WO2011135997A1 - 動的強度に優れた複相熱延鋼板およびその製造方法 - Google Patents

動的強度に優れた複相熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2011135997A1
WO2011135997A1 PCT/JP2011/058816 JP2011058816W WO2011135997A1 WO 2011135997 A1 WO2011135997 A1 WO 2011135997A1 JP 2011058816 W JP2011058816 W JP 2011058816W WO 2011135997 A1 WO2011135997 A1 WO 2011135997A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ferrite
phase
steel sheet
gpa
Prior art date
Application number
PCT/JP2011/058816
Other languages
English (en)
French (fr)
Inventor
泰明 田中
富田 俊郎
河野 佳織
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2012512750A priority Critical patent/JP5240407B2/ja
Priority to EP11774781.6A priority patent/EP2565288B8/en
Priority to ES11774781T priority patent/ES2744579T3/es
Priority to CN201180032237.2A priority patent/CN102959119B/zh
Priority to KR1020127030777A priority patent/KR101449228B1/ko
Priority to US13/643,696 priority patent/US10041158B2/en
Priority to PL11774781T priority patent/PL2565288T3/pl
Publication of WO2011135997A1 publication Critical patent/WO2011135997A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention provides a multiphase heat with improved dynamic strength, particularly dynamic strength in a strain rate range of 30 / s to 500 / s (hereinafter also referred to as “medium strain rate range strength”).
  • the present invention relates to a rolled steel sheet and a manufacturing method thereof.
  • Patent Document 1 includes 0.04 to 0.15% C and 0.3 to 3.0% in total of one or both of Si and Al in mass%.
  • the balance is composed of Fe and inevitable impurities, and has a composite structure composed of ferrite as a main phase and a second phase containing 3% by volume or more of austenite, and corresponds to an initial volume fraction V (0) of the austenite phase.
  • a steel plate after pre-deformation by one or both of the tension levelers and a plastic deformation amount T is applied according to the following formula (A), and after pre-deformation by the formula (A), 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 -3 when deformed strain rate (s -1)
  • the static deformation strength [sigma] s and the difference ( ⁇ d- ⁇ s) of the dynamic deformation strength .sigma.d when deformed strain rate of 5 ⁇ 10 2 ⁇ 5 ⁇ 10 3 (s -1) is greater than or equal to 60MPa
  • a work-induced transformation-type high-strength steel plate (TRIP steel plate) having excellent dynamic deformation characteristics is disclosed.
  • Patent Document 2 discloses an average particle diameter ds of nanocrystal grains made of fine ferrite grains and having a crystal grain diameter of 1.2 ⁇ m or less.
  • the static difference is defined as the difference between the static deformation stress obtained at a strain rate of 0.01 / s and the dynamic deformation stress obtained by carrying out a tensile test at a strain rate of 1000 / s.
  • Patent Document 2 does not disclose anything about the deformation stress in the intermediate strain rate region where the strain rate is greater than 0.01 / s and less than 1000 / s.
  • Patent Document 3 discloses a steel plate having a high static ratio, which is composed of a two-phase structure of martensite having an average particle diameter of 3 ⁇ m or less and ferrite having an average particle diameter of 5 ⁇ m or less.
  • the static ratio is defined as the ratio of the dynamic yield stress obtained at a strain rate of 10 3 / s to the static yield stress obtained at a strain rate of 10 ⁇ 3 / s.
  • the static difference in the strain rate region where the strain rate is more than 0.01 / s and less than 1000 / s is not disclosed.
  • the static yield stress of the steel sheet disclosed in Patent Document 3 is as low as 31.9 kgf / mm 2 to 34.7 kgf / mm 2 .
  • the steel plates according to the prior art as described above have the following problems.
  • a high-strength dual-phase steel sheet that has ferrite as the main phase and the second phase is martensite it is difficult to achieve both formability and impact absorption characteristics.
  • the static difference and static ratio are the quasi-static values of dynamic stress such as dynamic yield stress and dynamic tensile strength obtained in a high strain rate region where the strain rate ⁇ 500 / s. It has been evaluated by comparing with static stress defined by yield stress and tensile strength. This is because, conventionally, no means for increasing the medium strain rate range strength has been provided.
  • the present inventors have conducted various studies on methods for increasing the dynamic strength of high-strength duplex steel sheets, particularly the medium strain rate region strength. As a result, the following knowledge was obtained. (1) In order to increase the medium strain rate range strength, it is necessary to improve both the static strength and the static / dynamic difference.
  • Hard martensite is effective in improving static strength. However, when the area fraction of hard martensite increases, the desired static difference cannot be obtained. (3) The static difference improves if the area fraction of ferrite is increased. However, as the area fraction of ferrite increases, the static strength decreases, so the desired dynamic strength cannot be obtained.
  • One of the means for strengthening the static strength of ferrite is solid solution strengthening. Alloy elements (for example, C, Si, Mn, and Cr) can be dissolved in the ferrite generated at a relatively high temperature, and the static strength of the ferrite itself can be strengthened.
  • Alloy elements for example, C, Si, Mn, and Cr
  • the static difference is further improved by suppressing the formation of carbides in bainitic ferrite or bainite.
  • the formation of carbides contained in bainitic ferrite and bainite is suppressed by adding a small amount of Si and Cr.
  • One embodiment of the present invention provided based on the above findings is mass%, C: 0.07% to 0.2%, Si + Al: 0.3% to 1.5%, Mn: 1.0 %: 3.0% or less, P: 0.02% or less, S: 0.005% or less, Cr: 0.1% or more, 0.5% or less, N: 0.001% or more, 0.008% or less And further containing one or two of Ti: 0.002% to 0.05% and Nb: 0.002% to 0.05%, with the balance being Fe and impurities.
  • the ferrite has an area fraction of 7% to 35%, a ferrite particle size of 0.5 ⁇ m to 3.0 ⁇ m, and a ferrite nanohardness of 3.5 GPa to 4.5 GPa.
  • the second phase which is the balance other than ferrite, is bainitic ferrite And at least one selected from bainite and martensite, the average nano hardness of the second phase is 5 GPa or more and 12 GPa or less, and the second phase is a high hard phase of 8 GPa or more and 12 GPa or less.
  • the chemical composition is 1% further selected from the group consisting of V: 0.2% or less, Cu: 0.2% or less, Ni: 0.2% or less, and Mo: 0.5% or less in terms of mass%. It may contain seeds or two or more.
  • Another embodiment of the present invention is mass%, C: 0.07% to 0.2%, Si + Al: 0.3% to 1.5%, Mn: 1.0% to 3.0% P: 0.02% or less, S: 0.005% or less, Cr: 0.1% or more and 0.5% or less, N: 0.001% or more and 0.008% or less, and Ti : One or two of 0.002% or more and 0.05% or less and Nb: 0.002% or more and 0.05% or less, and a slab having a chemical composition composed of Fe and impurities in the remainder is hot continuously.
  • a method for producing a dual-phase hot-rolled steel sheet that is rolled to produce a hot-rolled steel sheet comprising the following steps: In the final finish rolling, a finish rolling step comprising rolling the slab into a steel sheet at a temperature of 800 ° C. or more and 900 ° C. or less at a time between passes of 0.15 seconds or more and 2.7 seconds or less; A first cooling step comprising cooling the steel sheet obtained by the finish rolling step to 700 ° C. or lower within 0.4 seconds at a cooling rate of 600 ° C./second or higher; A holding step comprising holding the steel plate that has undergone the cooling step in a temperature range of 570 ° C. or more and 700 ° C. or less for 0.4 seconds or more; and a steel plate that has undergone the holding step at a cooling rate of 20 ° C./second or more and 120 ° C./second or less. 2nd cooling process provided with cooling to 430 degrees C or less.
  • the chemical composition is 1% further selected from the group consisting of V: 0.2% or less, Cu: 0.2% or less, Ni: 0.2% or less, and Mo: 0.5% or less in terms of mass%. It may contain seeds or two or more.
  • the present invention it is possible to stably provide a high-tensile hot-rolled steel sheet having a large static difference even in a strain rate region of 30 / s or more and 500 / s or less. It is expected to further improve the collision safety of these products, and it has extremely effective effects in the industry.
  • % indicating the element content in the chemical composition of steel means “% by mass” unless otherwise specified.
  • Metallographic structure (1) Ferrite content Ferrite increases the static difference. Furthermore, ductility is improved in the multiphase steel. If the ferrite has an area fraction of less than 7%, the desired static difference cannot be obtained. On the other hand, if the ferrite content exceeds 35% in terms of area fraction, the static strength decreases. Therefore, the ferrite content is 7% or more and 35% or less in terms of area fraction.
  • the ferrite is preferably pro-eutectoid ferrite.
  • the area fraction is preferably measured as follows.
  • the target hot-rolled steel sheet is cut in a direction parallel to the rolling direction, and in a portion on the depth center side of the sheet thickness from the rolled surface to the sheet thickness direction (hereinafter referred to as “1 ⁇ 4 sheet thickness portion”).
  • the cut surface is polished by a known method to obtain an evaluation sample.
  • the obtained evaluation sample is observed with an SEM (scanning electron microscope) or the like to identify the ferrite in the field of view.
  • the total area of the specified ferrite is divided by the viewing area to obtain the area fraction of the ferrite.
  • the same measurement is performed on a plurality of evaluation samples to obtain the area fraction, and the average value of the obtained area fraction is included in the ferrite content of the steel sheet. It is preferable to use an amount.
  • the upper limit of the ferrite grain size is 3.0 ⁇ m. It is desirable that the ferrite grain size be as fine as possible. However, in reality, it is difficult to stably reduce the ferrite grain size to less than 0.5 ⁇ m, which is practically impossible on an industrial level. Therefore, the lower limit of the ferrite grain size is 0.5 ⁇ m.
  • the ferrite particle size is preferably measured as follows.
  • the evaluation sample obtained as described above is observed with an SEM or the like.
  • a plurality of ferrites in the observation visual field are arbitrarily selected, and the particle diameters thereof are obtained as circle-converted diameters, and the average value is set as the ferrite particle diameter.
  • the number of measurements in one field is as large as possible.
  • the same measurement is performed on a plurality of evaluation samples, and the average value of the obtained plurality of circle-converted diameters is averaged to obtain the ferrite grain size of the steel sheet.
  • the hardness of the ferrite is evaluated using a nanoindentation method, and the nanohardness obtained when a load of 500 ⁇ N is applied with a Barkovic indenter is used as an index. If the ferrite nano hardness is 3.5 GPa or less, sufficient strength cannot be obtained. On the other hand, the higher the nano hardness of ferrite, the better. However, since the alloy element has a solid solubility limit, the nano hardness does not exceed 4.5 GPa. Therefore, the nano hardness of the ferrite is set to 3.5 GPa or more and 4.5 GPa or less.
  • the sample when the nano hardness is measured by the nano indentation method, the sample may be prepared as follows. A hot rolled steel sheet to be measured is cut in a direction parallel to the rolling direction. The obtained cut surface is polished by a known method so that the processed layer is removed to obtain an evaluation sample.
  • the polishing is preferably a combination of mechanical polishing, mechanochemical polishing, and electrolytic polishing.
  • the remaining phase other than ferrite, that is, the second phase is composed of a hard phase.
  • the hard phase generally include bainitic ferrite, martensite, and austenite.
  • the second phase of the steel sheet according to the present invention includes at least one selected from bainitic ferrite and bainite (hereinafter referred to as “bainitic ferrite and / or bainite”) and martensite.
  • Martensite greatly contributes to the improvement of static strength. Bainitic ferrite and / or bainite greatly contribute to the improvement of dynamic strength and static / dynamic difference. Martensite is harder than both bainitic ferrite and bainite.
  • the average hardness of the second phase is determined by the ratio of these phases. Using this, the average nano hardness of the second phase is adjusted. The average nano hardness of the second phase is set to 5 GPa or more and 12 GPa or less. If the average nano hardness of the second phase is less than 5 GPa, it does not contribute to the increase in strength. On the other hand, when it exceeds 12 GPa, the static difference decreases.
  • the main component in the second phase is bainitic ferrite and / or bainite, that is, the area fraction of bainitic ferrite and / or bainite with respect to the entire second phase is preferably more than 50%, more than 70% More preferably, the retained austenite may be contained in the second phase.
  • a phase having a relatively high hardness contributes to an improvement in static strength.
  • a phase having a nano hardness of 8 GPa or more and 12 GPa or less greatly contributes to improvement of static strength. Therefore, in the present invention, a phase having a nano hardness of 8 GPa or more and 12 GPa or less in the second phase is defined as a highly hard phase. If the content of the highly hard phase is less than 5% in terms of the area fraction relative to the entire structure, high strength cannot be obtained.
  • the content of the highly rigid phase is 5% or more and 35% or less in terms of the area fraction with respect to the entire structure.
  • the phase having a nano hardness of 8 GPa or more and 12 GPa or less is mainly composed of martensite.
  • the phase having a nano hardness of more than 4.5 GPa and less than 8 GPa is mainly composed of bainitic ferrite.
  • Sum of Si content and Al content 0.3% or more and 1.5% or less
  • Sum of Si content and Al content (may be indicated as “Si + Al” in the present invention) is heat. It affects the amount and hardness of the transformation phase produced during the cooling process after rolling and hot rolling. Specifically, Si and Al suppress the generation of carbides contained in bainitic ferrite and / or bainite, and improve the static difference. Si also has a solid solution strengthening action. From the above viewpoint, Si + Al is made 0.3% or more. However, even if it adds excessively, the said effect is saturated and on the contrary, steel is embrittled. For this reason, Si + Al is made 1.5% or less. Si + Al is preferably less than 1.0%.
  • the lower limit of the Si content is preferably 0.3% or more, and the upper limit of the Si content is preferably 0.7% or less.
  • the lower limit of the Al content is preferably 0.03% or more, and the upper limit of the Al content is preferably 0.7% or less.
  • Mn 1.0% or more and 3.0% or less Mn affects the transformation behavior of steel. Therefore, by controlling the Mn content, the amount and hardness of the transformation phase generated during hot rolling and the cooling process after hot rolling are controlled. That is, if the Mn content is less than 1.0%, the amount of bainitic ferrite phase or martensite phase produced is small, and desired strength and static difference cannot be obtained. If the addition exceeds 3.0%, the amount of martensite phase becomes excessive, and the dynamic strength decreases. Therefore, the range of Mn content is 1.0% or more and 3.0% or less. The lower limit of the Mn content is preferably 1.5% or more. The upper limit of the Mn content is preferably 2.5% or less.
  • P 0.02% or less
  • S 0.005% or less
  • P and S exist in steel as inevitable impurities.
  • the P content and the S content are large, brittle fracture may occur under high-speed deformation.
  • the P content is limited to 0.02% or less
  • the S content is limited to 0.005% or less.
  • Cr 0.1% or more and 0.5% or less
  • the Cr content affects the amount and hardness of the transformation phase generated in the cooling process after hot rolling and hot rolling. Specifically, Cr has an effective action for securing the amount of bainitic ferrite. In addition, precipitation of carbides in bainitic ferrite is suppressed. Further, Cr itself has a solid solution strengthening action. For this reason, if the Cr content is less than 0.1%, the desired strength cannot be obtained. On the other hand, even if the content exceeds 0.5%, the above effect is saturated and the ferrite transformation is suppressed. Therefore, the Cr content is 0.1% or more and 0.5% or less.
  • N 0.001% or more and 0.008% or less N generates nitrides of Ti and Nb, and suppresses coarsening of crystal grains. If the N content is less than 0.001%, crystal grains become coarse during slab heating, and the structure after hot rolling also becomes coarse. On the other hand, if the N content exceeds 0.008%, coarse nitrides are produced, which adversely affects ductility. Therefore, the N content is set to be 0.001% or more and 0.008% or less.
  • Ti forms nitrides and carbides. Nb described later also forms nitrides and carbides. For this reason, at least 1 type chosen from the group which consists of Nb and Ti is contained.
  • the produced TiN is effective in preventing crystal grain coarsening. TiC also improves the static strength.
  • the Ti content is less than 0.002%, the above effect cannot be obtained.
  • the Ti content exceeds 0.05%, coarse nitrides are generated and ductility is lowered, and ferrite transformation is suppressed. Therefore, when Ti is contained, the content is set to be 0.002% or more and 0.05% or less.
  • Nb forms nitrides and carbides similarly to Ti.
  • the formed nitride is effective in preventing coarsening of austenite crystal grains, like Ti nitride.
  • Nb carbide contributes to prevention of coarsening of ferrite phase crystal grains and improvement of static strength.
  • the solid solution Nb also contributes to the improvement of the static strength.
  • Addition exceeding 0.05% suppresses ferrite transformation. Therefore, when adding Nb, the content is made 0.002% or more and 0.05% or less.
  • the lower limit of the Nb content is preferably 0.004% or more.
  • the upper limit of the Nb content is preferably 0.02% or less.
  • V 0.2% or less
  • V carbonitride is effective in preventing coarsening of austenite crystal grains in the low temperature austenite region. Further, the carbonitride of V contributes to the prevention of the coarsening of ferrite phase crystal grains. Therefore, the steel plate according to the present invention contains V as necessary. However, if the content is less than 0.01%, the above effects cannot be stably obtained. On the other hand, if added over 0.2%, precipitates increase and the static difference becomes small. Therefore, when V is added, the content is preferably 0.01% or more and 0.2% or less, and more preferably 0.02% or more and 0.1% or less. The lower limit of the V content is more preferably 0.02% or more. The upper limit of the V content is more preferably 0.1% or less.
  • Cu 0.2% or less
  • Cu has an effect of further improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Therefore, the steel plate according to the present invention may contain Cu as necessary. However, when Cu is added in excess of 0.2%, the workability deteriorates remarkably. Moreover, it is preferable that Cu content shall be 0.02% or more from a viewpoint of acquiring said effect stably. Therefore, when adding Cu, the content should be 0.2% or less, and preferably 0.02% or more and 0.2% or less.
  • Ni 0.2% or less Ni also has the effect of further improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Therefore, the steel plate according to the present invention may contain Ni as necessary. However, when Ni is added in excess of 0.2%, the workability deteriorates remarkably. Moreover, it is preferable that Ni content shall be 0.02% or more from a viewpoint of acquiring said effect stably. Therefore, when adding Ni, the content should be 0.2% or less, and preferably 0.02% or more and 0.2% or less.
  • Mo 0.5% or less Mo has an action of precipitating as carbide or nitride and increasing the strength of the steel sheet. Moreover, these precipitates have the effect
  • the strain age hardening characteristics deteriorate due to the precipitation of a large amount of carbides and nitrides.
  • Mo content it is preferable to make Mo content into 0.02% or more from a viewpoint of acquiring said effect stably. Therefore, when adding Mo, the content should be 0.5% or less, and preferably 0.02% or more and 0.5% or less.
  • the hot-rolled steel sheet according to the present invention has the above-described metal structure and chemical composition, so that not only high static strength but also excellent static difference can be stably exhibited over a wide range of strain rate. It is possible to obtain.
  • the manufacturing method of the hot-rolled steel sheet according to the present invention is not particularly limited, the hot-rolled steel sheet according to the present invention is stably manufactured by adopting a manufacturing method including a hot rolling process having the following rolling conditions. Is achieved.
  • the manufacturing method according to the present invention comprises the following steps: In the final finish rolling, a finish rolling step comprising rolling the slab into a steel sheet at a temperature of 800 ° C. or more and 900 ° C. or less at a time between passes of 0.15 seconds or more and 2.7 seconds or less, A first cooling step comprising cooling the steel plate obtained by the finish rolling step to 700 ° C. or less within 0.4 seconds at a cooling rate of 600 ° C./second or more, A holding step comprising holding the steel plate that has undergone the cooling step in a temperature range of 570 ° C. or more and 700 ° C. or less for 0.4 seconds or more, and the steel plate that has undergone the holding step at a cooling rate of 20 ° C./second or more and 120 ° C./second or less. 2nd cooling process provided with cooling to 430 degrees C or less.
  • a fine grain structure is obtained by heat treatment during hot multi-pass rolling. Refining austenite by adjusting the temperature and the time between passes in the final rolling process in the finish rolling process, and rapidly quenching in the first cooling process at a cooling rate of 600 ° C / second or more within 0.4 seconds. A fine grain structure with a ferrite grain size of 3.0 ⁇ m or less can be obtained.
  • the holding step holding in the ferrite transformation temperature range is performed, so ferrite transformation is performed from the processed austenite generated in the above step.
  • the temperature required for ferrite transformation is 570 to 700 ° C., and the time is 0.4 seconds or more.
  • the second cooling step is carried out to transform the remainder that has not undergone ferrite transformation into bainitic ferrite and / or a double phase composed of bainite and martensite. Specifically, it is cooled to 430 ° C. or less at a cooling rate of 20 ° C./second or more and 120 ° C./second or less. Preferably, cooling is performed to 300 ° C. or less at a cooling rate of 50 ° C./second or more and less than 100 ° C./second.
  • the hot-rolled steel sheet obtained as described above has excellent dynamic strength properties. Specifically, it has excellent dynamic strength characteristics in a strain rate region where the strain rate is 30 / second or more. Some hot-rolled steel sheets have excellent dynamic strength characteristics in a strain rate range of 10 / sec or more.
  • the dynamic strength is evaluated from the relationship between the static ratio of the steel sheet and the strain rate expressed by the following formula (1).
  • equation (1) is a dynamic tensile strength and static tensile strength compared to the constitutive equation of the Cowper-Symmonds model (equation (2)), which is a representative model for considering the strain rate dependence of material strength. For example, it is found that a relationship similar to the expression (3) is established, and the constant is determined after arranging the expression (2) as in the expression (3).
  • the left side of the equation (1) is an index of the static ratio ( ⁇ / ⁇ 0 ) (hereinafter referred to as “static ratio index”).
  • static ratio index The larger the static ratio ( ⁇ / ⁇ 0 ), the static The ratio index also increases.
  • strain rate increases, the static ratio increases, and as the static ratio increases, the static ratio index also increases.
  • the steel plate satisfying the formula (1) is a strain rate region of a strain rate of 30 / second or more corresponding to a case where a collision during traveling of an automobile is assumed, or even a part of the hot-rolled steel plate has a lower strain rate side. It was found that the steel sheet can be identified as a steel plate having a high static motion ratio in a strain rate range of 10 / second or more including
  • the hot-rolled steel sheet according to the present invention is a hot-rolled steel sheet that satisfies the formula (1) in a strain rate region where the strain rate is 30 / second or more.
  • Steel types A to C, E, F, and H to J are steels having chemical compositions that fall within the above chemical composition range according to the present invention.
  • Steels D and G are steels having chemical compositions that are outside the range of the chemical composition according to the present invention.
  • Both steels were made by melting 150 kg in vacuum and then heating at a furnace temperature of 1250 ° C., followed by hot forging at a temperature of 900 ° C. or higher to form a slab. Each slab was subjected to reheating at 1250 ° C. within 1 hour, 4 passes of rough rolling, and 3 passes of finish rolling. The thickness of the sample steel plate after hot rolling was 1.6 to 2.0 mm. Table 2 shows the hot rolling and cooling conditions.
  • Steel plates with test numbers 1, 2, 5 to 9, and 12 to 14 are manufactured by the manufacturing method according to the present invention.
  • the finish rolling step and the first and second cooling steps were not performed under the conditions according to the present invention.
  • the time until cooling to 700 ° C. or lower after the end of rolling and the second cooling step were not performed under the conditions according to the present invention.
  • the time until the cooling to 700 ° C. or lower after the end of rolling and the second cooling step were not performed under the conditions according to the present invention.
  • Table 3 shows the evaluation results of the metal structure of the sample steel plate obtained by the above production method and the evaluation results of the static tensile strength and the static / dynamic ratio.
  • Each evaluation method is as follows.
  • the nano-hardness of the ferrite and hard phase was determined by the nano-indentation method.
  • the nanoindentation apparatus used was [Triboscope] manufactured by Hystron. After a cross section of a 1 ⁇ 4 plate thickness portion of the sample steel plate was polished with emery paper, mechanochemical polishing was performed with colloidal silica, and further, electrolytic processing was performed to obtain a cross section from which the processed layer was removed. This cross section was subjected to the test. Nanoindentation was performed using a Berkovich indenter with a tip angle of 90 ° at room temperature in an air atmosphere with an indentation load of 500 ⁇ N. About each phase, 20 points
  • the area fraction and the particle size of the ferrite were obtained from a two-dimensional image obtained by observing a cross section of a 1 ⁇ 4 plate thickness portion at a magnification of 3000 using a scanning electron microscope. Specifically, ferrites in the obtained image were specified, their areas were measured, and the total area by the ferrite was divided by the area of the entire image to obtain an area fraction. In addition, the specified ferrite was individually subjected to image analysis to obtain a circle-converted diameter, and an average value thereof was used as the particle diameter of the ferrite.
  • the area fraction of the highly hard phase having a nano hardness of 8 to 12 GPa was determined as follows. A two-dimensional image was obtained by observing an arbitrarily extracted range of 10 ⁇ m ⁇ 10 ⁇ m with an atomic force microscope included in the nanoindentation apparatus. The difference in crystal contrast seen in the obtained two-dimensional image makes it possible to identify whether the crystal is ferrite or the second phase. Therefore, the second phase crystal is identified based on the obtained image. did. For all crystals identified as being in the second phase, the hardness was measured by nanoindentation. Among the measured crystals, those having a nano hardness of 8 to 12 GPa were determined to be highly hard phases. The area fraction of the highly rigid phase was determined from the sum of the areas of the crystals determined to be the highly rigid phase.
  • Static tensile strength and dynamic strength were measured using a test block type material testing machine.
  • the test piece has a gauge width of 2 mm and a gauge length of 4.8 mm.
  • the static tensile strength was obtained from the tensile strength at the strain rate of 0.001 / s, that is, the quasi-static strength. Further, a tensile test was performed by changing the strain rate in the range of 0.001 / s to 1000 / s, and the dynamic strength for obtaining the strain rate dependency of the static ratio index was evaluated. Judgment criteria are as follows.
  • FIG. 1 shows the relationship between the static ratio index and strain rate obtained for each sample steel plate.
  • the steel plates of test numbers 3, 4, 10 and 11 do not satisfy the formula (1) in the strain rate range of 30 / s or more. Therefore, it was determined that these steel plates did not have excellent dynamic strength characteristics.
  • steel plates of 1, 2, 5 to 9, 12 to 14 change to a strain rate range of 10 to 30 / s, although the static ratio index does not satisfy the formula (1) on the extremely low strain rate side. It has a local point and the static ratio index increases rapidly. All of these steel plates satisfy the formula (1) in a strain rate region of 30 / s or more, and thus were determined to have excellent dynamic strength characteristics.
  • Such a steel plate is suitably used as an automobile collision member.
  • the steel plates of Test Nos. 1, 5 and 9 satisfy the formula (1) even at a strain rate of 10 / s or higher, which is a lower strain rate, and thus were determined to have particularly excellent dynamic strength characteristics.
  • Such a steel plate is particularly preferably used as an automobile collision member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 本発明は中歪速度域強度が向上された複相熱延鋼板及びその製造方法に関する。本発明に係る複相熱延鋼板は,質量%で,C:0.07~0.2%,Si+Al:0.3~1.5%,Mn:1.0~3.0%,P:0.02%以下,S:0.005%以下,Cr:0.1~0.5%及びN:0.001~0.008%を含有し,さらに,Ti:0.002~0.05%及びNb:0.002~0.05%以下の1種又は2種を含有し,残部がFe及び不純物からなる化学組成を有し,フェライトの面積分率が7~35%,フェライトの粒径が0.5~3.0μmの範囲及びフェライトのナノ硬さが3.5~4.5GPaの範囲にあり,フェライト以外の残部である第2相がベイニティックフェライト及び/又はベイナイトとマルテンサイトとを含み,第2相の平均ナノ硬さは5~12GPaであり,第2相は8~12GPaの高硬質相を組織全体に対する面積分率として5~35%含有する。

Description

動的強度に優れた複相熱延鋼板およびその製造方法
 本発明は、動的強度、特に歪速度が30/s以上500/s以下の歪速度域での動的強度(以下、「中歪速度域強度」ともいう。)が向上された複相熱延鋼板およびその製造方法に関する。
 近年、地球環境保護の観点から、自動車からのCO排出量の低減の一環として、自動車の車体の軽量化が求められている。軽量化によって車体に求められる強度が低下することは許されないため、自動車用鋼板の高強度化が進んでいる。
 一方、自動車の衝突安全性確保に対する社会的要求も高くなっている。このため、自動車用鋼板に求められる特性は、単に強度が高いだけでなく、走行中に万一衝突した場合において耐衝撃性に優れること、すなわち高歪速度で変形した場合に高い変形抵抗をも有することが望まれており、これらの要望を満たす鋼板の開発が検討されてきている。
 一般に、鋼板の動的応力の静的応力に対する差(以下、本発明において、「静動差」ともいう。)は軟鋼による鋼板で大きく、鋼板強度の上昇とともに減少することが知られている。高強度を有しつつ静動差が大きい複相組織鋼板として、低合金TRIP鋼板が例示される。
 そのような鋼板の具体例として、特許文献1には、質量%にて、Cを0.04~0.15%、SiとAlの一方または双方を合計で0.3~3.0%含み、残部がFeおよび不可避的不純物からなり、主相であるフェライトと、3体積%以上のオーステナイトを含む第2相からなる複合組織を有し、オーステナイト相の初期体積率V(0)と、相当ひずみにして10%の変形を加えたときのオーステナイト相の体積率V(10)の比V(10)/V(0)が0.3以上となる性質を有する鋼板に対し、調質圧延とテンションレベラの一方又は双方による予変形を、塑性変形量Tを下記式(A)に従って加えたのちの鋼板であって、(A)式による予変形を加えたのち、5×10-4~5×10-3(s-1)のひずみ速度で変形したときの準静的変形強度σsと、5×10~5×10(s-1)のひずみ速度で変形したときの動的変形強度σdとの差(σd-σs)が60MPa以上であることを特徴とする動的変形特性に優れた加工誘起変態型高強度鋼板(TRIP鋼板)が開示されている。
 0.5[{(V(10)/V(0))/C}-3]+15≧T≧0.5[{(V(10)/V(0))/C}-3]・・・(A)。
 一方、第2相がマルテンサイトを主体とする複相鋼板の一例として、特許文献2には、微細なフェライト粒からなり、結晶粒径が1.2μm以下のナノ結晶粒の平均粒径dsと、結晶粒径が1.2μmを超えるミクロ結晶粒の平均結晶粒径dLをdL/ds≧3を満足する、強度と延性バランスが優れ、且つ、静動差が170MPa以上である高強度鋼板が開示されている。当該文献において、静動差とは、歪速度0.01/sで得られる静的変形応力と歪速度1000/sで引張試験を実施して得られる動的変形応力の差で定義されている。しかしながら、歪速度が0.01/s超1000/s未満の中間歪速度域での変形応力について、特許文献2は何も開示していない。
 特許文献3には、平均粒径が3μm以下のマルテンサイトと平均粒径が5μm以下のフェライトの2相組織からなり、静動比が高い鋼板が開示されている。当該文献において、静動比は歪速度10-3/sで得られる静的降伏応力に対する歪速度10/sで得られる動的降伏応力の比で定義されている。しかしながら、歪速度が0.01/s超1000/s未満の歪速度域における静動差については開示されていない。また、特許文献3に開示される鋼板の静的降伏応力は、31.9kgf/mm~34.7kgf/mmと低い。
特許第3958842号公報 特開平2006-161077号公報 特開2004-84074号公報
 上記のような従来技術に係る鋼板には下記のような問題点がある。
 フェライトを主相とし、第2相がマルテンサイトである高強度複相鋼板では、成形性と衝撃吸収特性の両立は困難である。
 自動車用衝突部材として使用される場合、歪速度が30/s以上500/s以下の歪速度域での動的強度、すなわち中歪速度域強度での向上が要求される。しかしながら、従来技術開発では、静動差や静動比は、歪速度≧500/sの高歪速度域で得られる動的降伏応力や動的引張強度などの動的応力を、準静的な降伏応力や引張強度などにより規定される静的応力と対比することで評価されてきた。これは、従来、中歪速度域強度を高めるための手段は提供されていなかったためである。
 そこで、動的強度、特に中歪速度域強度が向上された複相熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、高強度複相鋼板の動的強度、特に中歪速度域強度を高めるための方法について種々検討を行った。その結果、以下の知見が得られた。
 (1)中歪速度域強度を高めるためには、静的強度および静動差の両者を向上させる必要がある。
 (2)硬質マルテンサイトは静的強度の向上に有効である。しかしながら、硬質マルテンサイトの面積分率が増すと所望の静動差は得られない。
 (3)フェライトの面積分率を増加させれば静動差は向上する。しかしながら、フェライトの面積分率が増加すると、静的強度は低下するので、所望の動的強度は得られない。
 (4)フェライトの静的強度を強化する手段の一つが固溶強化である。比較的高温で生ずるフェライトには合金元素(たとえば、C、Si、MnおよびCr)が固溶して、フェライト自体の静的強度を強化することが可能である。
 (5)結晶粒の微細化によって静的強度は向上する。
 (6)低温変態相の中で、ベイニティックフェライトおよびベイナイトは動的強度および静動差の向上に有効である。
 (7)ベイニティックフェライト中またはベイナイト中の炭化物の生成を抑制することにより、静動差が更に向上する。
 (8)SiおよびCrの微量添加によりベイニティックフェライトおよびベイナイトそれぞれに含有される炭化物に生成が抑制される。
 (9)熱延プロセスにおいて、仕上圧延のパス間時間を制御し、仕上圧延後の冷却条件を最適化することによりフェライトの微細化が可能となる。
 これらの知見に基づき、フェライトの面積分率を高めて静動差を高めつつ、フェライトの固溶強化や結晶粒の微細化により静的強度を向上させ、さらに、第2相として、静的強度を高めることが可能なマルテンサイトのみならず、化学組成の制御により炭化物の生成が抑制されたベイナイトおよび/またはベイニティックフェライトをも存在させることで、静的強度および静動差が高度に向上された鋼板を得ることが可能であることを知得した。
 上記の知見に基づき提供される本発明の一態様は、質量%で、C: 0.07%以上0.2%以下、Si+Al:0.3%以上1.5%以下、Mn:1.0%以上3.0%以下、P:0.02%以下、S:0.005%以下、Cr:0.1%以上0.5%以下、N:0.001%以上0.008%以下を含有し、さらに、Ti:0.002%以上0.05%以下およびNb:0.002%以上0.05%以下の1種または2種を含有し、残部がFeおよび不純物からなる化学組成を有し、フェライトの面積分率が7%以上35%以下、フェライトの粒径が0.5μm以上3.0μm以下の範囲、およびフェライトのナノ硬さが3.5GPa以上4.5GPa以下の範囲にあり、フェライト以外の残部である第2相がベイニティックフェライトおよびベイナイトから選ばれた少なくとも一つとマルテンサイトとを含み、第2相の平均ナノ硬さは5GPa以上12GPa以下であり、第2相は8GPa以上12GPa以下の高硬質相を組織全体に対する面積分率として5%以上35%以下含有することを特徴とする複相熱延鋼板である。
 上記の化学組成が、さらに、質量%で、V:0.2%以下、Cu:0.2%以下、Ni:0.2%以下およびMo:0.5%以下からなる群から選ばれる1種または2種以上を含有していてもよい。
 本発明の他の一態様は、質量%で、C: 0.07%以上0.2%以下、Si+Al:0.3%以上1.5%以下、Mn:1.0%以上3.0%以下、P:0.02%以下、S:0.005%以下、Cr:0.1%以上0.5%以下、N:0.001%以上0.008%以下を含有し、さらに、Ti:0.002%以上0.05%以下およびNb:0.002%以上0.05%以下の1種または2種を含有し、残部がFeおよび不純物からなる化学組成を有するスラブを熱間連続圧延して熱延鋼板を製造する複相熱延鋼板の製造方法であって、次の工程を備える:
 最終仕上圧延において、800℃以上900℃以下の温度で、パス間時間0.15秒間以上2.7秒間以下で前記スラブを圧延して鋼板とすることを備える仕上圧延工程;
 仕上圧延工程により得られた鋼板を、600℃/秒以上の冷却速度で0.4秒間以内に700℃以下まで冷却することを備える第1の冷却工程;
 冷却工程を経た鋼板を570℃以上700℃以下の温度範囲で0.4秒間以上保持することを備える保持工程;および
 保持工程を経た鋼板を20℃/秒以上120℃/秒以下の冷却速度で430℃以下まで冷却することを備える第2の冷却工程。
 上記の化学組成が、さらに、質量%で、V:0.2%以下、Cu:0.2%以下、Ni:0.2%以下およびMo:0.5%以下からなる群から選ばれる1種または2種以上を含有していてもよい。
 本発明によれば、30/s以上500/s以下の歪速度域の領域においても静動差が大きい高張力熱延鋼板を安定して提供することができ、自動車用部材等に適用すればそれらの製品の衝突安全性を一段と改善することが期待されるなど、産業上、極めて有効な効果がもたらされる。
静動比指数の歪み速度依存性を示すグラフである。
 以下、本発明について詳細に説明する。なお、本明細書において、鋼の化学組成における元素の含有量を示す「%」は特に断りがない限り「質量%」を意味する。
 1.金属組織
 (1)フェライトの含有量
 フェライトは静動差を大きくする。さらに、複相組織鋼においては延性を向上させる。フェライトが面積分率で7%未満では所望の静動差が得られない。一方、フェライト量が面積分率で35%を超えると静的強度が低下する。したがって、フェライトの含有量は、面積分率で7%以上35%以下とする。フェライトは初析フェライトであることが好ましい。
 なお、面積分率の測定は次のように行うことが好ましい。対象となる熱延鋼板を圧延方向と平行な方向に切断し、圧延面から板厚方向に板厚の1/4の深さ中心側の部分(以下、「1/4板厚部」)における切断面を公知の方法により研摩して評価試料を得る。得られた評価試料をSEM(走査電子顕微鏡)などにより観察して、視野内のフェライトを特定する。特定されたフェライトの面積の総和を視野面積で除してフェライトの面積分率を求める。得られた面積分率の数値の信頼性を確保する観点から、複数の評価試料で同様の測定を行って面積分率を求め、得られた面積分率の平均値をその鋼板のフェライトの含有量とすることが好ましい。
 (2)フェライトの粒径
 静的強度を高めるためには、フェライト結晶粒の微細化が必要である。フェライト粒径が3.0μmを超えると所望の強度が得られない。したがって、フェライト粒径の上限は3.0μmとする。フェライト粒径はできるだけ微細であることが望ましい。しかしながら、現実的にはフェライトの粒径を安定的に0.5μm未満にすることは困難であり、工業的レベルでは実質的に不可能である。したがって、フェライト粒径の下限は0.5μmとする。
 なお、フェライトの粒径の測定は次のように行うことが好ましい。上記の要領で得られた評価試料をSEMなどで観察する。観察視野における複数のフェライトを任意に選択し、これらの粒径を円換算直径として求め、その平均値をフェライトの粒径とする。得られたフェライトの粒径の数値(円換算直径の平均値)の信頼性を確保する観点から、一視野内における測定数は可能な限り多いことが好ましい。また、複数の評価試料で同様の測定を行い、得られた複数の円換算直径の平均値を平均して、その鋼板のフェライトの粒径とすることが好ましい。
 (3)フェライトのナノ硬さ
 高強度化の観点から、フェライトの固溶強化が必要である。本発明において、フェライトの硬さはナノインデンテーション法を用いて評価し、バーコビッチ型圧子で、荷重500μNを付加したときに得られるナノ硬さを指標とする。フェライトのナノ硬さが3.5GPa以下では十分な強度が得られない。一方、フェライトのナノ硬さは高ければ高いほどいいが、合金元素の固溶限があるため、ナノ硬さが4.5GPaを超えることはない。したがって、フェライトのナノ硬さは3.5GPa以上、4.5GPa以下とする。
 なお、ナノ硬さの測定をナノインデンテーション法にて行うに当たり、試料の作製は次のようにして行えばよい。測定対象となる熱延鋼板を圧延方向と平行な方向に切断する。得られた切断面を公知の方法により加工層が除去されるように研摩して評価試料を得る。研摩は機械研摩、メカノケミカル研摩、および電解研摩を組み合わせることが好ましい。
 (4)フェライト以外の相
 フェライト以外の残部の相、すなわち第2相は硬質相からなる。硬質相として、ベイニティックフェライト、マルテンサイト、オーステナイトなどが一般に例示される。本発明に係る鋼板の第2相は、ベイニティックフェライトおよびベイナイトから選ばれた少なくとも一つ(以下、「ベイニティックフェライトおよび/またはベイナイト」という。)と、マルテンサイトとを含む。
 マルテンサイトは静的強度の向上に大きく寄与する。また、ベイニティックフェライトおよび/またはベイナイトは動的強度ならびに静動差の向上に大きく寄与する。マルテンサイトはベイニティックフェライトおよびベイナイトのいずれよりも硬度が高い。第2相の平均硬度はこれらの相の割合で決まる。これを利用して、第2相の平均ナノ硬さを調節する。第2相の平均ナノ硬さを5GPa以上12GPa以下とする。第2相の平均ナノ硬さが5GPa未満では高強度化に寄与しない。一方、12GPa超になると静動差が低下する。
 第2相における主成分がベイネティックフェライトおよび/またはベイナイトであること、すなわち第2相全体に対するベイネティックフェライトおよび/またはベイナイトの面積分率が50%超となることが好ましく、70%以上となることがさらに好ましい。第2相にはこの他に残留オーステナイトが含まれていてもよい。
 (5)高硬質相の含有量およびナノ硬さ
 硬質相からなる第2相において硬度が相対的に高い相(高硬質相)は静的強度の向上に寄与する。特にナノ硬さが8GPa以上12GPa以下の相は静的強度の向上に大きく寄与する。そこで、本発明では、第2相においてナノ硬さが8GPa以上12GPa以下の相を高硬質相と定義する。この高硬質相の含有量が組織全体に対する面積分率で5%未満では高強度が得られない。一方、この高硬質相は静動差を低下させ、組織全体に対する面積分率で35%を超えて含有させると、所望の動的強度が得られない。よって、高硬質相の含有量は組織全体に対する面積分率で5%以上35%以下とする。なお、第2相においてナノ硬さが8GPa以上12GPa以下の相は主としてマルテンサイトからなる。また、第2相においてナノ硬さが4.5GPa超、8GPa未満の相は主としてベイニティックフェライトからなる。
 2.鋼の化学組成
 (1)C:0.07%以上0.2%以下
 C含有量を適正な範囲に制御することにより、フェライト、マルテンサイト、ベイニティックフェライト、およびベイナイトの含有量が適切に調整される。これらの調整が適切に行われることにより、鋼板における静的強度および静動差が適切な範囲に確保される。すなわち、C含有量が0.07%未満では、フェライトの固溶強化が不十分であるうえに、ベイニティックフェライト、マルテンサイトおよびベイナイトが得られないので所定の強度が得られない。一方、C含有量が0.2%を超えると高硬質相が過剰に生成して、静動差を低下させる。よって、C含有量の範囲は、0.07%以上0.2%以下とする。C含有量の下限は0.10%以上が好ましく、0.12%以上がより好ましい。C含有量の上限は0.18%以下が好ましく、0.16%以下がより好ましい。
 (2)Si含有量およびAl含有量の総和:0.3%以上1.5%以下
Si含有量およびAl含有量の総和(本発明において「Si+Al」と表示する場合もある。)は、熱延および熱延後の冷却過程で生成する変態相の量や硬さに影響を及ぼす。具体的には、Si、Alは、ベイネティックフェライトおよび/またはベイナイトに含有される炭化物の生成を抑制して静動差を向上させる。また、Siは固溶強化作用も有する。上記観点から、Si+Alは0.3%以上とする。ただし、過度に添加しても上記効果は飽和し、かえって鋼を脆化させる。このため、Si+Alは1.5%以下とする。Si+Alは1.0%未満とすることが好ましい。また、Si含有量の下限は0.3%以上が好ましく、Si含有量の上限は0.7%以下が好ましい。Al含有量の下限は0.03%以上が好ましく、Al含有量の上限は0.7%以下が好ましい。
 (3)Mn:1.0%以上3.0%以下
 Mnは鋼の変態挙動に影響を及ぼす。したがって、Mn含有量を制御することにより、熱延および熱延後の冷却過程で生成する変態相の量や硬さが制御される。すなわち、Mn含有量が1.0%未満では、ベイニティックフェライト相やマルテンサイト相の生成量が少なく、所望の強度と静動差が得られない。3.0%を超えて添加すると、マルテンサイト相の量が過剰になり、かえって動的強度が低下する。よって、Mn含有量の範囲は、1.0%以上、3.0%以下とする。Mn含有量の下限は1.5%以上が好ましい。Mn含有量の上限は2.5%以下が好ましい。
 (4)P:0.02%以下、S:0.005%以下
 P、Sは不可避的不純物として鋼中に存在する。P含有量およびS含有量が多いと高速変形下で脆性破壊が生じ得る。これを抑制するため、P含有量を0.02%以下に、S含有量を0.005%以下に制限する。
 (5)Cr:0.1%以上0.5%以下
 Cr含有量は熱延および熱延後の冷却過程で生成する変態相の量や硬さに影響を及ぼす。具体的には、Crは、ベイニティックフェライト量を確保するのに有効な作用がある。また、ベイニティックフェライト中の炭化物の析出を抑制する。また、Cr自体、固溶強化作用を有する。このため、Crの含有量が0.1%未満では、所望の強度が得られない。一方、0.5%を超えて含有させても上記効果は飽和し、かえってフェライト変態を抑制する。したがって、Cr含有量は0.1%以上0.5%以下とする。
 (6)N:0.001%以上0.008%以下
 NはTiおよびNbと窒化物を生成し、結晶粒の粗大化を抑制する。Nの含有量が0.001%未満では、スラブ加熱時に結晶粒の粗大化が生じ、熱間圧延後の組織も粗大化する。一方、Nの含有量が0.008%を超えると、粗大な窒化物が生成するため、延性に悪影響を及ぼす。よって、N量の含有量は、0.001%以上0.008%以下とする。
 (7)Ti:0.002%以上0.05%以下
 Tiは窒化物および炭化物を形成する。後述するNbも同様に窒化物および炭化物を形成する。このため、NbおよびTiからなる群から選ばれる少なくとも一種を含有させる。生成したTiNは、結晶粒の粗大化防止に有効である。またTiCは静的強度を向上させる。しかしながら、Tiの含有量が0.002%未満では上記の効果が得られない。一方、0.05%を超えてTiを含有させると粗大な窒化物が生成して延性が低下する上に、フェライト変態を抑制する。よって、Tiを含有させる場合には、その含有量は0.002%以上0.05%以下とする。
 (8)Nb:0.002%以上0.05%以下
 NbはTiと同様に窒化物および炭化物を形成する。形成された窒化物はTi窒化物と同様に、オーステナイト相の結晶粒の粗大化防止に有効である。さらに、Nb炭化物は、フェライト相の結晶粒の粗大化防止や静的強度の向上に寄与する。さらには、固溶したNbも静的強度の向上に寄与する。しかし、0.002%未満では上記の効果は得られない。0.05%を超えて添加するとフェライト変態を抑制する。よって、Nbを添加する場合には、その含有量は0.002%以上0.05%以下とする。Nbを添加する場合のNb含有量の下限は0.004%以上が好ましい。Nb含有量の上限は0.02%以下が好ましい。
 (9)V:0.2%以下
 Vの炭窒化物は、低温オーステナイト域でオーステナイト相の結晶粒の粗大化防止に有効である。さらに、Vの炭窒化物は、フェライト相の結晶粒の粗大化防止に寄与する。したがって、本発明に係る鋼板は、Vを必要に応じて含有する。しかしながら、含有量が0.01%未満では上記の効果を安定的に得られない。一方、0.2%を超えて添加すると、析出物が増加し、静動差が小さくなる。よって、Vを添加する場合には、その含有量は0.01%以上0.2%以下とすることが好ましく、0.02%以上0.1%以下とすることがさらに好ましい。V含有量の下限は0.02%以上がより好ましい。V含有量の上限は0.1%以下がより好ましい。
 (10)Cu:0.2%以下
 Cuは、析出強化や固溶強化により鋼板の強度を一層向上させる作用を有する。したがって、本発明に係る鋼板はCuを必要に応じて含有してもよい。しかしながら、0.2%を超えてCuを添加すると加工性の低下が著しくなる。また、上記の効果を安定的に得る観点からCu含有量を0.02%以上とすることが好ましい。よって、Cuを添加する場合にはその含有量を0.2%以下とするべきであり、0.02%以上0.2%以下とすることが好ましい。
 (11)Ni:0.2%以下
 Niも析出強化や固溶強化により鋼板の強度を一層向上させる作用を有する。したがって、本発明に係る鋼板は、Niを必要に応じて含有してもよい。しかしながら、0.2%を超えてNiを添加すると加工性の低下が著しくなる。また、上記の効果を安定的に得る観点からNi含有量を0.02%以上とすることが好ましい。よって、Niを添加する場合にはその含有量を0.2%以下とするべきであり、0.02%以上0.2%以下とすることが好ましい。
 (12)Mo:0.5%以下
 Moは、炭化物または窒化物として析出し、鋼板の強度を高める作用を有する。また、これらの析出物は、オーステナイトやフェライトの粗大化を抑制し、フェライト結晶粒の微細化を促進する作用も有する。さらに、高温の熱処理を施す場合には粒成長を抑制する作用も有する。したがって、本発明に係る鋼板は、Moを必要に応じて含有してもよい。しかしながら、0.5%を超えてMoを添加すると、熱間圧延に供する前の段階において粗大な炭化物または窒化物が鋼中に多量に析出してしまい、熱延鋼板の加工性の劣化を招く。また、多量の炭化物や窒化物の析出により歪時効硬化特性が低下する。さらに、上記の効果を安定的に得る観点からMo含有量を0.02%以上とすることが好ましい。よって、Moを添加する場合にはその含有量を0.5%以下とするべきであり、0.02%以上0.5%以下とすることが好ましい。
 3.製造方法
 本発明に係る熱延鋼板は、上記の金属組織と化学組成とを有していることにより、高い静的強度のみならず優れた静動差を広い範囲の歪速度領域にわたって安定的に得ることが可能である。本発明に係る熱延鋼板の製造方法は特に限定されないが、以下の圧延条件を有する熱間圧延工程を備える製造方法を採用することにより、本発明に係る熱延鋼板を安定的に製造することが達成される。
 本発明に係る製造方法は次の工程を備える:
 最終仕上圧延において、800℃以上900℃以下の温度で、パス間時間0.15秒間以上2.7秒間以下で前記スラブを圧延して鋼板とすることを備える仕上圧延工程、
 仕上圧延工程により得られた鋼板を、600℃/秒以上の冷却速度で0.4秒間以内に700℃以下まで冷却することを備える第1の冷却工程、
 冷却工程を経た鋼板を570℃以上700℃以下の温度範囲で0.4秒間以上保持することを備える保持工程、および
 保持工程を経た鋼板を20℃/秒以上120℃/秒以下の冷却速度で430℃以下まで冷却することを備える第2の冷却工程。
 本発明に係る熱延鋼板の製造方法は、熱間での多パス圧延時の加工熱処理により細粒組織を得る。仕上圧延工程での最終仕上げ圧延の温度・パス間時間を調整し、第1の冷却工程において、0.4秒間以内に600℃/秒以上の冷却速度で急速急冷することでオーステナイトの再結晶を抑制しフェライト粒径が3.0μm以下となる細粒組織を得られる。
 保持工程ではフェライト変態温度域での保持が行われるため、上記の工程により生成された加工オーステナイトからフェライト変態が行われる。フェライト変態に必要な温度は570~700℃であり、その時間は0.4秒間以上である。
 その後、第2の冷却工程を実施することにより、フェライト変態しなかった残部をベイニティックフェライトおよび/またはベイナイトとマルテンサイトとからなる複相に変態させる。具体的には、20℃/秒以上120℃/秒以下の冷却速度で430℃以下まで冷却する。好ましくは50℃/秒以上100℃/秒未満の冷却速度で300℃以下まで冷却する。
 4.機械特性
 以上のように得られた熱延鋼板は、優れた動的強度特性を有する。具体的には歪速度が30/秒以上の歪速度域で優れた動的強度特性を有する。一部の熱延鋼板では10/秒以上の歪速度域で優れた動的強度特性を有する。
 本発明では、動的強度は、下記(1)式に示す鋼板の静動比と歪速度の関係から評価される。
Figure JPOXMLDOC01-appb-M000001
 なお、(1)式は材料強度の歪速度依存性を考慮するための代表的なモデルであるCowper-Symondsモデルの構成式((2)式)に対し、動的引張強度および静的引張強度に対しても(3)式に類似する関係が成立することを知見し、(3)式のように(2)式を整理した上で定数を決定したものである。
Figure JPOXMLDOC01-appb-M000002
 (1)式左辺は静動比(σ/σ0)を指数化したもの(以下、「静動比指数」という。)であり、静動比(σ/σ0)が大きいほど、静動比指数も大きくなる。一般に歪速度が大きくなると静動比は高くなり、静動比の増大に伴い静動比指数も大きくなる。静動比指数と歪速度の関係を調査したところ、静動比の高い鋼板は歪速度の増加に対して静動比指数の増加率が大きいことが判明した。
 そこで発明者らはこれに着目し両者の関係を詳細に調査した。その結果、(1)式を満足する鋼板は、自動車の走行中の衝突を仮想した場合に対応する歪速度30/秒以上の歪速度域、あるいは一部の熱延鋼板ではさらに低歪速度側を含む歪速度10/秒以上の歪速度域で高い静動比を有する鋼板であると判別できることが分かった。
 上記の知見に基づき、本発明において、静動差が大きい熱延鋼板か否かの判別は、(1)式を用いて行った。即ち、本発明に係る熱延鋼板は(1)式を歪速度が30/秒以上の歪速度域において満足する熱延鋼板である。
 表1に示す化学成分を有する鋼種A~Jからなるスラブ(厚さ35mm、幅160~250mm、長さ70~90mm)を用いて実験を行った。鋼種A~C,E,F,H~Jは本発明に係る上記の化学組成の範囲内にある化学組成を有する鋼である。鋼D,Gは本発明に係る上記の化学組成の範囲外にある化学組成を有する鋼である。
Figure JPOXMLDOC01-appb-T000003
 いずれの鋼も150kgを真空溶製後、炉内温度1250℃で加熱した後、900℃以上の温度で熱間鍛造を行いスラブとした。いずれのスラブも1250℃で1時間以内の再加熱後、4パスの粗圧延を経た後、3パスの仕上圧延を施した。熱間圧延後のサンプル鋼板の厚さは1.6~2.0mmであった。熱間圧延および冷却条件は表2に示す。
Figure JPOXMLDOC01-appb-T000004
 試験番号1,2,5~9,12~14の鋼板は本発明に係る製造方法により製造したものである。試験番号3の鋼板の製造方法では、仕上圧延工程ならびに第1および第2の冷却工程が本発明に係る条件では実施されなかった。
 試験番号4の鋼板の製造方法では、圧延終了後700℃以下に冷却されるまでの時間および第2の冷却工程が本発明に係る条件では実施されなかった。
 試験番号10の鋼板の製造方法では、圧延終了後700℃以下に冷却されるまでの時間および第2の冷却工程が本発明に係る条件では実施されなかった。
 試験番号11の鋼板の製造方法では、圧延終了後700℃以下に冷却されるまでの時間および第1の冷却工程以降の工程が本発明に係る条件では実施されなかった。
 上記の製造方法により得られたサンプル鋼板の金属組織の評価結果ならびに静的引張強度および静動比の評価結果を表3に示す。各評価方法は以下のとおりである。
Figure JPOXMLDOC01-appb-T000005
 なお、表1から3における下線を付した数値および第2相の組織構成は、本発明の範囲外であることを示している。
 各相の含有比率およびナノ硬さの評価は、サンプル鋼板の圧延方向に平行な断面における、1/4板厚部について、それぞれ下記の測定を行うことにより実施した。
 フェライトおよび硬質相のナノ硬さは、ナノインデンテーション法によって求めた。用いたナノインデンテーション装置はHysitron社製[Triboscope]であった。サンプル鋼板の1/4板厚部の断面をエメリー紙で研磨後、コロイダルシリカにてメカノケミカル研磨を行い、さらに電解研磨することにより加工層が除去された断面を得た。この断面を試験に供した。ナノインデンテーションは先端角度が90°のBerkovich(バーコビッチ)型圧子を用い、室温、大気雰囲気下で、押し込み荷重500μNで行った。各相について、ランダムに20点測定し、それぞれ最小ナノ硬さ、最大ナノ硬さ、および平均値を求めた。
 フェライトの面積分率および粒径は、走査電子顕微鏡を用いて1/4板厚部の断面を倍率3000倍で観察し、得られた2次元画像から求めた。具体的には、得られた画像内におけるフェライトを特定し、それらの面積を測定し、フェライトによる面積の総和を画像全体の面積で除して面積分率とした。また、特定されたフェライトは個別に画像解析を行い、円換算直径を求め、それらの平均値をフェライトの粒径とした。
 ナノ硬さが8~12GPaの高硬質相の面積分率は以下のようにして求めた。
 任意に抽出した10μm×10μmの範囲内をナノインデンテーション装置が持つ原子間力顕微鏡で観察し、2次元画像を得た。得られた2次元画像において見られる結晶のコントラストの相違によりその結晶がフェライトであるか第2相であるかは識別可能であるから、得られた画像に基づき、第2相である結晶を特定した。第2相であると特定されたすべての結晶について、ナノインデンテーションで硬さを測定した。測定された結晶のうち、ナノ硬さが8~12GPaであるものを高硬質相であると判定した。高硬質相であると判定された結晶の面積の総和から高硬質相の面積分率を求めた。
 静的引張強度および動的強度は検力ブロック式材料試験機を用いて測定した。試験片のサイズは、ゲージ幅2mm、ゲージ長4.8mmである。静的引張強度は、歪速度0.001/sのときの引張強度、すなわち準静的強度から求めた。さらに歪速度を0.001/s~1000/sの範囲で変化させて引張試験を行い、静動比指数の歪速度依存性を求める、動的強度を評価した。判断基準は次のとおりである。すなわち、30/s以上の歪速度域で上記式(1)を満足する場合に動的強度特性に優れると判定し、10/s以上の歪速度域で上記式(1)を満足する場合には動的強度特性に特に優れると判定した。
 図1に各サンプル鋼板で得られた静動比指数と歪速度との関係を示す。
 試験番号3、4、10および11の鋼板では30/s以上の歪速度域で(1)式を満足しない。したがって、これらの鋼板は優れた動的強度特性を有しないと判定された。
 一方、一方、1、2、5~9、12~14の鋼板は、極低歪速度側で静動比指数が(1)式を満たさないものの、10~30/sの歪速度域に変局点を有し、静動比指数は急激に増加する。これらの鋼板はいずれも30/s以上の歪速度域で(1)式を満足するので、優れた動的強度特性を有すると判定された。このような鋼板は自動車用衝突部材として好適に使用される。特に試験番号1、5および9の鋼板はより低い歪速度である10/s以上の歪速度でも(1)式を満足するので、特に優れた動的強度特性を有すると判定された。このような鋼板は自動車用衝突部材として特に好適に使用される。

Claims (6)

  1.  質量%で、
      C:0.07%以上0.2%以下、
      Si+Al:0.3%以上1.5%以下、
      Mn:1.0%以上3.0%以下、
      P:0.02%以下、
      S:0.005%以下、
      Cr:0.1%以上0.5%以下、
      N:0.001%以上0.008%以下
    を含有し、
     さらに、Ti:0.002%以上0.05%以下およびNb:0.002%以上0.05%以下の1種または2種を含有し、
    残部がFeおよび不純物からなる化学組成を有し、
     フェライトの面積分率が7%以上35%以下、フェライトの粒径が0.5μm以上3.0μm以下の範囲、およびフェライトのナノ硬さが3.5GPa以上4.5GPa以下の範囲にあり、
     フェライト以外の残部である第2相がベイニティックフェライトおよびベイナイトから選ばれた少なくとも一つとマルテンサイトとを含み、第2相の平均ナノ硬さは5GPa以上12GPa以下であり、
     第2相は8GPa以上12GPa以下の高硬質相を組織全体に対する面積分率として5%以上35%以下含有する
    ことを特徴とする複相熱延鋼板。
  2.  前記化学組成が、さらに、質量%で、
         V:0.2%以下
    を含有することを特徴とする請求項1に記載の複相熱延鋼板。
  3.  前記化学組成が、さらに、質量%で、Cu:0.2%以下、Ni:0.2%以下およびMo:0.5%以下からなる群から選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の複相熱延鋼板。
  4.  質量%で、
      C:0.07%以上0.2%以下、
      Si+Al:0.3%以上1.5%以下、
      Mn:1.0%以上3.0%以下、
      P:0.02%以下、
      S:0.005%以下、
      Cr:0.1%以上0.5%以下、
      N:0.001%以上0.008%以下
    を含有し、
     さらに、Ti:0.002%以上0.05%以下およびNb:0.002%以上0.05%以下の1種または2種を含有し、残部がFeおよび不純物からなる化学組成を有するスラブを熱間連続圧延して熱延鋼板を製造する複相熱延鋼板の製造方法であって、次の工程を備える:
     最終仕上圧延において、800℃以上900℃以下の温度で、パス間時間0.15秒間以上2.7秒間以下で前記スラブを圧延して鋼板とすることを備える仕上圧延工程;
     仕上圧延工程により得られた鋼板を、600℃/秒以上の冷却速度で0.4秒間以内に700℃以下まで冷却することを備える第1の冷却工程;
     冷却工程を経た鋼板を570℃以上700℃以下の温度範囲で0.4秒間以上保持することを備える保持工程;および
     保持工程を経た鋼板を20℃/秒以上120℃/秒以下の冷却速度で430℃以下まで冷却することを備える第2の冷却工程。
  5.  前記化学組成が、さらに、質量%で、
         V:0.2%以下
    を含有することを特徴とすることを特徴とする請求項3に記載の複相熱延鋼板の製造方法。
  6.  前記化学組成が、さらに、質量%で、Cu:0.2%以下、Ni:0.2%以下およびMo:0.5%以下からなる群から選ばれる1種または2種以上を含有することを特徴とする請求項4または5に記載の複相熱延鋼板の製造方法。
PCT/JP2011/058816 2010-04-28 2011-04-07 動的強度に優れた複相熱延鋼板およびその製造方法 WO2011135997A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012512750A JP5240407B2 (ja) 2010-04-28 2011-04-07 動的強度に優れた複相熱延鋼板およびその製造方法
EP11774781.6A EP2565288B8 (en) 2010-04-28 2011-04-07 Multi-phase hot-rolled steel sheet having improved dynamic strength and a method for its manufacture
ES11774781T ES2744579T3 (es) 2010-04-28 2011-04-07 Chapa de acero laminada en caliente mediante varias fases con una resistencia dinámica mejorada y un método para su fabricación
CN201180032237.2A CN102959119B (zh) 2010-04-28 2011-04-07 动态强度优异的多相热轧钢板及其制造方法
KR1020127030777A KR101449228B1 (ko) 2010-04-28 2011-04-07 동적 강도가 뛰어난 복상 열연강판 및 그 제조 방법
US13/643,696 US10041158B2 (en) 2010-04-28 2011-04-07 Multi-phase hot-rolled steel sheet having improved dynamic strength and a method for its manufacture
PL11774781T PL2565288T3 (pl) 2010-04-28 2011-04-07 Wielofazowa blacha stalowa cienka walcowana na gorąco o zwiększonej wytrzymałości dynamicznej i sposób jej wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/057588 WO2011135700A1 (ja) 2010-04-28 2010-04-28 動的強度に優れた複相熱延鋼板およびその製造方法
JPPCT/JP2010/057588 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135997A1 true WO2011135997A1 (ja) 2011-11-03

Family

ID=44861042

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/057588 WO2011135700A1 (ja) 2010-04-28 2010-04-28 動的強度に優れた複相熱延鋼板およびその製造方法
PCT/JP2011/058816 WO2011135997A1 (ja) 2010-04-28 2011-04-07 動的強度に優れた複相熱延鋼板およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057588 WO2011135700A1 (ja) 2010-04-28 2010-04-28 動的強度に優れた複相熱延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10041158B2 (ja)
EP (1) EP2565288B8 (ja)
KR (1) KR101449228B1 (ja)
CN (1) CN102959119B (ja)
ES (1) ES2744579T3 (ja)
PL (1) PL2565288T3 (ja)
WO (2) WO2011135700A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037595A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱延鋼板の製造方法
JP2014037594A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱延鋼板
JP2015124411A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板の製造方法
JP2015203124A (ja) * 2014-04-11 2015-11-16 新日鐵住金株式会社 熱延鋼板およびその製造方法
EP2933346A4 (en) * 2012-12-11 2016-01-20 Nippon Steel & Sumitomo Metal Corp COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
JP6332570B1 (ja) * 2017-03-31 2018-05-30 新日鐵住金株式会社 熱間圧延鋼板および鋼製鍛造部品ならびにそれらの製造方法
WO2021136352A1 (zh) * 2019-12-31 2021-07-08 宝山钢铁股份有限公司 低碳低成本超高强复相钢板/钢带及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013009277A2 (pt) * 2010-10-18 2016-07-26 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a quente, laminada a frio e revestida tendo ductilidade local e uniforme melhoradas a uma alta taxa de tensão
KR101447012B1 (ko) * 2012-06-22 2014-10-07 한국원자력연구원 금속합금 구조재의 응력부식균열에 대한 비파괴적 평가방법 및 그 금속구조재의 잔여수명 평가방법
CN103215516B (zh) * 2013-04-09 2015-08-26 宝山钢铁股份有限公司 一种700MPa级高强度热轧Q&P钢及其制造方法
EP2975146A1 (en) * 2014-07-16 2016-01-20 Uddeholms AB Cold work tool steel
CN111133121B (zh) * 2017-11-24 2021-07-20 日本制铁株式会社 热轧钢板及其制造方法
WO2019103121A1 (ja) * 2017-11-24 2019-05-31 日本製鉄株式会社 熱延鋼板及びその製造方法
CN107858595A (zh) * 2017-11-29 2018-03-30 宁波市鸿博机械制造有限公司 一种液压泵花键轴
CN109881104B (zh) * 2019-03-20 2020-10-30 首钢集团有限公司 一种580MPa级热轧酸洗双相钢及其制备方法
CN110551878B (zh) * 2019-10-12 2021-06-08 东北大学 一种超高强度超高韧性低密度双相层状钢板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243226A (ja) * 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
JPS62174322A (ja) * 1985-10-15 1987-07-31 Kobe Steel Ltd 冷間加工性にすぐれる低降伏比高張力鋼板の製造方法
JP2000008136A (ja) * 1998-06-19 2000-01-11 Kawasaki Steel Corp 伸びフランジ性、耐遅れ破壊特性に優れる高強度鋼板
JP2004084074A (ja) 2003-12-08 2004-03-18 Jfe Steel Kk 耐衝撃性に優れる熱延鋼板
JP2005305454A (ja) * 2004-04-16 2005-11-04 Sumitomo Metal Ind Ltd 微細粒熱延鋼板の製造方法
JP2006161077A (ja) 2004-12-03 2006-06-22 Honda Motor Co Ltd 高強度鋼板及びその製造方法
JP3958842B2 (ja) 1997-07-15 2007-08-15 新日本製鐵株式会社 動的変形特性に優れた自動車衝突エネルギ吸収用加工誘起変態型高強度鋼板
JP2008189984A (ja) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd 熱延鋼板及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU711873B2 (en) * 1996-11-28 1999-10-21 Nippon Steel & Sumitomo Metal Corporation High-strength steels having high impact energy absorption properties and a method for producing the same
EP2312008B1 (en) * 1997-01-29 2012-03-14 Nippon Steel Corporation High-strength steels having high impact energy absorption properties.
DE60124999T2 (de) * 2000-02-23 2007-03-15 Jfe Steel Corp. Hochfestes warmgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaften und herstellungsverfahren dafür
FR2830260B1 (fr) * 2001-10-03 2007-02-23 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
JP3764411B2 (ja) * 2002-08-20 2006-04-05 株式会社神戸製鋼所 焼付硬化性に優れた複合組織鋼板
ES2256378T3 (es) * 2002-09-11 2006-07-16 Thyssenkrupp Steel Ag Acero ferritico/martensitico altamente resistente con estructura muy fina.
US8828154B2 (en) * 2005-03-31 2014-09-09 Jfe Steel Corporation Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
CN102242306B (zh) * 2005-08-03 2013-03-27 住友金属工业株式会社 热轧钢板及冷轧钢板及它们的制造方法
JP5095958B2 (ja) * 2006-06-01 2012-12-12 本田技研工業株式会社 高強度鋼板およびその製造方法
PL1918403T3 (pl) * 2006-10-30 2009-10-30 Thyssenkrupp Steel Ag Sposób wytwarzania płaskich produktów stalowych ze stali tworzącej strukturę martenzytyczną
US20090301613A1 (en) * 2007-08-30 2009-12-10 Jayoung Koo Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US20110079328A1 (en) * 2008-05-26 2011-04-07 Tatsuo Yokoi High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same
JP5712484B2 (ja) * 2008-12-26 2015-05-07 Jfeスチール株式会社 溶接熱影響部および母材部の耐延性き裂発生特性に優れた鋼材およびその製造方法。

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243226A (ja) * 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
JPS62174322A (ja) * 1985-10-15 1987-07-31 Kobe Steel Ltd 冷間加工性にすぐれる低降伏比高張力鋼板の製造方法
JP3958842B2 (ja) 1997-07-15 2007-08-15 新日本製鐵株式会社 動的変形特性に優れた自動車衝突エネルギ吸収用加工誘起変態型高強度鋼板
JP2000008136A (ja) * 1998-06-19 2000-01-11 Kawasaki Steel Corp 伸びフランジ性、耐遅れ破壊特性に優れる高強度鋼板
JP2004084074A (ja) 2003-12-08 2004-03-18 Jfe Steel Kk 耐衝撃性に優れる熱延鋼板
JP2005305454A (ja) * 2004-04-16 2005-11-04 Sumitomo Metal Ind Ltd 微細粒熱延鋼板の製造方法
JP2006161077A (ja) 2004-12-03 2006-06-22 Honda Motor Co Ltd 高強度鋼板及びその製造方法
JP2008189984A (ja) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd 熱延鋼板及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037595A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱延鋼板の製造方法
JP2014037594A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 熱延鋼板
EP2933346A4 (en) * 2012-12-11 2016-01-20 Nippon Steel & Sumitomo Metal Corp COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
US10273566B2 (en) 2012-12-11 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
JP2015124411A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板の製造方法
JP2015203124A (ja) * 2014-04-11 2015-11-16 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP6332570B1 (ja) * 2017-03-31 2018-05-30 新日鐵住金株式会社 熱間圧延鋼板および鋼製鍛造部品ならびにそれらの製造方法
WO2018179389A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 熱間圧延鋼板および鋼製鍛造部品ならびにそれらの製造方法
WO2021136352A1 (zh) * 2019-12-31 2021-07-08 宝山钢铁股份有限公司 低碳低成本超高强复相钢板/钢带及其制造方法

Also Published As

Publication number Publication date
WO2011135700A1 (ja) 2011-11-03
PL2565288T3 (pl) 2019-12-31
US20130098515A1 (en) 2013-04-25
CN102959119A (zh) 2013-03-06
KR101449228B1 (ko) 2014-10-08
KR20130008622A (ko) 2013-01-22
EP2565288B1 (en) 2019-06-12
ES2744579T3 (es) 2020-02-25
EP2565288A1 (en) 2013-03-06
CN102959119B (zh) 2015-04-01
US10041158B2 (en) 2018-08-07
EP2565288B8 (en) 2019-08-14
EP2565288A4 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2011135997A1 (ja) 動的強度に優れた複相熱延鋼板およびその製造方法
JP5370593B2 (ja) 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板
EP2847362B1 (en) Automotive chassis part made from high strength formable hot rolled steel sheet
JP5660250B2 (ja) 鋼材
JP4692259B2 (ja) 成形性および形状凍結性に優れる高強度鋼板
JP5858174B2 (ja) 低降伏比高強度冷延鋼板およびその製造方法
EP1956100A1 (en) Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
WO2007116913A1 (ja) 硬質極薄鋼板およびその製造方法
EP3604586A1 (en) Hot-rolled steel sheet
KR20170107057A (ko) 고강도 냉연 강판 및 그의 제조 방법
KR101657017B1 (ko) 강재
EP3705593A1 (en) Hot-rolled steel sheet and manufacturing method therefor
KR20180069030A (ko) 고강도 열연 강판 및 그 제조 방법
EP3502292B1 (en) Hot-rolled steel sheet
CN114829654A (zh) 热轧钢板
JP2012197516A (ja) 熱延鋼板の製造方法
JP5240407B2 (ja) 動的強度に優れた複相熱延鋼板およびその製造方法
EP3925771A1 (en) High strength steel product and method of manufacturing the same
JP5035297B2 (ja) 熱延鋼板およびその製造方法
JP2021147646A (ja) 高強度鋼板およびその製造方法
JP2004137564A (ja) 熱延鋼材及びその製造方法
EP3926064B1 (en) High strength strip steel product and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032237.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512750

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127030777

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13643696

Country of ref document: US