WO2011129178A1 - 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受 - Google Patents

円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受 Download PDF

Info

Publication number
WO2011129178A1
WO2011129178A1 PCT/JP2011/056895 JP2011056895W WO2011129178A1 WO 2011129178 A1 WO2011129178 A1 WO 2011129178A1 JP 2011056895 W JP2011056895 W JP 2011056895W WO 2011129178 A1 WO2011129178 A1 WO 2011129178A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
cage
roller bearing
diameter
retainer
Prior art date
Application number
PCT/JP2011/056895
Other languages
English (en)
French (fr)
Inventor
上野 崇
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US13/583,978 priority Critical patent/US8801295B2/en
Priority to CN201180018692.7A priority patent/CN102834631B/zh
Priority to EP11768699.8A priority patent/EP2559906A4/en
Publication of WO2011129178A1 publication Critical patent/WO2011129178A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations

Definitions

  • the present invention relates to a tapered roller bearing cage, a cage manufacturing method, and a tapered roller bearing.
  • the driving force of the engine in the automobile is transmitted to the wheels via a power transmission system including any or all of a transmission, a propeller shaft, a differential, and a drive shaft.
  • the tapered roller bearing In this power transmission system, a tapered roller bearing having a high load capacity against a radial load and excellent impact resistance is often used as a bearing for supporting the shaft.
  • the tapered roller bearing generally has an inner ring 2 having a conical raceway surface 1 on the outer peripheral side, an outer ring 4 having a conical raceway surface 3 on the inner peripheral side, and an inner ring 2.
  • a plurality of tapered rollers 5 disposed between the outer ring 4 and the outer ring 4, and a retainer 6 that holds the tapered rollers 5 at a predetermined circumferential interval.
  • the cage 6 includes a large-diameter ring portion 6a, a small-diameter ring portion 6b, and a column portion 6c that connects the ring portions 6a and 6b, and a pocket 6d formed between adjacent column portions 6c along the circumferential direction.
  • the tapered roller 5 is accommodated.
  • the tapered roller 5 and the raceway surfaces 1 and 3 of the inner and outer rings 2 and 4 are in line contact, and the inner and outer ring raceway surfaces 1 and 3 and the roller center O are at one point on the axis P (see FIG. (Not shown).
  • a flange portion 7 that protrudes toward the outer diameter side is provided on the larger diameter side of the inner ring 2.
  • a flange 8 that protrudes also to the small end side of the inner ring 2 is provided so that the tapered roller 5 does not fall off to the small end side before the bearing is assembled in a machine or the like.
  • the inner ring is provided with the flange portion (small rod) 8 on the small diameter side of the raceway surface for reasons of assembling the bearing. For this reason, there is a restriction by the flange portion 8 for increasing the length of the tapered roller 5.
  • Each tapered roller 5 is supported by the cage 6 as described above, and the column portion 6c of the cage 6 is interposed between adjacent tapered rollers 5 along the circumferential direction. For this reason, there is a restriction by the column portion 6c even for the roller whose number of rollers is increased. Thus, there has been a limit in increasing the load capacity in the prior art.
  • Patent Document 1 there is an inner ring in which a small-diameter side collar (small ridge) is omitted (Patent Document 1). If the collar portion on the small diameter side in the inner ring is omitted, the length of the tapered roller in the axial direction can be increased by that amount, and the load capacity can be increased.
  • Patent Document 2 As a conventional technique for increasing the load capacity of a tapered roller bearing, there is a method in which the number of rollers is equal to that of the total rollers by closing the clearance between the rollers (Patent Document 2).
  • a structure in which a hook is provided on the large diameter side of the cage and a circumferential groove is provided on the large diameter side of the outer diameter surface of the inner ring, the inner ring, the roller, and the cage assembly are formed.
  • the handling of the bearing is not different from that of a conventional tapered roller bearing (tapered roller bearing having no hook portion).
  • the number of rollers can be increased and the load capacity can be increased by setting the total roller state.
  • the manufacturing method of a cage without a hook part is shown.
  • the molding is performed by two-body die alignment in the axial direction.
  • FIG. 13A and FIG. 13B molding is performed by a mold apparatus having a first mold (upper mold) 11 disposed on the outer diameter side and a second mold (lower mold) 12 disposed on the inner diameter side. Will do. That is, as shown in FIG. 13A, the first mold 11 and the second mold 12 are overlapped, and the cavity 13 formed by the first mold 11 and the second mold 12 is filled with resin. Pressurize. As a result, the cage is formed.
  • the mold device is separated.
  • the first mold 11 is slid away from the second mold 12 in the direction of arrow A along the axial direction.
  • the first mold 11 is separated from the cage 6 and is attached to the second mold 12. Thereafter, if the cage 6 is pushed out from the large diameter side toward the small diameter side, it is removed from the second mold 12.
  • FIGS. 10A, 10B, and 10C show a mold apparatus as shown in FIGS. 10A, 10B, and 10C, it is set so that even the cage 6 having the hook portion 15 can be taken out.
  • 10A shows a cross-sectional view at a portion where the pillar portion 6c is formed
  • FIG. 10B shows a cross-sectional view at a portion where the pocket 6d is formed
  • FIG. 10C shows a cross-sectional view at a portion where the hook portion 15 is formed.
  • the cage 6 is limited to B ⁇ C.
  • the dimension design of the hook portion 15 there is a limitation in the dimension design of the hook portion 15 and it is difficult to adapt to various designs. That is, in a design with a small cage angle or a pocket with a small size in the cage axial direction, the relationship of B ⁇ C is inevitably established, and the inner diameter of the hook portion and the hook portion on the large-diameter side of the inner ring (hook) There is a risk that the hooking structure with the groove portion will not be established.
  • the present invention provides a tapered roller bearing retainer that can be adapted to various designs without restriction on the dimension design of the hook portion, a method for manufacturing such a retainer, and such a retainer. To provide a tapered roller bearing.
  • the tapered roller bearing retainer includes a small-diameter ring portion, a large-diameter ring portion, and a plurality of column portions disposed therebetween, and the tapered rollers are held in pockets between the column portions.
  • It is a cage made of resin and has a hook part that engages with the large diameter side of the inner ring on the large diameter side, and the end diameter (ring part outer diameter) of the small diameter side of the pocket is larger than the inner diameter of the hook part. Is also a bigger one.
  • the tapered roller bearing retainer of the present invention since the end diameter on the small diameter side of the pocket is larger than the inner diameter of the hook portion, the inner diameter of the hook portion and the hook portion on the large diameter side of the inner ring (hook groove) ) And the hook structure is stable.
  • the inner diameter portion of the outer end surface of the hook portion is a guide inclined surface that is inclined from the outer diameter side toward the inner diameter side, and the inclination angle of the guide inclined surface is set to 10 ° to 30 °.
  • the radial length of the inclined surface for use is preferably 20% to 40% of the radial length of the hook portion.
  • the guide inclined surface is in sliding contact with the flange on the large-diameter side of the inner ring, and can be prevented from being caught during assembly.
  • the inclination angle of the inclined surface for guide is less than 10 °, the inclination angle is too small and the guide function is hardly exhibited.
  • the inclination angle exceeds 30 ° the strength of the inner diameter portion of the hooking portion is lowered and easily damaged. If it is less than 20% of the length in the radial direction of the hook portion, it is too short to exhibit the guide function. Moreover, when it exceeds 40% of the radial direction length of a hook part, there exists a possibility that the intensity
  • the cage is preferably molded by a molding die that forms a plurality of gates, one in which the weld is not formed on the small diameter side, or one in which the gate mark is formed in the small diameter ring portion.
  • the gate refers to an injection port for injecting a molten molding material (molten resin) into the cavity in a molding die.
  • a weld part is a joining line which can be made at the joining point of the molten resin, and the strength is reduced at this part.
  • the resin material is engineer plastic PPS.
  • PPS Noniphenylene Sulfide
  • PPS is a high-performance engineering plastic having a molecular structure in which a phenyl group (benzene ring) and sulfur (S) are alternately repeated. It is crystalline, has a continuous use temperature of 200 ° C to 220 ° C, a high deflection temperature under a high load (1.82MPa) of 260 ° C and excellent heat resistance, and has high tensile strength and bending strength. Since the shrinkage rate during molding is as small as 0.3 to 0.5%, the dimensional stability is good. Excellent in flame retardancy and chemical resistance.
  • PPS can be broadly classified into three types: cross-linked, linear, and semi-cross-linked.
  • the cross-linked type is a high molecular weight product obtained by cross-linking a low molecular weight polymer, and is mainly brittle and reinforced with glass fiber.
  • the straight-chain type has a high toughness and has a high molecular weight without a crosslinking step in the polymerization stage.
  • the semi-cross-linked type has the characteristics of both the cross-linked type and the straight chain type.
  • the method for manufacturing a tapered roller cage according to the present invention includes a small-diameter ring portion, a large-diameter ring portion, and a plurality of column portions disposed therebetween, and the tapered rollers are held in pockets between the column portions.
  • a method for manufacturing a resin tapered roller cage, which uses a slide core that slides so as to incline with respect to the cage axis toward the cage axis when pulling out the pocket. is there.
  • the slide core can be slid so as to be inclined with respect to the cage axis after molding of the cage. For this reason, it is possible to stably remove the cage from the mold apparatus. For this reason, even if it has a hook part engaged with the large diameter side of an inner ring, a cage can be taken out from a metallic mold device, without interfering with this hook part.
  • the first tapered roller bearing of the present invention uses the above-mentioned tapered roller cage.
  • the second tapered roller bearing of the present invention uses a cage manufactured by the method for manufacturing a tapered roller cage.
  • each tapered roller bearing there is a hook part that engages with a hook part on the large diameter side of the inner ring, and the maximum height dimension of the hook part can be 30% or more of the diameter of the large end face of the tapered roller.
  • the roller coefficient ⁇ can exceed 0.94, or the window angle of the cage pocket can be 55 ° or more and 80 ° or less.
  • the roller coefficient ⁇ is defined by the following equation.
  • the window angle of the pocket (between adjacent column portions along the circumferential direction) refers to an angle formed by a surface of the column portion that contacts the rolling surface of the tapered roller.
  • Roller coefficient ⁇ (Z ⁇ DA) / ( ⁇ ⁇ PCD)
  • Z Number of rollers
  • DA Roller average diameter
  • PCD Roller pitch circle diameter
  • This tapered roller bearing is preferably used to support a power transmission shaft of a self-propelled vehicle.
  • the hook structure between the inner diameter of the hook portion and the hook portion (hook groove portion) on the large diameter side of the inner ring is stabilized. For this reason, the assemblability of the tapered roller bearing using this cage can be improved.
  • the inclined surface for the guide is provided, it is possible to prevent the hook portion from being caught when the tapered roller bearing is assembled, and it is possible to stably assemble and prevent the hook portion from being damaged by the hook.
  • the molding die In the case of molding with a molding die that forms a plurality of gates, the molding die is a multi-point gate. For this reason, the resin stopping phenomenon (hegitation) hardly occurs even at a location where the resin is difficult to flow, and the flow characteristics can be improved.
  • the resin is poured from the small diameter side. For this reason, the flow of the molten resin into the cavity for forming the small-diameter ring portion is stable, and the small-diameter ring portion can be accurately formed.
  • the lubricant contains an additive that is highly aggressive to the resin material.
  • the lubricating oil used for the differential contains phosphorus and sulfur components that are highly aggressive to the resin.
  • PPS polyphenylene sulfide
  • the maximum height of the collar part to 30% or more of the diameter of the large end face of the tapered roller, the strength of the collar part of the inner ring is not reduced, and the catch groove where the hook part is caught on the inner ring large diameter side is stabilized. Can be provided.
  • the load capacity can be increased to the level of a full roller bearing (bearing not using a cage) without changing the bearing dimensions. Thereby, the contact surface pressure can be reduced, the surface pressure in the stopped state is relaxed, and the fretting resistance is improved.
  • the cage window angle is set to 55 ° or more, it is possible to ensure a good contact state with the tapered roller, and by setting the cage window angle to 80 ° or less, the cage is pressed in the radial direction. The force is not increased and smooth rotation is obtained.
  • this tapered roller bearing is optimal for a bearing that supports the power transmission shaft of a self-propelled vehicle.
  • FIG. 2 is a simplified view of a cage used in the tapered roller bearing shown in FIG. 1. It is a principal part expanded sectional view of the holder
  • FIG. 3 is a cross-sectional view showing a mold device used for manufacturing the cage shown in FIG. 2 and forming a column part.
  • FIG. 3 is a cross-sectional view showing a mold device used for manufacturing the cage shown in FIG. 2 and forming a pocket.
  • FIG. 3 is a cross-sectional view showing a mold apparatus used for manufacturing the cage shown in FIG. 2 and forming a hook portion. It is sectional drawing which shows the method of taking out the said holder
  • FIG. 10 is a cross-sectional view of a die device in manufacturing the tapered roller bearing retainer shown in FIG. FIG.
  • FIG. 10 is a cross-sectional view showing a mold apparatus in manufacturing the tapered roller bearing retainer shown in FIG. 9 and forming a hook portion.
  • FIG. 11 is a cross-sectional view showing a method for removing the cage from the mold apparatus shown in FIGS. 10A to 10C. It is sectional drawing of the conventional tapered roller bearing.
  • FIG. 13 is a cross-sectional view of a cage molded state, showing a cage mold apparatus used for the tapered roller bearing shown in FIG. 12. It is sectional drawing of the state which shows the metal mold
  • FIG. 1 shows a tapered roller bearing using a cage according to the present invention.
  • This tapered roller bearing has a plurality of inner rings 21, an outer ring 22, and a plurality of rolling rings arranged between the inner ring 21 and the outer ring 22.
  • a tapered roller 23 and a resin cage 24 that holds the tapered roller 23 at a predetermined circumferential interval are provided.
  • the inner ring 21 has a conical raceway surface 25 on its outer diameter surface, and a flange portion 26 is formed on the larger diameter side of the raceway surface 25 so as to protrude toward the outer diameter side. That is, the raceway surface 25 is formed from the flange portion 26 to the small diameter end, and does not have the flange portion on the small diameter side like the inner ring of the conventional tapered roller bearing. A corner portion 27 between the raceway surface 25 and the flange portion 26 is formed with a thin portion 27.
  • the flange portion 26 in this case is a large flange that receives the axial load through the tapered roller 23 and guides the tapered roller 23 to rotate. Further, the conventionally provided gavel does not play a special role during the rotation of the bearing, and such a thing is omitted in the present invention.
  • the inner surface (that is, the end surface on the small diameter side) 26a of the flange portion 26 is inclined by a predetermined angle with respect to a plane orthogonal to the bearing axis P. That is, as shown in FIG. 1, when fitted to the raceway surface 25 of the inner ring 21, the peripheral wall 23a of the roller 23 contacts (contacts) the raceway surface 25, and the large end surface 23b of the tapered roller 23 has a flange portion. The angle formed by the raceway surface 25 and the inner surface 26 a of the flange portion 26 is adjusted to the angle formed by the peripheral wall 23 a of the roller 23 so as to contact (abut) the inner surface 26 a of the roller 26.
  • the outer ring 22 has a tapered raceway surface 30 on its inner diameter surface, and a plurality of tapered rollers 23 held by a cage 24 roll on the raceway surface 30 and the raceway surface 25 of the inner ring 21. .
  • the inner ring 21 does not have a flange on the small diameter side, in this tapered roller bearing, the small end surface 23c of the tapered roller 23 reaches the small diameter side end surface 21b of the inner ring 21, as shown in FIG. Can be extended.
  • the retainer 24 includes a large-diameter ring portion 24a, a small-diameter ring portion 24b, and pillars that extend in the center O direction at equal circumferential positions to connect the ring portions 24a and 24b. Part 24c. And the tapered roller 23 is rotatably accommodated in the pocket 24d partitioned by the column parts 24c and 24c which adjoin along the circumferential direction.
  • the large-diameter annular portion (large-diameter ring portion) 24a includes a large-diameter short cylindrical portion 35 and hook portions 36 arranged at a pitch of 60 degrees along the circumferential direction. As shown in FIG. 2, when viewed from the axial direction, the hook portion 36 is sized to fit in one corresponding pocket 24d.
  • the notch part 38 is formed in the large diameter side of the outer peripheral surface 26c of the collar part 26 of the inner ring
  • the inner diameter portion of the outer end surface of the hook portion 36 is a guide inclined surface 40 that is inclined from the outer diameter side toward the inner diameter side toward the smaller diameter side.
  • the inclination angle E of the inclined guide surface 40 is set to 10 ° to 30 °, for example.
  • the radial length F of the guide inclined surface 40 is set to 20% to 40% of the radial length G of the hook portion 36.
  • the outer end surface 36b of the hook portion 36 is disposed on a plane orthogonal to the bearing axis P, and the inner end surface 36c of the hook portion 36 is inclined by a predetermined angle with respect to the plane orthogonal to the bearing axis P. That is, the inner end surface 36c of the hook portion 36 and the inner surface 26a of the flange portion 26 are arranged in parallel.
  • the outer diameter of the ring portion 24b on the small diameter side of the pocket is B and the inner diameter of the hook portion 36 is C, B> C.
  • the inner diameter of the hook portion 36 is twice the dimension from the inner diameter end 36a of the hook portion 36 to the bearing axis P.
  • the cage 24 is a resin cage, and an engineering plastic is preferable as this resin.
  • the engineering plastic is an abbreviation for engineering plastics, which is excellent in heat resistance among synthetic resins and can be used in fields where strength is required.
  • Engineering plastics include general-purpose engineering plastics and super engineering plastics, and the engineering plastics used for the cage 24 include both. The following are typical examples. These are examples of engineering plastics, and engineering plastics are not limited to the following.
  • General-purpose engineering plastics include polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF) -PET), ultra high molecular weight polyethylene (UHMW-PE) and the like.
  • Super engineering plastics include polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetheretherketone.
  • PEEK liquid crystal polymer
  • LCP liquid crystal polymer
  • thermoplastic polyimide TPI
  • PBI polybenzimidazole
  • TPX polymethylbenten
  • PCT poly1,4-cyclohexanedimethylene terephthalate
  • PA46 polyamide 46
  • PA6T polyamide 6T
  • PA9T polyamide 9T
  • PA11,12 polyamide 11,12
  • PPA polyphthalamide
  • PPS polyphenylene sulfide resin
  • PPS polyphenylene sulfide resin
  • PPS is a high-performance engineering plastic having a molecular structure in which phenyl groups (benzene rings) and sulfur (S) are alternately repeated. It is crystalline, has a continuous use temperature of 200 ° C to 220 ° C, a high deflection temperature under a high load (1.82 MPa) of 260 ° C or higher, and has excellent heat resistance, and also has high tensile strength and bending strength. Since the shrinkage rate during molding is as small as 0.3 to 0.5%, the dimensional stability is good, and the flame retardancy and chemical resistance are also excellent.
  • PPS can be broadly classified into three types: a crosslinked type, a linear type, and a semi-crosslinked type.
  • the cross-linked type is obtained by cross-linking a low molecular weight polymer to increase the molecular weight, and is mainly brittle and reinforced with glass fiber.
  • the straight chain type has a high toughness because it has a high molecular weight by omitting the crosslinking step in the polymerization stage.
  • the semi-crosslinked type has the characteristics of having both a crosslinked type and a linear type characteristic.
  • the cage 24 has a window pushing angle (window angle) ⁇ (see FIG. 2) of the column surface 47 of the column portion 24c of, for example, 55 ° to 80 °.
  • roller coefficient ⁇ is set to exceed 0.94.
  • the roller coefficient ⁇ is defined by the following equation.
  • the window angle ⁇ between the pockets refers to an angle formed by a surface of the column portion 24c that is in contact with the rolling surface of the tapered roller 23.
  • Roller coefficient ⁇ (Z ⁇ DA) / ( ⁇ ⁇ PCD)
  • Z Number of rollers
  • DA Roller average diameter
  • PCD Roller pitch circle diameter
  • the rollers 23 are accommodated in the pockets 24 d of the cage 24. Thereafter, the inner ring 21 is pushed into the inner circumference of the cage 24, and further the outer ring 22 is pushed in the axial direction and fitted to the outer circumference of each roller 23.
  • the hook portion 36 of the retainer 24 can be engaged with the notch portion 38 by being elastically deformed. At this time, there is a slight gap in the axial direction and the radial direction between the hook portion 36 and the notch portion 38, whereby the cage 24 is slightly movable in the axial direction and the radial direction.
  • the roller 23 tends to drop to the small end side due to its own weight, and accordingly, the pressing force in the same direction acts on the cage 24 as well.
  • the hook portion 36 engages with the cutout portion 38 provided in the inner ring 21 from the large end side, so that further displacement of the retainer 24 toward the small end side is restricted.
  • the displacement of the roller 23 toward the small end is restricted by the inner diameter side of the pocket 24d, it is possible to prevent the roller 23 from falling off from the inner ring 21.
  • the guide inclined surface 40 of the hook portion 36 comes into sliding contact with the inner surface 26a of the flange portion 26.
  • the notch surface 41 (refer FIG. 4) in the outer-diameter part of the inner surface 26a.
  • the guide inclined surface 40 comes into sliding contact with the notch surface 41, and the retainer 24 and the inner ring 21 can be assembled without the hook portion 36 being caught by the flange portion 26.
  • the guide inclined surface 40 is provided in the hook portion 36, the cage 24 and the inner ring 21 can be assembled without the hook portion 36 being hooked on the collar portion 26 even when the notched surface 41 is not provided. Can do.
  • the tapered roller bearing retainer of the present invention since the end diameter on the small diameter side of the pocket 24d is larger than the inner diameter of the hook portion 36, the inner diameter of the hook portion 36 and the large diameter side hook of the inner ring 21 are hooked.
  • the hook structure with the groove 38 is stable. For this reason, the assemblability of the tapered roller bearing using the cage 24 can be improved.
  • the inclined surface for guide 40 it is possible to prevent the hook portion 36 from being caught during the assembly of the tapered roller bearing, thereby enabling stable assembly and preventing the hook portion 36 from being damaged by the hook.
  • the inclination angle of the inclined surface for guide 40 is less than 10 °, the inclination angle is too small and the guide function is not easily exhibited.
  • the inclination angle exceeds 30 °, the strength of the inner diameter portion of the hooking portion is lowered and easily damaged. If it is less than 20% of the length in the radial direction of the hook portion, it is too short to exhibit the guide function. Moreover, when it exceeds 40% of the radial direction length of a hook part, there exists a possibility that the intensity
  • the load capacity can be increased to the level of a full roller bearing (bearing not using a cage) without changing the bearing dimensions.
  • the contact surface pressure can be reduced, and further, when applied to an application where there is a stop state in the use cycle, the surface pressure is relaxed, thereby improving the fretting resistance.
  • the window angle ⁇ of the cage 24 is set to 55 ° or more, it is possible to ensure a good contact state with the tapered roller 23, and by setting the window angle ⁇ of the cage 24 to 80 ° or less, The pressing force in the radial direction is not increased, and smooth rotation can be obtained.
  • the mold apparatus shown in FIGS. 6A, 6B, and 6C is used.
  • the mold apparatus includes a first mold 51 disposed on the outer diameter side, a second mold 52 disposed on the inner diameter side, and a slide core 53 for forming a pocket 24d having a hook portion 36. .
  • FIG. 6A is a cross-sectional view at a portion where the pillar portion 24 c is formed
  • FIG. 6B is a cross-sectional view at a portion where the pocket 24 d is formed
  • FIG. 6C is a cross-sectional view at a portion where the hook portion 36 is formed. That is, by combining the first mold 51, the second mold 52, and the slide core 53, cavities 55, 56 for forming the ring portions 24a, 24b, cavities 57 for forming the column portions 24c, A cavity 58 for forming the hook portion 36 is formed.
  • the cavities 55, 56, 57, and 58 that are formed in the state where the first mold 51, the second mold 52, and the slide core 53 are combined are resinated. Pressurized filled with material. Thereby, the cage 24 shown in FIG. 3 and the like can be formed.
  • the cavities 56 and 58 are open in the illustrated example, but the mold apparatus of the embodiment includes a mold for closing the cavities 56 and 58.
  • the product (retainer 24) is removed from the mold apparatus.
  • the first mold 51 is slid to the small diameter side along the axial direction with respect to the second mold 52 as in the conventional mold apparatus.
  • the mold (not shown) is separated from the first mold 51, the second mold 52, and the slide core 53.
  • the product (the cage 24) is pushed up along the direction of the arrow A along the axis direction of the cage using the push-up jig 60.
  • the slide core 53 is also pushed up, and the slide core 53 slides along the direction of the arrow A1 so as to be inclined with respect to the cage axis toward the cage axis.
  • the cage 24 is molded using an injection molding machine.
  • a general molding method of a product using an injection molding machine will be described.
  • the plastic material granular
  • the raw material that has flowed from the hopper into the heating cylinder is fed into the heating cylinder by the rotation of the screw.
  • the temperature of the heating cylinder is controlled by an electric heater on the outer periphery, and the material is melted by the heat of the heater and frictional heat of rotation and shear.
  • the screw moves backward while feeding the molten material into the heating cylinder.
  • molten material hot water
  • the screw stops rotating. After the mold is closed and tightened, the screw is advanced to pressurize the hot water and pour it into the mold apparatus (mold).
  • the hot water flows in the order of a sprue, a runner, and an inlet (gate) and flows into the molded product space (cavity).
  • the air in the cavity is discharged to the outside through the gas vent, and the air and hot water are replaced.
  • the mold is kept at a relatively low temperature so as to promote the flow of hot water and to cool and solidify. After solidification, the mold is divided into a female mold (cavity side) and a male mold (core side), and the molded product remaining on the core is generally taken out.
  • the injection port (gate) opens into a space (cavity) forming the small-diameter ring portion 24b, and the number thereof is plural.
  • the molding die is a multi-point gate. For this reason, the resin stopping phenomenon (hegitation) hardly occurs even at a location where the resin is difficult to flow, and the flow characteristics can be improved.
  • the number of gates is preferably about 3 to 5. If it is less than 3, the injection pressure becomes high, and if it exceeds 5, the mold structure becomes complicated and the cost is increased.
  • the resin is poured from the small diameter side. For this reason, the molten resin flows into the small-diameter ring portion forming cavity 56 stably, and the small-diameter ring portion 24b can be accurately formed.
  • the small-diameter ring portion 24b Since the small-diameter ring portion 24b has a small wall thickness, it is difficult for the resin in this portion to flow during molding, and it is expected that the resin flowing from the large-diameter side will be joined (welded) by the small-diameter ring portion 24b. Is done. In particular, when a resin filled with a resin reinforcing material is used, the fluidity deteriorates as the filling amount of the resin reinforcing material increases. Since this weld part is inferior in strength, it is considered that early damage is generated with this part as a base point.
  • FIG. 8 shows a pair of inner rings 21A and 21B having raceway surfaces 25A and 25B on the outer diameter surfaces, an outer ring 22 having conical raceway surfaces 30A and 30B on the inner periphery, inner rings 21A and 21B, and outer rings 22, respectively.
  • inner rings 21A and 21B are provided with a plurality of tapered rollers 23A, 23B interposed between the raceway surfaces 25A, 25B, 30A, 30B, and cages 24A, 24B that hold the plurality of tapered rollers 23A, 23B at equal intervals in the circumferential direction.
  • the cages 24A and 24B are a pair of annular portions (ring portions) 24Aa, 24Ab, 24Ba, and 24Bb, and columns that extend in the roller center O direction at equal circumferential positions and connect the ring portions 24Aa, 24Ab, 24Ba, and 24Bb. Parts 24Ac and 24Bc.
  • the tapered rollers 23A and 23B are rotatably accommodated in the pockets 24Ad and 24Bd partitioned by the column portions 24Ac and 24Bc adjacent to each other along the circumferential direction.
  • the inner rings 21 ⁇ / b> A and 21 ⁇ / b> B are formed with an annular collar portion (large collar) 26 on the large end side of the outer periphery. Further, the annular flange 26 is formed with a notch 38, and the hook 36 is engaged with the notch 38 in a loose fit.
  • the pair of inner rings 21A, 21B have a small diameter side end face 21Ab, 21Bb in a butted shape.
  • the end diameter B on the small diameter side of the pockets 24Ad, 24Bd is made larger than the inner diameter C of the hook portion 36, and the inner diameter portion of the outer end surface of the hook portion 36 is reduced from the outer diameter side toward the inner diameter side.
  • the inclined surface for guide 40 is inclined to the right.
  • the inclination angle of the guide inclined surface 40 is set to 10 ° to 30 °, and the radial length of the guide inclined surface is set to 20% of the radial length of the hook portion.
  • the window pushing angle (window angle) ⁇ is set to 55 ° to 80 °, and the roller coefficient ⁇ is set to exceed 0.94.
  • the tapered roller bearing and the cages 24A and 24B shown in FIG. 8 have the same effects as those shown in FIG.
  • the holders 24A and 24B are also manufactured using the mold apparatus shown in FIGS. 6A to 6C and FIG. 7 having a slide core. For this reason, the cage
  • the present invention has been described.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the number of hooks 36 provided in the cage is arbitrary. However, it is necessary to set the number so that the rollers 23 do not fall when assembled.
  • the inner end surface 36c of the hook portion 36 is formed on a plane orthogonal to the axis P, unlike the hook portion 36 shown in FIG. Similar to the hook 36 shown in 3 etc., it may be inclined. Conversely, the hook 36 shown in FIG. 3 or the like may not be inclined like the hooks 36 of the cages 24A and 24B shown in FIG. Even if the width dimension W (see FIG.
  • the width dimension W1 (see FIG. 2) of the pocket 24d to be arranged is smaller than the width dimension W1 (see FIG. 2) of the pocket 24d to be arranged, it is within the range where the rollers 23 are not dropped without being inferior in strength.
  • the thickness of the hook portion 36 can be variously set within a range in which the roller 23 is not dropped without being inferior in strength.
  • the inner ring was formed with a notch (chamfered) in the collar part, and the chamfer angle ( ⁇ ) (see FIG. 4) was set to 75 °. Further, the cage shown in FIG. 2 is used, PPS is used as the resin material, the width W is 4.0 mm, and the thickness T (average thickness) is 0.8 mm (see FIG. 3). ).
  • the inclination angle E is 10 ° or more and 30 ° or less, the inclination angle E is over 30 ° and 60 ° or less (shown in the table as 30 ° to 60 °), and the inclination angle E is 60 °.
  • the damage state was investigated for those exceeding 90 ° and below 90 ° (indicated as 60 ° to 90 ° in the table).
  • the radial length of the guide inclined surface is set to 20% or more and 40% or less of the radial length of the hook portion, and exceeds 40%.
  • 60% or less indicated in the table as 40 ° to 60 °
  • over 60% to 90% or less in the table as 60 ° to 90 °).
  • the inclination angle of the guide inclined surface 40 is set to 10 ° to 30 °, and the radial length of the guide inclined surface 40 is set.
  • the inclination angle of the guide inclined surface 40 is 10 ° to 30 °, if the radial dimension of the guide inclined surface 40 is increased, the thickness is reduced and damage due to a decrease in strength occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

引っ掛け部の寸法設計に制約なく、様々な設計への適応が可能な円すいころ軸受用保持器、このような保持器の製造方法、およびこのような保持器を用いた円すいころ軸受を提供する。 円すいころ用保持器は、小径リング部24bと、大径リング部24aと、これらの間に配設される複数の柱部24cとを備え、柱部24c間のポケット24dに円すいころ23が保持される樹脂製である。内輪21の大径側に係合する引っ掛け部36を大径側に有し、ポケット24dの小径側のリング部外径(ポケット24dの小径側の端径)を引っ掛け部36の内径よりも大きくしている。ポケット24dの成形を、引き抜き時に保持器軸心に向かって保持器軸心に対して傾斜するようにスライドするスライドコア53を用いる。

Description

円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受
 本発明は、円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受に関する。
 自動車におけるエンジンの駆動力は、トランスミッション、プロペラシャフト、デファレンシャル、ドライブシャフトの何れか又は全てを含む動力伝達系を介して車輪に伝達される。
 この動力伝達系では、シャフトを支持する軸受として、ラジアル荷重に対する負荷能力が高く、耐衝撃性にも優れる円すいころ軸受を使用する場合が多い。円すいころ軸受は、一般的には、図12に示すように、外周側に円すい状の軌道面1を有する内輪2と、内周側に円すい状の軌道面3を有する外輪4と、内輪2と外輪4との間に転動自在に配された複数の円すいころ5と、円すいころ5を円周所定間隔に保持する保持器6とを備える。
 保持器6は、大径リング部6aと小径リング部6bと、リング部6a、6bを連結する柱部6cとを備え、周方向に沿って隣合う柱部6c間に形成されるポケット6dに前記円すいころ5が収容される。
 この円すいころ軸受では、円すいころ5と内外輪2,4の軌道面1、3とが線接触しており、内・外輪軌道面1、3およびころ中心Oが軸心P上の一点(図示せず)に一致するよう設計される。
 このため、荷重が作用した場合には、円すいころ5がその大端側に押圧される。この荷重を受けるべく、内輪2の大径側には外径側へ突出する鍔部7が設けられている。また、この軸受を機械等に組込むまでの間に円すいころ5が小端側へ脱落しないようにするために、内輪2の小端側にも突出する鍔部8が設けられる。
 上記背景に対して、ころ本数を増やすかころ長さを長くすることによって、同一寸法で負荷容量を現状よりも上げて、軸受の長寿命化を図ることを提案できる。しかしながら、現在の構造では、前記したように、軸受組立上の理由により内輪にはその軌道面の小径側に鍔部(小鍔)8を設けていた。このため、円すいころ5の長さ寸法を大きくすることに対してこの鍔部8による規制がある。また、各円すいころ5は前記したように保持器6にて支持されて、周方向に沿って隣合う円すいころ5間に保持器6の柱部6cが介在されることになる。このため、ころ本数を増加されるころに対しても柱部6cによる規制がある。このように、従来においては負荷容量を上げるのに限界があった。
 そこで、従来には、内輪において小径側の鍔部(小鍔)を省略したものがある(特許文献1)。内輪において小径側の鍔部を省略すれば、その省略した分だけ円すいころの軸方向長さを大きくとることができ、負荷容量の増加を図ることができる。
 また、円すいころ軸受の負荷容量を増加させる従来技術として、ころ間すきまを詰めて、総ころと同等のころ本数とする方法がある(特許文献2)。
 ところが、小径側の鍔部(小鍔)を省略すれば、機械等に組込むまでの間に円すいころ5が小端側へ脱落する。すなわち、内輪・ころ・保持器アッシーとして成立しなくなる。そこで、特許文献3では、保持器の大径側に、内輪の大径側に係合する引っ掛け部を設けている。
 すなわち、保持器大径側に引っ掛け部を設け、内輪の外径面の大径側に、その引っ掛け部が引っ掛かる円周溝を設ける構造とすれば、内輪・ころ・保持器アッシーとして成立する。しかも、軸受の取り扱い性に従来の円すいころ軸受(引っ掛け部を有さない円すいころ軸受)と差異はない。さらに、このような引っ掛け部を設けたものにおいて、総ころ状態とすることによって、ころ本数も増加することが出来、さらに負荷容量の増加が可能である。
 引っ掛け部を有さない保持器の製造方法を示す。この場合、軸方向の2体金型合せによる成形である。図13Aと図13Bに示すように、外径側に配置される第1型(上型)11と、内径側に配置される第2型(下型)12とを備えた金型装置で成形することになる。すなわち、図13Aに示すように、第1型11と第2型12とを重ね合わせた状態とし、この第1型11と第2型12とで形成されるキャビテイ13内に樹脂を充填して加圧する。これによって、保持器を成形することになる。
 保持器成形後は、金型装置の分離作業を行う。この場合、まず、図13Bに示すように、第1型11を第2型12に対して軸心方向に沿って矢印A方向にスライドさせて離間させる。これによって、第1型11は、保持器6から離れ、第2型12に付着した状態となる。その後、保持器6を大径側から小径側に向かって押し出せば、第2型12から取り除かれる。
 ところが、図9に示すように、保持器6に引っ掛け部15が設けられている場合、図13Aと図13Bとに示すような金型装置では、引っ掛け部15が邪魔して(干渉して)成形品である保持器6を取り出すことができない。
 そこで、図10Aと図10Bと図10Cとに示すような金型装置とすることによって、引っ掛け部15を有する保持器6であっても取り出すことができるように設定している。図10Aは、柱部6cを形成する部位における断面図を示し、図10Bはポケット6dを形成する部位における断面図を示し、図10Cは引っ掛け部15を形成する部位における断面図を示している。
 すなわち、図11に示すように、保持器の小径リング部6bの外径(保持器の小径リング部6bの、最大外径)をBとし、引っ掛け部15の内径をCとしたときに、B<Cとして、下型12から成形品(保持器6)を取り出す際に、軸方向の干渉がなくなるように、中抜き形状とすれば可能である。
実開昭58-165324号公報 特開2005-351472号公報 特開2008-121744号公報
 しかしながら、図10Aと図10Bと図10Cとに示すものでは、保持器6としては、B<Cに限られることになる。このため、引っ掛け部15の寸法設計に制約があり、様々な設計への適応が困難となる。すなわち、保持器角度が小さい設計やポケットの保持器軸方向寸法が小さい設計では、必然的にB<Cの関係が成り立ち難くなり、引っ掛け部の内径と、内輪の大径側の引っ掛け部位(引っ掛け溝部)との引っ掛け構造が成立しなくなるおそれがある。
 本発明は、上記課題に鑑みて、引っ掛け部の寸法設計に制約なく、様々な設計への適応が可能な円すいころ軸受用保持器、このような保持器の製造方法、およびこのような保持器を用いた円すいころ軸受を提供する。
 本発明の円すいころ軸受用保持器は、小径リング部と、大径リング部と、これらの間に配設される複数の柱部とを備え、柱部間のポケットに円すいころが保持される樹脂製の円すいころ用保持器であって、内輪の大径側に係合する引っ掛け部を大径側に有し、ポケットの小径側の端径(リング部外径)を引っ掛け部の内径よりも大きくしたものである。
 本発明の円すいころ軸受用保持器によれば、ポケットの小径側の端径を引っ掛け部の内径よりも大きくしているので、引っ掛け部の内径と、内輪の大径側の引っ掛け部位(引っ掛け溝)との引っ掛け構造が安定する。
 引っ掛け部の外端面内径部を、外径側から内径側に向かって小径側へ傾斜するガイド用傾斜面とし、かつ、このガイド用傾斜面の傾斜角度を10°~30°とするとともに、ガイド用傾斜面の径方向長さを、引っ掛け部の径方向長さの20%~40%とするのが好ましい。
 このように設定することによって、円すいころ軸受の組立時において、ガイド用傾斜面が内輪の大径側の鍔部に摺接して、組立時における引っ掛かりを防止できる。ガイド用傾斜面の傾斜角度が10°未満では、傾斜角度が小さすぎてガイド機能を発揮しにくい。また、傾斜角度が30°を越えると、引っ掛け部の内径部の強度が低下して、損傷し易くなる。引っ掛け部の径方向長さの20%未満では、短すぎてガイド機能を発揮しにくい。また、引っ掛け部の径方向長さの40%を越えると、引っ掛け部全体の強度が低下するおそれがある。
 保持器は、複数のゲートを形成する成形金型にて成形されるもの、ウェルド部が小径側に生じないもの、小径リング部にゲート跡が形成されているものが好ましい。ここで、ゲートとは、成形用金型において、溶融した成形材料(溶融樹脂)をキャビテイへ注入するための注入口をいう。ウェルド部とは、溶融樹脂の合流箇所にできる接合線であり、この部位では強度が低下する。
 樹脂材料がエンジニアプラスチックのPPSであるのが好ましい。PPS(ポニフェニレンサルファイド)とは、フェニル基(ベンゼン環)とイオウ(S)が交互に繰り返される分子構造を持った高性能エンジニアリング・プラスチックである。結晶性で,連続使用温度は200℃~220℃,高荷重(1.82MPa)での荷重たわみ温度が260℃以上と耐熱性に優れ,しかも引っ張り強さや曲げ強さが大きい。成形時の収縮率は0.3~0.5%と小さいので寸法安定性が良い。難燃性や耐薬品性の点でも優れている。PPSは,架橋型,直鎖型,半架橋型の3種に大別できる。架橋型は低分子量ポリマーを架橋して高分子量化したもので,脆く,ガラス繊維で強化したグレードが中心である。直鎖型は重合段階で架橋工程がなしに高分子量化したもので,靭性が高い。半架橋型は,架橋型と直鎖型の特性を併せ持つ特徴を持っている。
 本発明の円すいころ用保持器の製造方法は、小径リング部と、大径リング部と、これらの間に配設される複数の柱部とを備え、柱部間のポケットに円すいころが保持される樹脂製の円すいころ用保持器の製造方法であって、ポケットの成形を、引き抜き時に保持器軸心に向かって保持器軸心に対して傾斜するようにスライドするスライドコアを用いるものである。
 本発明の円すいころ用保持器の製造方法によれば、保持器成形後において、スライドコアを保持器軸心に対して傾斜するようにスライドすることができる。このため、金型装置から安定して保持器を取り出すことができる。このため、内輪の大径側に係合する引っ掛け部を有するものであっても、この引っ掛け部に干渉されることなく、金型装置から保持器を取り出すことができる。
 本発明の第1の円すいころ軸受は、前記円すいころ用保持器を用いたものである。
 本発明の第2の円すいころ軸受は、前記円すいころ用保持器の製造方法にて製造された保持器を用いたものである。
 各円すいころ軸受において、内輪の大径側に引っ掛け部が係合する鍔部があり、前記鍔部の最大高さ寸法を、円すいころの大端面の直径の30%以上とすることができる。
 ころ係数γが0.94を越えるようにしたり、保持器のポケットの窓角を55°以上80°以下としたりできる。ここで、ころ係数γは、次式で定義される。また、ポケット(周方向に沿って隣合う柱部間)の窓角とは、柱部の、円すいころの転動面と接する面がなす角度をいう。
 ころ係数γ=(Z・DA)/(π・PCD)
ここで、Z:ころ本数、DA:ころ平均径、PCD:ころピッチ円径
 本円すいころ軸受は、自走車両の動力伝達軸を支持するのに使用するのが好ましい。
 本発明の円すいころ軸受用保持器によれば、引っ掛け部の内径と、内輪の大径側の引っ掛け部位(引っ掛け溝部)との引っ掛け構造が安定する。このため、この保持器を用いた円すいころ軸受の組立性の向上を図ることができる。
 ガイド用傾斜面を設ければ、円すいころ軸受の組立時における引っ掛け部の引っ掛かりを防止でき、安定した組立てが可能となるとともに、引っ掛かりによる引っ掛け部の損傷を防止できる。
 複数のゲートを形成する成形金型にて成形されるものでは、成形金型が多点ゲートとなる。このため、樹脂が流れ難い箇所においても樹脂の立ち止まり現象(ヘジテーション)が生じにくく、流動特性の改善を図ることができる。
 また、小径リング部にゲート跡が形成されているものでは、小径側から樹脂が流し込まれる。このため、小径リング部形成用キャビテイへの溶融樹脂の流れ込みが安定して、精度よく小径リング部を成形することができる。
 ところで、この種の円すいころ軸受がデファレンシャルやトランスミッション等に使用された場合、潤滑油が樹脂材料に対して攻撃性の高い添加剤が含まれていることが想定される。特に、デファレンシャルに使用される潤滑油には樹脂への攻撃性の高いリンや硫黄成分が含まれている。このため、保持器材料の樹脂材料には、エンジニアプラスチックの中で、油や高温,薬品に対して耐性が高く、強度及び靭性に優れたているPPS(ポリフェニレンサルファイド)を採用することで、寿命を大幅に伸ばすことができる。
 本発明の円すいころ軸受用保持器の製造方法では、スライドコアを備えた金型装置を用いるので、保持器大径側に引っ掛け部があるような形状において、引っ掛け内径に寸法制約を設けることなく、成形することが可能になる。これにより、いかなる接触角や保持器軸方向ポケット寸法としている軸受においても確実に引っ掛け構造の成立が可能となる。よって、ころ長さの延長が可能となり負荷容量の向上を図ることができる。
 鍔部の最大高さ寸法を、円すいころの大端面の直径の30%以上とすることによって、内輪の鍔部の強度低下させることがなく、内輪大径側に引っ掛け部が引っ掛かる引っ掛かり溝を安定して設けることができる。
 ころ係数γが0.94を越えるようにすれば、軸受寸法を変更することなく、負荷容量を総ころ軸受(保持器を用いていない軸受)のレベルまで上げることが可能となる。これによって、接触面圧を低減でき、停止状態での面圧が緩和され、耐フレッティング性が向上する。
 また、保持器の窓角を55°以上としたことによって、円すいころとの良好な接触状態を確保することができ、保持器の窓角を80°以下としたことによって、半径方向への押し付け力が大きくならず、円滑な回転が得られる。
 このため、本円すいころ軸受は自走車両の動力伝達軸を支持する軸受に最適となる。
本発明の第1の円すいころ軸受の断面図である。 前記図1に示す円すいころ軸受に用いられている保持器の簡略図である。 図2に示す保持器の要部拡大断面図である。 前記図2に示す保持器を用いた円すいころ軸受の組立状態を示す断面図である。 保持器のポケットの窓角を説明する断面図である。 前記図2に示す保持器の製造に用いる金型装置を示し、柱部を形成する部位における断面図である。 前記図2に示す保持器の製造に用いる金型装置を示し、ポケットを形成する部位における断面図である。 前記図2に示す保持器の製造に用いる金型装置を示し、引っ掛け部を形成する部位における断面図である。 前記保持器を前記図5に示す金型装置から取り出す方法を示す断面図である。 本発明の第2の円すいころ軸受の断面図である。 従来の円すいころ軸受用保持器の断面図である。 前記図9に示す円すいころ軸受用保持器の製造にいる金型装置を示し、柱部を形成する部位における断面図である。 前記図9に示す円すいころ軸受用保持器の製造にいる金型装置を示し、ポケットを形成する部位における断面図である。 前記図9に示す円すいころ軸受用保持器の製造にいる金型装置を示し、引っ掛け部を形成する部位における断面図である。 前記保持器を図10A~図10Cに示す金型装置から取り出す方法を示す断面図である。 従来の円すいころ軸受の断面図である。 前記図12に示す円すいころ軸受に用いる保持器の金型装置を示し、保持器成形状態の断面図である。 前記図12に示す円すいころ軸受に用いる保持器の金型装置を示し、保持器を取り出す状態の断面図である。
以下本発明の実施の形態を図1~図8に基づいて説明する。
 図1に本発明にかかる保持器を用いた円すいころ軸受を示し、この円すいころ軸受は、内輪21と、外輪22と、内輪21と外輪22との間に転動自在に配された複数の円すいころ23と、円すいころ23を円周所定間隔に保持する樹脂製の保持器24とを備える。
 内輪21はその外径面に円すい状の軌道面25を有し、軌道面25の大径側に外径側へ突出する鍔部26が形成されている。すなわち、軌道面25は鍔部26から小径端まで形成され、従来の円すいころ軸受の内輪のように小径側に鍔部を有さない。軌道面25と鍔部26との間のコーナ部にはぬすみ部27を形成している。この場合の鍔部26は、円すいころ23を通じてかかるアキシャル荷重を受けて、円すいころ23を回転案内する大鍔である。また、従来において設けられている小鍔は、軸受回転中には特別な役割を果たすものでなく、このようなものを本発明では省略していることになる。
 また、鍔部26の内面(つまり小径側の端面)26aは、軸受軸心Pと直交する平面に対して所定角度だけ傾斜している。すなわち、図1に示すように、内輪21の軌道面25に嵌合させた場合、ころ23の周壁23aが軌道面25に接触(当接)するとともに、円すいころ23の大端面23bが鍔部26の内面26aに接触(当接)するように、軌道面25と鍔部26の内面26aとが成す角度を、ころ23の周壁23aが成す角度に合わせている。
 外輪22はその内径面に円すい状の軌道面30を有し、この軌道面30と内輪21の軌道面25とを、保持器24で保持された複数の円すいころ23が転動することになる。
 このように、内輪21は、小径側に鍔部を有さないので、この円すいころ軸受では、図1に示すように、円すいころ23の小端面23cを、内輪21の小径側端面21bに達するまで延ばすことができる。
 また、保持器24は、図1と図2に示すように、大径リング部24aと小径リング部24bと、円周等配位置で中心O方向に延びてリング部24a、24bを連結する柱部24cとを備える。そして、周方向に沿って隣合う柱部24c、24cで仕切られたポケット24dに円すいころ23が回転自在に収容される。
 大径側の環状部(大径リング部)24aは、大径の短円筒部35と、周方向に沿って60度ピッチで配設される引っ掛け部36にて構成される。図2に示すように、軸方向から見て、引っ掛け部36は対応する一つのポケット24d内に収まる大きさとされる。
 そして、内輪21の鍔部26の外周面26cの大径側に切欠部38を形成し、この切欠部38に前記引っ掛け部36を遊嵌状に係合させる。すなわち、引っ掛け部36の内径端36aと、切欠部38の切欠面(軸方向切欠面)38aとの間、引っ掛け部36の内端面36cの内径端36a側と、切欠部38の切欠面(径方向切欠面)38bとの間には、係合状態でそれぞれ隙間が形成される。
 また、図3に示すように、引っ掛け部36の外端面内径部を、外径側から内径側に向かって小径側へ傾斜するガイド用傾斜面40としている。この場合、このガイド用傾斜面40の傾斜角度Eを例えば10°~30°とする。また、ガイド用傾斜面40の径方向長さFを、引っ掛け部36の径方向長さGの20%~40%とする。なお、引っ掛け部36の外端面36bは軸受軸心Pと直交する平面上に配置され、引っ掛け部36の内端面36cは軸受軸心Pと直交する平面に対して所定角度だけ傾斜している。すなわち、引っ掛け部36の内端面36cと、鍔部26の内面26aとが平行に配置される。
 また、ポケットの小径側のリング部24b外径(ポケット24dの小径側の端径)をBとし、引っ掛け部36の内径をCとしたときに、B>Cとする。引っ掛け部36の内径とは、引っ掛け部36の内径端36aから軸受軸心Pまでの寸法の2倍の寸法である。
 保持器24は樹脂製保持器であり、この樹脂としてはエンジニアリングプラスチックが好ましい。ここで、エンジニアリングプラスチックとは、合成樹脂のなかで主に耐熱性が優れ、強度が必要とされる分野に使うことができるものであって、エンプラと略される。また、エンジニアリングプラスチックは、汎用エンジニアリングプラスチックとスーパーエンジニアリングプラスチックとがあり、この保持器24に用いるエンジニアリングプラスチックには両者を含む。以下に代表的なものを掲げる。なお、これらはエンジニアリングプラスチックの例示であって、エンジニアリングプラスチックが以下のものに限定されるものではない。
 汎用エンジニアリングプラスチックには、ポリカーボネート(PC)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF-PET)、超高分子量ポリエチレン(UHMW-PE)等がある。また、スーパーエンジニアリングプラスチックには、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、ポリベンズイミダゾール(PBI)、ポリメチルベンテン(TPX)、ポリ1,4-シクロヘキサンジメチレンテレフタレート(PCT)、ポリアミド46(PA46)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド11,12(PA11,12)、フッ素樹脂、ポリフタルアミド(PPA)等がある。
 特に、PPS(ポリフェニレンサルファイド樹脂)が好ましい。PPSとは、フェニル基(ベンゼン環)とイオウ(S)が交互に繰り返される分子構造を持った高性能エンジニアリングプラスチックである。結晶性で,連続使用温度は200℃~220℃、高荷重(1.82MPa)での荷重たわみ温度が260℃以上と耐熱性に優れ、しかも引っ張り強さや曲げ強さが大きい。成形時の収縮率は0.3~0.5%と小さいので寸法安定性が良く、また、難燃性や耐薬品性の点でも優れている。PPSは、架橋型、直鎖型、半架橋型の3種に大別できる。架橋型は低分子量ポリマーを架橋して高分子量化したもので、脆く、ガラス繊維で強化したものが中心である。直鎖型は重合段階で架橋工程を省略して高分子量化したもので靭性が高い。半架橋型は,架橋型と直鎖型の特性を併せ持つ特徴を有している。
 保持器24において、図5に示すように、また、保持器24は、柱部24cの柱面47の窓押し角(窓角)θ(図2参照)は、例えば、55°以上80°以下とする。
 ころ係数γが0.94を越えるように設定している。ここで、ころ係数γは、次式で定義される。また、ポケット(周方向に沿って隣合う柱部間)の窓角θとは、柱部24cの、円すいころ23の転動面と接する面がなす角度をいう。
 ころ係数γ=(Z・DA)/(π・PCD)
 ここで、Z:ころ本数、DA:ころ平均径、PCD:ころピッチ円径
 次に、この円すいころ軸受の組立方法を説明する。まず、図4に示すように、保持器24の各ポケット24dにころ23を収容する。その後、保持器24の内周に内輪21を押し込み、さらに外輪22を軸方向に押し込みつつ各ころ23の外周に嵌合する。保持器24の引っ掛け部36は、弾性変形させることによって、切欠部38に係合させることができる。この際、引っ掛け部36と切欠部38との間には軸方向および半径方向に僅かな隙間があり、これより保持器24は軸方向および半径方向に僅かに移動可能である。
 この円すいころ軸受を機械に組込むまでの間は、ころ23はその自重によって小端側に脱落しようとし、これに伴って保持器24にも同方向の押圧力が作用する。これに伴い、引っ掛け部36が内輪21に設けられた切欠部38と大端側から係合するため、保持器24のそれ以上の小端側への変位が規制される。この場合、ころ23は、その小端側への変位がポケット24dの内径辺によって規制されているため、ころ23の内輪21からの脱落を防止することが可能となる。
 ところで、保持器24の内周に内輪21を押し込む場合、鍔部26の内面26aに引っ掛け部36のガイド用傾斜面40が摺接することになる。このため、内面26aの外径部に切欠面41(図4参照)が設けるようにするのが好ましい。このように、切欠面41にガイド用傾斜面40が摺接することになって、引っ掛け部36が鍔部26に引っ掛かることなく保持器24と内輪21とを組み付けることができる。なお、引っ掛け部36にガイド用傾斜面40を設けているので、切欠面41を有しない場合であっても、引っ掛け部36が鍔部26に引っ掛かることなく保持器24と内輪21とを組み付けることができる。
 本発明の円すいころ軸受用保持器によれば、ポケット24dの小径側の端径を引っ掛け部36の内径よりも大きくしているので、引っ掛け部36の内径と、内輪21の大径側の引っ掛け溝部38との引っ掛け構造が安定する。このため、この保持器24を用いた円すいころ軸受の組立性の向上を図ることができる。
 ガイド用傾斜面40を設ければ、円すいころ軸受の組立時における引っ掛け部36の引っ掛かりを防止でき、安定した組立てが可能となるとともに、引っ掛かりによる引っ掛け部36の損傷を防止できる。ガイド用傾斜面40の傾斜角度が10°未満では、傾斜角度が小さすぎてガイド機能を発揮しにくい。また、傾斜角度が30°を越えると、引っ掛け部の内径部の強度が低下して、損傷し易くなる。引っ掛け部の径方向長さの20%未満では、短すぎてガイド機能を発揮しにくい。また、引っ掛け部の径方向長さの40%を越えると、引っ掛け部全体の強度が低下するおそれがある。
 ころ係数γが0.94を越えるようにすれば、軸受寸法を変更することなく、負荷容量を総ころ軸受(保持器を用いていない軸受)のレベルまで上げることが可能となる。これによって、接触面圧を低減でき、さらに、使用サイクルの中に停止状態があるようなアプリケーションに適用した場合は面圧が緩和されることで、耐フレッティング性が向上する。
 また、保持器24の窓角θを55°以上としたことによって、円すいころ23との良好な接触状態を確保することができ、保持器24の窓角θを80°以下としたことによって、半径方向への押し付け力が大きくならず、円滑な回転が得られる。
 次に、前記保持器24の製造方法を説明する。この場合、図6Aと図6Bと図6Cとに示す金型装置を使用することになる。金型装置は、外径側に配設される第1型51と、内径側に配設される第2型52と、引っ掛け部36を有するポケット24dを形成するためのスライドコア53とを備える。
 すなわち、図6Aは柱部24cを形成する部位における断面図であり、図6Bはポケット24dを形成する部位における断面図であり、図6Cは引っ掛け部36を形成する部位における断面図である。すなわち、第1型51と第2型52とスライドコア53とが組み合わされることによって、リング部24a、24bを形成するためのキャビテイ55、56と、柱部24cを形成するためのキャビテイ57と、引っ掛け部36を形成するためのキャビテイ58とを形成することになる。
 したがって、図6Aと図6Bと図6Cとに示すように、第1型51と第2型52とスライドコア53とが組み合わされた状態で、形成されるキャビテイ55、56、57、58に樹脂材料が充填された加圧される。これによって、図3等に示す保持器24を成形することができる。なお、キャビテイ56、58については、図例では開放状となっていが、実施の金型装置は、このキャビテイ56、58を塞ぐ金型を備える。
 このように、形成された後は、製品(保持器24)をこの金型装置から取り外すことになる。この取り外しは、従来の金型装置と同様、第1型51を第2型52に対して、軸心方向に沿って小径側にスライドさせる。この場合、前記した図示省略の金型は、第1型51と第2型52とスライドコア53から分離された状態となっている。その後、図7に示すように、製品(保持器24)を押し上げ冶具60を用いて、保持器軸心方向に沿って矢印A方向に沿って押し上げる。この際、スライドコア53も押し上げることになるが、このスライドコア53の押し上げ方向は、保持器軸心に向かって保持器軸心に対して傾斜するように矢印A1方向に沿ってスライドする。
 このため、スライドコア53は、押し上げるにしたがって、製品(保持器24)から径方向内方へ逃げることになる。従って、引っ掛け部36が第2型52及びスライドコア53に引っ掛かることなく、製品(保持器24)をこの金型装置から取り出すことができる。
 この保持器24は、射出成形機を使用した成形である。射出成形機を使用した製品の一般的な成形方法を説明する。まず、プラスチック材料(粒状)は、ローダでホッパーに供給される。ホッパーから加熱筒入口に流れ込んだ原料は、スクリュの回転で加熱筒内に送り込まれる。加熱筒は外周の電気ヒータで温度制御されており、材料はヒータの熱と、回転、せん断の摩擦熱で溶融する。溶融材料を加熱筒内に送り出しながら、スクリュは後退する。加熱筒内のスクリュの先端に一定量の溶融材料(湯)が貯えられると、スクリュは回転を停止する。成形金型を閉じて締め付けた後、スクリュを前進させて、湯を加圧し、金型装置(金型)内に注入する。
 金型内で、湯は湯口(スプルー)、湯道(ランナー)、注入口(ゲート)の順に流れて、成形品空間(キャビテイ)に流入する。この時、キャビテイ内の空気は、ガスベントを通じて、外部に排出され、空気と湯が置換される。金型は、湯の流れを促進し、また冷却、固化するように、相対的に低温に保持されている。固化後、金型は雌型(キャビ側)と雄型(コア側)に分かれて開かれ、一般にコア上に残っている成形品を取り出すことになる。
 ところで、保持器24を成形する場合、注入口(ゲート)は、小径リング部24bを形成する空間(キャビテイ)に開口し、かつその数を複数としている。複数のゲートを形成する成形金型にて成形されるものでは、成形金型が多点ゲートとなる。このため、樹脂が流れ難い箇所においても樹脂の立ち止まり現象(ヘジテーション)が生じにくく、流動特性の改善を図ることができる。ゲート数としては、3個から5個程度が好ましい。3個未満では、射出圧が高くなり、5個を越えれば、金型構造が複雑化してコスト高となる。
 また、小径リング部24bにゲート跡が形成されているものでは、小径側から樹脂が流し込まれる。このため、小径リング部形成用キャビテイ56への溶融樹脂の流れ込みが安定して、精度よく小径リング部24bを成形することができる。
 小径リング部24bの肉厚寸法が小であるため、成形時においてこの部分の樹脂は流れにくく、大径側から流れてきた樹脂と、この小径リング部24bで結合(ウエルド部)することが予想される。特に、樹脂強化材を充填した樹脂を使用した場合、樹脂強化材の充填量が多くなるにしたがって流動性が悪くなる。このウェルド部は強度的に劣るためこの部分を基点とする早期損傷の発生が考えられる。
 このため、樹脂が小径リング部形成用のキャビテイ内においても流れにくくならない樹脂材料を使用すれば、小径リング部におけるウェルド部の発生を抑えることができ、ウェルド部が小径側に生じない保持器を提供することができる。これによって、保持器のウェルド部に起因する早期損傷を防止できる。
 次に図8は、それぞれ外径面に軌道面25A、25Bを有する一対の内輪21A、21Bと、内周に円すい状の軌道面30A、30Bを有する外輪22と、内輪21A、21B及び外輪22の軌道面25A、25B、30A、30B間に介在させた複数の円すいころ23A、23Bと、複数の円すいころ23A、23Bを円周方向で等間隔に保持する保持器24A、24Bとを備える。
 保持器24A、24Bは、一対の環状部(リング部)24Aa、24Ab、24Ba、24Bbと、円周等配位置でころ中心O方向に延びてリング部24Aa、24Ab、24Ba、24Bbを連結する柱部24Ac、24Bcとを備える。そして、周方向に沿って隣合う柱部24Ac、24Bcで仕切られたポケット24Ad、24Bdに円すいころ23A、23Bが回転自在に収容される。
 内輪21A、21Bは、図1に示す内輪21と同様、外周の大端側には、環状の鍔部(大鍔)26が形成されている。また、環状の鍔部26には、切欠部38を形成し、この切欠部38に前記引っ掛け部36を遊嵌状に係合させる。一対の内輪21A、21Bは小径側端面21Ab、21Bbが突合せ状となっている。
 この場合も、ポケット24Ad、24Bdの小径側の端径Bを引っ掛け部36の内径Cよりも大きくし、また、引っ掛け部36の外端面内径部を、外径側から内径側に向かって小径側へ傾斜するガイド用傾斜面40としている。また、ガイド用傾斜面40の傾斜角度を10°~30°とするとともに、ガイド用傾斜面の径方向長さを、引っ掛け部の径方向長さの20%としている。さらには、窓押し角(窓角)θを55°以上80°以下としたり、ころ係数γが0.94を越えるように設定したりしている。
 このため、この図8に示す円すいころ軸受、及び、保持器24A、24Bは前記図1に示すものと同様の作用効果を奏することになる。また、保持器24A、24Bも、スライドコアを有する図6A~図6C及び図7に示す金型装置を用いて製造することになる。このため、B>Cの関係となる引っ掛け部36を有する保持器を、安定して製造することができる。
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、保持器に設けられる引っ掛け部36の数としては、任意であるが、組み付ける際にころ23が落下しない程度の数とする必要がある。図8に示す保持器24A、24Bでは、引っ掛け部36の内端面36cが、前記図3等に示す引っ掛け部36と相違して、軸心Pと直交する平面上に形成されているが、図3等に示す引っ掛け部36と同様、傾斜するものであってもよい。また、逆に、図3等に示す引っ掛け部36であっても、図8に示す保持器24A、24Bの引っ掛け部36と同様傾斜しないものであってもよい。引っ掛け部36の幅寸法W(図2参照)としても、その配置されるポケット24dの幅寸法W1(図2参照)よりも小さい範囲で、強度的に劣ることなく、ころ23を落下させない範囲で種々設定できる。また、引っ掛け部36の肉厚も強度的に劣ることなく、ころ23を落下させない範囲で種々設定できる。
 引っ掛け部のガイド用傾斜面の組立て性について調べた。そして、その調査結果を次の表1~表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 内輪の鍔部には切欠(面取り)を形成したものを用い、この面取り角度(α)(図4参照)を75°とした。また、保持器として、図2に示す形状のものを用い、樹脂材料にPPSを用い、その幅寸法Wを4.0mmとし、その肉厚T(平均肉厚)を0.8mm(図3参照)とした。
 調査としては、傾斜角度Eが10°以上30°以下のもの、傾斜角度Eが30°を越えて60°以下(表では30°~60°と表示した)のもの、傾斜角度Eが60°を越えて90°以下(表では60°~90°と表示した)のものについて、損傷状況を調べた。この場合、傾斜角度Eが10°以上30°以下のものにおいて、ガイド用傾斜面の径方向長さを引っ掛け部の径方向長さの20%以上40%以下に設定したもの、40%を越えて60%以下(表では40°~60°と表示した)に設定したもの、60%を越えて90%以下(表では60°~90°と表示した)に設定したものとした。
 この結果からわかるように、内輪21の鍔部26の面取りとの関係もあるが、ガイド用傾斜面40の傾斜角度を10°~30°とするとともに、ガイド用傾斜面40の径方向長さを、引っ掛け部36の径方向長さの20%~40%としたものが強度的に安定してしかも引っ掛かりなく組み立てることができる。ガイド用傾斜面40の傾斜角度を10°~30°であっても、ガイド用傾斜面40の径方向寸法を大きくすると、肉厚が薄くなり強度低下による損傷が生じる。
自動車の動力伝達系のシャフトを支持する軸受に最適となる円すいころ軸受、このような軸受に利用できる保持器を提供できる。また、保持器製造方法では、安定した組立てが可能であって、組立性の向上を図ることができる。
24   保持器
24a 大径リング部
24b 小径リング部
24c 柱部
24d ポケット
26   鍔部
36   引っ掛け部
40   ガイド用傾斜面
53   スライドコア

Claims (13)

  1.  小径リング部と、大径リング部と、これらの間に配設される複数の柱部とを備え、柱部間のポケットに円すいころが保持される樹脂製の円すいころ用保持器であって、
     内輪の大径側と係合する引っ掛け部を保持器大径側に有し、ポケットの小径側のリング部外径を引っ掛け部の内径よりも大きくしたことを特徴とする円すいころ用保持器。
  2.  前記引っ掛け部の外端面内径部を、外径側から内径側に向かって小径側へ傾斜するガイド用傾斜面とし、かつ、このガイド用傾斜面の傾斜角度を10°~30°とするとともに、ガイド用傾斜面の径方向長さを、引っ掛け部の径方向長さの20%~40%としたことを特徴とする請求項1に記載の円すいころ用保持器。
  3.  複数のゲートを形成する成形金型にて成形されてなることを特徴とする請求項1又は請求項2のいずれかに記載の円すいころ軸受用保持器。
  4.  ウェルド部が前記小径リング部に有さないことを特徴とする請求項1~請求項3のいずれかに記載の円すいころ軸受用保持器。
  5.  樹脂材料がエンジニアプラスチックのPPSであることを特徴とする請求項1~請求項4のいずれかに記載の円すいころ軸受用保持器。
  6.  小径リング部と、大径リング部と、これらの間に配設される複数の柱部とを備え、柱部間のポケットに円すいころが保持される樹脂製の円すいころ用保持器の製造方法であって、
     ポケットの成形を、引き抜き時に保持器軸心に向かって保持器軸心に対して傾斜するようにスライドするスライドコアを用いることを特徴とする円すいころ用保持器の製造方法。
  7.  内輪の大径側に係合する引っ掛け部を有するポケットの成形に、前記スライドコアを用いることを特徴とする請求項6に記載の円すいころ用保持器の製造方法。
  8.  前記請求項1~請求項5のいずれか1項に記載の円すいころ用保持器を用いたことを特徴とする円すいころ軸受。
  9.  前記請求項6又は請求項7に記載の円すいころ用保持器の製造方法にて製造された保持器を用いたことを特徴とする円すいころ軸受。
  10.  内輪の大径側に引っ掛け部が係合する鍔部があり、前記鍔部の最大高さ寸法を、円すいころの大端面の直径の30%以上としたことを特徴とする請求項8又は請求項9に記載の円すいころ軸受。
  11.  ころ係数γが0.94を超えることを特徴とする請求項8~請求項10のいずれか1項に記載の円すいころ軸受。
  12.  保持器のポケットの窓角を55°以上80°以下としたことを特徴とする請求項8~請求項11のいずれか1項に記載の円すいころ軸受。
  13.  自走車両の動力伝達軸を支持することを特徴とする請求項8~請求項12のいずれか1項に記載の円すいころ軸受。
PCT/JP2011/056895 2010-04-15 2011-03-23 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受 WO2011129178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/583,978 US8801295B2 (en) 2010-04-15 2011-03-23 Retainer for tapered roller bearing, method for manufacturing retainer, and tapered roller bearing
CN201180018692.7A CN102834631B (zh) 2010-04-15 2011-03-23 圆锥滚子轴承用保持器及圆锥滚子轴承
EP11768699.8A EP2559906A4 (en) 2010-04-15 2011-03-23 HOLDER FOR A TORQUE BALL BEARING, METHOD FOR THE PRODUCTION OF THE HOLDER AND TORQUE BALL BEARING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010093977A JP2011226495A (ja) 2010-04-15 2010-04-15 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受
JP2010-093977 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129178A1 true WO2011129178A1 (ja) 2011-10-20

Family

ID=44798557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056895 WO2011129178A1 (ja) 2010-04-15 2011-03-23 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受

Country Status (5)

Country Link
US (1) US8801295B2 (ja)
EP (1) EP2559906A4 (ja)
JP (1) JP2011226495A (ja)
CN (1) CN102834631B (ja)
WO (1) WO2011129178A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323008A1 (en) * 2012-12-25 2015-11-12 Nsk Ltd. Tapered roller bearing
US9995341B2 (en) 2013-04-04 2018-06-12 Nsk Ltd. Resin cage for tapered roller bearing and tapered roller bearing including the resin cage
US10302131B2 (en) 2012-12-25 2019-05-28 Nsk Ltd. Tapered roller bearing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581984B2 (ja) * 2010-11-12 2014-09-03 日本精工株式会社 円すいころ軸受
KR101500817B1 (ko) * 2009-11-17 2015-03-09 닛뽄 세이꼬 가부시기가이샤 원추형 롤러 베어링 및 원추형 롤러 베어링용 보지기의 제조 방법
JP2014159872A (ja) 2013-01-25 2014-09-04 Nsk Ltd 円すいころ軸受
DE102014204063A1 (de) * 2013-03-06 2014-09-11 Aktiebolaget Skf Wälzlager
KR101567574B1 (ko) 2014-06-10 2015-11-10 주식회사 이성 테이퍼 롤러 베어링의 리테이너 성형을 위한 성형장치용 피어싱 다이 및 그 테이퍼 롤러 베어링의 리테이너 성형을 위한 성형장치용 피어싱 다이의 제작방법
US10641332B2 (en) 2016-12-06 2020-05-05 General Electric Company Roller element bearing with preloaded hydrodynamic cage guides
JP6875971B2 (ja) * 2017-09-28 2021-05-26 Ntn株式会社 円すいころ軸受用保持器および円すいころ軸受
DE102018100644A1 (de) * 2018-01-12 2019-07-18 Schaeffler Technologies AG & Co. KG Kegelrollenlager
KR102114495B1 (ko) * 2018-04-02 2020-05-21 주식회사 베어링아트 테이퍼 롤러 베어링
DE102019200134A1 (de) * 2019-01-08 2020-07-09 Aktiebolaget Skf Wälzlagereinheit, Käfig und Montageverfahren
CN113417935A (zh) * 2021-06-17 2021-09-21 人本股份有限公司 圆锥滚子轴承

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280343U (ja) * 1975-12-12 1977-06-15
JPS58165324A (ja) 1982-03-25 1983-09-30 Nec Corp マスクアライナ−の積算露光量の測定法
JP2002054638A (ja) * 2000-08-07 2002-02-20 Ntn Corp 円すいころ軸受
JP2005351472A (ja) 2004-05-13 2005-12-22 Ntn Corp 円すいころ軸受
JP2008121744A (ja) 2006-11-09 2008-05-29 Ntn Corp 円すいころ軸受
JP2009036327A (ja) * 2007-08-02 2009-02-19 Ntn Corp 円すいころ軸受
JP2009204063A (ja) * 2008-02-27 2009-09-10 Ntn Corp 円すいころ軸受用保持器の製造方法及び円すいころ軸受

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280343A (en) 1975-12-26 1977-07-06 Fujikura Rubber Works Ltd Rubber compositions for preventing attachment of sea living things
JPS58165324U (ja) * 1982-04-30 1983-11-04 光洋精工株式会社 円すいころ軸受
US4523862A (en) * 1983-06-07 1985-06-18 Koyo Seiko Company Limited Tapered roller bearing
JP2002005176A (ja) * 2000-06-23 2002-01-09 Nakanishi Metal Works Co Ltd ころ軸受用合成樹脂保持器およびその製造方法
JP2005201457A (ja) * 2005-03-28 2005-07-28 Nsk Ltd 円筒ころ軸受
JP2008038927A (ja) * 2006-08-01 2008-02-21 Ntn Corp 円すいころ軸受
DE112007002413T5 (de) * 2006-11-09 2009-09-10 Ntn Corporation Sich verjüngendes Rollenlager
JP2008304003A (ja) * 2007-06-08 2008-12-18 Ntn Corp 円すいころ軸受
EP2221493B1 (en) * 2007-11-12 2013-04-03 NTN Corporation Tapered roller bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280343U (ja) * 1975-12-12 1977-06-15
JPS58165324A (ja) 1982-03-25 1983-09-30 Nec Corp マスクアライナ−の積算露光量の測定法
JP2002054638A (ja) * 2000-08-07 2002-02-20 Ntn Corp 円すいころ軸受
JP2005351472A (ja) 2004-05-13 2005-12-22 Ntn Corp 円すいころ軸受
JP2008121744A (ja) 2006-11-09 2008-05-29 Ntn Corp 円すいころ軸受
JP2009036327A (ja) * 2007-08-02 2009-02-19 Ntn Corp 円すいころ軸受
JP2009204063A (ja) * 2008-02-27 2009-09-10 Ntn Corp 円すいころ軸受用保持器の製造方法及び円すいころ軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559906A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323008A1 (en) * 2012-12-25 2015-11-12 Nsk Ltd. Tapered roller bearing
US10302131B2 (en) 2012-12-25 2019-05-28 Nsk Ltd. Tapered roller bearing
US9995341B2 (en) 2013-04-04 2018-06-12 Nsk Ltd. Resin cage for tapered roller bearing and tapered roller bearing including the resin cage

Also Published As

Publication number Publication date
US8801295B2 (en) 2014-08-12
JP2011226495A (ja) 2011-11-10
US20130004113A1 (en) 2013-01-03
EP2559906A4 (en) 2014-04-16
CN102834631B (zh) 2015-07-22
CN102834631A (zh) 2012-12-19
EP2559906A1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
WO2011129178A1 (ja) 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受
US8596877B2 (en) Tapered roller bearing
US8382380B2 (en) Tapered roller bearing
EP2182231B1 (en) Tapered roller bearing
JP6055357B2 (ja) 円錐ころ軸受用樹脂製保持器
JP5037266B2 (ja) 円すいころ軸受用保持器
JP4754431B2 (ja) 円すいころ軸受
US20150043862A1 (en) Cage of roller bearing and roller bearing structure
JP2007057038A (ja) 円すいころ軸受
JP2005201457A (ja) 円筒ころ軸受
US9145917B2 (en) Cage for radial roller bearing
JP6565570B2 (ja) 外輪案内樹脂保持器及び射出成形用金型、並びに外輪案内樹脂保持器の製造方法
JP6324692B2 (ja) 円すいころ軸受
KR102445802B1 (ko) 볼베어링용 유지기
JP4964696B2 (ja) 複列円すいころ軸受
JP5289796B2 (ja) 円すいころ軸受用保持器の製造方法及び円すいころ軸受
JP5420697B2 (ja) 円すいころ軸受用保持器
JP2016196944A (ja) 円すいころ軸受
JP4527635B2 (ja) 円すいころ軸受
JP5553958B2 (ja) 円すいころ軸受
JP2010180991A (ja) 円筒ころ軸受
JP2007120575A (ja) 円すいころ軸受
JP5696468B2 (ja) トロイダル型無段変速機の製造方法
JP5031220B2 (ja) 円すいころ軸受
JP2007085526A (ja) 円すいころ軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018692.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011768699

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9579/CHENP/2012

Country of ref document: IN