WO2011128983A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2011128983A1
WO2011128983A1 PCT/JP2010/056622 JP2010056622W WO2011128983A1 WO 2011128983 A1 WO2011128983 A1 WO 2011128983A1 JP 2010056622 W JP2010056622 W JP 2010056622W WO 2011128983 A1 WO2011128983 A1 WO 2011128983A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxygen storage
temperature
storage amount
maximum oxygen
Prior art date
Application number
PCT/JP2010/056622
Other languages
English (en)
French (fr)
Inventor
武穂 相坂
中村 貴志
松本 卓也
允 佐藤
裕 澤田
靖志 岩崎
有輔 川村
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2010/056622 priority Critical patent/WO2011128983A1/ja
Priority to US13/640,452 priority patent/US8826642B2/en
Priority to JP2012510497A priority patent/JP5338974B2/ja
Publication of WO2011128983A1 publication Critical patent/WO2011128983A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/2483Methods of calibrating or learning characterised by the method used for learning restricting learned values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention includes a catalyst that is provided in an exhaust passage of an internal combustion engine and has an oxygen storage capacity, and an oxygen sensor that is provided on the exhaust downstream side of the catalyst.
  • the catalyst is based on engine operating conditions and changes in the output of the oxygen sensor.
  • the present invention relates to an exhaust gas purification apparatus for an internal combustion engine that calculates the maximum oxygen storage amount.
  • Patent Document 1 An example of an exhaust gas purification device for this type of internal combustion engine is disclosed in Patent Document 1.
  • the oxygen sensor has a characteristic of outputting about 0 V when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio and outputting about 1 V when the air-fuel ratio of the exhaust gas is richer than the stoichiometric air-fuel ratio. What you have is well known.
  • the maximum oxygen storage amount of the catalyst is calculated as follows, and the deterioration degree of the catalyst is grasped based on the maximum oxygen storage amount. That is, the air-fuel ratio active control for forcibly changing the air-fuel ratio of the exhaust gas flowing into the catalyst is executed, and the maximum oxygen storage amount of the catalyst is calculated based on the engine operation state and the output change of the oxygen sensor. .
  • FIG. 10 shows (a) the transition of the air-fuel ratio of the exhaust gas flowing into the catalyst, (b) the transition of the output voltage of the oxygen sensor, and (c) the oxygen storage amount of the catalyst during the execution of the conventional general air-fuel ratio active control. It is a timing chart which shows change together.
  • the air-fuel ratio of the exhaust gas flowing into the catalyst is forcibly made leaner than the stoichiometric air-fuel ratio so that oxygen is stored in the catalyst.
  • the catalyst can no longer store oxygen, lean exhaust flows out from the catalyst downstream, so the output of the oxygen sensor is lean-reversed from 1V corresponding to rich to 0V corresponding to lean. To do.
  • the air-fuel ratio of the exhaust gas flowing into the catalyst is forcibly made richer than the stoichiometric air-fuel ratio so that oxygen is released from the catalyst.
  • the catalyst When the catalyst can no longer release oxygen, rich exhaust gas flows out from the catalyst downstream, so the output of the oxygen sensor is richly inverted from 0V to 1V. At this time, at the timing t33 when the output of the oxygen sensor becomes V2, the air-fuel ratio of the exhaust gas flowing into the catalyst is forcibly made leaner than the stoichiometric air-fuel ratio so that the catalyst stores oxygen. When the catalyst can no longer store oxygen, the output of the oxygen sensor is lean-reversed from 1V to 0V. At this time, the output of the oxygen sensor becomes V2 at timing t34.
  • the amount of oxygen released from the catalyst during the period from timing t32 to timing t33 corresponds to the maximum oxygen storage amount of the catalyst.
  • the amount of oxygen released from the catalyst per unit time is calculated based on the engine operating state such as the fuel injection amount and the air-fuel ratio of the exhaust gas, and this is integrated over the above period (t32 to t33), thereby maximizing oxygen storage.
  • the amount can be calculated.
  • the amount of oxygen flowing into the catalyst during the period from timing t33 to timing t34 corresponds to the maximum oxygen storage amount of the catalyst. Therefore, it is possible to calculate the maximum oxygen storage amount by calculating the amount of oxygen flowing into the catalyst per unit time based on the engine operating state and integrating this over the period (t33 to t34).
  • the maximum oxygen storage amount of the catalyst varies depending on the temperature of the catalyst in addition to the degree of deterioration.
  • the relationship between the temperature of the catalyst and the maximum oxygen storage amount will be described using two catalysts having different degrees of deterioration as an example.
  • FIG. 11 is a graph showing the relationship between the temperature of the catalyst and the maximum oxygen storage amount.
  • the transition of the maximum oxygen storage amount of the catalyst having a small degree of deterioration is indicated by a solid line
  • the transition of the maximum oxygen storage amount of the catalyst having a high degree of deterioration is indicated by a one-dot chain line.
  • the maximum oxygen storage amount Cmax of the catalyst increases as the catalyst temperature TC increases. Further, as described above, the maximum oxygen storage amount Cmax of the catalyst decreases as the degree of deterioration of the catalyst increases. Further, the deviation between the maximum oxygen storage amount Cmax of the catalyst with a low degree of deterioration and the maximum oxygen storage amount Cmax of the catalyst with a high degree of deterioration becomes smaller as the catalyst temperature TC becomes lower.
  • the calculated maximum oxygen storage amount (hereinafter referred to as the actual maximum oxygen storage amount) CmaxA varies, and in particular, at a low catalyst temperature where the actual maximum oxygen storage amount CmaxA is small.
  • FIG. 12 is a graph showing the relationship between the temperature of the catalyst and the maximum oxygen storage amount of the catalyst as a linear expression.
  • the transition of the maximum oxygen storage amount Cmax of the catalyst which has not deteriorated at all is shown by a solid line L1.
  • the transition of the maximum oxygen storage amount Cmax of the catalyst is shown by the broken line L2, the alternate long and short dash line L3, and the alternate long and two short dashes line L4 in descending order of degree of deterioration.
  • the transition of the maximum oxygen storage amount Cmax of the catalyst having the maximum deterioration degree is indicated by a long broken line L5.
  • the maximum oxygen storage amount Cmax of the catalyst that has not deteriorated does not depend on the catalyst temperature TC, and the gradient G1 of the maximum oxygen storage amount Cmax with respect to the catalyst temperature TC is substantially “ 0 ".
  • the gradients G2 and G3 increase as the degree of deterioration increases from a state where no deterioration has occurred (G1 ⁇ G2 ⁇ G3).
  • the gradient G4 decreases as the degree of deterioration increases (G3> G4), and the degree of deterioration is maximum.
  • the maximum oxygen storage amount Cmax of a certain catalyst does not depend on the temperature TC of the catalyst, and its gradient G5 is substantially “0”.
  • the relationship between the catalyst temperature TC and the actual maximum oxygen storage amount CmaxA and a linear gradient G that specifies the degree of deterioration of the catalyst corresponding to these relationships are stored in the storage means of the controller. Further, the catalyst temperature TC is within the learning temperature range (in the example of FIG. 11, T2 ⁇ catalyst temperature) so that the actual maximum oxygen storage amount CmaxA is not calculated as the same value regardless of the degree of deterioration.
  • FIG. 13 is a graph showing the relationship between the catalyst temperature, the actual maximum oxygen storage amount, and the corrected maximum oxygen storage amount.
  • the actual maximum oxygen storage amount CmaxA of the catalyst having a small degree of deterioration is indicated by a solid line
  • the corrected maximum oxygen storage amount Cmaxnrml is indicated by a one-dot chain line.
  • the actual maximum oxygen storage amount CmaxA and the corrected maximum oxygen storage amount Cmaxnrml of the catalyst having the maximum degree of deterioration are indicated by broken lines.
  • the actual maximum oxygen storage amount CmaxA is corrected so that the corrected maximum oxygen storage amount Cmaxnrml is equal to the actual maximum oxygen storage amount CmaxA at the reference temperature TCb.
  • the degree of deterioration of the catalyst is determined based on a comparison between the maximum oxygen storage amount of the catalyst and the determination value, it is not necessary to prepare a determination value for each temperature of the catalyst. Can be simplified.
  • the present invention has been made in view of such circumstances, and its purpose is to suppress a decrease in the accuracy of calculation of the corrected maximum oxygen storage amount due to a delay in response of the output of the oxygen sensor.
  • An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can perform the above-described operation.
  • the present invention provides a catalyst that is provided in an exhaust passage of an internal combustion engine and has an oxygen storage capacity, an oxygen sensor that is provided downstream of the catalyst in the exhaust passage, an engine operating state, and an output of the oxygen sensor
  • the maximum oxygen storage amount of the catalyst is calculated by the storage unit that stores in advance a function established between the maximum oxygen storage amount and the degree of deterioration of the catalyst, and the calculation unit is estimated in the calculation period
  • a learning unit that learns the function corresponding to the degree of deterioration of the catalyst at that time based on the temperature of the catalyst and the maximum oxygen storage amount when the temperature of the catalyst is within a predetermined learning temperature range;
  • the corrected maximum oxygen storage amount which is the maximum oxygen storage amount when it is assumed that the temperature of the catalyst in the calculation period is the reference temperature, should be calculated.
  • a correction unit that corrects the maximum oxygen storage amount calculated by the calculation unit based on the temperature of the catalyst estimated during the calculation period, the reference temperature, and the already learned function, and an output of the oxygen sensor
  • An abnormality detection unit that detects an abnormality in response delay, and a discarding unit that discards the function learned by the learning unit when the abnormality detection unit detects a response delay abnormality in the output of the oxygen sensor.
  • An exhaust gas purification apparatus for an internal combustion engine is provided.
  • the reliability of the maximum oxygen storage amount of the catalyst calculated until the detection is low, and learning is performed based on such maximum oxygen storage amount. If the function is not reliable, the function that has been learned so far is discarded. For this reason, it is possible to suppress calculation of the corrected maximum oxygen storage amount of the catalyst based on a function having low reliability. Therefore, it is possible to suppress a reduction in the accuracy of calculating the corrected maximum oxygen storage amount due to the delay in response of the output of the oxygen sensor.
  • the predetermined degree for determining the degree of response delay of the output of the oxygen sensor is preferably set through experiments and simulations using a catalyst and an oxygen sensor.
  • the abnormality detection unit detects a response time of the output of the oxygen sensor, and a response time of the detected time and an output response time when the output of the oxygen sensor is normal.
  • the embodiment can be embodied in such a manner that it is determined that there is a response delay abnormality in the output of the oxygen sensor when the deviation degree is equal to or greater than a predetermined degree.
  • the relationship between the catalyst temperature when the catalyst has a predetermined degree of deterioration and the maximum oxygen storage amount of the catalyst at the same temperature is approximated by a predetermined approximate expression
  • the storage unit Stores the coefficient in the approximate expression in advance for each degree of deterioration of the catalyst
  • the learning unit calculates the maximum oxygen storage amount of the catalyst estimated by the calculation unit when the maximum oxygen storage amount of the catalyst is calculated.
  • the coefficient corresponding to the degree of deterioration of the catalyst at that time is learned based on the temperature and the maximum oxygen storage amount, and the correction unit calculates the calculation period when the maximum oxygen storage amount of the catalyst is calculated by the calculation unit.
  • the maximum oxygen storage amount calculated by the calculation unit is corrected based on the temperature of the catalyst estimated in Step 1, the reference temperature, the approximate expression, and the already learned coefficient.
  • the relationship between the catalyst temperature and the maximum oxygen storage amount of the catalyst at the same temperature can be approximated by a predetermined approximate expression. Therefore, as in the above configuration, the coefficient in the approximate expression is stored in advance for each degree of catalyst deterioration, and the coefficient is learned, and the maximum oxygen storage amount is corrected based on the approximate expression and the already learned coefficient. As a result, the configuration of the storage unit, the learning unit, and the correction unit can be simplified.
  • the above aspect (3) can be embodied in such a form that the predetermined approximate expression is a linear expression and the coefficient is a slope of the linear expression.
  • 5 is a timing chart showing (a) the change in the air-fuel ratio of the exhaust gas flowing into the catalyst and (b) the change in the output of the oxygen sensor in accordance with the execution of the fuel cut control according to the embodiment.
  • 6 is a timing chart showing (a) the change in the air-fuel ratio of the exhaust gas flowing into the catalyst and (b) the change in the output of the oxygen sensor in accordance with the execution of the forced rich control according to the embodiment.
  • the flowchart which shows the procedure of the inclination discard process in the embodiment.
  • A The transition of the air-fuel ratio of the exhaust gas flowing into the catalyst, (b) the transition of the output voltage of the oxygen sensor, and (c) the transition of the oxygen storage amount of the catalyst during the execution of the conventional general air-fuel ratio active control.
  • the timing chart which shows.
  • the graph which shows the relationship between the temperature of a catalyst, and the maximum oxygen storage amount. It is a graph which shows the relationship between the temperature of a catalyst and the maximum oxygen occlusion amount of a catalyst with a primary equation. The graph which showed the relationship between the temperature of a catalyst, the actual maximum oxygen storage amount, and the corrected maximum oxygen storage amount.
  • the internal combustion engine exhaust gas purification apparatus is embodied as an exhaust gas purification apparatus for a port injection type gasoline engine (hereinafter, internal combustion engine 1) mounted on a vehicle.
  • internal combustion engine 1 a port injection type gasoline engine mounted on a vehicle.
  • FIG. 1 shows a schematic configuration of an internal combustion engine 1 and an electronic control unit 50 that controls the internal combustion engine 1.
  • the internal combustion engine 1 includes a combustion chamber 10, an intake passage 20, and an exhaust passage 30.
  • the intake passage 20 is a passage for supplying intake air to the combustion chamber 10, and a throttle valve 21 for metering the intake air is provided in the middle thereof.
  • the intake passage 20 is provided with a fuel injection valve 11 that injects fuel into the intake port of the passage 20.
  • the air supplied through the intake passage 20 and the fuel injected from the fuel injection valve 11 are mixed to form an air-fuel mixture, and the air-fuel mixture is supplied to the combustion chamber 10.
  • the air-fuel mixture is compressed by the piston and burned by spark ignition by the spark plug.
  • the crankshaft that is the output shaft of the internal combustion engine 1 is rotationally driven by the expansion energy generated by the combustion.
  • the exhaust passage 30 is provided with a three-way catalyst (hereinafter referred to as catalyst) 31 having an oxygen storage capacity.
  • catalyst 31 removes carbon monoxide (hereinafter referred to as CO) or hydrocarbon (hereinafter referred to as HC) contained in the exhaust gas passing through the catalyst 31.
  • CO carbon monoxide
  • HC hydrocarbon
  • NOx nitrogen oxide
  • the catalyst 31 reduces and purifies NOx, and oxygen deprived from the NOx enters the catalyst 31. Occlude.
  • the catalyst 31 releases the stored oxygen and oxidizes and purifies HC and CO with the oxygen.
  • the electronic control unit 50 includes a central processing unit (CPU) that performs arithmetic processing of various controls of the internal combustion engine 1, a read-only memory (ROM) that stores various programs, maps, data, and the like in advance, CPU calculation results, and various sensors. Random access memory (RAM) for temporarily storing detection results, backup RAM capable of storing and holding calculation results even after the engine is stopped, and input / output that mediates input / output of signals between the electronic control unit 50 and the outside A port (I / O) is provided.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • Such an electronic control device 50 is input with information such as detection results of sensors provided in each part of the internal combustion engine 1 and switch operating states. More specifically, an engine speed sensor 51 that detects the engine speed NE, an intake air quantity sensor 52 that detects the intake air quantity GA, and a throttle opening that detects the opening degree (hereinafter, throttle opening degree) TA of the throttle valve 21. A degree sensor 53 is provided. An air-fuel ratio sensor 54 that detects the air-fuel ratio of the exhaust gas flowing into the catalyst 31 is provided upstream of the catalyst 31 in the exhaust passage 30. Further, an oxygen sensor 55 that detects the air-fuel ratio of the exhaust gas flowing out from the catalyst 31 is provided on the downstream side of the catalyst 31 in the exhaust passage 30.
  • a catalyst temperature sensor 56 for detecting the temperature TC of the catalyst 31 is provided.
  • various sensors such as an accelerator operation amount sensor 57 for detecting an accelerator pedal depression amount (accelerator operation amount) ACCP are provided.
  • the catalyst temperature sensor 56 employs a configuration that directly detects the temperature TC of the catalyst 31.
  • the configuration of the temperature estimation unit according to the present invention is not limited to this.
  • the configuration for estimating the temperature TC of the catalyst 31 based on the detection result of the exhaust temperature sensor that detects the temperature of the exhaust A configuration in which the temperature of the catalyst 31 is estimated based on the integrated value of the intake air amount GA or the like may be employed.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio of the exhaust and the output voltage Vaf of the air-fuel ratio sensor 54.
  • FIG. 3 is a graph showing the relationship between the air-fuel ratio of exhaust gas and the output voltage Vox of the oxygen sensor 55.
  • the air-fuel ratio sensor 54 is a so-called full-range air-fuel ratio sensor, and outputs a larger voltage Vaf as the air-fuel ratio increases, that is, as the air-fuel ratio becomes leaner.
  • the voltage V1 is output when the air-fuel ratio is the stoichiometric air-fuel ratio.
  • the oxygen sensor 55 is a so-called zirconia plate type oxygen sensor that outputs about 0 V when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, and the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio. When it is richer than that, it outputs about 1V.
  • the voltage Vox changes rapidly.
  • a voltage V2 between 0 V and 1 V is output.
  • the electronic control unit 50 executes, for example, the following various controls based on the engine operating state or the like grasped from the detection results of the various sensors including the sensors 51 to 57. That is, the fuel injection amount Q is calculated based on the engine rotational speed NE, the intake air amount GA, and the like, and the fuel injection control for controlling the fuel injection valve 11 according to the fuel injection amount Q is executed.
  • the electronic control unit 50 estimates the air-fuel ratio A / F of the mixture based on the detection result of the air-fuel ratio sensor 54, and the fuel injection amount Q so that the air-fuel ratio A / F matches the target air-fuel ratio.
  • An air-fuel ratio feedback control is executed to calculate an air-fuel ratio correction value for the fuel and to increase or decrease the fuel injection amount.
  • the catalyst 31 is poisoned and deteriorated by components such as lead and sulfur contained in the fuel. Further, the catalyst is thermally deteriorated by being placed at a high temperature. As the catalyst deteriorates, the oxygen storage capacity of the catalyst 31, that is, the maximum oxygen storage amount decreases.
  • the actual maximum oxygen storage amount CmaxA of the catalyst 31 is calculated as follows. That is, the air-fuel ratio active control for forcibly changing the air-fuel ratio of the exhaust gas flowing into the catalyst 31 is executed, and the actual maximum oxygen storage amount CmaxA of the catalyst 31 is calculated based on the engine operating state and the output change of the oxygen sensor 55. Like to do.
  • FIG. 4 shows (a) the change in the air-fuel ratio of the exhaust gas flowing into the catalyst, (b) the change in the output voltage of the oxygen sensor, and (c) the change in the oxygen storage amount of the catalyst when the air-fuel ratio active control is executed. It is a timing chart which shows together. In the example shown in FIG. 4, it is assumed that no response delay abnormality has occurred in the oxygen sensor 55. Further, since the outline of the air-fuel ratio active control is as described above, the overlapping description is omitted.
  • the first period corresponds to the maximum oxygen storage amount of the catalyst 31
  • the fuel injection amount Q And calculating the amount of oxygen released from the catalyst 31 per unit time based on the engine operating state such as the air-fuel ratio A / F of the exhaust gas and integrating this over the first period (t2 to t3).
  • An oxygen storage amount Cmax1 is calculated.
  • the second period corresponds to the maximum oxygen storage amount of the catalyst 31, per unit time based on the engine operating state.
  • the amount of oxygen flowing into the catalyst 31 is calculated, and this is integrated over the second period (t3 to t4) to calculate the maximum oxygen storage amount Cmax2.
  • the maximum oxygen storage amount Cmax is shown as a different value between the first period (t2 to t3) and the second period (t3 to t4). This is because the temperature of the catalyst 31 is different.
  • the temperature TC of the catalyst 31 and the maximum oxygen are within the range from T1 to T4.
  • a function established between the temperature TC of the catalyst and the actual maximum oxygen storage amount CmaxA, specifically, a slope G of the linear expression is obtained in advance for each degree of deterioration of the catalyst 31, and the temperature TC of the catalyst 31
  • the relationship between the actual maximum oxygen storage amount CmaxA and the slope G of the linear expression that specifies the degree of deterioration of the catalyst 31 corresponding to these relationships is stored in the ROM of the electronic control unit 50 as a map, for example.
  • the catalyst temperature TC is within the learning temperature range (in the example of FIG. 11, T2 ⁇ catalyst temperature) so that the actual maximum oxygen storage amount CmaxA is not calculated as the same value regardless of the degree of deterioration.
  • a slope G of a linear expression corresponding to the degree of deterioration of the catalyst 31 is determined. Further, the determined inclination G is stored in the backup RAM of the electronic control unit 50 to learn the inclination G.
  • the catalyst temperature TC during the calculation period more specifically, the average value TCave and the reference temperature TCb (T2) of the temperature TC of the catalyst 31 during the calculation period.
  • the calculated actual maximum oxygen storage amount CmaxA is corrected based on ⁇ TCb ⁇ T3), the equation (2) as a linear equation, and the gradient G of the linear equation already learned.
  • the corrected maximum oxygen storage amount Cmaxnrml which is the maximum oxygen storage amount when it is assumed that the catalyst temperature TCave during the calculation period is the reference temperature TCb, is calculated.
  • FIG. 5 is a flowchart showing the procedure of the process. A series of processing shown in this flowchart is executed every time the actual maximum oxygen storage amount CmaxA is calculated during operation of the internal combustion engine 1.
  • step S1 the actual maximum oxygen storage amount CmaxA calculated immediately before is read. Then, the process proceeds to step S2, and the average value TCave of the temperature of the catalyst 31 in the calculation period of the actual maximum oxygen storage amount CmaxA is read. Then, the process proceeds to step S3, and the corrected maximum oxygen storage amount Cmaxnrml is calculated by substituting the actual maximum oxygen storage amount CmaxA and the average value TCave of the temperature of the catalyst 31 into the above equation (2).
  • step S3 the corrected maximum oxygen storage amount Cmaxnrml is calculated by substituting the actual maximum oxygen storage amount CmaxA and the average value TCave of the temperature of the catalyst 31 into the above equation (2).
  • FIG. 6 is a flowchart showing the procedure of the process. A series of processing shown in this flowchart is executed every time the actual maximum oxygen storage amount CmaxA is calculated during operation of the internal combustion engine 1.
  • step S11 the actual maximum oxygen storage amount CmaxA calculated immediately before is read. Then, the process proceeds to step S12, and the average value TCave of the temperature of the catalyst 31 in the calculation period of the actual maximum oxygen storage amount CmaxA is read. Then, the process proceeds to step S13 to determine whether or not the average temperature TCave of the temperature of the catalyst 31 is within the learning temperature range. As a result, when the average value TCave of the temperature of the catalyst 31 is within the learning temperature range (step S13: “YES”), the process proceeds to step S14, and the actual maximum oxygen is determined by referring to the map.
  • a slope G of a linear expression corresponding to the relationship between the storage amount CmaxA and the average value TCave of the temperature of the catalyst 31, that is, corresponding to the degree of deterioration of the catalyst 31 is determined, and this slope G is stored by storing it in the backup RAM. learn.
  • the learning unit according to the present invention is not limited to the learning unit that learns the gradient G based only on the actual maximum oxygen storage amount CmaxA and the temperature TCave of the catalyst 31 read in the immediately preceding learning process.
  • the gradient G may be learned based on data for the past N times including the actual maximum oxygen storage amount Cmax calculated immediately before and the temperature TCave of the catalyst 31.
  • step S3 “NO”
  • the deterioration degree of the catalyst 31 is determined based on the comparison between the maximum oxygen storage amount of the catalyst 31 and the determination value. Since it is not necessary to prepare a determination value for each temperature TC, the determination can be simplified.
  • the learned gradient G of the linear expression is discarded. I am doing so. As a result, a decrease in the accuracy of calculation of the corrected maximum oxygen storage amount Cmaxnrml due to the delay in response of the output Vox of the oxygen sensor 55 is suppressed.
  • the response time when the output Vox of the oxygen sensor 55 is lean-reversed is detected, and the detected response time and the output Vox of the oxygen sensor 55 are normal.
  • the response delay time ⁇ L which is a deviation from the response time of the output Vox, is detected.
  • the response time when the output Vox of the oxygen sensor 55 is richly inverted is detected and the detected response is detected.
  • the response delay time ⁇ R which is a deviation between the time and the response time of the output Vox when the output Vox of the oxygen sensor 55 is normal, is detected.
  • FIG. 7 is a timing chart showing together (a) the change in the air-fuel ratio of the exhaust gas flowing into the catalyst and (b) the change in the output of the oxygen sensor in accordance with the execution of the fuel cut control.
  • an example of transition of the output Vox of the normal oxygen sensor 55 is shown by a solid line, and an example of transition of the output Vox of the oxygen sensor 55 when there is a predetermined response delay at the time of lean reversal Is shown.
  • the output Vox of the oxygen sensor 55 starts to decrease from timing t12 and becomes V2 at timing t14, as indicated by a one-dot chain line in FIG. It becomes 0V at t15.
  • the response delay time ⁇ is calculated by subtracting the time ⁇ tb.
  • FIG. 8 shows (a) the change in the air-fuel ratio of the exhaust gas flowing into the catalyst, and (b) the oxygen accompanying the execution of the forced rich control for forcibly making the air-fuel ratio of the exhaust richer than the stoichiometric air-fuel ratio.
  • an example of the transition of the output Vox of the normal oxygen sensor 55 is shown by a solid line, and an example of the transition of the output Vox of the oxygen sensor 55 when there is a predetermined response delay during rich inversion Is shown.
  • the output Vox of the oxygen sensor 55 starts to rise from timing t22 and becomes V2 at timing t24, as shown by a one-dot chain line in FIG. It becomes 1V at t25.
  • the response delay time ⁇ is calculated by subtracting the time ⁇ tb.
  • FIG. 9 is a flowchart showing the procedure of the process. A series of processing shown in this flowchart is repeatedly executed at predetermined intervals during operation of the internal combustion engine 1.
  • step S21 it is determined whether or not the response delay time ⁇ ( ⁇ L, ⁇ R) of the output Vox of the oxygen sensor 55 has been detected. That is, it is determined whether or not the response delay time ⁇ is newly calculated through execution of the fuel cut control or forced rich control described above.
  • step S21: “YES” the process proceeds to step S22, and it is determined whether or not the detected response delay time ⁇ is equal to or longer than the predetermined time ⁇ th. to decide.
  • step S22 when the response delay time ⁇ is equal to or longer than the predetermined time ⁇ th (step S22: “YES”), the process proceeds to step S23, where the actual maximum oxygen storage amount CmaxA of the catalyst 31 calculated so far is obtained. , And the slope G learned so far is discarded, assuming that the slope G of the linear expression learned based on the actual maximum oxygen storage amount CmaxA is low. That is, the inclination G stored in the backup RAM is deleted. Then, this series of processes is temporarily terminated.
  • the predetermined time ⁇ th is desirably set to the same value as the maximum value of the response delay time ⁇ that can allow a decrease in the calculation accuracy of the actual maximum oxygen storage amount CmaxA. In the present embodiment, the predetermined time ⁇ th is set through an experiment using the catalyst 31 and the oxygen sensor 55.
  • step S21 when it is determined that the response delay time ⁇ of the output Vox of the oxygen sensor 55 is not detected (step S21: “NO”), or when the response delay time ⁇ is less than the predetermined time ⁇ th (step S22: “NO”). )), the condition for discarding the learned gradient G is not satisfied, and this series of processes is temporarily terminated.
  • the response delay abnormality of the output Vox of the oxygen sensor 55 is detected and the gradient G of the linear equation learned so far is discarded, the actual maximum oxygen of the catalyst 31 is thereafter
  • the response delay time ⁇ of the output Vox of the oxygen sensor 55 is taken into account.
  • the exhaust purification device of the internal combustion engine 1 includes a catalyst 31 provided in the exhaust passage 30 and having an oxygen storage capacity, and an oxygen sensor 55 provided on the exhaust downstream side of the catalyst 31. Further, the electronic control unit 50 calculates the actual maximum oxygen storage amount CmaxA of the catalyst 31 based on the engine operating state and the output change of the oxygen sensor 55. In addition, the electronic control unit 50 determines a gradient G of a linear expression that is established between the temperature TC of the catalyst 31 when the catalyst 31 has a predetermined degree of deterioration and the maximum oxygen storage amount Cmax of the catalyst 31 at the same temperature TC. Stored in advance for every 31 degrees of deterioration.
  • the temperature TC of the catalyst 31 and the actual maximum oxygen storage amount when the temperature TC of the catalyst 31 in the calculation period is within a predetermined learning temperature range. Based on CmaxA, the gradient G of the linear expression corresponding to the degree of deterioration of the catalyst at that time is learned. Further, when the actual maximum oxygen storage amount CmaxA of the catalyst 31 is calculated, the corrected maximum oxygen storage amount Cmaxnrml, which is the maximum oxygen storage amount when it is assumed that the temperature TC of the catalyst 31 in the calculation period is the reference temperature TCb.
  • the actual maximum oxygen storage amount CmaxA is corrected based on the temperature TC of the catalyst 31, the reference temperature TCb, the linear expression, and the gradient G of the linear expression already learned in the calculation period.
  • the learned gradient G of the primary equation is discarded.
  • exhaust gas purification apparatus for an internal combustion engine is not limited to the configuration exemplified in the above embodiment, and can be implemented as, for example, the following form appropriately modified.
  • a zirconia plate type oxygen sensor is adopted as the oxygen sensor 55 provided on the exhaust gas downstream side of the catalyst 31.
  • the present invention is not limited to this, and for example, the oxygen sensor A region air-fuel ratio sensor may be employed. Further, the air-fuel ratio sensor provided on the exhaust upstream side of the catalyst 31 is not an essential configuration, and instead of this, the same oxygen sensor as the oxygen sensor 55 may be provided.
  • the maximum oxygen storage amount Cmax of the catalyst 31 is calculated based on the engine operating state such as the fuel injection amount Q and the air-fuel ratio A / F of the exhaust gas, but instead of this, the intake air amount
  • the maximum oxygen storage amount Cmax of the catalyst 31 may be calculated based on the intake air amount GA detected by the sensor 52.
  • the maximum oxygen storage amount Cmax1, Cmax2 of the catalyst 31 is calculated during the execution of the air-fuel ratio active control, but the configuration of the calculation unit according to the present invention is not limited to this,
  • the maximum oxygen storage amount Cmax may be calculated during execution of fuel cut control or during execution of forced enrichment control after execution of fuel cut control.
  • the present invention is not limited to the calculation of the maximum oxygen storage amount of the catalyst when the exhaust air-fuel ratio is forcibly controlled to be rich or lean. In short, the engine operating state and the output change of the oxygen sensor 55 are changed.
  • the maximum oxygen storage amount of the catalyst 31 may be calculated based on the above.
  • the relationship between the temperature TC of the catalyst 31 when the catalyst 31 has a predetermined degree of deterioration and the maximum oxygen storage amount Cmax of the catalyst 31 at the same temperature TC is approximated by a linear expression.
  • the linear gradient G is learned through the electronic control unit 50.
  • the configuration of the learning unit according to the present invention is not limited to this, and when the above relationship is approximated by another approximate expression such as a quadratic expression, the approximate expression What is necessary is just to learn a coefficient.
  • SYMBOLS 1 Internal combustion engine, 10 ... Combustion chamber, 11 ... Fuel injection valve, 20 ... Intake passage, 21 ... Throttle valve, 30 ... Exhaust passage, 31 ... Catalyst, 50 ... Electronic control unit (memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 電子制御装置は、機関運転状態及び酸素センサの出力変化に基づいて触媒の実最大酸素吸蔵量を算出する。触媒が所定の劣化度合であるときの触媒温度と同温度における触媒の最大酸素吸蔵量との間に成立する一次式の傾きGを触媒の劣化度合毎に予め記憶する。触媒の実最大酸素吸蔵量が算出されたとき、同算出期間の触媒温度が所定の学習温度範囲内にある場合に、同触媒温度及び実最大酸素吸蔵量に基づいてそのときの触媒の劣化度合に対応した一次式の傾きGを学習する。触媒の実最大酸素吸蔵量が算出されたとき、同算出期間の触媒温度が基準温度であるとした場合の最大酸素吸蔵量である補正後最大酸素吸蔵量を算出すべく、同算出期間の触媒温度、基準温度、一次式、及び既に学習されている一次式の傾きGに基づき実最大酸素吸蔵量を補正する。そして、酸素センサの出力の応答遅れ異常を検出した場合には、学習されている一次式の傾きGを破棄する。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気通路に設けられるとともに酸素吸蔵能力を有する触媒と、同触媒の排気下流側に設けられる酸素センサとを備え、機関運転状態及び酸素センサの出力の変化に基づいて触媒の最大酸素吸蔵量を算出する内燃機関の排気浄化装置に関する。
 この種の内燃機関の排気浄化装置としては、例えば特許文献1に記載のものがある。特許文献1に記載のものも含めて従来一般の排気浄化装置では、内燃機関の排気通路に設けられるとともに酸素吸蔵能力を有する触媒と、排気通路において触媒の排気下流側に設けられる酸素センサとを備えている。ここで、酸素センサとしては、排気の空燃比が理論空燃比よりもリーンであるときには約0Vを出力するとともに、排気の空燃比が理論空燃比よりもリッチであるときには約1Vを出力する特性を有するものが周知である。
 ところで、触媒の劣化が進行するほど触媒の酸素吸蔵能力、すなわち最大酸素吸蔵量は低下する。そこで、従来、以下のようにして、触媒の最大酸素吸蔵量を算出するとともに、同最大酸素吸蔵量に基づいて触媒の劣化度合を把握するようにしている。すなわち、触媒に流入する排気の空燃比を強制的に変更する空燃比アクティブ制御を実行するとともに、機関運転状態及び酸素センサの出力変化に基づいて触媒の最大酸素吸蔵量を算出するようにしている。
 ここで、図10を参照して、従来一般の空燃比アクティブ制御の概要について説明する。
 図10は、従来一般の空燃比アクティブ制御の実行時における、(a)触媒に流入する排気の空燃比の推移、(b)酸素センサの出力電圧の推移、(c)触媒の酸素吸蔵量の推移を併せ示すタイミングチャートである。
 図10に示すように、まずは、タイミングt31において、触媒に流入する排気の空燃比を強制的に理論空燃比よりもリーンにして触媒に酸素を吸蔵させるようにする。触媒がこれ以上酸素を吸蔵することができなくなると、触媒から下流側にリーンな排気が流出するようになることから、酸素センサの出力がリッチに対応する1Vからリーンに対応する0Vにリーン反転する。このとき、酸素センサの出力が理論空燃比に対応するV2となるタイミングt32において、触媒に流入する排気の空燃比を強制的に理論空燃比よりもリッチにして触媒から酸素を放出させるようにする。触媒がこれ以上酸素を放出することができなくなると、触媒から下流側にリッチな排気が流出するようになることから、酸素センサの出力が0Vから1Vにリッチ反転する。このとき、酸素センサの出力がV2となるタイミングt33において、触媒に流入する排気の空燃比を強制的に理論空燃比よりもリーンにして触媒に酸素を吸蔵させるようにする。触媒がこれ以上酸素を吸蔵することができなくなると、酸素センサの出力が1Vから0Vにリーン反転する。このとき、タイミングt34において酸素センサの出力はV2となる。ここで、タイミングt32からタイミングt33までの期間に触媒から放出された酸素量が触媒の最大酸素吸蔵量に相当する。従って、燃料噴射量や排気の空燃比といった機関運転状態に基づいて単位時間当りに触媒から放出された酸素量を算出するとともに、これを上記期間(t32~t33)にわたって積算することにより最大酸素吸蔵量を算出することができる。また、タイミングt33からタイミングt34までの期間に触媒に流入した酸素量が触媒の最大酸素吸蔵量に相当する。従って、機関運転状態に基づいて単位時間当りに触媒に流入した酸素量を算出するとともに、これを上記期間(t33~t34)にわたって積算することにより最大酸素吸蔵量を算出することができる。
 ところで、触媒の最大酸素吸蔵量は、その劣化度合の他、触媒の温度によっても変動する。
 ここで、図11を参照して、劣化度合の異なる2つの触媒を例に、触媒の温度と最大酸素吸蔵量との関係について説明する。
 図11は、触媒の温度と最大酸素吸蔵量との関係を示すグラフである。尚、図11において、劣化度合の小さい触媒の最大酸素吸蔵量の推移を実線にて示すとともに、劣化度合の大きい触媒の最大酸素吸蔵量の推移を一点鎖線にて示している。
 図11に示すように、触媒の最大酸素吸蔵量Cmaxは触媒の温度TCが高くなるほど大きくなる。また、上述したように、触媒の最大酸素吸蔵量Cmaxは触媒の劣化度合が大きくなるほど小さくなる。また、劣化度合の小さい触媒の最大酸素吸蔵量Cmaxと劣化度合の大きい触媒の最大酸素吸蔵量Cmaxとの偏差は、触媒の温度TCが低くなるほど小さくなる。ただし、図11に矢印にて示すように、算出される最大酸素吸蔵量(以下、実最大酸素吸蔵量)CmaxAにはばらつきがあることから、特に、実最大酸素吸蔵量CmaxAの小さい触媒低温時(T1<触媒温度TC<T2)にあっては、実最大酸素吸蔵量CmaxAに対してばらつきの影響が大きくなる結果、実最大酸素吸蔵量CmaxAを精度良く算出することができない。従って、実最大酸素吸蔵量CmaxAを精度良く算出する上では、実最大酸素吸蔵量CmaxAの算出を触媒高温時(T2<触媒温度TC<T3)に行なう必要がある。しかしながら、この場合には、実最大酸素吸蔵量CmaxAの算出機会が触媒高温時に制限されるため、触媒の劣化判定の実行機会が減少するといった問題が生じる。
 これに対して、上記特許文献1に記載の技術では、触媒がある程度活性化している温度範囲、図11の例では触媒の温度TCがT1からT4までの範囲においては、触媒の温度TCの上昇に対して最大酸素吸蔵量が比例して増大することから、触媒の温度と最大酸素吸蔵量との関係を一次式により近似することができること、及び触媒の劣化度合に応じて一次式の傾きが異なることに着目することで、以下のようにして、実最大酸素吸蔵量CmaxAの算出機会の拡大を図るようにしている。
 ここで、図12を参照して、劣化度合の異なる5つの触媒を例に、触媒の温度と最大酸素吸蔵量との関係、及び一次式の傾きについて説明する。
 図12は、触媒の温度と触媒の最大酸素吸蔵量との関係を一次式にて示すグラフである。尚、図12において、全く劣化していない触媒の最大酸素吸蔵量Cmaxの推移を実線L1にて示す。また、劣化度合が大きい順に触媒の最大酸素吸蔵量Cmaxの推移を破線L2、一点鎖線L3、二点鎖線L4にて示す。また、劣化度合が最大である触媒の最大酸素吸蔵量Cmaxの推移を長破線L5にて示す。
 図12に実線L1にて示すように、全く劣化していない触媒の最大酸素吸蔵量Cmaxは、触媒の温度TCに依存せず、触媒の温度TCに対する最大酸素吸蔵量Cmaxの傾きG1は略「0」となる。また、図12に破線L2及び一点鎖線L3にて示すように、全く劣化していない状態から劣化度合が大きくなるほど傾きG2、G3は大きくなる(G1<G2<G3)。更に、図12に二点鎖線L4及び長破線L5にて示すように、劣化度合がある程度大きくなった後には、劣化度合が大きくなるほど傾きG4は小さくなり(G3>G4)、劣化度合が最大である触媒の最大酸素吸蔵量Cmaxは、触媒の温度TCに依存せず、その傾きG5は略「0」となる。
 これらのことから、図12に示した触媒の温度TCと実最大酸素吸蔵量CmaxAとの間に成立する関数、具体的には一次式の傾きを、触媒の劣化度合毎に予め求めておき、触媒の温度TCと実最大酸素吸蔵量CmaxAとの関係と、これら関係に対応した触媒の劣化度合を特定する一次式の傾きGを制御装置の記憶手段に記憶させておく。また、劣化度合が異なるにも拘わらず実最大酸素吸蔵量CmaxAが同一の値として算出されることのないように、触媒の温度TCが学習温度範囲内(図11の例では、T2<触媒温度TC<T3)にあるときに算出された触媒の実最大酸素吸蔵量CmaxAと、同実最大酸素吸蔵量CmaxAの算出期間における触媒の温度TCとに基づいて、触媒の劣化度合に対応した一次式の傾きGを学習する。そして、触媒の実最大酸素吸蔵量CmaxAが新たに算出されたときには、その算出期間における触媒の温度TC、基準温度TCb(T2<TCb<T3)、一次式としての式(1)、及び既に学習されている一次式の傾きGに基づいて、算出された実最大酸素吸蔵量CmaxAを補正することにより、その算出期間における触媒の温度TCが基準温度TCbであると仮定した場合の最大酸素吸蔵量である補正後最大酸素吸蔵量Cmaxnrmlを算出する。
 
   Cmaxnrml = CmaxA + G ・ (TCb - TC)   ・・・(1)
 
 ここで、図13を参照して、補正後最大酸素吸蔵量Cmaxnrmlの算出態様の一例を説明する。
 尚、図13は、触媒の温度と実最大酸素吸蔵量及び補正後最大酸素吸蔵量との関係を示したグラフである。尚、図13において、劣化度合の小さい触媒の実最大酸素吸蔵量CmaxAを実線にて示すとともに、その補正後最大酸素吸蔵量Cmaxnrmlを一点鎖線にて示す。また、劣化度合が最大である触媒の実最大酸素吸蔵量CmaxA及びその補正後最大酸素吸蔵量Cmaxnrmlを破線にて示す。
 図13から明らかなように、触媒の温度TCにかかわらず、実最大酸素吸蔵量CmaxAが補正されることにより、補正後最大酸素吸蔵量Cmaxnrmlは基準温度TCbにおける実最大酸素吸蔵量CmaxAの値となる。これにより、例えば触媒の最大酸素吸蔵量と判定値との比較に基づいて同触媒の劣化度合を判定する構成にあっては、触媒の温度毎に判定値を準備する必要がなくなるため、当該判定を簡易なものとすることができる。
特開2004―28029号公報
 ところで、内燃機関の排気浄化装置にあっては、酸素センサの出力に応答遅れが生じるおそれがある。この場合、酸素センサの出力の応答遅れに起因して実最大酸素吸蔵量CmaxAの算出精度が低下することから、そうした実最大酸素吸蔵量CmaxAに基づいて、触媒の劣化度合に対応した一次式の傾きが学習され、同傾きに基づいて補正後最大酸素吸蔵量Cmaxnrmlが算出される。その結果、補正後最大酸素吸蔵量Cmaxnrmlを精度良く算出することができないといった問題が生じる。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、酸素センサの出力の応答遅れが生じることに起因して補正後最大酸素吸蔵量の算出精度が低下することを抑制することのできる内燃機関の排気浄化装置を提供することにある。
 以下、上記課題を解決するための手段及びその作用効果について記載する。
 (1)本発明は、内燃機関の排気通路に設けられるとともに酸素吸蔵能力を有する触媒と、前記排気通路において前記触媒の排気下流側に設けられる酸素センサと、機関運転状態及び前記酸素センサの出力変化に基づいて前記触媒の最大酸素吸蔵量を算出する算出部と、前記触媒の温度を推定する温度推定部と、前記触媒が所定の劣化度合であるときの触媒の温度と同温度における触媒の最大酸素吸蔵量との間に成立する関数を前記触媒の劣化度合毎に予め記憶する記憶部と、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度が所定の学習温度範囲内にある場合に、当該触媒の温度及び最大酸素吸蔵量に基づいてそのときの触媒の劣化度合に対応した前記関数を学習する学習部と、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間における触媒の温度が基準温度であると仮定した場合の最大酸素吸蔵量である補正後最大酸素吸蔵量を算出すべく、当該算出期間において推定された触媒の温度、前記基準温度、既に学習されている前記関数に基づいて、前記算出部により算出された最大酸素吸蔵量を補正する補正部と、前記酸素センサの出力の応答遅れ異常を検出する異常検出部と、前記異常検出部により前記酸素センサの出力の応答遅れ異常を検出した場合に、前記学習部により学習されている前記関数を破棄する破棄部と、を備える内燃機関の排気浄化装置を提供する。
 同構成によれば、酸素センサの出力の応答遅れ異常を検出した場合には、当該検出までに算出された触媒の最大酸素吸蔵量の信頼性が低く、そうした最大酸素吸蔵量に基づいて学習された関数の信頼性が低いとして、それまでに学習されている関数が破棄されるようになる。このため、信頼性の低い関数に基づいて触媒の補正後最大酸素吸蔵量が算出されることを抑制することができるようになる。従って、酸素センサの出力の応答遅れが生じることに起因して補正後最大酸素吸蔵量の算出精度が低下することを抑制することができるようになる。尚、酸素センサの出力の応答遅れの度合を判定するための所定度合は、触媒及び酸素センサを用いた実験やシミュレーションを通じて設定されることが望ましい。
 (2)上記の発明は、前記異常検出部は前記酸素センサの出力の応答時間を検出するとともに、同検出された応答時間と前記酸素センサの出力が正常である場合における出力の応答時間との乖離度合が所定度合以上である場合に前記酸素センサの出力の応答遅れ異常が有ると判断するといった態様をもって具体化することができる。
 (3)本発明の一態様において、前記触媒が所定の劣化度合であるときの触媒の温度と同温度における触媒の最大酸素吸蔵量との関係は所定の近似式にて近似され、前記記憶部は、前記近似式における係数を前記触媒の劣化度合毎に予め記憶し、前記学習部は、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度及び最大酸素吸蔵量に基づいてそのときの触媒の劣化度合に対応した前記係数を学習し、前記補正部は、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度、前記基準温度、前記近似式、及び既に学習されている前記係数に基づいて、前記算出部により算出された最大酸素吸蔵量を補正する。
 触媒が所定の劣化度合であるとき、触媒の温度と同温度における触媒の最大酸素吸蔵量との関係は所定の近似式にて近似することができる。このため、上記構成によるように、近似式における係数を触媒の劣化度合毎に予め記憶し、同係数を学習するとともに、上記近似式及び既に学習されている係数に基づいて最大酸素吸蔵量を補正することとすれば、記憶部、学習部、及び補正部の構成を簡易なものとすることができるようになる。
 (4)上記(3)の態様は、前記所定の近似式は一次式であり、前記係数は前記一次式の傾きであるといった態様をもって具体化することができる。
本発明に係る内燃機関の排気浄化装置の一実施形態について、内燃機関及びこれを制御する電子制御装置の概略構成を示す概略図。 空燃比センサの出力特性を示すグラフ。 酸素センサの出力特性を示すグラフ。 同実施形態のアクティブ空燃比制御の実行中における、(a)排気の空燃比の推移、(b)酸素センサの出力電圧の推移、及び(c)触媒の酸素吸蔵量の推移を併せ示すタイミングチャート。 同実施形態における補正後最大酸素吸蔵量の算出処理の手順を示すフローチャート。 同実施形態における傾き学習処理の手順を示すフローチャート。 同実施形態の燃料カット制御の実行に伴う、(a)触媒に流入する排気の空燃比の推移、及び(b)酸素センサの出力の推移を併せ示すタイミングチャート。 同実施形態の強制リッチ化制御の実行に伴う、(a)触媒に流入する排気の空燃比の推移、及び(b)酸素センサの出力の推移を併せ示すタイミングチャート。 同実施形態における傾き破棄処理の手順を示すフローチャート。 従来一般の空燃比アクティブ制御の実行時における、(a)触媒に流入する排気の空燃比の推移、(b)酸素センサの出力電圧の推移、及び(c)触媒の酸素吸蔵量の推移を併せ示すタイミングチャート。 触媒の温度と最大酸素吸蔵量との関係を示すグラフ。 触媒の温度と触媒の最大酸素吸蔵量との関係を一次式にて示すグラフである。 触媒の温度と実最大酸素吸蔵量及び補正後最大酸素吸蔵量との関係を示したグラフ。
 以下、図1~図9を参照して、本発明に係る内燃機関の排気浄化装置を、車両に搭載されるポート噴射式のガソリンエンジン(以下、内燃機関1)の排気浄化装置として具体化した一実施形態について、詳細に説明する。
 図1に、内燃機関1及びこれを制御する電子制御装置50の概略構成を示す。
 図1に示すように、内燃機関1は、燃焼室10、吸気通路20、及び排気通路30を備えている。吸気通路20は吸入空気を燃焼室10に供給する通路であり、その途中には、吸入空気を調量するためのスロットルバルブ21が設けられている。また、吸気通路20には、同通路20の吸気ポートに燃料を噴射する燃料噴射弁11が設けられている。吸気通路20を通じて供給される空気と燃料噴射弁11から噴射された燃料とが混合されて混合気となり、同混合気が燃焼室10に供給されるようになっている。また、燃焼室10において混合気はピストンによって圧縮され、点火プラグにより火花点火されることにより燃焼する。そして、燃焼により発生する膨張エネルギによって、内燃機関1の出力軸であるクランクシャフトが回転駆動する。
 また、燃焼後の排気は、燃焼室10から排気通路30を通じて外部に排出される。排気通路30には、酸素吸蔵能力を有する三元触媒(以下、触媒)31が設けられている。触媒31は、同触媒31に流入する排気の空燃比が理論空燃比である場合には、触媒31を通過する排気に含まれる一酸化炭素(以下、CO)や炭化水素(以下、HC)を酸化して浄化するとともに、排気に含まれる窒素酸化物(以下、NOx)を還元して浄化する。また、触媒31は、同触媒31に流入する排気の空燃比が理論空燃比よりもリーンである場合にはNOxを還元して浄化するとともに、同NOxから奪った酸素を同触媒31の内部に吸蔵する。一方、触媒31は、同触媒31に流入する排気の空燃比が理論空燃比よりもリッチである場合には吸蔵している酸素を放出するとともに同酸素によってHCやCOを酸化して浄化する。これにより、排気の空燃比が理論空燃比から一時的にずれた場合であっても、上述した酸素の吸蔵或いは放出を通じて酸素の過剰な状態、或いは不足した状態を補うことで、排気の浄化率を高い状態に維持するようにしている。
 こうした内燃機関1の各種制御は、電子制御装置50により行われる。
 電子制御装置50は、内燃機関1の各種制御の演算処理を行なう中央演算装置(CPU)、各種プログラムやマップ、データ等を予め記憶した読出専用メモリ(ROM)、CPUの演算結果や各種センサの検出結果を一時的に記憶するランダムアクセスメモリ(RAM)、機関停止後においても演算結果を記憶保持することのできるバックアップRAM、及び電子制御装置50と外部との信号の入出力を媒介する入出力ポート(I/O)を備えている。
 こうした電子制御装置50には、内燃機関1の各部に設けられたセンサの検出結果やスイッチの作動状態等の情報が入力されている。具体的には、機関回転速度NEを検出する機関回転速度センサ51、吸入空気量GAを検出する吸入空気量センサ52、スロットルバルブ21の開度(以下、スロットル開度)TAを検出するスロットル開度センサ53が設けられている。また、排気通路30において触媒31の上流側には、触媒31に流入する排気の空燃比を検出する空燃比センサ54が設けられている。また、排気通路30において触媒31の下流側には、触媒31から流出する排気の空燃比を検出する酸素センサ55が設けられている。また、触媒31の温度TCを検出する触媒温度センサ56が設けられている。また、これらセンサ以外にもアクセルペダルの踏み込み量(アクセラレータ操作量)ACCPを検出するアクセラレータ操作量センサ57等の各種のセンサが設けられている。尚、本実施形態では、触媒温度センサ56として、触媒31の温度TCを直接検出する構成を採用している。しかし、本発明に係る温度推定部の構成はこれに限られるものではなく、他に例えば、排気の温度を検出する排気温度センサの検出結果に基づいて触媒31の温度TCを推定する構成や、吸入空気量GAの積算値等に基づいて触媒31の温度を推定する構成を採用することもできる。
 ここで、図2及び図3を参照して、空燃比センサ54及び酸素センサ55の出力特性について説明する。尚、図2は、排気の空燃比と空燃比センサ54の出力電圧Vafとの関係を示すグラフである。また、図3は、排気の空燃比と酸素センサ55の出力電圧Voxとの関係を示すグラフである。
 図2に示すように、空燃比センサ54は、いわゆる全領域空燃比センサであり、空燃比が大きいほど、すなわち空燃比がリーンであるほど大きな電圧Vafを出力する。ちなみに、空燃比が理論空燃比のときには電圧V1を出力する。
 図3に示すように、酸素センサ55は、いわゆるジルコニア板型酸素センサであり、排気の空燃比が理論空燃比よりもリーンであるときには約0Vを出力するとともに、排気の空燃比が理論空燃比よりもリッチであるときには約1Vを出力する。また、排気の空燃比が理論空燃比を挟んでリッチからリーンへ(或いは、リーンからリッチへ)変化するときには電圧Voxは急激に変化する。ちなみに、排気の空燃比が理論空燃比のときには0Vと1Vとの間の電圧V2を出力する。
 電子制御装置50は、上記各センサ51~57をはじめとする各種センサの検出結果により把握される機関運転状態等に基づいて、例えば次の各種制御を実行する。すなわち、機関回転速度NE、吸入空気量GA等に基づいて燃料噴射量Qを算出し、同燃料噴射量Qに応じて燃料噴射弁11を制御する燃料噴射制御を実行する。
 また、電子制御装置50は、空燃比センサ54の検出結果に基づいて混合気の空燃比A/Fを推定し、同空燃比A/Fが目標空燃比に一致するように、燃料噴射量Qに対する空燃比補正値を算出して燃料噴射量を増減補正する空燃比フィードバック制御を実行する。
 ところで、触媒31は燃料に含まれる鉛や硫黄といった成分によって被毒劣化する。また、触媒は高温下におかれることにより熱劣化する。そして、触媒の劣化が進行するほど、触媒31の酸素吸蔵能力、すなわち最大酸素吸蔵量は低下する。
 そこで、本実施形態では、以下のようにして、触媒31の実最大酸素吸蔵量CmaxAを算出するようにしている。すなわち、触媒31に流入する排気の空燃比を強制的に変更する空燃比アクティブ制御を実行するとともに、機関運転状態及び酸素センサ55の出力変化に基づいて触媒31の実最大酸素吸蔵量CmaxAを算出するようにしている。
 ここで、図4を参照して、空燃比アクティブ制御の概要について説明する。尚、図4は、空燃比アクティブ制御の実行時における、(a)触媒に流入する排気の空燃比の推移、(b)酸素センサの出力電圧の推移、(c)触媒の酸素吸蔵量の推移を併せ示すタイミングチャートである。また、図4に示す例では、酸素センサ55に応答遅れ異常が生じていない場合を想定している。また、空燃比アクティブ制御の概要については前述したとおりであるため、重複する説明については割愛する。
 図4に示すように、タイミングt2からタイミングt3までの期間(以下、第1の期間)に触媒31から放出された酸素量が触媒31の最大酸素吸蔵量に相当することから、燃料噴射量Qや排気の空燃比A/Fといった機関運転状態に基づいて単位時間当りに触媒31から放出された酸素量を算出するとともに、これを上記第1の期間(t2~t3)にわたって積算することにより最大酸素吸蔵量Cmax1を算出する。また、タイミングt3からタイミングt4までの期間(以下、第2の期間)に触媒31に流入した酸素量が触媒31の最大酸素吸蔵量に相当することから、機関運転状態に基づいて単位時間当りに触媒31に流入した酸素量を算出するとともに、これを上記第2の期間(t3~t4)にわたって積算することにより最大酸素吸蔵量Cmax2を算出する。ここで、上記第1の期間(t2~t3)と第2の期間(t3~t4)とで最大酸素吸蔵量Cmaxを異なる値として示しているのは、これら第1の期間と第2の期間とで触媒31の温度が異なるためである。本実施形態では、これら最大酸素吸蔵量Cmax1、Cmax2の平均値(=(Cmax1+Cmax2)/2)を実最大酸素吸蔵量CmaxAとして算出している。
 また、本実施形態では、前述したように、触媒31がある程度活性化している温度範囲、図11の例では触媒の温度TCがT1からT4までの範囲においては、触媒31の温度TCと最大酸素吸蔵量Cmaxとの関係を一次式により近似することができること、及び触媒31の劣化度合に応じて一次式の傾きGが異なることに着目することで、以下のようにして、実最大酸素吸蔵量CmaxAの算出機会の拡大を図るようにしている。
 すなわち、触媒の温度TCと実最大酸素吸蔵量CmaxAとの間に成立する関数、具体的には一次式の傾きGを、触媒31の劣化度合毎に予め求めておき、触媒31の温度TCと実最大酸素吸蔵量CmaxAとの関係、及びこれら関係に対応した触媒31の劣化度合を特定する一次式の傾きGを例えばマップとして電子制御装置50のROMに記憶させておく。また、劣化度合が異なるにも拘わらず実最大酸素吸蔵量CmaxAが同一の値として算出されることのないように、触媒の温度TCが学習温度範囲内(図11の例では、T2<触媒温度TC<T3)にあるときに算出された触媒31の実最大酸素吸蔵量CmaxAと、同実最大酸素吸蔵量CmaxAの算出期間における触媒の温度TCとに基づいて、上記マップを参照することにより、触媒31の劣化度合に対応した一次式の傾きGを決定する。また、決定した傾きGを電子制御装置50のバックアップRAMに記憶させることにより同傾きGの学習を行なう。そして、触媒31の実最大酸素吸蔵量CmaxAが新たに算出されたときには、その算出期間における触媒の温度TC、より詳しくは同算出期間における触媒31の温度TCの平均値TCave、基準温度TCb(T2<TCb<T3)、一次式としての式(2)、及び既に学習されている一次式の傾きGに基づいて、算出された実最大酸素吸蔵量CmaxAを補正する。これにより、その算出期間における触媒の温度TCaveが基準温度TCbであると仮定した場合の最大酸素吸蔵量である補正後最大酸素吸蔵量Cmaxnrmlを算出する。
 
   Cmaxnrml = CmaxA + G ・ (TCb - TCave)   ・・・(2)
 
 次に、図5を参照して、上述した補正後最大酸素吸蔵量Cmaxnrmlの算出処理の処理手順について説明する。尚、図5は、同処理の手順を示すフローチャートである。このフローチャートに示される一連の処理は、内燃機関1の運転中において実最大酸素吸蔵量CmaxAが算出される毎に実行される。
 図5に示すように、この一連の処理では、まず、ステップS1において、直前に算出された実最大酸素吸蔵量CmaxAを読み込む。そして、次に、ステップS2に進んで、実最大酸素吸蔵量CmaxAの算出期間における触媒31の温度の平均値TCaveを読み込む。そして、次に、ステップS3に進んで、上記式(2)に、実最大酸素吸蔵量CmaxA及び触媒31の温度の平均値TCaveを代入することにより、補正後最大酸素吸蔵量Cmaxnrmlを算出し、この一連の処理を終了する。
 次に、図6を参照して、上述した一次式における傾きGの学習処理の処理手順について説明する。尚、図6は、同処理の手順を示すフローチャートである。このフローチャートに示される一連の処理は、内燃機関1の運転中において実最大酸素吸蔵量CmaxAが算出される毎に実行される。
 図6に示すように、この一連の処理では、まず、ステップS11において、直前に算出された実最大酸素吸蔵量CmaxAを読み込む。そして、次に、ステップS12に進んで、実最大酸素吸蔵量CmaxAの算出期間における触媒31の温度の平均値TCaveを読み込む。そして、次に、ステップS13に進んで、触媒31の温度の平均値TCaveが学習温度範囲内にあるか否かを判断する。その結果、触媒31の温度の平均値TCaveが学習温度範囲内にある場合(ステップS13:「YES」)には、次に、ステップS14に進んで、上記マップを参照することにより、実最大酸素吸蔵量CmaxA及び触媒31の温度の平均値TCaveの関係に対応した、すなわち触媒31の劣化度合に対応した一次式の傾きGを決定するとともに、これをバックアップRAMに記憶することにより同傾きGを学習する。ちなみに、本発明に係る学習部は、直前の学習処理において読み込まれた実最大酸素吸蔵量CmaxA及び触媒31の温度TCaveのみに基づいて傾きGの学習を行うものに限られるものではなく、他に例えば、直前に算出された実最大酸素吸蔵量Cmax及び触媒31の温度TCaveを含む過去N回分のデータに基づいて傾きGの学習を行うものとすることもできる。
 一方、ステップS13において、触媒31の温度の平均値TCaveが学習温度範囲内にない場合(ステップS3:「NO」)には、傾きGを学習する状態ではないとして、この一連の処理を終了する。
 このようにして補正後最大酸素吸蔵量Cmaxnrmlを算出することにより、触媒31の最大酸素吸蔵量と判定値との比較に基づいて同触媒31の劣化度合を判定する構成にあっては、触媒31の温度TC毎に判定値を準備する必要がなくなるため、当該判定を簡易なものとすることができる。
 ところで、前述したように、内燃機関1の排気浄化装置にあっては、酸素センサ55の出力Voxに応答遅れが生じるおそれがある。この場合、酸素センサ55の出力Voxの応答遅れに起因して実最大酸素吸蔵量CmaxAの算出精度が低下することから、そうした実最大酸素吸蔵量CmaxAに基づいて、触媒31の劣化度合に対応した一次式の傾きGが学習され、同傾きGに基づいて補正後最大酸素吸蔵量Cmaxnrmlが算出される。その結果、補正後最大酸素吸蔵量Cmaxnrmlを精度良く算出することができないといった問題が生じる。
 そこで、本実施形態では、酸素センサ55の出力Voxの応答遅れ異常を検出するとともに、酸素センサ55の出力Voxの応答遅れ異常を検出した場合に、学習されている一次式の傾きGを破棄するようにしている。これにより、酸素センサ55の出力Voxの応答遅れが生じることに起因して補正後最大酸素吸蔵量Cmaxnrmlの算出精度が低下することを抑制するようにしている。
 具体的には、燃料カット制御の実行中に、酸素センサ55の出力Voxがリーン反転する際の応答時間を検出するとともに、検出された応答時間と酸素センサ55の出力Voxが正常である場合における出力Voxの応答時間との偏差である応答遅れ時間τLを検出するようにしている。また、排気の空燃比を強制的に理論空燃比よりもリッチにする強制リッチ化制御の実行中に、酸素センサ55の出力Voxがリッチ反転する際の応答時間を検出するとともに、検出された応答時間と酸素センサ55の出力Voxが正常である場合における出力Voxの応答時間との偏差である応答遅れ時間τRを検出するようにしている。
 次に、図7を参照して、酸素センサ55の出力Voxがリーン反転する際の応答遅れ時間τLの検出態様について説明する。尚、図7は、燃料カット制御の実行に伴う、(a)触媒に流入する排気の空燃比の推移、及び(b)酸素センサの出力の推移を併せ示すタイミングチャートである。また、同図において正常な酸素センサ55の出力Voxの推移の一例を実線にて示すとともに、リーン反転の際に所定の応答遅れがある場合における酸素センサ55の出力Voxの推移の一例を一点鎖線にて示している。
 図7に示すように、タイミングt11において燃料カット制御が開始されると、触媒31に流入する排気の空燃比が理論空燃比よりもリーンになる。これにより、触媒31は酸素を吸蔵するようになる。そして、触媒がこれ以上酸素を吸蔵することができなくなると、触媒31から下流側にリーンな排気が流出するようになることから、図7に実線にて示すように、酸素センサ55の出力Voxは、タイミングt12から低下し始め、タイミングt13にV2となり、タイミングt14に0Vとなる(リーン反転)。一方、リーン反転の際に所定の応答遅れがある場合には、図7に一点鎖線にて示すように、酸素センサ55の出力Voxは、タイミングt12から低下し始め、タイミングt14にV2となり、タイミングt15に0Vとなる。ここで、正常な酸素センサ55において、その出力Voxが低下し始めてから0Vとなるまでの時間(基準応答時間Δtb=t14-t12)を予め計測しておく。そして、燃料カット制御の実行中に、酸素センサ55の出力Voxが低下し始めるタイミングから0Vとなるまでの時間(実応答時間Δt=t15-t12)を計測するとともに、実応答時間Δtから基準応答時間Δtbを減じることにより応答遅れ時間τを算出する。
 次に、図8を参照して、酸素センサ55の出力Voxがリッチ反転する際の応答遅れ時間τRの検出態様について説明する。尚、図8は、排気の空燃比を強制的に理論空燃比よりもリッチにする強制リッチ化制御の実行に伴う、(a)触媒に流入する排気の空燃比の推移、及び(b)酸素センサの出力の推移を併せ示すタイミングチャートである。また、同図において正常な酸素センサ55の出力Voxの推移の一例を実線にて示すとともに、リッチ反転の際に所定の応答遅れがある場合における酸素センサ55の出力Voxの推移の一例を一点鎖線にて示している。
 図8に示すように、タイミングt21において強制リッチ化制御が開始されると、触媒31に流入する排気の空燃比が理論空燃比よりもリッチになる。これにより、触媒31は酸素を放出するようになる。そして、触媒がこれ以上酸素を放出することができなくなると、触媒31から下流側にリッチな排気が流出するようになることから、図8に実線にて示すように、酸素センサ55の出力Voxは、タイミングt22から上昇し始め、タイミングt23にV2となり、タイミングt23に1Vとなる(リッチ反転)。一方、リッチ反転の際に所定の応答遅れがある場合には、図8に一点鎖線にて示すように、酸素センサ55の出力Voxは、タイミングt22から上昇し始め、タイミングt24にV2となり、タイミングt25に1Vとなる。ここで、正常な酸素センサ55において、その出力Voxが上昇し始めてから1Vとなるまでの時間(基準応答時間Δtb=t24-t22)を予め計測しておく。そして、燃料カット制御の実行中に、酸素センサ55の出力Voxが上昇し始めるタイミングから1Vとなるまでの時間(実応答時間Δt=t25-t22)を計測するとともに、実応答時間Δtから基準応答時間Δtbを減じることにより応答遅れ時間τを算出する。
 次に、図9を参照して、上述した傾きGの破棄処理の処理手順について説明する。尚、図9は、同処理の手順を示すフローチャートである。このフローチャートに示される一連の処理は、内燃機関1の運転中において所定周期毎に繰り返し実行される。
 図9に示すように、この一連の処理では、まず、ステップS21において、酸素センサ55の出力Voxの応答遅れ時間τ(τL,τR)が検出されたか否かを判断する。すなわち、上述した燃料カット制御或いは強制リッチ化制御の実行を通じて応答遅れ時間τが新たに算出されたか否かを判断する。ここで、応答遅れ時間τが検出された場合(ステップS21:「YES」)には、次に、ステップS22に進んで、検出された応答遅れ時間τが所定時間τth以上であるか否かを判断する。その結果、応答遅れ時間τが所定時間τth以上である場合(ステップS22:「YES」)には、次に、ステップS23に進んで、これまでに算出された触媒31の実最大酸素吸蔵量CmaxAの信頼性が低く、そうした実最大酸素吸蔵量CmaxAに基づいて学習された一次式の傾きGの信頼性が低いとして、それまでに学習されている傾きGを破棄する。すなわち、バックアップRAMに記憶されている傾きGを消去する。そして、この一連の処理を一旦終了する。尚、上記所定時間τthとしては、実最大酸素吸蔵量CmaxAの算出精度の低下を許容することのできる応答遅れ時間τの最大値と同一の値として設定されることが望ましい。本実施形態では、触媒31及び酸素センサ55を用いた実験を通じて上記所定時間τthを設定している。
 一方、酸素センサ55の出力Voxの応答遅れ時間τが検出されていないと判断した場合(ステップS21:「NO」)や、応答遅れ時間τが所定時間τth未満である場合(ステップS22:「NO」)には、学習されている傾きGを破棄する条件が成立していないとして、この一連の処理を一旦終了する。
 更に、本実施形態では、酸素センサ55の出力Voxの応答遅れ異常を検出して、それまでに学習されている一次式の傾きGを破棄した場合には、それ以降、触媒31の実最大酸素吸蔵量CmaxAを算出する際に、酸素センサ55の出力Voxの応答遅れ時間τを加味するようにしている。これにより、学習されている傾きGを破棄したことに起因して触媒31の実最大酸素吸蔵量CmaxAの算出精度が低下することを抑制するようにしている。
 以上説明した本実施形態に係る内燃機関の排気浄化装置によれば、以下に示す作用効果が得られるようになる。
 内燃機関1の排気浄化装置は、排気通路30に設けられるとともに酸素吸蔵能力を有する触媒31と、触媒31の排気下流側に設けられる酸素センサ55とを備える。また、電子制御装置50は、機関運転状態及び酸素センサ55の出力変化に基づいて触媒31の実最大酸素吸蔵量CmaxAを算出する。また、電子制御装置50は、触媒31が所定の劣化度合であるときの触媒31の温度TCと同温度TCにおける触媒31の最大酸素吸蔵量Cmaxとの間に成立する一次式の傾きGを触媒31の劣化度合毎に予め記憶する。また、触媒31の実最大酸素吸蔵量CmaxAが算出されたとき、当該算出期間における触媒31の温度TCが所定の学習温度範囲内にある場合に、当該触媒31の温度TC及び実最大酸素吸蔵量CmaxAに基づいてそのときの触媒の劣化度合に対応した一次式の傾きGを学習する。また、触媒31の実最大酸素吸蔵量CmaxAが算出されたとき、当該算出期間における触媒31の温度TCが基準温度TCbであると仮定した場合の最大酸素吸蔵量である補正後最大酸素吸蔵量Cmaxnrmlを算出すべく、当該算出期間における触媒31の温度TC、基準温度TCb、一次式、及び既に学習されている一次式の傾きGに基づいて、実最大酸素吸蔵量CmaxAを補正する。そして、酸素センサ55の出力Voxの応答遅れ異常を検出するとともに、酸素センサ55の出力Voxの応答遅れ異常を検出した場合に、学習されている一次式の傾きGを破棄するようにしている。これにより、酸素センサ55の出力Voxの応答遅れ異常を検出した場合には、当該判定までに算出された触媒31の実最大酸素吸蔵量CmaxAの信頼性が低く、そうした実最大酸素吸蔵量CmaxAに基づいて学習された一次式の傾きGの信頼性が低いとして、それまでに学習されている傾きGが破棄されるようになる。このため、信頼性の低い傾きGに基づいて触媒31の補正後最大酸素吸蔵量Cmaxnrmlが算出されることを抑制することができるようになる。従って、酸素センサ55の出力Voxの応答遅れが生じることに起因して補正後最大酸素吸蔵量Cmaxnrmlの算出精度が低下することを抑制することができるようになる。
 尚、本発明にかかる内燃機関の排気浄化装置は、上記実施形態にて例示した構成に限定されるものではなく、これを適宜変更した例えば次のような形態として実施することもできる。
 ・上記実施形態では、触媒31の排気下流側に設けられる酸素センサ55としてジルコニア板型酸素センサを採用しているが、本発明はこれに限られるものではなく、他に例えば、酸素センサとして全領域空燃比センサを採用するようにしてもよい。また、触媒31の排気上流側に設けられる空燃比センサは必須の構成ではなく、これに代えて、酸素センサ55と同一の酸素センサを設けるようにしてもよい。
 ・上記実施形態では、燃料噴射量Qや排気の空燃比A/Fといった機関運転状態に基づいて触媒31の最大酸素吸蔵量Cmaxを算出するようにしているが、これに代えて、吸入空気量センサ52により検出される吸入空気量GAに基づいて触媒31の最大酸素吸蔵量Cmaxを算出するようにしてもよい。
 ・上記実施形態では、空燃比アクティブ制御の実行中に触媒31の最大酸素吸蔵量Cmax1、Cmax2を算出するようにしているが、本発明に係る算出部の構成はこれに限られるものではなく、他に例えば、燃料カット制御の実行中や、燃料カット制御の実行後における強制リッチ化制御の実行中に最大酸素吸蔵量Cmaxを算出するものとしてもよい。また、このように排気の空燃比を強制的にリッチ或いはリーンに制御する際に触媒の最大酸素吸蔵量を算出するものに限られるものではなく、要するに、機関運転状態及び酸素センサ55の出力変化に基づいて触媒31の最大酸素吸蔵量を算出するものであればよい。
 ・上記実施形態では、触媒31が所定の劣化度合であるときの触媒31の温度TCと同温度TCにおける触媒31の最大酸素吸蔵量Cmaxとの関係が、一次式にて近似されることを利用するとともに、電子制御装置50を通じて一次式の傾きGを学習するようにしている。しかしながら、本発明に係る学習部の構成はこれに限られるものではなく、上記関係が、2次式等の他の近似式にて近似される場合には、電子制御装置50を通じて当該近似式の係数を学習するようにすればよい。
 1…内燃機関、10…燃焼室、11…燃料噴射弁、20…吸気通路、21…スロットルバルブ、30…排気通路、31…触媒、50…電子制御装置(記憶部、補正部、検出部、破棄部)、51…機関回転速度センサ、52…吸入空気量センサ、53…スロットル開度センサ、54…空燃比センサ、55…酸素センサ、56…触媒温度センサ、57…アクセル開度センサ。

Claims (4)

  1.  内燃機関の排気通路に設けられるとともに酸素吸蔵能力を有する触媒と、
     前記排気通路において前記触媒の排気下流側に設けられる酸素センサと、
     機関運転状態及び前記酸素センサの出力変化に基づいて前記触媒の最大酸素吸蔵量を算出する算出部と、
     前記触媒の温度を推定する温度推定部と、
     前記触媒が所定の劣化度合であるときの触媒の温度と同温度における触媒の最大酸素吸蔵量との間に成立する関数を前記触媒の劣化度合毎に予め記憶する記憶部と、
     前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度が所定の学習温度範囲内にある場合に、当該触媒の温度及び最大酸素吸蔵量に基づいてそのときの触媒の劣化度合に対応した前記関数を学習する学習部と、
     前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間における触媒の温度が基準温度であると仮定した場合の最大酸素吸蔵量である補正後最大酸素吸蔵量を算出すべく、当該算出期間において推定された触媒の温度、前記基準温度、既に学習されている前記関数に基づいて、前記算出部により算出された最大酸素吸蔵量を補正する補正部と、
     前記酸素センサの出力の応答遅れ異常を検出する異常検出部と、
     前記異常検出部により前記酸素センサの出力の応答遅れ異常を検出した場合に、前記学習部により学習されている前記関数を破棄する破棄部と、
     を備える内燃機関の排気浄化装置。
  2.  請求項1に記載の内燃機関の排気浄化装置において、
     前記異常検出部は前記酸素センサの出力の応答時間を検出するとともに、同検出された応答時間と前記酸素センサの出力が正常である場合における出力の応答時間との乖離度合が所定度合以上である場合に前記酸素センサの出力の応答遅れ異常が有ると判断する
     ことを特徴とする内燃機関の排気浄化装置。
  3.  請求項1又は請求項2に記載の内燃機関の排気浄化装置において、
     前記触媒が所定の劣化度合であるときの触媒の温度と同温度における触媒の最大酸素吸蔵量との関係は所定の近似式にて近似され、
     前記記憶部は、前記近似式における係数を前記触媒の劣化度合毎に予め記憶し、
     前記学習部は、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度及び最大酸素吸蔵量に基づいてそのときの触媒の劣化度合に対応した前記係数を学習し、
     前記補正部は、前記算出部により前記触媒の最大酸素吸蔵量が算出されたとき、当該算出期間において推定された触媒の温度、前記基準温度、前記近似式、及び既に学習されている前記係数に基づいて、前記算出部により算出された最大酸素吸蔵量を補正する
     ことを特徴とする内燃機関の排気浄化装置。
  4.  請求項3に記載の内燃機関の排気浄化装置において、
     前記所定の近似式は一次式であり、
     前記係数は前記一次式の傾きである
     ことを特徴とする内燃機関の排気浄化装置。
PCT/JP2010/056622 2010-04-13 2010-04-13 内燃機関の排気浄化装置 WO2011128983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/056622 WO2011128983A1 (ja) 2010-04-13 2010-04-13 内燃機関の排気浄化装置
US13/640,452 US8826642B2 (en) 2010-04-13 2010-04-13 Device for purifying exhaust gas of internal combustion engine
JP2012510497A JP5338974B2 (ja) 2010-04-13 2010-04-13 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056622 WO2011128983A1 (ja) 2010-04-13 2010-04-13 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2011128983A1 true WO2011128983A1 (ja) 2011-10-20

Family

ID=44798376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056622 WO2011128983A1 (ja) 2010-04-13 2010-04-13 内燃機関の排気浄化装置

Country Status (3)

Country Link
US (1) US8826642B2 (ja)
JP (1) JP5338974B2 (ja)
WO (1) WO2011128983A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045814A (ja) * 2018-09-19 2020-03-26 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348190B2 (ja) * 2011-06-29 2013-11-20 トヨタ自動車株式会社 内燃機関の制御装置
JP6597101B2 (ja) * 2015-09-16 2019-10-30 三菱自動車工業株式会社 排気浄化制御装置
US9745909B2 (en) * 2015-10-01 2017-08-29 Ford Global Technologies, Llc Radio frequency control of air-fuel ratio
KR101816426B1 (ko) * 2016-08-01 2018-01-08 현대자동차주식회사 촉매 히팅 제어방법
FR3058183B1 (fr) * 2016-11-03 2018-11-30 Peugeot Citroen Automobiles Sa Procede de diagnostic d’un organe de traitement catalytique des gaz d’echappement
CN111102088B (zh) * 2018-10-26 2023-03-03 丰田自动车株式会社 内燃机的控制装置
JP7211072B2 (ja) * 2018-12-26 2023-01-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102019201293A1 (de) * 2018-12-27 2020-07-02 Robert Bosch Gmbh Verfahren zur Unterscheidung zwischen Modellungenauigkeiten und Lambdaoffsets für eine modellgestützte Regelung des Füllstands eines Katalysators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028029A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 触媒劣化判定装置
JP2004225684A (ja) * 2002-11-27 2004-08-12 Toyota Motor Corp 酸素センサの異常検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100635A (ja) 1994-09-30 1996-04-16 Mitsubishi Motors Corp 内燃エンジンの触媒劣化検出装置
JP3868693B2 (ja) * 1999-03-03 2007-01-17 日産自動車株式会社 内燃機関の空燃比制御装置
JP3627612B2 (ja) 1999-07-28 2005-03-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置及び触媒劣化判定装置
JP3680217B2 (ja) * 2000-06-26 2005-08-10 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US6453661B1 (en) * 2001-06-20 2002-09-24 Ford Global Technologies, Inc. System and method for determining target oxygen storage in an automotive catalyst
JP2005098205A (ja) 2003-09-25 2005-04-14 Toyota Motor Corp 内燃機関の空燃比制御装置
JP5062529B2 (ja) * 2008-02-28 2012-10-31 トヨタ自動車株式会社 触媒の劣化を診断するための装置及び方法
JP2010043624A (ja) 2008-08-18 2010-02-25 Toyota Motor Corp 内燃機関の触媒劣化判定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028029A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 触媒劣化判定装置
JP2004225684A (ja) * 2002-11-27 2004-08-12 Toyota Motor Corp 酸素センサの異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045814A (ja) * 2018-09-19 2020-03-26 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
US8826642B2 (en) 2014-09-09
JP5338974B2 (ja) 2013-11-13
US20130199161A1 (en) 2013-08-08
JPWO2011128983A1 (ja) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5338974B2 (ja) 内燃機関の排気浄化装置
JP5029718B2 (ja) 内燃機関の排気浄化装置
JP3680217B2 (ja) 内燃機関の空燃比制御装置
JP4835497B2 (ja) 内燃機関の空燃比制御装置
JP4292909B2 (ja) 内燃機関の空燃比制御装置
JP4438681B2 (ja) 内燃機関の空燃比制御装置
KR20070091689A (ko) 내연 기관의 공연비 제어 장치
JP2012036806A (ja) 触媒劣化検出装置
US7788903B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JPH11311142A (ja) 内燃機関の空燃比制御装置
JP5515967B2 (ja) 診断装置
JP5407971B2 (ja) 異常診断装置
CN112576394A (zh) 建模以补偿hego传感器漂移
JP4661691B2 (ja) 内燃機関の空燃比制御装置
JP4419952B2 (ja) 内燃機関の空燃比制御装置
JP5077047B2 (ja) 内燃機関の制御装置
JP2007032438A (ja) 内燃機関の空燃比制御装置
JP4449603B2 (ja) 内燃機関の燃料噴射制御装置
JP4274062B2 (ja) 酸素センサの異常診断装置
JP2010112353A (ja) 内燃機関の空燃比制御装置
JP4291492B2 (ja) 内燃機関の空燃比制御装置
JP2681965B2 (ja) 内燃機関の空燃比制御装置
JP2007239462A (ja) 内燃機関の空燃比制御装置
JP2005163677A (ja) 内燃機関の制御装置
JP2600772B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849821

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012510497

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13640452

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10849821

Country of ref document: EP

Kind code of ref document: A1