WO2011134163A1 - 一种h9n2亚型禽流感灭活疫苗的制备方法及产品 - Google Patents

一种h9n2亚型禽流感灭活疫苗的制备方法及产品 Download PDF

Info

Publication number
WO2011134163A1
WO2011134163A1 PCT/CN2010/072348 CN2010072348W WO2011134163A1 WO 2011134163 A1 WO2011134163 A1 WO 2011134163A1 CN 2010072348 W CN2010072348 W CN 2010072348W WO 2011134163 A1 WO2011134163 A1 WO 2011134163A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
cells
culture
preparation
avian influenza
Prior art date
Application number
PCT/CN2010/072348
Other languages
English (en)
French (fr)
Inventor
李玉和
沈明君
范娟
季明
潘杰
Original Assignee
扬州优邦生物制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州优邦生物制药有限公司 filed Critical 扬州优邦生物制药有限公司
Priority to PCT/CN2010/072348 priority Critical patent/WO2011134163A1/zh
Priority to ZA2011/06852A priority patent/ZA201106852B/en
Publication of WO2011134163A1 publication Critical patent/WO2011134163A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to a preparation method and a product of an H9N2 subtype avian influenza inactivated vaccine, and belongs to the technical field of bioengineering. Background technique
  • avian-derived virus reproduction mainly uses chicken embryo propagation method and cell culture method, and the avian influenza virus cannot be directly produced in cells, and still adopts chicken embryo propagation method, and the chicken embryo is grown by inoculating the virus in the chicken embryo substrate.
  • the virus replicates to achieve mass production of the virus, which is a method similar to the natural biological environment to breed the virus.
  • the chicken embryo propagation method is simple and easy, and it is not necessary to treat and acclimate the virus, and the isolation can be directly inoculated into the chicken embryo.
  • a large number of chicken embryos are required for production. After the virus solution is collected, the remaining chicken embryos need to be harmlessly treated, and the foreign virus of the poultry source is easily infected, resulting in biosafety risks.
  • Another common method of virus propagation is the cell propagation method, which inoculates the virus into the expanded animal cells, maintains the cell activity, and achieves the purpose of a large number of virus amplification by continuous infection and replication of the virus between the cells.
  • the avian influenza virus directly inoculated cells cannot infect and proliferate.
  • researchers in the 1990s found that when avian influenza virus was propagated, adding appropriate amount of trypsin contributed to the proliferation of the virus, but the virus titer could not meet the production requirements.
  • large, high-density well-grown cells are a prerequisite for the production of high-titer viruses, so how to resolve this contradiction is the key to the success of cell culture of avian influenza virus. Summary of the invention
  • the technical problem to be solved by the present invention is to solve the problem of avian influenza virus cell reproduction.
  • the use of chicken embryos in the production of avian influenza often causes problems of biosafety risks, and provides a method and product for safe and continuous closed cell culture virus production.
  • the production of the vaccine can no longer rely on chicken embryo propagation to reduce biosafety hazards, and the cell culture method can also produce high titer virus, meet the requirements of immunization production, and can provide vaccine quickly when an epidemic occurs.
  • a method for preparing an H9N2 subtype avian influenza inactivated vaccine comprising the steps of:
  • the virus is adapted to the cell line MDCK cells for domestication without carrier culture, and the characteristics of adherent growth are changed to adapt to the growth environment of the whole suspension culture;
  • the method of no-culture cultivation and domestication is: after trypsin digestion of MDCK cells adherently cultured for 2 to 3 generations after resuscitation, and adding to a triangular shake flask at a density of 2 ⁇ 10 5 cells/mL, the sputum contains 8 to 10%.
  • Shaker culture continuous transmission for 43 generations, sub-package, liquid nitrogen cryopreservation;
  • the domesticated MDCK cells were inoculated into the cell culture bioreactor with cells of 1 ⁇ 5 ⁇ 10 5 cdls/mL, and cultured in suspension until amplification to 0.3 ⁇ lx10 7 cells/mL to achieve primary expansion culture of the cells;
  • the medium is: F-DMEM medium containing 6 ⁇ 10% serum;
  • the culture conditions are: dissolved oxygen 20 ⁇ 60%, pH 7.0 ⁇ 7.4, temperature 35 ⁇ 38 °C, primary flow rate 6 L/day, stable flow rate 3 L/day;
  • the fresh medium is pumped in the cell culture bioreactor and the cell suspension is pumped out to maintain the stability of the bioreactor while ensuring that the cells are expanded to 0.3 ⁇ l in the residence time of the reactor.
  • the medium is: a serum-free medium is a serum-free NF-DMEM medium in which MDCK is suspended; the culture condition is: dissolved oxygen 30 ⁇ 60%, pH 7.0 ⁇ 7.4, temperature 35 ⁇ 38° C, flow rate of 3 L / day;
  • the domesticated H9N2 subtype avian influenza isolate JY strain virus that has been adapted to cell proliferation is inoculated into suspension cells, and the culture factors are changed. As the cell suspension continues to flow and the virus supernatant continuously flows out at the same rate, the system is maintained. In the process of dynamic balance, the virus is continuously proliferated, and the virus is adapted to expand the virus content in suspension culture cells ⁇ 10 7 TCID 5() /mL, that is, the blood coagulation price HA ⁇ 2 8 ;
  • the culture factors for the change are: dissolved oxygen 40 ⁇ 60%, pH 7.0 ⁇ 7.2, temperature 32 ⁇ 36°C, flow-added medium for suspension MDCK containing 1.2 ⁇ 1.6 g/mL trypsin serum-free Medium, flow rate 2 L / day;
  • the method of enriching and inactivating the virus liquid is:
  • the virus solution obtained in the step (4) is collected, and after being pretreated, it is concentrated by a membrane pack of a molecular weight of 30 KD to a hemagglutination titer of the virus HA ⁇ 2 9 , the concentration is stopped, and the formic acid solution is inactivated to make the final concentration of the inactivating agent 0.1%, inactivated at 37 ° C for 16 hours;
  • Preparation of oil phase Take 94 parts of white oil for injection, add 1 part of aluminum stearate, stir while adding, until it is completely transparent, add it to the company - 80 6 parts, mix and autoclave for use;
  • Preparation of aqueous phase Take 96 parts of virus solution inactivated after concentration, add 4 parts of sterilized Tween-80, shake thoroughly until Tween -80 completely dissolved;
  • Emulsification Take 3 parts of the oil phase in the emulsification tank, slowly add 1 part of the water phase while stirring, continue stirring for 30 ⁇ 60 minutes, stirring speed 800 r/min, then shearing twice by shearing machine, shearing speed 4000 r/min, which is an inactivated vaccine for avian influenza (H9 subtype JY strain);
  • the beneficial effects of the invention are:
  • the technical scheme of the present invention firstly avoids the use of avian influenza to produce a large number of virus propagation methods using chicken embryos, thereby avoiding the problem of biosafety risks and overcoming the mass production of vaccines subject to the supply of chicken embryos.
  • the present invention provides a A safe and continuous closed cell culture virus production method for the preparation of H9N2 subtype avian influenza virus inactivated vaccine, so that not only cell culture methods but also high titer viruses can be produced at the same time to meet the requirements of immune production.
  • the production method of the vaccine of the present invention is simple and rapid, the vaccine can be quickly provided in the event of an outbreak. detailed description
  • This example illustrates the screening method of the virus-adapted cell line of the H9N2 subtype avian influenza isolate JY strain of the present invention and the final determination method of the virus-adapted cell line.
  • the H9N2 subtype avian influenza isolate JY strain of the present invention is purchased from the Chinese Academy of Agricultural Sciences Poultry Research Institute, and the strain code: A type Avian influenza virus (AIV) A/Chicken/Jiangsu/JY/99 (H9N2) strain, Referred to as JY strain.
  • AIV Avian influenza virus
  • H9N2 A/Chicken/Jiangsu/JY/99
  • the selected virus-adapted cells for screening according to the present invention are:
  • MDCK Canine Kidney Cell
  • VERO African Green Monkey Kidney Cell
  • the H9N2 subtype avian influenza isolate JY strain is inoculated into VERO cells in NCTC135 medium.
  • Control culture conditions are pH 7.0 ⁇ 7.4, temperature 32 ⁇ 38°C, trypsin concentration 1.0 ⁇ 2.0 g/mL, cell generation no more than 51 generations, virus generation no more than 12 generations, determination of virus breeding titer reached ⁇ 10 ⁇ TCID 5Q /mL, HA blood coagulation price ⁇ 2 8 to make the virus strain adapt to the cells, the culture conditions are determined: PH value 7.0 ⁇ 7.2, temperature 33 ⁇ 1 ° C, trypsin concentration 1.2 ⁇ 1.5 g / mL. Second, the choice of cells
  • the H9N2 subtype avian influenza isolate JY strain was subcultured 15 times in the cell line of Example 1 under the appropriate culture conditions corresponding to (1), and the subculture method was divided into two stages of cell culture and virus proliferation:
  • Cell culture stage DMEM medium containing 6 ⁇ 10% serum, pH 7.0 ⁇ 7.4, culture temperature 36.5 ⁇ 1 °C, culture time 36 ⁇ 48 hours;
  • Virus proliferation stage Serum-free Ax Cevir-MDCK medium containing a small amount of trypsin, pH 7.0 ⁇ 7.4, culture temperature 33 ⁇ 1 °C, culture time 24 ⁇ 96 hours.
  • the toxicant was diluted with sterile physiological saline into an antigen solution containing 4 HA units, respectively, with ND, EDS, H5 subtype avian influenza, H7 subtype avian influenza positive serum, SPF chicken serum and H9 subtype avian influenza positive serum.
  • the virus should be positive for H9 subtype avian influenza positive serum, and negative for other positive serum such as ND and SPF chicken serum.
  • the oil adjuvant is used to prepare a water-in-oil type inactivated vaccine (for details, see Example 5), and the test is carried out as follows:
  • SPF eggs were purchased from Shandong SPF chicken farm, hatched under relatively isolated conditions, and kept in isolation.
  • Serological methods 15 SPF chickens aged 21 to 28 days, 10 subcutaneous or intramuscular injection vaccines of 0.2 mL each neck, and the other 5 were used as controls. From 21 to 28 days after inoculation, blood was collected from each chicken, serum was separated, and HI antibody was determined using avian influenza virus H9 subtype antigen.
  • the geometric mean of the HI antibody titer in the immunized group should be no less than 71 og2, and the geometric mean of the HI antibody titer in the control group should be no more than 21 og2.
  • A avian influenza (H9 subtype) hemagglutination inhibition test antigen manufacturing and testing standards are:
  • Virus propagation A type of avian influenza virus A/Chicken/Jiangsu/JY/99 H9N2) strain was used for production, and virus was propagated with SPF chicken embryos to harvest chicken embryo fluid.
  • Inactivation Take the toxic chicken embryo solution, add 10% formaldehyde solution, the final concentration is 0.1%, and inactivate at 37 ° C for 16 hours.
  • Preparation Inactivated chicken embryo fluid, add 25% sterilized glycerin, mix thoroughly, quantitatively dispense, and store at 2 ⁇ 8 °C.
  • Sterility test According to the Chinese Veterinary Pharmacopoeia, it should be grown aseptically.
  • Determination of potency Dilute with sterile saline according to the amount indicated by the bottle label, and determine the HA titer by micro method, which should be ⁇ 7.01 0 ⁇ 2. Specificity test: HI, EDS76, H5 subtype avian influenza, H7 subtype avian influenza positive serum, SPF chicken serum and H9 subtype avian influenza positive serum for HI test, antigen to H9 subtype avian influenza positive serum should be Positive, should be negative for other positive serum such as ND and SPF chicken serum.
  • Result determination The result is determined by tilting the reaction plate.
  • the negative control serum HI ⁇ 21 og2 the positive control serum HI titer is compared with the known results, the error ⁇ llog2, the test can be established.
  • the highest dilution of the serum of the 4HA unit antigen was completely suppressed as the HI titer.
  • Immune challenge method 15 SPF chickens aged 21 to 28 days, 10 subcutaneous or intramuscular injection vaccines of 0.2 mL each neck, and the other 5 were used as controls. 21 to 28 days after inoculation, a 1:10 dilution of AIV JY virus was injected into the veins, 0.2 mL per chicken.
  • each chicken On the 5th day after the challenge, the cloaca swabs of each chicken were collected. Each sample was inoculated with 9 to 11-day-old SPF chicken embryos through the allantoic cavity, 0.2 mL per embryo, and observed for 5 days. HA titer of the embryo fluid. As long as one of the five chicken embryos inoculated in each sample has an HA titer of ⁇ 1:16 (micro method), it can be judged as positive for virus isolation. Samples that are negative for virus isolation should be blindly transmitted once and then judged. At least 9 chicken viruses should be negatively isolated in the immunized group, and at least 4 chickens in the control group should be isolated positive.
  • Toxicity to chicken embryos The venom is diluted 1:10000 with sterile saline, and 20 pieces of SPF chicken embryos of 9-11 days old are inoculated into the allantoic cavity, with Ol mL per embryo (about 10 3O EID 5 .), At least 18 chicken embryos should die within 24 to 96 hours after inoculation. Anatomy Observe that the dead chicken embryo should have systemic hemorrhage, obvious edema, liver necrosis and other diseases.
  • Toxicity to chicks Dilute the virus with sterile saline 1:10, and inoculate 4 to 8 weeks old SPF chickens, 0.2 mL per chicken, observe 10 days after inoculation, and the chickens should not appear. Death or obvious abnormal reaction but some chickens have mild respiratory symptoms. On the 5th day after the poisoning, the cloaca swabs were collected and the virus was isolated from 9 to 11 days old SPF chicken embryos, and at least 9 viruses were isolated positive.
  • Primer design and synthesis Two pairs of primers were designed based on the HA gene sequence of H9N2 subtype avian influenza virus A/Chicken/Beijing/1/94 strain (accession number: AF156380) and NA gene sequence (accession number: AF156398). The HA gene and the NA gene partial coding region of the cellularized JY strain virus were separately amplified.
  • HA1 5 ' -atggaaacaatatcactaataa-3 ' HA2: 5 ' -aagatccattggacatggccca-3 ' NAl : 5,- atgaatccaaatcagaagataata- 3' NA2 : 5,- tatagccatgaaattgatattcgc- 3'
  • Amplification and cloning of the HA and NA gene coding regions of the cellularized JY strain The extraction of the virus R A is carried out as described in J. Sambrook et al., Guide to Molecular Cloning. After reverse transcription, PCR amplification is performed. The reaction conditions were: denaturation at 94 ° C for 40 s, annealing at 48 ° C for 1 min, extension at 72 ° C for 1 min; after 5 cycles of operation, continue to operate under the following conditions: denaturation at 94 ° C for 40 s, annealing at 52 ° C for 1 min , extending at 72 ° C for 1 min; after 30 cycles of operation, extending at 72 ° C for 10 min, running at 4 ° C for 10 min.
  • the PCR product was identified by gel electrophoresis, and the target fragment was recovered by nucleic acid purification kit and cloned into pMD18-T vector to construct recombinant plasmids pT-HA and pT-NA.
  • Nucleotide sequencing of the HA and NA gene coding regions of the cellularized JY strain The identified positive plasmids pT-HA and pT-NA were sequenced, and the sequence was determined with the HA and NA sequences of the protozoan-infected JY strain. For comparison, homology was compared with the HA and NA sequences of four H9N2 subtypes and five H5N1 subtype avian influenza viruses on GenBank to determine whether the gene sequence of the cellular JY strain virus was altered.
  • Example 2 The results of the above identification and analysis showed that the virus cultured in the cell line of (1) described in Example 1 had no significant change in specificity, virulence, and immunogenicity with the original strain, that is, It was determined that the cell line was used as MDCK cells.
  • Example 2 The results of the above identification and analysis showed that the virus cultured in the cell line of (1) described in Example 1 had no significant change in specificity, virulence, and immunogenicity with the original strain, that is, It was determined that the cell line was used as MDCK cells.
  • This example illustrates the method of domestication of the virus-adapted cell line MDCK cells determined in Example 1.
  • the virus was adapted to the cell line MDCK cells for domestication without carrier culture, and the characteristics of adherent growth were changed to adapt to the growth environment of the whole suspension culture:
  • the MDCK cells After resuscitation, the MDCK cells adherently cultured for 2 to 3 generations were trypsinized, and then added to a triangular shake flask at a density of 2 ⁇ 10 5 cells/mL, and cultured on a shaker bed containing 8 to 10% serum in a F-DMEM medium. After 7.5 ⁇ 7.1, 40 ⁇ 48 hours, when the cell density reaches l ⁇ 2xl6 6 cells/mL, pass through the bottle and observe the cell morphology. Each time pass the cell sample with good cell morphology, shake it according to the above method. Bed culture, continuous transmission for 43 generations, sub-package, liquid nitrogen frozen.
  • the domesticated MDCK cells were inoculated into a 5 L cell culture bioreactor with cells of 1 ⁇ 5 ⁇ 10 5 Ce lls/mL, and cultured in suspension until amplification to 0.3 ⁇ lx10 7 ce lls/mL to achieve primary expansion culture of cells. ;
  • the medium is: F-DMEM medium containing 6 ⁇ 10% serum;
  • the culture conditions are: dissolved oxygen 20 ⁇ 60%, pH 7.0 ⁇ 7.4, temperature 35 ⁇ 38 °C, primary flow rate 6 L/day, stable flow rate 3 L/day;
  • the fresh medium is pumped in the cell culture bioreactor and the cell suspension is pumped out to maintain the stability of the bioreactor while ensuring that the cells are expanded to 0.3 ⁇ l in the residence time of the reactor.
  • the medium is: a serum-free medium is a serum-free NF-DMEM medium in which MDCK is suspended; the culture condition is: dissolved oxygen 30 ⁇ 60%, pH 7.0 ⁇ 7.4, temperature 35 ⁇ 38° C, flow rate of 3 L / day.
  • a serum-free medium is a serum-free NF-DMEM medium in which MDCK is suspended
  • the culture condition is: dissolved oxygen 30 ⁇ 60%, pH 7.0 ⁇ 7.4, temperature 35 ⁇ 38° C, flow rate of 3 L / day.
  • This example illustrates a method of inoculating and culturing a virus to prepare a viral solution.
  • the H9N2 subtype avian influenza isolate JY strain virus which has been acclimated in the second embodiment was inoculated into a suspension cell of a 5 L virus proliferation reactor, and the virus was inoculated with a multiplicity of infection of 0.01, and the culture factor was changed to dissolve.
  • Oxygen 40 ⁇ 60%, pH 7.0 ⁇ 7.2, temperature 32 ⁇ 36°C, and the addition medium is 1.2 ⁇ 1.6 g/mL trypsin serum-free medium for suspension MDCK, and the flow rate is 2 L/day.
  • the virus is infected and propagated in suspension culture cells, and the virus is adapted to amplify the virus content in the suspension culture cells. 7 ! ⁇ )/!!! ⁇
  • Example 5 Pump out the cell suspension to 100 L of virus proliferation reactor for access to avian influenza virus, with cell suspension at 40 L/day Continuous inflow and continuous flow of virus supernatant, continuous virus proliferation in the process of maintaining system dynamic balance, the resulting virus supernatant virus content ⁇ 10 7 TCID 50 /mL, that is, blood coagulation price HA ⁇ 2 8 .
  • Example 5
  • This example illustrates a method of concentrating, inactivating, and preparing a viral supernatant into a vaccine product.
  • Example 4 The virus solution finally obtained in Example 4 was collected and concentrated in a membrane package of 30 KD cut-off molecular weight until the blood coagulation titer of the virus HA was ⁇ 2 9 , the concentration was stopped, and the formaldehyde solution was inactivated to make the final concentration of the inactivating agent 0.1. %, inactivated at 37 ° C for 16 hours, can completely inactivate the virus.
  • Emulsification Take 3 parts of the oil phase in the emulsification tank, slowly add 1 part of the water phase while stirring, continue stirring for 30 ⁇ 60 minutes, stir at 800 r/min, and then cut twice through the shearing machine.
  • Avian influenza (H9 subtype JY strain) inactivated vaccine was prepared at a shear rate of 4000 r/min;
  • This example illustrates the effect experiment of the obtained vaccine product.
  • H9 subtype positive serum was purchased from Harbin Veterinary Research Institute; SPF chicken embryo and test chicken, SPF eggs were purchased from Shandong SPF chicken farm, and hatched under relatively isolated conditions.
  • each chicken serum was collected according to the current “Chinese Veterinary Pharmacopoeia” appendix method. The HI antibody titer of each chicken in the test group and the negative control group was determined.
  • test results After 3 weeks of immunization in the experimental group, the challenge test group and the control group were intravenously injected with the 10-fold diluted avian influenza virus JY strain E1 virus solution. After 5 days of attack, the cloaca cotton swab was collected and used for 10 times. Day-old SPF chicken embryos were subjected to virus isolation. The immune attack protection was determined by not separating the virus from the cloaca. test results:
  • the denominator is the number of vaccinated chickens, and the number of chickens is negative for virus isolation; the number in parentheses is the percentage of protection
  • the vaccine in order to ensure the immune efficacy of the vaccine, when the immune HI antibody titer is used as an evaluation index of vaccine efficacy, the geometric mean of HI antibody titer is ⁇ 71 0 ⁇ 2 , and the negative control When the chicken HI antibody titer is ⁇ 2 1 0 ⁇ 2, the vaccine is judged to be qualified. Second, the vaccine's immune efficacy and minimum immune dose test
  • test chicken is SPF chicken
  • SPF eggs are purchased from Shandong poultry SPF chicken farm, and hatching is carried out in negative pressure isolator; standard antigen and antiserum are avian influenza (H9 subtype) antigen and antiserum, inactivated
  • the antigen HA titer was ⁇ 1:128; the antiserum HI ⁇ 1:64. experiment method:
  • Grouping and immunization The three batches of vaccine were immunized into 10 groups of SPF chickens inoculated with 20 ⁇ 7, 0.1 L/only, 0.2 mL/only for 21 days, and each group of chickens was set to 5 controls, each group. Chickens are numbered and each group of chickens are kept in isolation;
  • the minimum immunization dose of the vaccine is determined to be 0.1 mL, after 21 days of immunization, HI
  • the geometric mean of the antibody is ⁇ 71 (3 ⁇ 4 2 .
  • the recommended immunization dose is 0.2 mL/only.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

一种 H9N2亚型禽流感灭活疫苗的制备方法及产品 技术领域
本发明涉及一种 H9N2亚型禽流感灭活疫苗的制备方法及产品, 属于生物工程技术领域。 背景技术
通常禽源病毒繁殖主要采用鸡胚繁殖法和细胞培养法, 而禽流感病毒因无法直接在细胞中 生产繁殖, 仍然采用鸡胚繁殖法, 通过将病毒接种在鸡胚基质中, 在鸡胚生长过程中, 病毒复 制, 达到大量生产病毒的目的, 是一种类似于自然生物环境条件下繁殖病毒的方法。 鸡胚繁殖 法简单易行, 不需对病毒进行处理、 驯化, 分离毒可直接接种鸡胚。 但生产需要大量鸡胚, 收 获病毒液后, 需对剩余鸡胚进行无害化处理, 且易于感染禽源外源病毒, 产生生物安全隐患。
病毒繁殖的另一种常用的方法是细胞繁殖法, 将病毒接种于已扩增的动物细胞内, 保持细 胞活性, 通过病毒在细胞间的不断感染和复制, 来达到大量扩增病毒的目的。 但禽流感病毒直 接接种细胞不能感染、 增殖。 随着研究的深入开展, 在二十世纪 90年代有研究人员发现在繁殖 禽流感病毒时, 加入适量的胰酶有助于病毒的增殖, 但病毒滴度无法达到生产要求。 然而, 在 生产病毒时, 大量、 高密度生长良好的细胞是生产高滴度病毒的前提, 因此如何解决这一矛盾 是细胞培养禽流感病毒成功的关键。 发明内容
本发明所要解决的技术问题在于解决禽流感病毒细胞繁殖难, 而目前禽流感生产大量使用 鸡胚又常常导致生物安全隐患的问题, 提供一种安全连续封闭式细胞培养病毒生产的方法及产 品, 使该疫苗的生产能够不再依赖鸡胚繁殖而降低生物安全隐患, 同时使用该细胞培养方法也 能生产出高滴度的病毒, 满足免疫生产要求, 在发生疫情时, 能够快速提供疫苗。
本发明将通过以下技术方案实现:
一、 一种 H9N2亚型禽流感灭活疫苗的制备方法, 包括以下步骤:
( 1 )病毒适应细胞系 MDCK细胞的驯化
将病毒适应细胞系 MDCK细胞进行无载体培养的驯化, 改变其贴壁生长的特性, 使其适应 全悬浮培养的生长环境;
其中, 所述的无载体培养驯化方法为: 将复苏后经 2〜3代贴壁培养的 MDCK细胞胰酶消 化后, 按 2xl05 cells/mL密度加入三角摇瓶, 釆用含 8〜10%血清的 F-DMEM培养基摇床培养, PH 7.1〜7.5, 40〜48小时后, 待细胞密度达 1〜5χ10δ cells/mL时, 分瓶传代, 同时观察细胞形 态, 每次传代选取细胞形态良好的摇瓶分瓶传代, 按上述方法摇床培养, 连传 43代, 分装, 液 氮冻存;
(2) MDCK细胞的初级扩增培养
将驯化完成的 MDCK细胞向细胞培养生物反应器中接种 l〜5xl05 cdls/mL的细胞,悬浮培 养, 直至扩增至 0.3〜lx l07 cells/mL, 实现细胞初级扩增培养;
其中, 所述的培养基为: 含 6〜10%血清的 F-DMEM培养基;
所述的培养条件为: 溶氧 20〜60%、 PH值 7.0〜7.4、 温度 35〜38°C、 初级流加速率 6 L/ 天, 稳定后流加速率 3 L/天;
(3 )病毒适应细胞的连续培养
初级扩增培养结束后, 在上述细胞培养生物反应器中流加新鲜培养基和泵出细胞悬浮液, 以维持生物反应器稳定的同时, 保证细胞在反应器中停留时间内扩增至 0.3〜l xl07 cells/mL, 实 现细胞连续培养;
其中, 所述的培养基为: 流加培养基为悬浮 MDCK的无血清 NF-DMEM培养基; 所述的培养条件为: 溶氧 30〜60%、 PH值 7.0〜7.4、 温度 35〜38°C、 流加速率 3 L/天;
(4)接种病毒培养制备病毒液
将驯化的已适应细胞繁殖的 H9N2亚型禽流感分离株 JY株病毒接种于悬浮细胞,改变培养 因素, 随着细胞悬浮液的不断流入和病毒上清液以同样速度的不断流出, 在维持***动态平衡 的过程中实现病毒的连续增殖,使病毒适应在悬浮培养细胞中扩增病毒含量≥107 TCID5()/mL, 即 血凝价 HA≥28;
其中, 所述的改变的培养因素为: 溶氧 40〜60%、 PH值 7.0〜7.2、 温度 32〜36°C、 流加培 养基为悬浮 MDCK的含 1.2〜1.6 g/mL胰酶无血清培养基、 流加速率 2 L/天;
(5 )病毒浓缩、 灭活及制成疫苗产品
其中, 病毒液的浓缩及灭活方法为:
收集步骤(4)得到的病毒液, 预处理后经 30 KD截流分子量的膜包浓缩至病毒 HA血凝效 价≥29时, 停止浓缩, 采用甲酸溶液灭活, 使灭活剂终浓度为 0.1%, 37°C灭活 16小时;
其中, 灭活疫苗的制备:
油相制备: 取注射用白油 94份, 加硬脂酸铝 1份, 边加边搅拌, 直到完全透明为止, 再加 入司本 -80 6份, 混合后, 高压灭菌备用;
水相制备: 取浓縮后灭活的病毒液 96份, 加入灭菌的吐温 -80 4份, 充分摇动, 直到吐温 -80完全溶解;
乳化: 取油相 3份置于乳化罐中, 搅拌的同时缓慢加入水相 1份, 持续搅拌 30〜60分钟, 搅拌速度 800 r/min, 后通过剪切机 2次剪切, 剪切速度 4000 r/min, 即制成禽流感(H9亚型 JY 株) 灭活疫苗;
检测: 取样 5〜10 mL, 以 3000 r/min离心 15分钟, 如有分层现象, 应重复乳化 1次。 二、 根据本发明所述的 H9N2亚型禽流感灭活疫苗的制备方法制得的疫苗产品。 本发明的有益效果在于:
本发明的技术方案首先避免采用目前禽流感生产大量使用鸡胚的病毒繁殖方法, 既避免了 生物安全隐患的问题, 又克服了疫苗的大量生产受制于鸡胚的供应; 其次, 本发明提供一种安 全连续的封闭式细胞培养病毒生产的方法, 用于 H9N2亚型禽流感病毒灭活疫苗的制备, 使得 不仅能使用细胞培养方法, 也能同时生产出高滴度的病毒, 满足免疫生产要求; 最后, 由于本 发明所述的疫苗的生产方法简单快速, 因此能在发生疫情时快速提供疫苗。 具体实施方式
实施例 1
本实施例说明本发明所述的 H9N2亚型禽流感分离株 JY株的病毒适应细胞系的筛选方法和 病毒适应细胞系的最终确定方法。
一、 筛选
本发明所述的 H9N2亚型禽流感分离株 JY株购自中国农科院家禽研究所, 毒株代号: A型 禽流感病毒 (AIV) A/Chicken/Jiangsu/JY/99 (H9N2) 株, 简称 JY株。
本发明所述的用于筛选的待选病毒适应细胞为:
MDCK (犬肾细胞), 购自扬州大学农业部畜禽传染病重点开放实验室;
VERO (非洲绿猴肾细胞), 购自上海交通大学药学院。
( 1 )将 H9N2亚型禽流感分离株 JY株接种于 MDCK细胞, 在 Ax Cevir-MDC 无血清培 养基中控制培养条件为 PH值 7.0〜7.4、 温度 32〜36°C、 胰酶浓度 1.0〜2.0 g/mL, 细胞代次不 超过 51代, 病毒代次不超过 12代, 测定病毒繁殖滴度达到≥107 (11^105()/111£、 HA血凝价≥28以 使得病毒毒株适应细胞,确定培养条件为: PH值 7.0〜7.2、温度 33士 1 °C、胰酶浓度 U〜1.6 g/mL;
(2) 或者, 将 H9N2亚型禽流感分离株 JY株接种于 VERO细胞, 在 NCTC135培养基中 控制培养条件为 PH值 7.0〜7.4、温度 32〜38°C、胰酶浓度 1.0〜2.0 g/mL, 细胞代次不超过 51 代, 病毒代次不超过 12代, 测定病毒繁殖滴度达到≥10^ TCID5Q/mL、 HA血凝价≥28以使得病 毒毒株适应细胞, 确定培养条件为: PH值 7.0〜7.2、 温度 33士 1 °C、 胰酶浓度 1.2〜1.5 g/mL。 二、 细胞的选定
将 H9N2亚型禽流感分离株 JY株在实施例 1中的细胞系上于 (1 )对应的适宜的培养条件 下不断传代 15次, 传代培养方法分为细胞培养和病毒增殖两阶段:
细胞培养阶段:选用含 6〜10%血清的 DMEM培养基, PH值 7.0〜7.4、培养温度 36.5±1 °C、 培养时间 36〜48小时;
病毒增殖阶段: 采用含少量胰酶的无血清 Ax Cevir-MDCK培养基, PH值 7.0〜7.4、 培养 温度 33±1 °C、 培养时间 24〜96小时。
传代结束后, 同时对下述病毒特性进行鉴定:
( 1 ) 鉴定病毒的特异性:
用灭菌生理盐水将毒种稀释成含 4 HA单位的抗原液, 分别与 ND、 EDS、 H5亚型禽流感、 H7亚型禽流感阳性血清, SPF鸡血清和 H9亚型禽流感阳性血清作 HI试验, 毒种对 H9亚型禽 流感阳性血清应为阳性, 对 ND等其它阳性血清及 SPF鸡血清均应为阴性。
(2) 鉴定免疫原性:
将收获的细胞毒液, 经甲醛溶液灭活后, 加油佐剂制成油包水型灭活疫苗 (具体方法参见 实施例 5 ), 按以下方法进行检验:
首先, 从山东 SPF鸡场购买 SPF蛋, 在相对隔离的条件下孵化, 隔离器饲养。 血清学方法: 用 21〜28日龄 SPF鸡 15只, 10只各颈部皮下或肌肉注射疫苗 0.2 mL, 另 5 只作对照。 接种后 21〜28 日, 每只鸡各采血, 分离血清, 用禽流感病毒 H9亚型抗原测定 HI 抗体。免疫组 HI抗体效价的几何平均值应不小于 71og2, 对照组 HI抗体效价的几何平均值应不 大于 21og2。
其中, A、 禽流感 (H9亚型) 血凝抑制试验抗原制造及检验标准为:
a、 抗原制造:
病毒繁殖: 取 A型禽流感病毒 A/Chicken/Jiangsu/JY/99 H9N2)株生产用毒种, 用 SPF鸡胚 繁殖病毒, 收获鸡胚液。
灭活: 取含毒鸡胚液, 加入 10%甲醛溶液, 使其终浓度均为 0.1%, 37°C灭活 16小时。 配制: 灭活后的鸡胚液, 加入灭菌甘油 25%, 充分混匀, 定量分装, 保存于 2〜8°C。
b、 检验:
性状: 白色或淡黄色液体。
无菌检验: 按《中国兽药典》进行, 应无菌生长。
效价测定:按瓶签标明的量用灭菌生理盐水进行稀释,用微量法测定 HA效价,应≥7.012。 特异性检验: 分别与 ND、 EDS76、 H5亚型禽流感、 H7亚型禽流感阳性血清, SPF鸡血 清和 H9亚型禽流感阳性血清作 HI试验, 抗原对 H9亚型禽流感阳性血清应为阳性, 对 ND等 其他阳性血清及 SPF鸡血清应为阴性。
B、 禽流感 (H9亚型) 血凝抑制 (HI)试验操作术方法为:
a、取微量反应板, 分别向 1〜11孔中加入 0.025 mL生理盐水, 第 12孔中加入 0.05 mL生 理盐水。
b、 吸取 0.025 mL血清, 加至第一孔内, 充分混匀后, 吸取 0.025 mL至第 2孔, 依次 2 倍稀释至第 10孔, 从第 10孔吸取 0.025 mL, 弃去。
c、 分别向 1〜11孔中加入含 4HA单位的抗原 0.025mL, 室温下静置 30〜40分钟。
d、 每孔中加入 0.025mL 1% (V/V)鸡红细胞悬液, 轻轻混匀, 室温下静置 30〜40分钟。 对照红细胞将呈显著纽扣状。
e、 结果判定: 将反应板倾斜后判定结果。 当阴性对照血清 HI≤21og2、 阳性对照血清 HI 效价与已知结果相比, 误差≤llog2时, 试验方可成立。 以完全抑止 4HA单位抗原的血清最高稀 释度作为 HI效价。 免疫攻毒法: 用 21〜28日龄 SPF鸡 15只, 10只各颈部皮下或肌肉注射疫苗 0.2 mL, 另 5 只作对照。 接种后 21〜28日, 用 1 : 10稀释的 AIV JY毒种进行翅静脉注射, 每只鸡 0.2 mL。 攻 毒后第 5日, 分别采集每只鸡的泄殖腔拭子, 每个样品经尿囊腔接种 9〜11日龄 SPF鸡胚 5枚, 每胚 0.2 mL, 孵育观察 5日, 逐胚测定鸡胚液的 HA效价。每个样品接种的 5枚鸡胚中只要有 1 枚鸡胚胚液的 HA效价≥1 :16 (微量法), 即可判为病毒分离阳性。对病毒分离阴性的样品, 应盲 传 1次后再进行判定。 免疫组应至少有 9只鸡病毒分离阴性, 对照组应至少有 4只鸡病毒分离 阳性。
(3 ) 鉴定毒力:
对鸡胚的毒力: 用灭菌生理盐水将毒种作 1 : 10000稀释, 尿囊腔内接种 9〜11 日龄 SPF鸡 胚 20枚, 每胚 O.l mL (约 103O EID5。), 接种后 24〜96小时内, 应至少有 18个鸡胚死亡。 剖检 观察, 死亡鸡胚应出现全身出血、 明显水肿、 肝脏坏死等病变。
对雏鸡的毒力: 用灭菌生理盐水将毒种作 1 : 10稀释, 翅静脉接种 4〜8周龄 SPF鸡 10只, 每只鸡 0.2 mL,接种后观察 10日,鸡只应不出现死亡或明显异常反应但有个别鸡出现轻微的呼 吸道症状。 接毒后第 5日, 采集泄殖腔拭子, 用 9〜11 日龄 SPF鸡胚分离病毒, 至少 9只病毒 分离阳性。
(4)进行基因序列分析:
引物的设计与合成: 根据 GenBank登录的 H9N2亚型禽流感病毒 A/Chicken/Beijing/1/94株 的 HA基因序列 (登录号: AF156380 )和 NA基因序列 (登录号: AF156398 ) 设计 2对引物, 分别扩增细胞化 JY株病毒的 HA基因和 NA基因部分编码区。
HA1 : 5 ' -atggaaacaatatcactaataa-3 ' HA2: 5 ' -aagatccattggacatggccca-3 ' NAl : 5,- atgaatccaaatcagaagataata- 3' NA2 : 5,- tatagccatgaaattgatattcgc- 3'
细胞化 JY株的 HA和 NA基因编码区的扩增及克隆: 病毒 R A的提取如 J.萨姆布鲁克等 人著的 《分子克隆实验指南》所述步骤进行。 经过反转录后进行 PCR扩增。 反应条件为: 94°C 变性 40 s, 48°C退火 l min, 72°C延伸 1 min; 运行 5个循环后, 继续按下列条件运行: 94°C变 性 40 s, 52°C退火 1 min, 72°C延伸 1 min;运行 30个循环后, 72°C延伸 10 min, 4°C运行 10 min。
PCR产物经凝胶电泳鉴定, 用核酸纯化试剂盒回收获得目的片断, 并克隆到 pMD18-T载体上, 构建重组质粒 pT-HA和 pT-NA。
细胞化 JY株的 HA和 NA基因编码区核苷酸测序:将经过鉴定的阳性质粒 pT-HA和 pT-NA 进行测序, 测得的序列与与原胚毒化的 JY株的 HA和 NA序列进行比较, 并与 GenBank上的 4 株 H9N2亚型和 5株 H5N1亚型禽流感病毒的 HA和 NA序列进行同源性比较, 确定该细胞化 JY株病毒的基因序列是否发生改变。
上述鉴定和分析结束后的结果证明, 实施例 1所述(1 ) 的细胞系培养的病毒与原分离毒株 在特异性、毒力、免疫原性方面与原毒株没有发生明显改变, 即确定采用细胞系为 MDCK细胞。 实施例 2
本实施例说明经实施例 1确定的病毒适应细胞系 MDCK细胞的驯化方法。 将病毒适应细胞系 MDCK细胞进行无载体培养的驯化, 改变其贴壁生长的特性, 使其适应 全悬浮培养的生长环境:
将复苏后经 2〜3代贴壁培养的 MDCK细胞胰酶消化后,按 2x l05 cells/mL密度加入三角摇 瓶, 采用含 8〜10%血清的 F-DMEM培养基摇床培养, PH 7.5〜7.1, 40〜48小时后, 待细胞密 度达 l〜2xl06 cells/mL时, 分瓶传代, 同时观察细胞形态, 每次传代选取细胞形态良好的摇瓶 分瓶传代, 按上述方法摇床培养, 连传 43代, 分装, 液氮冻存。 实施例 3
病毒适应细胞的初级扩增培养和连续培养方法。
( 1 )初级扩增培养:
将驯化完成的 MDCK细胞向 5 L细胞培养生物反应器中接种 l〜5xl05 Cells/mL的细胞, 悬 浮培养, 直至扩增至 0.3〜lx l07 cells/mL, 实现细胞初级扩增培养;
其中, 所述的培养基为: 含 6〜10%血清的 F-DMEM培养基;
所述的培养条件为: 溶氧 20〜60%、 PH值 7.0〜7.4、 温度 35〜38°C、 初级流加速率 6 L/ 天, 稳定后流加速率 3 L/天;
(2)连续培养:
初级扩增培养结束后, 在上述细胞培养生物反应器中流加新鲜培养基和泵出细胞悬浮液, 以维持生物反应器稳定的同时, 保证细胞在反应器中停留时间内扩增至 0.3〜l xl07 Cells/mL, 实 现细胞连续培养;
其中, 所述的培养基为: 流加培养基为悬浮 MDCK的无血清 NF-DMEM培养基; 所述的培养条件为: 溶氧 30〜60%、 PH值 7.0〜7.4、 温度 35〜38°C、 流加速率 3 L/天。 实施例 4
本实施例说明将病毒接种并培养制备病毒液的方法。
将实施例 2中驯化后的已适应细胞繁殖的 H9N2亚型禽流感分离株 JY株病毒接种于 5 L的 病毒增殖反应器的悬浮细胞中培养,接种感染复数 0.01的病毒,改变培养因素为溶氧 40〜60%、 PH值 7.0〜7.2、 温度 32〜36°C、 流加培养基为悬浮 MDCK专用的含 1.2〜1.6 g/mL胰酶无血 清培养基、 流加速率 2 L/天, 使病毒在悬浮培养细胞中感染增殖, 使病毒适应在悬浮培养细胞 中扩增病毒含量^。7 !^^)/!!!^ 即血凝价 HA≥28;
泵出细胞悬浮液至 100 L的病毒增殖反应器接入禽流感病毒, 随着细胞悬浮液的以 40 L/天 不断流入和病毒上清液的不断流出, 在维持***动态平衡的过程中实现病毒的连续增殖, 最终 得到的病毒上清液的病毒含量≥107 TCID50/mL, 即血凝价 HA≥28。 实施例 5
本实施例说明将病毒上清液浓缩、 灭活及制备成疫苗产品的方法。
病毒液的浓缩及灭活:
收集实施例 4中最终得到的病毒液,经 30 KD截流分子量的膜包浓缩至病毒 HA血凝效价≥29 时, 停止浓縮, 采用甲醛溶液灭活, 使灭活剂终浓度为 0.1%, 37°C灭活 16小时, 可以完全灭活 病毒。
灭活疫苗的制备:
( 1 )油相制备: 取注射用白油 94份, 加硬脂酸铝 1份, 边加边搅拌, 直到完全透明为止, 再加入司本 -80 6份, 混合后, 高压灭菌备用;
(2)水相制备: 取浓缩后灭活的病毒液 96份, 加入灭菌的吐温 -80 4份, 充分摇动, 直到 吐温 -80完全溶解;
(3 ) 乳化: 取油相 3份置于乳化罐中, 搅拌的同时缓慢加入水相 1份, 持续搅拌 30〜60 分钟, 搅拌速度 800 r/min, 后通过剪切机 2次剪切, 剪切速度 4000 r/min, 即制成禽流感 (H9 亚型 JY株) 灭活疫苗;
(4)检测: 取样 5〜10 mL, 以 3000 r/min离心 15分钟, 如有分层现象, 应重复乳化 1次。 实施例 6
本实施例说明得到的疫苗产品的效果实验。
一、 免疫抗体水平与攻毒保护关系的试验
其中, H9亚型阳性血清购自哈尔滨兽医研究所; SPF鸡胚及试验用鸡, 从山东 SPF鸡场购 买 SPF蛋, 在相对隔离的条件下孵化, 隔离器词养。
试验方法:
1、 免疫: 将 4周龄的 SPF鸡随机分成 9个试验组, 每组 10只, 阴性对照组为 5只。 每批 疫苗分 3个试验组, 第 1组疫苗颈部皮下接种试验鸡 10只, 接种剂量 0.02 mL /只; 第 2组疫苗 接种试验鸡 10只, 0.1 mL/只; 第 3组疫苗接种试验鸡 10只, 0.2 mL/只。 三批疫苗均以此方法 免疫接种。
2、 血清抗体 HI的测定: 免疫后 3周, 采集每只鸡血清, 按现行《中国兽药典》 附录方法 测定试验组和阴性对照组每只鸡的 HI抗体效价。
3、 攻毒试验: 试验组鸡免疫 3周后, 用 10倍稀释的禽流感病毒 JY株 E1代病毒液静脉注 射攻击试验组和对照组鸡,攻击 5天后,采集泄殖腔棉拭子,用 10日龄 SPF鸡胚进行病毒分离。 以从泄殖腔没有分离到病毒判定为免疫攻毒保护。 试验结果:
三批疫苗按照不同的剂量对 4周龄的 SPF鸡进行免疫, 疫苗免疫剂量、 HI抗体效价和抗攻 毒保护之间的关系见表 1。从结果可见, 免疫 0.2 mL剂量组共保护 30/30 ( 100%), HI抗体效价 几何平均值均≥7.41og2; 免疫 0.1 mL剂量组共保护 30/30 ( 100%), HI抗体效价几何平均值均 >6.81og2, 免疫 0.02 mL剂量组共保护 25/30 ( 83.3 %), HI抗体效价几何平均值均≥4.9 log2。 对 照组 5只, HI抗体效价 0, 攻毒保护为 1/5(20%)。 疫苗免疫剂量与攻毒保护率表现出一定的相 关性, 随着免疫剂量的加大, 免疫组鸡获得攻毒保护的数量增多, 但这种差异没有统计学意义 上的差异; 血清 HI抗体效价与抗攻毒保护则呈现明显的正相关。
表 1 疫苗免疫剂量、 HI抗体效价和攻毒保护之间的关系
HI抗体效价 (log2) 及攻毒保护率
批 0.2 mL 0.1 mL 0.02 mL
号 病毒分离 病毒分离 病毒分离
HI HI HI
阴性 阴性 阴性
0901批 7.6±0.7 10/10 7.0±0.6 10/10 4.7±0.8 8/10
0902批 7.2±0.5 10/10 6.8±0.6 10/10 4.9±0.6 8/10
0903批 7.3±0.6 10/10 6.7±0.7 10/10 5.0±0.7 9/10 阴性对照 <2 1/5 - - - - 注:分母为接种鸡的数量, 分子为病毒分离阴性鸡的数量 三批疫苗按照不同的剂量对 4周龄的 SPF鸡进行免疫, HI抗体效价和攻毒保护之间的关系 见表 2, 结果表明, 免疫后血清 HI抗体效价与攻毒保护率呈正相关。 HI≤21og2, 攻毒保护率为 20%; HI>51og2,攻毒保护率为 100%。
表 2 免疫后 HI抗体效价与攻毒保护的平行关系
HI抗体 不同 HI抗体效价的攻毒保护情况
效价 /log2 0.2 mL 0.2 mL 0.02 mL 阴性对照 合计
<2 0/0 ( 0) 0/0 (0) 0/0 (0) 1/5 1/5(20%)
4 0/0 ( 0) 0/0 (0) 0/4 (0) ― 0/4(0)
5 0/0 ( 0) 0/0 ( 100%) 19/19 ( 100%) ― 19/19(100%)
>6 30/30 ( 100%) 30/30 ( 100%) 7/7 ( 100%) ― 66/66(100%) 注: 分母为接种鸡的数量, 分子为病毒分离阴性鸡的数量; 括号内数字为保护百分率
本试验结果表明, 禽流感 (H9亚型)病毒 JY株灭活疫苗免疫剂量与攻毒保护呈现一定的 正相关,但表现不明显。血清 HI抗体效价与抗攻毒保护呈现较明显的正相关性, HI抗体≥5 log2, 即可获得 100%攻毒保护, 因此, HI抗体效价可作为疫苗效检的判定标准。 即 HI抗体≥51og2, 可获得 100%攻毒保护, 则该疫苗免疫效力合格。 考虑到泄殖腔病毒分离具有一定的不确定性, 为保证疫苗的免疫效力, 在用免疫 HI抗体滴度作为疫苗效力评价指标时, 规定 HI抗体滴度几 何平均值≥710§2, 同时阴性对照组鸡 HI抗体滴度≤2 10§2 时, 判定该疫苗合格。 二、 疫苗的免疫效力及最小免疫剂量试验
其中,试验鸡为 SPF鸡, SPF种蛋购自山东家禽所 SPF鸡场,孵化后在负压隔离器内词养; 标准抗原和抗血清为禽流感 (H9亚型) 抗原和抗血清, 灭活的抗原 HA效价≥1 :128; 抗血 清 HI≥1 :64。 试验方法:
1、 分组及免疫: 将三批疫苗分别以 20 μΙ7只、 0.1 L/只、 0.2 mL/只接种 21 日齢的 SPF鸡每 组各免疫 10只, 各组鸡分别设对照 5只, 每组鸡都进行编号, 各组鸡隔离饲养;
2、 免疫 21天后, 检测抗禽流感 (H9亚型) 的 HI抗体; 然后用禽流感 (H9亚型) JY株 (静脉注射 10倍稀释的病毒尿囊液, 0.2 mL/只)分别攻击。 攻毒 5天后, 分别采集每只鸡泄殖 腔拭子, 每个样品经尿囊腔接种 5枚 10日龄 SPF鸡胚, 0.2 mL/胚, 37°C孵育 5日, 逐胚测定 HA, 每个样品接种的 5枚鸡胚中只要有 1枚鸡胚胚液的 HA效价≥1 : 16 (微量法), 即可判定为 病毒分离阳性。 对病毒分离阴性的样品, 再盲传 1代后判定。 以确定免疫效力及禽流感(H9亚 型) JY株部分的最小免疫剂量。 试验结果:
从表 3中可以见到, 分别以 20 0.1 mL、 0.2 mL, 免疫不同日龄的 SPF鸡。 在免疫后 21天, 每只免疫 20 的免疫组, HI抗体几何平均值≥51(¾2, 攻毒保护率可达到 85%; 免疫 0.1 mL、 0.2 mL的两组鸡, 抗禽流感 (H9亚型) 的 HI抗体几何平均值均≥71og2, 攻毒保护 SPF鸡 达到 100%,与实验室前期研究结果相符。根据上述实验结果,确定疫苗最小免疫剂量为 0.1 mL, 免疫 21天后, HI抗体几何平均值≥71(¾2。 考虑实际应用中的复杂性, 及饲养条件与实验室的差 异等不利因素, 为确保免疫效果的可靠性, 推荐免疫剂量为 0.2 mL/只。 二联疫苗禽流感(H9亚型) 部分免疫效力试验
疫苗 免疫鸡 免疫日龄 免疫剂量 21天抗体效价 病毒 批号 品种 (天) (mL) HI (log2)* 分离 #
0.02 5.1±0.6 1/10
0204 SPF鸡 21 0.1 7.2±0.8 0/10
0.2 7.8±0.7 0/10
0.02 5.0±0.6 1/10
0205 SPF鸡 21 0.1 7.3±0.4 0/10
0.2 7.9±0.5 0/10
0.02 5.4±0.4 1/10
0206 SPF鸡 21 0.1 7.5±0.9 0/10
0.2 8.0±0.8 0/10 对照 SPF鸡 21 0 <2 4/5 HI抗体滴度为 10只鸡抗体的几何平均数, 表示为: X±SD,X代表平均值, SD代表离散度

Claims

权 利 要 求
1、 一种 H9N2亚型禽流感灭活疫苗的制备方法, 包括以下步骤:
( 1 )病毒适应细胞系 MDCK细胞的驯化
将病毒适应细胞系 MDCK细胞进行无载体培养的驯化, 改变其贴壁生长的特性, 使其适应 全悬浮培养的生长环境;
(2) MDCK细胞的初级扩增培养
将驯化完成的 MDCK细胞向细胞培养生物反应器中接种 l〜5xl05 cells/mL的细胞,悬浮培 养, 直至扩增至 0.3〜lx l07 cells/mL, 实现细胞初级扩增培养;
(3 )病毒适应细胞的连续培养
初级扩增培养结束后, 在上述细胞培养生物反应器中流加新鲜培养基和泵出细胞悬浮液, 以维持生物反应器稳定的同时, 保证细胞在反应器中停留时间内扩增至 0.3〜l xl07 cells/mL, 实 现细胞连续培养;
(4)接种病毒培养制备病毒液
将驯化的已适应细胞繁殖的 H9N2亚型禽流感分离株 JY株病毒接种于悬浮细胞,改变培养 因素, 随着细胞悬浮液的不断流入和病毒上清液以同样速度的不断流出, 在维持***动态平衡 的过程中实现病毒的连续增殖,使病毒适应在悬浮培养细胞中扩增病毒含量≥107 TCID5()/mL, 即 血凝价 HA≥28;
(5 )病毒浓缩、 灭活及制成疫苗产品。
2、 根据权利要求 1所述的制备方法, 其特征在于所述的歩骤 (1 ) 的无载体培养驯化方法 为: 将复苏后经 2〜3代贴壁培养的 MDCK细胞胰酶消化后, 按 2x l05 cells/mL密度加入三角摇 瓶, 采用含 8〜10%血清的 F-DMEM培养基摇床培养, PH 7.1〜7.5, 40〜48小时后, 待细胞密 度达 l〜5xl06 cells/mL时, 分瓶传代, 同时观察细胞形态, 每次传代选取细胞形态良好的摇瓶 分瓶传代, 按上述方法摇床培养, 连传 43代, 分装, 液氮冻存。
3、 根据权利要求 1所述的制备方法, 其特征在于所述的步骤(2) 中的培养基为含 6〜10% 血清的 F-DMEM培养基。
4、 根据权利要求 1所述的制备方法, 其特征在于所述的步骤 (2) 中所述的培养条件为: 溶氧 20〜60%、 PH {1 7.0—7.4, 温度 35〜38°C。
5、 根据权利要求 1所述的制备方法, 其特征在于所述的歩骤 (3 ) 中流加的培养基为悬浮 MDCK的无血清 NF-DMEM培养基。
6、 根据权利要求 1所述的制备方法, 其特征在于所述的步骤 (3 ) 中所述的培养条件为: 溶氧 30〜60%、 PH值 7.0〜7.4、 温度 35〜38°C。
7、 根据权利要求 1所述的制备方法, 其特征在于所述的歩骤 (4) 中所述的改变的培养因 素为: 溶氧 40〜60%、 PH值 7.0〜7.2、温度 32〜36°C、流加培养基为悬浮 MDCK的含 1.2〜1.6 g/mL胰酶无血清培养基。
8、 根据权利要求 1所述的制备方法, 其特征在于所述的步骤 (5 ) 的病毒液的浓縮及灭活 方法为: 收集步骤(4)得到的病毒液, 预处理后经 30 KD截流分子量的膜包浓缩至病毒 HA血 凝效价≥29时, 停止浓缩, 采用甲醛溶液灭活, 使灭活剂终浓度为 0.1%, 37°C灭活 16小时。
9、 根据权利要求 1所述的制备方法, 其特征在于所述的步骤 (5 ) 的将浓缩及灭活后病毒 液制备成疫苗产品的方法为:
油相制备: 取注射用白油 94份, 加硬脂酸铝 1份, 边加边搅拌, 直到完全透明为止, 再加 入司本 -80 6份, 混合后, 高压灭菌备用;
水相制备: 取浓缩后灭活的病毒液 96份, 加入灭菌的吐温 -80 4份, 充分摇动, 直到吐温 -80完全溶解;
乳化: 取油相 3份置于乳化罐中, 搅拌的同时缓慢加入水相 1份, 持续搅拌 30〜60分钟, 搅拌速度 800 r/min,后通过剪切机 2次剪切, 剪切速度 4000 r/min, 即制成 H9N2亚型禽流感灭 活疫苗;
检测: 取样 5〜10 mL, 以 3000 r/min离心 15分钟, 如有分层现象, 应重复乳化 1次。
10、 根据权利要求 1所述的 H9N2亚型禽流感灭活疫苗的制备方法所制得的疫苗产品。
PCT/CN2010/072348 2010-04-29 2010-04-29 一种h9n2亚型禽流感灭活疫苗的制备方法及产品 WO2011134163A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/072348 WO2011134163A1 (zh) 2010-04-29 2010-04-29 一种h9n2亚型禽流感灭活疫苗的制备方法及产品
ZA2011/06852A ZA201106852B (en) 2010-04-29 2011-09-20 A method to prepare inactivated vaccine for h9n2 sub-type avian influenza and product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072348 WO2011134163A1 (zh) 2010-04-29 2010-04-29 一种h9n2亚型禽流感灭活疫苗的制备方法及产品

Publications (1)

Publication Number Publication Date
WO2011134163A1 true WO2011134163A1 (zh) 2011-11-03

Family

ID=44860776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072348 WO2011134163A1 (zh) 2010-04-29 2010-04-29 一种h9n2亚型禽流感灭活疫苗的制备方法及产品

Country Status (2)

Country Link
WO (1) WO2011134163A1 (zh)
ZA (1) ZA201106852B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789273A (zh) * 2012-11-26 2014-05-14 北京华都诗华生物制品有限公司 一种禽流感h9n2亚型病毒毒株及其应用
CN107460156A (zh) * 2016-06-03 2017-12-12 北京大北农科技集团股份有限公司动物医学研究中心 无血清全悬浮mdck细胞株及其在生产流感病毒中的应用
CN108220221A (zh) * 2017-12-22 2018-06-29 吉林冠界生物技术有限公司 一种全悬浮细胞培养重组禽流感亚型病毒的方法
CN109689868A (zh) * 2015-10-30 2019-04-26 富士胶片欧文科技有限公司 用于生产疫苗的化学限定无血清培养基中的mdck悬浮细胞系
CN109679926A (zh) * 2019-02-25 2019-04-26 南京天邦生物科技有限公司 禽流感病毒h9亚型jxd株及应用
CN112156182A (zh) * 2020-11-10 2021-01-01 成都天邦生物制品有限公司 一种全悬浮细胞源鸡新城疫、禽流感二联灭活疫苗

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094915A (zh) * 2004-05-20 2007-12-26 益得生物医学公司 生产流感疫苗的方法
CN101189326A (zh) * 2004-12-23 2008-05-28 米迪缪尼疫苗股份有限公司 用于病毒增殖的非致瘤性mdck细胞系
CN101511385A (zh) * 2006-09-11 2009-08-19 诺华有限公司 不使用蛋制备流感病毒疫苗

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094915A (zh) * 2004-05-20 2007-12-26 益得生物医学公司 生产流感疫苗的方法
CN101189326A (zh) * 2004-12-23 2008-05-28 米迪缪尼疫苗股份有限公司 用于病毒增殖的非致瘤性mdck细胞系
CN101511385A (zh) * 2006-09-11 2009-08-19 诺华有限公司 不使用蛋制备流感病毒疫苗

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789273A (zh) * 2012-11-26 2014-05-14 北京华都诗华生物制品有限公司 一种禽流感h9n2亚型病毒毒株及其应用
CN109689868A (zh) * 2015-10-30 2019-04-26 富士胶片欧文科技有限公司 用于生产疫苗的化学限定无血清培养基中的mdck悬浮细胞系
CN107460156A (zh) * 2016-06-03 2017-12-12 北京大北农科技集团股份有限公司动物医学研究中心 无血清全悬浮mdck细胞株及其在生产流感病毒中的应用
CN107460156B (zh) * 2016-06-03 2022-03-11 兆丰华生物科技(南京)有限公司北京生物医药科技中心 无血清全悬浮mdck细胞株及其在生产流感病毒中的应用
CN108220221A (zh) * 2017-12-22 2018-06-29 吉林冠界生物技术有限公司 一种全悬浮细胞培养重组禽流感亚型病毒的方法
CN109679926A (zh) * 2019-02-25 2019-04-26 南京天邦生物科技有限公司 禽流感病毒h9亚型jxd株及应用
CN109679926B (zh) * 2019-02-25 2022-10-21 兆丰华生物科技(南京)有限公司 禽流感病毒h9亚型jxd株及应用
CN112156182A (zh) * 2020-11-10 2021-01-01 成都天邦生物制品有限公司 一种全悬浮细胞源鸡新城疫、禽流感二联灭活疫苗

Also Published As

Publication number Publication date
ZA201106852B (en) 2013-02-27

Similar Documents

Publication Publication Date Title
CN111420044B (zh) 一种四价流感病毒亚单位疫苗及其制备方法
WO2011134163A1 (zh) 一种h9n2亚型禽流感灭活疫苗的制备方法及产品
US20180243404A1 (en) Idna vaccines and methods for using the same
CN106139140B (zh) 一种番鸭细小病毒亚单位疫苗
US11607448B2 (en) Whole avian-origin reverse genetic system and its use in producing H7N9 subtype avian influenza vaccine
CN104888212A (zh) 一种流感病毒亚单位疫苗及其制备方法
US11512117B1 (en) Whole avian-origin reverse genetic system and recombinant H5N2 subtype avian influenza virus, vaccine and uses thereof
CN104611299B (zh) 一种人工重组的h9n2禽流感病毒株、制备方法、疫苗组合物及其应用
CN115141812A (zh) 一株阿卡斑病毒疫苗株及其应用
CN106031793B (zh) 一种活疫苗及其制备方法和应用
CN101730544B (zh) Pitman moore狂犬病病毒株对原代鸡胚成纤维细胞培养物的适应方法
CN112063596A (zh) 鸽副黏病毒1型ppmv-1/bj-c株及其应用
CN112156182A (zh) 一种全悬浮细胞源鸡新城疫、禽流感二联灭活疫苗
CN104073470A (zh) 一种h9n2亚型禽流感病毒的转瓶培养方法
CN112080478B (zh) 一种h5亚型禽流感病毒的高效增殖方法及应用
CN112891528B (zh) 一种鸡传染性支气管炎疫苗株
CN110551694A (zh) 塞尼卡谷病毒svv/ch/zz/2016
CN115068600A (zh) 抗病毒蛋白免疫增强剂在h9n2禽流感灭活苗中的应用
CN108676078B (zh) 引起坦布苏病毒抗体依赖增强作用的抗原的应用
CN111057683A (zh) 一种鸡胚接种用病毒稀释液及其制备方法和应用
KR20100017593A (ko) 바이러스의 증식을 위한 2-단계 온도 프로파일
CN116875564B (zh) H9亚型禽流感病毒毒株及其培养方法
CN109679926B (zh) 禽流感病毒h9亚型jxd株及应用
KR102568329B1 (ko) 조류인플루엔자 뉴라미니다아제를 포함하는 바이러스-유사입자 및 이를 이용한 범용 백신
CN111450246B (zh) 一种三价流感病毒亚单位疫苗及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850496

Country of ref document: EP

Kind code of ref document: A1