WO2011129129A1 - Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same - Google Patents

Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same Download PDF

Info

Publication number
WO2011129129A1
WO2011129129A1 PCT/JP2011/051382 JP2011051382W WO2011129129A1 WO 2011129129 A1 WO2011129129 A1 WO 2011129129A1 JP 2011051382 W JP2011051382 W JP 2011051382W WO 2011129129 A1 WO2011129129 A1 WO 2011129129A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
parts
resin composition
flame retardant
Prior art date
Application number
PCT/JP2011/051382
Other languages
French (fr)
Japanese (ja)
Inventor
裕平 真山
森内 清晃
早味 宏
仁 遠藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020127006800A priority Critical patent/KR20130057961A/en
Priority to JP2011536221A priority patent/JP5549675B2/en
Priority to SG2012015020A priority patent/SG183785A1/en
Priority to CN201180003851.6A priority patent/CN102858873B/en
Publication of WO2011129129A1 publication Critical patent/WO2011129129A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a non-halogen flame retardant resin composition suitably used as a coating layer for electric wires and the like, and an electric wire / cable using the resin composition.
  • a wire harness is an assembly of terminals such as connectors that can be inserted into and removed from a terminal by bundling multiple wires and cables.
  • PVC electric wires using polyvinyl chloride (PVC) as an insulating material are used for electric wires for wire harnesses. Since PVC wires are excellent in flexibility, they are easy to handle in the case of a wire harness and have sufficient strength, so there is no problem that the insulator is broken or worn during wiring of the wire harness. Furthermore, it is excellent in the workability of attaching the pressure contact connector attached to the terminal.
  • PVC elements contain halogen elements, there is a problem that hydrogen chloride-based toxic gas is generated when incineration of the wire harness after use, or dioxins are generated depending on the incineration conditions. While the reduction of environmental load is required, PVC is not a preferable material as an insulating material.
  • halogen-free electric wires using a coating material that does not contain polyvinyl chloride resin or a halogen-based flame retardant have been developed in order to meet the increasing demand for reducing the environmental burden.
  • electric wires such as insulated wires and insulated cables used for in-machine wiring of electronic devices are generally required to have various characteristics that conform to UL (Underwriters Laboratories Inc.) standards.
  • the UL standard stipulates in detail various properties such as flame retardancy, heat deformability, low temperature properties, tensile properties after heat aging of coating materials, and the like to be satisfied by products.
  • Patent Document 1 discloses flame retardancy in which a metal hydrate is heated and kneaded with a thermoplastic resin component in which an elastomer such as ethylene propylene rubber or styrene butadiene rubber is blended with polypropylene resin. A resin composition is disclosed. Filler receptivity can be increased by blending elastomers, and dynamic vulcanization of these elastomers balances mechanical properties such as flexibility and elongation with extrudability and flame retardancy. Is being considered. However, such materials have poor wear resistance and edge resistance (cut-through characteristics) compared with PVC, and there is a problem that flexibility is lost and the balance of characteristics is lost when trying to improve these characteristics. It was.
  • Patent Document 2 JP 2008-169234 A discloses a non-halogen flame retardant containing a resin component containing a polyamide resin or a polyester resin, a polyphenylene ether resin, and a styrene elastomer resin, and a nitrogen flame retardant.
  • a flammable resin composition is disclosed.
  • a high-modulus and hard polyphenylene ether resin and a styrene-based elastomer with large elongation and softness are mixed, and it is a crystalline resin that maintains an appropriate elastic modulus even at temperatures above the glass transition temperature.
  • a polyamide resin or a polyester resin capable of holding the same an insulated wire having flexibility, abrasion resistance, and edge resistance equivalent to PVC can be obtained.
  • the insulated wire needs to satisfy the flame retardancy, heat resistance, and mechanical properties defined in the UL standard.
  • the insulating material is hard, that is, a large amount of a material having a high elastic modulus is blended.
  • the tensile elongation particularly the tensile elongation after heat aging, is reduced and the UL standard cannot be satisfied.
  • the strain relief may be destroyed in terms of connector fitting.
  • the present invention is excellent in mechanical strength such as flexibility and wear resistance and flame retardancy, in particular, has excellent cut-through characteristics and has a non-halogen flame retardant resin composition having tensile elongation characteristics satisfying UL standards, and this It aims at providing the electric wire and cable which used the flame-retardant resin composition as a coating layer.
  • the present invention is a non-halogen flame retardant resin composition containing 5 to 40 parts by mass of a phosphorus-based flame retardant with respect to 100 parts by mass of the resin component, and the polyolefin resin 30 to 85 in 100 parts by mass of the resin component.
  • the polyolefin-based resin contains an ethylene-propylene random copolymer polymerized using a metallocene catalyst in a polyolefin-based manner, containing 10 parts by weight, 10-50 parts by weight of a polyphenylene ether resin, and 5-30 parts by weight of a styrene elastomer.
  • a non-halogen flame retardant resin composition containing 5 to 60% by mass with respect to the whole resin and 30 to 95% by mass of the block copolymerized polypropylene resin with respect to the whole polyolefin resin (claim 1).
  • Polyphenylene ether resin is a hard material with a high elastic modulus at room temperature.
  • Polyolefin resins are excellent in flexibility and can improve mechanical properties.
  • Styrenic elastomers not only have excellent flexibility and extrudability, but also act as compatibilizers. By adding a compatibilizer, the polyolefin resin and the polyphenylene ether resin can be mixed well, and the mechanical properties can be improved.
  • metallocene random PP ethylene-propylene random copolymer polymerized using a metallocene catalyst
  • block copolymer polypropylene has a high elastic modulus and is effective in increasing cut-through strength.
  • both the cut-through strength and the tensile elongation after heat aging can be achieved.
  • homopolypropylene and polyethylene may be used.
  • the invention according to claim 2 is the non-halogen flame retardant resin composition according to claim 1, wherein the polyolefin resin further contains low-density polyethylene in an amount of 5 to 20% by mass based on the entire polyolefin resin. is there.
  • low-density polyethylene By further containing low-density polyethylene, the tensile elongation and tensile elongation characteristics after heat aging can be further improved.
  • the invention according to claim 3 is the non-halogen flame-retardant resin composition according to claim 1 or 2, wherein the styrene elastomer is a block copolymer elastomer of styrene and a rubber component.
  • the styrene elastomer is a block copolymer elastomer of styrene and a rubber component, a resin composition having improved mechanical properties and improved compatibility between the polyolefin resin and the polyphenylene ether resin can be obtained.
  • the invention according to claim 4 is the non-halogen flame retardant resin composition according to any one of claims 1 to 3, wherein the polyphenylene ether is a polyphenylene ether resin obtained by melt blending polystyrene. is there.
  • the polyphenylene ether is a polyphenylene ether resin obtained by melt blending polystyrene. is there.
  • the invention according to claim 5 is an electric wire / cable using the non-halogen flame-retardant resin composition as a coating layer. According to the present invention, a halogen-free insulated wire excellent in flame retardancy, flexibility, and cut-through characteristics can be obtained.
  • Invention of Claim 6 is said electric wire and cable characterized by the thickness of the said coating layer being 0.3 mm or less.
  • the thickness of the insulating coating layer is as thin as 0.3 mm or less, the characteristics such as the cut-through characteristics are significantly different from those of the conventional electric wires, and an excellent effect is exhibited.
  • the invention according to claim 7 is the electric wire / cable according to claim 5 or 6, wherein the coating layer is crosslinked by irradiation with ionizing radiation. Heat resistance and mechanical strength are improved because the coating layer is cross-linked.
  • a non-halogen flame retardant resin composition having excellent mechanical strength such as flame retardancy, flexibility, abrasion resistance, etc., particularly excellent cut-through characteristics, and having tensile elongation characteristics satisfying UL standards, and An electric wire / cable using this can be provided.
  • Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials.
  • various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether.
  • the polyphenylene ether resin used in the present invention any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used.
  • transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.
  • polyphenylene ether resin obtained by melt blending polystyrene it is preferable to use a polyphenylene ether resin obtained by melt blending polystyrene as the polyphenylene ether resin, since the workability during melt mixing with the styrene elastomer is improved. Since the polyphenylene ether resin obtained by melt blending polystyrene is excellent in compatibility with the styrene elastomer, the resin pressure during the extrusion process is reduced, and the extrusion processability is improved.
  • the deflection temperature under load changes depending on the blend ratio of polystyrene.
  • a resin with a deflection temperature under load of 130 ° C or higher is used, the mechanical strength of the wire coating increases and thermal deformation occurs. It is preferable because of its excellent characteristics.
  • the deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.
  • Styrene elastomers used in the present invention include styrene / ethylene butene / styrene copolymers, styrene / ethylene propylene / styrene copolymers, styrene / ethylene / ethylene propylene / styrene copolymers, styrene / butylene / styrene copolymers.
  • Examples thereof include hydrogenated polymers and partially hydrogenated polymers.
  • transduced carboxylic acid, such as maleic anhydride can also be blended suitably and used.
  • block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance.
  • block copolymers triblock copolymers such as hydrogenated styrene / butylene / styrene block copolymers and styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, and styrene / ethylene propylene copolymers are used.
  • a diblock copolymer such as a polymer can be used, and when the triblock component in the styrene elastomer is contained in an amount of 50% by weight or more, it is preferable because the strength and hardness of the electric wire coating is improved.
  • those having a styrene content of 20% by weight or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy.
  • the styrene content is less than 20% by weight, the hardness and extrusion processability are lowered.
  • the styrene content exceeds 50% by weight, the tensile elongation at break decreases, which is not preferable.
  • the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. ⁇ 2.16 kgf according to JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. This is because if the melt flow rate is smaller than 0.8 g / 10 min, the extrudability is lowered, and if it exceeds 15 g / 10 min, the mechanical strength is lowered.
  • Polyolefin resins include polypropylene (homopolymer, block polymer, random polymer), polypropylene thermoplastic elastomer, reactor type polypropylene thermoplastic elastomer, dynamically cross-linked polypropylene type thermoplastic elastomer, polyethylene (high density polyethylene, straight chain) Low density polyethylene, low density polyethylene, ultra low density polyethylene), ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, Ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-propylene rubber, ethylene acrylic rubber, ethylene-glycidyl methacrylate copolymer, ethylene-methacrylic acid Polymer, ethylene - can be used an ionomer resin bound intermolecularly with a metal ion such as sodium
  • metallocene random PP and block copolymerized polypropylene are essential components.
  • the metallocene random PP is 5 to 60% by mass with respect to the whole polyolefin resin
  • the block copolymerized polypropylene is 30 to 95% by mass with respect to the whole polyolefin resin.
  • the content of the metallocene random PP is less than this range, the elongation after heat aging becomes small and the UL standard cannot be satisfied. If the amount of block copolymerized polypropylene is less than this range, the cut-through strength is insufficient.
  • low density polyethylene is contained in an amount of 5 to 20% by mass based on the whole polyolefin resin, since elongation and elongation characteristics after heat aging can be improved.
  • a phosphoric ester As the phosphoric flame retardant, a phosphoric ester, a phosphinic acid metal salt, a melamine phosphate compound, an ammonium phosphate compound, a polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene, or the like can be used. These phosphorus flame retardants may be used alone or in combination.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresidyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, cresyl 2,6-xylenyl phosphate, 2- Ethylhexyl diphenyl phosphate, 1,3 phenylene bis (diphenyl phosphate), 1,3 phenylene bis (di 2,6 xylenyl phosphate), bisphenol A bis (diphenyl phosphate), resorcinol bisdiphenyl phosphate, octyl diphenyl Phosphate, diethylene ethyl ester phosphate, dihydroxypropylene butyl ester phosphate, ethylene disodium ester phosphate, t-butyl Phenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl
  • the phosphinic acid metal salt is a compound represented by the following formula (I).
  • R 1 and R 2 are each an alkyl group having 1 to 6 carbon atoms or an aryl group having 12 or less carbon atoms
  • phosphinic acid metal salt aluminum salt of organic phosphinic acid such as EXOLIT OP1230, EXOLIT OP1240, EXOLIT OP930, EXOLIT OP935 etc. manufactured by Clariant Co., Ltd., or a blend of aluminum phosphinic acid such as EXOLIT OP1312 and melamine polyphosphate You can use things.
  • melamine polyphosphate such as MELAPUR200 manufactured by Ciba Specialty Co., Ltd., melamine polyphosphate, melamine phosphate, melamine orthophosphate, melamine pyrophosphate, or the like can be used.
  • ammonium phosphate compound ammonium polyphosphate, polyphosphate amide, ammonium polyphosphate amide, polyphosphate carbamic acid and the like can be used.
  • polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene SPR-100, SA-100, SR-100, SRS-100, SPB-100L, etc. manufactured by Otsuka Chemical Co., Ltd. can be used.
  • the content of the phosphorus-based flame retardant is 5 to 40 parts by mass with respect to 100 parts by mass of the resin component. When the amount is less than 5 parts by mass, the flame retardancy is insufficient, and when it exceeds 40 parts by mass, the mechanical properties are deteriorated. A more preferred phosphorus flame retardant content is 5 to 30 parts by mass.
  • the phosphorus-based flame retardant may be used by treating the surface with melamine, melamine cyanurate, fatty acid, or silane coupling agent. Further, instead of pre-treating the surface in advance, an integral blend in which a surface treating agent is added when mixing with the thermoplastic resin may be performed.
  • a nitrogen-based flame retardant may be used in combination with a phosphorus-based flame retardant. Melamine, melamine cyanurate, etc. can be used as the nitrogen-based flame retardant.
  • a crosslinking aid can be added to the non-halogen flame retardant resin composition of the present invention.
  • a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used.
  • a crosslinking adjuvant is a liquid at normal temperature. This is because when it is a liquid, it can be easily mixed with a polyphenylene ether resin or a styrene elastomer.
  • trimethylolpropane trimethacrylate as a crosslinking aid because compatibility with the resin is improved.
  • an antioxidant in the non-halogen flame retardant resin composition of the present invention, an antioxidant, a processing stabilizer, a colorant, a heavy metal deactivator, a foaming agent, a polyfunctional monomer, and the like can be appropriately mixed as necessary.
  • These materials can be prepared by mixing using a known melt mixer such as a short screw extruder, a pressure kneader, or a Banbury mixer.
  • the insulated wire of the present invention has a coating layer made of the above-mentioned flame retardant resin composition, and the coating layer is formed on the conductor directly or via another layer.
  • a known extruder such as a melt extruder can be used.
  • the insulating layer is preferably cross-linked by irradiating with ionizing radiation.
  • the conductor copper wire, aluminum wire, etc. having excellent conductivity can be used.
  • the diameter of the conductor can be appropriately selected according to the intended use, but is preferably 2 mm or less in order to enable wiring in a narrow space. In consideration of ease of handling, the thickness is preferably 0.1 mm or more.
  • the conductor may be a single wire or may be a strand of a plurality of strands.
  • the thickness of the coating layer can be appropriately selected according to the conductor diameter, but the thickness of the coating layer is preferably 0.3 mm or less in terms of mechanical strength.
  • the wear resistance and the cut-through strength are reduced when the thickness of the coating layer is 0.3 mm or less.
  • an electric wire having a coating layer thickness of 0.3 mm or less is preferably used from the viewpoint of fitting property with the connector.
  • the coating layer is cross-linked by irradiation with ionizing radiation because the mechanical strength is improved.
  • ionizing radiation sources include accelerated electron beams, gamma rays, X-rays, ⁇ rays, ultraviolet rays, and the like. Accelerated electron beams are used from the viewpoint of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, and speed of crosslinking treatment Is most preferably used.
  • Examples 1 to 5 (Creation of non-halogen flame retardant resin composition pellets) Each component was mixed with the formulation shown in Table 1.
  • Table 1 the units of base resin, flame retardant, anti-aging and crosslinking aid are parts by mass.
  • Cut-through strength was measured using the measuring apparatus shown in FIG.
  • a load is applied to the blade 4 to measure the maximum load that the coating layer 2 can withstand without being cut.
  • the test atmosphere is 23 ° C. and humidity 50% RH.
  • a load of 70N or more is regarded as an acceptable level.
  • Insulated wires were produced in the same manner as in Examples 1 to 5 except that a resin composition having the formulation shown in Table 2 was used, and a series of evaluations were performed.
  • the units of base resin, flame retardant, anti-aging and crosslinking aid are parts by mass. The results are shown in Table 2.
  • All of the insulated wires of Examples 1 to 5 have a cut-through strength of 70 N or higher and high strength.
  • the original tensile elongation and the tensile elongation after heat aging are also acceptable levels.
  • Examples 2 to 5 that use low-density polyethylene have a higher tensile elongation after heat aging. Further, when the content of the metallocene random PP is increased, the tensile elongation and the tensile elongation after heat aging are increased.
  • the non-halogen flame retardant resin composition used for the insulated wires of Comparative Examples 1 to 7 does not contain metallocene random PP.
  • the cut-through strength is high and is at a pass level, but the tensile elongation after heat aging is small and it is rejected.
  • Comparative Examples 6 and 7 homo PP having a high elastic modulus is added, and the elastic modulus of the resin composition is high. Although the cut-through strength has increased due to the improved elastic modulus, the tensile elongation after heat aging is small and has not reached the acceptable level.

Abstract

Provided is a non-halogen flame-retardant resin composition which exhibits excellent mechanical strengths (such as flexibility and wear resistance), excellent flame retardance, particularly excellent cut-through characteristics, and tensile elongation characteristics satisfying the UL standards. Also provided are an electric wire and a cable which are made using the resin composition as a cover layer. A non-halogen flame-retardant resin composition which comprises 100 parts by mass of a resin component and 5 to 40 parts by mass of a phosphorus-based flame retardant, wherein the resin component comprises 30 to 85 parts by mass of a polyolefin resin, 10 to 50 parts by mass of a polyphenylene ether resin, and 5 to 30 parts by mass of a styrene-based elastomer, each content (parts by mass) being relative to 100 parts by mass of the resin component, and the polyolefin resin comprises 5 to 60% by mass of an ethylene/propylene random copolymer obtained by polymerization using a metallocene catalyst and 30 to 95% by mass of a block-copolymerized polypropylene resin, each percentage being relative to the whole polyolefin resin.

Description

ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブルNon-halogen flame retardant resin composition and electric wire and cable using the same
 本発明は、電線などの被覆層として好適に用いられるノンハロゲン難燃性樹脂組成物及びこの樹脂組成物を用いた電線・ケーブルに関する。 The present invention relates to a non-halogen flame retardant resin composition suitably used as a coating layer for electric wires and the like, and an electric wire / cable using the resin composition.
 複写機、プリンタなどのOA機器、電子機器の内部配線では、プリント基板間やプリント基板とセンサー、アクチュエータ、モータ等の電子部品間で給電や信号電送を行うワイヤーハーネスが多量に使用されている。 In the internal wiring of OA equipment and electronic equipment such as copiers and printers, a large amount of wire harnesses are used for power supply and signal transmission between printed circuit boards and between electronic parts such as printed circuit boards and sensors, actuators, and motors.
 ワイヤーハーネスとは、複数本の電線やケーブルを束ねて端末に挿抜可能なコネクタ等の端子を組み付けしたものである。難燃性、電気絶縁性等の点から、ワイヤーハーネス用の電線には絶縁材料としてポリ塩化ビニル(PVC)を適用したPVC電線が使用されている。PVC電線は柔軟性に優れるので、ワイヤーハーネスとした場合も取り回し性が良く、また充分な強度を有しているので、ワイヤーハーネスの配線中に絶縁体が破れたり摩耗したりする問題が無く、更に端末に取り付ける圧接コネクタの取り付け作業性にも優れている。 A wire harness is an assembly of terminals such as connectors that can be inserted into and removed from a terminal by bundling multiple wires and cables. From the viewpoints of flame retardancy, electrical insulation, etc., PVC electric wires using polyvinyl chloride (PVC) as an insulating material are used for electric wires for wire harnesses. Since PVC wires are excellent in flexibility, they are easy to handle in the case of a wire harness and have sufficient strength, so there is no problem that the insulator is broken or worn during wiring of the wire harness. Furthermore, it is excellent in the workability of attaching the pressure contact connector attached to the terminal.
 しかし、PVC電線にはハロゲン元素が含まれるため、使用後のワイヤーハーネスの焼却処理を行う場合に塩化水素系の有毒ガスが発生したり、また焼却条件によってはダイオキシンを発生するという問題があり、環境負荷の低減が求められる中、PVCは絶縁材料として好ましい材料とはいえない。 However, because PVC elements contain halogen elements, there is a problem that hydrogen chloride-based toxic gas is generated when incineration of the wire harness after use, or dioxins are generated depending on the incineration conditions. While the reduction of environmental load is required, PVC is not a preferable material as an insulating material.
 近年、環境負荷の低減に対する要求の高まりに応えるために、ポリ塩化ビニル樹脂やハロゲン系難燃剤を含有しない被覆材料を用いたハロゲンフリー電線が開発されている。他方、電子機器の機内配線に使用する絶縁電線や絶縁ケーブルなどの電線には、一般に、UL(Underwriters Laboratories inc.)規格に適合する諸特性を有することが求められている。UL規格には、製品が満たすべき難燃性、加熱変形性、低温特性、被覆材料の初期と熱老化後の引張特性などの諸特性が詳細に規定されている。 In recent years, halogen-free electric wires using a coating material that does not contain polyvinyl chloride resin or a halogen-based flame retardant have been developed in order to meet the increasing demand for reducing the environmental burden. On the other hand, electric wires such as insulated wires and insulated cables used for in-machine wiring of electronic devices are generally required to have various characteristics that conform to UL (Underwriters Laboratories Inc.) standards. The UL standard stipulates in detail various properties such as flame retardancy, heat deformability, low temperature properties, tensile properties after heat aging of coating materials, and the like to be satisfied by products.
 圧接あるいは圧着用途の電線では、電子機器内でワイヤーハーネスを引き回す必要がある。この作業中に電線の絶縁被覆に傷や破れが生じて不良となる可能性があるため、ワイヤーハーネスに使用される絶縁電線には高いカットスルー強度が要求されている。 For wires used for pressure welding or crimping, it is necessary to route the wire harness inside the electronic device. Since there is a possibility that the insulating coating of the electric wire is damaged or broken during this operation and becomes defective, the insulating electric wire used for the wire harness is required to have high cut-through strength.
 特開2002-105255号公報(特許文献1)にはポリプロピレン樹脂にエチレンプロピレンゴムやスチレンブタジエンゴム等のエラストマーを配合した熱可塑性樹脂成分に対して、金属水和物を加熱・混練した難燃性樹脂組成物が開示されている。エラストマーを配合することでフィラー受容性を高めることができ、またこれらのエラストマーを動的加硫することで、柔軟性、伸び等の機械的物性と押出加工性及び難燃性のバランスを取ることが検討されている。しかし、このような材料はPVCと比べると耐摩耗性や耐エッジ性(カットスルー特性)が悪く、これらの特性を向上させようとすると柔軟性が低下して特性のバランスを失うという問題があった。 Japanese Patent Application Laid-Open No. 2002-105255 (Patent Document 1) discloses flame retardancy in which a metal hydrate is heated and kneaded with a thermoplastic resin component in which an elastomer such as ethylene propylene rubber or styrene butadiene rubber is blended with polypropylene resin. A resin composition is disclosed. Filler receptivity can be increased by blending elastomers, and dynamic vulcanization of these elastomers balances mechanical properties such as flexibility and elongation with extrudability and flame retardancy. Is being considered. However, such materials have poor wear resistance and edge resistance (cut-through characteristics) compared with PVC, and there is a problem that flexibility is lost and the balance of characteristics is lost when trying to improve these characteristics. It was.
 また、特開2008-169234号公報(特許文献2)には、ポリアミド樹脂又はポリエステル樹脂、ポリフェニレンエーテル系樹脂、及びスチレン系エラストマー樹脂を含有する樹脂成分と、窒素系難燃剤とを含有するノンハロゲン難燃性樹脂組成物が開示されている。弾性率が高く硬いポリフェニレンエーテル系樹脂と、伸びが大きく柔らかいスチレン系エラストマーとを混合するとともに、結晶性樹脂でありガラス転移温度以上の温度であっても適度な弾性率を保ち柔軟性、伸張性を保持することができるポリアミド樹脂又はポリエステル樹脂をさらに混合することで、PVCと同等の柔軟性、耐摩耗性、耐エッジ性を有する絶縁電線を得ることができる。 JP 2008-169234 A (Patent Document 2) discloses a non-halogen flame retardant containing a resin component containing a polyamide resin or a polyester resin, a polyphenylene ether resin, and a styrene elastomer resin, and a nitrogen flame retardant. A flammable resin composition is disclosed. A high-modulus and hard polyphenylene ether resin and a styrene-based elastomer with large elongation and softness are mixed, and it is a crystalline resin that maintains an appropriate elastic modulus even at temperatures above the glass transition temperature. By further mixing a polyamide resin or a polyester resin capable of holding the same, an insulated wire having flexibility, abrasion resistance, and edge resistance equivalent to PVC can be obtained.
特開2002-105255号公報JP 2002-105255 A 特開2008-169234号公報JP 2008-169234 A
 ワイヤーハーネスに使用される絶縁電線には高いカットスルー強度が要求されており、従来の絶縁電線よりも更に高強度化する必要がある。一方、絶縁電線はUL規格に規定されている難燃性、耐熱性、機械特性を満たす必要がある。カットスルー強度を高くするためには絶縁材料を硬い、すなわち弾性率の高い材料を多く配合すること等が考えられるが、そうすると引張伸び、特に熱老化後の引張伸びが小さくなりUL規格を満たせない可能性があるだけでなくコネクタ嵌合性の点でストレインレリーフを破壊してしまう恐れがある。 絶 縁 High cut-through strength is required for insulated wires used in wire harnesses, and it is necessary to make them stronger than conventional insulated wires. On the other hand, the insulated wire needs to satisfy the flame retardancy, heat resistance, and mechanical properties defined in the UL standard. In order to increase the cut-through strength, it is conceivable that the insulating material is hard, that is, a large amount of a material having a high elastic modulus is blended. However, in this case, the tensile elongation, particularly the tensile elongation after heat aging, is reduced and the UL standard cannot be satisfied. In addition to the possibility, the strain relief may be destroyed in terms of connector fitting.
 そこで本発明は、柔軟性、耐摩耗性等の機械的強度及び難燃性に優れ、特にカットスルー特性に優れると共に、UL規格を満足する引張伸び特性を有するノンハロゲン難燃性樹脂組成物及びこの難燃性樹脂組成物を被覆層として用いた電線・ケーブルを提供することを課題とする。 Therefore, the present invention is excellent in mechanical strength such as flexibility and wear resistance and flame retardancy, in particular, has excellent cut-through characteristics and has a non-halogen flame retardant resin composition having tensile elongation characteristics satisfying UL standards, and this It aims at providing the electric wire and cable which used the flame-retardant resin composition as a coating layer.
 本発明は、樹脂成分100質量部に対してリン系難燃剤を5~40質量部含有するノンハロゲン難燃性樹脂組成物であって、前記樹脂成分100質量部中に、ポリオレフィン系樹脂30~85質量部、ポリフェニレンエーテル系樹脂10~50質量部、及びスチレン系エラストマー5~30質量部を含有し、前記ポリオレフィン系樹脂は、メタロセン触媒を用いて重合されたエチレン-プロピレンランダム共重合体をポリオレフィン系樹脂全体に対して5~60質量%、ブロック共重合ポリプロピレン樹脂をポリオレフィン系樹脂全体に対して30~95質量%含有する、ノンハロゲン難燃性樹脂組成物である(請求項1)。 The present invention is a non-halogen flame retardant resin composition containing 5 to 40 parts by mass of a phosphorus-based flame retardant with respect to 100 parts by mass of the resin component, and the polyolefin resin 30 to 85 in 100 parts by mass of the resin component. The polyolefin-based resin contains an ethylene-propylene random copolymer polymerized using a metallocene catalyst in a polyolefin-based manner, containing 10 parts by weight, 10-50 parts by weight of a polyphenylene ether resin, and 5-30 parts by weight of a styrene elastomer. A non-halogen flame retardant resin composition containing 5 to 60% by mass with respect to the whole resin and 30 to 95% by mass of the block copolymerized polypropylene resin with respect to the whole polyolefin resin (claim 1).
 ポリフェニレンエーテル系樹脂は常温における弾性率が高く、硬い材料である。ポリオレフィン系樹脂は柔軟性に優れているとともに機械特性を向上することができる。スチレン系エラストマーは柔軟性、押出加工性に優れているだけでなく相溶化剤として働く。相溶化剤を添加することで、前記ポリオレフィン系樹脂とポリフェニレンエーテル系樹脂が良好に混合し、機械特性を向上することができる。 Polyphenylene ether resin is a hard material with a high elastic modulus at room temperature. Polyolefin resins are excellent in flexibility and can improve mechanical properties. Styrenic elastomers not only have excellent flexibility and extrudability, but also act as compatibilizers. By adding a compatibilizer, the polyolefin resin and the polyphenylene ether resin can be mixed well, and the mechanical properties can be improved.
 ポリオレフィン系樹脂として、メタロセン触媒を用いて重合されたエチレン-プロピレンランダム共重合体(以下、メタロセンランダムPPと記載することもある)とブロック共重合ポリプロピレンとを使用する。メタロセンランダムPPは分子量と結晶性が揃っており、低分子量成分や低結晶成分が少ない。そのため柔軟で耐熱老化特性にも優れるので引張伸びや熱老化後の引張伸びを大きくする効果がある。一方ブロック共重合ポリプロピレンは弾性率が高く、カットスルー強度を高くできる効果がある。ポリオレフィン系樹脂としてメタロセンランダムPPとブロック共重合ポリプロピレンとを特定の割合で併用することで、カットスルー強度と熱老化後の引張伸びとを両立することができる。なおポリオレフィン系樹脂としてこの2種類以外にホモポリプロピレンやポリエチレンを使用しても良い。 As the polyolefin resin, an ethylene-propylene random copolymer polymerized using a metallocene catalyst (hereinafter sometimes referred to as metallocene random PP) and a block copolymer polypropylene are used. Metallocene random PP has uniform molecular weight and crystallinity, and has few low molecular weight components and low crystal components. Therefore, since it is flexible and excellent in heat aging characteristics, it has the effect of increasing tensile elongation and tensile elongation after heat aging. On the other hand, block copolymerized polypropylene has a high elastic modulus and is effective in increasing cut-through strength. By using a metallocene random PP and a block copolymerized polypropylene in combination at a specific ratio as a polyolefin-based resin, both the cut-through strength and the tensile elongation after heat aging can be achieved. In addition to these two types of polyolefin-based resins, homopolypropylene and polyethylene may be used.
 請求項2に記載の発明は、前記ポリオレフィン系樹脂は、さらに低密度ポリエチレンを、ポリオレフィン系樹脂全体に対して5~20質量%含有する、請求項1に記載のノンハロゲン難燃性樹脂組成物である。低密度ポリエチレンをさらに含有することで、引張伸び及び熱老化後の引張伸び特性をより向上することができる。 The invention according to claim 2 is the non-halogen flame retardant resin composition according to claim 1, wherein the polyolefin resin further contains low-density polyethylene in an amount of 5 to 20% by mass based on the entire polyolefin resin. is there. By further containing low-density polyethylene, the tensile elongation and tensile elongation characteristics after heat aging can be further improved.
 請求項3に記載の発明は、前記スチレン系エラストマーが、スチレンとゴム成分のブロック共重合エラストマーであることを特徴とする請求項1又は2に記載のノンハロゲン難燃性樹脂組成物である。スチレン系エラストマーがスチレンとゴム成分のブロック共重合エラストマーであることにより、ポリオレフィン系樹脂とポリフェニレンエーテル系樹脂の相溶性を向上させ機械特性に優れる樹脂組成物が得られる。 The invention according to claim 3 is the non-halogen flame-retardant resin composition according to claim 1 or 2, wherein the styrene elastomer is a block copolymer elastomer of styrene and a rubber component. When the styrene elastomer is a block copolymer elastomer of styrene and a rubber component, a resin composition having improved mechanical properties and improved compatibility between the polyolefin resin and the polyphenylene ether resin can be obtained.
 請求項4に記載の発明は、前記ポリフェニレンエーテルが、ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂であることを特徴とする請求項1~3のいずれか1項に記載のノンハロゲン難燃性樹脂組成物である。ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂を使用することで、溶融混合時の作業性と共に押出加工性が向上する。 The invention according to claim 4 is the non-halogen flame retardant resin composition according to any one of claims 1 to 3, wherein the polyphenylene ether is a polyphenylene ether resin obtained by melt blending polystyrene. is there. By using a polyphenylene ether resin in which polystyrene is melt-blended, extrusion workability is improved as well as workability during melt mixing.
 請求項5に記載の発明は、上記のノンハロゲン難燃性樹脂組成物を被覆層として用いた電線・ケーブルである。本発明により、難燃性、柔軟性及びカットスルー特性に優れたノンハロゲン絶縁電線が得られる。 The invention according to claim 5 is an electric wire / cable using the non-halogen flame-retardant resin composition as a coating layer. According to the present invention, a halogen-free insulated wire excellent in flame retardancy, flexibility, and cut-through characteristics can be obtained.
 請求項6に記載の発明は、前記被覆層の厚みが0.3mm以下であることを特徴とする上記の電線・ケーブルである。絶縁被覆層の厚みが0.3mm以下と薄い場合には、カットスルー特性等の特性において、従来技術による電線との差が顕著となり、優れた効果を発揮する。 Invention of Claim 6 is said electric wire and cable characterized by the thickness of the said coating layer being 0.3 mm or less. When the thickness of the insulating coating layer is as thin as 0.3 mm or less, the characteristics such as the cut-through characteristics are significantly different from those of the conventional electric wires, and an excellent effect is exhibited.
 請求項7に記載の発明は、前記被覆層が電離放射線の照射により架橋されていることを特徴とする請求項5又は6に記載の電線・ケーブルである。被覆層が架橋されていることで、耐熱性や機械的強度が向上する。 The invention according to claim 7 is the electric wire / cable according to claim 5 or 6, wherein the coating layer is crosslinked by irradiation with ionizing radiation. Heat resistance and mechanical strength are improved because the coating layer is cross-linked.
 本発明によれば、難燃性、柔軟性、耐摩耗性等の機械的強度に優れ、特にカットスルー特性に優れると共に、UL規格を満足する引張伸び特性を有するノンハロゲン難燃性樹脂組成物及びこれを用いた電線・ケーブルを提供することができる。 According to the present invention, a non-halogen flame retardant resin composition having excellent mechanical strength such as flame retardancy, flexibility, abrasion resistance, etc., particularly excellent cut-through characteristics, and having tensile elongation characteristics satisfying UL standards, and An electric wire / cable using this can be provided.
カットスルー強度の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of cut-through intensity | strength.
 まずノンハロゲン難燃性樹脂組成物に使用する各種材料について説明する。ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6-キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。 First, various materials used for the non-halogen flame retardant resin composition will be described. Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials. In order to improve the moldability of polyphenylene ether, various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether. As the polyphenylene ether resin used in the present invention, any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.
 ポリフェニレンエーテル系樹脂としてポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂を使用すると、スチレン系エラストマーとの溶融混合時の作業性が向上し好ましい。ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂はスチレン系エラストマーとの相溶性に優れるため、押出加工時の樹脂圧が低減し、押出加工性が向上する。 It is preferable to use a polyphenylene ether resin obtained by melt blending polystyrene as the polyphenylene ether resin, since the workability during melt mixing with the styrene elastomer is improved. Since the polyphenylene ether resin obtained by melt blending polystyrene is excellent in compatibility with the styrene elastomer, the resin pressure during the extrusion process is reduced, and the extrusion processability is improved.
 このようなポリフェニレンエーテル系樹脂においては、ポリスチレンのブレンド比率に応じて荷重たわみ温度が変化するが、荷重たわみ温度が130℃以上のものを使用すると電線被膜の機械的強度が大きくなり、また熱変形特性が優れるため好ましい。なお荷重たわみ温度はISO75-1、2の方法により、荷重1.80MPaで測定した値とする。 In such a polyphenylene ether resin, the deflection temperature under load changes depending on the blend ratio of polystyrene. However, when a resin with a deflection temperature under load of 130 ° C or higher is used, the mechanical strength of the wire coating increases and thermal deformation occurs. It is preferable because of its excellent characteristics. The deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.
 本発明に使用するスチレン系エラストマーとしては、スチレン・エチレンブテン・スチレン共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。 Styrene elastomers used in the present invention include styrene / ethylene butene / styrene copolymers, styrene / ethylene propylene / styrene copolymers, styrene / ethylene / ethylene propylene / styrene copolymers, styrene / butylene / styrene copolymers. Examples thereof include hydrogenated polymers and partially hydrogenated polymers. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.
 この中でも、スチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し、また耐衝撃性が向上するなどの点で好ましい。またブロック共重合体として、水素化スチレン・ブチレン・スチレンブロック共重合体やスチレン・イソブチレン・スチレン系共重合体等のトリブロック型共重合体、及びスチレン・エチレン共重合体、スチレン・エチレンプロピレン共重合体等のジブロック型共重合体を使用することができ、スチレン系エラストマー中トリブロック成分が50重量%以上含まれていると、電線被膜の強度及び硬度が向上するため好ましい。 Among these, the use of a block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance. As block copolymers, triblock copolymers such as hydrogenated styrene / butylene / styrene block copolymers and styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, and styrene / ethylene propylene copolymers are used. A diblock copolymer such as a polymer can be used, and when the triblock component in the styrene elastomer is contained in an amount of 50% by weight or more, it is preferable because the strength and hardness of the electric wire coating is improved.
 またスチレン系エラストマー中に含まれるスチレン含有量が20重量%以上のものが機械特性、難燃性の点から好適に使用できる。スチレン含有量が20重量%より少ないと硬度や押出加工性が低下する。またスチレン含有量が50重量%を超えると引張破断伸びが低下するため好ましくない。
 更に、分子量の指標となるメルトフローレート(「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定)が0.8~15g/10minの範囲であることが好ましい。メルトフローレートが0.8g/10minより小さいと押出加工性が低下し、また15g/10minを超えると機械強度が低下するからである。
Also, those having a styrene content of 20% by weight or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy. When the styrene content is less than 20% by weight, the hardness and extrusion processability are lowered. On the other hand, if the styrene content exceeds 50% by weight, the tensile elongation at break decreases, which is not preferable.
Further, the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. × 2.16 kgf according to JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. This is because if the melt flow rate is smaller than 0.8 g / 10 min, the extrudability is lowered, and if it exceeds 15 g / 10 min, the mechanical strength is lowered.
 ポリオレフィン系樹脂としては、ポリプロピレン(ホモポリマー、ブロックポリマー、ランダムポリマー)、ポリプロピレン系熱可塑性エラストマー、リアクター型ポリプロピレン系熱可塑性エラストマー、動的架橋型ポリプロピレン系熱可塑性エラストマー、ポリエチレン(高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン)、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体、エチレン-プロピレンゴム、エチレンアクリルゴム、エチレン-グリシジルメタクリレート共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸共重合体やエチレン-アクリル酸共重合体の分子間をナトリウムや亜鉛などの金属イオンで分子間結合したアイオノマー樹脂等を使用できる。またこれらの樹脂を無水マレイン酸等で変性したものや、エポキシ基、アミノ基、イミド基を有するものも使用できる。 Polyolefin resins include polypropylene (homopolymer, block polymer, random polymer), polypropylene thermoplastic elastomer, reactor type polypropylene thermoplastic elastomer, dynamically cross-linked polypropylene type thermoplastic elastomer, polyethylene (high density polyethylene, straight chain) Low density polyethylene, low density polyethylene, ultra low density polyethylene), ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, Ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-propylene rubber, ethylene acrylic rubber, ethylene-glycidyl methacrylate copolymer, ethylene-methacrylic acid Polymer, ethylene - can be used an ionomer resin bound intermolecularly with a metal ion such as sodium or zinc intermolecular acrylic acid copolymer - methacrylic acid copolymer or ethylene. Further, those obtained by modifying these resins with maleic anhydride or the like, or those having an epoxy group, an amino group or an imide group can be used.
 上記のポリオレフィン系樹脂のうち、メタロセンランダムPPとブロック共重合ポリプロピレンとを必須成分とする。メタロセンランダムPPはポリオレフィン系樹脂全体に対して5~60質量%、ブロック共重合ポリプロピレンはポリオレフィン系樹脂全体に対して30~95質量%とする。メタロセンランダムPPの含有量がこの範囲よりも少ない場合は熱老化後の伸びが小さくなりUL規格を満たせない。またブロック共重合ポリプロピレンがこの範囲よりも少ない場合はカットスルー強度が不足する。さらに低密度ポリエチレンを、ポリオレフィン系樹脂全体に対して5~20質量%含有すると伸び及び熱老化後の伸び特性を向上でき、好ましい。 Among the above polyolefin resins, metallocene random PP and block copolymerized polypropylene are essential components. The metallocene random PP is 5 to 60% by mass with respect to the whole polyolefin resin, and the block copolymerized polypropylene is 30 to 95% by mass with respect to the whole polyolefin resin. When the content of the metallocene random PP is less than this range, the elongation after heat aging becomes small and the UL standard cannot be satisfied. If the amount of block copolymerized polypropylene is less than this range, the cut-through strength is insufficient. Further, it is preferable that low density polyethylene is contained in an amount of 5 to 20% by mass based on the whole polyolefin resin, since elongation and elongation characteristics after heat aging can be improved.
 リン系難燃剤としては、リン酸エステル、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、シクロホスファゼンを開環重合して得られるポリホスファゼン化合物等を使用できる。これらのリン系難燃剤は単独で用いても良いし、複数を組み合わせて用いても良い。 As the phosphoric flame retardant, a phosphoric ester, a phosphinic acid metal salt, a melamine phosphate compound, an ammonium phosphate compound, a polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene, or the like can be used. These phosphorus flame retardants may be used alone or in combination.
 リン酸エステルとしては、トリメチルフォスフェート、トリエチルフォスフェート、トリフェニルフォスフェート、トリクレシジルフォスフェート、トリキシレニルフォスフェート、クレジルフェニルフォスフェート、クレジル2,6-キシレニルフォスフェート、2-エチルヘキシルジフェニルフォスフェート、1,3フェニレンビス(ジフェニルフォスフェート)、1,3フェニレンビス(ジ2,6キシレニルフォスフェート)、ビスフェノールAビス(ジフェニルフォスフェート)、レゾルシノールビスジフェニルフォスフェート、オクチルジフェニルフォスフェート、ジエチレンエチルエステルフォスフェート、ジヒドロキシプロピレンブチルエステルフォスフェート、エチレンジナトリウムエステルフォスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリスイソブチルホスフェート、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチル-プロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチルブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジエチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、アルキルリン酸エステル等を使用することができる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresidyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, cresyl 2,6-xylenyl phosphate, 2- Ethylhexyl diphenyl phosphate, 1,3 phenylene bis (diphenyl phosphate), 1,3 phenylene bis (di 2,6 xylenyl phosphate), bisphenol A bis (diphenyl phosphate), resorcinol bisdiphenyl phosphate, octyl diphenyl Phosphate, diethylene ethyl ester phosphate, dihydroxypropylene butyl ester phosphate, ethylene disodium ester phosphate, t-butyl Phenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate, tris (2 -Ethylhexyl) phosphate, tris (butoxyethyl) phosphate, trisisobutyl phosphate, methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methyl-propylphosphonic acid, t-butyl Phosphonic acid, 2,3-dimethylbutylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, diethylphosphinic acid, methyl ethyl Phosphinic acid, can be used methylpropyl phosphinic acid, dioctyl phosphinic acid, phenyl phosphinic acid, diethyl phenyl phosphinic acid, diphenyl phosphinic acid, alkyl phosphoric acid ester and the like.
 ホスフィン酸金属塩は、下記式(I)で表される化合物である。なお、上記式中R、Rは、それぞれ、炭素数1~6のアルキル基または炭素数12以下のアリール基であり、Mは、カルシウム、アルミニウム又は亜鉛であり、M=アルミニウムの場合はm=3、それ以外の場合はm=2である。 The phosphinic acid metal salt is a compound represented by the following formula (I). In the above formula, R 1 and R 2 are each an alkyl group having 1 to 6 carbon atoms or an aryl group having 12 or less carbon atoms, M is calcium, aluminum or zinc, and when M = aluminum m = 3, otherwise m = 2.
Figure JPOXMLDOC01-appb-C000001


(I)




Figure JPOXMLDOC01-appb-C000001


(I)




 ホスフィン酸金属塩としては、クラリアント(株)製のEXOLIT OP1230、EXOLIT OP1240、EXOLIT OP930、EXOLIT OP935等の有機ホスフィン酸のアルミニウム塩、またはEXOLIT OP1312等の有機ホスフィン酸のアルミニウム塩とポリリン酸メラミンのブレンド物を使用できる。 As the phosphinic acid metal salt, aluminum salt of organic phosphinic acid such as EXOLIT OP1230, EXOLIT OP1240, EXOLIT OP930, EXOLIT OP935 etc. manufactured by Clariant Co., Ltd., or a blend of aluminum phosphinic acid such as EXOLIT OP1312 and melamine polyphosphate You can use things.
 リン酸メラミン化合物としては、チバスペシャルティ(株)製のMELAPUR200等のポリリン酸メラミン、またはポリリン酸メラミン酸、リン酸メラミン、オルソリン酸メラミン、ピロリン酸メラミン等を使用できる。 As the melamine phosphate compound, melamine polyphosphate such as MELAPUR200 manufactured by Ciba Specialty Co., Ltd., melamine polyphosphate, melamine phosphate, melamine orthophosphate, melamine pyrophosphate, or the like can be used.
 リン酸アンモニウム化合物としては、ポリリン酸アンモニウム、ポリリン酸アミド、ポリリン酸アミドアンモニウム、ポリリン酸カルバミン酸等を使用できる。 As the ammonium phosphate compound, ammonium polyphosphate, polyphosphate amide, ammonium polyphosphate amide, polyphosphate carbamic acid and the like can be used.
 シクロホスファゼンを開環重合して得られるポリホスファゼン化合物としては、大塚化学(株)製のSPR-100、SA-100、SR-100、SRS-100、SPB-100L等を使用できる。 As a polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene, SPR-100, SA-100, SR-100, SRS-100, SPB-100L, etc. manufactured by Otsuka Chemical Co., Ltd. can be used.
 リン系難燃剤の含有量は、樹脂成分100質量部に対して5~40質量部とする。5質量部よりも少ない場合は難燃性が不十分であり、40質量部を越えると機械的特性が低下する。さらに好ましいリン系難燃剤の含有量は5~30質量部である。リン系難燃剤は、表面をメラミン、メラミンシアヌレート、脂肪酸、シランカップリング剤で処理して使用しても良い。また予め表面処理するのではなく、熱可塑性樹脂と混合する際に表面処理剤を添加するインテグラルブレンドを行っても良い。またリン系難燃剤と併用して窒素系難燃剤を使用しても良い。窒素系難燃剤としてはメラミン、メラミンシアヌレート等を使用できる。 The content of the phosphorus-based flame retardant is 5 to 40 parts by mass with respect to 100 parts by mass of the resin component. When the amount is less than 5 parts by mass, the flame retardancy is insufficient, and when it exceeds 40 parts by mass, the mechanical properties are deteriorated. A more preferred phosphorus flame retardant content is 5 to 30 parts by mass. The phosphorus-based flame retardant may be used by treating the surface with melamine, melamine cyanurate, fatty acid, or silane coupling agent. Further, instead of pre-treating the surface in advance, an integral blend in which a surface treating agent is added when mixing with the thermoplastic resin may be performed. A nitrogen-based flame retardant may be used in combination with a phosphorus-based flame retardant. Melamine, melamine cyanurate, etc. can be used as the nitrogen-based flame retardant.
 更に本発明のノンハロゲン難燃性樹脂組成物には架橋助剤を添加することができる。架橋助剤としてはトリメチロールプロパントリメタクリレートやトリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素-炭素二重結合を持つ多官能性モノマーが好ましく使用できる。また架橋助剤は常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマーとの混合がしやすいからである。更に架橋助剤としてトリメチロールプロパントリメタクリレートを使用すると、樹脂への相溶性が向上し、好ましい。 Furthermore, a crosslinking aid can be added to the non-halogen flame retardant resin composition of the present invention. As the crosslinking aid, a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used. Moreover, it is preferable that a crosslinking adjuvant is a liquid at normal temperature. This is because when it is a liquid, it can be easily mixed with a polyphenylene ether resin or a styrene elastomer. Furthermore, it is preferable to use trimethylolpropane trimethacrylate as a crosslinking aid because compatibility with the resin is improved.
 本発明のノンハロゲン難燃性樹脂組成物には、必要に応じて酸化防止剤、加工安定剤、着色剤、重金属不活性化材、発泡剤、多官能性モノマー等を適宜混合することができ、これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して作成することができる。 In the non-halogen flame retardant resin composition of the present invention, an antioxidant, a processing stabilizer, a colorant, a heavy metal deactivator, a foaming agent, a polyfunctional monomer, and the like can be appropriately mixed as necessary. These materials can be prepared by mixing using a known melt mixer such as a short screw extruder, a pressure kneader, or a Banbury mixer.
 本発明の絶縁電線は、上記の難燃性樹脂組成物からなる被覆層を有するものであり、導体上に被覆層が直接又は他の層を介して形成される。絶縁被覆層の形成には溶融押出機など既知の押出成形機を用いることができる。また絶縁層に電離放射線を照射して架橋することが好ましい。 The insulated wire of the present invention has a coating layer made of the above-mentioned flame retardant resin composition, and the coating layer is formed on the conductor directly or via another layer. For forming the insulating coating layer, a known extruder such as a melt extruder can be used. The insulating layer is preferably cross-linked by irradiating with ionizing radiation.
 導体としては、導電性に優れる銅線、アルミ線などが使用できる。導体の径は使用用途に応じて適宜選択できるが、狭いスペースへの配線を可能とするためには2mm以下とすることが好ましい。また取り扱いの容易さを考慮すると0.1mm以上とすることが好ましい。導体は単線であっても良いし、複数の素線を撚り線したものでも良い。 As the conductor, copper wire, aluminum wire, etc. having excellent conductivity can be used. The diameter of the conductor can be appropriately selected according to the intended use, but is preferably 2 mm or less in order to enable wiring in a narrow space. In consideration of ease of handling, the thickness is preferably 0.1 mm or more. The conductor may be a single wire or may be a strand of a plurality of strands.
 被覆層の厚みは、導体径に応じて適宜選択することができるが、被覆層の厚みを0.3mm以下とすると、機械的強度の面で好ましい。従来技術によるハロゲンフリー電線では、被覆層の厚みが0.3mm以下の場合に耐摩耗性やカットスルー強度が低下するが、本発明によると被覆層の厚みが0.3mm以下でも優れた性能が得られ、従来技術による電線との差が顕著に現れる。また圧接用電線においては、コネクタとの嵌合性の点から被覆層厚みが0.3mm以下の電線が好ましく使用される。 The thickness of the coating layer can be appropriately selected according to the conductor diameter, but the thickness of the coating layer is preferably 0.3 mm or less in terms of mechanical strength. In the halogen-free electric wire according to the prior art, the wear resistance and the cut-through strength are reduced when the thickness of the coating layer is 0.3 mm or less. As a result, the difference from the electric wire according to the prior art appears remarkably. Moreover, in the pressure welding electric wire, an electric wire having a coating layer thickness of 0.3 mm or less is preferably used from the viewpoint of fitting property with the connector.
 被覆層が電離放射線の照射により架橋されていると、機械的強度が向上して好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示でき、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。 It is preferable that the coating layer is cross-linked by irradiation with ionizing radiation because the mechanical strength is improved. Examples of ionizing radiation sources include accelerated electron beams, gamma rays, X-rays, α rays, ultraviolet rays, and the like. Accelerated electron beams are used from the viewpoint of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, and speed of crosslinking treatment Is most preferably used.
 次に、本発明を実施例に基づいてさらに詳細に説明する。実施例は本発明の範囲を限定するものではない。 Next, the present invention will be described in more detail based on examples. The examples are not intended to limit the scope of the invention.
 [実施例1~5]
 (ノンハロゲン難燃性樹脂組成物ペレットの作成)
 表1に示す配合処方で各成分を混合した。なお表中、ベース樹脂、難燃剤、老防および架橋助剤の単位は質量部である。二軸混合機(45mmφ、L/D=42)を使用し、シリンダー温度240℃、スクリュー回転数100rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。
[Examples 1 to 5]
(Creation of non-halogen flame retardant resin composition pellets)
Each component was mixed with the formulation shown in Table 1. In the table, the units of base resin, flame retardant, anti-aging and crosslinking aid are parts by mass. Using a twin-screw mixer (45 mmφ, L / D = 42), melt-mixed at a cylinder temperature of 240 ° C. and a screw rotation speed of 100 rpm, melt-extruded into a strand, and then cooled and cut the molten strand to produce pellets .
 (絶縁電線の作製)
 単軸押出機(30mmφ、L/D=24)を用いて、導体(錫メッキ軟銅線を7本撚りしたもの。導体径0.42mm)上に肉厚が0.14mmになるように押出被覆し、加速電圧2MeVの電子線を30kGy又は60kGy照射して絶縁電線を作成した。なお機械的特性(オリジナル及び熱老化後)は作成した絶縁電線から導体を取り除いて被覆層のみとしたものを使用して評価した。
(Production of insulated wires)
Using a single-screw extruder (30 mmφ, L / D = 24), extrusion coating is applied so that the thickness is 0.14 mm on a conductor (7 tin-plated annealed copper wires, conductor diameter 0.42 mm). Then, an insulated wire was created by irradiating an electron beam with an acceleration voltage of 2 MeV at 30 kGy or 60 kGy. The mechanical properties (original and after heat aging) were evaluated using a conductor that had been removed from the prepared insulated wire to make only the coating layer.
 (被覆層の評価:引張特性)
 作製した電線から導体を抜き取り、被覆層の引張試験を行った。試験条件は引張速度=500mm/分、標線間距離=25mm、温度=23℃とし、引張強さ、及び引張伸び(破断伸び)を各3点の試料で測定し、それらの平均値を求めた。引張強さが10.3MPa以上かつ引張伸び150%以上のものを「合格」と判定した。
(Evaluation of coating layer: tensile properties)
A conductor was extracted from the produced electric wire, and a tensile test of the coating layer was performed. The test conditions were: tensile speed = 500 mm / min, distance between marked lines = 25 mm, temperature = 23 ° C., tensile strength and tensile elongation (breaking elongation) were measured with three samples each, and the average value was obtained. It was. Those having a tensile strength of 10.3 MPa or more and a tensile elongation of 150% or more were judged as “pass”.
 (被覆層の評価:セカントモジュラス)
 上記引張試験と同様のサンプルを用いて、引張速度=50mm/分、標線間距離=25mm、温度=23℃で引張試験を行った後、応力-伸び曲線から伸びが2%となる点の弾性率を計算した。
(Evaluation of coating layer: secant modulus)
Using a sample similar to the above tensile test, after performing a tensile test at a tensile rate of 50 mm / min, a distance between marked lines of 25 mm, and a temperature of 23 ° C., the elongation at which the elongation becomes 2% from the stress-elongation curve The elastic modulus was calculated.
 (被覆層の評価:耐熱性)
 絶縁電線を136℃に設定したギアオーブン内で168時間(7日間)放置した後、引張特性評価と同様に引張試験を行い、加熱処理前の引張強度、引張伸びとの比較を行った。加熱処理前の引張強度に対し残率75%以上、引張伸びに対し残率45%以上を合格レベルとした。
(Evaluation of coating layer: heat resistance)
After leaving the insulated wire in a gear oven set at 136 ° C. for 168 hours (7 days), a tensile test was performed in the same manner as in the tensile property evaluation, and the tensile strength and tensile elongation before heat treatment were compared. A residual rate of 75% or more with respect to the tensile strength before the heat treatment and a residual rate of 45% or more with respect to the tensile elongation were regarded as acceptable levels.
 (絶縁電線の評価:難燃性試験)
 UL規格1581、1080項に記載のVW-1垂直燃焼試験を5点の試料で行った。各試料に15秒着火を5回繰り返した場合に、60秒以内に消化し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、かつ試料の上部取り付けたクラフト紙が燃えたり焦げたりしないものを合格とした。5点の試料中1点でも合格レベルにならなかった場合には不合格とした。
(Evaluation of insulated wires: Flame resistance test)
The VW-1 vertical combustion test described in UL standard 1581, 1080 was performed on five samples. When each sample is ignited 15 seconds 5 times, it digests within 60 seconds, the absorbent cotton laid underneath is not burned by burning fallen objects, and the kraft paper attached to the top of the sample does not burn or burn Was passed. If even one of the five samples did not pass, it was rejected.
 (絶縁電線の評価:カットスルー強度)
 図1に示す測定装置を用いてカットスルー強度を測定した。導体1及び被覆層2とからなる絶縁電線3の上に90°シャープエッジ(先端R=0.125mm、先端角度90°)を有する刃4を当て、導体とシャープエッジとの間に流れる電流値を測定する。初期状態では導体とシャープエッジとは被覆層2によって絶縁されており電流は流れないが、被覆層2が刃4によって切断されると導体とシャープエッジとの間に電流が流れる。刃4に荷重を加え、被覆層2が切断されないで耐える最大荷重を測定する。なお試験雰囲気は温度23℃、湿度50%RHとする。荷重70N以上を合格レベルとする。
(Evaluation of insulated wires: cut-through strength)
Cut-through strength was measured using the measuring apparatus shown in FIG. A blade 4 having a 90 ° sharp edge (tip R = 0.125 mm, tip angle 90 °) is placed on an insulated wire 3 composed of the conductor 1 and the covering layer 2, and a current value flowing between the conductor and the sharp edge. Measure. In the initial state, the conductor and the sharp edge are insulated by the covering layer 2 and no current flows. However, when the covering layer 2 is cut by the blade 4, a current flows between the conductor and the sharp edge. A load is applied to the blade 4 to measure the maximum load that the coating layer 2 can withstand without being cut. The test atmosphere is 23 ° C. and humidity 50% RH. A load of 70N or more is regarded as an acceptable level.
 [比較例1~7]
 表2に示す配合処方を持つ樹脂組成物を用いたこと以外は実施例1~5と同様に絶縁電線を作製し、一連の評価を行った。なお表中、ベース樹脂、難燃剤、老防および架橋助剤の単位は質量部である。結果を表2に示す。
[Comparative Examples 1 to 7]
Insulated wires were produced in the same manner as in Examples 1 to 5 except that a resin composition having the formulation shown in Table 2 was used, and a series of evaluations were performed. In the table, the units of base resin, flame retardant, anti-aging and crosslinking aid are parts by mass. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (脚注)
(*1)ブロック共重合ポリプロピレン樹脂:日本ポリプロ(株)製ノバテックEC9
(*2)メタロセン触媒を用いて重合されたエチレン-プロピレンランダム共重合体:日本ポリプロ(株)製WELNEX RFG4VA
(*3)ホモポリプロピレン:日本ポリプロ(株)製ノバテックEA9BT
(*4)低密度ポリエチレン:日本ユニカー(株)製NUC-8007(MFR=7g/10min)
(*5)固有粘度0.47dl/gのポリフェニレンエーテル樹脂
(*6)スチレン系エラストマー:旭化成(株)製:タフテック(登録商標)H1043
(*7)縮合リン酸エステル:大八化学工業(株)製PX-200(リン9.0%)
(*8)チバスペシャリティケミカルズ(株)製Irganox1010
(*9)シプロ化成(株)製SEENOX 412S
(*10)トリメチロールプロパントリメタクリレート:DIC(株)製TD1500S
(footnote)
(* 1) Block copolymer polypropylene resin: Novatec EC9 manufactured by Nippon Polypro Co., Ltd.
(* 2) Ethylene-propylene random copolymer polymerized using metallocene catalyst: WELNEX RFG4VA manufactured by Nippon Polypro Co., Ltd.
(* 3) Homopolypropylene: Novatec EA9BT manufactured by Nippon Polypro Co., Ltd.
(* 4) Low-density polyethylene: NUC-8007 (MFR = 7 g / 10 min) manufactured by Nippon Unicar Co., Ltd.
(* 5) Polyphenylene ether resin with intrinsic viscosity of 0.47 dl / g (* 6) Styrene elastomer: Asahi Kasei Corporation: Tuftec (registered trademark) H1043
(* 7) Condensed phosphate ester: PX-200 (phosphorus 9.0%) manufactured by Daihachi Chemical Industry Co., Ltd.
(* 8) Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.
(* 9) SEENOX 412S manufactured by Sipro Kasei Co., Ltd.
(* 10) Trimethylolpropane trimethacrylate: DIC Corporation TD1500S
 実施例1~5の絶縁電線はいずれもカットスルー強度が70N以上であり高強度である。またオリジナルの引張伸び及び熱老化後の引張伸びも合格レベルである。低密度ポリエチレンを使用していない実施例1と比較すると、低密度ポリエチレンを使用している実施例2~5は、熱老化後の引張伸びが大きくなっている。またメタロセンランダムPPの含有量を多くすると引張伸び及び熱老化後の引張伸びが大きくなっている。 All of the insulated wires of Examples 1 to 5 have a cut-through strength of 70 N or higher and high strength. The original tensile elongation and the tensile elongation after heat aging are also acceptable levels. Compared with Example 1 that does not use low-density polyethylene, Examples 2 to 5 that use low-density polyethylene have a higher tensile elongation after heat aging. Further, when the content of the metallocene random PP is increased, the tensile elongation and the tensile elongation after heat aging are increased.
 比較例1~7の絶縁電線に使用したノンハロゲン難燃性樹脂組成物にはメタロセンランダムPPが含まれていない。カットスルー強度はいずれも高く合格レベルであるが、熱老化後の引張伸びが小さく、不合格である。比較例6、7には弾性率の高いホモPPを添加しており、樹脂組成物の弾性率が高くなっている。弾性率が向上したことでカットスルー強度も高くなっているが、熱老化後の引張伸びが小さく合格レベルには達していない。 The non-halogen flame retardant resin composition used for the insulated wires of Comparative Examples 1 to 7 does not contain metallocene random PP. The cut-through strength is high and is at a pass level, but the tensile elongation after heat aging is small and it is rejected. In Comparative Examples 6 and 7, homo PP having a high elastic modulus is added, and the elastic modulus of the resin composition is high. Although the cut-through strength has increased due to the improved elastic modulus, the tensile elongation after heat aging is small and has not reached the acceptable level.
 1導体
 2被覆層
 3絶縁電線
 4刃
1 conductor 2 coating layer 3 insulated wire 4 blades

Claims (7)

  1.  樹脂成分100質量部に対してリン系難燃剤を5~40質量部含有するノンハロゲン難燃性樹脂組成物であって、前記樹脂成分100質量部中に、
     ポリオレフィン系樹脂30~85質量部、ポリフェニレンエーテル系樹脂10~50質量部、及びスチレン系エラストマー5~30質量部を含有し、
     前記ポリオレフィン系樹脂は、メタロセン触媒を用いて重合されたエチレン-プロピレンランダム共重合体をポリオレフィン系樹脂全体に対して5~60質量%、ブロック共重合ポリプロピレン樹脂をポリオレフィン系樹脂全体に対して30~95質量%含有する、ノンハロゲン難燃性樹脂組成物。
    A non-halogen flame retardant resin composition containing 5 to 40 parts by mass of a phosphorus-based flame retardant with respect to 100 parts by mass of a resin component, and in 100 parts by mass of the resin component,
    Containing 30 to 85 parts by mass of polyolefin resin, 10 to 50 parts by mass of polyphenylene ether resin, and 5 to 30 parts by mass of styrene elastomer,
    The polyolefin resin comprises an ethylene-propylene random copolymer polymerized using a metallocene catalyst in an amount of 5 to 60% by mass with respect to the entire polyolefin resin, and a block copolymer polypropylene resin in an amount of 30 to 30% with respect to the entire polyolefin resin. A halogen-free flame retardant resin composition containing 95% by mass.
  2.  前記ポリオレフィン系樹脂は、さらに低密度ポリエチレンを、ポリオレフィン系樹脂全体に対して5~20質量%含有する、請求項1に記載のノンハロゲン難燃性樹脂組成物。 The non-halogen flame retardant resin composition according to claim 1, wherein the polyolefin resin further contains 5 to 20% by mass of low density polyethylene with respect to the whole polyolefin resin.
  3.  前記スチレン系エラストマーが、スチレンとゴム成分のブロック共重合エラストマーである、請求項1又は2に記載のノンハロゲン難燃性樹脂組成物。 The non-halogen flame retardant resin composition according to claim 1 or 2, wherein the styrene elastomer is a block copolymer elastomer of styrene and a rubber component.
  4.  前記ポリフェニレンエーテルが、ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂である、請求項1~3のいずれか1項に記載のノンハロゲン難燃性樹脂組成物。 The non-halogen flame-retardant resin composition according to any one of claims 1 to 3, wherein the polyphenylene ether is a polyphenylene ether resin obtained by melt blending polystyrene.
  5.  請求項1~4のいずれか1項に記載のノンハロゲン難燃性樹脂組成物を被覆層として用いた電線・ケーブル。 An electric wire / cable using the halogen-free flame retardant resin composition according to any one of claims 1 to 4 as a coating layer.
  6.  前記被覆層の厚みが0.3mm以下である、請求項5に記載の電線・ケーブル。 The electric wire / cable according to claim 5, wherein the coating layer has a thickness of 0.3 mm or less.
  7.  前記被覆層が電離放射線の照射により架橋されている、請求項5又は6に記載の電線・ケーブル。 The electric wire / cable according to claim 5 or 6, wherein the coating layer is crosslinked by irradiation with ionizing radiation.
PCT/JP2011/051382 2010-04-16 2011-01-26 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same WO2011129129A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127006800A KR20130057961A (en) 2010-04-16 2011-01-26 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same
JP2011536221A JP5549675B2 (en) 2010-04-16 2011-01-26 Non-halogen flame retardant resin composition and electric wire and cable using the same
SG2012015020A SG183785A1 (en) 2010-04-16 2011-01-26 Non-halogen flame retardant resin composition and electric wire or cable using same
CN201180003851.6A CN102858873B (en) 2010-04-16 2011-01-26 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010094526 2010-04-16
JP2010-094526 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129129A1 true WO2011129129A1 (en) 2011-10-20

Family

ID=44798510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051382 WO2011129129A1 (en) 2010-04-16 2011-01-26 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same

Country Status (7)

Country Link
JP (1) JP5549675B2 (en)
KR (1) KR20130057961A (en)
CN (1) CN102858873B (en)
MY (1) MY167034A (en)
SG (1) SG183785A1 (en)
TW (1) TW201247854A (en)
WO (1) WO2011129129A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082870A (en) * 2011-09-28 2013-05-09 Mitsui Chemicals Inc Thermoplastic polymer composition, molding comprising the same, and wire
WO2013114765A1 (en) * 2012-02-03 2013-08-08 住友電気工業株式会社 Halogen-free flame-retardant insulated electrical wire
CN103804835A (en) * 2012-11-06 2014-05-21 广东聚石化学股份有限公司 Halogen-free flame retardant thermoplastic elastomer cable material and preparation method thereof
JP2016513168A (en) * 2014-02-28 2016-05-12 エルジー・ケム・リミテッド Flame retardant thermoplastic resin composition and electric wire containing the same
JP2017095609A (en) * 2015-11-25 2017-06-01 住友電気工業株式会社 Flame-retardant resin composition and flame-retardant cable
JP2017095608A (en) * 2015-11-25 2017-06-01 住友電気工業株式会社 Flame-retardant resin composition and flame-retardant cable
JP2018509485A (en) * 2015-06-17 2018-04-05 エルジー・ケム・リミテッド Polypropylene resin composition and cable coated therewith
US10611912B2 (en) 2015-07-22 2020-04-07 Asahi Kasei Kabushiki Kaisha Resin composition and shaped product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194014B (en) * 2013-04-08 2015-04-01 刘平 Halogen-free flame-retardant polyolefin material
CN103360752B (en) * 2013-07-15 2015-10-28 上海秋橙新材料科技有限公司 anti-aging PPO-ABS plastic alloy
JP5808023B2 (en) * 2013-11-15 2015-11-10 株式会社ジェイ・パワーシステムズ Flame retardant ant cable
KR101745107B1 (en) 2015-07-09 2017-06-08 현대자동차주식회사 Resin composition for automotive wire material and electric wire using it
KR101932254B1 (en) * 2016-06-14 2018-12-26 (주) 솔루켐 Insulated wire with non-halogenated insulated covered wire compositon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026696A (en) * 1998-07-14 2000-01-25 Sumitomo Wiring Syst Ltd Flame retardant and abrasion resistant resin composition
JP2002105255A (en) * 2000-10-03 2002-04-10 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2008231277A (en) * 2007-03-22 2008-10-02 Asahi Kasei Chemicals Corp Thermoplastic polymer rubber composition
WO2009125623A1 (en) * 2008-04-09 2009-10-15 住友電気工業株式会社 Flame-retardant tube and heat-shrinkable tube made by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026696A (en) * 1998-07-14 2000-01-25 Sumitomo Wiring Syst Ltd Flame retardant and abrasion resistant resin composition
JP2002105255A (en) * 2000-10-03 2002-04-10 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2008231277A (en) * 2007-03-22 2008-10-02 Asahi Kasei Chemicals Corp Thermoplastic polymer rubber composition
WO2009125623A1 (en) * 2008-04-09 2009-10-15 住友電気工業株式会社 Flame-retardant tube and heat-shrinkable tube made by using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082870A (en) * 2011-09-28 2013-05-09 Mitsui Chemicals Inc Thermoplastic polymer composition, molding comprising the same, and wire
WO2013114765A1 (en) * 2012-02-03 2013-08-08 住友電気工業株式会社 Halogen-free flame-retardant insulated electrical wire
JP2013161590A (en) * 2012-02-03 2013-08-19 Sumitomo Electric Ind Ltd Halogen-free fire-resistant insulation electric wire
CN103620700A (en) * 2012-02-03 2014-03-05 住友电气工业株式会社 Halogen-free flame-retardant insulated electrical wire
EP2811489A4 (en) * 2012-02-03 2015-10-14 Sumitomo Electric Industries Halogen-free flame-retardant insulated electrical wire
CN103804835A (en) * 2012-11-06 2014-05-21 广东聚石化学股份有限公司 Halogen-free flame retardant thermoplastic elastomer cable material and preparation method thereof
JP2016513168A (en) * 2014-02-28 2016-05-12 エルジー・ケム・リミテッド Flame retardant thermoplastic resin composition and electric wire containing the same
JP2018509485A (en) * 2015-06-17 2018-04-05 エルジー・ケム・リミテッド Polypropylene resin composition and cable coated therewith
US10611912B2 (en) 2015-07-22 2020-04-07 Asahi Kasei Kabushiki Kaisha Resin composition and shaped product
JP2017095609A (en) * 2015-11-25 2017-06-01 住友電気工業株式会社 Flame-retardant resin composition and flame-retardant cable
JP2017095608A (en) * 2015-11-25 2017-06-01 住友電気工業株式会社 Flame-retardant resin composition and flame-retardant cable

Also Published As

Publication number Publication date
JP5549675B2 (en) 2014-07-16
KR20130057961A (en) 2013-06-03
JPWO2011129129A1 (en) 2013-07-11
SG183785A1 (en) 2012-11-29
TW201247854A (en) 2012-12-01
CN102858873B (en) 2014-08-20
CN102858873A (en) 2013-01-02
MY167034A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5549675B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5556183B2 (en) Flame retardant resin composition and insulated wire, flat cable, molded product using the same
JP5569363B2 (en) Insulated wire and manufacturing method thereof
TWI409322B (en) Non-halogen flame retardent resin composition and electric wire/cable using the same
JP5825536B2 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
JP5529551B2 (en) Insulation tube and heat shrink tube
JP5172839B2 (en) Flame retardant tube and heat shrink tube using the same
JP5387944B2 (en) Halogen-free flame retardant insulated wire
WO2015029621A1 (en) Halogen-free flame-retardant insulated wire
JP2009249552A (en) Flame-retardant resin composition, and insulated electric wire and flat cable using the same
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
JP2017160328A (en) Halogen-free flame-retardant resin composition, and halogen-free flame-retardant insulated wire
JP2003257255A (en) Flame retardant insulating cable
JP4724468B2 (en) Flame-retardant resin composition and molded article using the same
KR101778803B1 (en) High Heat Resistant Insulation Composition For Cable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003851.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011536221

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127006800

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768651

Country of ref document: EP

Kind code of ref document: A1