WO2011135698A1 - 変形計測方法 - Google Patents

変形計測方法 Download PDF

Info

Publication number
WO2011135698A1
WO2011135698A1 PCT/JP2010/057584 JP2010057584W WO2011135698A1 WO 2011135698 A1 WO2011135698 A1 WO 2011135698A1 JP 2010057584 W JP2010057584 W JP 2010057584W WO 2011135698 A1 WO2011135698 A1 WO 2011135698A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference pattern
image
phase
phase shift
deformation
Prior art date
Application number
PCT/JP2010/057584
Other languages
English (en)
French (fr)
Inventor
陽 今泉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to PCT/JP2010/057584 priority Critical patent/WO2011135698A1/ja
Priority to JP2012512593A priority patent/JP5518187B2/ja
Priority to US13/090,163 priority patent/US8363977B2/en
Publication of WO2011135698A1 publication Critical patent/WO2011135698A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • G01B11/162Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means by speckle- or shearing interferometry

Definitions

  • the present invention relates to a method for measuring a deformation amount of an object in a non-contact manner, and more particularly, to a deformation measurement method for measuring a minute deformation amount generated by pressing an industrial product in a non-contact manner.
  • FIG. 5 shows a speckle interferometer described in Patent Document 1.
  • the laser beam emitted from the He—Ne laser light source 2 is reflected by the mirror 3 and enters the semi-transparent mirror 6 to separate the reference object 7 and the object 8 to be measured in the direction in which they are placed.
  • the light (measurement light) reflected by the surface of the object 8 to be measured again passes through the semi-transparent mirror 6 and reaches the camera 11, and the light (reference light) reflected by the surface of one reference object 7 is reflected by the semi-transparent mirror 6.
  • 11 is reflected to reach the camera 11.
  • the camera 11 can image a speckle-like interference pattern that is generated when the object light and the reference light interfere with each other. This speckle interference image is picked up again after a certain time, and the difference from the original speckle interference pattern image is taken to measure how much deformation has occurred in the object 8 to be measured.
  • an image of a grid pattern or moire pattern projected by a projector or the like on the object to be measured and a technique for measuring the shape / deformation of the object to be measured from the modulation of the pattern, or an interference pattern using optical interference
  • a technique for measuring the shape and deformation with high accuracy is known.
  • the brightness and darkness of the captured pattern is regarded as a vibration waveform, and a process called sub-fringe analysis for analyzing the phase of this waveform is performed. Since the phase of the waveform is proportional to the shape of the object to be measured, high-resolution shape measurement and deformation measurement can be realized by detecting the phase with high accuracy from the captured pattern.
  • the phase shift method is generally known as a method capable of analyzing the object to be measured with high resolution.
  • the phase shift method first, an original pattern light is irradiated onto an object to be measured, and then the image is taken. Then, by applying a known phase change (phase shift) to the pattern light, a plurality of irradiated images are obtained, and the phase of the image by the original pattern light is calculated from the change in the brightness value at each point on the image. is there.
  • the photographed image includes amplitude and background components as unknown components in addition to the phase. Therefore, in order to calculate the phase information, it is necessary to simultaneously acquire at least two different phase shift images in addition to the original image. Therefore, a technique is known in which measuring light and reference light are each separated into three to provide an optical path, a phase difference is generated by providing a refractive medium in the optical path of the reference light, and a plurality of phase shift images are acquired simultaneously. (Patent Document 2).
  • the deformation amount is calculated from a simple difference between the intensity distributions of the two speckle interference pattern images. For this reason, the order of millimeters from micrometer is sufficient, but there is a problem that the resolution is not sufficient to measure extremely fine deformation such as nanometers, and there is a limit in elucidating the deformation process of the object to be measured. there were.
  • An object of the present invention is to provide a deformation measuring method capable of measuring a deformation amount of a measured object with high resolution at low cost without complicating the apparatus.
  • an invention provides a deformation measurement method for measuring a deformation amount of the measurement object from a phase change amount of an interference pattern generated by irradiating the measurement object with light.
  • a step of calculating by a calculating means The phase of the first interference pattern image and the amount of phase change; Calculating a phase shift image for the second interference pattern image based on the known phase shift amount; Calculating a deformation amount of the object to be measured based on the second interference pattern image and a phase shift image with respect to two or more calculated second interference pattern images; It is a deformation
  • phase shift image of an object to be measured having a known phase shift amount is acquired at the start of measurement, then a phase shift image at an arbitrary time can be obtained by calculation without photographing. Can do. Therefore, deformation measurement with high resolution and low cost can be realized.
  • a laser light source 201 is used as a light source.
  • a He—Ne laser light source having a wavelength of 632.8 nm is used.
  • the laser light emitted from the laser light source 201 is branched into two light beams by the beam splitter 202.
  • One of the branched light beams enters a phase shifter 203 for changing the optical path length and realizing phase shift.
  • the phase shifter 203 includes a triangular mirror 203a, a corner cube mirror 203b, and a PZT actuator 203c.
  • the triangular mirror 203a is a mirror formed by two orthogonal surfaces of a right-angled isosceles triangular prism.
  • the light beam incident on the mirror surface of the triangular mirror 203a is incident on the corner cube mirror 203b with the optical axis bent by 90 °.
  • the corner cube mirror 203b has a configuration in which two mirrors are arranged at an angle of 90 °, and reflects incident light in the opposite direction while moving in parallel.
  • the light beam reflected by the corner cube mirror 203b is incident on the triangular mirror 203a again, and is emitted with the optical axis bent by 90 °.
  • a PZT actuator 203c is connected to the back surface of the corner cube mirror 203b, and the position of the corner cube mirror 203b can be moved minutely.
  • the optical path length in the phase shifter 203 can be changed in accordance with the minute movement amount, and when two light beams interfere with each other, the phase shift can be executed with a known phase shift amount.
  • the phase shifter is not limited to that described in this embodiment.
  • phase shifter of a type in which a transparent substrate can be rotated in a plane including an optical path and arranged so as to intersect the optical path, and the phase of light passing through the transparent substrate is changed depending on the rotation angle of the transparent substrate.
  • Any desired phase shifter may be used as long as it can be applied to light passing through a known phase shift amount.
  • One of the two light beams branched by the beam splitter 202 enters the reflection mirror 204a via the phase shifter 203 and is reflected. Thereafter, the light enters the concave lens 205a and changes to a spherical wave, and then becomes parallel light by the collimating lens 206a.
  • the beam passes through the beam splitter 202 and reaches the reflecting mirror 204b, and becomes parallel light by the collimating lens 206b via the concave lens 205b.
  • the above two parallel lights are irradiated so as to overlap with a region to be measured on the surface of the object 207 fixed on a stage (not shown).
  • the stage has a known tensile test mechanism that sandwiches and supports the object to be measured so that a tensile stress can be applied in the longitudinal direction, and the object to be measured 207 can be pulled to an arbitrary length.
  • the magnitude of the deformation amount for one cycle of the interference intensity change is determined according to the irradiation angle of the two light beams.
  • the amount of deformation d ⁇ for one period is expressed by Equation 1 from the incident angles ⁇ a and ⁇ b of the two lights irradiated to the object to be measured.
  • Equation 1 ⁇ is the wavelength of the laser beam used, and is 632.8 nm in this embodiment. Since the irradiation angles ⁇ a and ⁇ b are both 45 °, in this embodiment, the magnitude d ⁇ of the deformation amount for one period of the interference intensity change is 447.5 nm.
  • the object to be measured used in this example is shown in FIG.
  • a plate made of stainless steel SUS304 and processed into a dumbbell No. 1 (JIS standard) shape having a length of 120 mm and a thickness of 0.01 mm is used as the object to be measured 207.
  • the surface state of the DUT 207 is optically rough.
  • the two irradiated parallel lights are scattered and interfered on the surface of the object to be measured 207 to generate a speckle interference pattern.
  • the generated speckle interference pattern is imaged on the element surface of the image sensor 209 by the imaging lens 208 and recorded as a digital image by the image sensor 209.
  • a CCD camera is used as the image sensor 209.
  • a CCD camera having a pixel number of 640H ⁇ 480V and capable of capturing a moving image at a maximum speed of 30 frames / second is used.
  • the digital image information captured by the image sensor 209 is stored in the memory of the computer 210.
  • Deformation measurement is performed by performing data processing using digital image information stored in the computer 210.
  • the time-series deformation measurement of the object to be measured 207 is performed using the above speckle interference optical system.
  • deformation measurement is performed when the object to be measured 207 is stretched to 100 ⁇ m at a speed of 10 ⁇ m / s.
  • Step 101, Step 102 First, an image of a speckle interference pattern in a stationary state and a phase shift image for the speckle interference pattern are captured.
  • three phase shift images were acquired. Different known phase shift amounts are ⁇ / 2, ⁇ , and 3 ⁇ / 2, respectively.
  • the PZT actuator 203c of the phase shifter 203 in FIG. 1 is moved from the initial state by 79.1 nm, 158.2 nm, and 237.3 nm, respectively, and a phase shift image is captured.
  • the round trip optical path length can be displaced by displacing the corner cube mirror 203b with respect to the triangular mirror 203a. What is necessary is just to give the amount of displacement.
  • the phase shift amount may be arbitrarily determined. In order to determine the three unknowns of phase ⁇ 0 , amplitude A, and bias B in the following steps, it is sufficient to acquire at least two phase shift images in addition to the speckle interference pattern image. In order to simplify the calculation above, three were obtained.
  • Step 103 an image of the speckle interference pattern in the deformation process is taken.
  • the imaging cycle is performed at a rate of one sheet every 0.5 seconds.
  • (X, y) attached to the intensity distribution I of the interference pattern image indicates a coordinate system on the imaging surface of the imaging device 209.
  • the subscript attached to I indicates that the left subscript represents time, “0” indicates the start of measurement, and “1” indicates 2 seconds later.
  • the subscript on the right side indicates a phase shift image, “0” indicates a speckle interference pattern image, and in order from “1” indicates a phase shift image.
  • I 0-1 (x, y) represents a phase shift image having a phase shift amount of ⁇ / 2 with respect to the speckle interference pattern at the start of measurement
  • I 1-0 (x, y) represents The speckle interference pattern acquired after 2 seconds is shown.
  • the types of subscripts on the right side are 1, 2, and 3.
  • Step 104-1 A method for calculating the phase ⁇ 0 , the amplitude A, and the bias B of the speckle interference pattern image I 0 using the captured phase shift image will be described.
  • the captured phase shift images have phase shift amounts of ⁇ / 2, ⁇ , and 3 ⁇ / 2, respectively, and are expressed by Equation 2.
  • Step 104-2 Next, a method for calculating the phase change amount ⁇ in step 104-2 will be described.
  • approximation was performed by obtaining an ensemble average in the vicinity of a 7 ⁇ 7 range centered on coordinates (x, y).
  • Equation 3 the symbol (x, y) to be added to I is omitted.
  • phase shift images I 1-1 and I 1 ⁇ with respect to the interference pattern image I 1-0 at the next time are used.
  • 2 and I 1-3 can be calculated on a computer.
  • the phase shift image constructed on the computer is expressed by the following Equation 4.
  • ⁇ 1 indicates the phase of the speckle interference pattern image I 1-0 after 2 seconds.
  • the phase shift image after 2 seconds is expressed by the following equation.
  • the phase shift amounts ( ⁇ / 2, ⁇ , 3 / 2 ⁇ ) are respectively added, and can be calculated on a computer. Therefore, in the present invention, it is not necessary to take a phase shift image during the deformation process of the DUT 207.
  • phase shift image of an object to be measured having a known phase shift amount is acquired at the start of measurement, a phase shift image at an arbitrary time can be calculated at a low cost without being photographed thereafter. Can be obtained.
  • step 104 the amount of phase change at all imaging intervals can be calculated, and the amount of deformation of the object to be measured for each elapsed time can be calculated from the phase change amount obtained sequentially. Since a phase shift image is obtained for each elapsed time, it is possible to measure the deformation amount with high resolution at each time.
  • Step 105 It is also possible by integrating the sequentially obtained phase variation amount, to derive the total deformation amount d n.
  • the total amount of deformation d n (nanometer) is expressed by an equation such as Equation 5.
  • FIG. 3 shows the result of measuring the amount of deformation of the sample through the steps as described above. It was confirmed that the amount of deformation increased with time. Further, the final total deformation amount was 100.10 ⁇ m. When the same measured object was measured in the heterodyne displacement type, the total deformation amount was confirmed to be as high as 100.13 ⁇ m.
  • the present invention even when a very small deformation occurs in the work, or even when a large deformation occurs due to the accumulation of the small deformations, it can be detected with high resolution at each time. It can be suitably used for verification of deformation behavior of a printed circuit board.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

 スペックル干渉光学系は、被測定物の変形過程の解明に有効なものの、分解能が十分ではなく、分解能を向上させるための位相シフト法を実行するには装置コストがかかりすぎる問題があった。 初期縞パターンに対する位相シフト像を取得し、位相シフト法により初期画像の位相情報と次画像との間の位相変化量を導出する。その後、得られた情報を元に次画像に対する位相シフト像を計算により算出する。

Description

変形計測方法
 本発明は、物体の変形量を非接触に計測する方法に関し、特に、工業生産物が押圧されること等で生じる微小な変形量を非接触に測定する変形計測方法に関するものである。
 工業生産物が、熱や押圧されること等で生じる微小な変形量を計測するための手法としては、スペックル干渉計測法が従来知られている。図5には特許文献1に記載のスペックル干渉計測機を示す。まず、He-Neレーザー光源2を発したレーザー光が、ミラー3により反射して半透鏡6に入射することで参照物体7と被測定物8とを載置した方向にそれぞれ分離する。被測定物8の表面で反射した光(測定光)が再び半透鏡6を通過してカメラ11に到達し、一方の参照物体7の表面で反射した光(参照光)は半透鏡6によってカメラ11の方向へ反射されて、カメラ11に到達する。カメラ11は物体光と参照光とが互いに干渉することで生じる斑点(スペックル)状の干渉パターンを撮像することできる。このスペックル干渉像を一定時間後に再び撮像して、元のスペックル干渉パターン像との差分をとることで、どの程度の変形が被測定物8に生じたのかを計測することができる。
 一方、被測定物に対してプロジェクタ等で投影した格子パターンやモアレパターンを撮像し、そのパターンの変調から、被測定物の形状・変形を計測する技術や、光干渉を利用して、干渉パターンから形状・変形を高精度に計測する技術が一般に知られている。
 これらの計測技術では、撮像したパターンの明暗を振動波形とみなし、この波形の位相を解析するサブフリンジ解析と呼ばれる処理を実施する。波形の位相と被測定物の形状寸法は比例関係にあるため、撮像したパターンから位相を高精度に検出することで、高分解能な形状計測・変形計測が実現できる。
 上記のサブフリンジ解析方法としては、位相シフト法が被測定物を高分解能に解析することができる手法として一般に知られている。位相シフト法は、まず元となるパターン光を被測定物に対して照射した上でその像を撮影する。そして、既知の位相変化(位相シフト)をパターン光に与えて照射した像を複数枚取得し、画像上の各点における明暗値の変化から元となるパターン光による像の位相を計算する方法である。
 このとき、撮影された像には位相の他に振幅、バックグラウンド成分が未知成分として含まれる。そのため、位相情報を計算するには元の像の他に最低でも2枚以上の異なる位相シフト像を同時に取得する必要がある。そのため測定光と参照光とをそれぞれ3つに分離して光路を設け、参照光の光路に屈折媒質を設けることで位相差を生じさせ、複数の位相シフト像を同時に取得する技術が知られている(特許文献2)。
特公平07-46045号公報 特開平11-304417号公報
 しかしながら、引用文献1記載の発明では2枚のスペックル干渉パターン像の強度分布の単なる差分から変形量を算出する。そのため、マイクロメ-トルからミリメートルのオーダーでは十分であるが、ナノメートルなど極めて微細な変形量を計測するには分解能が十分ではないという問題があり、被測定物の変形過程を解明するにあたって限界があった。
 また、引用文献2記載の技術では分解能は十分なものの、時間経過ごとに位相シフト像を撮影するための複数の光路が必要となり、装置が大きくなりがちで、高コストであった。
 本発明は、装置を複雑化させることなく、低コストで被測定物の変形量を高分解能に計測可能な変形測定方法を提供することを目的とする。
 上記目的を達成するため、本出願に係る発明は、被測定物に光を照射することで生じる干渉パターンの位相変化量から前記被測定物の変形量を測定する変形計測方法において、
 第一の干渉パターン像と、該第一の干渉パターン像に対する互いに異なる既知の位相シフト量を有する2枚以上の位相シフト像とを撮像手段により取得する工程と、
 所定時間が経過したのちの第二の干渉パターン像を前記撮像手段により取得する工程と、
 第一の干渉パターン像と2枚以上の前記位相シフト像とから第一の干渉パターンの位相を算出する工程と、
 前記第一の干渉パターン像と、第一の干渉パターン像に対する前記位相シフト像と、前記第二の干渉パターン像とから、前記所定時間の間に生じる干渉パターン像の第一の位相変化量を計算手段により算出する工程と、
 前記第一の干渉パターン像の位相と前記位相変化量と,
前記既知の位相シフト量に基づき第二の干渉パターン像に対する位相シフト像を算出する工程と、
 前記第二の干渉パターン像と、2つ以上算出した第二の干渉パターン像に対する位相シフト像とに基づき、前記被測定物の変形量を算出する工程と、
を有することを特徴とする変形計測方法である。
 上述した本発明によると、測定開始時に既知の位相シフト量を有する被測定物の位相シフト像を取得しておけば、その後は撮影することなく任意の時刻の位相シフト像を計算によって取得することができる。そのため、低コストで高分解能な変形計測が実現できる。
本発明の実施例に係わる位相計算フローの構成図である。 本発明の実施例に係わるスペックル干渉光学系の構成図である。 本発明の実施例による変形計測結果のコンター図である。 本発明の実施例にて使用した被測定物を示す図である。 従来のスペックル干渉光学系の構成図である。
 (実施例)
 以下に本発明の具体的な実施例について説明する。本発明は参照面からの反射光を参照光として用いるフィゾー型干渉計においても適用可能であるが、以下では、説明のため参照光を用いない光学系を例にあげる。
 まず、図2に示されるスペックル干渉光学系の構成について詳細に説明する。本実施例でのスペックル干渉光学系では、光源としてレーザー光源201を使用する。本実施例においては、波長632.8nmのHe-Neレーザー光源を使用する。レーザー光源201から射出されたレーザー光は、ビームスプリッタ202により2つの光束に分枝される。分枝された光束の一方は、光路長を可変にし位相シフトを実現するための位相シフタ203に入射する。
 位相シフタ203は、三角ミラー203a、コーナーキューブミラー203b、PZTアクチュエータ203cにより構成される。三角ミラー203aは直角二等辺三角柱の直交する2面がミラーとなっている。三角ミラー203aのミラー面に入射した光束は光軸を90°曲げてコーナーキューブミラー203bに入射する。コーナーキューブミラー203bは2枚のミラーが90°の角度で配置された構成を持ち、入射光を平行移動しつつ反対方向に反射する。コーナーキューブミラー203bにより反射された光束は再び三角ミラー203aに入射し、光軸を90°曲げて射出される。コーナーキューブミラー203bの背面にはPZTアクチュエータ203cが接続されており、コーナーキューブミラー203bの位置を微小移動できる。微小移動量に応じて位相シフタ203内の光路長を変更することが可能であり2つの光束を干渉させたときに、既知の位相シフト量で位相シフトを実行することができる。なお位相シフタは本実施例で説明したものに限らない。例えば透明基板を光路を含む面内で回転可能に、かつ光路に交差して配置して、透明基板の回転角によって透明基板を通過する光の位相を変化させるタイプの位相シフタを利用してもよい。既知の位相シフト量を通過する光に対して与えることができるものであれば所望の位相シフタを使用してよい。
 ビームスプリッタ202により分枝された2つの光束は、一方は位相シフタ203を経て反射ミラー204aに入射し反射される。その後に凹面レンズ205aに入射して球面波に変わり、その後コリメートレンズ206aにより平行光となる。
 他方は、ビームスプリッタ202を通過して反射ミラー204bに至り、凹面レンズ205bを経由して、コリメートレンズ206bにより平行光となる。
 上記の2つの平行光は不図示のステージに固定された被測定物207の表面の計測したい領域に対してオーバーラップするように照射される。ステージは被測定物に対して長手方向に引っ張り応力を印加することが可能なように挟み支持する公知の引張試験機構を有し、任意の長さに被測定物207を引っ張ることができる。
 2つの平行光は被測定物207の表面における法線に対して、照射角ψ=45°およびψ=45°となる角度から照射した。
 本実施例のスペックル干渉光学系においては、2光束の照射角度に応じて干渉強度変化1周期分に対する変形量の大きさが決定される。1周期に対する変形量の大きさdλは、被測定物に対して照射される2つの光の入射角ψとψとから式1により表される。
Figure JPOXMLDOC01-appb-M000001
  式1において、λは使用したレーザー光の波長であり、本実施例においては632.8nm、である。照射角ψ、ψはともに45°であるため、本実施例において干渉強度変化の1周期に対する変形量の大きさdλは、447.5nmである。
 本実施例では、図4に本実施例で用いた被測定物を示す。被測定物207にはステンレス鋼SUS304からなる長手方向に120mm、厚さ0.01mmのプレートをダンベル1号(JIS規格)形状に加工したものを使用する。被測定物207の表面状態は光学的に粗面となっている。
 被測定物を不図示のステージに固定し、前述の2つの平行光を照射すると、照射された2つの平行光は被測定物207の表面で散乱・干渉し、スペックル干渉パターンを生じる。発生したスペックル干渉パターンは結像レンズ208により撮像素子209の素子面に結像され、撮像素子209によりデジタル画像として記録される。本実施例において撮像素子209にはCCDカメラを使用した。CCDカメラは640H×480Vの画素数を持ち、最高で30フレーム/秒の速度で動画像を撮像できるものを利用する。
 撮像素子209により撮像されたデジタル画像情報は計算機210のメモリへと保存される。計算機210に保存されたデジタル画像情報を用いたデータ処理を行うことにより、変形計測を実施する。
 上記のスペックル干渉光学系を用いて、被測定物207の時系列的な変形計測を実施する。本実施例では、被測定物207を引張により10μm/sの速度で100μmまで引き伸ばしたときの変形計測を実施する。
 以下では、取得したスペックル干渉パターンの像とその位相シフト像から被測定物の変形量を算出する方法を図1に示したフローチャートに添って順に説明する。
 (工程101、工程102)
 まず、静止状態におけるスペックル干渉パターンの像および、そのスペックル干渉パターンに対する位相シフト像を撮像する。本実施例では、位相シフト像は3枚取得した。互いに異なる既知の位相シフト量はそれぞれπ/2、π、3π/2とする。
 その位相シフト量とするために、図1の位相シフタ203のPZTアクチュエータ203cを初期状態よりそれぞれ、79.1nm、158.2nm、237.3nm移動させ、位相シフト像を撮像する。本実施例の位相シフタの場合は、コーナーキューブミラー203bを三角ミラー203aに対して、変位させることで往復の光路長を変位させることができるので、所望の位相シフト量に対して1/2の変位量を与えればよい。
 なお、位相シフト量は任意に決めてよい。以下の工程で位相θ、振幅A、バイアスBの3つの未知数を決定するために、スペックル干渉パターン像に加えてその位相シフト像を最低2枚取得すれば良いが、本実施例では計算機上での演算の簡略化のため、3枚取得した。
 (工程103)
 次に変形過程のスペックル干渉パターンの像を撮像する。撮像周期は0.5秒に1枚のレートで実施する。ダンベル状のプレートである被測定物207は引張試験機によって、10μm/sの速度で、図3中x方向に100μmまで引き伸ばすため、スペックル干渉パターンの像Iは初期画像をn=0とするとn=20までの合計21枚取得する。
 干渉パターン像の強度分布Iに付した(x、y)は、撮像素子209の撮像面上の座標系を示めす。またIに付した添え字は、左側の添え字は時刻を表わし“0”が測定開始時で“1”が2秒後を示すこととする。右側の添え字は位相シフト像であることを示し、“0”はスペックル干渉パターン像であることを指し、“1”より順に、位相シフト像であることを示す。
 例えば、本実施例ではI0-1(x,y)は測定開始時のスペックル干渉パターンに対する位相シフト量がπ/2である位相シフト像を示し、I1-0(x,y)は2秒後に取得したスペックル干渉パターンを示す。本実施例では、位相シフト像を1つのスペックル干渉パターンに対して3枚取得しているので、右側の添え字の種類は1,2,3となる。
 (工程104-1)
 撮像した位相シフト像を用いてスペックル干渉パターンの像Iの位相θ、振幅A、バイアスBを算出する方法を説明する。撮像された位相シフト像はそれぞれ、π/2、π、3π/2の位相シフト量を持ち、式2で表される。
Figure JPOXMLDOC01-appb-M000002
  式2を連立方程式として解くことで位相θ、振幅A、バイアスBの値を算出することができる。
 (工程104-2)
 次に、工程104-2について、位相変化量φを算出する方法を説明する。
 なお、本実施例においては座標(x,y)を中心とした近傍7×7の範囲におけるアンサンブル平均を取得することにより近似を実施した。
 計測開始から次の撮像までの2秒後間に生じた位相変化量φ(=θ-θ)を撮像素子209にて撮影した2秒後のスペックル干渉パターン像と、既に取得した測定開始時のスペックル干渉パターン像およびその位相シフト像の強度分布に基づき算出する。
 式3のようにφを求めることができる。なお式3中で、Iに付すべき(x、y)の記号は省略した。
Figure JPOXMLDOC01-appb-M000003
 (工程104-3)
 前工程までに求められた位相θ、振幅A、バイアスB、位相変化量φを用いて、次の時刻での干渉パターン像I1-0に対する位相シフト像I1-1、I1-2、及びI1-3を計算機上で算出することができる。計算機上で構築する位相シフト像は以下の式4で表される。θは、2秒後のスペックル干渉パターン像I1-0の位相を示す。2秒後の位相シフト像は以下の式で表わされる。
Figure JPOXMLDOC01-appb-M000004
 つまり、2秒後の位相シフト像にかかる位相は、測定開始時のスペックル干渉パターンの位相θと位相変化量φを用いて算出されたθ(=θ+φ)に既知の位相シフト量(π/2、π、3/2π)をそれぞれそれぞれ加えた値となり、計算機上で算出することができる。したがって、本発明では、被測定物207の変形過程には位相シフト像の撮影は不要となる。
 以上のことから、本発明では測定開始時に既知の位相シフト量を有する被測定物の位相シフト像を取得しておけば、その後は撮影することなく任意の時刻の位相シフト像を計算によって低コストに取得することができる。
 上記のような工程104をくりかえし、全ての撮像間隔における位相変化量を算出し、逐次得られた位相変化量から、経過時間ごとの被測定物の変形量を算出することができる。経過時間ごとに位相シフト像が得られるため、各時刻で高分解能な変形量の計測が可能となる。
 (工程105)
 また、逐次得られた位相変化量を積算して、総変形量dを導出することもできる。本実施例においては位相の1周期=2π分の変形量は、447.5nmであり、総変形量d(ナノメートル)は式5のような式で表される。
Figure JPOXMLDOC01-appb-M000005
 上記のような工程を経て、サンプルの変形量を計測した結果を図3に示す。時刻に応じて変形量が増加していく様子を捉えることができることが確認された。また、最終的な総変形量は100.10μmとなった。総変形量はヘテロダイン変位形にて同じ被測定物を計測したところ100.13μmと高い一致が確認された。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本発明は、ワークに非常に微小な変形が生じた場合であっても、また微小な変形が積算して大きな変形が生じた場合であっても各時刻で高分解能に検出することができるので、プリント基板の変形挙動の検証などに好適に利用することができる。
 201 レーザー光源
 209 撮像手段

Claims (2)

  1.  被測定物に光を照射することで生じる干渉パターンの位相変化量から前記被測定物の変形量を測定する変形計測方法において、
     第一の干渉パターン像と、該第一の干渉パターン像に対する互いに異なる既知の位相シフト量を有する2枚以上の位相シフト像とを撮像手段により取得する工程と、
     所定時間が経過したのちの第二の干渉パターン像を前記撮像手段により取得する工程と、
    第一の干渉パターン像と2枚以上の前記位相シフト像とから第一の干渉パターンの位相を算出する工程と、
     前記第一の干渉パターン像と、第一の干渉パターン像に対する前記位相シフト像と、前記第二の干渉パターン像とから、前記所定時間の間に生じる干渉パターン像の第一の位相変化量を計算手段により算出する工程と、
     前記第一の干渉パターン像の位相と前記位相変化量と,
     前記既知の位相シフト量に基づき第二の干渉パターン像に対する位相シフト像を算出する工程と、
     前記第二の干渉パターン像と、2つ以上算出した第二の干渉パターン像に対する位相シフト像とに基づき、前記被測定物の変形量を算出する工程と、
    を有することを特徴とする変形計測方法。
  2.  2つ以上の位相シフト像を算出する工程を複数の時刻で得られた干渉パターンに対して行い、積算した逐次得られた前記位相変化量に基づき、前記被測定物の特定の時刻からの総変形量を算出することを特徴とする請求項1記載の変形計測方法。
PCT/JP2010/057584 2010-04-28 2010-04-28 変形計測方法 WO2011135698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/057584 WO2011135698A1 (ja) 2010-04-28 2010-04-28 変形計測方法
JP2012512593A JP5518187B2 (ja) 2010-04-28 2010-04-28 変形計測方法
US13/090,163 US8363977B2 (en) 2010-04-28 2011-04-19 Deformation measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057584 WO2011135698A1 (ja) 2010-04-28 2010-04-28 変形計測方法

Publications (1)

Publication Number Publication Date
WO2011135698A1 true WO2011135698A1 (ja) 2011-11-03

Family

ID=44858291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057584 WO2011135698A1 (ja) 2010-04-28 2010-04-28 変形計測方法

Country Status (3)

Country Link
US (1) US8363977B2 (ja)
JP (1) JP5518187B2 (ja)
WO (1) WO2011135698A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9311566B2 (en) 2012-08-03 2016-04-12 George Mason Research Foundation, Inc. Method and system for direct strain imaging
US9134121B2 (en) * 2012-08-20 2015-09-15 Canon Kabushiki Kaisha Determining material properties using speckle statistics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746045A (ja) 1993-06-28 1995-02-14 Hewlett Packard Co <Hp> 低雑音能動ミキサ
JPH11304417A (ja) 1998-04-17 1999-11-05 Mitsutoyo Corp 光学干渉縞計測装置
JP2003139515A (ja) * 2001-11-02 2003-05-14 Fukuoka Prefecture スペックルを利用した変形量の絶対値計測方法
JP2004109075A (ja) * 2002-09-20 2004-04-08 Univ Saitama 電子的スペックル干渉法を用いた変形計測方法および装置
JP2006275868A (ja) * 2005-03-30 2006-10-12 Fujinon Corp スペックル干渉計装置
JP2007071584A (ja) * 2005-09-05 2007-03-22 Wakayama Univ デジタルホログラフィを利用した変位分布計測方法及び装置
JP2007240465A (ja) * 2006-03-10 2007-09-20 Wakayama Univ 3次元変位ひずみ計測方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760902A (en) * 1995-08-14 1998-06-02 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for producing an intensity contrast image from phase detail in transparent phase objects
US5703680A (en) * 1996-01-16 1997-12-30 The Goodyear Tire & Rubber Company Method for dynamic interference pattern testing
JP4583619B2 (ja) * 2000-09-13 2010-11-17 富士フイルム株式会社 縞画像解析誤差検出方法および縞画像解析誤差補正方法
JP3871309B2 (ja) * 2001-01-31 2007-01-24 フジノン株式会社 位相シフト縞解析方法およびこれを用いた装置
JP2004271381A (ja) * 2003-03-10 2004-09-30 Fuji Photo Optical Co Ltd スペックル干渉計装置
US8004688B2 (en) * 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746045A (ja) 1993-06-28 1995-02-14 Hewlett Packard Co <Hp> 低雑音能動ミキサ
JPH11304417A (ja) 1998-04-17 1999-11-05 Mitsutoyo Corp 光学干渉縞計測装置
JP2003139515A (ja) * 2001-11-02 2003-05-14 Fukuoka Prefecture スペックルを利用した変形量の絶対値計測方法
JP2004109075A (ja) * 2002-09-20 2004-04-08 Univ Saitama 電子的スペックル干渉法を用いた変形計測方法および装置
JP2006275868A (ja) * 2005-03-30 2006-10-12 Fujinon Corp スペックル干渉計装置
JP2007071584A (ja) * 2005-09-05 2007-03-22 Wakayama Univ デジタルホログラフィを利用した変位分布計測方法及び装置
JP2007240465A (ja) * 2006-03-10 2007-09-20 Wakayama Univ 3次元変位ひずみ計測方法及び装置

Also Published As

Publication number Publication date
JP5518187B2 (ja) 2014-06-11
JPWO2011135698A1 (ja) 2013-07-18
US20110268312A1 (en) 2011-11-03
US8363977B2 (en) 2013-01-29

Similar Documents

Publication Publication Date Title
TWI794416B (zh) 多層堆疊結構之計量方法及干涉儀系統
JP6385279B2 (ja) 三次元形状計測装置、ホログラム画像取得方法及び三次元形状計測方法
TWI436029B (zh) 光學式強度型三維表面形貌與顯微量測裝置及方法
CN110914634B (zh) 全息干涉度量的方法及***
JP2006515925A (ja) 共通経路周波数走査型干渉計
CN112739979B (zh) 表面形状测量装置以及表面形状测量方法
CN114502912B (zh) 混合式3d检验***
JP2009098215A (ja) 顕微鏡装置、及び顕微鏡装置における位相変化量の算出方法。
KR100785802B1 (ko) 입체 형상 측정장치
CN109470173A (zh) 一种双通道同时相移干涉显微***
JP5428538B2 (ja) 干渉装置
JP2003042731A (ja) 形状計測装置および形状計測方法
JP4667965B2 (ja) 光ビーム測定装置
JP2006250849A (ja) 光コヒーレンストモグラフィー装置を用いた光画像計測方法及びその装置
JP4427632B2 (ja) 高精度三次元形状測定装置
JP5518187B2 (ja) 変形計測方法
Vannoni et al. Speckle interferometry experiments with a digital photocamera
JP4025878B2 (ja) 物体の再生像を得る装置、位相シフトデジタルホログラフィ変位分布計測装置及びパラメータを同定する方法
JP5825622B2 (ja) 変位・ひずみ分布計測光学系と計測手法
JP2005265441A (ja) デジタルホログラフィを利用した変位分布計測方法
Garcia et al. Projection of speckle patterns for 3D sensing
TW202129222A (zh) 混合式3d檢測系統
US11982521B2 (en) Measurement of a change in a geometrical characteristic and/or position of a workpiece
JP2003139515A (ja) スペックルを利用した変形量の絶対値計測方法
JP3493329B2 (ja) 平面形状計測装置、平面形状計測方法及び該方法を実行するプログラムを記憶した記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512593

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010850715

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE