WO2011125637A1 - ゴム組成物及びそれを用いたタイヤ - Google Patents

ゴム組成物及びそれを用いたタイヤ Download PDF

Info

Publication number
WO2011125637A1
WO2011125637A1 PCT/JP2011/057754 JP2011057754W WO2011125637A1 WO 2011125637 A1 WO2011125637 A1 WO 2011125637A1 JP 2011057754 W JP2011057754 W JP 2011057754W WO 2011125637 A1 WO2011125637 A1 WO 2011125637A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conjugated diene
carbon atoms
rubber composition
carbon black
Prior art date
Application number
PCT/JP2011/057754
Other languages
English (en)
French (fr)
Inventor
隆嗣 田中
秀忠 藤澤
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2012509477A priority Critical patent/JPWO2011125637A1/ja
Publication of WO2011125637A1 publication Critical patent/WO2011125637A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition and a pneumatic tire using the same. More specifically, the present invention relates to a rubber composition capable of reducing rolling resistance while improving durability such as wear resistance and tear resistance, and a tire including the rubber composition.
  • Patent Documents 1 and 2 a rubber using a modified conjugated diene polymer in which an amino group is introduced at a polymerization active terminal as a rubber component and carbon black as a filler in order to reduce rolling resistance.
  • Compositions have been proposed.
  • Patent Document 3 discloses a rubber composition that can achieve both tire wear resistance and rolling resistance by improving the dispersibility of carbon black using a terminal-modified polymer such as terminal-modified polybutadiene rubber. Things are disclosed.
  • the improvement in tire wear resistance is thought to be governed by the particle size and structure of the carbon black compounded in the rubber composition of the tire.
  • a tire tread is produced with such a rubber composition, it is excellent in wear resistance but inferior in fuel efficiency. That is, regarding the particle size of carbon black, wear resistance and low heat build-up are in a trade-off relationship.
  • the present invention has been made under such circumstances, and provides a rubber composition capable of reducing rolling resistance while improving durability such as wear resistance and tear resistance when used as a tire.
  • the purpose is to do.
  • Another object of the present invention is to provide a tire using such a rubber composition, in which wear resistance and rolling resistance are highly balanced.
  • the present inventor has found that the object can be achieved by a rubber composition containing carbon black having a specific property obtained by a specific process. I found it.
  • the present invention has been completed based on such findings. That is, the present invention [1] A rubber component containing a conjugated diene polymer having at least one selected from a silicon atom, a tin atom, a sulfur atom, an oxygen atom, and a titanium atom in any one of a polymerization active terminal, a polymerization start terminal, and a polymerization chain
  • a reaction apparatus in which a combustion gas generation zone, a reaction zone, and a reaction stop zone are connected in series, high-temperature combustion gas is generated in the combustion gas generation zone, and then a raw material is sprayed into the reaction zone.
  • a carbon black for rubber compounding obtained by quenching the reaction gas stream containing the carbon black in the reaction stop zone and terminating the reaction, A rubber composition in which the carbon black for rubber blending satisfies the following relational expressions (1) and (2): 10 ⁇ X ⁇ 40 (1) 90 ⁇ Z ⁇ 100 (2) (However, X represents the toluene coloring permeability (%) of carbon black after introduction of the first quenching medium from the raw material introduction position, and Z represents the toluene coloring permeability of carbon black after the last quenching medium introduction ( %).)
  • the rubber composition according to [1] which is a conjugated diene polymer
  • the modified conjugated diene polymer has the following general formula (I) at the active site of the conjugated diene polymer having an organometallic active site in the molecule.
  • R a MX b (I) Wherein R is independently selected from an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • M is tin or silicon
  • X is independently chlorine, bromine or iodine
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b 4).
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms and an aralkyl having 7 to 20 carbon atoms.
  • M is tin or silicon
  • X is independently chlorine, bromine or iodine
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b 4
  • a rubber composition according to [2] which is a modified conjugated diene polymer obtained by reacting at least one modifier selected from compounds represented by [4]
  • the modified conjugated diene polymer has, in the active site of the conjugated diene polymer having an organometallic active site in the molecule, the following general formula (III):
  • a + b + c 4 (where b is an integer of 1 to 3, a is an integer of 0 to 2, and c is an integer of 1 to 3), and A is a saturated cyclic tertiary amine compound residue, Unsaturated cyclic tertiary amine compound residue, imine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester residue, carbonic acid dihydrocarbyl ester residue, nitrile group, pyridine group , (Thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid hydrocarbyl ester residue, metal salt residue of (thio) carboxylic acid ester residue, carboxylic acid anhydride residue, carboxylic acid halogen A compound residue, and at least one functional group selected from a secondary amino group or a mercapto group having a hydrolyzable
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms or a halogen atom, and is the same when R 1 is plural. May be different.
  • R 2 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 2 is plural, they are the same or different.
  • R 3 is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 3 is plural, they may be the same or different. Good.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms and an aralkyl having 7 to 20 carbon atoms.
  • M is tin or silicon
  • X is independently chlorine, bromine or iodine
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b 4 Is
  • a + b + c 4 (where b is an integer of 1 to 3, a is an integer of 0 to 2, and c is an integer of 1 to 3), and A is a saturated cyclic tertiary amine compound residue, Unsaturated cyclic tertiary amine compound residue, imine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester residue, carbonic acid dihydrocarbyl ester residue, nitrile group, pyridine group , (Thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid hydrocarbyl ester residue, metal salt residue of (thio) carboxylic acid ester residue, carboxylic acid anhydride residue, carboxylic acid halogen A compound residue, and at least one functional group selected from a secondary amino group or a mercapto group having a hydrolyzable
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms or a halogen atom, and is the same when R 1 is plural. May be different.
  • R 2 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 2 is plural, they are the same or different.
  • R 3 is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 3 is plural, they may be the same or different.
  • Good. ) [6] The rubber composition according to any one of [2] to [5], wherein the modified conjugated diene polymer further contains a nitrogen atom,
  • the rubber composition according to [1], wherein the conjugated diene polymer is a (co) polymer of a conjugated diene compound.
  • the conjugated diene polymer is a copolymer of an aromatic vinyl compound and a conjugated diene compound.
  • the conjugated diene polymer contains 1% by mass or more and 60% by mass or less of a structural unit derived from an aromatic vinyl compound, and the vinyl bond content in the conjugated diene part is 5% by mass or more and 80% by mass or less.
  • the carbon black for rubber blending has the following relational expressions (6), (7) and (8): 20 ⁇ X ⁇ 40 (6) 50 ⁇ Y ⁇ 60 (7) 90 ⁇ Z ⁇ 95 (8) (In the formula, Y represents the toluene coloring permeability of carbon black after introduction of the second quenching medium, and X and Z are the same as described above.)
  • Dibutyl phthalate absorption amount (DBP) in the carbon black for rubber compounding is 95 mL / 100 g or more and 220 mL / 100 g or less
  • a carbon black having a specific property obtained by a specific process is contained in a rubber component containing a modified conjugated diene polymer in a predetermined ratio, so that it has a wear resistance when used as a tire.
  • a rubber composition capable of reducing rolling resistance while improving durability such as tear resistance is provided.
  • the tire obtained by using the rubber composition of the present invention has a high balance between wear resistance and rolling resistance.
  • the rubber composition of the present embodiment is a conjugated diene system having at least one selected from a silicon atom, a tin atom, a sulfur atom, an oxygen atom and a titanium atom in any one of a polymerization active terminal, a polymerization start terminal and a polymerization chain
  • a reaction apparatus in which a rubber component containing a polymer, a combustion gas generation zone, a reaction zone, and a reaction stop zone are connected in series, high-temperature combustion gas is generated in the combustion gas generation zone, and then the reaction A raw material is sprayed into the zone to convert it to carbon black, and a reaction gas flow containing the carbon black is quenched in the reaction stop zone to terminate the reaction. It is a waste.
  • the carbon black used in the rubber composition of the present embodiment has a toluene coloring transmittance satisfying a specific range, so that the tar content existing on the surface is sufficiently small, and the composite of carbon black and rubber molecules is efficient. As a result, the abrasion resistance and low heat build-up of the rubber composition can be improved. Furthermore, in the rubber composition of the present embodiment, the dispersibility of carbon black is greatly increased by using a modified conjugated diene-based polymer having a functional group having a specific structure together with carbon black having a small tar component present on the surface. In order to improve, the hysteresis loss in a rubber composition can be reduced, fully exhibiting the reinforcement effect of carbon black.
  • the wear resistance, tear resistance and rolling resistance of the tire can be sufficiently improved.
  • the rubber composition of the present embodiment has high dispersibility of carbon black, even if a predetermined amount of carbon black is blended, it is possible to ensure the effect of reducing hysteresis loss. Abrasion and tear resistance can also be improved easily.
  • the rubber component includes at least one selected from a silicon atom, a tin atom, a sulfur atom, an oxygen atom, and a titanium atom, any one of a polymerization active terminal, a polymerization start terminal, and a polymerization chain. Conjugated diene polymers are included.
  • the conjugated diene polymer in the present embodiment can be produced as a polymer having an organometallic active site in the molecule, and the production method is not particularly limited, and is a solution polymerization method, a gas phase polymerization method, Any of the bulk polymerization methods can be used, but the solution polymerization method is particularly preferable. Moreover, any of a batch type and a continuous type may be sufficient as the superposition
  • the metal of the active site is preferably one selected from alkali metals and alkaline earth metals, and lithium metal is particularly preferable.
  • a target polymer can be produced by anionic polymerization of a conjugated diene compound alone or a conjugated diene compound and an aromatic vinyl compound using a lithium compound as a polymerization initiator.
  • a conjugated diene polymer in the present embodiment a polymer or copolymer of a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound are copolymerized from the viewpoint that the glass transition temperature can be controlled.
  • a conjugated diene polymer is preferred.
  • a halogen-containing monomer and activate the halogen atom in the polymer with an organometallic compound.
  • organometallic compound for example, it is also effective to lithiate the bromine moiety of a copolymer containing an isobutylene unit, a paramethylstyrene unit and a parabromomethylstyrene unit to form an active site.
  • the active site may be present in the polymer molecule, and may be present in any of the polymerization active terminal, the polymerization initiation terminal and the polymerization chain.
  • the active site is located at the end of the polymer.
  • the compound containing at least one selected from a silicon atom, a tin atom, a sulfur atom, an oxygen atom and a titanium atom is reacted with the active terminal, the conjugated diene polymer in the present embodiment can be obtained. .
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene, and the like. These may be used alone or in combination of two or more, and among these, 1,3-butadiene and isoprene are particularly preferred.
  • aromatic vinyl compounds used for copolymerization with these conjugated diene compounds include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, and 4-cyclohexylstyrene. 2,4,6-trimethylstyrene and the like. These may be used singly or in combination of two or more, but among these, styrene is particularly preferable.
  • the monomer concentration in the solvent is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 30% by mass.
  • the content of the aromatic vinyl compound in the charged monomer mixture is preferably in the range of 1 to 60% by mass, more preferably 5 to 45% by mass. % Range is preferred.
  • the lithium compound of the polymerization initiator is not particularly limited, but hydrocarbyl lithium and lithium amide compounds are preferably used.
  • hydrocarbyl lithium When the former hydrocarbyl lithium is used, it has a hydrocarbyl group at the polymerization initiation terminal and the other terminal.
  • a conjugated diene polymer having a polymerization active site is obtained.
  • the latter lithium amide compound When the latter lithium amide compound is used, a conjugated diene polymer having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site is obtained.
  • hydrocarbyl lithium those having a hydrocarbyl group having 2 to 20 carbon atoms are preferable.
  • examples include lithium, phenyl lithium, 2-naphthyl lithium, 2-butyl-phenyl lithium, 4-phenyl-butyl lithium, cyclohexyl lithium, cyclopentyl lithium, and reaction products of diisopropenylbenzene and butyl lithium.
  • n-butyllithium is preferred.
  • lithium amide compound for example, lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium dipropyl amide, lithium Diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiperazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium methylbutyramide, lithium ethylbenzylamide, Examples include lithium methyl phenethyl amide.
  • lithium hexamethylene imide lithium pyrrolidide
  • lithium piperidide lithium heptamethylene imide
  • lithium dodecamethylene imide is preferable from the viewpoint of the interaction effect on carbon black and the ability to initiate polymerization.
  • Particularly preferred are lithium hexamethylene imide and lithium pyrrolidide.
  • These lithium amide compounds are generally prepared in advance from a secondary amine and a lithium compound in the polymerization, but can also be prepared in-polymerization in situ.
  • the amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of monomer.
  • a conventionally well-known method can be used. Specifically, in an organic solvent inert to the reaction, for example, in a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound, a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound are used.
  • the desired conjugated diene polymer can be obtained by subjecting the lithium compound as a polymerization initiator to anionic polymerization in the presence of a randomizer to be used, if desired.
  • the hydrocarbon solvent is preferably one having 3 to 8 carbon atoms.
  • the randomizer used as desired is a control of the microstructure of the conjugated diene polymer, such as an increase in 1,2 bonds in the butadiene moiety in the butadiene-styrene copolymer, an increase in 3,4 bonds in the isoprene polymer, or the like. It is a compound having an action of controlling the composition distribution of monomer units in a conjugated diene compound-aromatic vinyl compound copolymer, for example, randomizing butadiene units and styrene units in a butadiene-styrene copolymer.
  • the randomizer is not particularly limited, and an arbitrary one can be appropriately selected from known compounds generally used as a conventional randomizer.
  • potassium salts such as potassium-t-amylate and potassium-t-butoxide, and sodium salts such as sodium-t-amylate can also be used.
  • One of these randomizers may be used alone, or two or more thereof may be used in combination. The amount used is preferably selected in the range of 0.01 to 1000 molar equivalents per mole of lithium compound.
  • the temperature in this polymerization reaction is preferably selected in the range of 0 to 150 ° C, more preferably in the range of 20 to 130 ° C.
  • the polymerization reaction can be carried out under generated pressure, but it is usually desirable to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired, such pressure being a gas that is inert with respect to the polymerization reaction. Can be obtained by an appropriate method such as pressurizing.
  • the glass transition point (Tg) obtained by differential thermal analysis of the obtained polymer or copolymer is preferably in the range of ⁇ 110 ° C. to ⁇ 15 ° C. It is difficult to obtain a polymer having a glass transition point of less than ⁇ 110 ° C., and when the glass transition point exceeds ⁇ 15 ° C., the viscosity becomes too high in the room temperature region, which may make handling difficult.
  • the modified conjugated diene polymer is produced by coordination polymerization using a rare earth metal compound as a polymerization initiator
  • the following (A) component, (B) component, and (C) component may be used in combination.
  • the component (A) used for the coordination polymerization is selected from a rare earth metal compound, a complex compound of a rare earth metal compound and a Lewis base, and the like.
  • rare earth metal compounds include rare earth element carboxylates, alkoxides, ⁇ -diketone complexes, phosphates and phosphites, and Lewis bases include acetylacetone, tetrahydrofuran, pyridine, N, N -Dimethylformamide, thiophene, diphenyl ether, triethylamine, organophosphorus compounds, monovalent or divalent alcohols, etc.
  • the rare earth element of the rare earth metal compound lanthanum, neodymium, praseodymium, samarium and gadolinium are preferable, and among these, neodymium is particularly preferable.
  • component (A) examples include neodymium tri-2-ethylhexanoate, complex compounds thereof with acetylacetone, neodymium trineodecanoate, complex compounds thereof with acetylacetone, neodymium tri-n-butoxide, and the like. It is done.
  • These (A) components may be used individually by 1 type, or 2 or more types may be mixed and used for them.
  • the component (B) used for the coordination polymerization is selected from organoaluminum compounds.
  • organoaluminum compound specifically, a trihydrocarbyl aluminum compound represented by the formula: R 12 3 Al, a hydrocarbyl aluminum hydride represented by the formula: R 12 2 AlH or R 12 AlH 2 (wherein R 12 are each independently a hydrocarbon group having 1 to 30 carbon atoms), hydrocarbylaluminoxane compounds having a hydrocarbon group having 1 to 30 carbon atoms, and the like.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum hydride, alkylaluminum dihydride, and alkylaluminoxane. These compounds may be used individually by 1 type, or 2 or more types may be mixed and used for them.
  • (B) component it is preferable to use aluminoxane and another organoaluminum compound together.
  • the component (C) used in the coordination polymerization is a compound having a hydrolyzable halogen or a complex compound thereof with a Lewis base; an organic halide having a tertiary alkyl halide, benzyl halide or allyl halide; a non-coordinating anion And an ionic compound comprising a counter cation.
  • Specific examples of the component (C) include alkylaluminum dichloride, dialkylaluminum chloride, silicon tetrachloride, tin tetrachloride, complexes of zinc chloride with Lewis bases such as alcohol, magnesium chloride and Lewis such as alcohol.
  • Examples thereof include complexes with bases, benzyl chloride, t-butyl chloride, benzyl bromide, t-butyl bromide, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like.
  • These components (C) may be used alone or in combination of two or more.
  • the polymerization initiator is preliminarily used by using the same conjugated diene compound and / or non-conjugated diene compound as the polymerization monomer, if necessary. May be prepared. Further, part or all of the component (A) or the component (C) may be supported on an inert solid and used. The amount of each of the above components can be appropriately set. Usually, the component (A) is 0.001 to 0.5 mmol (mmol) per 100 g of the monomer.
  • the molar ratio of the component (B) / component (A) is preferably 5 to 1,000, and the component (C) / component (A) is preferably 0.5 to 10.
  • the polymerization temperature in the coordination polymerization is preferably in the range of ⁇ 80 to 150 ° C., more preferably in the range of ⁇ 20 to 120 ° C.
  • a hydrocarbon solvent inert to the reaction exemplified in the above-mentioned anionic polymerization can be used, and the concentration of the monomer in the reaction solution is the same as in the case of anionic polymerization.
  • the reaction pressure in coordination polymerization is the same as that in the case of anionic polymerization, and it is desirable that the raw material used for the reaction substantially removes reaction inhibitors such as water, oxygen, carbon dioxide, and protic compounds.
  • the modified conjugated diene polymer is preferably an anion-polymerized organic alkali metal compound, particularly alkyllithium.
  • the content of the structural unit derived from the aromatic vinyl compound is 1 mass as an unmodified and / or modified low molecular weight diene copolymer in the unmodified product or the property before modification. It is preferable that the vinyl bond content of the conjugated diene moiety is 5% by mass or more and 80% by mass or less. If the content of the structural unit derived from the aromatic vinyl compound and the vinyl bond content of the conjugated diene compound part are not within the above ranges, sufficient workability of the rubber composition and reduction of the loss tangent (tan ⁇ ) of the rubber composition are sufficient. May not be compatible.
  • the content of the structural unit derived from the aromatic vinyl compound is more preferably 10% by mass or more and 50% by mass or less, and the vinyl bond content of the conjugated diene moiety is preferably 10% by mass or more and 70% by mass or less.
  • the conjugated diene polymer in this embodiment is a modification obtained by subjecting a polymerization active end to a compound containing at least one selected from a silicon atom, a tin atom, a sulfur atom, an oxygen atom and a titanium atom after the polymerization reaction.
  • a conjugated diene polymer is preferred.
  • the conjugated diene polymer having a polymerizable active terminal is conjugated with an aromatic vinyl compound using an organic alkali metal compound, preferably a lithium compound, as described in the production of the conjugated diene polymer.
  • the diene compound can be obtained by anionic polymerization in the same manner as described above.
  • the reaction conditions are appropriately selected so that the resulting low molecular weight diene copolymer having an active terminal has the above-described properties.
  • Nitrogen-containing compounds, silicon-containing compounds, tin-containing compounds, and the like can be used as modifiers that are reacted with the active ends of the low molecular weight diene copolymer thus obtained.
  • Nitrogen-containing compounds that can be used as the modifying agent include bis (diethylamino) benzophenone, dimethylimidazolidinone, N-methylpyrrolidone, 4-dimethylaminobenzylideneaniline, and the like.
  • functional groups containing nitrogen such as substituted and unsubstituted amino groups, amide groups, imino groups, imidazole residues, nitrile groups, and pyridyl groups can be introduced.
  • the low molecular weight diene copolymer having an active terminal to be used is preferably such that at least 10 mol% of the polymer chain has a living property.
  • the first polymer in the present embodiment is the following general formula (III) with respect to the conjugated diene polymer having an organometallic active site in the molecule thus obtained:
  • A is a saturated cyclic tertiary amine compound residue, Unsaturated cyclic tertiary amine compound residue, imine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester residue, carbonic acid dihydrocarbyl ester residue, nitrile group, pyridine group , (Thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid ester residue, metal salt of (thio) carboxylic acid ester residue, carboxylic acid anhydride residue, carboxylic acid halogen compound residue , As well as at least one functional group selected from a secondary amino group or mercapto group having a hydrolyzable group, and when A
  • R 2 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 2 is plural, they are the same or different.
  • R 3 is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when R 3 is plural, they may be the same or different. Good. And a condensate thereof.
  • R 1 and R 2 are each an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms.
  • the alkyl group and alkenyl group may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group.
  • the aryl group may have a substituent such as a lower alkyl group on the aromatic ring, and examples thereof include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • the aralkyl group may have a substituent such as a lower alkyl group on the aromatic ring, and examples thereof include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the divalent inert hydrocarbon group having 1 to 20 carbon atoms in R 3 is preferably an alkylene group having 1 to 20 carbon atoms.
  • the alkylene group may be linear, branched or cyclic, but a linear one is particularly preferable.
  • Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, a decamethylene group, and a dodecamethylene group.
  • Examples of the saturated cyclic tertiary amine compound residue in A include a hexamethyleneimino group, a pyrrolidinyl group, a piperidinyl group, a heptamethyleneimino group, a dodecamethyleneimino group, and the like, and an unsaturated cyclic tertiary amine
  • Examples of the compound residue include an imidazole residue, a dihydroimidazole residue, an oxazole residue, and a pyridyl group.
  • the A includes a ketimine residue, a saturated cyclic tertiary amine compound residue, an imidazole residue, a dihydroimidazole residue, a pyridine group, a nitrile group, an isocyanate group, and a detachable functional group from the viewpoint of performance. It is preferably a monovalent group having at least one nitrogen-containing functional group selected from secondary amino groups, saturated cyclic tertiary amine compound residue, ketimine residue, imidazole residue, dihydroimidazole residue and It is more preferably a monovalent group having at least one selected from secondary amino groups having a detachable functional group.
  • imine residues include ketimine, aldimine, and amidine residues
  • (thio) carboxylic acid hydrocarbyl esters are unsaturated carboxylic acid esters such as acrylates and methacrylates.
  • residues examples of the metal of the metal salt residue of (thio) carboxylic acid include alkali metals, alkaline earth metals, aluminum, tin, and zinc.
  • examples of the secondary amino group having a hydrolyzable group include N- (trimethylsilyl) amino group.
  • the (thio) isocyanate group is a —NCO group or a —NCS group.
  • examples of the monovalent group containing a (thio) epoxy group include a glycidoxy group, a 3,4-epoxycyclohexyl group, and those obtained by replacing the epoxy ring in these groups with a thioepoxy ring.
  • the modifier used in the present embodiment is a bifunctional hydrocarbyloxysilane compound and / or a partial condensate thereof as described above.
  • the partial condensate refers to a product in which a part (not all) of the SiOR groups of the hydrocarbyloxysilane compound are converted into SiOSi bonds by condensation.
  • the modifier used in the present embodiment is a monofunctional hydrocarbyloxysilane compound having one hydrocarbyloxy group directly bonded to a silicon atom, the hydrocarbyloxy group is consumed by the modification reaction, and inorganic filler such as silica is filled. Since the modifying group that interacts with the material is not introduced, the object of the present invention cannot be achieved.
  • the conjugated diene polymer having an active terminal to be used is preferably such that at least 10 mol% of the polymer chain has a living property.
  • hydrocarbyloxysilane compound represented by the general formula (III) examples include 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, (thio) epoxy group-containing hydrocarbyloxysilane compounds, (2-glycidoxyethyl) methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) dimethoxysilane and the epoxy groups in these compounds as thioepoxy groups Put in There may be mentioned
  • Examples of the imine (amidine) residue-containing compound include 1- [3- (triethoxysilyl) propyl] -4,5-dihydroimidazole, 1- [3- (trimethoxysilyl) propyl] -4,5- Dihydroimidazole, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-isopropoxysilylpropyl) -4,5-dihydroimidazole, N- (3-methyldiethoxysilylpropyl) Examples include -4,5-dihydroimidazole, and among these, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole is preferable.
  • bifunctional hydrocarbyloxysilane compound represented by the general formula (III) for example, when A has an imidazole residue or a dihydroimidazole residue, a specific example is 1- [3- [diethoxy (methyl) silyl] propyl.
  • bifunctional hydrocarbyloxysilane compound represented by the general formula (III) for example, when A has a pyridyl group or a nitrile group, as a specific example, 2- [2- [diethoxy (methyl) silyl] ethyl]- Pyridine, 2- [2- [dipropoxy (methyl) silyl] ethyl] -pyridine, 2- [3- [diethoxy (methyl) silyl] propyl] -pyridine, 2- [3- [diethoxy (ethyl) silyl] propyl] -Pyridine, 2- [3- [dipropoxy (methyl) silyl] propyl] -pyridine, 2- [3- [dipropoxy (ethyl) silyl] propyl] -pyridine, 4- [2- [diethoxy (methyl) silyl] ethyl ] -Pyridine, 4- [2- [diethoxy (methyl) silyl] ethyl
  • 2- [3- [diethoxy (methyl) silyl] propyl] -pyridine 2- [3- [dipropoxy (methyl) silyl] propyl] -pyridine
  • 4- [3- [diethoxy (methyl) silyl ] Propyl] -pyridine 4- [3- [dipropoxy (methyl) silyl] propyl] -pyridine
  • 1-cyano-3- [diethoxy (methyl) silyl] -propane and 1-cyano-3- [dipropoxy (methyl) Silyl] -propane is preferred.
  • bifunctional hydrocarbyloxysilane compound represented by the general formula (III) for example, when A has a (thio) isocyanate group or an oxazole residue, as a specific example, 1-isocyanato-3- [diethoxy (methyl) Silyl] -propane, 1-isocyanato-3- [diethoxy (ethyl) silyl] -propane, 1-isocyanato-3- [dipropoxy (methyl) silyl] -propane, 1-isocyanato-3- [dipropoxy (ethyl) silyl] -Isocyanate compounds such as propane, thioisocyanate compounds in which the isocyanate in the above isocyanate compounds is replaced by thioisocyanate, 4- [3- [diethoxy (methyl) silyl] propyl] -oxazole, 4- [3- [diethoxy (ethyl) ) Silyl] propyl] -oxazo
  • the oxazole residue also includes an isoxazole residue.
  • hydrocarbyloxysilane compounds include the following. That is, as the carboxylic acid hydrocarbyl ester residue-containing compound, 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyl Examples thereof include triisopropoxysilane, among which 3-methacryloyloxypropyltrimethoxysilane is preferable.
  • Examples of the isocyanate group-containing compound include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, and 3-isocyanatopropyltriisopropoxysilane. Of these, 3-isocyanatopropyltriethoxysilane is preferred.
  • the hydrocarbyloxysilane compound having the above characteristic structure is preferably in a stoichiometric amount or in excess of the active site, more preferably 0.3 molar equivalent or more of the apparent active site.
  • the active site is reacted with the hydrocarbyloxysilane compound, and the active site is substantially hydrocarbyloxysilane.
  • a method of adding a condensation accelerator after introducing a compound residue is used.
  • condensation accelerator examples include a compound containing a tertiary amino group, or among group 3, 4, 5, 12, 13, 14, and 15 of the periodic table (long period type).
  • An organic compound containing one or more elements belonging to any of the above can be used.
  • the condensation accelerator used here can be added before the modification reaction, but is preferably added to the modification reaction system during and / or after the modification reaction.
  • the condensation accelerator When added before the denaturation reaction, a direct reaction with the active end occurs, and for example, a hydrocarboxy group having a protected primary amino group at the active end may not be introduced. It is preferable to add the condensation accelerator to the reaction system immediately after the modification in which the hydrocarbylsilane compound residue is introduced. However, the polymer modified by the reaction is dried and then blended, preferably blended. In the first stage, a condensation accelerator may be added. In this modification reaction, the conjugated diene polymer used preferably has at least 20 mol% of the polymer chain having the active site.
  • the second modified conjugated diene polymer in this embodiment has the following general formula (I) at the active site of the conjugated diene polymer having an organometallic active site in the molecule.
  • R a MX b (I) Wherein R is independently selected from an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • M is tin or silicon
  • X is independently chlorine, bromine or iodine
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b 4).
  • M is tin or silicon
  • X is independently chlorine, bromine or iodine
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b 4 It is obtained by reacting at least one modifier selected from the compounds represented by formula (1) and a condensate thereof.
  • the method for producing the polymer having the organometallic active site in the molecule is the same as in the case of the first polymer.
  • the modified conjugated diene polymer modified with at least one of the coupling agents represented by the general formulas (I) and (II) has at least one tin-carbon bond or silicon-carbon bond.
  • R or R 1 and R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • Group or an aralkyl group having 7 to 20 carbon atoms and specific examples thereof include a methyl group, an ethyl group, an n-butyl group, a neophyll group, a cyclohexyl group, an n-octyl group, and a 2-ethylhexyl group.
  • Z is tin or silicon, and X is independently chlorine or bromine.
  • a is an integer of 0 to 3
  • tin tetrachloride As the coupling agent represented by the general formula (I), tin tetrachloride, RSnCl 3 , R 2 SnCl 2 , R 3 SnCl and the like are preferable, and tin tetrachloride is particularly preferable. Moreover, as a coupling agent represented by general formula (II), tetraalkoxysilane, trialkoxysilane, and dialkoxysilane are preferable, and tetraethoxysilane is particularly preferable.
  • the third modified diene polymer in the present embodiment is obtained by reacting a condensate of an alkoxysilane compound represented by the general formula (II) and a modifying agent represented by the general formula (III). It is a modified conjugated diene polymer.
  • the alkoxysilane compound represented by the general formula (II) and the modifier represented by the general formula (III) are as described above.
  • the method for producing the polymer having the organometallic active site in the molecule is the same as in the case of the first polymer. Further, the kind of the condensation accelerator and the condensation reaction conditions are also as described in the production of the first polymer.
  • the modified conjugated diene polymer in the present embodiment modified with the above-described modifier preferably contains a nitrogen atom.
  • a rubber composition in which carbon black is blended with a rubber component containing a modified conjugated diene polymer having a nitrogen-containing functional group the dispersibility of carbon black with respect to the rubber component is improved, and consequently hysteresis of the rubber component Since the loss is reduced, wear resistance and rolling resistance can be improved. Therefore, by using the modified conjugated diene polymer having a nitrogen-containing functional group together with the carbon black having a small tar component present on the surface in the present embodiment, the dispersibility of the carbon black is greatly improved. Hysteresis loss in the rubber composition can be reduced while sufficiently exerting the reinforcing effect.
  • both solution reaction and solid phase reaction can be used, but solution reaction (even if the unreacted monomer used at the time of polymerization is included). Is good).
  • denaturation reaction You may carry out using a batch type reactor, You may carry out by a continuous type using apparatuses, such as a multistage continuous type reactor and an in-line mixer.
  • it is important that the modification reaction is carried out after reaching the conversion rate at which the completion of the polymerization reaction is desired, and before performing a solvent removal treatment, a water treatment, a heat treatment or the like.
  • the temperature of the modification reaction is preferably 20 ° C. or higher, but the polymerization temperature of the conjugated diene polymer can be used as it is, and a more preferable range is 30 to 120 ° C.
  • the amount of the modifier used is preferably in the range of 0.25 to 3.0 mol, more preferably in the range of 0.5 to 1.5 mol, relative to 1 mol of the polymerization initiator used for the production of the conjugated diene polymer. .
  • the modification by the modifier is performed on the active site in the conjugated diene polymer, but the active site may be in the polymer molecule, and the position is not particularly limited.
  • the rubber obtained may include a modified conjugated diene polymer obtained by modifying at least one molecular terminal with a modifier comprising a compound containing a functional group that interacts with carbon black. From the viewpoint of the balance between the wear resistance and the low rolling resistance of the composition, it is particularly preferable. From this viewpoint, the active site in the polymer is preferably present at the terminal of the conjugated diene polymer.
  • the rubber composition of the present embodiment contains the above-described modified conjugated diene polymer (first polymer, second polymer) as a rubber component.
  • the content of the modified conjugated diene polymer in the rubber component is preferably in the range of 5 to 80 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the modified conjugated diene polymer in the rubber component is less than 5 parts by mass, the carbon black dispersibility cannot be sufficiently improved.
  • the content exceeds 80 parts by mass the workability decreases. There is.
  • the content is more preferably in the range of 15 parts by mass or more and 60 parts by mass or less.
  • rubber components other than the modified conjugated diene polymer natural rubber (NR), unmodified styrene-butadiene copolymer (SBR), polybutadiene rubber (BR) ), Polyisoprene rubber (IR), butyl rubber (IIR), ethylene-propylene copolymer, etc., among which natural rubber and polyisoprene rubber are preferred.
  • NR natural rubber
  • SBR unmodified styrene-butadiene copolymer
  • BR polybutadiene rubber
  • IR Polyisoprene rubber
  • IIR butyl rubber
  • ethylene-propylene copolymer etc.
  • the rubber compounding carbon black in the present embodiment uses a reaction apparatus in which a combustion gas generation zone, a reaction zone, and a reaction stop zone are connected in series, and generates high-temperature combustion gas in the combustion gas generation zone, Next, the raw material is sprayed and introduced into the reaction zone to form a reaction gas flow containing carbon black, and then the reaction gas flow is quenched in the reaction stop zone by a multistage rapid refrigerant introduction means to terminate the reaction.
  • the following relational expressions (1) and (2) are satisfied.
  • the interior of the carbon black production furnace has a structure in which a combustion zone, a reaction zone, and a reaction stop zone are connected, and the whole is covered with a refractory.
  • the carbon black production furnace uses a rectifying plate to rectify the oxygen-containing gas introduced from the outer periphery of the furnace head and the oxygen-containing gas introduction pipe into the flammable fluid introduction chamber as a combustion zone.
  • high-temperature combustion gas is generated by combustion of hydrocarbons for fuel.
  • the carbon black production furnace includes a reaction chamber in which a cylinder gradually converges, a raw material oil introduction chamber including, for example, four raw oil spray ports on the downstream side of the convergence chamber, and a reaction chamber on the downstream side of the raw material oil introduction chamber.
  • the feed oil spray port sprays feed hydrocarbons into the hot combustion gas stream from the combustion zone.
  • the raw material hydrocarbon is sprayed into the high-temperature combustion gas stream, and the raw material hydrocarbon is converted into carbon black by incomplete combustion or thermal decomposition reaction.
  • FIG. 1 is a partial cross-sectional explanatory view of an example of a carbon black production furnace for producing the rubber compounding carbon black, and a reaction chamber into which a high-temperature gas containing a carbon black raw material (raw material hydrocarbon) is introduced. 10 and the reaction continuation / cooling chamber 11 are shown.
  • the carbon black production furnace 1 includes a reaction continuation / cooling chamber 11 having a multistage rapid refrigerant introduction means 12 as a reaction stop zone.
  • the multistage rapid refrigerant introduction means 12 sprays a rapid refrigerant such as water on the high-temperature combustion gas flow from the reaction zone. In the reaction stop zone, the high-temperature combustion gas flow is quenched by the quenching refrigerant to terminate the reaction.
  • the carbon black production furnace 1 may further include a device for introducing a gas body in the reaction zone or the reaction stop zone.
  • a gas body air, a mixture of oxygen and hydrocarbon, a combustion gas obtained by a combustion reaction thereof, or the like can be used.
  • the average reaction temperature and residence time in each zone until the reaction gas flow enters the reaction stop zone are controlled, and the toluene color permeability X, Y and Z are set to desired values.
  • gum mixing used for the rubber composition of this embodiment is obtained.
  • the combustion zone is a region where a high-temperature gas flow is generated by the reaction of fuel and air, and this downstream end is the point at which the feedstock is introduced into the reactor (the most upstream when introduced at multiple locations) ), For example, the upstream side (left side in FIG. 1) from the point where the feedstock is introduced.
  • the reaction zone refers to the multistage quench water spray means 12 in the reaction continuation / cooling chamber 11 from the point where the raw material hydrocarbon is introduced (the most upstream in the case of a plurality of positions) (these means are the reaction continuation / cooling chamber).
  • the reaction stop zone refers to a zone below (on the right side in FIG. 1) the point where the quenching water injection spray means is operated.
  • the name of the reaction continuation / cooling chamber 11 is used because the reaction zone is from the raw material introduction time point to the operation time point of the quenching water injection spray means for stopping the reaction, and the reaction stop zone is thereafter. This is because the cold water introduction position may move depending on the required carbon black performance.
  • the rubber compounding carbon black obtained as described above has the following relational expressions (1) and (2): 10 ⁇ X ⁇ 40 (1) 90 ⁇ Z ⁇ 100 (2) It is necessary to satisfy.
  • X represents the toluene coloring permeability (%) of carbon black after introduction of the rapid refrigerant from the first material introduction position (12-X in FIG. 1) from the raw material introduction position
  • Z represents the last 1 shows the toluene coloring permeability (%) of carbon black after the rapid refrigerant is introduced by the rapid refrigerant introduction means (12-Z in FIG. 1).
  • the carbon black after introduction of the first rapid refrigerant body has a toluene coloring permeability higher than 10% and less than 40%
  • the carbon black after introduction of the final rapid refrigerant body is The toluene color transmission needs to be higher than 90% and lower than 100%. If the toluene coloring transmittance Z of the carbon black for rubber blending is 90% or less, the carbon black has a lot of heavy tar components contained therein, and gives sufficient reinforcement to the rubber. And the wear resistance is reduced. Further, when X is 40 or more, the reinforcing property of the carbon black is lowered and the wear resistance is lowered.
  • the rubber compounding carbon black having such properties can be obtained by controlling the reaction temperature and residence time as described below. That is, the residence time in the zone from when the raw material is sprayed into the reaction zone until the first quenching medium is introduced is t 1 (seconds), and the average reaction temperature in this zone is T 1 (° C.). The residence time in the zone from the introduction of the first quenching medium to the introduction of the quenching medium by the second quenching medium introducing means (12-Y in FIG. 1) is t 2 (seconds).
  • the average reaction temperature in this zone is T 2 (° C.), and the residence time in the zone from the introduction of the second sudden refrigerant body to the introduction of the last sudden refrigerant body (ie, the reaction stop zone)
  • T 3 the residence time in the zone until passage is t 3 (seconds)
  • T 3 the average reaction temperature in this zone
  • the following relational expressions (3), (4) and (5) 2.00 ⁇ ⁇ 1 ⁇ 5.00 (3) 5.00 ⁇ ⁇ 2 ⁇ 9.00 (4) -2.5 ⁇ ( ⁇ 1 + ⁇ 2) + 85.0 ⁇ ⁇ ⁇ 90.0 (5)
  • gum compounding can be obtained by controlling so that it may satisfy
  • the carbon black production furnace 1 has a structure in which thermocouples can be inserted into an arbitrary number of locations in order to monitor the temperature in the furnace.
  • T 1 , T 2 , and T 3 it is preferable to measure temperatures at least at 2 points, preferably 3 to 4 points in each step (each zone).
  • the residence times t 1 , t 2 , and t 3 are calculated by calculating the volume of the introduced reaction gas fluid by a known thermodynamic calculation method, and calculating by the following equation. Note that the increase in volume due to the decomposition reaction of the feedstock oil and the rapid cooling medium is ignored.
  • Residence time t 1 (sec) [reaction furnace passage volume from raw material hydrocarbon introduction position to first quenching medium introduction position (m 3 )] / [reaction gas fluid volume (m 3 / sec)]
  • Residence time t 2 (sec) [reaction furnace passage volume (m 3 ) from introduction position of first sudden refrigerant body to introduction of second sudden refrigerant body] / [volume of reactive gas fluid (m 3 / sec)]
  • Residence time t 3 (sec) [reaction furnace passage volume (m 3 ) from the second abrupt refrigerant introduction position until the last abrupt refrigerant is introduced] / [reaction gas fluid volume (m 3 / sec)]
  • the carbon black for rubber blending preferably has a hydrogen release rate exceeding 0.3% by mass.
  • the hydrogen release rate is preferably 0.35% by mass or more.
  • the upper limit is usually about 0.4% by mass.
  • the hydrogen release rate is as follows: (1) a carbon black sample is dried in a constant temperature dryer at 105 ° C. for 1 hour and cooled to room temperature in a desiccator; Weigh accurately, crimp and seal, and (3) measure the amount of hydrogen gas generated when heated at 2000 ° C for 15 minutes under an argon stream with a hydrogen analyzer (Horiba EMGA621W), and display the mass fraction. .
  • the carbon black for rubber blending has a dibutyl phthalate absorption (DBP) of 95 mL / 100 g or more and 220 mL / 100 g or less, a compressed DBP absorption (24M4DBP) of 90 mL / 100 g or more and 200 mL / 100 g or less, and cetyltrimethyl.
  • DBP dibutyl phthalate absorption
  • 24M4DBP compressed DBP absorption
  • CTAB ammonium bromide adsorption specific surface area
  • the rubber composition can be sufficiently reinforced and the wear resistance of the rubber composition can be improved.
  • the DBP is 100 mL / 100 g or more and 200 mL / 100 g or less
  • the 24M4DBP is 100 mL / 100 g or more and 180 mL / 100 g or less
  • the CTAB is 80 m 2 / g or more and 180 m 2 / g or less.
  • the dibutyl phthalate absorption amount (DBP) and the compressed DBP absorption amount (24M4DBP) were measured by the method described in ASTM D2414-88 (JIS K6217-4: 2001), and dibutyl phthalate absorbed per 100 g of carbon black ( DBP) in mL.
  • the cetyltrimethylammonium bromide adsorption specific surface area (CTAB) is measured by the method described in JIS K6217-3: 2001, and is expressed as a specific surface area m 2 / g per unit mass of carbon black.
  • the rubber composition of the present embodiment may contain 10 to 250 parts by mass of the rubber compounding carbon black with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer described above. preferable.
  • the content of the carbon black is less than 10 parts by mass, the reinforcing effect of the rubber composition may not be sufficiently exhibited, and desired wear resistance may not be obtained.
  • the content of the carbon black is preferably 20 parts by mass or more and 150 parts by mass or less, and more preferably 30 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber compounding carbon black is manufactured by the above-described method and has the above-described physical properties. Examples of the carbon black include FEF, SRF, HAF, ISAF, ISAF-LS, SAF-LS etc. are mentioned.
  • the rubber composition of the present embodiment includes other components such as an inorganic filler, a vulcanizing agent, a vulcanization accelerator, and zinc oxide.
  • the compounding agents usually used in the rubber industry such as stearic acid and anti-aging agent can be appropriately selected and blended within a range not impairing the object of the present invention. As these compounding agents, commercially available products can be suitably used.
  • the rubber composition is prepared by blending a rubber component, carbon black for blended rubber, and various appropriately selected blending agents, and kneading using a Banbury mixer, roll, internal mixer, intensive mixer, etc. It can be prepared by heating, extruding or the like.
  • the tire according to this embodiment is characterized in that the rubber composition is applied to any of the tire members.
  • the rubber composition of the present embodiment it is particularly preferable to use the rubber composition of the present embodiment for a tread, and the tire using the rubber composition for a tread has excellent wear resistance and low rolling resistance. Excellent fuel economy.
  • gas with which the tire of this embodiment is filled normal or the air which changed oxygen partial pressure, or inert gas, such as nitrogen, is mentioned.
  • the rubber composition in the present embodiment is used for a tread, for example, the rubber composition is extruded onto a tread member, and pasted and molded by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire.
  • the tire wear resistance and the low heat build-up of the rubber composition were evaluated according to the following methods.
  • Abrasion resistance The test tire was mounted on a vehicle, and the groove weight loss at the time when the vehicle traveled 40,000 km was measured. The larger this value, the better the wear resistance.
  • Second Low exothermic property (tan ⁇ ) Using a dynamic spectrometer manufactured by Rheometrics, Inc. in USA, the measurement was carried out under the conditions of 3% tensile dynamic strain, frequency 10 Hz, 50 ° C. It shows that the low exothermic property (rolling resistance) of a tire is excellent, so that the value of an index
  • exponent is small.
  • Carbon black A was manufactured using the carbon black manufacturing furnace shown in FIG. However, in FIG. 1, as the multistage rapid refrigerant introduction means 12, a three-stage comprising a first rapid refrigerant introduction means 12-X, a second rapid refrigerant introduction means 12-Y, and a final rapid refrigerant introduction means 12-Z. The rapid refrigerant introduction means was used. Moreover, in order to monitor the temperature in a manufacturing furnace, the said manufacturing furnace provided with the structure where a thermocouple can be inserted in a furnace in arbitrary several places was used.
  • Carbon black BK Carbon blacks B to K were produced in the same manner as the production of carbon black A except that the operating conditions shown in Table 2 were adopted. Table 2 shows the characteristics of each carbon black.
  • Modified Conjugated Diene Polymer (1) A 5 liter autoclave reactor purged with nitrogen was charged with 2750 g of cyclohexane, 0.0285 mmol of 2,2-ditetrahydrofurylpropane, 375 g of 1,3-butadiene and 2.85 mmol of n-butyllithium as a cyclohexane solution and stirred. Polymerization was carried out for 4.5 hours in a 50 ° C. hot water bath equipped with an apparatus. When the polymerization conversion rate reached 99%, 2.08 mmol of tributyltin chloride was added and the modification reaction was performed for 15 minutes.
  • modified conjugated diene polymer (1) was prepared in the same manner as the modified conjugated diene polymer (1) except that tributyltin chloride was changed to 0.52 mmol of tin tetrachloride in the production of the modified conjugated diene polymer (1). Combined (2) was obtained.
  • Modified conjugated diene polymer (3) In the production of the modified conjugated diene polymer (1), the modified conjugated diene polymer (1) was modified in the same manner as in the production of the modified conjugated diene polymer (1) except that tributyltin chloride was changed to 2.08 mmol of tetraethoxysilane. Combined (3) was obtained.
  • Modified Conjugated Diene Polymer (4) In the production of the modified conjugated diene polymer (1), except that tributyltin chloride was changed to 2.08 mmol of N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, In the same manner as in the production of the modified conjugated diene polymer (1), a modified conjugated diene polymer (4) was obtained.
  • Modified Conjugated Diene Polymer (8) Modified conjugated diene system, except that in the production of the modified conjugated diene polymer (7), tributyltin chloride was changed to 5.7 mL of the modifier solution A used in the production of the modified conjugated diene polymer (6). In the same manner as in the production of the polymer (1), a modified conjugated diene polymer (8) was obtained.
  • Examples 1 to 16 and Comparative Examples 1 to 7> Using each of the carbon blacks A to K shown in Table 2, 23 types of rubber compositions were prepared with a Banbury mixer according to the formulation shown in Table 3. Next, 23 types of tires for tires having a tire size of 11R22.5 using these 23 types of rubber compositions as treads were produced according to a conventional method, and rolling resistance (low heat generation) and wear resistance were evaluated. The results are shown in Table 3.
  • Carbon black Carbon black D and K obtained from carbon black production 5)
  • Anti-aging agent 6C N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., trade name “NOCRACK 6C” 6)
  • Vulcanization accelerator CZ N-cyclohexyl-2-benzothiazylsulfenamide, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., trade name “Noxeller CZ”

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを、重合活性末端、重合開始末端及び重合鎖中のいずれかに含む共役ジエン系重合体を含むゴム成分と、燃焼ガス生成帯域と、反応帯域と、反応停止帯域とが連設されてなる反応装置を用い、前記燃焼ガス生成帯域内で高温燃焼ガスを生成させ、次いで前記反応帯域に原料を噴霧導入してカーボンブラックを含む反応ガス流を急冷して、反応を終結させることにより得られたゴム配合用カーボンブラックとを含み、前記ゴム配合用カーボンブラックが、特定の関係式(1)及び(2)満たすゴム組成物を用いることにより、タイヤとした場合に耐摩耗性及び耐引裂き性等の耐久性を向上させつつ、転がり抵抗を低減することが可能なゴム組成物及びそれを用いたタイヤを提供する。

Description

ゴム組成物及びそれを用いたタイヤ
 本発明は、ゴム組成物及びそれを用いた空気入りタイヤに関する。更に詳しくは、本発明は、特に耐摩耗性及び耐引裂き性等の耐久性を向上させつつ、転がり抵抗を低減させることが可能なゴム組成物、及びそれを含むタイヤに関するものである。
 近年、省エネルギー、省資源の社会的要請の下、自動車の燃料消費量を節約するため、転がり抵抗の小さいタイヤが求められている。このような要求に対し、タイヤの転がり抵抗を減少させる手法としては、カーボンブラックの使用量を低減させたり、低級カーボンブラックを使用する等により、ヒステリシスロスを低下させたゴム組成物、すなわち発熱性の低いゴム組成物を、タイヤ部材、特にトレッドゴムに用いる方法が知られている。
 しかしながら、使用するカーボンブラックの単純な減量は、ゴム組成物の耐摩耗性を低下させることがある。
 これに対し、特許文献1、2には、転がり抵抗を低減させるために、ゴム成分として重合活性末端にアミノ基を導入した変性共役ジエン系重合体を用い、充填材としてカーボンブラックを用いたゴム組成物が提案されている。また、特許文献3には、末端変性ポリブタジエンゴム等の末端変性重合体を用いて、カーボンブラックの分散性を改良することにより、タイヤの耐摩耗性及び転がり抵抗を両立させることが可能なゴム組成物が開示されている。
特開平8-225604号公報 特開平8-231658号公報 特開2005-041975号公報
 一般に、タイヤの耐摩耗性の向上には、タイヤを構成するゴム組成物に配合されるカーボンブラックの粒子径やストラクチャが支配要因として考えられており、カーボンブラックの粒子径を小さくするほど耐摩耗性が向上するが、カーボングラックの粒子径が極端に小さいとゴム中で分散不良を起こし、発熱性が増大することが知られている。かかるゴム組成物でタイヤトレッドを作製した場合、耐摩耗性には優れるが、低燃費性には劣ることとなる。即ち、カーボンブラックの粒子径に関しては、耐摩耗性と低発熱性とは二律背反の関係にある。
 上記観点からは、前記末端変性重合体をゴム成分に用いたゴム組成物によれば、末端変性重合体のヒステリシスロスが低減され、耐摩耗性及び転がり抵抗に対し一定の効果が得られるものの、前記二つの背反する性能に関しては、依然として改良の余地がある。
 本発明は、このような状況下になされたもので、タイヤとした場合に耐摩耗性及び耐引裂き性等の耐久性を向上させつつ、転がり抵抗を低減することが可能なゴム組成物を提供することを目的とする。また、本発明の他の目的は、かかるゴム組成物を用いた、耐摩耗性及び転がり抵抗が高度にバランスされたタイヤを提供することにある。
 本発明者は、前記目的を達成するために鋭意研究を重ねた結果、特定のプロセスにより得られた、特定の性状を有するカーボンブラックを含有するゴム組成物により、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、
〔1〕 ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを、重合活性末端、重合開始末端及び重合鎖中のいずれかに有する共役ジエン系重合体を含むゴム成分と、
 燃焼ガス生成帯域と、反応帯域と、反応停止帯域とが連設されてなる反応装置を用い、前記燃焼ガス生成帯域内で高温燃焼ガスを生成させ、次いで前記反応帯域内に原料を噴霧導入してカーボンブラックに転化し、前記反応停止帯域で該カーボンブラックを含む反応ガス流を急冷して、反応を終結させることにより得られたゴム配合用カーボンブラックとを含み、
 前記ゴム配合用カーボンブラックが、下記の関係式(1)及び(2)を満たすゴム組成物、
  10<X<40  ・・・(1)
  90<Z<100 ・・・(2)
(ただし、Xは原料導入位置から、第1番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示し、Zは、最後の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示す。)
〔2〕 前記共役ジエン重合体が、重合反応後に重合活性末端と、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを含む化合物とを変性反応させて得られる変性共役ジエン系重合体である〔1〕に記載のゴム組成物、
〔3〕 前記変性共役ジエン系重合体が、有機金属型の活性部位を分子中に有する共役ジエン系重合体の該活性部位に、下記一般式(I)
      RaMXb ・・・ (I)
(式中、Rは、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物、及び一般式(II)
      R1 aM(OR2b ・・・ (II)
(式中、R1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物の中から選ばれる少なくとも1種の変性剤、及びその縮合物を反応させて得られる変性共役ジエン系重合体である〔2〕に記載のゴム組成物、
〔4〕 前記変性共役ジエン系重合体が、有機金属型の活性部位を分子中に有する共役ジエン系重合体の該活性部位に、下記一般式(III):
Figure JPOXMLDOC01-appb-C000003
      
(式中、a+b+c=4(但し、bは1~3の整数、aは0~2の整数、cは1~3の整数である)であり、Aは飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、イミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル残基、炭酸ジヒドロカルビルエステル残基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸ヒドロカルビルエステル残基、(チオ)カルボン酸エステル残基の金属塩残基、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解可能な基を有する2級アミノ基またはメルカプト基の中から選ばれる少なくとも1種の官能基であり、Aが複数のときは同一であっても異なっていてもよい。
 R1は、炭素数1~20の一価の脂肪族炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R1が複数のときは同一であっても異なっていてもよい。R2は、炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R2が複数のときは同一であっても異なっていてもよい。R3は、炭素数1~20の二価の炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R3が複数のときは同一であっても異なっていてもよい。)で表される変性剤、及びその縮合物を反応させて得られる変性共役ジエン系重合体である〔2〕に記載のゴム組成物、
〔5〕 前記変性共役ジエン系重合体が、下記一般式(II)で表される化合物と下記一般式(III)で表される変性剤との縮合物を反応させて得られる変性共役ジエン系重合体である〔2〕に記載のゴム組成物、
      R1 aM(OR2b ・・・ (II)
(式中、R1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)
Figure JPOXMLDOC01-appb-C000004
     
(式中、a+b+c=4(但し、bは1~3の整数、aは0~2の整数、cは1~3の整数である)であり、Aは飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、イミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル残基、炭酸ジヒドロカルビルエステル残基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸ヒドロカルビルエステル残基、(チオ)カルボン酸エステル残基の金属塩残基、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解可能な基を有する2級アミノ基またはメルカプト基の中から選ばれる少なくとも1種の官能基であり、Aが複数のときは同一であっても異なっていてもよい。
 R1は、炭素数1~20の一価の脂肪族炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R1が複数のときは同一であっても異なっていてもよい。R2は、炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R2が複数のときは同一であっても異なっていてもよい。R3は、炭素数1~20の二価の炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R3が複数のときは同一であっても異なっていてもよい。)
〔6〕 前記変性共役ジエン系重合体が、さらに窒素原子を含む〔2〕~〔5〕のいずれかに記載のゴム組成物、
〔7〕 前記共役ジエン系重合体が、共役ジエン化合物の(共)重合体である〔1〕に記載のゴム組成物。
〔8〕 前記共役ジエン系重合体が、芳香族ビニル化合物と共役ジエン化合物との共重合体である〔1〕に記載のゴム組成物、
〔9〕 前記共役ジエン系重合体が、1質量%以上60質量%以下の芳香族ビニル化合物由来の構成単位を含み、かつ共役ジエン部分においてビニル結合量が5質量%以上80質量%以下である〔1〕または〔8〕に記載のゴム組成物、
〔10〕 前記反応帯域内に原料が噴霧導入されてから、第1番目の急冷媒体が導入されるまでの帯域における滞留時間をt1(秒)、この帯域での平均反応温度をT1(℃)とし、第1番目の急冷媒体が導入されてから、第2番目の急冷媒体が導入されるまでの帯域における滞留時間をt2(秒)、この帯域での平均反応温度をT2(℃)とし、更に、第2番目の急冷媒体が導入されてから、最後の急冷媒体が導入されるまでの帯域における滞留時間をt3(秒)、この帯域内での平均反応温度をT3(℃)とした場合、前記ゴム配合用カーボンブラックが、下記の関係式(3)、(4)及び(5)
  2.00≦α1≦5.00             ・・・(3)
  5.00≦α2≦9.00             ・・・(4)
  -2.5×(α1+α2)+85.0≦β≦90.0 ・・・(5)
(ただし、α1=t1×T1、α2=t2×T2、β=t3×T3である。)
を満たすように制御して得られたものである〔1〕~〔9〕のいずれかに記載のゴム組成物、
〔11〕 前記ゴム配合用カーボンブラックが、下記の関係式(6)、(7)及び(8)
  20<X<40 ・・・(6)
  50<Y<60 ・・・(7)
  90<Z<95 ・・・(8)
(式中、Yは第2番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度を示し、X及びZは前記と同じである。)
を満たすように制御して得られたものである〔1〕~〔10〕のいずれかに記載のゴム組成物、
〔12〕 前記ゴム配合用カーボンブラックの水素放出率が、0.3質量%よりも高い〔1〕~〔11〕のいずれかに記載のゴム組成物、
〔13〕 前記ゴム配合用カーボンブラックにおけるジブチルフタレート吸収量(DBP)が95mL/100g以上220mL/100g以下であり、圧縮DBP吸収量(24M4DBP)が90mL/100g以上200mL/100g以下であり、かつセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)が70m2/g以上200m2/g以下である〔1〕~〔12〕のいずれかに記載のゴム組成物、
〔14〕 前記ゴム組成物が、ゴム成分100質量部に対し、前記共役ジエン系重合体を5質量部以上80質量部以下含む〔1〕~〔13〕のいずれかに記載のゴム組成物、
〔15〕 前記ゴム組成物が、ゴム成分100質量部に対し、前記ゴム配合用カーボンブラックを10質量部以上250質量部以下含む〔1〕~〔14〕のいずれかに記載のゴム組成物、及び
〔16〕 〔1〕~〔15〕のいずれかに記載のゴム組成物を用いてなるタイヤ、
を提供するものである。
 本発明によれば、特定のプロセスにより得られた特定の性状を有するカーボンブラックを、変性共役ジエン系重合体を含むゴム成分に所定の割合で含有することにより、タイヤとした場合に耐摩耗性及び耐引裂き性等の耐久性を向上させつつ、転がり抵抗を低減することが可能なゴム組成物を提供することができる。また、本発明のゴム組成物を用いて得られるタイヤは、耐摩耗性及び転がり抵抗が高度にバランスされている。
ゴム配合用カーボンブラックを製造するためのカーボンブラック製造炉の一例の部分断面説明図である。
 以下、本発明を実施形態により説明する。
<ゴム組成物>
 まず、本実施形態のゴム組成物について説明する。
 本実施形態のゴム組成物は、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを、重合活性末端、重合開始末端及び重合鎖中のいずれかに有する共役ジエン系重合体を含むゴム成分と、燃焼ガス生成帯域と、反応帯域と、反応停止帯域とが連設されてなる反応装置を用い、前記燃焼ガス生成帯域内で高温燃焼ガスを生成させ、次いで前記反応帯域内に原料を噴霧導入してカーボンブラックに転化し、前記反応停止帯域で該カーボンブラックを含む反応ガス流を急冷して、反応を終結させることにより得られたゴム配合用カーボンブラックとを含むものである。
 一般に、重合体末端等に窒素含有官能基等を有する変性共役ジエン系重合体を含むゴム成分にカーボンブラックが配合されたゴム組成物においては、ゴム成分に対するカーボンブラックの分散性が向上し、延いてはゴム成分のヒステリシスロスが低減されるため、耐摩耗性及び転がり抵抗を向上させることができる。しかしながら、上記変性共役ジエン系重合体に天然ゴムがブレンドされたゴム成分を用いる場合には、ヒステリシスロスの低減効果を更に向上させることが必要となる。なぜなら、通常の製造方法によって得られる天然ゴムでは、天然ゴムラテックス中に含まれる非ゴム成分が残存することにより、その損失正接(tanδ)が高く、発熱性の低減効果が低い場合があるからである。
 これに対し、本実施形態のゴム組成物に用いるカーボンブラックは、トルエン着色透過度が特定の範囲を満たすため、表面に存在するタール分が充分少なく、カーボンブラックとゴム分子との複合化が効率的に起こる結果、ゴム組成物の耐摩耗性及び低発熱性を向上させることができる。更に、本実施形態のゴム組成物では、上記表面に存在するタール成分の少ないカーボンブラックと共に、特定構造の官能基を有する変性共役ジエン系重合体を用いることによって、カーボンブラックの分散性が大幅に向上するため、カーボンブラックの補強効果を十分に発揮しつつ、ゴム組成物中のヒステリシスロスを低減させることができる。このため、本実施形態のゴム組成物では、変性共役ジエン系重合体に天然ゴムがブレンドされていても、タイヤの耐摩耗性、耐引裂き性及び転がり抵抗を十分に向上させることができる。また、本実施形態のゴム組成物では、カーボンブラックの分散性が高いため、カーボンブラックを所定量配合しても、ヒステリシスロスの低減効果を確保することができ、これによって、ゴム組成物の耐摩耗性及び耐引裂き性を容易に向上させることもできる。
(ゴム成分)
 本実施形態のゴム組成物において、ゴム成分には、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを、重合活性末端、重合開始末端及び重合鎖中のいずれかに有する共役ジエン系重合体が含まれる。
 本実施形態における共役ジエン系重合体は、有機金属型の活性部位を分子中に有する重合体として製造することができ、その製造方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
 また、前記活性部位の金属はアルカリ金属及びアルカリ土類金属から選ばれる1種であることが好ましく、特にリチウム金属が好ましい。
 上記溶液重合法においては、例えばリチウム化合物を重合開始剤とし、共役ジエン化合物単独又は共役ジエン化合物及び芳香族ビニル化合物をアニオン重合させることにより、目的の重合体を製造することができる。本実施形態における共役ジエン系重合体としては、ガラス転移温度が制御可能である等観点から、共役ジエン化合物の重合体または共重合体、あるいは共役ジエン化合物と芳香族ビニル化合物とを共重合させた共役ジエン系重合体が好ましい。
 さらには、ハロゲン含有モノマーを混在させ、ポリマー中のハロゲン原子を有機金属化合物によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラブロモメチルスチレン単位を含む共重合体の臭素部分をリチオ化して活性部位とすることも有効である。
 尚、前記活性部位は重合体の分子中に存在すればよく、重合活性末端、重合開始末端及び重合鎖中のいずれに存在してもよい。重合体がアルカリ金属化合物及び/又はアルカリ土類金属化合物を重合開始剤としたアニオン重合によるものである場合には、一般的に前記活性部位は重合体の末端にくる。
 そして、例えば上記活性末端に、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを含む化合物を反応させれば、前記本実施形態における共役ジエン系重合体が得られる。
 上記共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、1,3-ブタジエン、イソプレンが特に好ましい。
 また、これらの共役ジエン化合物との共重合に用いられる芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、スチレン系が特に好ましい。
 さらに、単量体として共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、それぞれ1,3-ブタジエン及びスチレンの使用が、単量体の入手の容易さなどの実用性の面、及びアニオン重合特性がリビング性などの点で優れることなどから、特に好適である。
 また、溶液重合法を用いた場合には、溶媒中の単量体濃度は、好ましくは5~50質量%の範囲、より好ましくは10~30質量%の範囲である。尚、共役ジエン化合物と芳香族ビニル化合物とを用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は好ましくは1~60質量%の範囲、さらには5~45質量%の範囲が好ましい。
 重合開始剤のリチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。
 上記ヒドロカルビルリチウムとしては、炭素数2~20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、n-ブチルリチウムが好ましい。
 一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジヘプチルアミド、リチウムジヘキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムメチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミドなどが挙げられる。
 これらの中で、カーボンブラックに対する相互作用効果及び重合開始能などの点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミドなどの環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
 これらのリチウムアミド化合物は、一般に、二級アミンとリチウム化合物とから、予め調製したものを重合に使用することが多いが、重合系中(in-situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
 前記リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
 具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物とを、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在化にアニオン重合させることにより、目的の共役ジエン系重合体が得られる。
 前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
 また、所望により用いられるランダマイザーとは、共役ジエン重合体のミクロ構造の制御、例えばブタジエン-スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加など、あるいは共役ジエン化合物-芳香族ビニル化合物共重合体における単量体単位の組成分布の制御、例えばブタジエン-スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム-t-アミレート、カリウム-t-ブトキシドなどのカリウム塩類、ナトリウム-t-アミレートなどのナトリウム塩類も用いることができる。
 これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01~1000モル当量の範囲で選択される。
 この重合反応における温度は、好ましくは0~150℃の範囲、より好ましくは20~130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
 この重合においては、重合開始剤、溶媒、単量体など、重合に関与する全ての原材料としては、水、酸素、二酸化炭素、プロトン性化合物などの反応阻害物質を除去したものを用いることが望ましい。
 尚、エラストマーとして重合体を得る場合は、得られる重合体又は共重合体の、示差熱分析法により求めたガラス転移点(Tg)が-110℃~-15℃の範囲であることが好ましい。ガラス転移点が-110℃未満の重合体を得るのは困難であり、またガラス転移点が-15℃を超えると室温領域で粘度が高くなりすぎ、取り扱いが困難となる場合がある。
 一方、希土類金属化合物を重合開始剤として、配位重合で当該変性共役ジエン系重合体を製造する場合は、下記(A)成分、(B)成分、(C)成分を組み合わせて用いるのが更に好ましい。
 上記配位重合に用いる(A)成分は、希土類金属化合物、及び希土類金属化合物とルイス塩基との錯化合物等から選択される。ここで、希土類金属化合物としては、希土類元素のカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩及び亜リン酸塩等が挙げられ、ルイス塩基としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、1価又は2価のアルコール等が挙げられる。上記希土類金属化合物の希土類元素としては、ランタン、ネオジム、プラセオジム、サマリウム、ガドリニウムが好ましく、これらの中でも、ネオジムが特に好ましい。また、(A)成分として、具体的には、ネオジムトリ-2-エチルヘキサノエート,それとアセチルアセトンとの錯化合物,ネオジムトリネオデカノエート,それとアセチルアセトンとの錯化合物,ネオジムトリn-ブトキシド等が挙げられる。これら(A)成分は一種単独で用いても、二種以上を混合して用いてもよい。
 上記配位重合に用いる(B)成分は、有機アルミニウム化合物から選択される。該有機アルミニウム化合物として、具体的には、式:R12 3Alで表されるトリヒドロカルビルアルミニウム化合物、式:R12 2AlH又はR12AlH2で表されるヒドロカルビルアルミニウム水素化物(式中、R12は、それぞれ独立して炭素数1~30の炭化水素基である)、炭素数1~30の炭化水素基をもつヒドロカルビルアルミノキサン化合物等が挙げられる。該有機アルミニウム化合物として、具体的には、トリアルキルアルミニウム、ジアルキルアルミニウムヒドリド、アルキルアルミニウムジヒドリド、アルキルアルミノキサン等が挙げられる。これらの化合物は一種単独で用いても、二種以上を混合して用いてもよい。なお、(B)成分としては、アルミノキサンと他の有機アルミニウム化合物とを併用するのが好ましい。
 上記配位重合に用いる(C)成分は、加水分解可能なハロゲンを有する化合物又はこれらとルイス塩基の錯化合物;三級アルキルハライド、ベンジルハライド又はアリルハライドを有する有機ハロゲン化物;非配位性アニオン及び対カチオンからなるイオン性化合物等から選択される。かかる(C)成分として、具体的には、アルキルアルミニウム二塩化物、ジアルキルアルミニウム塩化物、四塩化ケイ素、四塩化スズ、塩化亜鉛とアルコール等のルイス塩基との錯体、塩化マグネシウムとアルコール等のルイス塩基との錯体、塩化ベンジル、塩化t-ブチル、臭化ベンジル、臭化t-ブチル、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。これら(C)成分は一種単独で用いても、二種以上を混合して用いてもよい。
 上記重合開始剤は、上記の(A),(B),(C)成分以外に、必要に応じて、重合用単量体と同じ共役ジエン化合物及び/又は非共役ジエン化合物を用いて予備的に調製してもよい。また、(A)成分又は(C)成分の一部又は全部を不活性な固体上に担持して用いてもよい。上記各成分の使用量は、適宜設定することができるが、通常、(A)成分は単量体100g当たり0.001~0.5ミリモル(mmol)である。また、モル比で(B)成分/(A)成分は5~1,000、(C)成分/(A)成分は0.5~10が好ましい。
 上記配位重合における重合温度は、-80~150℃の範囲が好ましく、-20~120℃の範囲が更に好ましい。また、配位重合に用いる溶媒としては、上述のアニオン重合で例示した反応に不活性な炭化水素溶媒を用いることができ、反応溶液中の単量体の濃度もアニオン重合の場合と同様である。更に、配位重合における反応圧力もアニオン重合の場合と同様であり、反応に使用する原材料も、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を実質的に除去したものが望ましい。
 当該変性共役ジエン系重合体としては、有機アルカリ金属化合物、特にアルキルリチウムを用いてアニオン重合してなるものが好ましい。
 本実施形態における共役ジエン系重合体では、無変性及び/又は変性低分子量ジエン系共重合体として、無変性物又は変性前の性状で、芳香族ビニル化合物由来の構成単位の含有量が1質量%以上60質量%以下であり、かつ共役ジエン部分のビニル結合量が5質量%以上80質量%以下であることが好ましい。芳香族ビニル化合物由来の構成単位の含有量や共役ジエン化合物部分のビニル結合量が上記範囲にないと、ゴム組成物の作業性の確保とゴム組成物の損失正接(tanδ)の低減とを十分に両立することができない場合がある。
 芳香族ビニル化合物由来の構成単位の含有量は10質量%以上50質量%以下であることがより好ましく、また共役ジエン部分のビニル結合量は10質量%以上70質量%以下であることが好ましい。
 本実施形態における共役ジエン重合体は、重合反応後に重合活性末端と、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを含む化合物とを変性反応させて得られる変性共役ジエン系重合体であることが好ましい。
 ここで、上記重合性活性末端を有する共役ジエン系重合体は、前述の共役ジエン系重合体の製造において説明したように、有機アルカリ金属化合物、好ましくはリチウム化合物を用い、芳香族ビニル化合物と共役ジエン化合物とを、前述と同様にしてアニオン重合させることにより、得ることができる。この際、反応条件としては、得られる活性末端を有する低分子量ジエン系共重合体が、前述した性状を有するように、適宜選択する。
 このようにして得られた低分子量ジエン系共重合体の活性末端に反応させる変性剤としては、窒素含有化合物、ケイ素含有化合物、スズ含有化合物などを用いることができる。上記変性剤として用いることができる窒素含有化合物としては、ビス(ジエチルアミノ)ベンゾフェノン、ジメチルイミダゾリジノン、N-メチルピロリドン、4-ジメチルアミノベンジリデンアニリン等が挙げられる。これらの窒素含有化合物を変性剤として用いることで、置換及び非置換のアミノ基、アミド基、イミノ基、イミダゾール残基、ニトリル基、ピリジル基等の窒素を含む官能基を導入することができる。
 なお、本実施形態における変性反応においては、用いる活性末端を有する低分子量ジエン系共重合体は、少なくとも10モル%のポリマー鎖がリビング性を有するものが好ましい。
 本実施形態における第1の重合体は、このようにして得られた有機金属型の活性部位を分子中に有する共役ジエン系重合体に対して、下記一般式(III):
Figure JPOXMLDOC01-appb-C000005
     
(式中、a+b+c=4(但し、bは1~3の整数、aは0~2の整数、cは1~3の整数である)であり、Aは飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、イミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル残基、炭酸ジヒドロカルビルエステル残基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸エステル残基、(チオ)カルボン酸エステル残基の金属塩、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解可能な基を有する2級アミノ基またはメルカプト基の中から選ばれる少なくとも1種の官能基であり、Aが複数のときは同一であっても異なっていてもよい。
 R1は、炭素数1~20の一価の脂肪族炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R1が複数のときは同一であっても異なっていてもよい。R2は、炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R2が複数のときは同一であっても異なっていてもよい。R3は、炭素数1~20の二価の炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R3が複数のときは同一であっても異なっていてもよい。)で表される変性剤、及びその縮合物を反応させて得られる。
 一般式(III)において、R1及びR2としては、炭素数1~20のアルキル基,炭素数2~18のアルケニル基,炭素数6~18のアリール基,炭素数7~18のアラルキル基等が挙げられる。ここで、上記アルキル基及びアルケニル基は、直鎖状,枝分かれ状,環状のいずれであってもよく、例えば、メチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,イソブチル基,sec-ブチル基,tert-ブチル基,ペンチル基,ヘキシル基,オクチル基,デシル基,ドデシル基,シクロペンチル基,シクロヘキシル基,ビニル基,プロぺニル基,アリル基,ヘキセニル基,オクテニル基,シクロペンテニル基,シクロヘキセニル基等が挙げられる。また、上記アリール基は、芳香環上に低級アルキル基等の置換基を有していてもよく、例えば、フェニル基,トリル基,キシリル基,ナフチル基等が挙げられる。更に、上記アラルキル基は、芳香環上に低級アルキル基等の置換基を有していてもよく、例えば、ベンジル基,フェネチル基,ナフチルメチル基等が挙げられる。
 R3の内の炭素数1~20の二価の不活性炭化水素基としては、炭素数1~20のアルキレン基が好ましい。該アルキレン基は、直鎖状,枝分かれ状,環状のいずれであってもよいが、特に直鎖状のものが好適である。該直鎖状アルキレン基としては、メチレン基,エチレン基,トリメチレン基,テトラメチレン基,ペンタメチレン基,ヘキサメチレン基,オクタメチレン基,デカメチレン基,ドデカメチレン基等が挙げられる。
 前記Aのうちの飽和環状3級アミン化合物残基としては、例えばヘキサメチレンイミノ基、ピロリジニル基、ピペリジニル基、ヘプタメチレンイミノ基、ドデカメチレンイミノ基などを挙げることができ、不飽和環状3級アミン化合物残基としては、例えばイミダゾール残基、ジヒドロイミダゾール残基、オキサゾール残基、ピリジル基などを挙げることができる。
 前記Aとしては、性能の観点から、ケチミン残基、飽和環状3級アミン化合物残基、イミダゾール残基、ジヒドロイミダゾール残基、ピリジン基、ニトリル基、イソシアネート基及び脱離可能な官能基を有する2級アミノ基の中から選ばれる少なくとも1種の含窒素官能基を有する一価の基であることが好ましく、飽和環状3級アミン化合物残基、ケチミン残基、イミダゾール残基、ジヒドロイミダゾール残基及び脱離可能な官能基を有する2級アミノ基の中から選ばれる少なくとも1種を有する一価の基であることが、より好ましい。
 一般式(III)において、Aにおける官能基の中で、イミン残基はケチミン、アルジミン、アミジンの残基を包含し、(チオ)カルボン酸ヒドロカルビルエステルは、アクリレートやメタクリレート等の不飽和カルボン酸エステルの残基を包含する。また、(チオ)カルボン酸の金属塩残基の金属としては、アルカリ金属、アルカリ土類金属、アルミニウム、スズ、亜鉛等を挙げることができる。
 前記Aで表される一価の基における官能基の中で、加水分解可能な基を有する2級アミノ基としては、N-(トリメチルシリル)アミノ基などを挙げることができる。(チオ)イソシアネート基は、-NCO基、-NCS基である。
 また(チオ)エポキシ基を含む一価の基としては、例えばグリシドキシ基、3,4-エポキシシクロヘキシル基、及びこれらの基におけるエポキシ環をチオエポキシ環に置き換えたものなどが挙げられる。
 本実施形態で用いる変性剤は、前記したように二官能ヒドロカルビルオキシシラン化合物及び/又はその部分縮合物である。ここで、部分縮合物とは、ヒドロカルビルオキシシラン化合物のSiOR基の一部(全部ではない)が、縮合によりSiOSi結合となったものをいう。
 また、本実施形態で用いる変性剤が、ケイ素原子に直接結合したヒドロカルビルオキシ基が1つである一官能ヒドロカルビルオキシシラン化合物である場合、変性反応によってヒドロカルビルオキシ基が消費され、シリカなどの無機充填材に相互作用する変性基が導入されないため、本発明の目的が達せられない。一方、ケイ素原子に直接結合するヒドロカルビルオキシ基が3つある三官能ヒドロカルビルオキシシラン化合物である場合、変性剤1分子に複数の活性末端を有する共役ジエン系重合体が反応することにより、ジエン系重合体1分子当たりの高効率な変性末端の導入が達成できない。
 本実施形態における変性反応においては、用いる活性末端を有する共役ジエン系重合体は、少なくとも10モル%のポリマー鎖がリビング性を有するものが好ましい。
 一般式(III)で表されるヒドロカルビルオキシシラン化合物としては、例えば、(チオ)エポキシ基含有ヒドロカルビルオキシシラン化合物として、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、(2-グリシドキシエチル)メチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシラン及びこれらの化合物におけるエポキシ基をチオエポキシ基に置き換えたものを挙げることができるが、これらの中でも、3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルトリエトキシシランが特に好ましい。
 また、イミン残基含有ヒドロカルビルオキシシラン化合物として、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン,N-(1-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン,N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン,N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン,N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン,N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物,メチルジエトキシシリル化合物,エチルジエトキシシリル化合物,メチルジメトキシシリル化合物,エチルジメトキシシリル化合物等を挙げることができるが、これらの中でも、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンが特に好ましい。
 また、イミン(アミジン)残基含有化合物としては、1-[3-(トリエトキシシリル)プロピル]-4,5-ジヒドロイミダゾール,1-[3-(トリメトキシシリル)プロピル]-4,5-ジヒドロイミダゾール,N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール,N-(3-イソプロポキシシリルプロピル)-4,5-ジヒドロイミダゾール,N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾール等が挙げられ、これらの中でも、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールが好ましい。
 前記一般式(III)で表される二官能ヒドロカルビルオキシシラン化合物として、例えばAがイミダゾール残基又はジヒドロイミダゾール残基を有する場合、具体例として、1-[3-[ジエトキシ(メチル)シリル]プロピル]-イミダゾール、1-[3-[ジエトキシ(エチル)シリル]プロピル]-イミダゾール、1-[3-[ジプロポキシ(メチル)シリル]プロピル]-イミダゾール、1-[3-[ジプロポキシ(エチル)シリル]プロピル]-イミダゾール、1-[3-[ジエトキシ(メチル)シリル]プロピル]-4,5-ジヒドロイミダゾール、1-[3-[ジエトキシ(エチル)シリル]プロピル]-4,5-ジヒドロイミダゾール、1-[3-[ジプロポキシ(メチル)シリル]プロピル]-4,5-ジヒドロイミダゾール、1-[3-[ジプロポキシ(エチル)シリル]プロピル]-4,5-ジヒドロイミダゾールなどを挙げることができるが、これらの中で1-[3-[ジエトキシ(メチル)シリル]プロピル]-イミダゾール、1-[3-[ジプロポキシ(メチル)シリル]プロピル]-イミダゾール、1-[3-[ジエトキシ(メチル)シリル]プロピル]-4,5-ジヒドロイミダゾール及び1-[3-[ジプロポキシ(メチル)シリル]プロピル]-4,5-ジヒドロイミダゾールが好適である。
 前記一般式(III)で表される二官能ヒドロカルビルオキシシラン化合物として、例えばAがピリジル基、又はニトリル基を有する場合、具体例として、2-[2-[ジエトキシ(メチル)シリル]エチル]-ピリジン、2-[2-[ジプロポキシ(メチル)シリル]エチル]-ピリジン、2-[3-[ジエトキシ(メチル)シリル]プロピル]-ピリジン、2-[3-[ジエトキシ(エチル)シリル]プロピル]-ピリジン、2-[3-[ジプロポキシ(メチル)シリル]プロピル]-ピリジン、2-[3-[ジプロポキシ(エチル)シリル]プロピル]-ピリジン、4-[2-[ジエトキシ(メチル)シリル]エチル]-ピリジン、4-[2-[ジプロポキシ(メチル)シリル]エチル]-ピリジン、4-[3-[ジエトキシ(メチル)シリル]プロピル]-ピリジン、4-[3-[ジエトキシ(エチル)シリル]プロピル]-ピリジン、4-[3-[ジプロポキシ(メチル)シリル]プロピル]-ピリジン、4-[3-[ジプロポキシ(エチル)シリル]プロピル]-ピリジンなどのピリジン化合物、1-シアノ-3-[ジエトキシ(メチル)シリル]-プロパン、1-シアノ-3-[ジエトキシ(エチル)シリル]-プロパン、1-シアノ-3-[ジプロポキシ(メチル)シリル]-プロパン、1-シアノ-3-[ジプロポキシ(エチル)シリル]-プロパンなどのシアノ化合物を挙げることができる。これらの中で、2-[3-[ジエトキシ(メチル)シリル]プロピル]-ピリジン、2-[3-[ジプロポキシ(メチル)シリル]プロピル]-ピリジン、4-[3-[ジエトキシ(メチル)シリル]プロピル]-ピリジン、4-[3-[ジプロポキシ(メチル)シリル]プロピル]-ピリジン、1-シアノ-3-[ジエトキシ(メチル)シリル]-プロパン及び1-シアノ-3-[ジプロポキシ(メチル)シリル]-プロパンが好適である。
 前記一般式(III)で表される二官能ヒドロカルビルオキシシラン化合物として、例えばAが(チオ)イソシアナート基又はオキサゾール残基を有する場合、具体例として、1-イソシアナト-3-[ジエトキシ(メチル)シリル]-プロパン、1-イソシアナト-3-[ジエトキシ(エチル)シリル]-プロパン、1-イソシアナト-3-[ジプロポキシ(メチル)シリル]-プロパン、1-イソシアナト-3-[ジプロポキシ(エチル)シリル]-プロパンなどのイソシアナート化合物、上記イソシアナート化合物におけるイソシアナトをチオイソシアナトに置き換えたチオイソシアナート化合物、4-[3-[ジエトキシ(メチル)シリル]プロピル]-オキサゾール、4-[3-[ジエトキシ(エチル)シリル]プロピル]-オキサゾール、4-[3-[ジプロポキシ(メチル)シリル]プロピル]-オキサゾール、4-[3-[ジプロポキシ(エチル)シリル]プロピル]-オキサゾールなどのオキサゾール化合物などを挙げることができる。これらの中で、1-イソシアナト-3-[ジエトキシ(メチル)シリル]-プロパン、1-イソシアナト-3-[ジプロポキシ(メチル)シリル]-プロパン、4-[3-[ジエトキシ(メチル)シリル]プロピル]-オキサゾール及び4-[3-[ジプロポキシ(メチル)シリル]プロピル]-オキサゾールが好適である。
 なお、本実施形態においては、オキサゾール残基はイソオキサゾール残基をも包含する。
 更に、その他のヒドロカルビルオキシシラン化合物として、以下のものを挙げることができる。即ち、カルボン酸ヒドロカルビルエステル残基含有化合物としては、3-メタクリロイロキシプロピルトリエトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-メタクリロイロキシプロピルメチルジエトキシシラン、3-メタクリロイロキシプロピルトリイソプロポキシシランなどが挙げられ、これらの中でも、3-メタクリロイロキシプロピルトリメトキシシランが好ましい。
 また、イソシアナート基含有化合物としては、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-イソシアナトプロピルメチルジエトキシシラン、3-イソシアナトプロピルトリイソプロポキシシランなどが挙げられ、これらの中でも、3-イソシアナトプロピルトリエトキシシランが好ましい。
 更に、カルボン酸無水物残基としては、3-トリエトキシシリルプロピルコハク酸無水物残基、3-トリメトキシシリルプロピルコハク酸無水物残基、3-メチルジエトキシシリルプロピルコハク酸無水物残基等が挙げられ、これらの中でも、3-トリエトキシシリルプロピルコハク酸無水物残基が好ましい。
 本実施形態では、上記特性構造を有するヒドロカルビルオキシシラン化合物を、該活性部位に対して好ましくは化学量論的量又はそれより過剰の、さらに好ましくは、見かけの活性部位の0.3モル当量以上加え(通常、該変性用ヒドロカルビルオキシシラン化合物は、その1モルが活性部位数モル当量に相当する)、該活性部位にヒドロカルビルオキシシラン化合物を反応させて、該活性部位に実質的にヒドロカルビルオキシシラン化合物残基を導入したのち、縮合促進剤を加える方法を用いる。
 このような縮合促進剤としては、第三アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかに属する元素を一種以上含有する有機化合物を用いることができる。更に縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)、及びスズ(Sn)からなる群から選択される少なくとも一種以上の金属を含有する、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
 ここで用いる縮合促進剤は、前記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、例えば、活性末端に保護された第一アミノ基を有するヒドロカルビロキシ基が導入されない場合がある。
 縮合促進剤を加える時期としては、ヒドロカルビルシラン化合物残基を導入した変性直後の反応系に添加することが好ましいが、該反応により変性された重合体を乾燥して後、配合時、望ましくは配合の第1ステージにおいて縮合促進剤を添加してもよい。
 この変性反応において、使用する共役ジエン系重合体は、少なくとも20モル%のポリマー鎖が該活性部位を有するものが好ましい。
 本実施形態における第2の変性共役ジエン系重合体は、有機金属型の活性部位を分子中に有する共役ジエン系重合体の該活性部位に、下記一般式(I)
      RaMXb ・・・ (I)
(式中、Rは、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物、及び一般式(II)
      R1 aM(OR2b ・・・ (II)
(式中、R1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物の中から選ばれる少なくとも1種の変性剤、及びその縮合物を反応させて得られる。
 前記有機金属型の活性部位を分子中に有する重合体の製造方法については、前記第1の重合体の場合と同様である。
 上記一般式(I)及び(II)で表されるカップリング剤の少なくともいずれかで変性した変性共役ジエン系重合体は、少なくとも一種のスズ-炭素結合又はケイ素-炭素結合を有する。一般式(I)及び(II)において、RまたはR1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基であり、これらとして具体的には、メチル基、エチル基、n-ブチル基、ネオフィル基、シクロヘキシル基、n-オクチル基、2-エチルヘキシル基等が挙げられる。また、Zは、スズ又はケイ素であり、Xは、それぞれ独立して塩素又は臭素である。一般式(I)及び(II)において、aは0~3の整数で、bは1~4の整数であり、但し、a+b=4である。
 一般式(I)で表されるカップリング剤としては、四塩化スズ、RSnCl3、R2SnCl2、R3SnCl等が好ましく、四塩化スズが特に好ましい。また、一般式(II)で表されるカップリング剤としては、テトラアルコキシシラン、トリアルコキシシシラン、ジアルコキシシランが好ましく、テトラエトキシシランが特に好ましい。
 本実施形態における第3の変性ジエン系重合体は、前記一般式(II)で表されるアルコキシシラン化合物と前記一般式(III)で表される変性剤との縮合物を反応させて得られる変性共役ジエン系重合体である。
 前記一般式(II)で表されるアルコキシシラン化合物及び前記一般式(III)で表される変性剤については、前述の通りである。
 前記有機金属型の活性部位を分子中に有する重合体の製造方法については、前記第1の重合体の場合と同様である。
 また、縮合促進剤の種類及び縮合反応条件などについても、前述の第1の重合体の製造において説明した通りである。
 以上説明した変性剤により変性された本実施形態における変性共役ジエン系重合体は、窒素原子を含むことが好ましい。一般に、窒素含有官能基を有する変性共役ジエン系重合体を含むゴム成分にカーボンブラックが配合されたゴム組成物においては、ゴム成分に対するカーボンブラックの分散性が向上し、延いてはゴム成分のヒステリシスロスが低減されるため、耐摩耗性及び転がり抵抗を向上させることができる。したがって、本実施形態における表面に存在するタール成分の少ないカーボンブラックと共に、窒素含有官能基を有する変性共役ジエン系重合体を用いることによって、カーボンブラックの分散性が大幅に向上するため、カーボンブラックの補強効果を十分に発揮しつつ、ゴム組成物中のヒステリシスロスを低減することができる。
 第1の重合体、第2の重合体を得るための前記変性反応は、溶液反応及び固相反応のいずれも用いることができるが、溶液反応(重合時に使用した未反応モノマーを含んでいてもよい。)が好適である。また、この変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、該変性反応は、重合反応終了が望まれる転化率に達した後、脱溶媒処理、水処理、熱処理などを行う前に実施することが肝要である。
 また、変性反応の温度は、20℃以上で行うことが好ましいが、共役ジエン系重合体の重合温度をそのまま用いることができ、30~120℃がさらに好ましい範囲として挙げられる。反応温度が低くなると重合体の粘度が上昇しすぎる、反応物の分散性が悪くなる傾向がある。一方、反応温度が高くなると、重合活性部位が失活し易くなる傾向がある。
 なお、変性剤の使用量は、共役ジエン系重合体の製造に使用した重合開始剤1molに対し、0.25~3.0molの範囲が好ましく、0.5~1.5molの範囲が更に好ましい。
 本実施形態では、前記変性剤による変性が共役ジエン系重合体における活性部位に対して行われるが、この活性部位は重合体の分子中にあればよく、その位置は特に限定されない。ただし、ゴム成分中に、少なくとも一方の分子末端を、カーボンブラックと相互作用を有する官能基を含む化合物からなる変性剤で変性してなる変性共役ジエン系重合体を含むことがが、得られるゴム組成物の耐摩耗性と低転がり抵抗のバランスの観点から、特に好ましく、その観点からは、前記重合体における活性部位は共役ジエン系重合体の末端に存在することが好ましい。
 本実施形態のゴム組成物は、ゴム成分として上述の変性共役ジエン系重合体(第1の重合体、第2の重合体)を含む。ここで、ゴム成分中の該変性共役ジエン系重合体の含有率は、ゴム成分100質量部に対し、5質量部以上80質量部以下の範囲とすることが好ましい。上記ゴム成分中の変性共役ジエン系重合体の含有量が5質量部未満では、カーボンブラック分散性の向上効果が十分に得られず、一方、80質量部を超えると、作業性が低下する場合がある。上記含有率は15質量部以上60質量部以下の範囲とすることがより好ましい。
 なお、本実施形態のゴム組成物において、上記変性共役ジエン系重合体以外のゴム成分としては、天然ゴム(NR)の他、未変性のスチレン-ブタジエン共重合体(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)、エチレン-プロピレン共重合体等を用いることができ、これらの中でも、天然ゴム及びポリイソプレンゴムが好ましい。これらゴム成分は、1種単独でも、2種以上のブレンドとして用いてもよい。
(ゴム配合用カーボンブラック)
 本実施形態におけるゴム配合用カーボンブラックは、燃焼ガス生成帯域と、反応帯域と、反応停止帯域とが連設されてなる反応装置を用い、前記燃焼ガス生成帯域内で高温燃焼ガスを生成させ、次いで前記反応帯域に原料を噴霧導入してカーボンブラックを含む反応ガス流を形成させたのち、反応停止帯域にて、多段急冷媒体導入手段により、該反応ガス流を急冷して、反応を終結させることにより得られ、下記の関係式(1)及び(2)を満たすものである。
  10<X<40  ・・・(1)
  90<Z<100 ・・・(2)
 ただし、Xは原料導入位置から、第1番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示し、Zは、最後の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示す。
 まず、本実施形態のゴム組成物に用いられるゴム配合用カーボンブラックの製造方法について説明する。
 カーボンブラック製造炉内部は、燃焼帯域と反応帯域と反応停止帯域とを連接した構造であり、その全体は耐火物で覆われている。カーボンブラック製造炉は、燃焼帯域として、可燃性流体導入室と、炉頭部外周から酸素含有ガス導入管によって導入された酸素含有ガスを、整流板を用いて整流して可燃性流体導入室へ導入する酸素含有ガス導入用円筒と、酸素含有ガス導入用円筒の中心軸に設置され、可燃性流体導入室へ燃料用炭化水素を導入する燃料油噴霧装置導入管とを備える。燃焼帯域内では、燃料用炭化水素の燃焼により高温燃焼ガスを生成する。
 カーボンブラック製造炉は、反応帯域として、円筒が次第に収れんする収れん室と、収れん室の下流側に例えば4つの原料油噴霧口を含む原料油導入室と、原料油導入室の下流側に反応室とを備える。原料油噴霧口は、燃焼帯域からの高温燃焼ガス流中に原料炭化水素を噴霧導入する。反応帯域内では、高温燃焼ガス流中に原料炭化水素を噴霧導入し、不完全燃焼又は熱分解反応により、原料炭化水素をカーボンブラックに転化する。
 図1は、当該ゴム配合用カーボンブラックを製造するためのカーボンブラック製造炉の一例の部分断面説明図であって、カーボンブラックの原料(原料炭化水素)を含んだ高温ガスが導入される反応室10及び反応継続兼冷却室11を示す。図1に示すように、カーボンブラック製造炉1は、反応停止帯域として、多段急冷媒体導入手段12を有する反応継続兼冷却室11を備える。多段急冷媒体導入手段12は、反応帯域からの高温燃焼ガス流に対して、水などの急冷媒体を噴霧する。反応停止帯域内では、高温燃焼ガス流を急冷媒体により急冷して反応を終結する。
 また、カーボンブラック製造炉1は、反応帯域あるいは反応停止帯域において、ガス体を導入する装置を更に備えてもよい。ここで、「ガス体」としては、空気、酸素と炭化水素の混合物、これらの燃焼反応による燃焼ガス等が使用可能である。
 このようにして、カーボンブラック製造において、反応ガス流が反応停止帯域に入るまでの各帯域における平均反応温度と滞留時間を制御して、トルエン着色透過度X、Y及びZを所望の値にすることにより、本実施形態のゴム組成物に用いられるゴム配合用カーボンブラックが得られる。
 ここで、本実施形態における各帯域について説明する。
 燃焼帯域とは、燃料と空気との反応により高温ガス流が生成される領域であり、この下流端は原料油が反応装置内に導入される点(複数位置で導入される場合は最も上流側)、例えば原料油が導入される点よりも上流側(図1では左側)を指す。
 また、反応帯域とは、原料炭化水素が導入された点(複数位置の場合は最も上流側)から反応継続兼冷却室11内の多段急冷水噴霧手段12(これらの手段は反応継続兼冷却室11内で抜き差し自在であり、生産する品種、特性により使用位置は選択される)の作動(水等の冷媒体を導入する)点までを指す。すなわち、例えば第3番目の原料油噴霧口で原料油を導入し、多段急冷媒体導入手段12で水を導入した場合、この間の領域が反応帯域となる。反応停止帯域とは、急冷水圧入噴霧手段を作動させた点よりも下側(図1では右側)の帯域を指す。
 図1において、反応継続兼冷却室11という名称を用いたのは、原料導入時点から前記反応停止用急冷水圧入噴霧手段の作動時点までが反応帯域、それ以降が反応停止帯域であり、この急冷水導入位置が要求されるカーボンブラック性能により移動することがあるためである。
 本実施形態においては、前記のようにして得られたゴム配合用カーボンブラックは、下記の関係式(1)及び(2)
  10<X<40  ・・・(1)
  90<Z<100 ・・・(2)
を満たすことが必要である。
 前記Xは、原料導入位置から、第1番目の急冷媒体導入手段(図1において、12-X)より急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示し、前記Zは、最後の急冷媒体導入手段(図1において、12-Z)により急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示す。すなわち、第1番目の急冷媒体導入後のカーボンブラックは、トルエン着色透過度が10%より高く、40%未満であって、最後の急冷媒体導入後のカーボンブラック(ゴム配合用カーボンブラック)は、トルエン着色透過度が90%より高く、100%未満の範囲にあることが必要である。当該ゴム配合用カーボンブラックのトルエン着色透過度Zが90%以下であれば、該カーボンブラックは、その中に含有される重質タール成分が多く存在し、ゴムに対して十分な補強性を与えることができず、耐摩耗性が低下する。
 また、前記Xが40以上であると、カーボンブラックの補強性が下がり、耐摩耗性が低下する。
 このような性状を有するゴム配合用カーボンブラックは、下記のように反応温度及び滞留時間を制御することにより、得ることができる。
 すなわち、反応帯域内に原料が噴霧導入されてから、第1番目の急冷媒体が導入されるまでの帯域における滞留時間をt1(秒)、この帯域での平均反応温度をT1(℃)とし、第1番目の急冷媒体が導入されてから、第2番目の急冷媒体導入手段(図1において、12-Y)により急冷媒体が導入されるまでの帯域における滞留時間をt2(秒)、この帯域での平均反応温度をT2(℃)とし、更に、第2番目の急冷媒体が導入されてから、最後の急冷媒体が導入されるまでの帯域における滞留時間(即ち、反応停止帯域通過までの帯域における滞留時間)をt3(秒)、この帯域内での平均反応温度をT3(℃)とした場合、下記の関係式(3)、(4)及び(5)
  2.00≦α1≦5.00             ・・・(3)
  5.00≦α2≦9.00             ・・・(4)
  -2.5×(α1+α2)+85.0≦β≦90.0 ・・・(5)
(ただし、α1=t1×T1、α2=t2×T2、β=t3×T3である。)
を満たすように制御することにより、当該ゴム配合用カーボンブラックを得ることができる。
 カーボンブラック製造炉1は、炉内の温度をモニターするため、任意の数箇所に熱電対を炉内に挿入できる構造を備える。平均反応温度T1、T2、T3を算出するために、各工程(各帯域)で、少なくとも2箇所、望ましくは3~4箇所の温度を測定することが好ましい。
 更に、滞留時間t1、t2、t3の算出は、公知の熱力学的計算方法によって導入反応ガス流体の体積を算出し、次式により算出するものとする。尚、原料油の分解反応および急冷媒体による体積増加は無視するものとする。
・滞留時間t1(sec)=〔原料炭化水素導入位置から第1番目の急冷媒体導入位置までの反応炉内通過容積(m3)〕/ 〔反応ガス流体の体積(m3/sec)〕
・滞留時間t2(sec)=〔第1番目の急冷媒体導入位置から第2番目の急冷媒体が導入されるまでの反応炉内通過容積(m3)〕/ 〔反応ガス流体の体積(m3/sec)〕
・滞留時間t3(sec)=〔第2番目の急冷媒体導入位置から最後の急冷媒体が導入されるまでの反応炉内通過容積(m3)〕/ 〔反応ガス流体の体積(m3/sec)〕
 更に、当該ゴム配合用カーボンブラックとして、下記の関係式(6)、(7)及び(8)
  20<X<40 ・・・(6)
  50<Y<60 ・・・(7)
  90<Z<95 ・・・(8)
(式中、Yは第2番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度を示し、X及びZは前記と同じである。)
を満たすように制御して得られたものを好適に用いることができる。
 なお、上記トルエン着色透過度は、JIS K 6218:1997の第8項B法に記載の方法により測定され、純粋なトルエンとの百分率で表示される。
 当該ゴム配合用カーボンブラックは、水素放出率が、0.3質量%を超えることが好ましい。この水素放出率が0.3質量%を超えると、本実施形態のゴム組成物は耐摩耗性が高く、かつ発熱性も小さくなる。該水素放出率は0.35質量%以上が好ましい。その上限は、通常0.4質量%程度である。
 なお、上記水素放出率は、(1)カーボンブラック試料を105℃の恒温乾燥機中で1時間乾燥し、デシケータ中で室温まで冷却し、(2)スズ製のチューブ状サンプル容器に約10mgを精秤し、圧着・密栓し、(3)水素分析装置(堀場製作所EMGA621W)でアルゴン気流下、2000℃で15分間加熱したときの水素ガス発生量を測定し、その質量分率で表示される。
 更に、当該ゴム配合用カーボンブラックは、ジブチルフタレート吸収量(DBP)が95mL/100g以上220mL/100g以下であり、圧縮DBP吸収量(24M4DBP)が90mL/100g以上200mL/100g以下であり、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)が70m2/g以上200m2/g以下であるものが好ましい。DBP、24M4DBP及びCTABが上記範囲にあることにより、ゴム組成物を十分に補強することができ、ゴム組成物の耐摩耗性を向上させることができる。
 上記DBPは100mL/100g以上200mL/100g以下であること、24M4DBPは100mL/100g以上180mL/100g以下であること、さらにCTABは80m2/g以上180m2/g以下であることが各々より好ましい。
 なお、ジブチルフタレート吸収量(DBP)及び圧縮DBP吸収量(24M4DBP)は、ASTM D2414-88(JIS K6217-4:2001)に記載の方法により測定され、カーボンブラック100g当たりに吸収されるジブチルフタレート(DBP)の体積mLで表示される。また、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)は、JIS K6217-3:2001に記載の方法により測定され、カーボンブラック単位質量当たりの比表面積m2/gで表示される。
 本実施形態のゴム組成物は、前述した変性共役ジエン系重合体を含むゴム成分100質量部に対して、前記ゴム配合用カーボンブラックを、10質量部以上250質量部以下の割合で含むことが好ましい。
 前記カーボンブラックの含有量が10質量部未満では、ゴム組成物の補強効果が十分に発揮されず、所望の耐摩耗性が得られない場合がある。一方250質量部を超えると、低転がり抵抗などの所望の物性を有するゴム組成物が得られない場合がある。前記カーボンブラックの含有量は、ゴム成分100質量部に対して、20質量部以上150質量部以下であることが好ましく、30質量部以上120質量部以下であることがより好ましい。
 なお、前記ゴム配合用カーボンブラックは、前述の方法で製造され、かつ前述した物性を有するものが用いられるが、該カーボンブラックの形態としては、例えばFEF、SRF、HAF、ISAF、ISAF-LS、SAF-LSなどが挙げられる。
(ゴム組成物の調製)
 本実施形態のゴム組成物には、前記変性共役ジエン系重合体を含むゴム成分及び前記ゴム配合用カーボンブラック以外に、その他成分、例えば無機充填材、加硫剤、加硫促進剤、酸化亜鉛、ステアリン酸、老化防止剤等のゴム業界で通常使用される配合剤を、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。また、上記ゴム組成物は、ゴム成分と、配合ゴム用カーボンブラックと、適宜選択した各種配合剤とを配合して、バンバリーミキサー、ロール、インターナルミキサー、インテンシブミキサー等を用いて混練り後、熱入れ、押出等することにより調製することができる。
<タイヤ>
 本実施形態のタイヤは、上記ゴム組成物をタイヤ部材のいずれかに適用したことを特徴とする。ここで、本実施形態のタイヤにおいては、本実施形態のゴム組成物をトレッドに用いることが特に好ましく、上記ゴム組成物をトレッドに用いたタイヤは、耐摩耗性に優れると共に、転がり抵抗が低く低燃費性にも優れる。なお、本実施形態のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。本実施形態におけるゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
 なお、タイヤの耐摩耗性及びゴム組成物の低発熱性は、以下に示す方法に従って評価した。
(1)耐摩耗性
 供試タイヤを車輌に装着し、4万km走行した時点での溝の減量を測定し、比較例1のタイヤの減量値の逆数を100として指数表示した。この値が大きいほど、耐摩耗性に優れる。
(2)低発熱性(tanδ)
 米国レオメトリックス社製の動的スペクトロメーターを使用し、引張動歪3%、周波数10Hz、50℃の条件で測定し、コントロール(比較例1)のtanδを100として指数表示した。指数の値が小さいほど、タイヤの低発熱性(転がり抵抗)が優れていることを示す。
<カーボンブラックの製造>
(カーボンブラックA)
 図1に示すカーボンブラック製造炉を用いて、カーボンブラックAを製造した。ただし、図1において多段急冷媒体導入手段12として、第1番目の急冷媒体導入手段12-X、第2番目の急冷媒体導入手段12-Y及び最後の急冷媒体導入手段12-Zからなる3段急冷媒体導入手段を用いた。
 また、製造炉内の温度をモニターするため、任意の数ヶ所に熱電対を炉内に挿入できる構造を備える上記製造炉を用いた。カーボンブラック製造炉において、燃料には比重0.8622(15℃/4℃)のA重油を用い、原料油としては表1に示した性状の重質油を使用した。また、カーボンブラック製造炉の操作条件及びカーボンブラックの特性を表2に示す。
Figure JPOXMLDOC01-appb-T000006
(カーボンブラックB~K)
 表2に示す各操作条件を採用した以外は、カーボンブラックAの製造と同様にしてカーボンブラックB~Kを製造した。各カーボンブラックの特性を表2に示す。
Figure JPOXMLDOC01-appb-T000007
<変性共役ジエン系重合体の製造>
(変性共役ジエン系重合体(1))
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2750g、2,2-ジテトラヒドロフリルプロパン0.0285mmol、1,3-ブタジエン375g、n-ブチルリチウム2.85mmolをシクロヘキサン溶液として仕込み、攪拌装置を備えた50℃の温水浴中で4.5時間重合を行った。
 重合転化率が99%に達した時点で、トリブチル塩化スズ2.08mmolを加えて、変性反応を15分間行った。最後に反応後の重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系重合体(1)を得た。なお、変性前の共役ジエン系重合体のGPCによるポリスチレン換算の重量平均分子量(Mw)は510,000、ビニル結合量は14%であった。
(変性共役ジエン系重合体(2))
 変性共役ジエン系重合体(1)の製造において、トリブチル塩化スズを四塩化スズ0.52mmolに変更した以外は、変性共役ジエン系重合体(1)の製造と同様にして、変性共役ジエン系重合体(2)を得た。
(変性共役ジエン系重合体(3))
 変性共役ジエン系重合体(1)の製造において、トリブチル塩化スズをテトラエトキシシラン2.08mmolに変更した以外は、変性共役ジエン系重合体(1)の製造と同様にして、変性共役ジエン系重合体(3)を得た。
(変性共役ジエン系重合体(4))
 変性共役ジエン系重合体(1)の製造において、トリブチル塩化スズをN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン2.08mmolに変更した以外は、変性共役ジエン系重合体(1)の製造と同様にして、変性共役ジエン系重合体(4)を得た。
(変性共役ジエン系重合体(5))
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2750g、1,3-ブタジエン375g、n-ブチルリチウム2.85mmol、ヘキサメチレンイミン2.85mmolを加えた後、テトラヒドロフラン0.0285mmolをシクロヘキサン溶液として仕込み、攪拌装置を備えた50℃の温水浴中で4.5時間重合を行った。
 重合転化率が99%に達した時点で、トリブチル塩化スズ2.08mmolを加えて、変性反応を15分間行った。最後に反応後の重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系重合体(5)を得た。なお、変性前の共役ジエン系重合体のGPCによるポリスチレン換算の重量平均分子量(Mw)は560,000であった。
(変性共役ジエン系重合体(6))
・変性剤の製造
 イミダゾール3.4g(0.05mol)を95℃で融解し、アルゴン雰囲気下で撹拌しながら、3-グリシドキシプロピルトリメトキシシラン11.8g(0.05mol)を30分間かけて滴下した。滴下終了後、さらに95℃の温度で1時間かけて反応させた。この反応生成物Aは茶褐色の粘稠な液体として得られた。アニオン重合の変性反応に用いる場合は、この反応生成物A:5gをシクロヘキサン18mLに溶解し、変性反応に用いる直前にn-ブチルリチウム(1.6規定ヘキサン溶液)10mLを加え充分に撹拌して変性剤溶液Aとした。
・重合体の製造
 変性共役ジエン系重合体(1)の製造において、トリブチル塩化スズを上記変性剤溶液A:5.7mLに変更した以外は、変性共役ジエン系重合体(1)の製造と同様にして、変性共役ジエン系重合体(6)を得た。
(変性共役ジエン系重合体(7))
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2750g、2,2-ジテトラヒドロフリルプロパン0.05mmol、スチレン75g、1,3-ブタジエン300g、n-ブチルリチウム2.85mmolをシクロヘキサン溶液として仕込み、攪拌装置を備えた50℃の温水浴中で4.5時間重合を行った。
 重合転化率が99%に達した時点で、テトラエトキシシラン2.08mmolを加えて、変性反応を15分間行った。最後に反応後の重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系重合体(7)を得た。なお、変性前の共役ジエン系重合体のGPCによるポリスチレン換算の重量平均分子量(Mw)は490,000、ビニル結合量は20%であった。
(変性共役ジエン系重合体(8))
 変性共役ジエン系重合体(7)の製造において、トリブチル塩化スズを前記変性共役ジエン系重合体(6)の製造で用いた変性剤溶液A:5.7mLに変更した以外は、変性共役ジエン系重合体(1)の製造と同様にして、変性共役ジエン系重合体(8)を得た。
<実施例1~16及び比較例1~7>
 表2に示す各カーボンブラックA~Kを用い、バンバリーミキサーにより、表3に示す配合処方にしたがって23種のゴム組成物を調製した。
 次に、これら23種のゴム組成物をトレッドに用いたタイヤサイズ11R22.5のトラック用タイヤ23種類を常法にしたがって作製し、転がり抵抗(低発熱性)及び耐摩耗性を評価した。結果を表3に示す。

Figure JPOXMLDOC01-appb-T000008

[注]
 1)天然ゴム:RSS#1
 2)ポリブタジエンゴム:宇部興産(株)製、商品名「UBEPOL-BR150L」(ビニル結合含有量:1%、重量平均分子量(Mw):520,000)
 3)変性ジエン重合体:変性共役ジエン系重合体の製造で得た変性共役ジエン系重合体(1)~(8)
 4)カーボンブラック:カーボンブラックの製造で得たカーボンブラックD、K
 5)老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
 6)加硫促進剤CZ:N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
 表3に示す結果から、変性共役ジエン系重合体を含むゴム成分に、表面に存在するタール分の少ないカーボンブラックが所定量配合されたゴム組成物を用いた実施例1~16のタイヤは、転がり抵抗及び耐摩耗性が高度にバランスされていることが分かる。

Claims (16)

  1.  ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを、重合活性末端、重合開始末端及び重合鎖中のいずれかに有する共役ジエン系重合体を含むゴム成分と、
     燃焼ガス生成帯域と、反応帯域と、反応停止帯域とが連設されてなる反応装置を用い、前記燃焼ガス生成帯域内で高温燃焼ガスを生成させ、次いで前記反応帯域内に原料を噴霧導入してカーボンブラックに転化し、前記反応停止帯域で該カーボンブラックを含む反応ガス流を急冷して、反応を終結させることにより得られたゴム配合用カーボンブラックとを含み、
     前記ゴム配合用カーボンブラックが、下記の関係式(1)及び(2)を満たすゴム組成物。
      10<X<40  ・・・(1)
      90<Z<100 ・・・(2)
    (ただし、Xは原料導入位置から、第1番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示し、Zは、最後の急冷媒体導入後のカーボンブラックのトルエン着色透過度(%)を示す。)
  2.  前記共役ジエン系重合体が、重合反応後に重合活性末端と、ケイ素原子、スズ原子、硫黄原子、酸素原子及びチタン原子から選ばれる少なくとも1つを含む化合物とを変性反応させて得られる変性共役ジエン系重合体である請求項1に記載のゴム組成物。
  3.  前記変性共役ジエン系重合体が、有機金属型の活性部位を分子中に有する共役ジエン系重合体の該活性部位に、下記一般式(I)
          RaMXb ・・・ (I)
    (式中、Rは、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物、及び一般式(II)
          R1 aM(OR2b ・・・ (II)
    (式中、R1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)で表される化合物の中から選ばれる少なくとも1種の変性剤、及びその縮合物を反応させて得られる変性共役ジエン系重合体である請求項2に記載のゴム組成物。
  4.  前記変性共役ジエン系重合体が、有機金属型の活性部位を分子中に有する共役ジエン系重合体の該活性部位に、下記一般式(III):
    Figure JPOXMLDOC01-appb-C000001
         
    (式中、a+b+c=4(但し、bは1~3の整数、aは0~2の整数、cは1~3の整数である)であり、Aは飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、イミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル残基、炭酸ジヒドロカルビルエステル残基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸ヒドロカルビルエステル残基、(チオ)カルボン酸エステル残基の金属塩残基、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解可能な基を有する2級アミノ基またはメルカプト基の中から選ばれる少なくとも1種の官能基であり、Aが複数のときは同一であっても異なっていてもよい。
     R1は、炭素数1~20の一価の脂肪族炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R1が複数のときは同一であっても異なっていてもよい。R2は、炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R2が複数のときは同一であっても異なっていてもよい。R3は、炭素数1~20の二価の炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R3が複数のときは同一であっても異なっていてもよい。)で表される変性剤、及びその縮合物を反応させて得られる変性共役ジエン系重合体である請求項2に記載のゴム組成物。
  5.  前記変性共役ジエン系重合体が、下記一般式(II)で表される化合物と下記一般式(III)で表される変性剤との縮合物を反応させて得られる変性共役ジエン系重合体である請求項2に記載のゴム組成物。
          R1 aM(OR2b ・・・ (II)
    (式中、R1及びR2は、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基から選択され、Mはスズ又はケイ素であり、Xはそれぞれ独立して塩素、臭素又はヨウ素である。また、aは0~3の整数、bは1~4の整数であり、a+b=4である)
    Figure JPOXMLDOC01-appb-C000002
         
    (式中、a+b+c=4(但し、bは1~3の整数、aは0~2の整数、cは1~3の整数である)であり、Aは飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、イミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル残基、炭酸ジヒドロカルビルエステル残基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸ヒドロカルビルエステル残基、(チオ)カルボン酸エステル残基の金属塩残基、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解可能な基を有する2級アミノ基またはメルカプト基の中から選ばれる少なくとも1種の官能基であり、Aが複数のときは同一であっても異なっていてもよい。
     R1は、炭素数1~20の一価の脂肪族炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R1が複数のときは同一であっても異なっていてもよい。R2は、炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R2が複数のときは同一であっても異なっていてもよい。R3は、炭素数1~20の二価の炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R3が複数のときは同一であっても異なっていてもよい。)
  6.  前記変性共役ジエン系重合体が、さらに窒素原子を含む請求項2~5のいずれかに記載のゴム組成物。
  7.  前記共役ジエン系重合体が、共役ジエン化合物の重合体または共重合体である請求項1に記載のゴム組成物。
  8.  前記共役ジエン系重合体が、芳香族ビニル化合物と共役ジエン化合物との共重合体である請求項1に記載のゴム組成物。
  9.  前記共役ジエン系重合体が、1質量%以上60質量%以下の芳香族ビニル化合物由来の構成単位を含み、かつ共役ジエン部分においてビニル結合量が5質量%以上80質量%以下である請求項1または8に記載のゴム組成物。
  10.  前記反応帯域内に原料が噴霧導入されてから、第1番目の急冷媒体が導入されるまでの帯域における滞留時間をt1(秒)、この帯域での平均反応温度をT1(℃)とし、第1番目の急冷媒体が導入されてから、第2番目の急冷媒体が導入されるまでの帯域における滞留時間をt2(秒)、この帯域での平均反応温度をT2(℃)とし、更に、第2番目の急冷媒体が導入されてから、最後の急冷媒体が導入されるまでの帯域における滞留時間をt3(秒)、この帯域内での平均反応温度をT3(℃)とした場合、前記ゴム配合用カーボンブラックが、下記の関係式(3)、(4)及び(5)
      2.00≦α1≦5.00             ・・・(3)
      5.00≦α2≦9.00             ・・・(4)
      -2.5×(α1+α2)+85.0≦β≦90.0 ・・・(5)
    (ただし、α1=t1×T1、α2=t2×T2、β=t3×T3である。)
    を満たすように制御して得られたものである請求項1~9のいずれかに記載のゴム組成物。
  11.  前記ゴム配合用カーボンブラックが、下記の関係式(6)、(7)及び(8)
      20<X<40 ・・・(6)
      50<Y<60 ・・・(7)
      90<Z<95 ・・・(8)
    (式中、Yは第2番目の急冷媒体導入後のカーボンブラックのトルエン着色透過度を示し、X及びZは前記と同じである。)
    を満たすように制御して得られたものである請求項1~10のいずれかに記載のゴム組成物。
  12.  前記ゴム配合用カーボンブラックの水素放出率が、0.3質量%よりも高い請求項1~11のいずれかに記載のゴム組成物。
  13.  前記ゴム配合用カーボンブラックにおけるジブチルフタレート吸収量(DBP)が95mL/100g以上220mL/100g以下であり、圧縮DBP吸収量(24M4DBP)が90mL/100g以上200mL/100g以下であり、かつセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)が70m2/g以上200m2/g以下である請求項1~12のいずれかに記載のゴム組成物。
  14.  前記ゴム組成物が、ゴム成分100質量部に対し、前記共役ジエン系重合体を5質量部以上80質量部以下含む請求項1~13のいずれかに記載のゴム組成物。
  15.  前記ゴム組成物が、ゴム成分100質量部に対し、前記ゴム配合用カーボンブラックを10質量部以上250質量部以下含む請求項1~14のいずれかに記載のゴム組成物。
  16. 請求項1~15のいずれかに記載のゴム組成物を用いてなるタイヤ。
PCT/JP2011/057754 2010-03-31 2011-03-29 ゴム組成物及びそれを用いたタイヤ WO2011125637A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509477A JPWO2011125637A1 (ja) 2010-03-31 2011-03-29 ゴム組成物及びそれを用いたタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084386 2010-03-31
JP2010084386 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125637A1 true WO2011125637A1 (ja) 2011-10-13

Family

ID=44762584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057754 WO2011125637A1 (ja) 2010-03-31 2011-03-29 ゴム組成物及びそれを用いたタイヤ

Country Status (2)

Country Link
JP (1) JPWO2011125637A1 (ja)
WO (1) WO2011125637A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170243A (ja) * 2012-02-22 2013-09-02 Bridgestone Corp ゴム組成物およびそれを用いた空気入りタイヤ
JP2015113349A (ja) * 2013-12-09 2015-06-22 横浜ゴム株式会社 タイヤビードフィラー用ゴム組成物およびそれを用いた空気入りタイヤ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140147U (ja) * 1982-03-16 1983-09-21 旭カ−ボン株式会社 カ−ボンブラツク製造用急冷装置
JP2005272734A (ja) * 2004-03-25 2005-10-06 Asahi Carbon Kk タイヤトレッドゴム配合用カーボンブラック
JP2005307172A (ja) * 2004-03-25 2005-11-04 Bridgestone Corp タイヤトレッド用ゴム組成物及びこれを用いた空気入りタイヤ
JP2007131730A (ja) * 2005-11-10 2007-05-31 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
WO2007066689A1 (ja) * 2005-12-07 2007-06-14 Bridgestone Corporation ゴム組成物及びそれを用いたタイヤ
JP2009040904A (ja) * 2007-08-09 2009-02-26 Bridgestone Corp ゴム組成物および空気入りタイヤ
WO2010038768A1 (ja) * 2008-10-01 2010-04-08 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
WO2010041528A1 (ja) * 2008-10-08 2010-04-15 株式会社ブリヂストン トレッド用ゴム組成物及びそれを用いたタイヤ
JP2010144011A (ja) * 2008-12-17 2010-07-01 Asahi Carbon Kk タイヤトレッドゴム配合用カーボンブラック、それを用いたタイヤ用ゴム組成物および自動車用タイヤ
JP2011026392A (ja) * 2009-07-22 2011-02-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140147U (ja) * 1982-03-16 1983-09-21 旭カ−ボン株式会社 カ−ボンブラツク製造用急冷装置
JP2005272734A (ja) * 2004-03-25 2005-10-06 Asahi Carbon Kk タイヤトレッドゴム配合用カーボンブラック
JP2005307172A (ja) * 2004-03-25 2005-11-04 Bridgestone Corp タイヤトレッド用ゴム組成物及びこれを用いた空気入りタイヤ
JP2007131730A (ja) * 2005-11-10 2007-05-31 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
WO2007066689A1 (ja) * 2005-12-07 2007-06-14 Bridgestone Corporation ゴム組成物及びそれを用いたタイヤ
JP2009040904A (ja) * 2007-08-09 2009-02-26 Bridgestone Corp ゴム組成物および空気入りタイヤ
WO2010038768A1 (ja) * 2008-10-01 2010-04-08 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
WO2010041528A1 (ja) * 2008-10-08 2010-04-15 株式会社ブリヂストン トレッド用ゴム組成物及びそれを用いたタイヤ
JP2010144011A (ja) * 2008-12-17 2010-07-01 Asahi Carbon Kk タイヤトレッドゴム配合用カーボンブラック、それを用いたタイヤ用ゴム組成物および自動車用タイヤ
JP2011026392A (ja) * 2009-07-22 2011-02-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170243A (ja) * 2012-02-22 2013-09-02 Bridgestone Corp ゴム組成物およびそれを用いた空気入りタイヤ
JP2015113349A (ja) * 2013-12-09 2015-06-22 横浜ゴム株式会社 タイヤビードフィラー用ゴム組成物およびそれを用いた空気入りタイヤ

Also Published As

Publication number Publication date
JPWO2011125637A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5914572B2 (ja) タイヤ
JP5756248B2 (ja) タイヤ
EP1462459B1 (en) Process for producing modified polymer, modified polymer obtained by the process, and rubber composition
EP2272909B1 (en) Tire prepared by using rubber composition containing modified polymer
JP5745733B2 (ja) 変性重合体の製造方法、その方法により得られた変性重合体とそのゴム組成物
JP5350577B2 (ja) ゴム組成物およびそれを用いたタイヤ
US20110112212A1 (en) Tire
JP6085077B2 (ja) ゴム組成物及びそれを用いたタイヤ
EP3341424B1 (en) Elastomeric copolymers based on [bis(trihydrocarbylsilyl)aminosilyl]-functionalized styrene and their use in the preparation of rubbers
KR20090122472A (ko) 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 고무 조성물
CN101765632B (zh) 橡胶组合物和使用其的轮胎
WO2008050845A1 (fr) Procédé de production de polymères diènes conjugués modifiés, polymères diènes conjugués modifiés produits par ce procédé, compositions de caoutchouc et pneus
KR101890963B1 (ko) 아실기 함유 옥심화합물로 관능화된 중합체
WO2017187868A1 (ja) 変性ポリマーの製造方法、変性ポリマー、ゴム組成物及びタイヤ
JP5424540B2 (ja) ゴム組成物及びタイヤ
EP3130634B1 (en) Method for manufacturing rubber composition, rubber composition obtained by same, and tire
EP2658877B1 (en) Stabilization of polymers that contain a hydrolyzable functionality
JP4909520B2 (ja) 変性重合体及びそれを用いたゴム組成物及びタイヤ
WO2011125637A1 (ja) ゴム組成物及びそれを用いたタイヤ
JP2013155256A (ja) ゴム組成物及びそれを用いたタイヤ
JP5512933B2 (ja) 変性共役ジエン系共重合体の製造方法、その方法により得られた変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP2015131926A (ja) ゴム組成物及びそれを用いたタイヤ
WO2019240226A1 (ja) ゴム組成物、タイヤトレッド用ゴム組成物及びタイヤ
WO2013094693A1 (ja) タイヤ用ゴム組成物及びそれを用いたタイヤ
JP2010280865A (ja) ゴム組成物及びそれを用いたタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509477

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765537

Country of ref document: EP

Kind code of ref document: A1