、該n個の反応室ブロックを、該円柱又は多角柱の形状を有する反応室の中心を軸に回転する手段を備え、かつ、回転方向における1個以上の位置において、該n個の反応室ブロックへ、順次、二酸化炭素を導入する手段、及び、該二酸化炭素が導入された後の反応室ブロックの温度を250~800℃に保持する手段を備え、かつ、該二酸化炭素を導入する手段の下流側における他の1個以上の位置において、該n個の反応室ブロックへ、順次、水素を導入する手段、及び、該水素が導入された後の反応室ブロックの温度を500~800℃に保持する手段を備え、並びに、該n個の反応室ブロックから、製造されたメタン及び水を取り出す手段を備え、ここで、該n個の反応室ブロックが回転され、上記の酸素欠乏フェライト(AFe4-δ)は、二酸化炭素の導入に伴って、酸素欠乏フェライト(AFe4-δ)からフェライト(AFe)乃至酸素欠乏フェライト(AFe4-δ’、ここで、δ’<δであり、Aは上記と同じである)へと変化して炭素を形成し、続く水素の導入に伴って、再び、酸素欠乏フェライト(AFe4-δ)へと変化すると共にメタン及び水を形成し、次いで、該メタン及び水が取り出された後、再び、二酸化炭素が導入されて上記変化を繰り返すところの、二酸化炭素からメタンを製造する装置である。
That is, the present invention
(1) Carbon dioxide is brought into contact with oxygen-deficient ferrite (AFe 2 O 4-δ , where A is selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr, and Ba) to form carbon. And then reacting the obtained carbon with hydrogen to produce methane, which is an apparatus for producing methane from carbon dioxide, comprising a reaction chamber having a cylindrical or polygonal column shape, In a reaction chamber having a prismatic shape, there are n reaction chamber blocks (n represents an integer of 2 or more) separated from each other radially from the center of the reaction chamber. The reaction chamber block is filled with oxygen-deficient ferrite (AFe 2 O 4-δ , where A is the same as above) to ferrite (AFe 2 O 4 , where A is the same as above). And the n reaction chamber blocks , Means for rotating around the center of the reaction chamber having the shape of the cylinder or polygonal column, and introducing carbon dioxide sequentially into the n reaction chamber blocks at one or more positions in the rotation direction. And means for maintaining the temperature of the reaction chamber block after introduction of the carbon dioxide at 250 to 800 ° C., and one or more other downstream of the means for introducing the carbon dioxide And at the position, means for sequentially introducing hydrogen into the n reaction chamber blocks, and means for maintaining the temperature of the reaction chamber block after the introduction of hydrogen at 500 to 800 ° C., and Means for removing the produced methane and water from the n reaction chamber blocks, wherein the n reaction chamber blocks are rotated and the oxygen-deficient ferrite (AFe 2 O 4-δ ) carbon With the introduction, ferrite oxygen deficient ferrite (AFe 2 O 4-δ) (AFe 2 O 4) to anoxia ferrite (AFe 2 O 4-δ ' , wherein, [delta]'<a [delta], A is the To form carbon, and with the subsequent introduction of hydrogen, it again changes to oxygen-deficient ferrite (AFe 2 O 4-δ ) and forms methane and water, An apparatus for producing methane from carbon dioxide in which carbon dioxide is introduced again and the above changes are repeated after the methane and water are taken out.
好ましい態様として、
(2)上記の酸素欠乏フェライト(AFe4-δ及びAFe4-δ’)及びフェライト(AFe)が、夫々、酸素欠乏マグネタイト(Fe4-δ及びFe4-δ’)及びマグネタイト(Fe)である、上記(1)記載の二酸化炭素からメタンを製造する装置、
(3)上記のn個の反応室ブロックが、反応室の中心部分を除く外側の部分にドーナツ状に配列されている、上記(1)又は(2)記載の二酸化炭素からメタンを製造する装置、
(4)上記の二酸化炭素が導入された後の反応室ブロックの温度を保持する手段が、該温度を300~400℃に保持する手段である、上記(1)~(3)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(5)上記の水素が導入された後の反応室ブロックの温度を保持する手段が、該温度を600~700℃に保持する手段である、上記(1)~(4)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(6)上記の二酸化炭素を導入する手段が、1~3個の位置に備えられている、上記(1)~(5)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(7)上記の二酸化炭素を導入する手段が、1~2個の位置に備えられている、上記(1)~(5)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(8)上記の二酸化炭素を導入する手段が、1個の位置に備えられている、上記(1)~(5)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(9)上記の水素を導入する手段が、1~3個の位置に備えられている、上記(1)~(8)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(10)上記の水素を導入する手段が、1~2個の位置に備えられている、上記(1)~(8)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(11)上記の水素を導入する手段が、1個の位置に備えられている、上記(1)~(8)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(12)上記のn個の反応室ブロックの数が3~20である、上記(1)~(11)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(13)上記のn個の反応室ブロックの数が5~15である、上記(1)~(11)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(14)上記のn個の反応室ブロックの数が5~10である、上記(1)~(11)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(15) 該n個の反応室ブロックが、該n個の反応室ブロックから、未反応の二酸化炭素を取り出す手段を備え、ここで、該未反応の二酸化炭素が、水素導入前に該n個の反応室ブロックから取り出される、上記(1)~(14)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(16)上記のn個の反応室ブロックに充填されている酸素欠乏フェライト(AFe4-δ)乃至フェライト(AFe)が、ハニカム担体に施与されて充填されている、上記(1)~(15)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(17)上記のハニカム担体がセラミックスで形成されている、上記(16)記載の二酸化炭素からメタンを製造する装置、
(18)上記の二酸化炭素が、排ガス又は大気中に存在する二酸化炭素である、上記(1)~(17)のいずれか一つに記載の二酸化炭素からメタンを製造する装置、
(19)燃焼炉及び加熱炉から排出される排ガス中に存在する二酸化炭素、並びに、大気中に存在する二酸化炭素のいずれか一つ以上を処理するための、上記(1)~(18)のいずれか一つに記載の二酸化炭素からメタンを製造する装置
を挙げることができる。
As a preferred embodiment,
(2) The above oxygen-deficient ferrite (AFe 2 O 4-δ and AFe 2 O 4-δ ′ ) and ferrite (AFe 2 O 4 ) are converted into oxygen-deficient magnetite (Fe 3 O 4-δ and Fe 3 O, respectively). 4-δ ′ ) and magnetite (Fe 3 O 4 ), an apparatus for producing methane from carbon dioxide according to (1) above,
(3) The apparatus for producing methane from carbon dioxide as described in (1) or (2) above, wherein the n reaction chamber blocks are arranged in a donut shape on the outer portion excluding the central portion of the reaction chamber ,
(4) Any one of the above (1) to (3), wherein the means for maintaining the temperature of the reaction chamber block after the introduction of carbon dioxide is means for maintaining the temperature at 300 to 400 ° C. An apparatus for producing methane from carbon dioxide,
(5) Any one of the above (1) to (4), wherein the means for maintaining the temperature of the reaction chamber block after the introduction of hydrogen is a means for maintaining the temperature at 600 to 700 ° C. An apparatus for producing methane from carbon dioxide as described in
(6) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at 1 to 3 positions,
(7) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at one or two positions,
(8) The apparatus for producing methane from carbon dioxide according to any one of (1) to (5), wherein the means for introducing carbon dioxide is provided at one position,
(9) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at 1 to 3 positions,
(10) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at one or two positions,
(11) The apparatus for producing methane from carbon dioxide according to any one of (1) to (8), wherein the means for introducing hydrogen is provided at one position,
(12) The apparatus for producing methane from carbon dioxide according to any one of (1) to (11), wherein the number of the n reaction chamber blocks is 3 to 20,
(13) The apparatus for producing methane from carbon dioxide according to any one of (1) to (11) above, wherein the number of the n reaction chamber blocks is 5 to 15,
(14) The apparatus for producing methane from carbon dioxide according to any one of (1) to (11), wherein the number of the n reaction chamber blocks is 5 to 10,
(15) The n reaction chamber blocks include means for taking out unreacted carbon dioxide from the n reaction chamber blocks, wherein the unreacted carbon dioxide is added to the n reaction chamber blocks before hydrogen introduction. An apparatus for producing methane from carbon dioxide according to any one of (1) to (14), which is taken out from the reaction chamber block of
(16) The oxygen-deficient ferrite (AFe 2 O 4-δ ) to ferrite (AFe 2 O 4 ) filled in the n reaction chamber blocks are applied to the honeycomb carrier and filled. An apparatus for producing methane from carbon dioxide according to any one of (1) to (15),
(17) The apparatus for producing methane from carbon dioxide according to the above (16), wherein the honeycomb carrier is formed of ceramics.
(18) The apparatus for producing methane from carbon dioxide according to any one of (1) to (17) above, wherein the carbon dioxide is carbon dioxide present in exhaust gas or in the atmosphere,
(19) The above (1) to (18) for treating any one or more of carbon dioxide present in the exhaust gas discharged from the combustion furnace and the heating furnace and carbon dioxide present in the atmosphere The apparatus which manufactures methane from the carbon dioxide as described in any one can be mentioned.
本発明の装置は、円柱又は多角柱の形状を有する反応室を備え、その中に放射状に、互いに隔離されたn個の反応室ブロックを有しており、該n個の反応室ブロックの夫々が1回転する間に、各反応室ブロック内で二酸化炭素からメタンへの転換反応が実行されて、該サイクルが繰り返される。それ故、本発明の、二酸化炭素からメタンを製造する装置はコンパクトであり、従って、エネルギー効率がよく、かつ、設備コストが小さい。本発明の装置によれば、化石燃料を燃焼することにより排出される排ガス中に存在する二酸化炭素、及び、大気中に滞留する二酸化炭素を、炭素と酸素とに分離することができ、かつ、該炭素を使用してメタンを製造することから、これらの二酸化炭素を削減して、地球温暖化防止に貢献することができる。 The apparatus of the present invention includes a reaction chamber having a cylindrical or polygonal column shape, and includes therein n reaction chamber blocks radially separated from each other, and each of the n reaction chamber blocks. During one rotation, the conversion reaction from carbon dioxide to methane is carried out in each reaction chamber block, and the cycle is repeated. Therefore, the apparatus for producing methane from carbon dioxide according to the present invention is compact, and therefore energy efficient and equipment costs are low. According to the apparatus of the present invention, carbon dioxide present in exhaust gas discharged by burning fossil fuel and carbon dioxide staying in the atmosphere can be separated into carbon and oxygen, and Since methane is produced using the carbon, it is possible to reduce these carbon dioxides and contribute to the prevention of global warming.
図1は、本発明の装置の一実施態様を示した説明図である。FIG. 1 is an explanatory view showing an embodiment of the apparatus of the present invention. 図2は、図1に示した装置の概略的な平面図である。FIG. 2 is a schematic plan view of the apparatus shown in FIG. 図3は、図1に示した装置の概略的な立面図である。FIG. 3 is a schematic elevational view of the apparatus shown in FIG. 図4は、反応室ブロック内に充填された酸素欠乏マグネタイト乃至マグネタイトの状態を示した概略図である。FIG. 4 is a schematic view showing a state of oxygen-deficient magnetite to magnetite filled in the reaction chamber block. 図5は、生成したメタンを水素に転換して再使用する装置を含む、本発明の装置の一実施態様を示した説明図である。FIG. 5 is an explanatory view showing an embodiment of the apparatus of the present invention including an apparatus for converting the produced methane into hydrogen and reusing it. 図6は、産業施設からの排ガス中に含まれる二酸化炭素又は大気中に含まれる二酸化炭素を、本発明の装置を使用して処理する際の一実施態様を示した説明図である。FIG. 6 is an explanatory view showing an embodiment when carbon dioxide contained in exhaust gas from an industrial facility or carbon dioxide contained in the atmosphere is treated using the apparatus of the present invention.
本発明の装置は、二酸化炭素を酸素欠乏フェライト(AFe4-δ)に接触させることにより、二酸化炭素中の酸素を酸素欠乏フェライト(AFe4-δ)に結合せしめて、酸素欠乏フェライト(AFe4-δ)をフェライト(AFe)乃至酸素欠乏フェライト(AFe4-δ’、ここで、δ’<δである)へと変化させ、これにより、二酸化炭素から炭素を分離して、次いで、得られた炭素を水素と反応させてメタンを製造する、二酸化炭素からメタンを製造する装置である。ここで、Aは、2価のイオンであり、好ましくは、Fe、Mn、Co、Ni、Cu、Zn、Sr及びBaより成る群から選ばれる。酸素欠乏フェライト(AFe4-δ及びAFe4-δ’)並びにフェライト(AFe)は、いずれも、とりわけ、AがFeであるところの酸素欠乏マグネタイト(Fe4-δ及びFe4-δ’)並びにマグネタイト(Fe)であることが好ましい。ここで、二酸化炭素を酸素欠乏フェライト(AFe4-δ)、とりわけ、酸素欠乏マグネタイト(Fe4-δ)に接触させて、二酸化炭素から炭素を分離することは公知であり、例えば、上記の特許文献2及び非特許文献1等に記載されている。また、上記のようにして形成された炭素を水素と反応させてメタンを製造することも公知であり、例えば、上記の特許文献1等に記載されている。本発明において、二酸化炭素とは、純粋な二酸化炭素のみならず、二酸化炭素を含むガス、例えば、燃焼炉及び加熱炉等の産業施設から排出される二酸化炭素を含む排ガス、車両、例えば、自動車等のエンジンから排出される二酸化炭素を含む排ガス、滞留二酸化炭素を含む大気等を言う。もちろん、これらの二酸化炭素を含むガスを本発明の装置で処理するに際しては、ガス中の二酸化炭素を予め濃縮して、二酸化炭素濃度を高めた後に処理することもできる。酸素欠乏フェライトは公知の物質であり、一般式AFe4-δで示される酸化鉄である。また、好ましい態様である酸素欠乏マグネタイトも公知の物質であり、一般式Fe4-δで示される酸化鉄である。これらの製造方法も公知であり、酸素欠乏マグネタイトを例にとれば、例えば、マグネタイト(Fe)を水素と反応させて、鉄に結合した酸素の一部を水として取り去ることにより製造し得る。本発明においては、酸素欠乏フェライト(AFe4-δ)、例えば、酸素欠乏マグネタイト(Fe4-δ)は、二酸化炭素と反応してマグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)へと変化し、続いて、該マグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)が水素と反応して、再び、酸素欠乏マグネタイト(Fe4-δ)へと変化する。この間、二酸化炭素から分離された炭素は水素と反応してメタンとして取り出され、一方、酸素も水素と反応して水として取り出される。本発明においては、この変化が繰り返されて、酸素欠乏フェライト(AFe4-δ)、例えば、酸素欠乏マグネタイト(Fe4-δ)は循環使用され得る。また、該酸素欠乏フェライト、例えば、酸素欠乏マグネタイトは粒子状であることが好ましく、かつ中空であって表面積が大きいものがより好ましく使用される。 The apparatus of the present invention allows oxygen in carbon dioxide to be bonded to oxygen-deficient ferrite (AFe 2 O 4-δ ) by contacting carbon dioxide with oxygen-deficient ferrite (AFe 2 O 4-δ ). The ferrite (AFe 2 O 4-δ ) is changed from ferrite (AFe 2 O 4 ) to oxygen-deficient ferrite (AFe 2 O 4-δ ′ , where δ ′ <δ). This is an apparatus for producing methane from carbon dioxide, in which carbon is separated from carbon dioxide and then the obtained carbon is reacted with hydrogen to produce methane. Here, A is a divalent ion, and is preferably selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr and Ba. Oxygen-deficient ferrites (AFe 2 O 4-δ and AFe 2 O 4-δ ′ ) and ferrites (AFe 2 O 4 ) are both oxygen-deficient magnetites (Fe 3 O 4− ) where A is Fe. δ and Fe 3 O 4-δ ′ ) and magnetite (Fe 3 O 4 ) are preferred. Here, it is known to separate carbon from carbon dioxide by bringing carbon dioxide into contact with oxygen-deficient ferrite (AFe 2 O 4-δ ), particularly oxygen-deficient magnetite (Fe 3 O 4-δ ), for example, , Described in Patent Document 2 and Non-Patent Document 1 above. It is also known to produce methane by reacting the carbon formed as described above with hydrogen, and is described in, for example, the above-mentioned Patent Document 1. In the present invention, carbon dioxide is not only pure carbon dioxide but also gas containing carbon dioxide, for example, exhaust gas containing carbon dioxide discharged from industrial facilities such as combustion furnaces and heating furnaces, vehicles such as automobiles, etc. The exhaust gas containing carbon dioxide discharged from the engine, the atmosphere containing stagnant carbon dioxide, and the like. Of course, when the gas containing carbon dioxide is processed by the apparatus of the present invention, the carbon dioxide in the gas can be concentrated in advance to increase the carbon dioxide concentration. Oxygen-deficient ferrite is a known substance, and is iron oxide represented by the general formula AFe 2 O 4-δ . Further, oxygen-deficient magnetite, which is a preferred embodiment, is a known substance, and is iron oxide represented by the general formula Fe 3 O 4-δ . These production methods are also known. Taking oxygen-deficient magnetite as an example, for example, it is produced by reacting magnetite (Fe 3 O 4 ) with hydrogen and removing a part of oxygen bonded to iron as water. obtain. In the present invention, oxygen-deficient ferrite (AFe 2 O 4-δ ), for example, oxygen-deficient magnetite (Fe 3 O 4-δ ) reacts with carbon dioxide to generate magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite ( Change to Fe 3 O 4-δ ′ , where δ ′ <δ, followed by the magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4-δ ′ , where δ ′ <δ) reacts with hydrogen and changes again to oxygen-deficient magnetite (Fe 3 O 4-δ ). During this time, carbon separated from carbon dioxide reacts with hydrogen and is extracted as methane, while oxygen also reacts with hydrogen and is extracted as water. In the present invention, this change is repeated, and oxygen-deficient ferrite (AFe 2 O 4-δ ), for example, oxygen-deficient magnetite (Fe 3 O 4-δ ) can be recycled. The oxygen-deficient ferrite, for example, oxygen-deficient magnetite is preferably in the form of particles, and is more preferably hollow and has a large surface area.
本発明の装置は、円柱又は多角柱の形状を有する反応室を備えている。また、該反応室は、該円柱又は多角柱の形状を有する反応室の中心、即ち、該円柱又は多角柱の形状を有する反応室の中心軸から放射状に、側壁により互いに隔離されたn個の反応室ブロックを有している。反応室ブロックの数は、特に制限されるものではないが、上限が好ましくは20個、より好ましくは15個、更に好ましくは10個であり、下限が2個、好ましくは3個、より好ましくは4個、更に好ましくは5個である。上記上限を超えては、反応室及び反応室ブロックの作製コストが高くなり、また、一つの反応室ブロックの体積が減るため効率も悪くなる。一方、上記下限未満では、装置効率が悪くなる。該反応室ブロックは、円柱又は多角柱の形状を有する反応室の半径方向にその全長に亘って形成することもできるが、下記に説明する、本発明の装置の他の部分、例えば、メタン及び水を取り出す手段、反応室ブロックを回転する手段等との関係から、下記において詳述する図1に示されているように中心部分を除く外側の部分にドーナツ状に配列して形成することが好ましい。ここで、反応室が多角柱であるときには、該多角柱の角数と反応室ブロックの数とが同じであることが好ましい。これにより、製造コストを削減することが可能となり得る。また、反応室及び反応室ブロックの寸法は、二酸化炭素及び二酸化炭素を含むガスの処理量等に依存して、適宜定めることができる。 The apparatus of the present invention includes a reaction chamber having a cylindrical or polygonal column shape. Further, the reaction chamber has n reaction chambers having a cylindrical or polygonal column shape, that is, n pieces separated from each other by a side wall radially from the center axis of the reaction chamber having the cylindrical or polygonal column shape. Has a reaction chamber block. The number of reaction chamber blocks is not particularly limited, but the upper limit is preferably 20, more preferably 15, more preferably 10, and the lower limit is 2, preferably 3, more preferably. Four, more preferably five. If the above upper limit is exceeded, the production cost of the reaction chamber and the reaction chamber block is increased, and the volume of one reaction chamber block is reduced, so that the efficiency is also deteriorated. On the other hand, if it is less than the said lower limit, apparatus efficiency will worsen. The reaction chamber block can be formed over the entire length in the radial direction of the reaction chamber having the shape of a cylinder or a polygonal column, but other parts of the apparatus of the present invention described below, for example, methane and In view of the relationship with the means for taking out water, the means for rotating the reaction chamber block, etc., as shown in FIG. preferable. Here, when the reaction chamber is a polygonal column, the number of corners of the polygonal column and the number of reaction chamber blocks are preferably the same. Thereby, it may be possible to reduce manufacturing costs. The dimensions of the reaction chamber and the reaction chamber block can be determined as appropriate depending on the amount of carbon dioxide and the amount of gas containing carbon dioxide.
上記n個の反応室ブロックの夫々には、酸素欠乏フェライト(AFe4-δ)乃至フェライト(AFe)、例えば、酸素欠乏マグネタイト(Fe4-δ)乃至マグネタイト(Fe)が充填されている。該酸素欠乏フェライト乃至フェライト、例えば、酸素欠乏マグネタイト乃至マグネタイトは、導入された二酸化炭素及び水素と十分に接触して反応し得る状態で充填されていればよい。好ましくは、酸素欠乏フェライト乃至フェライト、例えば、酸素欠乏マグネタイト乃至マグネタイトとしては、ハニカム担体に、例えば、ウォッシュコートした後、乾燥し、必要に応じて焼成したものを使用することができる。ハニカム担体としては、好ましくはセラミックス製のものが使用される。とりわけ、コージェライト、ムライト、α-アルミナ、ジルコニア、チタン、リン酸チタン、アルミニウムチタネート、ペタライト、スポジュメン、アルミノシリケート、ケイ酸マグネシウム等で作成されたハニカム担体が好ましい。もちろん、酸素欠乏フェライト乃至フェライト、例えば、酸素欠乏マグネタイト乃至マグネタイトは、粒子状又は塊状でそのまま充填することも可能である。上記のように酸素欠乏フェライト(AFe4-δ)、例えば、酸素欠乏マグネタイト(Fe4-δ)は、二酸化炭素の導入に伴って、フェライト(AFe)乃至酸素欠乏フェライト(AFe4-δ’、ここで、δ’<δである)、例えば、マグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)へと変化し、続く水素の導入に伴って、再び、酸素欠乏フェライト(AFe4-δ)、例えば、酸素欠乏マグネタイト(Fe4-δ)へと変化して循環使用される。 Each of the n reaction chamber blocks includes oxygen-deficient ferrite (AFe 2 O 4-δ ) to ferrite (AFe 2 O 4 ), for example, oxygen-deficient magnetite (Fe 3 O 4-δ ) to magnetite (Fe 3 O 4 ) is filled. The oxygen-deficient ferrite or ferrite, for example, the oxygen-deficient magnetite or magnetite may be filled in a state in which the oxygen-deficient ferrite or ferrite can sufficiently react with the introduced carbon dioxide and hydrogen. Preferably, as the oxygen-deficient ferrite or ferrite, for example, the oxygen-deficient magnetite or magnetite, for example, a honeycomb carrier that has been subjected to wash coating, dried, and fired as necessary can be used. As the honeycomb carrier, a ceramic carrier is preferably used. In particular, a honeycomb carrier made of cordierite, mullite, α-alumina, zirconia, titanium, titanium phosphate, aluminum titanate, petalite, spodumene, aluminosilicate, magnesium silicate or the like is preferable. Of course, oxygen-deficient ferrite or ferrite, for example, oxygen-deficient magnetite or magnetite, can be filled in the form of particles or lumps. As described above, an oxygen-deficient ferrite (AFe 2 O 4-δ ), for example, an oxygen-deficient magnetite (Fe 3 O 4-δ ) is converted from ferrite (AFe 2 O 4 ) to oxygen-deficient ferrite with the introduction of carbon dioxide. (AFe 2 O 4-δ ′ , where δ ′ <δ), for example, magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4-δ ′ , where δ ′ <δ With the subsequent introduction of hydrogen, it is again recycled into oxygen-deficient ferrite (AFe 2 O 4-δ ), for example, oxygen-deficient magnetite (Fe 3 O 4-δ ). The
本発明の装置は、上記のn個の反応室ブロックを、円柱又は多角柱の反応室の中心を軸に回転する手段を備えている。これにより、n個の反応室ブロックを円周方向に回転して、二酸化炭素を導入する手段により、順次、各反応室ブロックに二酸化炭素を導入し、そして、続いて、水素を導入する手段により、順次、各反応室ブロックに水素を導入して、二酸化炭素からメタンを製造する1サイクルを完結し、このサイクルを繰り返すことができる。ここで、二酸化炭素を導入する手段及び水素を導入する手段は、通常、反応装置に使用されている手段を採用することができる。例えば、二酸化炭素又は水素の供給配管及びそれに接続された制御弁と、各反応室ブロックに設置されたガス導入弁等から構成されている。また、本発明の装置は、二酸化炭素が導入された後の反応室ブロックの温度を250~800℃、好ましくは300~400℃に保持する手段、及び、水素が導入された後の反応室ブロックの温度を500~800℃、好ましくは600~700℃に保持する手段を備えている。これらの手段としては、上記同様に、通常、反応装置に使用されている手段を採用することができる。例えば、電気的に加熱、保温する装置、熱媒又は冷媒等で加熱、保温、冷却する装置等を使用することができる。 The apparatus of the present invention comprises means for rotating the n reaction chamber blocks described above around the center of a cylindrical or polygonal column reaction chamber. Thus, by rotating the n reaction chamber blocks in the circumferential direction, carbon dioxide is sequentially introduced into the reaction chamber blocks by means for introducing carbon dioxide, and subsequently, by means for introducing hydrogen. In turn, hydrogen can be introduced into each reaction chamber block to complete one cycle of producing methane from carbon dioxide, and this cycle can be repeated. Here, as the means for introducing carbon dioxide and the means for introducing hydrogen, means usually used in a reaction apparatus can be adopted. For example, it is composed of a carbon dioxide or hydrogen supply pipe, a control valve connected thereto, a gas introduction valve installed in each reaction chamber block, and the like. The apparatus of the present invention also includes means for maintaining the temperature of the reaction chamber block after carbon dioxide is introduced at 250 to 800 ° C., preferably 300 to 400 ° C., and the reaction chamber block after hydrogen is introduced. Means for maintaining the temperature at 500 to 800 ° C., preferably 600 to 700 ° C. As these means, the means usually used in the reaction apparatus can be adopted as described above. For example, a device that electrically heats and keeps heat, a device that heats, keeps and cools with a heat medium or a refrigerant, and the like can be used.
本発明の装置において、二酸化炭素は、最終的にメタンと水とに転換される。生成したメタンと水は、メタン及び水を取り出す手段により反応室ブロックから排出される。メタン及び水を排出するに際しては、反応室ブロックを、好ましくは10~50℃、より好ましくは常温に冷却して、メタンを気体状態で取り出し、一方、水を液体状態で取り出すことができる。また、反応室ブロックを冷却することなく、メタン及び水を全て気体状態で取り出し、別途、冷却して、これらを分離することもできる。また、二酸化炭素として、二酸化炭素を含むガスを使用した際には、メタンと共に該ガスに含まれていた他のガスを含む故、必要に応じて、これらの他のガスを分離することもできる。もちろん、未反応の二酸化炭素も分離して、再度、本発明の装置を使用して処理することができる。製造されたメタンは種々の用途に使用することができる。また、分解して再度水素とし、本発明の装置において循環使用することもできる。 In the apparatus of the present invention, carbon dioxide is finally converted into methane and water. The produced methane and water are discharged from the reaction chamber block by means for taking out methane and water. When discharging methane and water, the reaction chamber block is preferably cooled to 10 to 50 ° C., more preferably to room temperature, and methane can be taken out in a gaseous state while water can be taken out in a liquid state. Further, without cooling the reaction chamber block, all of methane and water can be taken out in a gas state and separately cooled to separate them. In addition, when a gas containing carbon dioxide is used as carbon dioxide, other gas contained in the gas is contained together with methane, so that these other gases can be separated if necessary. . Of course, unreacted carbon dioxide can also be separated and treated again using the apparatus of the present invention. The produced methane can be used for various applications. It can also be decomposed to hydrogen again and recycled in the apparatus of the present invention.
図1は、二酸化炭素からメタンを製造する本発明の装置の一実施態様を示した説明図である。また、図2は、図1に示した装置の概略的な平面図であり、図3は、図1に示した装置の概略的な立面図である。図3においては、水素を反応室ブロックに導入する手段のうち(4’)及び(4’’)は省略している。該実施態様において、二酸化炭素からメタンを製造する装置(A)の反応室(1)は略円柱の形状を有しており、該円柱の中心から放射状に、側壁により互いに隔離された8個の反応室ブロック(2,夫々、a~aの位置に存在している)を有している。これらの反応室ブロック(2)は、略円柱状の反応室(1)の円周に沿ってドーナツ状に配置されている。各反応室ブロック(2)には、図4に示されているように、酸素欠乏マグネタイト(Fe4-δ)乃至マグネタイト(Fe)がハニカム(8)に施与されて充填されている。各反応室ブロック(2)は、円柱形状を有する反応室(1)の中心を軸として矢印の方向(時計回り)に回転する。また、二酸化炭素からメタンを製造する装置(A)には、二酸化炭素を各反応室ブロック(2)に導入する手段(3)が1個備えられており、かつ水素を各反応室ブロック(2)に導入する手段(4,4’,4”)が3個備えられている。また、円柱形状を有する反応室(1)の中心近傍には、製造されたメタン及び水を、反応室(1)から取出す手段(5,6)が備えられている。図1に示した装置の場合には、反応室(1)の中心軸方向に面した、各反応室ブロック(2)の側壁(18)に、メタン及び水、必要により未反応の二酸化炭素等を各反応室ブロック(2)から抜出す手段(図示せず)、例えば、バルブ等が備えられており、該バルブ等により抜き出された気体状のメタン及び水等が冷却室(7)において冷却されて水を凝縮せしめて液体とし、次いで、メタン及び水を反応室(1)から取出す手段(5,6)により装置の外に取出される。 FIG. 1 is an explanatory view showing an embodiment of the apparatus of the present invention for producing methane from carbon dioxide. 2 is a schematic plan view of the apparatus shown in FIG. 1, and FIG. 3 is a schematic elevation view of the apparatus shown in FIG. In FIG. 3, among the means for introducing hydrogen into the reaction chamber block, (4 ′) and (4 ″) are omitted. In this embodiment, the reaction chamber (1) of the apparatus (A) for producing methane from carbon dioxide has a substantially cylindrical shape, and is separated from each other by eight side walls radially from the center of the cylinder. It has a reaction chamber block (2, respectively, located at positions a 1 to a 8 ). These reaction chamber blocks (2) are arranged in a donut shape along the circumference of the substantially cylindrical reaction chamber (1). As shown in FIG. 4, each reaction chamber block (2) is filled with oxygen-deficient magnetite (Fe 3 O 4-δ ) to magnetite (Fe 3 O 4 ) applied to the honeycomb (8). Has been. Each reaction chamber block (2) rotates in the direction of the arrow (clockwise) about the center of the reaction chamber (1) having a cylindrical shape as an axis. The apparatus (A) for producing methane from carbon dioxide is provided with one means (3) for introducing carbon dioxide into each reaction chamber block (2), and hydrogen is supplied to each reaction chamber block (2 ) Is provided with three means (4, 4 ′, 4 ″). In the vicinity of the center of the reaction chamber (1) having a cylindrical shape, the produced methane and water are placed in the reaction chamber ( 1) is provided with means (5, 6) for removal from the side wall (2) of each reaction chamber block (2) facing in the direction of the central axis of the reaction chamber (1). 18) is provided with means (not shown) for extracting methane, water, and unreacted carbon dioxide, if necessary, from each reaction chamber block (2), for example, a valve, and the like. Gaseous methane, water, etc. are cooled in the cooling chamber (7) to condense the water. It is made into a liquid and then taken out of the apparatus by means (5, 6) for taking out methane and water from the reaction chamber (1).
以下、図1に基づいて、二酸化炭素からメタンを製造する本発明の装置により、二酸化炭素からメタンを製造する方法を説明する。まず、aの位置において、酸素欠乏マグネタイト(Fe4-δ)が充填された各反応室ブロック(2)に、二酸化炭素を導入する手段(3)により二酸化炭素が導入される。二酸化炭素の導入は、必要に応じてブロワ又はコンプレッサー(図示せず)を使用して行われ、反応室ブロック(2)内の圧力が好ましくは大気圧~5.0MPa、より好ましくは0.2~1.0MPa、更に好ましくは0.2~0.5MPaになるように導入される。二酸化炭素が導入された反応室ブロック(2)は、加熱手段、例えば、電気ヒーター、熱媒ジャケット等により、直ちに250~800℃、好ましくは300~400℃に加熱され、場合によっては、冷媒ジャケット等により、上記温度に冷却され、その温度で保持される。但し、燃焼炉及び加熱炉等から排出される二酸化炭素を含む排ガス等であって、既に上記温度を有するものについては、特に加熱、冷却は必要がないこともある。このように、二酸化炭素が導入されかつ所定の温度に保持されている反応室ブロック(2)は、矢印の方向(時計回り)に回転されてaの位置に移動される。このとき、aの位置に存在していた別の反応室ブロック(2)がaの位置に移動して、同様にして二酸化炭素が導入される。同様にして、反応室ブロック(2)への二酸化炭素の導入が順次行われる。二酸化炭素が導入されかつ所定温度に保持されている反応室ブロック(2)は、a及びaの位置において、下記の反応式(I)に従って、二酸化炭素と酸素欠乏マグネタイト(Fe4-δ)とが反応して、酸素欠乏マグネタイト(Fe4-δ)は、二酸化炭素中の酸素を受け取ってマグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)へと変化し、マグネタイト等の表面には、二酸化炭素から分離された炭素が析出する。該反応の速度は速く、反応の進行は反応室ブロック(2)内の圧力の低下を監視することにより把握することができる。該反応時間は、二酸化炭素及び二酸化炭素を含むガスの処理量、二酸化炭素濃度等を勘案して、適宜定めることができる。また、反応室ブロック(2)がaの位置に到達したとき、反応室ブロック(2)内に存在するガス、即ち、未反応の二酸化炭素、本発明の装置に供給されるガス中に含まれる二酸化炭素以外のガスを、水素ガスを導入する前に反応室ブロック(2)から排出することもできる。該排出は、各反応室ブロック(2)に備えられた未反応の二酸化炭素を取り出す手段により実施することができる。また、該未反応の二酸化炭素を取り出す手段は、各反応室ブロック(2)に備えられたメタン及び水を取り出す手段と併用することができる。この場合、各反応室反応室ブロック(2)の側壁(18)に備えられたバルブ等によりガスが抜き出される。
Fe4-δ + CO ―――→ Fe4 + C    (I)
Hereinafter, a method for producing methane from carbon dioxide using the apparatus of the present invention for producing methane from carbon dioxide will be described with reference to FIG. First, carbon dioxide is introduced by means (3) for introducing carbon dioxide into each reaction chamber block (2) filled with oxygen-deficient magnetite (Fe 3 O 4-δ ) at position a 1 . The introduction of carbon dioxide is performed using a blower or a compressor (not shown) as necessary, and the pressure in the reaction chamber block (2) is preferably from atmospheric pressure to 5.0 MPa, more preferably 0.2 MPa. It is introduced so that the pressure becomes -1.0 MPa, more preferably 0.2-0.5 MPa. The reaction chamber block (2) into which carbon dioxide has been introduced is immediately heated to 250 to 800 ° C., preferably 300 to 400 ° C., by a heating means such as an electric heater or a heat medium jacket. For example, the temperature is cooled to the above temperature and maintained at that temperature. However, for exhaust gas containing carbon dioxide exhausted from a combustion furnace, a heating furnace or the like that already has the above temperature, heating or cooling may not be required. Thus, the reaction chamber block carbon dioxide is held is introduced and at a predetermined temperature (2) is moved to rotate in the direction of the arrow (clockwise) to the position of a 2. At this time, another reaction chamber block that existed at the position of a 8 (2) is moved to the position of a 1, carbon dioxide is introduced in a similar manner. Similarly, introduction of carbon dioxide into the reaction chamber block (2) is sequentially performed. The reaction chamber block (2) into which carbon dioxide has been introduced and maintained at a predetermined temperature has carbon dioxide and oxygen-deficient magnetite (Fe 3 O 4 ) at the positions a 2 and a 3 according to the following reaction formula (I). ) reacts with oxygen-deficient magnetite (Fe 3 O 4-δ ), which receives oxygen in carbon dioxide to generate magnetite (Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4-δ ′) , Here, δ ′ <δ), and carbon separated from carbon dioxide is deposited on the surface of magnetite or the like. The speed of the reaction is fast, and the progress of the reaction can be grasped by monitoring the pressure drop in the reaction chamber block (2). The reaction time can be appropriately determined in consideration of the amount of carbon dioxide and a gas containing carbon dioxide, the concentration of carbon dioxide, and the like. Further, when the reaction chamber block (2) has reached the position of a 3, a gas present in the reaction chamber block (2) in, i.e., contained in the gas supplied carbon dioxide unreacted in the apparatus of the present invention Gas other than carbon dioxide can be discharged from the reaction chamber block (2) before introducing hydrogen gas. The discharge can be carried out by means of taking out unreacted carbon dioxide provided in each reaction chamber block (2). The means for taking out the unreacted carbon dioxide can be used in combination with the means for taking out methane and water provided in each reaction chamber block (2). In this case, gas is extracted by a valve or the like provided on the side wall (18) of each reaction chamber reaction chamber block (2).
Fe 3 O 4-δ + CO 2 ----> Fe 3 O 4 + C (I)
上記の反応終了後、反応室ブロック(2)は、aの位置に移動されて、この位置において、水素を導入する手段(4)により、該反応室ブロック(2)に水素が導入される。水素の導入は、必要に応じてブロワ又はコンプレッサー(図示せず)を使用して行われ、反応室ブロック(2)内の圧力が、好ましくは大気圧~5.0MPa、より好ましくは0.2~1.0MPa、更に好ましくは0.2~0.5MPaになるように導入される。水素が導入された反応室ブロック(2)は、加熱手段、例えば、電気ヒーター、熱媒ジャケット等により、直ちに500~800℃、好ましくは600~700℃に加熱され、場合によっては、冷媒ジャケット等により、冷却されて、その温度で保持される。水素が導入されかつ所定温度に保持されている反応室ブロック(2)は、下記の反応式(II)及び(III)に従って、炭素と水素とが反応してメタンを生成し、一方、マグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)中の酸素と水素とが反応して水を生成し、マグネタイト(Fe)乃至酸素欠乏マグネタイト(Fe4-δ’、ここで、δ’<δである)は酸素を失って酸素欠乏マグネタイト(Fe4-δ)へと変化する。この実施態様においては、該反応を十分に行わせるために、a及びaの位置において更に水素を導入する。このようにして水素が導入されかつ所定温度に保持されている反応室ブロック(2)は、反応を完結させるためにaの位置において更に保持される。該反応時間は、上記の二酸化炭素を酸素欠乏マグネタイト(Fe4-δ)と反応させる時間との関係を考慮して、適宜定めることができる。
C + 2H ―――→ CH    (II)
Fe4 + XH ―――→ Fe4-δ + XHO    (III)
After the above reaction was completed, the reaction chamber block (2) is transferred to a position of a 4, in this position, the means for introducing hydrogen (4), hydrogen is introduced into the reaction chamber block (2) . The introduction of hydrogen is performed using a blower or a compressor (not shown) as necessary, and the pressure in the reaction chamber block (2) is preferably from atmospheric pressure to 5.0 MPa, more preferably 0.2 MPa. It is introduced so that the pressure becomes -1.0 MPa, more preferably 0.2-0.5 MPa. The reaction chamber block (2) into which hydrogen has been introduced is immediately heated to 500 to 800 ° C., preferably 600 to 700 ° C., by a heating means such as an electric heater or a heat medium jacket. To cool and hold at that temperature. In the reaction chamber block (2) in which hydrogen is introduced and maintained at a predetermined temperature, carbon and hydrogen react to generate methane according to the following reaction formulas (II) and (III), while magnetite ( Fe 3 O 4 ) to oxygen-deficient magnetite (Fe 3 O 4-δ ′ , where δ ′ <δ) reacts with oxygen to generate water to generate magnetite (Fe 3 O 4 ). Or oxygen-deficient magnetite (Fe 3 O 4-δ ′ , where δ ′ <δ) loses oxygen and changes to oxygen-deficient magnetite (Fe 3 O 4-δ ). In this embodiment, more hydrogen is introduced at positions a 5 and a 6 in order for the reaction to take place sufficiently. Thus hydrogen is introduced and the reaction chamber block being maintained at a predetermined temperature (2) is further held at the position of a 7 to complete the reaction. The reaction time can be appropriately determined in consideration of the relationship with the time for reacting carbon dioxide with oxygen-deficient magnetite (Fe 3 O 4-δ ).
C + 2H 2 ――― → CH 4 (II)
Fe 3 O 4 + XH 2 ----> Fe 3 O 4-δ + XH 2 O (III)
上記のようにして反応された後、反応室ブロック(2)は、aの位置に移動され、この位置において、反応室(1)の中心軸方向に面した、各反応室ブロック(2)の側壁(18)に備えられたバルブ等(図示せず)により、メタン及び水等を各反応室ブロック(2)から気体状で抜出し、次いで、冷却室(7)において、例えば、常温まで冷却されて、上記の反応で生成した水は液体の状態で、水を取り出す手段(6)により反応室底部から排出される。一方、同じく上記の反応で生成したメタンは気体の状態で、メタンを取り出す手段(5)により反応室頂部から排出される。また、メタン中に存在する未反応ガス等は、反応室(1)から取り出された後に、ガス分離手段(図示せず)により分離されて、例えば、未反応の水素は本装置に戻されて循環使用される。もちろん、反応室ブロック(2)内の物質を抜出した後、冷却することなく、全て気体状態で反応室の外部に排出し、その後、冷却してメタンを含むガスと水とに分離することもできる。また、図5に示されているように生成したメタンをメタン貯留槽(9)に貯蔵し、例えば、水素製造装置(10)により再び水素に転換して、本発明の装置において使用することもできる。ここで、水素製造装置(10)において実施されるメタンから水素を製造する方法としては、公知の方法を使用することができる。このようにして生成したメタン及び水が除去され、かつ、酸素欠乏マグネタイト(Fe4-δ)に、再度、変化されたところの反応室ブロック(2)は、再び、aの位置に戻され、二酸化炭素が導入されて上記のサイクルが繰り返される。 After being reacted in the manner described above, the reaction chamber block (2) is moved to the position of a 8, in this position, facing the center axis of the reaction chamber (1), each reaction chamber blocks (2) Methane, water, and the like are extracted from each reaction chamber block (2) in a gaseous state by a valve or the like (not shown) provided on the side wall (18), and then cooled to, for example, room temperature in the cooling chamber (7) Then, the water generated by the above reaction is discharged from the bottom of the reaction chamber by means (6) for taking out water in a liquid state. On the other hand, the methane produced by the above reaction is also in a gaseous state and is discharged from the top of the reaction chamber by means (5) for taking out methane. Further, unreacted gas or the like present in methane is taken out from the reaction chamber (1) and then separated by a gas separation means (not shown). For example, unreacted hydrogen is returned to the apparatus. Used cyclically. Of course, after the substance in the reaction chamber block (2) has been extracted, it can be discharged out of the reaction chamber in a gaseous state without cooling, and then cooled and separated into methane-containing gas and water. it can. Moreover, the methane produced | generated as FIG. 5 shows is stored in a methane storage tank (9), for example, it converts into hydrogen again by a hydrogen production apparatus (10), and can also be used in the apparatus of this invention. it can. Here, as a method for producing hydrogen from methane, which is carried out in the hydrogen production apparatus (10), a known method can be used. The reaction chamber block (2) where the methane and water thus produced are removed and changed to oxygen-deficient magnetite (Fe 3 O 4-δ ) again is again at the position of a 1 . The carbon dioxide is introduced and the above cycle is repeated.
図6は、燃焼炉及び加熱炉等の産業施設から排出される排ガス中に存在する二酸化炭素、いわゆる排出二酸化炭素、並びに、大気中に存在する二酸化炭素、いわゆる滞留二酸化炭素のいずれかを、本発明の装置を使用して処理する際の一実施態様を示した説明図である。例えば、燃焼炉及び加熱炉等の産業施設から排出される排ガス(11)は、煙道(12)を通って二酸化炭素濃縮装置、例えば、アミン反応槽(13)に送られる。アミン反応槽(13)では二酸化炭素がアミン水溶液と反応されて炭酸アミンが製造される。該炭酸アミンは、配管(14)を通って二酸化炭素分離槽(15)に送られる。該二酸化炭素分離槽(15)内において、該炭酸アミンが約150℃に加熱されて、アミン水溶液と二酸化炭素とに分解される。アミン水溶液は、配管(16)を通ってアミン反応槽(13)に戻される。一方、二酸化炭素は、二酸化炭素を導入する手段(3)に接続された二酸化炭素排出配管(17)を通って、本発明の装置(A)、例えば、図1に示されている装置に導入されてメタンへと転換される。ここで、二酸化炭素濃縮装置としては、アミン等のアルカリ性溶液を使用する化学吸収法に限定されるものではなく、物理吸収法等の他の吸収法、ゼオライト、活性炭、アルミナ等の吸着剤を使用する物理吸着法、セルロースアセテート等の多孔質の高分子膜を使用する膜分離法、深冷分離法等を使用することができる。 FIG. 6 is a graph showing any one of carbon dioxide existing in exhaust gas discharged from industrial facilities such as a combustion furnace and a heating furnace, so-called exhaust carbon dioxide, and carbon dioxide existing in the atmosphere, so-called stagnant carbon dioxide. It is explanatory drawing which showed one embodiment at the time of processing using the apparatus of invention. For example, exhaust gas (11) discharged from industrial facilities such as a combustion furnace and a heating furnace is sent to a carbon dioxide concentrator, for example, an amine reaction tank (13) through a flue (12). In the amine reaction tank (13), carbon dioxide is reacted with an aqueous amine solution to produce amine carbonate. The amine carbonate is sent to the carbon dioxide separation tank (15) through the pipe (14). In the carbon dioxide separation tank (15), the amine carbonate is heated to about 150 ° C. and decomposed into an aqueous amine solution and carbon dioxide. The aqueous amine solution is returned to the amine reaction vessel (13) through the pipe (16). On the other hand, carbon dioxide is introduced into the apparatus (A) of the present invention, for example, the apparatus shown in FIG. 1, through the carbon dioxide discharge pipe (17) connected to the means (3) for introducing carbon dioxide. And converted to methane. Here, the carbon dioxide concentrator is not limited to the chemical absorption method using an alkaline solution such as amine, but uses other absorption methods such as a physical absorption method, adsorbents such as zeolite, activated carbon, and alumina. For example, a physical adsorption method, a membrane separation method using a porous polymer membrane such as cellulose acetate, a cryogenic separation method, or the like can be used.
本発明の二酸化炭素からメタンを製造する装置はコンパクトであり、従って、従来装置と比較して、エネルギー効率がよく、かつ、設備コストが小さい。それ故、地球温暖化の主原因とされている大気中に滞留する二酸化炭素の削減に積極的に利用可能であり、例えば、燃焼炉及び加熱炉等の産業施設から排出される排ガス中に含まれる二酸化炭素又は大気中に含まれる二酸化炭素の除去、及び、車両、例えば、自動車エンジンから排出される排ガス中に含まれる二酸化炭素の除去等に利用できて、今後の地球温暖化対策に大いに貢献し得るものである。 The apparatus for producing methane from carbon dioxide according to the present invention is compact, and therefore has higher energy efficiency and lower equipment costs than the conventional apparatus. Therefore, it can be actively used to reduce carbon dioxide in the atmosphere, which is the main cause of global warming. For example, it is included in exhaust gas discharged from industrial facilities such as combustion furnaces and heating furnaces. It can be used to remove carbon dioxide contained in the atmosphere or carbon dioxide contained in the atmosphere and carbon dioxide contained in exhaust gas emitted from vehicles such as automobile engines, and contributes greatly to future global warming countermeasures. It is possible.
A  二酸化炭素からメタンを製造する装置
~a 各反応室ブロックの位置
1  反応室
2  反応室ブロック
3  二酸化炭素を反応室ブロックに導入する手段
4,4’,4”  水素を反応室ブロックに導入する手段
5  メタンを反応室から取り出す手段
6  水を反応室から取り出す手段
7  冷却室
8  ハニカム
9  メタン貯留槽
10  水素製造装置
11 産業施設から排出される排ガス
12 煙道
13 アミン反応槽
14,16 配管
15 二酸化炭素分離槽
17 二酸化炭素排出配管
18 反応室の中心軸方向に面した、各反応室ブロックの側壁
A. Apparatus for producing methane from carbon dioxide a 1 to a 8 Position of each reaction chamber block 1 Reaction chamber 2 Reaction chamber block 3 Means 4 for introducing carbon dioxide into reaction chamber block 4, 4 ', 4 "Hydrogen reaction chamber block 5 means for taking out methane from the reaction chamber 6 means for taking out water from the reaction chamber 7 cooling chamber 8 honeycomb 9 methane storage tank 10 hydrogen production apparatus 11 flue gas discharged from industrial facilities 12 flue 13 amine reaction tank 14, 16 Pipe 15 Carbon dioxide separation tank 17 Carbon dioxide discharge pipe 18 Side wall of each reaction chamber block facing the central axis of the reaction chamber

Claims (19)

  1. 二酸化炭素を酸素欠乏フェライト(AFe4-δ、ここで、Aは、Fe、Mn、Co、Ni、Cu、Zn、Sr及びBaより成る群から選ばれる)に接触させて炭素を形成し、次いで、得られた炭素を水素と反応させてメタンを製造する、二酸化炭素からメタンを製造する装置であって、円柱又は多角柱の形状を有する反応室を備え、該円柱又は多角柱の形状を有する反応室中に、該反応室の中心から放射状に、互いに隔離されたn個(ここで、nは2以上の整数を示す)の反応室ブロックを有し、該n個の反応室ブロックには酸素欠乏フェライト(AFe4-δ、ここで、Aは上記と同じである)乃至フェライト(AFe、ここで、Aは上記と同じである)が充填されており、かつ、該n個の反応室ブロックを、該円柱又は多角柱の形状を有する反応室の中心を軸に回転する手段を備え、かつ、回転方向における1個以上の位置において、該n個の反応室ブロックへ、順次、二酸化炭素を導入する手段、及び、該二酸化炭素が導入された後の反応室ブロックの温度を250~800℃に保持する手段を備え、かつ、該二酸化炭素を導入する手段の下流側における他の1個以上の位置において、該n個の反応室ブロックへ、順次、水素を導入する手段、及び、該水素が導入された後の反応室ブロックの温度を500~800℃に保持する手段を備え、並びに、該n個の反応室ブロックから、製造されたメタン及び水を取り出す手段を備え、ここで、該n個の反応室ブロックが回転され、上記の酸素欠乏フェライト(AFe4-δ)は、二酸化炭素の導入に伴って、酸素欠乏フェライト(AFe4-δ)からフェライト(AFe)乃至酸素欠乏フェライト(AFe4-δ’、ここで、δ’<δであり、Aは上記と同じである)へと変化して炭素を形成し、続く水素の導入に伴って、再び、酸素欠乏フェライト(AFe4-δ)へと変化すると共にメタン及び水を形成し、次いで、該メタン及び水が取り出された後、再び、二酸化炭素が導入されて上記変化を繰り返すところの、二酸化炭素からメタンを製造する装置。 Carbon dioxide is contacted with oxygen deficient ferrite (AFe 2 O 4-δ , where A is selected from the group consisting of Fe, Mn, Co, Ni, Cu, Zn, Sr and Ba) to form carbon. Then, the resulting carbon is reacted with hydrogen to produce methane, which is an apparatus for producing methane from carbon dioxide, comprising a reaction chamber having the shape of a cylinder or a polygonal column, the shape of the cylinder or the polygonal column In a reaction chamber having n reaction chamber blocks radially separated from the center of the reaction chamber (where n represents an integer of 2 or more), and the n reaction chamber blocks Are filled with oxygen-deficient ferrite (AFe 2 O 4-δ , where A is the same as above) to ferrite (AFe 2 O 4 , where A is the same as above), and , The n reaction chamber blocks Means comprising means for rotating around the center of a reaction chamber having a columnar or polygonal column shape, and introducing carbon dioxide sequentially into the n reaction chamber blocks at one or more positions in the rotation direction And means for maintaining the temperature of the reaction chamber block after the introduction of the carbon dioxide at 250 to 800 ° C., and at one or more other positions downstream of the means for introducing the carbon dioxide Means for sequentially introducing hydrogen into the n reaction chamber blocks, and means for maintaining the temperature of the reaction chamber block after the introduction of hydrogen at 500 to 800 ° C., and the n Means for removing the produced methane and water from the reaction chamber block, wherein the n reaction chamber blocks are rotated, and the oxygen-deficient ferrite (AFe 2 O 4-δ ) Introduction With it, a ferrite oxygen deficient ferrite (AFe 2 O 4-δ) (AFe 2 O 4) to anoxia ferrite (AFe 2 O 4-δ ' , wherein, [delta]'<a [delta], A is as defined above To form carbon, and with the subsequent introduction of hydrogen, it changes again to oxygen-deficient ferrite (AFe 2 O 4-δ ) and forms methane and water, and then the methane And an apparatus for producing methane from carbon dioxide in which carbon dioxide is introduced again and the above changes are repeated after the water is taken out.
  2. 上記の酸素欠乏フェライト(AFe4-δ及びAFe4-δ’)及びフェライト(AFe)が、夫々、酸素欠乏マグネタイト(Fe4-δ及びFe4-δ’)及びマグネタイト(Fe)である、請求項1記載の二酸化炭素からメタンを製造する装置。 The above oxygen-deficient ferrite (AFe 2 O 4-δ and AFe 2 O 4-δ ′ ) and ferrite (AFe 2 O 4 ) are respectively oxygen-deficient magnetite (Fe 3 O 4-δ and Fe 3 O 4-δ). The apparatus for producing methane from carbon dioxide according to claim 1, which is ' ) and magnetite (Fe 3 O 4 ).
  3. 上記のn個の反応室ブロックが、反応室の中心部分を除く外側の部分にドーナツ状に配列されている、請求項1又は2記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to claim 1 or 2, wherein the n reaction chamber blocks are arranged in a donut shape in an outer portion excluding the central portion of the reaction chamber.
  4. 上記の二酸化炭素が導入された後の反応室ブロックの温度を保持する手段が、該温度を300~400℃に保持する手段である、請求項1~3のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The carbon dioxide according to any one of claims 1 to 3, wherein the means for maintaining the temperature of the reaction chamber block after the introduction of carbon dioxide is a means for maintaining the temperature at 300 to 400 ° C. For producing methane from methane.
  5. 上記の水素が導入された後の反応室ブロックの温度を保持する手段が、該温度を600~700℃に保持する手段である、請求項1~4のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The carbon dioxide according to any one of claims 1 to 4, wherein the means for maintaining the temperature of the reaction chamber block after the introduction of hydrogen is means for maintaining the temperature at 600 to 700 ° C. Equipment for producing methane.
  6. 上記の二酸化炭素を導入する手段が、1~3個の位置に備えられている、請求項1~5のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 5, wherein the means for introducing carbon dioxide is provided at 1 to 3 positions.
  7. 上記の二酸化炭素を導入する手段が、1~2個の位置に備えられている、請求項1~5のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 5, wherein the means for introducing carbon dioxide is provided at one or two positions.
  8. 上記の二酸化炭素を導入する手段が、1個の位置に備えられている、請求項1~5のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 5, wherein the means for introducing carbon dioxide is provided at one position.
  9. 上記の水素を導入する手段が、1~3個の位置に備えられている、請求項1~8のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 8, wherein the means for introducing hydrogen is provided at 1 to 3 positions.
  10. 上記の水素を導入する手段が、1~2個の位置に備えられている、請求項1~8のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 8, wherein the means for introducing hydrogen is provided at one or two positions.
  11. 上記の水素を導入する手段が、1個の位置に備えられている、請求項1~8のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 8, wherein the means for introducing hydrogen is provided at one position.
  12. 上記のn個の反応室ブロックの数が3~20である、請求項1~11のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 11, wherein the number of the n reaction chamber blocks is 3 to 20.
  13. 上記のn個の反応室ブロックの数が5~15である、請求項1~11のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 11, wherein the number of the n reaction chamber blocks is 5 to 15.
  14. 上記のn個の反応室ブロックの数が5~10である、請求項1~11のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 11, wherein the number of the n reaction chamber blocks is 5 to 10.
  15. 該n個の反応室ブロックが、該n個の反応室ブロックから、未反応の二酸化炭素を取り出す手段を備え、ここで、該未反応の二酸化炭素が、水素導入前に該n個の反応室ブロックから取り出される、請求項1~14のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The n reaction chamber blocks are provided with means for taking out unreacted carbon dioxide from the n reaction chamber blocks, wherein the unreacted carbon dioxide is removed from the n reaction chambers before hydrogen introduction. The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 14, which is removed from the block.
  16. 上記のn個の反応室ブロックに充填されている酸素欠乏フェライト(AFe4-δ)乃至フェライト(AFe)が、ハニカム担体に施与されて充填されている、請求項1~15のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The oxygen-deficient ferrite (AFe 2 O 4-δ ) to ferrite (AFe 2 O 4 ) filled in the n reaction chamber blocks are applied to the honeycomb carrier and filled. An apparatus for producing methane from carbon dioxide according to any one of 15.
  17. 上記のハニカム担体がセラミックスで形成されている、請求項16記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to claim 16, wherein the honeycomb carrier is formed of ceramics.
  18. 上記の二酸化炭素が、排ガス又は大気中に存在する二酸化炭素である、請求項1~17のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The apparatus for producing methane from carbon dioxide according to any one of claims 1 to 17, wherein the carbon dioxide is carbon dioxide present in exhaust gas or air.
  19. 燃焼炉及び加熱炉から排出される排ガス中に存在する二酸化炭素、並びに、大気中に存在する二酸化炭素のいずれか一つ以上を処理するための、請求項1~18のいずれか一つに記載の二酸化炭素からメタンを製造する装置。 The carbon dioxide present in the exhaust gas discharged from the combustion furnace and the heating furnace and the carbon dioxide present in the atmosphere are treated according to any one of claims 1 to 18. That produces methane from carbon dioxide.
PCT/JP2011/058918 2010-05-14 2011-04-08 Apparatus for producing methane from carbon dioxide WO2011142200A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-125183 2010-05-14
JP2010125183 2010-05-14
JP2011-047458 2011-03-04
JP2011047458A JP4836295B1 (en) 2010-05-14 2011-03-04 Equipment for producing methane from carbon dioxide

Publications (1)

Publication Number Publication Date
WO2011142200A1 true WO2011142200A1 (en) 2011-11-17

Family

ID=44914256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058918 WO2011142200A1 (en) 2010-05-14 2011-04-08 Apparatus for producing methane from carbon dioxide

Country Status (2)

Country Link
JP (1) JP4836295B1 (en)
WO (1) WO2011142200A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047575B2 (en) * 2018-04-26 2022-04-05 株式会社豊田中央研究所 Methaneization catalyst and method for producing methane using it
JP7147482B2 (en) * 2018-11-01 2022-10-05 株式会社豊田中央研究所 Methane production device, control method for methane production device, and methane production method
JP7381795B1 (en) 2023-04-07 2023-11-16 株式会社タクマ catalytic reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257025A (en) * 1990-03-03 1991-11-15 Iseki & Co Ltd Production of oxygen-deficient magnetite
JPH03296419A (en) * 1990-04-16 1991-12-27 Iseki & Co Ltd Device for decomposing exhaust gas
JPH04100517A (en) * 1990-03-16 1992-04-02 Iseki & Co Ltd Apparatus for decomposing carbon dioxide
JPH05163023A (en) * 1991-12-11 1993-06-29 Japan Synthetic Rubber Co Ltd Oxygen-deficient hollow magnetite particle, its production and use
JPH05193920A (en) * 1992-01-23 1993-08-03 Hitachi Ltd Method and device for converting carbon dioxide
JP2002324567A (en) * 2001-02-09 2002-11-08 General Motors Corp <Gm> Water gas shift reactor/carbon dioxide adsorber coupled for use with fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257025A (en) * 1990-03-03 1991-11-15 Iseki & Co Ltd Production of oxygen-deficient magnetite
JPH04100517A (en) * 1990-03-16 1992-04-02 Iseki & Co Ltd Apparatus for decomposing carbon dioxide
JPH03296419A (en) * 1990-04-16 1991-12-27 Iseki & Co Ltd Device for decomposing exhaust gas
JPH05163023A (en) * 1991-12-11 1993-06-29 Japan Synthetic Rubber Co Ltd Oxygen-deficient hollow magnetite particle, its production and use
JPH05193920A (en) * 1992-01-23 1993-08-03 Hitachi Ltd Method and device for converting carbon dioxide
JP2002324567A (en) * 2001-02-09 2002-11-08 General Motors Corp <Gm> Water gas shift reactor/carbon dioxide adsorber coupled for use with fuel cell system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENVIRONMENT RESEARCH AND CONTROL, vol. 12, 1990, ENVIRONMENTAL MANAGEMENT CENTER, OKAYAMA UNIVERSITY, pages 17 - 23 *
FERRITES PROC ICF 6, 1992, pages 195 - 198 *
KAGAKU KOGAKU RONBUNSHU, vol. 33, no. 3, 2007, pages 218 - 226 *

Also Published As

Publication number Publication date
JP2011256159A (en) 2011-12-22
JP4836295B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
CN107915227B (en) Gas recovery and concentration device
CA2933093C (en) Rotating multi-monolith bed movement system for removing co2 from the atmosphere
JP2020032422A (en) Structure and technique for capture/regeneration of carbon dioxide
JP6180252B2 (en) Hydrogen production system by ammonia decomposition
JP2005520678A (en) Combustion method with integrated separation of CO2 by carbonation
CN102227248A (en) Carbon dioxide purification using activated carbon as nox and so2 sorbent / catalyst
CN101977667A (en) System and method for enhanced removal of co2 from a mixed gas stream
JP4836295B1 (en) Equipment for producing methane from carbon dioxide
WO2022029887A1 (en) Ironmaking system and ironmaking method
US20070238611A1 (en) Carbon dioxide absorbent, carbon dioxide separation apparatus and reforming apparatus
JP6523769B2 (en) Hydrogen molecule storage material and hydrogen generation method thereof
JP6843489B1 (en) Ironmaking system and ironmaking method
JPH0691128A (en) Continuous gas separation and recovery device
JP3631376B2 (en) Method and apparatus for separating oxygen from air and thermal power generation system
US20240010500A1 (en) Gas production device, gas production system and gas production method
KR101869461B1 (en) Method for removing oxygen in methane mixture gas by using oxygen catalyst, perovskite type oxygen removing catalyst used in the same, and land fill gas refine device applying land fill gas mathane direct converting technology using the same
US20240017233A1 (en) Gas production device, gas production system, and gas production method
WO2023100833A1 (en) Gas production device
EP4194401A1 (en) Gas manufacturing apparatus, gas manufacturing system, and gas manufacturing method
US20230365414A1 (en) Gas production apparatus, gas production system, and gas production method
WO2023100834A1 (en) Gas production apparatus
JPH0549838A (en) Method for conversion of carbon dioxide
US20230365413A1 (en) Gas manufacturing device, gas manufacturing system, and gas manufacturing method
WO2022149536A1 (en) Gas production device and gas production method
JP2021054705A (en) Gas production apparatus, gas production system and gas production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780457

Country of ref document: EP

Kind code of ref document: A1