WO2011131096A1 - 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法 - Google Patents

通讯和广播接收机前置可调谐滤波器的电路及其调谐方法 Download PDF

Info

Publication number
WO2011131096A1
WO2011131096A1 PCT/CN2011/072655 CN2011072655W WO2011131096A1 WO 2011131096 A1 WO2011131096 A1 WO 2011131096A1 CN 2011072655 W CN2011072655 W CN 2011072655W WO 2011131096 A1 WO2011131096 A1 WO 2011131096A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
tuning
frequency
filter
Prior art date
Application number
PCT/CN2011/072655
Other languages
English (en)
French (fr)
Inventor
王晗
杨祎
李振
杨培
陈殿玉
林海清
向毅海
刘忠志
Original Assignee
北京昆腾微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京昆腾微电子有限公司 filed Critical 北京昆腾微电子有限公司
Publication of WO2011131096A1 publication Critical patent/WO2011131096A1/zh
Priority to US13/655,264 priority Critical patent/US8862089B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/04Filter calibration method

Definitions

  • the invention relates to a circuit for a communication and broadcast receiver pre-tunable filter and a tuning method thereof. Background technique
  • Receivers are widely used in mobile phones, television, radio, and global navigation systems (GPS). In our country, for example, wireless broadcast and television signals are distributed in different frequency bands. Each program has its own channel in the corresponding signal band. Take FM radio (FM) as an example.
  • FM radio frequency signal is between 88MHz and 108MHz. Each FM channel is 200KHz.
  • the receiver needs to receive the RF signal through the RF front-end, and then transfer the signal to the baseband for demodulation by one or more stages of frequency conversion.
  • the received RF signal is first converted to an intermediate frequency, amplified and filtered, and then converted to a baseband for demodulation processing.
  • FM radio broadcasting as an example, in an FM receiver, 10.7 MHz is often used as the intermediate frequency of the receiver.
  • the FM broadcast signal received by the RF front end.
  • FIG. 1 illustrates a receiver system 100.
  • Such a receiver system has a radio frequency front end 101, a frequency conversion unit 107, a local oscillation circuit (LO) 110, and a baseband demodulation circuit 114.
  • LO local oscillation circuit
  • the RF front end 101 receives the signal 130, and the RF signal 134 is obtained after processing; the processing of the input signal 130 by the RF front end 101 may be gain processing, that is, amplification or attenuation; or may be filtering, filtering or attenuating the out-of-band signal, and retaining In-band useful signal.
  • the local oscillator circuit 110 produces a local oscillator signal 132 of a tuned frequency at a frequency of FLO.
  • the frequency transform unit 107 receives the processed radio frequency signal 134 and the local oscillator signal 132 to obtain a baseband signal 135 having a frequency of F IF .
  • Demodulation circuit 114 demodulates baseband signal 135 to obtain the desired demodulated signal 138.
  • FIG. 2 illustrates receiver system 110.
  • a pre-filter 104 is added to system 110.
  • the pre-filter 104 performs a selective tuning filter on the input signal 130 to filter or attenuate uncorrelated out-of-channel signals based on the selected channel. Then, the obtained in-band signal 131 is input to the RF front end.
  • FIG. 3 illustrates receiver system 111.
  • System 111 adds antenna 102.
  • the antenna receives the radio frequency signal in the air and performs filtering. If it is an active antenna, it also has the function of amplifying the signal.
  • the resulting RF signal 130 is supplied to a pre-filter 104 of the receiver.
  • the antenna of the wireless receiver can be regarded as one type of pre-filter or a part of pre-filter.
  • FIG. 4 illustrates receiver system 112.
  • a tuning control loop to the pre-filter 104 is added to the system 112 to assist the receiver in further tuning to the received program channel.
  • the frequency transform unit 107 and the baseband demodulation circuit 114 module in the receiver signal chain Must also work.
  • Baseband demodulation circuit 114 also needs to generate a feedback signal 126 to calibration feedback circuit 116. This feedback signal 126 is used to indicate the strength of the RF signal 130 and the deviation of the frequency.
  • the calibration feedback circuit 116 generates a tuning calibration signal 120, and a tuning control signal 122 based on the feedback signal 126. Tuning control signal 122 controls switch 118.
  • the switch 118 When the pre-filter is tuned, the switch 118 is closed and the tuning and calibration signal 120 is sent to the RF signal 130.
  • the calibration feedback circuit 116 also generates a control signal 124 to the pre-filter 104.
  • Control signal 124 is used to adjust the value of the tunable component in pre-filter 104.
  • the pre-filter 104 has a different frequency response to the injected tuning and calibration signal 120 as a function of the control signal 124 and is reflected on the RF signal 130.
  • the RF signal 130 reaches the baseband demodulation circuit 114 along the signal link.
  • the tuning scheme in system 112 has the following disadvantages. First, the tuning scheme in system 112 relies on the normal operation of the receive signal link. Second, the tuning and calibration signal 120 generated by the calibration feedback circuit 116 must be different from the local oscillator signal 132 by the frequency F IF of an intermediate frequency signal. Only in this way, during the tuning process, the baseband signal 135 output by the frequency transform unit 107 is exactly at the intermediate frequency F IF of the received signal link.
  • the circuit implementation resulting in this tuning scheme requires the inclusion of an oscillator in the calibration feedback circuit 116 that differs from the operating frequency F of the local oscillator 132 by the frequency F IF .
  • this tuning scheme requires baseband demodulation circuitry 114 to separately process the baseband signal 135 of the tuning process to produce the desired feedback control signal 126. This part of the function is added in addition to the demodulation function, which increases the overhead of the circuit.
  • the control loop of this tuning scheme is long and involves multiple modules on the receive signal link.
  • the calibration feedback circuit 116 is subject to many limitations and is extremely difficult to optimize.
  • the design of the calibration feedback circuit 116 is heavily dependent on the structure of the receiver signal chain, and the independence, reusability, and portability of the calibration feedback circuit 116 are poor.
  • the present invention provides a circuit suitable for a pre-tunable filter in a communication and broadcast receiver and a tuning method thereof, which are suitable for use in a radio frequency circuit in a communication and broadcast receiver.
  • an active device is employed in the tuning and calibration portion of the prefilter.
  • the active device and the prefilter form a negative resistance oscillator.
  • at least one controllable tuning element is included to adjust the frequency of the oscillating signal.
  • a controllable active device can be included to adjust the oscillator oscillation signal amplitude.
  • the oscillation amplitude control circuit of the tuning and calibration circuit detects the oscillation signal, and compares the amplitude of the oscillation signal with a preset range. According to the comparison result, the oscillation amplitude control circuit outputs a control signal to the oscillator to stabilize the signal amplitude within the designed range.
  • the oscillating frequency control circuit of the tuning and calibration circuit detects the frequency of the oscillating signal and compares it with the preset frequency. According to the comparison result, the oscillating frequency control circuit outputs a control signal to the controllable tuning component of the oscillator to stabilize the oscillating signal frequency within the designed range. .
  • the tuning is now complete.
  • the receiver can work normally.
  • the tuning and calibration circuit of the present invention includes two control loops: a control loop of the oscillation amplitude control circuit and a control loop of the oscillation frequency control circuit.
  • the former stabilizes the amplitude of the oscillating signal, and the latter determines the tuning frequency.
  • the two loops can be adjusted independently of each other, and the receiving signal link does not need to participate in tuning and calibration, which not only reduces the design workload, but also greatly reduces the number of iterations and cycles in the design debugging, so that the circuit can be optimized.
  • the tuning and calibration circuit of the present invention is independent of the receive signal link and no longer relies on the normal operation of the receive signal link. There is also no need to process the tuning and calibration signals on the receive signal link.
  • the tuning and calibration circuit is independent of the receiver signal link, and is suitable for receivers adopting various intermediate circuits of zero intermediate frequency, low intermediate frequency, high intermediate frequency, and multiple intermediate frequency.
  • the independence, reusability and portability of the tuning and calibration circuit are realized.
  • the tuning and calibration circuit of the present invention has a simple structure and saves hardware. There is no need to add additional circuitry to the tuning to inject small signals into the input port.
  • the demodulation circuit also does not require separate processing of the tuning signal. In the case where the system design allows, the control loop of the oscillation amplitude control circuit can be omitted, further simplifying the circuit.
  • the tuning and calibration circuit proposed by the present invention provides a gain to the received channel signal.
  • the tuning and calibration circuit proposed by the present invention In the tuning and calibration circuit proposed by the present invention, two feedback control loops are tightly coupled to the pre-filter.
  • the feedback loop is short because there is no need to receive signal link participation. Therefore, the tuning speed can be improved while reducing power consumption.
  • the tuning and calibration circuit proposed by the present invention can be implemented with separate electronic components. It can also be implemented entirely inside the integrated circuit. Or a part of the circuit in the integrated circuit plus the separation of electronic components to achieve a variety of ways.
  • Figure 6 illustrates an embodiment of the circuit of the present invention implemented entirely in an integrated circuit. Among them, the tuning and calibration circuit and the pre-filter proposed by the present invention are completely in the integrated circuit 202.
  • the external antenna 102 is coupled to the wireless receiver via an integrated circuit pin 204.
  • FIG. 7 illustrates an embodiment of the circuit portion of the present invention implemented in an integrated circuit.
  • the tuning and calibration circuit and the partial pre-filter proposed by the present invention are in the integrated circuit 202.
  • the external antenna 102 and a portion of the pre-filter element 206 are coupled to the integrated circuit pin 204.
  • FIG. 1 is a block diagram showing the circuit structure of a wireless receiver system.
  • Figure 2 is a diagram showing the circuit structure of a receiver system having a prefilter
  • Figure 3 is a diagram showing the circuit structure of a receiver system having an antenna and a prefilter
  • Figure 4 is a diagram showing the circuit structure of a receiver system with a pre-filter tuning control loop
  • FIG. 5 is a circuit diagram showing a receiver system having a pre-filter tuning control loop according to an embodiment of the present application.
  • FIG. 6 is a diagram showing a circuit structure of the system 200 of FIG. 4 implemented entirely on an integrated circuit.
  • Figure 7 is a diagram showing the circuit structure of the system 200 in Figure 4 implemented on an integrated circuit.
  • FIG. 8 is a diagram illustrating a tuning method using the system 200 of FIG. 4.
  • the receiver is widely used in the fields of mobile phones, wireless/cable television, GPS navigation, and the like.
  • RF signals such as FM radio broadcast
  • not only the range of the band frequency China FM broadcast is from 88MHz to 108MHz
  • the channel spacing regulations such as the Chinese FM broadcast channel spacing of only 200KHz.
  • the invention is fully applicable to receivers of these signals as well as other wireless or wired signals and can be used to tune to a particular channel.
  • FIG. 5 illustrates a system 200 in accordance with an embodiment of the present application.
  • the pre-filter 104 has: a pre-filter 104, a radio frequency front end 101, a frequency transform unit 107, a local oscillation circuit (LO) 110, a baseband demodulation circuit 114, a pre-filter 104, and a tuning and calibration circuit 150.
  • the system 200 can be adapted for tuning control of any receiver.
  • the pre-filter 104 includes a tunable element.
  • the tunable component can be a variable capacitor 146, a variable inductor, a varactor diode, a variable resistor, a voltage variable microelectromechanical system (MEMS) or other frequency adjustment component, and the tunable component can also be a variable capacitor 146.
  • MEMS voltage variable microelectromechanical system
  • variable inductors varactors, variable resistors, and voltage-variable microelectromechanical systems (MEMS).
  • MEMS voltage-variable microelectromechanical systems
  • the capacitance value of the variable capacitor 146 can be varied to change the receiving frequency of the pre-filter.
  • the adjustment can be done by digital adjustment with a digital signal or by continuous adjustment of the analog signal.
  • the tuning and calibration circuit 150 includes an oscillation amplitude control circuit 142, an oscillation frequency control circuit 140, an oscillator negative resistance element 144, and a tuning control switch 152.
  • FIG. 8 illustrates a tuning algorithm of system 200 in accordance with an embodiment of the present application. When the receiver needs to be tuned, the receiver first needs to set the tuning frequency. The tuning and calibration circuit 150 is then turned on to begin operation.
  • Tuning calibration circuit 150 closes control switch 152 by signal 168.
  • the oscillator negative resistance element 144 and the pre-filter 104 together form an oscillator.
  • the frequency of the oscillating signal is also the receiving frequency of the pre-filter.
  • the negative resistance element 144 can be a separate element or a plurality of elements, controlled by an amplitude control signal 162 output by the oscillation amplitude control circuit 142.
  • the oscillating signal is simultaneously input to the oscillating frequency control circuit 140 and the oscillating amplitude control circuit 142.
  • the oscillation amplitude control circuit 142 oscillates the signal to be compared with the preset range of the receiver system.
  • the oscillation amplitude control circuit 142 outputs the control signal 162 to the oscillator negative resistance element 144 to stabilize the amplitude of the RF signal 130 within the designed range.
  • the oscillation frequency control circuit 140 detects the frequency of the oscillation signal 130 and compares it with the set tuning frequency. According to the comparison result, the oscillation frequency control circuit 140 outputs the control signal 160 to the controllable tuning element of the pre-filter 104, and the signal 130 The frequency is stable in the scope of the design. Do so until the amplitude and frequency of the oscillating signal satisfy the set range. Now that the tuning is complete, the tuning and calibration circuit disconnects the control switch 152 via signal 168, and the receiver enters the positive Work often.
  • the oscillating signal of the oscillating amplitude control circuit 142 is compared with a preset range of the receiver system, and according to the comparison result, the oscillating amplitude control circuit 142 outputs the control signal 162 to The oscillator negative resistance element 144 stabilizes the amplitude of the RF signal 130 within the designed range.
  • the pre-filter 104 is disconnected from the negative-resistance element 144 of the tuning and calibration circuit 150.
  • the pre-filter 104 filters only the received wireless signal, and the oscillating frequency control circuit 140 remains tunable.
  • the control signal of the component does not change.
  • the signal mentioned above may be an analog signal, or a digital signal, used to represent voltage or current.
  • the various illustrative modules, circuits, structures, and algorithm steps described in connection with the embodiments described herein may be implemented as electronic hardware, software, or combinations of both. Those skilled in the art can decide on the implementation method of hardware and software according to a specific application. However, such embodiments are not to be construed as a departure from the scope of the invention.
  • the circuits and algorithm steps described in connection with the second embodiment disclosed in the present application can be directly implemented in a circuit, in a software module executed by a processor, and in a combination of the two.
  • the circuit can be a digital circuit state machine, an analog circuit, and a combination of the two.
  • the processor can be a microprocessor or any conventional processor or controller.
  • the previous description of the embodiments of the present application is intended to enable those skilled in the art to understand the invention.
  • the general principles defined in the present application apply to other embodiments without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Superheterodyne Receivers (AREA)

Description

通讯和广播接收机前置可调谐滤波器的电路及其调谐方法 技术领域
本发明涉及一种通讯和广播接收机前置可调谐滤波器的电路及其调谐方法。 背景技术
接收机在移动电话、 电视、 广播、 全球导航*** (GPS) 等领域得到广泛的应用。 以我 国为例,无线广播及电视信号分布在不同的频段。 在相应的信号频段内, 各个节目有自己的频 道。 以调频广播(FM)为例。 调频广播的射频信号在 88MHz到 108MHz之间。 每个 FM频道是 200KHz。
我国广播及电视频率划分表
Figure imgf000003_0001
接收机需要将射频信号通过射频前端接收, 然后通过一级或多级频率变换, 把信号转移 到基带进行解调处理。 以二级频率变换的结构为例, 接收到的射频信号先被转换到中频, 进 行放大和滤波, 然后转换到基带进行解调处理。 以 FM调频广播为例, 在 FM接收机中, 常常 采用 10.7MHz作为接收机的中频。 首先, 射频前端接收到的 FM广播信号。 接着, 下变频到 10.7MHz, 进行滤波; 如果需要, 还会对得到的中频信号进行放大。 然后, 10.7MHz的调频信 号被进一步下变频到基带, 由解调电路进行解调处理。 最终得到广播节目信号。 常见的接收 机结构还包含: 零中频结构, 暨直接把接收到的射频信号, 不通过中频级, 直接转换到基带 进行解调处理; 以及多中频结构, 暨通过多级中频变换, 最终把信号转换到基带进行解调。 其他接收机的工作原理都相同。 图 1说明接收机*** 100。这样一个接收机***,其具有:射频前端 101、频率变换单元 107、 本机振荡电路 (LO) 110、 基带解调电路 114。 射频前端 101接收到信号 130, 处理后得到射频 信号 134;射频前端 101对输入信号 130的处理可以是增益处理,即放大或衰减;也可以是滤波, 既滤除或衰减带外的信号, 保留带内有用信号。本机振荡电路 110产生一个调谐好频率的本振 信号 132, 频率是 FLO。 频率变换单元 107 接收经过处理的射频信号 134和本振信号 132, 得到 基带信号 135, 频率是 FIF。 解调电路 114对基带信号 135解调, 得到需要的解调信号 138。 图 2说明接收机*** 110。*** 110中增加了前置滤波器 104。前置滤波器 104对输入信号 130 先进行有选择的调谐滤波, 根据选定的频道滤除或衰减不相关的频道外信号。 然后, 把得到 的带内信号 131输入给射频前端。 图 3说明接收机*** 111。 *** 111增加了天线 102。 天线接收空中的无线射频信号, 进行 滤波。 如果是有源天线, 还有对信号进行放大的功能。 得到的射频信号 130, 输送给接收机的 前置滤波器 104。 这里, 无线接收机的天线, 可以看作是前置滤波器的一种, 或前置滤波器的 一部分。 图 4说明接收机*** 112。 *** 112中增加了对前置滤波器 104的调谐控制环路, 可以帮助 接收机进一步调谐到接收的节目频道。在这种方案中, 当对前置滤波器 104进行调谐时, 除前 置滤波器 104和校准反馈电路 116必须工作以外,接收机信号链路中的频率变换单元 107和基带 解调电路 114模块也必须工作。基带解调电路 114还需要产生一个反馈信号 126给校准反馈电路 116。 这个反馈信号 126用来指示射频信号 130的强弱以及频率的偏差。 校准反馈电路 116根据 反馈信号 126, 产生调谐校准信号 120, 和调谐控制信号 122。 调谐控制信号 122控制开关 118。 当在前置滤波器调谐时, 开关 118闭合, 将调谐校准信号 120送到射频信号 130上。校准反馈电 路 116还产生对前置滤波器 104的控制信号 124。控制信号 124用来调节前置滤波器 104里的可调 谐元器件值。前置滤波器 104随控制信号 124的变化, 对注入的调谐校准信号 120有不同的频率 响应, 并反映在射频信号 130上。 这样射频信号 130沿信号链路到达基带解调电路 114。在解调 电路 114和校准反馈电路 116的作用下, 不断调整校准反馈电路的输出信号 120、 122、 124, 最 终将前置滤波器 104调谐到接收机***需要的最佳频率。 *** 112中的调谐方案存在以下缺点。 第一, *** 112中的调谐方案依赖接收信号链路的 正常工作。其次, 校准反馈电路 116产生的调谐校准信号 120必须和本振信号 132相差一个中频 信号的频率 FIF。 只有这样, 在调谐过程中, 频率变换单元 107输出的基带信号 135正好是在接 收信号链路的中频频率 FIF上。导致这个调谐方案的电路实现需要在校准反馈电路 116中包含一 个振荡器, 工作频率和本地振荡器 132的工作频率 F 相差频率 FIF。 第三, 这个调谐方案需要 基带解调电路 114对调谐过程的基带信号 135作单独处理, 产生出需要的反馈控制信号 126。这 部分功能是在解调功能以外额外增加的, 增加了电路的开销。 第四, 这个调谐方案的控制环 路长, 涉及接收信号链路上的多个模块。 导致校准反馈电路 116受到很多限制, 极难优化。 第 五, 这个调谐方案中, 校准反馈电路 116的设计严重依赖于接收机信号链路的结构, 校准反馈 电路 116的独立性、 可重用性、 移植性差。
发明内容 本发明提出了一种适用于通讯和广播接收机中前置可调谐滤波器的电路及其调谐方法, 适用于通讯和广播接收机中的射频电路。 根据本发明的调谐方案, 在前置滤波器中的调谐校准部分采用了有源器件。 当接收机需 要对前置滤波器进行调谐时, 有源器件与前置滤波器一起构成了负阻振荡器。 在振荡器中, 至少包含一个可控调谐元件, 用来调节振荡信号频率。 在振荡器中, 可以包含一个可控有源 器件, 用来调节振荡器振荡信号幅度。 调谐校准电路的振荡幅度控制电路检测到振荡信号, 并把振荡信号的幅度与预设范围比较, 根据比较结果, 振荡幅度控制电路输出控制信号到振 荡器, 将其信号幅度稳定在设计的范围。 调谐校准电路的振荡频率控制电路检测到振荡信号 频率, 并与预设频率比较, 根据比较结果, 振荡频率控制电路输出控制信号到振荡器的可控 调谐元件, 将振荡信号频率稳定在设计的范围。 至此调谐完成。 接收机可以正常工作。 本发明的调谐校准电路包括两个控制环路: 振荡幅度控制电路的控制环路和振荡频率控 制电路的控制环路。 前者稳定振荡信号的幅度, 后者决定调谐频率。 两个环路可以相对独立 调节, 也不需要接收信号链路参与调谐校准, 不但减少了设计工作量, 而且大大简少了设计 调试中的迭代次数和周期, 使电路可以最优化。 本发明的调谐校准电路与接收信号链路独立, 不再依赖接收信号链路的正常工作。 在接 收信号链路, 也无需处理调谐校准信号。 使调谐校准电路独立于接收机信号链路, 适用于采 用零中频、 低中频、 高中频、 多中频各种电路结构的接收机。 实现了调谐校准电路的独立性、 可重用性和移植性。 本发明的调谐校准电路结构简单, 节省了硬件。 不需要为调谐增加额外电路以向输入端 口注入小信号。 解调电路也不需要对调谐信号作单独处理。 在***设计允许的情况下, 甚至 可以省略振荡幅度控制电路的控制环路, 进一步简化电路。 本发明提出的调谐校准电路, 对接收到的频道信号提供增益。 本发明提出的调谐校准电路, 两个反馈控制环路与前置滤波器紧密耦合。 由于不需要接 收信号链路参与, 反馈回路短。 所以可以提高调谐速度, 同时降低功耗。 本发明提出的调谐校准电路可以用分离电子元件实现。也可以完全在集成电路内部实现。 或是部分电路在集成电路内部外加分离电子元件实现等多种方式。图 6说明本发明电路完全在 集成电路实现的实施例。其中, 本发明提出的调谐校准电路和前置滤波器完全在集成电路 202 中。外置天线 102与无线接收机通过集成电路管脚 204相连接。 图 7说明本发明电路部分在集成 电路实现的实施例。 其中, 本发明提出的调谐校准电路和部分前置滤波器在集成电路 202中。 外置天线 102和部分前置滤波器元件 206与集成电路管脚 204相连接。 附图说明 参考附图进一步说明如下: 图 1 是说明无线接收机***电路结构 图 2 是说明具有前置滤波器的接收机***电路结构
图 3 是说明具有天线和前置滤波器的接收机***电路结构
图 4 是说明具有前置滤波器调谐控制环路的接收机***电路结构
图 5 是说明根据本申请案的实施例的具有前置滤波器调谐控制环路的接收机***电路结构 图 6 是说明图 4中*** 200完全在集成电路上实现的电路结构
图 7 是说明图 4中*** 200部分在集成电路上实现的电路结构
图 8 是说明使用图 4中*** 200的调谐方法 具体实施方式 接收机在手机、 无线 /有线电视、 GPS导航等领域得到广泛的应用。 在这样一些射频信号 中, 例如 FM调频广播, 不但有波段频率的范围 (中国 FM广播是从 88MHz到 108MHz) , 而且 有频道间隔的规定, 比如中国 FM广播频道彼此间距只有 200KHz。 本发明完全可以适用于这 些信号以及其他无线或有线信号的接收机中, 可以用来调谐至特定的频道。 图 5 说明根据本申请案的实施例的*** 200。 其具有: 前置滤波器 104、 射频前端 101、 频 率变换单元 107、 本机振荡电路 (LO) 110、 基带解调电路 114、 前置滤波器 104和调谐校准电 路 150。 所述*** 200可以适用于任何接收机的调谐控制。 前置滤波器 104包括可调谐元件。 所述可调谐元件可以是可变电容 146、 可变电感、 变容 二极管、 可变电阻、 电压可变微机电*** (MEMS) 或其他频率调节元件, 可调谐元件还可 以是可变电容 146、 可变电感、 变容二极管、 可变电阻和电压可变微机电***(MEMS) 的任 意组合。 举例来说, 根据调谐信号 160, 可以改变可变电容 146的电容值, 从而改变前置滤波 器的接收频率。 调节的方式可以是用数字信号进行数字调节, 也可以是模拟信号连续调节。 调谐校准电路 150包括振荡幅度控制电路 142、振荡频率控制电路 140、振荡器负阻元件 144 和调谐控制开关 152。 图 8 说明根据本申请案的实施例的*** 200的调谐算法。 当接收机需要调谐时, 接收机首 先需要设定调谐频率。 然后打开调谐校准电路 150开始工作。 调谐校准电路 150通过信号 168 将控制开关 152闭合。 这样, 振荡器负阻元件 144与前置滤波器 104—起构成了一个振荡器。振 荡信号的频率也就是前置滤波器的接收频率。 负阻元件 144可以是单独的元件或是多个元件, 由振荡幅度控制电路 142输出的幅度控制信号 162所控制。 振荡信号同时输入到振荡频率控制 电路 140和振荡幅度控制电路 142。振荡幅度控制电路 142振荡信号与接收机***预设的范围比 较, 根据比较结果, 振荡幅度控制电路 142输出控制信号 162到振荡器负阻元件 144, 将射频信 号 130幅度稳定在设计的范围。振荡频率控制电路 140检测到振荡信号 130的频率, 并与设定的 调谐频率比较, 根据比较结果, 振荡频率控制电路 140输出控制信号 160到前置滤波器 104的可 控调谐元件, 将信号 130频率稳定在设计的范围。 如此操作, 直到振荡信号的幅度和频率都满 足设定范围。 至此调谐完成, 调谐校准电路通过信号 168将控制开关 152断开, 接收机进入正 常工作。 可选地, 在图 8所示算法中, 还可以不包括如下步骤: 振荡幅度控制电路 142振荡信 号与接收机***预设的范围比较, 根据比较结果, 振荡幅度控制电路 142输出控制信号 162到 振荡器负阻元件 144, 将射频信号 130幅度稳定在设计的范围。 在接收机正常工作过程中, 前 置滤波器 104与调谐校准电路 150的负阻元件 144断开, 前置滤波器 104只对接收到的无线信号 进行滤波, 振荡频率控制电路 140保持对可调谐元件的控制信号不变。 所属领域的技术人员将理解: 可以使用多种技术来表示信号。 上述内容提及的信号, 可 以是模拟信号, 或数字信号, 用以表示电压或电流。 所属领域的技术人员将进一步了解: 结合本文所描述的实施例而描述的各种说明性的模 块、 电路、 结构和算法步骤可以实施为电子硬件、 软件或两者的组合。 所属领域的技术人员 可以根据特定应用, 决定以软硬件的实施方法。 但此类实施方式不应被理解为脱离本发明的 范围。 结合本申请案所揭示的实施例二描述的电路和算法步骤可以直接实施在电路中、 由处理 器执行的软件模块中、 以及上述两者的结合。 电路可以是数字电路状态机、 模拟电路、 以及 上述两者的结合。 处理器可以是微处理器, 也可以是任何常规处理器、 控制器。 本申请案前文提供实施例的描述旨在使所属领域的技术人员了解使用和制作本发明。 本 申请案所定义的一般原理在不脱离本发明的精神和范围的情况下应用 其他实施例。

Claims

权 利 要 求 书
1. 一种通讯和广播接收机前置可调谐滤波器的电路, 包括:
前置滤波器, 包括可调谐元件; 以及
调谐校准电路, 包括振荡频率控制电路和有源负阻器件;
其特征在于, 在调谐所述前置滤波器的过程中, 所述前置滤波器和所述有源负阻器件构 成振荡器, 所述振荡频率控制电路用于在调谐所述前置滤波器的过程中, 根据检测到的振荡 信号的频率, 输出控制信号到所述可调谐元件, 将所述振荡器的振荡信号的频率控制在设定 范围。
2. 根据权利要求 1所述的通讯和广播接收机前置可调谐滤波器的电路, 其特征在于, 所 述可调谐元件是电容、 或电感、 或二极管、 或电阻、 或微机电*** (MEMS ) , 或是电容、 电 感、 二极管、 电阻和微机电***的任意组合。
3. 根据权利要求 1所述的通讯和广播接收机前置可调谐滤波器的电路, 其特征在于, 在 接收机正常工作过程中, 所述前置滤波器与所述调谐校准电路的有源负阻器件断开, 只对接 收到的无线信号进行滤波。
4. 根据权利要求 1所述的通讯和广播接收机前置可调谐滤波器的电路, 其特征在于, 所 述振荡幅度控制电路用于在调谐所述前置滤波器的过程中, 根据检测到振荡信号的幅度, 输 出控制信号到所述有源负阻器件, 将所述振荡信号的幅度控制在设定范围。
5. 根据权利要求 1所述的通讯和广播接收机前置可调谐滤波器的电路, 其特征在于, 在 接收机正常工作过程中, 所述振荡频率控制电路保持对所述可调谐元件的控制信号不变。
6. 根据权利要求 1所述的通讯和广播接收机前置可调谐滤波器的电路的调谐方法, 其特 征在于, 包括:
接收机设定调谐频率;
接收机开启所述调谐校准电路, 所述调谐校准电路开始工作;
所述前置滤波器与所述有源负阻器件接通, 开始受控振荡;
所述振荡频率控制电路根据检测到的振荡信号的频率,输出控制信号到所述可调谐元件, 将所述振荡信号的频率控制在设定范围;
调谐完成, 所述前置滤波器与所述有源负阻器件断开, 接收机正常工作。
7. 根据权利要求 6所述的通讯和广播接收机前置可调谐滤波器的电路的调谐方法, 其 特征在于, 所述接收机开启所述调谐校准电路之后、 所述调谐完成之前还包括:
所述振荡幅度控制电路根据检测到的振荡信号的幅度, 输出控制信号到所述有源负阻器 件, 将所述振荡信号的幅度控制在设定范围。
PCT/CN2011/072655 2010-04-21 2011-04-12 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法 WO2011131096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/655,264 US8862089B2 (en) 2010-04-21 2012-10-18 Circuit for a front-end tunable filter of a communication and broadcast receiver and a tuning method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101512526A CN101931426B (zh) 2010-04-21 2010-04-21 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法
CN201010151252.6 2010-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/655,264 Continuation US8862089B2 (en) 2010-04-21 2012-10-18 Circuit for a front-end tunable filter of a communication and broadcast receiver and a tuning method thereof

Publications (1)

Publication Number Publication Date
WO2011131096A1 true WO2011131096A1 (zh) 2011-10-27

Family

ID=43370384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072655 WO2011131096A1 (zh) 2010-04-21 2011-04-12 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法

Country Status (3)

Country Link
US (1) US8862089B2 (zh)
CN (1) CN101931426B (zh)
WO (1) WO2011131096A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931426B (zh) * 2010-04-21 2013-05-15 北京昆腾微电子有限公司 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法
CN102355275B (zh) * 2011-08-29 2014-04-02 大唐移动通信设备有限公司 一种应用于非通用频段的终端及其应用方法
US9294046B2 (en) 2013-03-15 2016-03-22 Rf Micro Devices (Cayman Islands), Ltd. RF power amplifier with PM feedback linearization
US9899133B2 (en) 2013-08-01 2018-02-20 Qorvo Us, Inc. Advanced 3D inductor structures with confined magnetic field
US9705478B2 (en) * 2013-08-01 2017-07-11 Qorvo Us, Inc. Weakly coupled tunable RF receiver architecture
US9509353B2 (en) * 2014-08-20 2016-11-29 Nxp B.V. Data processing device
US10796835B2 (en) 2015-08-24 2020-10-06 Qorvo Us, Inc. Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff
US11139238B2 (en) 2016-12-07 2021-10-05 Qorvo Us, Inc. High Q factor inductor structure
CN108155885B (zh) * 2018-01-11 2023-12-29 深圳互由科技有限公司 一种调谐滤波器
CN114826305B (zh) * 2022-03-31 2023-05-16 武汉大学 一种通信接收机前端滤波选频方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965471A (zh) * 2004-06-18 2007-05-16 三菱电机株式会社 压控振荡器
CN101454985A (zh) * 2006-06-02 2009-06-10 神经网络处理有限公司 天线输入调谐电路
CN101931426A (zh) * 2010-04-21 2010-12-29 北京昆腾微电子有限公司 通讯和广播接收机前置可调谐滤波器的电路和调谐方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678211A (en) * 1992-08-28 1997-10-14 Thomson Consumer Electronics, Inc. Television tuning apparatus
US6978125B2 (en) * 2001-07-05 2005-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for tuning pre-selection filters in radio receivers
US6778023B2 (en) * 2001-07-31 2004-08-17 Nokia Corporation Tunable filter and method of tuning a filter
US7236756B2 (en) * 2002-12-13 2007-06-26 Freescale Semiconductors, Inc. Tuning signal generator and method thereof
JP3922235B2 (ja) * 2003-10-14 2007-05-30 松下電器産業株式会社 高周波受信装置とそれに用いる集積回路
US8340616B2 (en) * 2004-12-16 2012-12-25 Entropic Communications, Inc. Tracking filter for tuner
US7512391B2 (en) * 2005-05-24 2009-03-31 Freescale Semiconductor, Inc. Self-aligning resonator filter circuit and wideband tuner circuit incorporating same
US7634242B2 (en) * 2006-08-31 2009-12-15 Microtune (Texas), L.P. Systems and methods for filter center frequency location

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965471A (zh) * 2004-06-18 2007-05-16 三菱电机株式会社 压控振荡器
CN101454985A (zh) * 2006-06-02 2009-06-10 神经网络处理有限公司 天线输入调谐电路
CN101931426A (zh) * 2010-04-21 2010-12-29 北京昆腾微电子有限公司 通讯和广播接收机前置可调谐滤波器的电路和调谐方法

Also Published As

Publication number Publication date
US8862089B2 (en) 2014-10-14
CN101931426A (zh) 2010-12-29
CN101931426B (zh) 2013-05-15
US20130040595A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2011131096A1 (zh) 通讯和广播接收机前置可调谐滤波器的电路及其调谐方法
US7127217B2 (en) On-chip calibration signal generation for tunable filters for RF communications and associated methods
JP4557086B2 (ja) 電波受信装置
CN106656227B (zh) 一种3~18GHz微波接收前端
US7689189B2 (en) Circuit and method for signal reception using a low intermediate frequency reception
US6211925B1 (en) Video intermediate-frequency signal processing device capable of receiving FM broadcasts
US7449945B2 (en) Phase demodulator and portable telephone apparatus
JP5079595B2 (ja) フィルタ回路および無線機器
US8358183B2 (en) Intermediate frequency filter having variable pass band
US7983639B2 (en) RF filter and digital broadcast receiving tuner and RF signal processing device using RF filter
CN206559337U (zh) 一种甚高频调频接收机
JP6887890B2 (ja) 半導体装置及びその方法
EP1981270A2 (en) Broadcast receiving apparatus and method for receiving broadcast signal
CN203859731U (zh) 一种多模多频可重构Gm-C复数滤波器
CN212392874U (zh) 一种低中频接收机装置
JP2002118479A (ja) ディジタル放送受信回路、発振信号生成回路及びディジタル放送受信方法
JP2006229427A (ja) 受信装置
KR20070052422A (ko) 알에프 수신장치
EP2222078B1 (en) Intermediate frequency circuit
JPH07162771A (ja) 映像中間周波処理装置
KR100423407B1 (ko) 튜너 아이씨와 복조 아이씨의 원칩화한 튜너복조블럭
JP4795716B2 (ja) 地上デジタルテレビジョンチューナ
KR101140893B1 (ko) 다중 이득 제어 방식의 복합 튜너
JP4545811B2 (ja) テレビジョンチューナ
JP2020202521A (ja) 無線受信装置及びそれを備えた照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771549

Country of ref document: EP

Kind code of ref document: A1