WO2011130905A1 - 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱 - Google Patents

脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱 Download PDF

Info

Publication number
WO2011130905A1
WO2011130905A1 PCT/CN2010/071901 CN2010071901W WO2011130905A1 WO 2011130905 A1 WO2011130905 A1 WO 2011130905A1 CN 2010071901 W CN2010071901 W CN 2010071901W WO 2011130905 A1 WO2011130905 A1 WO 2011130905A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse current
current sensor
semi
lightning protection
line
Prior art date
Application number
PCT/CN2010/071901
Other languages
English (en)
French (fr)
Inventor
梁怀均
袁英
Original Assignee
安阳安科电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安阳安科电器股份有限公司 filed Critical 安阳安科电器股份有限公司
Priority to PCT/CN2010/071901 priority Critical patent/WO2011130905A1/zh
Priority to JP2013505292A priority patent/JP5513677B2/ja
Priority to US13/581,822 priority patent/US20130088804A1/en
Priority to EP10850039A priority patent/EP2562549A1/en
Publication of WO2011130905A1 publication Critical patent/WO2011130905A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/186Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using current transformers with a core consisting of two or more parts, e.g. clamp-on type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/15Indicating the presence of current

Definitions

  • Pulse current sensor and recording surge wave lightning protection box made by the same
  • the present invention relates to a lightning protection box for recording a surge wave lightning protection box, in particular for wavy recording of lightning current and surge current.
  • known lightning protection boxes are composed of a housing, a terminal, a conductive connection, an electrode, a semiconductor chip, a mechanical thermal trip device, a pointing device, a counter device, a current peak display, and a mounting fixture.
  • the working principle is to be installed between the phase line and the ground line, the neutral line and the ground line of the power distribution system.
  • the present invention provides a lightning protection box capable of completely recording the overvoltage waveform, and the lightning protection box can identify and record each pass.
  • the lightning wave, the time when the surge wave overvoltage occurs, the shape of the waveform and the parameters solve the problem that the existing lightning protection box cannot record the waveform and thus cannot analyze and evaluate the accident caused by lightning or surge waveform.
  • the present invention adopts the following technical solutions:
  • a pulse current sensor includes: a pair of oppositely disposed semi-circular arc cores, an air gap between the two semi-circular arc cores, an air gap jacket having a non-magnetic metal conductive ring, and the non-magnetic metal conductive
  • the inner hole axis of the ring is identical to the magnetic line of the semi-circular magnetic core; a coil is wound around the semi-circular magnetic core, and an output terminal is taken out from the coil.
  • the semi-circular magnetic core is disposed in a cavity formed by the insulating base and the magnetically shielded outer casing.
  • a semiconductor chip is disposed between the phase line and the neutral line, and the ground line is connected to the ground line
  • a pulse current sensor is disposed on the ground line, and the pulse current sensor is connected to the single chip through the A/D conversion interface,
  • the MCU is connected to the display.
  • the single chip microcomputer is connected to a computer system through a communication interface, and the computer system is connected to the display device and the printer.
  • the communication interface is an RS232 interface.
  • the microcontroller is also connected to a backup battery.
  • a work failure indicator and a work normal indicator are set on each of the phase and neutral lines.
  • a pulse current sensor is disposed on the ground line, and the pulse current sensor is respectively mounted with two non-magnetic metal conductive rings in two gaps of two semi-circular magnetic core symmetry, so that Under the action of two semicircular arc cores, the pulse current sensor does not exhibit magnetic saturation, which improves the output accuracy and output range of the pulse current sensor, and lays a foundation for displaying the entire voltage waveform diagram, and the pulse current sensor Increased test sensitivity and reduced measurement error.
  • the semiconductor chip when a lightning wave or a surge wave occurs, the semiconductor chip is excited to conduct, causing the overvoltage to discharge along the ground line to the ground, and the pulse current sensor mounted on the ground line divides the collected data by resistance division, isolation amplification, level Conversion, A / D conversion, and pre-isolation, trigger comparison, CPLD control are stored in the FLASH memory by the microcontroller system and displayed on the display.
  • the computer software system can transfer the entire waveform, time and parameters of the stored record to In the computer, the waveforms, real-time time and history can be printed one by one on the display with parameter coordinates, and the accidents caused by lightning or surge waves can be visually analyzed and judged.
  • FIG. 1 is an electrical schematic structural diagram of a pulse current sensor according to the present invention
  • FIG. 2 is a schematic view showing the overall structure of a pulse current sensor according to the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • FIG. 4 is a schematic structural view of a lightning surge protection box recorded in the present invention.
  • FIG. 5 is a circuit block diagram of a lightning surge protection box for recording a surge wave according to the present invention.
  • FIG. 6 is a flow chart of recording a current waveform of a surge wave lightning protection box in the present invention.
  • Fig. 7 is a diagram showing the current waveforms of the surge surge arrester recorded in the present invention.
  • the pulse current sensor in this embodiment refers to: a pair of oppositely disposed semi-circular cores 22, an air gap 30 between the two semi-circular cores 22, and an air gap 30.
  • Magnetic metal conduction The ring 29, the inner hole axis of the non-magnetic metal conductive ring 29 coincides with the magnetic line of the semicircular arc core 22; the coil 23 is wound around the semicircular core 22, and the output terminal 31 is taken out from the coil 23.
  • the semicircular arc core 22 in the present invention refers to a shape similar to a semicircle, gp: it may be two regular semicircles with an air gap 30 in between; or may be slightly smaller than a semicircle A pair of arcs, the middle of which is an air gap 30.
  • the pulse current sensor is an improvement on the Rogowski coil, and the specific degaussing principle is:
  • the originally closed full-circle core is changed into two semi-circular cores 22, and the two semi-circular cores 22 and the two air gaps 30 together form a magnetic circuit, since the magnetic resistance of the air gap 30 is far Far greater than the magnetic reluctance of the magnetic material of the two semi-circular cores 22, so that most of the magnetic field energy is concentrated in the air gap 30, so that it can withstand greater magnetic field strength than the original magnetic field;
  • two semi-circular magnetic cores 22 and the two air gaps 30 together form a magnetic field on the magnetic circuit, since the air gap 30 passes through the two non-magnetic metal conductive rings 29 along the center line of the magnetic circuit and is radially surrounded by them, thus the two non-magnetic metals
  • the radial ring current is generated in the conductive ring 29, and the magnetic field generated by the ring current on the two non-magnetic metal conductive rings 29 is opposite to the original magnetic field, and can also cancel the magnetic field strength of the magnetic circuit;
  • Joule heat is generated after passing the current, and Joule heat raises the temperature of the two non-magnetic metal conductive rings 29, that is, in the two air gap magnetic fields.
  • Magnetic field energy Through both conductive non-magnetic metal rings 29 into heat energy, so able to withstand greater than the original magnetic field strength. Therefore, under the action of the two arc cores 22, the two air gaps 30 and the two air gaps 30, the magnetic field saturation phenomenon does not occur in the set range, thereby increasing the output of the pulse current sensor 17.
  • Accuracy and output range improve test sensitivity, reduce measurement error, and thus collect current peaks and current values at various real-time points, to achieve the width, shape, size, energy and time of the output voltage and current waveforms The foundation.
  • the semicircular arc core 22 should be disposed on the insulating base 28 and the magnetically shielded outer casing 21.
  • the wire to be tested is a conductive post 25 provided on the insulating base 28.
  • a primary coil winding conductive post 25 is fixedly disposed on the insulating base 28, and an insulating spacer 24 is mounted on one end of the primary coil winding conductive post 25, and the insulating spacer 24 is pressed against the nut. 26 fastening.
  • the insulating base 28 is connected to the magnetically shielded outer casing 21, and a pair of semi-circular magnetic cores 22 are fixedly disposed in the cavity formed by the insulating base 28 and the magnetically shielded outer casing 21 by a non-magnetic pin 27, a semicircle
  • the secondary coil winding 23 is wound around the arc core 22, and the non-magnetic metal conductive ring 29 is fixedly disposed in the two gaps of the pair of semi-circular arc cores 22, and the inner hole axis and the arc of the non-magnetic metal conductive ring 29 are fixed.
  • the magnetic lines of the magnetic core 22 and the air gap 30 are identical.
  • the conductive column 25 is the primary coil winding of the pulse current sensor
  • two The coil 23 on the semicircular arc core 22 is the secondary coil winding of the pulse current sensor
  • the two non-magnetic metal conductive rings 29 placed in the two gaps symmetrically at the two ends of the arc core 22 are degaussing coils. Winding.
  • the primary coil winding conductive column 25 passes a pulse current
  • the two secondary coil windings on the two semi-circular magnetic cores 22 induce a voltage
  • the voltage is integrated to restore the primary coil winding conductive column 25
  • the pulse current passed on. Since the presence of the pulse current sensor 17 as shown in Fig. 1, the measurement range can be increased, thereby obtaining a waveform diagram of the entire voltage and current.
  • the present invention further prepares a surge arrester for recording a surge wave.
  • the recorded surge wave lightning protection box is provided with three phase lines 6, a neutral line 7, a terminal 18 and a ground line 16 in the outer casing 20, and the phase line 6 and the neutral line 7 are connected to the ground line 16.
  • the grounding wire 16 is electrically connected to the outer casing and grounded.
  • the switch 5, the thermal trip relay device 4 and the electrode 1 are arranged in series on each of the phase line 6 and the neutral line 7, and a semiconductor chip 19 is disposed between the two poles of the electrode 1, such that each semiconductor chip 19 Both can be connected to the ground line 16.
  • a pulse current sensor 17 is provided on the ground line 16, and a pulse current sensor 17 is used to collect voltage and current data discharged to the ground.
  • the output of the pulse current sensor 17 is divided into two paths after being divided by a voltage dividing resistor. As shown in Figure 5, one path is isolated, amplified, level-shifted, and A/D-converted, and then stored in the FIFO to the microcontroller 14; the other path is stored in the FIFO via the FIFO after pre-isolation, trigger comparison, and CPLD control.
  • the peripheral of the MCU 14 is equipped with a clock circuit and a FLASH memory, and the output of the MCU 14 is connected to the liquid crystal display 8.
  • the output end of the single chip microcomputer 14 can also be connected to the peripheral computer system 11 through the communication interface 10.
  • the above communication interface 10 can be an RS232 communication interface or a 485 interface.
  • the peripheral computer system 11 can be remotely controlled and can be displayed and output through peripheral devices such as the connected display device 12 and the printer 13.
  • the working indicator power line can be connected to each phase line 6 and the neutral line 7.
  • the working indicator light is divided into two types: the work failure indicator light 2 and the working normal indicator light 3, which are driven by the thermal trip relay device 4. Indicates the control circuit.
  • the single chip microcomputer 14 is connected with the backup battery 9.
  • the semiconductor chip 9 is energized to be turned on, so that the overvoltage is discharged to the ground along the ground line 16, and the pulse current sensor 17 mounted on the ground line divides the collected data by a resistor, Isolation amplification, level conversion, AID conversion, and pre-isolation, trigger comparison, CPLD control are stored in the FLASH memory by the MCU system and displayed on the display.
  • the computer is connected via the RS232 interface, and the computer software system can store the record. Waveforms, time, and parameters are transmitted to the computer, which can be displayed on the display with parameter coordinates and printed out waveforms, real-time time and history to visually analyze and determine the accident caused by lightning or surge waves, such as Figure 6 shows.
  • the display gives the current waveform of the surge wave in the plane coordinates, Table 1
  • the current peak, anti-peak, wavefront time, wave tail time, and charge parameters of this surge wave are given.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Description

脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱 技术领域
本发明涉及一种记录电涌波防雷箱, 尤其是能对雷击电流和电涌电流的波 形记录查询的防雷箱。
背景技术
目前, 公知的防雷箱是由外壳、 接线端子、 导电连接线、 电极、 半导体芯 片、 机械热脱扣装置、 指示装置、 计数器装置、 电流峰值显示和安装夹具组成。 其工作原理是分别安装在配电***的相线与地线、 零线与地线之间。 当配电系 统中出现高电压电涌波或雷电波并达到激发半导体芯片导通时, 芯片的自身高 电阻急剧下降使之变为低电阻的导体而对地放电, 这时配电***中的电涌高电 压急剧下降, 当对地放电过程中的电压下降到某额定正常电压时, 半导体芯片 的自身电阻迅速增大使之进入关闭状态, 这时半导体芯片相当于绝缘体, 使配 电***电压恢复正常, 从而把配电***出现的高压过电压排除掉。 显示器显示 电流峰值、 时间, 计数器记录下这个过程为一次。 但是, 随着用电设备和电子 设备对电源品质要求的提高, 使得人们必须了解电源及信号线路上出现的电涌 杂波, 尤其需要了解波形的宽度、 形状、 大小、 能量和发生的时间, 而在防雷 工作的过程中, 只显示电流峰值、 时间和次数, 是不能鉴别和区分这个过电压 是什么样的电涌波或雷电波, 这就无法对由于电涌波或雷电波所造成的事故进 行分析, 无法显示出这个过程的能量大小, 无法对事故进行全面评估。
发明内容
为了克服现有防雷箱不能鉴别和记录电涌波或雷电波的波形和能量大小, 本发明提供一种能完整记录过电压波形的防雷箱, 该防雷箱能鉴别和记录每次 通过的雷电波、 电涌波过电压发生的时间、 波形形状和参数, 解决了现有防雷 箱无法记录波形从而无法对雷电或电涌波形造成的事故进行分析和评估。
为解决上述问题, 本发明采用以下技术方案:
本发明中, 一种脉冲电流传感器包括: 一对相对设置的半圆弧磁芯, 两个 半圆弧磁芯之间是气隙, 气隙外套无磁性金属导电环, 所述无磁性金属导电环 的内孔轴线与半圆弧磁芯的磁力线一致; 在所述的半圆弧磁芯上缠绕设置线圈, 从线圈上引出输出端子。
所述的半圆弧磁芯设置在绝缘机座与带磁屏蔽外壳所形成的腔体内。
在所述的绝缘机座上设置导电柱。 本发明中, 一种采用上述脉冲电流传感器而制成的记录电涌波防雷箱包括: 在每个相线和零线上串联设置的开关、 热脱扣继电装置和电极, 在电极的两极 之间设置有半导体芯片, 所述的相线和零线均与接地线相连接, 在所述的接地 线上设置脉冲电流传感器,脉冲电流传感器通过 A/D转换接口与单片机相连接, 所述的单片机与显示屏相连接。
所述的单片机通过通信接口与计算机***相连接, 计算机***与显示设备 和打印机相连接。
所述的通信接口为 RS232接口。
所述的单片机还与后备电池相连接。
在所述的每个相线和零线上均设置工作失效指示灯和工作正常指示灯。 采用上述技术方案的本发明, 在接地线上设置了脉冲电流传感器, 该脉冲 电流传感器在两个半圆弧磁芯对称的两个间隙中分别安装了两个无磁性金属导 电环, 这样, 在两个半圆弧磁芯的作用下, 该脉冲电流传感器不会出现磁路饱 和现象, 提高了脉冲电流传感器的输出精度和输出范围, 为显示整个电压波形 图奠定了基础, 并且该脉冲电流传感器提高了测试灵敏度, 减小了测量误差。 这样, 当雷电波或电涌波发生时, 半导体芯片被激发导通, 使过电压沿接地线 对地放电, 安装在接地线上的脉冲电流传感器将采集数据通过电阻分压、 隔离 放大、 电平转换、 A / D转换, 又经前置隔离、 触发比较、 CPLD控制通过单片 机***存储在 FLASH存储器中并在显示屏上显示,计算机软件***可将存储记 录的整个波形图、 时间、 参数传到计算机中, 可逐条显示在带有参数坐标的显 示器上并打印出波形、 实时时间和历史记录, 即可对雷电或电涌波造成的事故 进行直观的分析和判定。
附图说明
图 1为本发明中脉冲电流传感器的电气原理结构图;
图 2为本发明中脉冲电流传感器的整体结构示意图;
图 3为图 2的 A-A向剖视图;
图 4为本发明中记录电涌波防雷箱的结构示意图;
图 5为本发明中记录电涌波防雷箱的电路原理框图;
图 6是本发明中记录电涌波防雷箱获取电流波形的流程图;
图 7是本发明中记录电涌波防雷箱最终可获取的电流波形图。
具体实施方式
如图 1 所示, 本实施例中的脉冲电流传感器是指: 包括一对相对设置的半 圆弧磁芯 22, 两个半圆弧磁芯 22之间是气隙 30, 气隙 30外套无磁性金属导电 环 29, 无磁性金属导电环 29的内孔轴线与半圆弧磁芯 22的磁力线一致; 在半 圆弧磁芯 22上缠绕设置线圈 23,从线圈 23上引出输出端子 31。需要指出的是, 本发明中的半圆弧磁芯 22是指类似于半圆的形状, gp : 它既可以是两个规则的 半圆, 且中间留有气隙 30; 也可以是比半圆略小的一对圆弧, 两个圆弧中间是 气隙 30。
该脉冲电流传感器是对罗氏线圈的改进, 其具体的消磁原理是:
首先, 将原本封闭的整圆磁芯改变为两个半圆弧磁芯 22, 并使两个半圆弧 磁芯 22和两个气隙 30共同构成磁路, 由于气隙 30的磁阻远远大于两个半圆弧 磁芯 22磁性材料的磁阻, 使大部分磁场能量聚在气隙 30中, 从而比原磁场能 够承受更大的磁场强度; 其次, 当两个半圆弧磁芯 22和两个气隙 30共同构成 磁路上产生磁场的同时, 由于气隙 30沿磁路中心线通过两个无磁性金属导电环 29并被其径向包围, 这样就会在两个无磁性金属导电环 29中产生径向环电流, 而两个无磁性金属导电环 29上环电流产生的磁场与原磁场方向相反, 也可抵消 磁路的磁场强度; 最后, 由于两个无磁性金属导电环 29中产生有径向环电流, 而两个气隙 30本身存在电阻, 通过电流后会产生焦耳热, 焦耳热使两个无磁性 金属导电环 29温度升高, 即两个气隙磁场中的磁场能量通过这两个无磁性金属 导电环 29转变为热能, 这样比原磁场能够承受更大的磁场强度。 因此, 在两个 圆弧磁芯 22、 两个气隙 30和两个气隙 30的作用下, 在设定的范围内磁场不会 出现磁路饱和现象, 从而提高了脉冲电流传感器 17的输出精度和输出范围, 提 高了测试灵敏度, 减小了测量误差, 进而能够采集到电流峰值及各个实时点的 电流值, 为实现输出整个电压电流波形的宽度、 形状、 大小、 能量和发生的时 间奠定了基础。
如图 2、 图 3所示, 在将该脉冲电流传感器应用到记录电涌波防雷箱中时, 上述的半圆弧磁芯 22应设置在绝缘机座 28与带磁屏蔽外壳 21所形成的腔体内, 其被测的导线为绝缘机座 28上设置的导电柱 25。具体地说, 在制备该脉冲电流 传感器时, 在绝缘机座 28上固定设置一次线圈绕组导电柱 25, 在一次线圈绕组 导电柱 25的一端安装绝缘垫片 24, 绝缘垫片 24被压紧螺母 26紧固。 另外, 绝 缘机座 28与带磁屏蔽外壳 21相连接, 在绝缘机座 28与带磁屏蔽外壳 21所形 成的腔体内, 通过无磁性销 27固定设置一对半圆弧磁芯 22, 半圆弧磁芯 22上 缠绕设置二次线圈绕组 23,在一对半圆弧磁芯 22的两个间隙中均固定设置无磁 性金属导电环 29, 无磁性金属导电环 29的内孔轴线与圆弧磁芯 22、 气隙 30的 磁力线一致。
其工作应用原理是: 该导电柱 25为该脉冲电流传感器的一次线圈绕组, 两 个半圆弧磁芯 22上的线圈 23为该脉冲电流传感器的二次线圈绕组, 两半圆弧 磁芯 22两端对称的两个间隙中放置的两个无磁金属导电环 29为消磁线圈绕组。 当一次线圈绕组导电柱 25通过一脉冲电流时, 在两个半圆弧磁芯 22上的两个 二次线圈绕组就会感应出电压, 把这个电压积分即可还原出一次线圈绕组导电 柱 25上通过的脉冲电流。 由于如图 1所示的脉冲电流传感器 17的存在, 故可 提高测量量程, 从而获得整个电压电流的波形图。
在脉冲电流传感器 17的基础上, 本发明又制备出了记录电涌波防雷箱。 如 图 4所示, 该记录电涌波防雷箱在外壳 20内设有三根相线 6、 零线 7、 接线端 子 18和接地线 16, 相线 6和零线 7均与接地线 16相连接, 接地线 16与外壳电 连接接地。 其中, 在每个相线 6和零线 7上均串联设置开关 5、 热脱扣继电装置 4和电极 1, 在电极 1的两极之间设置有半导体芯片 19, 这样, 每个半导体芯片 19就均能与接地线 16相连。
本发明中, 在接地线 16上设置脉冲电流传感器 17, 脉冲电流传感器 17用 于采集对地放电的电压电流数据。 脉冲电流传感器 17输出端经过分压电阻分压 后, 分为两路。 如图 5所示, 一路经过隔离放大、 电平转换和 A/D转换, 然后 经 FIFO存储至单片机 14; 另一路经过前置隔离、 触发比较、 CPLD控制后, 经 FIFO存储至单片机 14。 单片机 14***配有时钟电路、 FLASH存储器, 单片机 14输出连接至液晶显示屏 8。
需要指出的是, 单片机 14的输出端还可以通过通信接口 10与***计算机 *** 11相连接, 上述的通信接口 10可以为 RS232通讯接口, 也可以为 485接 口。 这样, ***计算机*** 11可以进行远程控制, 并可以通过连接的显示设备 12和打印机 13等外设进行显示输出。
另外, 还可以在各相线 6和零线 7上接入工作指示灯电源线, 工作指示灯 分为工作失效指示灯 2和工作正常指示灯 3二种, 由热脱扣继电装置 4驱动指 示控制电路。 同时, 为保证断电时工作正常, 单片机 14与后备电池 9相连接。
这样, 当雷电波或电涌波发生时, 半导体芯片 9被激发导通, 使过电压沿 接地线 16对地放电, 安装在接地线上的脉冲电流传感器 17将采集到的数据通 过电阻分压、隔离放大、电平转换、 A I D转换,又经前置隔离、触发比较、 CPLD 控制通过单片机***存储在 FLASH存储器中并在显示屏上显示, 计算机通过 RS232 接口连接, 计算机软件***可将存储记录的波形、 时间、 参数传到计算 机中, 可逐条显示在带有参数座标的显示器上并打印出波形、 实时时间和历史 记录, 即可对雷电或电涌波造成的事故进行直观的分析和判定, 如图 6所示。
在图 7所示实施例中, 显示器给出了平面坐标中电涌波的电流波形, 表 1 中给出了这个电涌波的电流峰值、 反峰值、 波前时间、 波尾时间、 荷量参数。
Figure imgf000007_0001
表 1

Claims

权 利 要 求 书
1、 一种脉冲电流传感器, 其特征在于: 它包括一对相对设置的半圆弧磁芯 (22), 两个半圆弧磁芯 (22) 之间是气隙 (30), 气隙 (30) 外套无磁性金属 导电环 (29), 所述无磁性金属导电环 (29) 的内孔轴线与半圆弧磁芯 (22) 的 磁力线一致; 在所述的半圆弧磁芯 (22) 上缠绕设置线圈 (23), 从线圈 (23) 上引出输出端子 (31)。
2、 根据权利要求 1所述的脉冲电流传感器, 其特征在于: 所述的半圆弧磁 芯 (22) 设置在绝缘机座 (28) 与带磁屏蔽外壳 (21) 所形成的腔体内。
3、 根据权利要求 2所述的脉冲电流传感器, 其特征在于: 在所述的绝缘机 座 (28) 上设置导电柱 (25)。
4、一种采用如权利要求 3所述脉冲电流传感器而制成的记录电涌波防雷箱, 它包括在每个相线 (6) 和零线 (7) 上串联设置的开关 (5)、 热脱扣继电装置 (4) 和电极 (1), 在电极 (1) 的两极之间设置有半导体芯片 (19), 所述的相 线 (6) 和零线 (7) 均与接地线 (16) 相连接, 其特征在于: 在所述的接地线 (16)上设置脉冲电流传感器(17), 脉冲电流传感器(17)通过 A/D转换接口 (15) 与单片机 (14) 相连接, 所述的单片机 (14) 与显示屏 (8) 相连接。
5、 根据权利要求 4所述的记录电涌波防雷箱, 其特征在于: 所述的单片机 (14) 通过通信接口 (10) 与计算机*** (11) 相连接, 计算机*** (11) 与 显示设备 (12) 和打印机 (13) 相连接。
6、 根据权利要求 5所述的记录电涌波防雷箱, 其特征在于: 所述的通信接 口 (10) 为 RS232接口。
7、 根据权利要求 6所述的记录电涌波防雷箱, 其特征在于: 所述的单片机 (14) 还与后备电池 (9) 相连接。
8、 根据权利要求 7所述的记录电涌波防雷箱, 其特征在于: 在所述的每个 相线 (6) 和零线 (7) 上均设置工作失效指示灯 (2) 和工作正常指示灯 (3)。
PCT/CN2010/071901 2010-04-20 2010-04-20 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱 WO2011130905A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2010/071901 WO2011130905A1 (zh) 2010-04-20 2010-04-20 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱
JP2013505292A JP5513677B2 (ja) 2010-04-20 2010-04-20 パルス電流センサー及び該センサーを有するサージ波記録型雷防護キャビネット
US13/581,822 US20130088804A1 (en) 2010-04-20 2010-04-20 Pulse current sensor and lightning protection cabinet with surge wave recording composed of the sensor
EP10850039A EP2562549A1 (en) 2010-04-20 2010-04-20 Pulse current sensor and lightning protection cabinet with surge wave recording composed of the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071901 WO2011130905A1 (zh) 2010-04-20 2010-04-20 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱

Publications (1)

Publication Number Publication Date
WO2011130905A1 true WO2011130905A1 (zh) 2011-10-27

Family

ID=44833631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071901 WO2011130905A1 (zh) 2010-04-20 2010-04-20 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱

Country Status (4)

Country Link
US (1) US20130088804A1 (zh)
EP (1) EP2562549A1 (zh)
JP (1) JP5513677B2 (zh)
WO (1) WO2011130905A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739818B2 (en) * 2014-03-12 2017-08-22 The Boeing Company Electromagnetic effect testing
CN103987220A (zh) * 2014-05-09 2014-08-13 广西南宁百兰斯科技开发有限公司 一种扁式防雷信号箱
CN106093548B (zh) * 2016-08-04 2018-12-14 中国船舶重工集团公司第七一九研究所 一种非接触式的高精度轴电流测量装置
EP3309559A1 (en) 2016-10-11 2018-04-18 LEM Intellectual Property SA Electrical current transducer
KR101984073B1 (ko) * 2018-06-15 2019-05-31 주식회사 엘피에스코리아 로고스키 코일을 이용한 임펄스 전류측정장치
CN114915173A (zh) * 2021-02-08 2022-08-16 台达电子工业股份有限公司 柔切式电源转换器
CN115577272B (zh) * 2022-12-06 2023-02-28 昆明理工大学 一种基于故障录波数据的多重雷击判别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464068A (ja) * 1990-07-02 1992-02-28 Fuji Electric Co Ltd 直流電流検出方法
JPH06331659A (ja) * 1993-05-21 1994-12-02 Mitsubishi Electric Corp パルス電流モニタ
JPH11133084A (ja) * 1997-10-30 1999-05-21 Railway Technical Res Inst サージ電流検出装置
CN1721862A (zh) * 2004-07-14 2006-01-18 深圳锦天乐防雷技术有限公司 记录雷击电流强度和发生时间的方法及设备
CN201072427Y (zh) * 2007-09-14 2008-06-11 清华大学 一种基于柔性罗氏线圈的脉冲电流测量装置
CN201307766Y (zh) * 2008-12-05 2009-09-09 刘市平 电源防雷箱
JP2009222663A (ja) * 2008-03-18 2009-10-01 Nec Saitama Ltd サージ電流検出方法及び避雷器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137800A (en) * 1960-12-19 1964-06-16 Gen Motors Corp Dynamoelectric machine rotor means
DE1583641B2 (de) * 1967-09-19 1976-07-01 Heide, Otto, Dr.-Ing., 5829 Ennepetal Vorrichtung zum beheizen von speisern und blockkoepfen
US4980794A (en) * 1987-02-19 1990-12-25 Westinghouse Electric Corp. Electromagnetic contactor with lightweight wide range current transducer with sintered powdered metal core
JPS63263479A (ja) * 1987-04-21 1988-10-31 Sumitomo Electric Ind Ltd 送電線事故位置検出装置
JPH0167274U (zh) * 1987-10-23 1989-04-28
JP2560382Y2 (ja) * 1991-08-06 1998-01-21 日新電機株式会社 開閉器の直流制御信号検出装置
US5155676A (en) * 1991-11-01 1992-10-13 International Business Machines Corporation Gapped/ungapped magnetic core
JP2741131B2 (ja) * 1992-03-19 1998-04-15 日置電機株式会社 電源監視レコーダ
JPH05346443A (ja) * 1992-06-16 1993-12-27 Kinkei Syst:Kk デジタル式電力系統事故監視記録装置
JPH06213937A (ja) * 1993-01-21 1994-08-05 Mitsubishi Electric Corp 電流測定器
CA2145691A1 (en) * 1993-12-08 1996-09-29 Stephen B. Kuznetsov Method and apparatus for limiting high current electrical faults in distribution networks by use of superconducting excitation in transverse flux magnetic circuit
JP3458122B2 (ja) * 1994-07-25 2003-10-20 中部電力株式会社 地絡電流表示器
JPH08105931A (ja) * 1994-10-03 1996-04-23 Mitsubishi Electric Corp 酸化亜鉛形避雷器の劣化検出装置
US5808384A (en) * 1997-06-05 1998-09-15 Wisconsin Alumni Research Foundation Single coil bistable, bidirectional micromechanical actuator
JPH11223643A (ja) * 1997-11-18 1999-08-17 Matsushita Electric Ind Co Ltd マルチメータ
US6348751B1 (en) * 1997-12-12 2002-02-19 New Generation Motors Corporation Electric motor with active hysteresis-based control of winding currents and/or having an efficient stator winding arrangement and/or adjustable air gap
US6532161B2 (en) * 1999-12-07 2003-03-11 Advanced Energy Industries, Inc. Power supply with flux-controlled transformer
DE10022082C1 (de) * 2000-05-08 2001-10-18 Siedle Horst Gmbh & Co Kg Induktiver Messumformer
JP2001349908A (ja) * 2000-06-07 2001-12-21 Shoden Corp 落雷電流検出装置
JP3720693B2 (ja) * 2000-09-08 2005-11-30 株式会社日立産機システム 回路遮断器及びそれを用いた通電情報監視システム
DE10110475A1 (de) * 2001-03-05 2002-09-26 Vacuumschmelze Gmbh & Co Kg Übertrager für einen Stromsensor
ITBO20010390A1 (it) * 2001-06-19 2002-12-19 Magneti Marelli Spa Metodo di controllo di un attuatore elettromagnetico per il comando di una valvola di un motore a partire da una condizione di battuta
US6913145B2 (en) * 2003-04-15 2005-07-05 Lincoln Global, Inc. Welding wire container with ribbed walls and a mating retainer ring
JP2005214819A (ja) * 2004-01-30 2005-08-11 Central Res Inst Of Electric Power Ind 衝撃電流検出器
US7915993B2 (en) * 2004-09-08 2011-03-29 Cyntec Co., Ltd. Inductor
FR2877486B1 (fr) * 2004-10-29 2007-03-30 Imphy Alloys Sa Tore nanocristallin pour capteur de courant, compteurs d'energie a simple et a double etage et sondes de courant les incorporant
JP2008145219A (ja) * 2006-12-08 2008-06-26 Fdk Corp 電流センサ
JP2008145220A (ja) * 2006-12-08 2008-06-26 Fdk Corp 電流センサ
EP2102978B1 (en) * 2006-12-20 2016-06-15 Primozone Production AB Power supply apparatus for a capacitive load
JP4934652B2 (ja) * 2008-09-24 2012-05-16 日本電信電話株式会社 サージカウンタ
ATE531055T1 (de) * 2009-02-05 2011-11-15 Abb Oy Permanentmagnet-gleichstromdrosselspule
US8717016B2 (en) * 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
EP2515125B1 (en) * 2011-04-21 2017-02-01 Abb Ag Current sensor with a magnetic core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464068A (ja) * 1990-07-02 1992-02-28 Fuji Electric Co Ltd 直流電流検出方法
JPH06331659A (ja) * 1993-05-21 1994-12-02 Mitsubishi Electric Corp パルス電流モニタ
JPH11133084A (ja) * 1997-10-30 1999-05-21 Railway Technical Res Inst サージ電流検出装置
CN1721862A (zh) * 2004-07-14 2006-01-18 深圳锦天乐防雷技术有限公司 记录雷击电流强度和发生时间的方法及设备
CN201072427Y (zh) * 2007-09-14 2008-06-11 清华大学 一种基于柔性罗氏线圈的脉冲电流测量装置
JP2009222663A (ja) * 2008-03-18 2009-10-01 Nec Saitama Ltd サージ電流検出方法及び避雷器
CN201307766Y (zh) * 2008-12-05 2009-09-09 刘市平 电源防雷箱

Also Published As

Publication number Publication date
JP2013535001A (ja) 2013-09-09
US20130088804A1 (en) 2013-04-11
EP2562549A1 (en) 2013-02-27
JP5513677B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2011130905A1 (zh) 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱
CN102288850B (zh) 氧化锌避雷器监测装置
CN201788245U (zh) 带间隙避雷器寿命在线监测装置
CN102236044B (zh) 脉冲电流传感器及采用该传感器制成的记录电涌波防雷箱
JP5224825B2 (ja) 絶縁監視装置
US10320184B2 (en) Method and means for complex, universal earth fault protection in power high and medium voltage system
WO2010004682A1 (ja) 電流センサ
EP2807664B1 (en) Combined transformer for power system
CN204925278U (zh) 一种多功能变压器套管在线监测传感器
CN207517468U (zh) 一种电流互感器
CN202455061U (zh) 智能综合消谐装置
CN102881438A (zh) 低压断路器配套用电子式电流互感器
CN203324357U (zh) 一种检测高压电阻电流的电子式电压互感器
US3156866A (en) Method and means for indicating the mode of failure of insulators
CN102593813A (zh) 智能综合消谐装置
CN211265136U (zh) 一种用于10kV线路的新型智能化绝缘子及装置
CN202196111U (zh) 氧化锌避雷器监测装置
CN203365518U (zh) 一种带凹槽铁芯线圈与电阻分压器组合的电子式互感器
CN202930199U (zh) 一种电流互感器
CN203745545U (zh) 一种变电站接地网监控装置
CN203406159U (zh) 带闭合磁路空心线圈与同轴电容组合的电子式互感器
CN113447694A (zh) 分流器
CN202013855U (zh) 内置低压侧电子电流互感器的断路器
CN210073599U (zh) 一种电流互感器
CN203366985U (zh) 一种新型电子式组合互感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505292

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010850039

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13581822

Country of ref document: US