WO2011125609A1 - Magnetic flux detection sensor - Google Patents

Magnetic flux detection sensor Download PDF

Info

Publication number
WO2011125609A1
WO2011125609A1 PCT/JP2011/057645 JP2011057645W WO2011125609A1 WO 2011125609 A1 WO2011125609 A1 WO 2011125609A1 JP 2011057645 W JP2011057645 W JP 2011057645W WO 2011125609 A1 WO2011125609 A1 WO 2011125609A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable body
magnetic flux
axis direction
curved surface
flux density
Prior art date
Application number
PCT/JP2011/057645
Other languages
French (fr)
Japanese (ja)
Inventor
信二 天池
保 南谷
雅也 植田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011125609A1 publication Critical patent/WO2011125609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/064Electric or photoelectric indication or reading means inductive

Definitions

  • the present invention relates to a magnetic flux detection sensor suitable for use in, for example, detection of posture inclination.
  • Patent Document 1 As a conventional magnetic flux detection sensor, a tilt sensor that detects the tilt of a posture is known (for example, see Patent Document 1).
  • a configuration including a spherical movable body made of a magnetic material provided on a tilted surface of a magnet so as to be able to roll is disclosed.
  • the tilt sensor of Patent Document 1 the movable body rolls and displaces on the tilted surface according to the tilt of the magnet, and the change in magnetic flux density accompanying the displacement of the movable body is detected by the magnetoelectric conversion element.
  • some magnetoelectric conversion elements used in the tilt sensor according to the prior art have a characteristic (anisotropy) in which the output level of the detection signal varies depending on the application direction of the magnetic flux density.
  • anisotropy in which the output level of the detection signal varies depending on the application direction of the magnetic flux density.
  • the output level of the detection signal differs depending on the tilting direction.
  • an accurate tilt angle cannot be detected compared to the direction in which the output level of the detection signal changes small with respect to the tilt angle. .
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a magnetic flux detection sensor that can obtain an output level of a substantially constant detection signal for the same tilt angle regardless of the tilt direction. It is to provide.
  • the present invention is provided in a nonmagnetic container including a movable body, a movable body housing space having an upward concave curved surface that slidably supports the movable body, and the nonmagnetic container.
  • a magnetic flux detection sensor that detects a change in magnetic flux density caused by the sliding of the movable body, wherein the magnetic flux density detection means is configured in the X-axis direction and the Y-axis direction orthogonal to each other in the horizontal plane.
  • the detection signal when the magnetic flux is tilted in the Y-axis direction has a greater anisotropy than the detection signal when the magnetic flux is tilted in the axial direction, and the concave curved surface of the movable body accommodating space is
  • the movable body and the magnetic flux density detection are formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction.
  • the movable body When the non-magnetic container is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the non-magnetic container, and when the non-magnetic container returns to the horizontal state, the movable body Is configured to return to a steady position along the concave curved surface of the non-magnetic container.
  • the movable body housed in the movable body housing space slides on the concave curved surface and moves toward the lowest position of the concave curved surface when the non-magnetic container is tilted from the horizontal state.
  • the magnetic flux density detection means is disposed opposite to the movable body and embedded in the nonmagnetic container, the relative position between the movable body and the magnetic flux density detection means changes according to the inclination angle of the nonmagnetic container.
  • the magnetic flux density applied to the magnetic flux density detection means changes according to the change in the relative position between the movable body and the magnetic flux density detection means.
  • the magnetic flux density detection means has anisotropy with a larger output level of the detection signal accompanying the magnetic flux change when tilted in the Y-axis direction than when tilted in the X-axis direction by the same tilt angle.
  • the concave curved surface of the movable body accommodating space is formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction. For this reason, the amount of displacement of the movable body with respect to the tilt angle is larger when the nonmagnetic container is tilted in the Y-axis direction than when the non-magnetic container is tilted in the X-axis direction. The position change with the movable body can be increased.
  • the magnetic flux density applied to the magnetic flux density detection means is greatly reduced when the nonmagnetic container is tilted in the X-axis direction by the same tilt angle when tilted in the Y-axis direction.
  • the output levels for the same tilt angle when the non-magnetic container is tilted in the X-axis direction and when the non-magnetic container is tilted in the Y-axis direction can be made substantially equal, and the magnetic flux density detection means is different.
  • the directionality can be compensated.
  • the movable body is formed using a magnetic material, and has a sliding surface that slides on the bottom surface of the concave curved surface of the movable body accommodating space, and the sliding surface and the upper surface have opposite polarities. In this state, the magnetized structure is in a state of being heated.
  • the movable body is formed using a magnetic material and magnetized in a state where the sliding surface and the upper surface have opposite polarities, the magnetic flux is directed toward the normal direction of the sliding surface. appear. Therefore, when the magnetic flux density detecting means is disposed around the deepest part of the concave curved surface when the non-magnetic container is placed in a horizontal state, for example, as the position where the movable body and the magnetic flux density detecting means face each other, the sliding surface is interposed. Thus, a magnetic flux can be applied to the magnetic flux density detecting means.
  • the movable body slides on the concave curved surface, and the movable body moves toward the lowest position of the concave curved surface. For this reason, the relative position of the movable body and the magnetic flux density detection means changes, and the magnetic flux density applied from the movable body to the magnetic flux density detection means changes according to the tilt angle. For this reason, when tilting in all directions at the same tilt angle, the output level of the magnetic flux density detecting means can be made substantially equal by the anisotropic curved surface, and the anisotropy of the magnetic flux density detecting means can be compensated.
  • At least one of the sliding surface of the movable body and the concave curved surface of the movable body housing space is subjected to a smoothing process.
  • the sliding surface of the movable body and the concave curved surface of the movable body housing space is smoothed, the sliding surface of the movable body and the concave curved surface of the movable body housing space The frictional resistance between them can be reduced, and the movable body can be smoothly slid on the concave curved surface.
  • the anisotropic curved surface is formed by a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is a short direction and the Y-axis direction of the magnetic flux density detection means is a longitudinal direction. Yes.
  • the anisotropic curved surface is formed by a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is the short direction and the Y-axis direction of the magnetic flux density detection means is the longitudinal direction.
  • the anisotropic curved surface includes a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detecting means is a short direction and the Y-axis direction of the magnetic flux density detecting means is a longitudinal direction; It is formed in combination with a hemispherical surface having a diameter dimension smaller than the length dimension in the longitudinal direction of the body surface and larger than the length dimension in the lateral direction.
  • the anisotropic curved surface is formed by combining a half-shaped ellipsoidal surface and a hemispherical surface
  • the Y-axis direction is compared to when the non-magnetic container is inclined in the X-axis direction by the same inclination angle.
  • the amount of movement of the movable body increases, and the change in the magnetic flux density applied to the magnetic flux density detection means decreases.
  • the output level of the detection signal of the magnetic flux density detection means when tilted in the Y-axis direction can be made substantially equal.
  • the contact area between the movable body and the anisotropic curved surface can be reduced, and these frictional resistances can be reduced. For this reason, the responsiveness of the movable body with respect to the inclination angle can be improved, and the detection accuracy of the inclination angle can be improved.
  • FIG. 5 is a cross-sectional view of the tilt sensor as seen from the direction of arrows II-II in FIG. 4.
  • FIG. 3 is a cross-sectional view of the tilt sensor as seen from the direction of arrows III-III in FIG.
  • It is a top view which shows the inclination sensor in FIG. 1 in the state which excluded the cover body.
  • It is explanatory drawing which shows the positional relationship of the movable body and magnetoelectric conversion element in FIG.
  • It is a front view which shows the magnetoresistive sensor of a magnetoelectric conversion element.
  • It is an equivalent circuit diagram which shows a magnetoelectric conversion element.
  • FIG. 2 which shows the inclination sensor by 3rd Embodiment. It is sectional drawing which looked at the inclination sensor from the arrow XIV-XIV direction in FIG. It is a top view which shows the inclination sensor in FIG. 13 in the state which excluded the cover body. It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 4th Embodiment. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 1st modification. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 2nd modification. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 3rd modification.
  • FIG. 2 It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by a 4th modification. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 5th modification. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by the 6th modification.
  • the tilt sensor 1 is composed of a casing 2, a magnetoelectric conversion element 8, and a movable body 12, which will be described later.
  • the casing 2 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material.
  • the casing 2 includes a casing main body 3 formed in a substantially cylindrical shape with a bottom, and a lid body 4 that covers an upper side that serves as an opening of the casing main body 3.
  • the casing body 3 has a height dimension of several mm (for example, about 9 mm) in the Z-axis direction among the X axis, the Y axis, and the Z axis orthogonal to each other. Further, the cross-sectional shape on the XY plane which is a horizontal plane is a substantially circular shape having an outer diameter of several mm (for example, about 9 mm).
  • a concave portion 3A that is recessed in a substantially semi-elliptical bowl shape is formed on the upper side of the casing body 3, and a substantially cylindrical male fitting portion 3B faces upward at the opening edge of the concave portion 3A. It is integrally formed.
  • the surface (exposed surface) of the recess 3A is a concave curved surface 5 that opens upward, and the cross-sectional shapes of the XZ plane and the YZ plane are different.
  • the concave curved surface 5 is formed of a half-shaped ellipsoidal surface in which the X-axis direction is a short axis and the Y-axis direction is a long axis.
  • the major axis dimension D1a and minor axis dimension D1b of the concave curved surface 5 compensate for the anisotropy of the output level of the detection signal of the magnetoelectric transducer 8 as will be described later, and the casing 2 is in any direction on the XY plane. Even when tilted, the magnetoelectric transducer 8 is designed so that the detection signal Vout having the same output level can be obtained. Further, the minimum curvature radius r1 along the minor axis direction of the concave curved surface 5 is larger than the curvature radius r2 of the sliding surface 13 of the movable body 12 described later.
  • the lid body 4 is formed in a substantially disc shape, and a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward.
  • a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward.
  • a substantially cylindrical rod portion 7 extending downward toward the deepest portion 5A of the concave curved surface 5 is provided at the center portion of the lid body 4.
  • the lower end part of the rod part 7 is formed in the substantially hemispherical shape.
  • the magnetoelectric conversion element 8 serving as a magnetic flux density detection means is constituted by, for example, a bridge circuit 8A constituted by four magnetoresistive elements R1 to R4 and a differential amplifier 8B.
  • the bridge circuit 8A and the differential amplifier 8B are formed as an integrated AMR-IC (Anisotropic Magneto Resistance Integrated Circuit).
  • the input terminal of the differential amplifier 8B is connected to a connection point between the magnetoresistive elements R1 and R2 and a connection point between the magnetoresistive elements R3 and R4.
  • the differential amplifier 8B differentially amplifies the potential difference generated between these two connection points and outputs a detection signal Vout.
  • connection point between the magnetoresistive elements R2 and R4 is connected to a ground terminal 9 for connection to an external ground GND.
  • the connection point between the magnetoresistive elements R1 and R3 is connected to a drive voltage terminal 10 for supplying the drive voltage Vdd.
  • the output terminal of the differential amplifier 8B is connected to a signal output terminal 11 that outputs a detection signal Vout such as a voltage.
  • the ground terminal 9, the drive voltage terminal 10, and the signal output terminal 11 are formed of, for example, a conductive metal material, embedded in the casing body 3, and a part of the ground terminal 9, the driving voltage terminal 10, and the signal output terminal 11 protrude downward from the lower surface side of the casing body 3. Yes.
  • the magnetoresistive elements R1 to R4 are formed on a sensor substrate S arranged in parallel to the XZ plane as shown in FIG.
  • the magnetoresistive elements R1 to R4 are formed by chemical vapor deposition (CVD) or the like of a magnetoresistive material such as indium antimony (InSb).
  • the magnetoresistive elements R1 and R4 are formed in a shape in which a plurality of elongated patterns extending in the Z-axis direction are connected in a meander shape, and their resistance values according to the magnetic flux density in the X-axis direction orthogonal to the current direction (Z-axis direction). Changes.
  • the magnetoresistive elements R2 and R3 are formed in a shape in which a plurality of elongated patterns extending in the X-axis direction are connected in a meander shape, and depending on the magnetic flux density in the Z-axis direction orthogonal to the current direction (X-axis direction). The resistance value changes.
  • the detection signal Vout when the magnetic flux is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux ⁇ is tilted in the X-axis direction, and the anisotropy have.
  • the magnetoelectric conversion element 8 is provided inside the casing main body 3 positioned below the deepest part 5A of the concave curved surface 5 by a minute dimension ⁇ .
  • the magnetoelectric conversion element 8 is disposed at a position facing the sliding surface 13 of the movable body 12 accommodated in the movable body accommodating space 6.
  • a magnetic flux ⁇ from the movable body 12 is applied to the magnetoelectric conversion element 8 via the sliding surface 13 of the movable body 12. Thereby, the magnetoelectric conversion element 8 detects a change in magnetic flux density caused by the sliding of the movable body 12.
  • the movable body 12 is formed using a magnetic material such as ferrite, for example, and is formed into a substantially hemispherical magnet (permanent magnet).
  • a sliding surface 13 made of a downward convex curved surface is formed on the bottom side of the movable body 12, and a flat upper surface 14 is formed on the upper side of the movable body 12.
  • the movable body 12 has the maximum thickness at the apex portion 12A of the sliding surface 13 that is substantially hemispherical, and approaches the upper surface peripheral portion 12B of the upper surface 14 from the apex portion 12A along the sliding surface 13. The thickness gradually decreases according to
  • the movable body 12 is magnetized so that the sliding surface 13 and the upper surface 14 have opposite polarities, for example, the sliding surface 13 is an N pole and the upper surface 14 is an S pole. As a result, the movable body 12 generates a magnetic flux ⁇ toward the normal direction of the sliding surface 13. Note that the magnetic flux density around the apex portion 12A where the thickness of the movable body 12 is maximum increases, and the magnetic flux density gradually decreases as it approaches the upper surface peripheral portion 12B.
  • the movable body 12 is accommodated in the movable body accommodation space 6 of the casing 2 with the sliding surface 13 facing downward so that the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 come into contact with each other and can slide. For this reason, when the casing 2 is tilted from the horizontal state, the movable body 12 slides and displaces inside the movable body accommodating space 6 along the concave curved surface 5.
  • the movable body 12 since the movable body 12 has a hemispherical shape protruding downward, the upper surface 14 is stationary in a horizontal state based on its weight balance. Therefore, the positional relationship between the apex portion 12A of the movable body 12 and the magnetoelectric conversion element 8 changes according to the inclination angle ⁇ of the casing 2, and the magnetic flux ⁇ applied from the movable body 12 to the magnetoelectric conversion element 8 The direction of changes.
  • the upper peripheral edge portion 12B of the movable body 12 is rounded in a circular arc shape, and a chamfered portion 15 is formed.
  • the movable body 12 is formed with a recessed portion 16 that is located in the center of the upper surface 14 and is recessed in a substantially circular shape.
  • the recessed portion 16 By providing the recessed portion 16, the position of the center of gravity of the movable body 12 moves to the apex portion 12A side, and the stability of the movable body 12 is enhanced.
  • the tilt sensor 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the movable body 12 is disposed on the deepest part 5A side of the concave curved surface 5 as a steady position. Specifically, the movable body 12 is supported by the concave curved surface 5 in a state where the apex portion 12A of the movable body 12 is in contact with the deepest portion 5A of the concave curved surface 5. At this time, the apex portion 12 ⁇ / b> A having a high magnetic flux density in the movable body 12 is disposed at a position directly above the magnetoelectric conversion element 8.
  • the magnetic flux ⁇ by the movable body 12 is applied to the magnetoelectric conversion element 8 along the Z-axis direction that is the height direction of the casing 2. For this reason, the magnetoelectric transducer 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
  • the movable body 12 is displaced from the steady position along the concave curved surface 5 and moves toward the lowest position of the movable body accommodating space 6. . Therefore, the apex portion 12A having a high magnetic flux density in the movable body 12 is separated from the deepest portion 5A of the concave curved surface 5 in accordance with the inclination angle ⁇ of the casing 2, and the uppermost peripheral portion having a low magnetic flux density is included in the deepest portion 5A. 12B approaches. Therefore, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 decreases according to the inclination angle ⁇ .
  • the magnetoelectric conversion element 8 detects the magnetic flux density in the direction inclined by the inclination angle ⁇ with respect to the Z-axis direction, and outputs a detection signal Vout corresponding to the magnetic flux density. As a result, the magnetoelectric transducer 8 outputs the detection signal Vout corresponding to the inclination angle ⁇ , and the detection signal Vout gradually decreases as the inclination angle ⁇ increases.
  • the movable body 12 is displaced toward the deepest part 5A along the concave curved surface 5, and the apex part 12A returns to the steady position where it contacts the deepest part 5A. To do. Thereby, the magnetic flux density applied to the magnetoelectric conversion element 8 increases again, and the magnetoelectric conversion element 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
  • the magnetoelectric transducer 8 is anisotropic in which the detection signal Vout when the magnetic flux ⁇ is inclined in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux ⁇ is inclined in the X-axis direction.
  • the concave curved surface 5 of the movable body accommodating space 6 is formed by an ellipsoidal surface that greatly displaces the movable body 12 in the Y-axis direction compared to the X-axis direction.
  • the displacement amount of the movable body 12 becomes larger when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction at the same tilt angle ⁇ , and the magnetoelectric conversion element 8 and the movable body.
  • the position change with 12 apex portions 12A becomes large.
  • the magnetoelectric current is more when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction.
  • a change in magnetic flux density applied to the conversion element 8 increases. That is, the magnetic flux density applied to the magnetoelectric transducer 8 from the movable body 12 is lower when tilted in the Y-axis direction than when tilted in the X-axis direction at the same tilt angle ⁇ , and the detection signal Vout.
  • the output level can be reduced.
  • the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is tilted in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is tilted in the Y-axis direction are relative to the tilt angle ⁇ .
  • the output level can be made substantially equal.
  • the movable body 12 of the present embodiment has formed the sliding surface 13 made of a downward hemispherical surface on the bottom side of the movable body 12, as the sliding surface 13 moves from the apex portion 12A toward the upper peripheral portion 12B.
  • the thickness gradually decreases. For this reason, the magnetic flux density is high around the apex portion 12 ⁇ / b> A of the movable body 12, and the magnetic flux density is reduced at the upper peripheral edge portion 12 ⁇ / b> B of the movable body 12.
  • the movable body 12 accommodated in the movable body accommodating space 6 has a sliding surface 13 of the movable body 12 that slides on the concave curved surface 5 when the casing 2 is tilted from the horizontal state, and the lowest of the concave curved surface 5.
  • the apex portion 12A of the movable body 12 moves toward the position.
  • the magnetoelectric conversion element 8 is provided in the casing 2 and the sliding surface 13 of the movable body 12 and the magnetoelectric conversion element 8 are disposed to face each other, the apex portion 12A of the movable body 12 according to the inclination angle ⁇ of the casing 2.
  • the relative position of the magnetoelectric transducer 8 change. For this reason, the magnetic flux density applied to the magnetoelectric conversion element 8 changes according to the inclination angle ⁇ of the casing 2.
  • the apex portion 12A of the movable body 12 only needs to be displaced with respect to the magnetoelectric conversion element 8. Therefore, the movable body accommodating space 6 of the casing 2 has a volume that allows the movable body 12 to be rotationally displaced. If there is enough. For this reason, the volume of the movable body accommodation space 6 can be brought close to the volume of the movable body 12, and the inclination sensor 1 can be reduced in size.
  • the magnetoelectric conversion element 8 is arranged around the deepest part 5A of the concave curved surface 5 when the casing 2 is in a horizontal state, the apex portion 12A of the movable body 12 is magnetoelectrically converted when the inclination angle ⁇ of the casing 2 decreases.
  • the magnetic flux density applied to the magnetoelectric conversion element 8 increases as it approaches the element 8.
  • the apex portion 12A of the movable body 12 moves away from the magnetoelectric conversion element 8, and the magnetic flux density applied to the magnetoelectric conversion element 8 decreases.
  • the magnetic flux density applied to the magnetoelectric conversion element 8 changes according to the thickness dimension of the portion of the movable body 12 facing the magnetoelectric conversion element 8. For this reason, the linearity of the detection signal of the magnetoelectric conversion element 8 with respect to the inclination angle ⁇ of the casing 2 can be improved compared with the case where the movable body 12 is formed into a thick disk shape or a spherical shape with a small diameter, for example.
  • the range of possible tilt angles can be expanded.
  • the chamfered portion 15 can alleviate the concentration of the magnetic flux ⁇ at the upper peripheral portion 12B of the movable body 12. For this reason, the magnetic flux density can be gradually decreased as the apex portion 12A approaches the upper surface peripheral portion 12B. As a result, the tilt angle ⁇ increases, and the magnetic flux density decreases continuously and uniformly as the tilt angle ⁇ increases even in the range where the upper surface peripheral portion 12B and the magnetoelectric transducer 8 approach each other (for example, 50 ° or more). Thereby, the magnetic flux density has a region that is nearly linear with respect to the tilt angle ⁇ , and the range of the detectable tilt angle ⁇ can be further expanded.
  • the movable body 12 is composed of magnets in which the sliding surface 13 and the upper surface 14 have opposite polarities, a magnetic flux ⁇ is generated in the normal direction of the sliding surface 13.
  • the magnetoelectric conversion element 8 is disposed so as to face the sliding surface 13 of the movable body 12, when the casing 2 is tilted from the horizontal state, the sliding surface 13 of the movable body 12 slidable facing the magnetoelectric conversion element 8.
  • the magnetoelectric transducer 8 is also tilted substantially in line with the normal direction of the portion.
  • the magnetic flux density gradually decreases from the apex portion 12A of the movable body 12 toward the upper peripheral edge portion 12B, and the portion of the sliding surface 13 of the movable body 12 that faces the magnetoelectric conversion element 8 according to the inclination angle ⁇ of the casing 2 Is displaced. For this reason, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 can be changed in accordance with the inclination angle ⁇ of the casing 2, and the magnetoelectric conversion element 8 ensures the magnetic flux density in accordance with the inclination angle ⁇ . Can be detected. As a result, the magnetoelectric conversion element 8 outputs a detection signal corresponding to the inclination angle ⁇ .
  • the concave curved surface 5 of the movable body accommodating space 6 is formed by a half-shaped ellipsoidal surface having a radius of curvature r1 larger than the sliding surface 13 which is the hemispherical surface of the movable body 12, the movable body 12 is It is possible to slide on the concave curved surface 5 with the apex portion 12A in contact with the concave curved surface 5.
  • the concave curved surface 5 of the movable body accommodating space 6 is formed by an ellipsoidal surface that greatly displaces the movable body 12 in the Y-axis direction compared to the X-axis direction, the concave curved surface 5 is inclined in any direction at the same inclination angle ⁇ . Even in this case, the output level with respect to the inclination angle ⁇ can be made substantially equal, and the anisotropy of the magnetoelectric transducer 8 can be compensated.
  • the amount of displacement of the movable body 12 with respect to the tilt angle ⁇ is increased when the casing 2 is tilted in the Y-axis direction compared to when the casing 2 is tilted in the X-axis direction.
  • the positional change between the magnetoelectric conversion element 8 and the apex portion 12A of the movable body 12 can be increased.
  • the magnetoelectric current is more when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction.
  • a change in magnetic flux density applied to the conversion element 8 increases.
  • the magnetic flux density applied from the movable body 12 to the magnetoelectric transducer 8 is lowered when tilted in the Y-axis direction compared to when tilted in the X-axis direction at the same tilt angle ⁇ , and the detection signal Vout.
  • the output level can be suppressed.
  • the magnetoelectric transducer 8 is anisotropic in that the detection signal Vout when the magnetic flux ⁇ is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux ⁇ is tilted in the X-axis direction. Even if it has a property, the anisotropy of this magnetoelectric conversion element 8 can be supplemented. Thereby, the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is inclined in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is inclined in the Y-axis direction are relative to the inclination angle ⁇ .
  • the output level can be made substantially equal.
  • FIGS. 10 to 12 show a second embodiment of the present invention.
  • the concave curved surface of the movable body housing space has a half-shaped ellipsoidal surface in which the X-axis direction is the short direction and the Y-axis direction is the longitudinal direction, and the central portion of the ellipsoidal surface. It is formed by an anisotropic curved surface combined with a hemispherical surface in contact with.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 21 includes a casing 22, a magnetoelectric conversion element 8, and a movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
  • the casing 22 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material.
  • the casing 22 includes a casing main body 23 formed in a substantially cylindrical shape with a bottom, and a lid body 24 that covers an upper portion serving as an opening of the casing main body 23.
  • the casing body 23 has a substantially circular cross-sectional shape with respect to the XY plane, and has a height of about several millimeters in the Z-axis direction (axial direction). Further, a concave portion 23A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 23, and a cylindrical male fitting portion 23B is formed on the opening side of the concave portion 23A.
  • a concave curved surface 25 opened upward is formed on the surface (exposed surface) of the concave portion 23A.
  • the concave curved surface 25 is formed by an anisotropic curved surface having different shapes in the X-axis direction and the Y-axis direction. Specifically, the concave curved surface 25 is shorter than the half length of the ellipsoidal surface 25A in which the X-axis direction is the short axis and the Y-axis direction is the long axis, and the length in the longitudinal direction of the ellipsoidal surface 25A. It is formed by an anisotropic curved surface combined with a hemispherical surface 25B having a diameter dimension D2b larger than the length dimension in the hand direction.
  • the central portion of the ellipsoidal surface 25A and the central portion of the hemispherical surface 25B are both located at and in contact with the deepest portion 25C of the concave curved surface 25, and the concave portion 23A is formed symmetrically with respect to the XZ plane and the YZ plane.
  • the major axis dimension D2a of the ellipsoidal surface 25A and the diameter dimension D2b of the hemispherical surface 25B are the magnetoelectric conversion located below the deepest portion 25C of the concave curved surface 25, regardless of the direction of the casing 22 in the XY plane.
  • the detection signal Vout having the same output level is obtained from the element 8.
  • the lid body 24 is formed in a substantially disc shape, and a cylindrical female fitting portion 24A is integrally formed on the outer peripheral edge thereof downward.
  • a substantially semi-elliptical movable body accommodating space 26 is formed by combining the ellipsoidal surface and the substantially hemispherical surface.
  • a rod portion 27 substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid body 24.
  • the movable body 12 is compared to the case where the concave curved surface 25 is formed only by the half-shaped ellipsoidal surface. And the concave curved surface 25 can be reduced to reduce these frictional resistances. For this reason, the responsiveness of the movable body 12 with respect to the inclination angle ⁇ can be enhanced, and the detection accuracy of the inclination angle ⁇ can be improved.
  • the same operational effects as those in the first embodiment can be obtained.
  • FIG. 13 to FIG. 15 show a third embodiment of the present invention.
  • the feature of the present embodiment is that a flat bottom portion is formed on the deepest side of the concave curved surface.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 31 includes a casing 32, a magnetoelectric conversion element 8, and a movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
  • the casing 32 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material.
  • the casing 32 includes a casing main body 33 formed in a substantially cylindrical shape with a bottom, and a lid body 34 that covers an upper portion serving as an opening of the casing main body 33.
  • the casing body 33 has a substantially circular cross-sectional shape with respect to the XY plane, and has a height dimension of about several millimeters in the Z-axis direction (axial direction).
  • a concave portion 33A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 33, and a cylindrical male fitting portion 33B is formed on the opening side of the concave portion 33A.
  • a concave curved surface 35 made of an anisotropic curved surface opened upward is formed on the surface (exposed surface) of the concave portion 33A.
  • the concave curved surface 35 is formed by an anisotropic curved surface having different cross-sectional shapes in the X-axis direction and the Y-axis direction, almost like the concave curved surface 5 according to the first embodiment.
  • the concave curved surface 35 is formed by a substantially ellipsoidal surface having a halved shape in which the X-axis direction is the short axis and the Y-axis direction is the long axis.
  • the concave curved surface 35 compensates for the anisotropy of the magnetoelectric conversion element 8 and is formed in a shape that allows the detection signal Vout of the same output level to be obtained from the magnetoelectric conversion element 8 when the casing 32 is inclined in any direction of the XY plane. Has been.
  • a bottom surface portion 35A that is, for example, a small-diameter elliptical flat surface parallel to the XY plane is formed.
  • the surface of the substantially ellipsoidal surface of the recess 33A and the outer periphery of the bottom surface portion 35A are connected by a bottom surface connection portion 35B having a side shape of an elliptical truncated cone that swells downward.
  • the concave curved surface 35 is formed in a substantially semi-ellipsoidal surface shape as a whole.
  • the bottom surface portion 35A and the bottom surface connection portion 25B support the sliding surface 13 of the movable body 12 in a state close to point contact. For this reason, even when the inclination angle ⁇ is small, the frictional resistance between the concave curved surface 35 and the movable body 12 can be reduced, and the movable body 12 can be easily slid. Further, since the bottom surface portion 35A that is a flat surface is provided on the deepest side of the concave curved surface 35, when the casing 32 is returned to the horizontal state, the movable body 12 is surely returned to the bottom surface portion 35A that is the steady position. Can do.
  • the lid body 34 is formed in a substantially disk shape, and a cylindrical female fitting portion 34A is integrally formed on the outer peripheral edge thereof downward.
  • a substantially semi-elliptical shape is provided between the casing main body 33 and the lid body 34.
  • a body-like movable body accommodating space 36 is formed.
  • a rod portion 37 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 34.
  • the bottom surface portion 35A which is a flat surface is provided on the deepest side of the concave curved surface 35, the bottom surface portion 35A supports the sliding surface 13 of the movable body 12 in a state close to point contact. .
  • the inclination angle ⁇ is small, the frictional resistance between the concave curved surface 35 and the movable body 12 can be reduced, and the movable body 12 can be easily slid.
  • the casing 32 is returned to the horizontal state, the movable body 12 can be reliably returned to the bottom surface portion 35A at the steady position.
  • the same operational effects as those in the first embodiment can be obtained.
  • the concave curved surface 35 according to the third embodiment is formed by a substantially split ellipsoidal surface like the concave curved surface 5 according to the first embodiment, but like the concave curved surface 25 according to the second embodiment.
  • the semi-ellipsoidal surface and the hemispherical surface may be combined.
  • FIG. 16 shows a fourth embodiment of the present invention.
  • the feature of this embodiment is that a coating film as a smoothing process is formed on a concave curved surface.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 41 is constituted by the casing 2, the magnetoelectric conversion element 8, and the movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
  • a thin coating film 42 made of fluorine resin, silicon resin or the like is formed on the surface of the concave curved surface 5 as a smoothing process.
  • the coating film 42 has, for example, a smooth surface having lubricity, and reduces the contact resistance with respect to the movable body 12.
  • the fourth embodiment can provide the same operational effects as the first embodiment.
  • the coating film 42 as the smoothing process is formed on the concave curved surface 5
  • the frictional resistance between the concave curved surface 5 and the movable body 12 can be reduced.
  • the responsiveness of the movable body 12 can be improved with respect to the change of the inclination angle ⁇ , and the detection accuracy of the inclination angle ⁇ can be improved.
  • the coating film 42 is formed on the surface of the concave curved surface 5.
  • the coating film 42 may be formed on the sliding surface 13 of the movable body 12.
  • a coating film 42 may be formed on both surfaces 13.
  • the resin coating film 42 is used as the smoothing process.
  • a metal thin film by plating or the like may be formed, and surface irregularities are reduced as in the surface polishing process.
  • Various surface treatments that can be applied are applicable.
  • the movable body 12 including the chamfered portion 15 is used.
  • a movable body that omits the chamfered portion may be used.
  • the chamfered portion 15 having a circular arc cross section is provided on the upper peripheral edge portion 12B of the movable body 12.
  • the present invention is not limited to this.
  • the movable body 52 includes a sliding surface 53 and a flat upper surface 54 with the apex portion 52A protruding downward.
  • the chamfered portion 55 of the movable body 52 is configured to form a conical side surface that is inclined from the radially outer side toward the inner side of the movable body 52 as it goes upward.
  • a circumferential surface parallel to the vertical direction may be formed.
  • the movable body 12 has a thickness dimension close to the radius of curvature r2 of the sliding surface 13 made of a hemispherical surface.
  • the present invention is not limited to this, and the movable body 62 is made of a hemispherical surface within a range where a desired magnetic flux density distribution can be obtained, such as the tilt sensor 61 according to the second modification shown in FIG.
  • a configuration having a thickness dimension smaller than the curvature radius of the surface 63 (for example, about half of the curvature radius) may be adopted.
  • the movable body 62 includes a sliding surface 63 with a vertex portion 62A projecting downward and a flat upper surface 64, and the thickness dimension gradually decreases from the vertex portion 62A toward the upper surface peripheral portion 62B. It is. Further, the movable body may have a thickness dimension larger than the radius of curvature of the sliding surface within a range in which rolling can be prevented.
  • the movable body 12 is provided with the recessed portion 16 that is located in the central portion of the upper surface 14 and is recessed in a columnar shape.
  • the present invention is not limited to this, and may have a configuration in which the recessed portion is omitted.
  • the movable body 72 is positioned at the central portion of the upper surface 74. It is good also as a structure which provides the concave-concave part 75 dented in the concave shape.
  • the movable body 72 preferably includes the sliding surface 73 formed of a hemispherical surface, and the thickness dimension thereof gradually decreases as the apex portion 72A approaches the upper surface peripheral portion 72B.
  • the movable body 12 made of a substantially hemispherical magnet is used.
  • the present invention is not limited to this, and the movable body 82 may be formed of a thick disk-shaped (columnar) magnet, such as the tilt sensor 81 according to the fourth modification shown in FIG. Good.
  • the circular lower surface 82A and upper surface 82B are magnetized with opposite polarities.
  • the movable body 92 may be formed of a substantially spherical magnet.
  • the lower part 92A and the upper part 92B which are located on both ends in the upper and lower directions of the movable body 92 are magnetized to have opposite polarities.
  • the movable body 92 has a spherical shape, the direction of the magnetic flux ⁇ changes when it is rolled and displaced.
  • a connecting means 93 such as rubber or a spring is provided between the body 4 'and the body 4'.
  • the movable body 12 is constituted by a magnet.
  • the present invention is not limited to this, and a configuration in which a magnet 105 serving as a generation source of the magnetic flux ⁇ is provided in the casing 2 ′′ separately from the movable body 102, as in the tilt sensor 101 according to the sixth modification shown in FIG.
  • the movable body 102 is formed of a magnetic material, it is not necessary to be magnetized, and the movable body 102 includes a sliding surface 103 formed of a hemispherical surface and a flat upper surface 104. The thickness dimension gradually decreases as the apex portion 102A approaches the upper surface peripheral portion 102B.
  • the magnet 105 is provided on the lid body 4 ′′ of the casing 2 ′′ and the sliding surface 103 of the movable body 102 is interposed therebetween.
  • the magnet 105 is arranged at a position opposite to the magnetoelectric conversion element 8 with the movable body 102 interposed therebetween.
  • the entire movable body 12 is formed using a magnetic material.
  • the present invention is not limited to this, and the movable body may be configured such that, for example, a hemispherical outer shape is formed using a non-magnetic resin material with a magnetic material inserted.
  • the magnetic flux detection sensor is applied to the inclination sensors 1, 21, 31, 41 for detecting the inclination angle ⁇ of the casings 2, 22, 32 has been described as an example. May be applied to a tilt switch that switches on and off when the switch is tilted by a desired tilt angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Disclosed is an inclination sensor (1) comprising a casing (2), a magneto-electric conversion element (8) and a movable body (12). The casing (2) comprises a movable body housing space (6) that houses a movable body (12) which comprises a hemispherical magnet. The movable body housing space (6) has a recessed curved surface (5) formed by a half-ellipsoid surface and which acts as an anisotropic surface to compensate for the anisotropy of the magneto-electric conversion element (8). The magneto-electric conversion element (8) which detects magnetic flux density in the height direction of the casing (2) is provided in the casing (2) and disposed on the underside of the deepest section (5A) of the recessed curved surface (5).

Description

磁束検知センサMagnetic flux detection sensor
 本発明は、例えば姿勢の傾きの検出に用いて好適な磁束検知センサに関する。 The present invention relates to a magnetic flux detection sensor suitable for use in, for example, detection of posture inclination.
 従来技術による磁束検知センサとして、姿勢の傾きを検出する傾斜センサが知られている(例えば、特許文献1参照)。特許文献1には、円錐状凹面からなる傾斜面を有するマグネットと、該マグネットの傾斜面と対向して配置されたホールIC等の磁電変換素子と、マグネットと磁電変換素子との間に位置してマグネットの傾斜面に転動可能に設けられた磁性材料からなる球形の可動体とを備えた構成が開示されている。特許文献1の傾斜センサでは、マグネットの傾斜に応じて可動体が傾斜面上を転動変位し、この可動体の変位に伴う磁束密度の変化が磁電変換素子によって検出される。 As a conventional magnetic flux detection sensor, a tilt sensor that detects the tilt of a posture is known (for example, see Patent Document 1). In Patent Document 1, a magnet having an inclined surface formed of a conical concave surface, a magnetoelectric conversion element such as a Hall IC disposed opposite to the inclined surface of the magnet, and the magnet and the magnetoelectric conversion element are located. A configuration including a spherical movable body made of a magnetic material provided on a tilted surface of a magnet so as to be able to roll is disclosed. In the tilt sensor of Patent Document 1, the movable body rolls and displaces on the tilted surface according to the tilt of the magnet, and the change in magnetic flux density accompanying the displacement of the movable body is detected by the magnetoelectric conversion element.
特開2003-185430号公報JP 2003-185430 A
 ところで、従来技術による傾斜センサに用いられる磁電変換素子によっては、磁束密度の印加方向に応じて検出信号の出力レベルが異なる特性(異方性)を有するものがある。このような磁電変換素子では、同じ角度だけ傾けたとしても、傾ける方向によって検出信号の出力レベルが異なる。このため、傾斜角度に対して検出信号の出力レベルが大きく変化する方向では、傾斜角度に対して検出信号の出力レベルが小さく変化する方向と比べて、正確な傾斜角度を検出できないという問題がある。 By the way, some magnetoelectric conversion elements used in the tilt sensor according to the prior art have a characteristic (anisotropy) in which the output level of the detection signal varies depending on the application direction of the magnetic flux density. In such a magnetoelectric conversion element, even if it is tilted by the same angle, the output level of the detection signal differs depending on the tilting direction. For this reason, in the direction in which the output level of the detection signal changes greatly with respect to the tilt angle, there is a problem in that an accurate tilt angle cannot be detected compared to the direction in which the output level of the detection signal changes small with respect to the tilt angle. .
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、傾斜方向に関係なく、同じ傾斜角度に対しては略一定の検出信号の出力レベルが得られる磁束検知センサを提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a magnetic flux detection sensor that can obtain an output level of a substantially constant detection signal for the same tilt angle regardless of the tilt direction. It is to provide.
 (1).上述した課題を解決するために、本発明は、可動体と、該可動体を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記磁束密度検知手段は、水平面の互いに直交するX軸方向およびY軸方向において、X軸方向に磁束を傾斜させたときの検出信号に比べてY軸方向に磁束を傾斜させたときの検出信号が大きな出力レベルとなる異方性を有し、前記可動体収容空間の凹状曲面は、前記磁束密度検知手段の異方性を補うために、X軸方向に比べてY軸方向に向けて前記可動体を大きく変位させる異方性曲面によって形成し、前記可動体と前記磁束密度検知手段とを対向配置し、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (1). In order to solve the above-described problems, the present invention is provided in a nonmagnetic container including a movable body, a movable body housing space having an upward concave curved surface that slidably supports the movable body, and the nonmagnetic container. A magnetic flux detection sensor that detects a change in magnetic flux density caused by the sliding of the movable body, wherein the magnetic flux density detection means is configured in the X-axis direction and the Y-axis direction orthogonal to each other in the horizontal plane. The detection signal when the magnetic flux is tilted in the Y-axis direction has a greater anisotropy than the detection signal when the magnetic flux is tilted in the axial direction, and the concave curved surface of the movable body accommodating space is In order to compensate for the anisotropy of the magnetic flux density detection means, the movable body and the magnetic flux density detection are formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction. Pair with means When the non-magnetic container is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the non-magnetic container, and when the non-magnetic container returns to the horizontal state, the movable body Is configured to return to a steady position along the concave curved surface of the non-magnetic container.
 本発明によれば、可動体収容空間内に収容された可動体は、非磁性容器が水平状態から傾くと、凹状曲面上を滑動して、凹状曲面の最も低い位置に向けて移動する。また、磁束密度検知手段は、可動体と対向配置して非磁性容器に埋設されたから、非磁性容器の傾斜角度に応じて可動体と磁束密度検知手段との相対位置が変化する。なお、可動体を例えば磁性体材料を用いて形成したときには、可動体と磁束密度検知手段との相対位置の変化に応じて、磁束密度検知手段に印加する磁束密度が変化する。 According to the present invention, the movable body housed in the movable body housing space slides on the concave curved surface and moves toward the lowest position of the concave curved surface when the non-magnetic container is tilted from the horizontal state. Further, since the magnetic flux density detection means is disposed opposite to the movable body and embedded in the nonmagnetic container, the relative position between the movable body and the magnetic flux density detection means changes according to the inclination angle of the nonmagnetic container. When the movable body is formed using, for example, a magnetic material, the magnetic flux density applied to the magnetic flux density detection means changes according to the change in the relative position between the movable body and the magnetic flux density detection means.
 また、磁束密度検知手段は、同じ傾斜角度だけX軸方向に傾斜したときに比べて、Y軸方向に傾斜したときの磁束変化に伴う検出信号の出力レベルが大きく、異方性を有する。これに対し、可動体収容空間の凹状曲面は、X軸方向に比べてY軸方向に向けて可動体を大きく変位させる異方性曲面によって形成した。このため、同じ傾斜角度だけ非磁性容器をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、傾斜角度に対する可動体の変位量が大きくなり、磁束密度検知手段と可動体との位置変化を大きくすることができる。 Further, the magnetic flux density detection means has anisotropy with a larger output level of the detection signal accompanying the magnetic flux change when tilted in the Y-axis direction than when tilted in the X-axis direction by the same tilt angle. On the other hand, the concave curved surface of the movable body accommodating space is formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction. For this reason, the amount of displacement of the movable body with respect to the tilt angle is larger when the nonmagnetic container is tilted in the Y-axis direction than when the non-magnetic container is tilted in the X-axis direction. The position change with the movable body can be increased.
 このため、同じ傾斜角度だけ非磁性容器をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、磁束密度検知手段に印加される磁束密度が大きく低下する。この結果、非磁性容器をX軸方向に傾斜したときと、非磁性容器をY軸方向に傾斜したときとの、同じ傾斜角度に対する出力レベルをほぼ等しくすることができ、磁束密度検知手段の異方性を補償することができる。 For this reason, the magnetic flux density applied to the magnetic flux density detection means is greatly reduced when the nonmagnetic container is tilted in the X-axis direction by the same tilt angle when tilted in the Y-axis direction. As a result, the output levels for the same tilt angle when the non-magnetic container is tilted in the X-axis direction and when the non-magnetic container is tilted in the Y-axis direction can be made substantially equal, and the magnetic flux density detection means is different. The directionality can be compensated.
 (2).本発明では、前記可動体は、磁性材料を用いて形成されると共に、底部側に前記可動体収容空間の凹状曲面を滑動する滑動面を備え、該滑動面と上面とが互いに逆極性となった状態で磁化した構成としている。 (2). In the present invention, the movable body is formed using a magnetic material, and has a sliding surface that slides on the bottom surface of the concave curved surface of the movable body accommodating space, and the sliding surface and the upper surface have opposite polarities. In this state, the magnetized structure is in a state of being heated.
 本発明によれば、可動体は、磁性材料を用いて形成され、滑動面と上面とが互いに逆極性となった状態で磁化する構成としたから、滑動面の法線方向に向けて磁束が発生する。従って、可動体と磁束密度検知手段とが対向する位置として、例えば非磁性容器を水平状態にしたときの凹状曲面の最深部の周囲に磁束密度検知手段を配置した場合には、滑動面を介して磁束密度検知手段に磁束を印加することができる。 According to the present invention, since the movable body is formed using a magnetic material and magnetized in a state where the sliding surface and the upper surface have opposite polarities, the magnetic flux is directed toward the normal direction of the sliding surface. appear. Therefore, when the magnetic flux density detecting means is disposed around the deepest part of the concave curved surface when the non-magnetic container is placed in a horizontal state, for example, as the position where the movable body and the magnetic flux density detecting means face each other, the sliding surface is interposed. Thus, a magnetic flux can be applied to the magnetic flux density detecting means.
 そして、非磁性容器が水平状態から傾くと、可動体が凹状曲面上を滑動して、凹状曲面の最も低い位置に向けて可動体が移動する。このため、可動体と磁束密度検知手段との相対位置が変化して、可動体から磁束密度検知手段に印加される磁束密度は、傾斜角度に応じて変化する。このため、同じ傾斜角度で全方位に傾けた場合、異方性曲面によって磁束密度検知手段の出力レベルをほぼ等しくし、磁束密度検知手段の異方性を補償することができる。 When the non-magnetic container is tilted from the horizontal state, the movable body slides on the concave curved surface, and the movable body moves toward the lowest position of the concave curved surface. For this reason, the relative position of the movable body and the magnetic flux density detection means changes, and the magnetic flux density applied from the movable body to the magnetic flux density detection means changes according to the tilt angle. For this reason, when tilting in all directions at the same tilt angle, the output level of the magnetic flux density detecting means can be made substantially equal by the anisotropic curved surface, and the anisotropy of the magnetic flux density detecting means can be compensated.
 (3).本発明では、前記可動体の滑動面と前記可動体収容空間の凹状曲面とのうち少なくともいずれか一方には、平滑処理を施している。 (3). In the present invention, at least one of the sliding surface of the movable body and the concave curved surface of the movable body housing space is subjected to a smoothing process.
 本発明によれば、可動体の滑動面と可動体収容空間の凹状曲面とのうち少なくともいずれか一方には平滑処理を施したから、可動体の滑動面と可動体収容空間の凹状曲面との間の摩擦抵抗を低減して、可動体を凹状曲面上で円滑に滑動させることができる。 According to the present invention, since at least one of the sliding surface of the movable body and the concave curved surface of the movable body housing space is smoothed, the sliding surface of the movable body and the concave curved surface of the movable body housing space The frictional resistance between them can be reduced, and the movable body can be smoothly slid on the concave curved surface.
 (4).本発明では、前記異方性曲面は、前記磁束密度検知手段のX軸方向が短手方向となり前記磁束密度検知手段のY軸方向が長手方向となった半割り形状の楕円体面によって形成している。 (4). In the present invention, the anisotropic curved surface is formed by a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is a short direction and the Y-axis direction of the magnetic flux density detection means is a longitudinal direction. Yes.
 本発明によれば、異方性曲面は、磁束密度検知手段のX軸方向が短手方向となり磁束密度検知手段のY軸方向が長手方向となった半割り形状の楕円体面によって形成したから、同じ傾斜角度だけ非磁性容器をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、可動体の移動量が大きくなり、磁束密度検知手段に印加される磁束密度の変化が低下する。このため、同じ傾斜角度だけ非磁性容器をX軸方向に傾斜させたときと、Y軸方向に傾斜させたときの、磁束密度検知手段の検出信号の出力レベルをほぼ等しくすることができる。 According to the present invention, the anisotropic curved surface is formed by a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is the short direction and the Y-axis direction of the magnetic flux density detection means is the longitudinal direction. When the non-magnetic container is tilted in the X-axis direction by the same tilt angle, the amount of movement of the movable body increases when tilted in the Y-axis direction, and the magnetic flux density applied to the magnetic flux density detection means Change is reduced. For this reason, when the nonmagnetic container is tilted in the X-axis direction by the same tilt angle, the output level of the detection signal of the magnetic flux density detection means when tilted in the Y-axis direction can be made substantially equal.
 (5).本発明では、前記異方性曲面は、前記磁束密度検知手段のX軸方向が短手方向となり前記磁束密度検知手段のY軸方向が長手方向となった半割り形状の楕円体面と、該楕円体面の長手方向の長さ寸法よりも小さく短手方向の長さ寸法よりも大きな直径寸法をもった半球面とを組み合わせて形成している。 (5). In the present invention, the anisotropic curved surface includes a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detecting means is a short direction and the Y-axis direction of the magnetic flux density detecting means is a longitudinal direction; It is formed in combination with a hemispherical surface having a diameter dimension smaller than the length dimension in the longitudinal direction of the body surface and larger than the length dimension in the lateral direction.
 本発明によれば、異方性曲面は半割り形状の楕円体面と半球面とを組み合わせて形成したから、同じ傾斜角度だけ非磁性容器をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、可動体の移動量が大きくなり、磁束密度検知手段に印加される磁束密度の変化が低下する。このため、同じ傾斜角度だけ非磁性容器をX軸方向に傾斜させたときと、Y軸方向に傾斜させたときの、磁束密度検知手段の検出信号の出力レベルをほぼ等しくすることができる。 According to the present invention, since the anisotropic curved surface is formed by combining a half-shaped ellipsoidal surface and a hemispherical surface, the Y-axis direction is compared to when the non-magnetic container is inclined in the X-axis direction by the same inclination angle. When it is tilted, the amount of movement of the movable body increases, and the change in the magnetic flux density applied to the magnetic flux density detection means decreases. For this reason, when the nonmagnetic container is tilted in the X-axis direction by the same tilt angle, the output level of the detection signal of the magnetic flux density detection means when tilted in the Y-axis direction can be made substantially equal.
 また、異方性曲面を半楕円体面だけで形成した場合に比べて、可動体と異方性曲面との接触面積を少なくして、これらの摩擦抵抗を小さくすることができる。このため、傾斜角度に対する可動体の応答性を高め、傾斜角度の検出精度を向上することができる。 Also, compared to the case where the anisotropic curved surface is formed only by the semi-ellipsoidal surface, the contact area between the movable body and the anisotropic curved surface can be reduced, and these frictional resistances can be reduced. For this reason, the responsiveness of the movable body with respect to the inclination angle can be improved, and the detection accuracy of the inclination angle can be improved.
本発明の第1の実施の形態による傾斜センサを示す分解斜視図である。It is a disassembled perspective view which shows the inclination sensor by the 1st Embodiment of this invention. 傾斜センサを図4中の矢示II-II方向からみた断面図である。FIG. 5 is a cross-sectional view of the tilt sensor as seen from the direction of arrows II-II in FIG. 4. 傾斜センサを図2中の矢示III-III方向からみた断面図である。FIG. 3 is a cross-sectional view of the tilt sensor as seen from the direction of arrows III-III in FIG. 図1中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 1 in the state which excluded the cover body. 図1中の可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the movable body and magnetoelectric conversion element in FIG. 磁電変換素子の磁気抵抗センサを示す正面図である。It is a front view which shows the magnetoresistive sensor of a magnetoelectric conversion element. 磁電変換素子を示す等価回路図である。It is an equivalent circuit diagram which shows a magnetoelectric conversion element. 第1の実施の形態による傾斜センサを水平状態としたときの可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into a horizontal state. 第1の実施の形態による傾斜センサを傾斜状態としたときの可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into an inclination state. 第2の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 2nd Embodiment. 傾斜センサを図10中の矢示XI-XI方向からみた断面図である。It is sectional drawing which looked at the inclination sensor from the arrow XI-XI direction in FIG. 図10中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 10 in the state which excluded the cover body. 第3の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by 3rd Embodiment. 傾斜センサを図13中の矢示XIV-XIV方向からみた断面図である。It is sectional drawing which looked at the inclination sensor from the arrow XIV-XIV direction in FIG. 図13中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 13 in the state which excluded the cover body. 第4の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 4th Embodiment. 第1の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 1st modification. 第2の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 2nd modification. 第3の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 3rd modification. 第4の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by a 4th modification. 第5の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 5th modification. 第6の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by the 6th modification.
 以下、本発明の実施の形態による磁束検知センサを傾斜センサに適用した場合を例に挙げて、添付図面を参照しつつ詳細に説明する。 Hereinafter, an example in which the magnetic flux detection sensor according to the embodiment of the present invention is applied to a tilt sensor will be described in detail with reference to the accompanying drawings.
 図1ないし図9は第1の実施の形態による傾斜センサ1を示している。この傾斜センサ1は、後述するケーシング2、磁電変換素子8、可動体12によって構成されている。 1 to 9 show a tilt sensor 1 according to the first embodiment. The tilt sensor 1 is composed of a casing 2, a magnetoelectric conversion element 8, and a movable body 12, which will be described later.
 ケーシング2は、例えば絶縁樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング2は、有底な略円筒状に形成されたケーシング本体3と、該ケーシング本体3の開口部となる上部側を施蓋する蓋体4によって構成されている。 The casing 2 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material. The casing 2 includes a casing main body 3 formed in a substantially cylindrical shape with a bottom, and a lid body 4 that covers an upper side that serves as an opening of the casing main body 3.
 ケーシング本体3は、互いに直交するX軸、Y軸およびZ軸のうちZ軸方向に向けて数mm(例えば9mm程度)の高さ寸法を有している。また、水平面となるXY面での断面形状は、数mm(例えば9mm程度)の外径寸法をもった略円形になっている。また、ケーシング本体3の上部側には略半楕円体の鉢状に窪んだ凹部3Aが形成されると共に、該凹部3Aの開口縁には略円筒状の雄嵌合部3Bが上方に向けて一体に形成されている。 The casing body 3 has a height dimension of several mm (for example, about 9 mm) in the Z-axis direction among the X axis, the Y axis, and the Z axis orthogonal to each other. Further, the cross-sectional shape on the XY plane which is a horizontal plane is a substantially circular shape having an outer diameter of several mm (for example, about 9 mm). A concave portion 3A that is recessed in a substantially semi-elliptical bowl shape is formed on the upper side of the casing body 3, and a substantially cylindrical male fitting portion 3B faces upward at the opening edge of the concave portion 3A. It is integrally formed.
 凹部3Aの表面(露出面)は、上向きに開口した凹状曲面5となっており、XZ面とYZ面でのそれぞれの断面形状が異なる。具体的には、凹状曲面5は、X軸方向が短軸となり、Y軸方向が長軸となった半割り形状の楕円体面によって形成されている。 The surface (exposed surface) of the recess 3A is a concave curved surface 5 that opens upward, and the cross-sectional shapes of the XZ plane and the YZ plane are different. Specifically, the concave curved surface 5 is formed of a half-shaped ellipsoidal surface in which the X-axis direction is a short axis and the Y-axis direction is a long axis.
 そして、凹状曲面5の長軸寸法D1aと短軸寸法D1bは、後述するように、磁電変換素子8の検出信号の出力レベルの異方性を補償し、ケーシング2がXY面のいずれの方向に傾斜したときでも、磁電変換素子8から同じ出力レベルの検出信号Voutが得られるように設計される。また、凹状曲面5のうち短軸方向に沿った最小の曲率半径r1は、後述する可動体12の滑動面13の曲率半径r2よりも大きな値となっている。 The major axis dimension D1a and minor axis dimension D1b of the concave curved surface 5 compensate for the anisotropy of the output level of the detection signal of the magnetoelectric transducer 8 as will be described later, and the casing 2 is in any direction on the XY plane. Even when tilted, the magnetoelectric transducer 8 is designed so that the detection signal Vout having the same output level can be obtained. Further, the minimum curvature radius r1 along the minor axis direction of the concave curved surface 5 is larger than the curvature radius r2 of the sliding surface 13 of the movable body 12 described later.
 蓋体4は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部4Aが下方に向けて一体に形成されている。この雌嵌合部4A内にケーシング本体3の雄嵌合部3Bを嵌合挿入することによって、蓋体4はケーシング本体3に取り付けられ、ケーシング本体3と蓋体4との間に略半楕円体状の可動体収容空間6が形成される。 The lid body 4 is formed in a substantially disc shape, and a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 3B of the casing main body 3 into the female fitting portion 4A, the lid body 4 is attached to the casing main body 3, and the substantially semi-elliptical shape is provided between the casing main body 3 and the lid body 4. A body-like movable body accommodating space 6 is formed.
 また、蓋体4の中央部分には、凹状曲面5の最深部5Aに向けて下方に延びる略円柱状のロッド部7が設けられている。なお、ロッド部7の下端部分は略半球状に形成されている。ロッド部7を設けたことにより、後述の可動体12が凹状曲面5から離れるのが抑制され、また、可動体12が可動体収容空間6内で天地逆転して転倒するのが防止される。 Further, a substantially cylindrical rod portion 7 extending downward toward the deepest portion 5A of the concave curved surface 5 is provided at the center portion of the lid body 4. In addition, the lower end part of the rod part 7 is formed in the substantially hemispherical shape. By providing the rod portion 7, it is possible to prevent a movable body 12 (described later) from being separated from the concave curved surface 5, and to prevent the movable body 12 from being reversed upside down in the movable body accommodating space 6.
 磁束密度検知手段となる磁電変換素子8は、例えば4個の磁気抵抗素子R1~R4で構成されるブリッジ回路8Aと、差動増幅器8Bとから構成される。ブリッジ回路8Aと差動増幅器8Bとは、一体に集積化したAMR-IC(Anisotropic Magneto Resistance Integrated Circuit)に形成される。なお、差動増幅器8Bの入力端子は、磁気抵抗素子R1,R2間の接続点と、磁気抵抗素子R3,R4間の接続点とにそれぞれ接続される。差動増幅器8Bは、これら2つの接続点間に生じる電位差を差動増幅し、検出信号Voutを出力する。 The magnetoelectric conversion element 8 serving as a magnetic flux density detection means is constituted by, for example, a bridge circuit 8A constituted by four magnetoresistive elements R1 to R4 and a differential amplifier 8B. The bridge circuit 8A and the differential amplifier 8B are formed as an integrated AMR-IC (Anisotropic Magneto Resistance Integrated Circuit). The input terminal of the differential amplifier 8B is connected to a connection point between the magnetoresistive elements R1 and R2 and a connection point between the magnetoresistive elements R3 and R4. The differential amplifier 8B differentially amplifies the potential difference generated between these two connection points and outputs a detection signal Vout.
 磁気抵抗素子R2,R4間の接続点は、外部のグランドGNDに接続するためのグランド端子9に接続される。また、磁気抵抗素子R1,R3間の接続点は、駆動電圧Vddを供給するための駆動電圧端子10に接続される。さらに、差動増幅器8Bの出力端子は、例えば電圧等の検出信号Voutを出力する信号出力端子11に接続される。なお、グランド端子9、駆動電圧端子10および信号出力端子11は、例えば導電性金属材料によって形成され、ケーシング本体3に埋設されると共に、その一部がケーシング本体3の下面側から下向きに突出している。 The connection point between the magnetoresistive elements R2 and R4 is connected to a ground terminal 9 for connection to an external ground GND. The connection point between the magnetoresistive elements R1 and R3 is connected to a drive voltage terminal 10 for supplying the drive voltage Vdd. Further, the output terminal of the differential amplifier 8B is connected to a signal output terminal 11 that outputs a detection signal Vout such as a voltage. The ground terminal 9, the drive voltage terminal 10, and the signal output terminal 11 are formed of, for example, a conductive metal material, embedded in the casing body 3, and a part of the ground terminal 9, the driving voltage terminal 10, and the signal output terminal 11 protrude downward from the lower surface side of the casing body 3. Yes.
 磁気抵抗素子R1~R4は、図6に示すように、XZ面に平行に配置されるセンサ基板S上に形成される。なお、磁気抵抗素子R1~R4は、インジウムアンチモン(InSb)等の磁気抵抗材料を化学蒸着(CVD)等することにより形成される。磁気抵抗素子R1,R4は、Z軸方向に延びる複数の伸長パターンをミアンダ形状に接続した形状に形成され、電流方向(Z軸方向)と直交したX軸方向の磁束密度に応じてその抵抗値が変化する。一方、磁気抵抗素子R2,R3は、X軸方向に延びる複数の伸長パターンをミアンダ形状に接続した形状に形成され、電流方向(X軸方向)と直交したZ軸方向の磁束密度に応じてその抵抗値が変化する。 The magnetoresistive elements R1 to R4 are formed on a sensor substrate S arranged in parallel to the XZ plane as shown in FIG. The magnetoresistive elements R1 to R4 are formed by chemical vapor deposition (CVD) or the like of a magnetoresistive material such as indium antimony (InSb). The magnetoresistive elements R1 and R4 are formed in a shape in which a plurality of elongated patterns extending in the Z-axis direction are connected in a meander shape, and their resistance values according to the magnetic flux density in the X-axis direction orthogonal to the current direction (Z-axis direction). Changes. On the other hand, the magnetoresistive elements R2 and R3 are formed in a shape in which a plurality of elongated patterns extending in the X-axis direction are connected in a meander shape, and depending on the magnetic flux density in the Z-axis direction orthogonal to the current direction (X-axis direction). The resistance value changes.
 そして、XZ面に平行な磁束密度が印加されたときには、ミアンダ形状の伸長パターンと直交する方向の磁束密度成分が磁気抵抗素子R1~R4のそれぞれに印加されるため、4個の磁気抵抗素子R1~R4の抵抗値が全て変化する。このため、ケーシング2をX軸方向に傾けたときには、検出信号Voutは、例えば駆動電圧Vddの正負の範囲で変化する(-Vdd≦Vout≦Vdd)。 When a magnetic flux density parallel to the XZ plane is applied, a magnetic flux density component in a direction orthogonal to the meander-shaped elongated pattern is applied to each of the magnetoresistive elements R1 to R4. All resistance values of ~ R4 change. For this reason, when the casing 2 is tilted in the X-axis direction, the detection signal Vout changes, for example, in a positive / negative range of the drive voltage Vdd (−Vdd ≦ Vout ≦ Vdd).
 一方、YZ面に平行な磁束密度が印加されたときには、ミアンダ形状の伸長パターンと直交する方向の磁束密度成分が磁気抵抗素子R2,R3にのみ印加されるため、2個の磁気抵抗素子R2,R3の抵抗値は変化するものの、残余の2個の磁気抵抗素子R1,R4の抵抗値は殆ど変化しない。このため、ケーシング2をY軸方向に傾けたときには、検出信号Voutは、グランド電位から駆動電圧Vddの範囲で変化する(0≦Vout≦Vdd)。 On the other hand, when a magnetic flux density parallel to the YZ plane is applied, a magnetic flux density component in a direction orthogonal to the meander-shaped elongated pattern is applied only to the magnetoresistive elements R2, R3. Although the resistance value of R3 changes, the resistance values of the remaining two magnetoresistive elements R1 and R4 hardly change. For this reason, when the casing 2 is tilted in the Y-axis direction, the detection signal Vout changes in the range from the ground potential to the drive voltage Vdd (0 ≦ Vout ≦ Vdd).
 この結果、磁電変換素子8は、X軸方向に磁束φを傾斜させたときの検出信号Voutに比べてY軸方向に磁束を傾斜させたときの検出信号Voutが大きな出力レベルとなり、異方性を有している。 As a result, in the magnetoelectric transducer 8, the detection signal Vout when the magnetic flux is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux φ is tilted in the X-axis direction, and the anisotropy have.
 磁電変換素子8は、凹状曲面5の最深部5Aよりも、微小寸法δだけ下側に位置したケーシング本体3の内部に設けられる。なお、微小寸法δは数百μm~数mmの範囲で、例えばδ=1mm程度に設定される。また、磁電変換素子8は、可動体収容空間6に収容される可動体12の滑動面13に対向する位置に配置される。そして、磁電変換素子8には、可動体12の滑動面13を介して可動体12からの磁束φが印加される。これにより、磁電変換素子8は、可動体12の滑動によって生じる磁束密度の変化を検知する。 The magnetoelectric conversion element 8 is provided inside the casing main body 3 positioned below the deepest part 5A of the concave curved surface 5 by a minute dimension δ. The minute dimension δ is set in the range of several hundred μm to several mm, for example, about δ = 1 mm. In addition, the magnetoelectric conversion element 8 is disposed at a position facing the sliding surface 13 of the movable body 12 accommodated in the movable body accommodating space 6. A magnetic flux φ from the movable body 12 is applied to the magnetoelectric conversion element 8 via the sliding surface 13 of the movable body 12. Thereby, the magnetoelectric conversion element 8 detects a change in magnetic flux density caused by the sliding of the movable body 12.
 可動体12は、例えばフェライト等の磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成される。この可動体12の底部側は下向きの凸状曲面からなる滑動面13が形成されると共に、可動体12の上部側は平坦面となった上面14が形成されている。これにより、可動体12は、略半球面となった滑動面13の頂点部分12Aで厚さ寸法が最大になると共に、滑動面13に沿って頂点部分12Aから上面14の上面周縁部分12Bに近付くに従って漸次厚さが薄くなっている。 The movable body 12 is formed using a magnetic material such as ferrite, for example, and is formed into a substantially hemispherical magnet (permanent magnet). A sliding surface 13 made of a downward convex curved surface is formed on the bottom side of the movable body 12, and a flat upper surface 14 is formed on the upper side of the movable body 12. As a result, the movable body 12 has the maximum thickness at the apex portion 12A of the sliding surface 13 that is substantially hemispherical, and approaches the upper surface peripheral portion 12B of the upper surface 14 from the apex portion 12A along the sliding surface 13. The thickness gradually decreases according to
 また、可動体12は、例えば滑動面13がN極、上面14がS極のように、滑動面13と上面14とが互いに逆極性となるように磁化されている。これにより、可動体12は滑動面13の法線方向に向けて、磁束φが発生する。なお、可動体12の厚さが最大の頂点部分12Aの周囲での磁束密度が高くなると共に、上面周縁部分12Bに近付くに従って漸次磁束密度が低くなる。 The movable body 12 is magnetized so that the sliding surface 13 and the upper surface 14 have opposite polarities, for example, the sliding surface 13 is an N pole and the upper surface 14 is an S pole. As a result, the movable body 12 generates a magnetic flux φ toward the normal direction of the sliding surface 13. Note that the magnetic flux density around the apex portion 12A where the thickness of the movable body 12 is maximum increases, and the magnetic flux density gradually decreases as it approaches the upper surface peripheral portion 12B.
 可動体12は、ケーシング2の凹状曲面5と可動体12の滑動面13とが接触して滑り移動できるように、滑動面13を下向きにしてケーシング2の可動体収容空間6に収容される。このため、ケーシング2を水平状態から傾けると、可動体12は凹状曲面5に沿って可動体収容空間6の内部を滑動変位する。 The movable body 12 is accommodated in the movable body accommodation space 6 of the casing 2 with the sliding surface 13 facing downward so that the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 come into contact with each other and can slide. For this reason, when the casing 2 is tilted from the horizontal state, the movable body 12 slides and displaces inside the movable body accommodating space 6 along the concave curved surface 5.
 また、可動体12は下向きに突出した半球形状をなしているから、その重量バランスに基づいて上面14が水平な状態で静止する。このため、ケーシング2の傾斜角度θに応じて、可動体12の頂点部分12Aと磁電変換素子8との間の位置関係が変化すると共に、可動体12から磁電変換素子8に印加される磁束φの向きも変化する。 Further, since the movable body 12 has a hemispherical shape protruding downward, the upper surface 14 is stationary in a horizontal state based on its weight balance. Therefore, the positional relationship between the apex portion 12A of the movable body 12 and the magnetoelectric conversion element 8 changes according to the inclination angle θ of the casing 2, and the magnetic flux φ applied from the movable body 12 to the magnetoelectric conversion element 8 The direction of changes.
 また、可動体12の上面周縁部分12Bは円弧状にR面取りが施され、面取り部15が形成されている。面取り部15を設けたことで滑動面13と上面14との面が鋭角にまじわる部分を無くし、上面周縁部分12Bでの磁束φの集中を緩和している。 Further, the upper peripheral edge portion 12B of the movable body 12 is rounded in a circular arc shape, and a chamfered portion 15 is formed. By providing the chamfered portion 15, the portion where the surface of the sliding surface 13 and the upper surface 14 are bent at an acute angle is eliminated, and the concentration of the magnetic flux φ at the upper peripheral portion 12 </ b> B is alleviated.
 さらに、可動体12には、上面14の中央側に位置して略円形に窪んだ凹陥部16が形成されている。この凹陥部16を設けたことにより、可動体12の重心位置が頂点部分12A側に移動して、可動体12の安定性を高めている。 Furthermore, the movable body 12 is formed with a recessed portion 16 that is located in the center of the upper surface 14 and is recessed in a substantially circular shape. By providing the recessed portion 16, the position of the center of gravity of the movable body 12 moves to the apex portion 12A side, and the stability of the movable body 12 is enhanced.
 本実施の形態による傾斜センサ1は上述の如き構成を有するもので、次にその作動について説明する。 The tilt sensor 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
 まず、ケーシング2が水平状態の場合には、可動体12は、定常位置として、凹状曲面5の最深部5A側に配置される。具体的には、可動体12の頂点部分12Aが凹状曲面5の最深部5Aに接触した状態で、可動体12は凹状曲面5によって支持される。このとき、可動体12のうち磁束密度が高い頂点部分12Aは、磁電変換素子8に最も近付いた真上位置に配置される。従って、可動体12による磁束φが、ケーシング2の高さ方向となるZ軸方向に沿って磁電変換素子8に印加される。このため、磁電変換素子8は、Z軸方向の磁束密度に応じた最も大きな検出信号Voutを出力する。 First, when the casing 2 is in a horizontal state, the movable body 12 is disposed on the deepest part 5A side of the concave curved surface 5 as a steady position. Specifically, the movable body 12 is supported by the concave curved surface 5 in a state where the apex portion 12A of the movable body 12 is in contact with the deepest portion 5A of the concave curved surface 5. At this time, the apex portion 12 </ b> A having a high magnetic flux density in the movable body 12 is disposed at a position directly above the magnetoelectric conversion element 8. Therefore, the magnetic flux φ by the movable body 12 is applied to the magnetoelectric conversion element 8 along the Z-axis direction that is the height direction of the casing 2. For this reason, the magnetoelectric transducer 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
 次に、ケーシング2を傾斜状態にして水平状態から傾けた場合には、可動体12は、凹状曲面5に沿って定常位置から変位し、可動体収容空間6の最も低い位置に向けて移動する。このため、可動体12のうち磁束密度の高い頂点部分12Aは、ケーシング2の傾斜角度θに応じて、凹状曲面5の最深部5Aから離れると共に、最深部5Aには磁束密度の低い上面周縁部分12Bが近付く。従って、可動体12から磁電変換素子8に印加される磁束密度は、傾斜角度θに応じて減少する。 Next, when the casing 2 is tilted and tilted from the horizontal state, the movable body 12 is displaced from the steady position along the concave curved surface 5 and moves toward the lowest position of the movable body accommodating space 6. . Therefore, the apex portion 12A having a high magnetic flux density in the movable body 12 is separated from the deepest portion 5A of the concave curved surface 5 in accordance with the inclination angle θ of the casing 2, and the uppermost peripheral portion having a low magnetic flux density is included in the deepest portion 5A. 12B approaches. Therefore, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 decreases according to the inclination angle θ.
 磁電変換素子8は、Z軸方向に対して傾斜角度θだけ傾いた方向の磁束密度を検出し、この磁束密度に応じた検出信号Voutを出力する。この結果、磁電変換素子8は傾斜角度θに応じた検出信号Voutを出力すると共に、この検出信号Voutは傾斜角度θが大きくなるに従って漸次小さくなる。 The magnetoelectric conversion element 8 detects the magnetic flux density in the direction inclined by the inclination angle θ with respect to the Z-axis direction, and outputs a detection signal Vout corresponding to the magnetic flux density. As a result, the magnetoelectric transducer 8 outputs the detection signal Vout corresponding to the inclination angle θ, and the detection signal Vout gradually decreases as the inclination angle θ increases.
 次に、ケーシング2を水平状態に戻した場合には、可動体12は、凹状曲面5に沿って最深部5A側に向けて変位し、頂点部分12Aが最深部5Aに接触した定常位置に復帰する。これにより、磁電変換素子8に印加される磁束密度が再び増加し、磁電変換素子8は、Z軸方向の磁束密度に応じた最も大きな検出信号Voutを出力する。 Next, when the casing 2 is returned to the horizontal state, the movable body 12 is displaced toward the deepest part 5A along the concave curved surface 5, and the apex part 12A returns to the steady position where it contacts the deepest part 5A. To do. Thereby, the magnetic flux density applied to the magnetoelectric conversion element 8 increases again, and the magnetoelectric conversion element 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
 ここで、磁電変換素子8は、X軸方向に磁束φを傾斜させたときの検出信号Voutに比べてY軸方向に磁束φを傾斜させたときの検出信号Voutが大きな出力レベルとなる異方性を有する。これに対し、可動体収容空間6の凹状曲面5は、X軸方向に比べてY軸方向に向けて可動体12を大きく変位させる楕円体面によって形成した。このため、ケーシング2を同じ傾斜角度θでX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、可動体12の変位量が大きくなり、磁電変換素子8と可動体12の頂点部分12Aとの位置変化が大きくなる。 Here, the magnetoelectric transducer 8 is anisotropic in which the detection signal Vout when the magnetic flux φ is inclined in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux φ is inclined in the X-axis direction. Have sex. On the other hand, the concave curved surface 5 of the movable body accommodating space 6 is formed by an ellipsoidal surface that greatly displaces the movable body 12 in the Y-axis direction compared to the X-axis direction. For this reason, the displacement amount of the movable body 12 becomes larger when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction at the same tilt angle θ, and the magnetoelectric conversion element 8 and the movable body. The position change with 12 apex portions 12A becomes large.
 ここで、可動体12の滑動面13の法線方向に向けて磁束φが発生するから、ケーシング2をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、磁電変換素子8に印加される磁束密度の変化が大きくなる。即ち、同じ傾斜角度θでX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が可動体12から磁電変換素子8に印加される磁束密度が低下して、検出信号Voutの出力レベルを小さくすることができる。この結果、ケーシング2がX軸方向に傾斜したときの磁電変換素子8の検出信号Voutと、ケーシング2がY軸方向に傾斜したときの磁電変換素子8の検出信号Voutとは、傾斜角度θに対する出力レベルをほぼ等しくすることができる。 Here, since the magnetic flux φ is generated toward the normal direction of the sliding surface 13 of the movable body 12, the magnetoelectric current is more when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction. A change in magnetic flux density applied to the conversion element 8 increases. That is, the magnetic flux density applied to the magnetoelectric transducer 8 from the movable body 12 is lower when tilted in the Y-axis direction than when tilted in the X-axis direction at the same tilt angle θ, and the detection signal Vout. The output level can be reduced. As a result, the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is tilted in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is tilted in the Y-axis direction are relative to the tilt angle θ. The output level can be made substantially equal.
 かくして、本実施の形態の可動体12は、可動体12の底部側に下向きの半球面からなる滑動面13を形成したから、滑動面13に沿って頂点部分12Aから上面周縁部分12Bに向かうに従って厚さが漸次薄くなる。このため、可動体12の頂点部分12Aの周囲では磁束密度が高く、可動体12の上面周縁部分12Bでは磁束密度が低下する。 Thus, since the movable body 12 of the present embodiment has formed the sliding surface 13 made of a downward hemispherical surface on the bottom side of the movable body 12, as the sliding surface 13 moves from the apex portion 12A toward the upper peripheral portion 12B. The thickness gradually decreases. For this reason, the magnetic flux density is high around the apex portion 12 </ b> A of the movable body 12, and the magnetic flux density is reduced at the upper peripheral edge portion 12 </ b> B of the movable body 12.
 また、可動体収容空間6内に収容された可動体12は、ケーシング2が水平状態から傾いたときには、可動体12の滑動面13が凹状曲面5上を滑動して、凹状曲面5の最も低い位置に向けて可動体12の頂点部分12Aが移動する。また、磁電変換素子8はケーシング2に設けられると共に、可動体12の滑動面13と磁電変換素子8とが対向配置されるから、ケーシング2の傾斜角度θに応じて可動体12の頂点部分12Aと磁電変換素子8との相対位置が変化する。このため、ケーシング2の傾斜角度θに応じて、磁電変換素子8に印加する磁束密度が変化する。 Further, the movable body 12 accommodated in the movable body accommodating space 6 has a sliding surface 13 of the movable body 12 that slides on the concave curved surface 5 when the casing 2 is tilted from the horizontal state, and the lowest of the concave curved surface 5. The apex portion 12A of the movable body 12 moves toward the position. Further, since the magnetoelectric conversion element 8 is provided in the casing 2 and the sliding surface 13 of the movable body 12 and the magnetoelectric conversion element 8 are disposed to face each other, the apex portion 12A of the movable body 12 according to the inclination angle θ of the casing 2. And the relative position of the magnetoelectric transducer 8 change. For this reason, the magnetic flux density applied to the magnetoelectric conversion element 8 changes according to the inclination angle θ of the casing 2.
 また、本実施の形態では、可動体12の頂点部分12Aが磁電変換素子8に対して変位すればよいから、ケーシング2の可動体収容空間6は、可動体12が回転変位できる程度の容積があれば足りる。このため、可動体収容空間6の容積を可動体12の体積に近付けることができ、傾斜センサ1を小型化することができる。 In the present embodiment, the apex portion 12A of the movable body 12 only needs to be displaced with respect to the magnetoelectric conversion element 8. Therefore, the movable body accommodating space 6 of the casing 2 has a volume that allows the movable body 12 to be rotationally displaced. If there is enough. For this reason, the volume of the movable body accommodation space 6 can be brought close to the volume of the movable body 12, and the inclination sensor 1 can be reduced in size.
 さらに、磁電変換素子8はケーシング2を水平状態にしたときの凹状曲面5の最深部5Aの周囲に配置したから、ケーシング2の傾斜角度θが小さくなると、可動体12の頂点部分12Aが磁電変換素子8に近付き、磁電変換素子8に印加される磁束密度が高くなる。一方、ケーシング2の傾斜角度θが大きくなると、可動体12の頂点部分12Aが磁電変換素子8から遠ざかり、磁電変換素子8に印加される磁束密度が低くなる。このとき、磁電変換素子8に印加される磁束密度は、可動体12のうち磁電変換素子8と対向した部分の厚さ寸法に応じて変化する。このため、可動体12を例えば厚肉な円板形状や小径の球形状とした場合に比べて、ケーシング2の傾斜角度θに対する磁電変換素子8の検出信号の線形性を高めることができ、検出可能な傾斜の角度範囲を広げることができる。 Further, since the magnetoelectric conversion element 8 is arranged around the deepest part 5A of the concave curved surface 5 when the casing 2 is in a horizontal state, the apex portion 12A of the movable body 12 is magnetoelectrically converted when the inclination angle θ of the casing 2 decreases. The magnetic flux density applied to the magnetoelectric conversion element 8 increases as it approaches the element 8. On the other hand, when the inclination angle θ of the casing 2 increases, the apex portion 12A of the movable body 12 moves away from the magnetoelectric conversion element 8, and the magnetic flux density applied to the magnetoelectric conversion element 8 decreases. At this time, the magnetic flux density applied to the magnetoelectric conversion element 8 changes according to the thickness dimension of the portion of the movable body 12 facing the magnetoelectric conversion element 8. For this reason, the linearity of the detection signal of the magnetoelectric conversion element 8 with respect to the inclination angle θ of the casing 2 can be improved compared with the case where the movable body 12 is formed into a thick disk shape or a spherical shape with a small diameter, for example. The range of possible tilt angles can be expanded.
 これに加えて、可動体12の上面周縁部分12Bには面取り部15を設けたから、該面取り部15によって、可動体12の上面周縁部分12Bでの磁束φの集中を緩和することができる。このため、頂点部分12Aから上面周縁部分12Bに近付くに従って、磁束密度を漸次低下させることができる。この結果、傾斜角度θが大きくなり、上面周縁部分12Bと磁電変換素子8とが近付く範囲(例えば50°以上)でも、傾斜角度θの増加に従って磁束密度が一様に引き続いて減少する。これにより、磁束密度は傾斜角度θに対して線形に近い領域が広がり、検出可能な傾斜角度θの範囲をさらに広げることができる。 In addition, since the chamfered portion 15 is provided on the upper peripheral portion 12B of the movable body 12, the chamfered portion 15 can alleviate the concentration of the magnetic flux φ at the upper peripheral portion 12B of the movable body 12. For this reason, the magnetic flux density can be gradually decreased as the apex portion 12A approaches the upper surface peripheral portion 12B. As a result, the tilt angle θ increases, and the magnetic flux density decreases continuously and uniformly as the tilt angle θ increases even in the range where the upper surface peripheral portion 12B and the magnetoelectric transducer 8 approach each other (for example, 50 ° or more). Thereby, the magnetic flux density has a region that is nearly linear with respect to the tilt angle θ, and the range of the detectable tilt angle θ can be further expanded.
 また、可動体12は滑動面13と上面14とが互いに逆極性となったマグネットによって構成したから、滑動面13の法線方向に向けて磁束φが発生する。このとき、磁電変換素子8は可動体12の滑動面13と対向して配置されているから、ケーシング2を水平状態から傾けると、磁電変換素子8と対向する滑動した可動体12の滑動面13部分の法線方向に略一致して、磁電変換素子8も傾く。 Further, since the movable body 12 is composed of magnets in which the sliding surface 13 and the upper surface 14 have opposite polarities, a magnetic flux φ is generated in the normal direction of the sliding surface 13. At this time, since the magnetoelectric conversion element 8 is disposed so as to face the sliding surface 13 of the movable body 12, when the casing 2 is tilted from the horizontal state, the sliding surface 13 of the movable body 12 slidable facing the magnetoelectric conversion element 8. The magnetoelectric transducer 8 is also tilted substantially in line with the normal direction of the portion.
 可動体12の頂点部分12Aから上面周縁部分12Bに向けて磁束密度が漸次低下すると共に、ケーシング2の傾斜角度θに応じて、可動体12の滑動面13のうち磁電変換素子8と対向する部分が変位する。このため、ケーシング2の傾斜角度θに応じて、可動体12から磁電変換素子8に印加する磁束密度を変化させることができると共に、磁電変換素子8は傾斜角度θに応じた磁束密度を確実に検出することができる。この結果、磁電変換素子8は、傾斜角度θに応じた検出信号を出力する。 The magnetic flux density gradually decreases from the apex portion 12A of the movable body 12 toward the upper peripheral edge portion 12B, and the portion of the sliding surface 13 of the movable body 12 that faces the magnetoelectric conversion element 8 according to the inclination angle θ of the casing 2 Is displaced. For this reason, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 can be changed in accordance with the inclination angle θ of the casing 2, and the magnetoelectric conversion element 8 ensures the magnetic flux density in accordance with the inclination angle θ. Can be detected. As a result, the magnetoelectric conversion element 8 outputs a detection signal corresponding to the inclination angle θ.
 また、可動体収容空間6の凹状曲面5は、可動体12の半球面となった滑動面13よりも大きな曲率半径r1をもった半割り形状の楕円体面によって形成したから、可動体12は、その頂点部分12Aが凹状曲面5に接触した状態で凹状曲面5上を滑動することができる。 Further, since the concave curved surface 5 of the movable body accommodating space 6 is formed by a half-shaped ellipsoidal surface having a radius of curvature r1 larger than the sliding surface 13 which is the hemispherical surface of the movable body 12, the movable body 12 is It is possible to slide on the concave curved surface 5 with the apex portion 12A in contact with the concave curved surface 5.
 さらに、可動体収容空間6の凹状曲面5は、X軸方向に比べてY軸方向に向けて可動体12を大きく変位させる楕円体面によって形成したから、同じ傾斜角度θでいずれの方向に傾けた場合でも、傾斜角度θに対する出力レベルをほぼ等しくし、磁電変換素子8の異方性を補償することができる。 Furthermore, since the concave curved surface 5 of the movable body accommodating space 6 is formed by an ellipsoidal surface that greatly displaces the movable body 12 in the Y-axis direction compared to the X-axis direction, the concave curved surface 5 is inclined in any direction at the same inclination angle θ. Even in this case, the output level with respect to the inclination angle θ can be made substantially equal, and the anisotropy of the magnetoelectric transducer 8 can be compensated.
 具体的には、本実施の形態では、ケーシング2をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、傾斜角度θに対する可動体12の変位量を大きくして、磁電変換素子8と可動体12の頂点部分12Aとの位置変化を大きくすることができる。ここで、可動体12の滑動面13の法線方向に向けて磁束φが発生するから、ケーシング2をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、磁電変換素子8に印加される磁束密度の変化が大きくなる。即ち、同じ傾斜角度θでX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が可動体12から磁電変換素子8に印加される磁束密度を低下させて、検出信号Voutの出力レベルを抑制することができる。 Specifically, in the present embodiment, the amount of displacement of the movable body 12 with respect to the tilt angle θ is increased when the casing 2 is tilted in the Y-axis direction compared to when the casing 2 is tilted in the X-axis direction. The positional change between the magnetoelectric conversion element 8 and the apex portion 12A of the movable body 12 can be increased. Here, since the magnetic flux φ is generated toward the normal direction of the sliding surface 13 of the movable body 12, the magnetoelectric current is more when the casing 2 is tilted in the Y-axis direction than when the casing 2 is tilted in the X-axis direction. A change in magnetic flux density applied to the conversion element 8 increases. That is, the magnetic flux density applied from the movable body 12 to the magnetoelectric transducer 8 is lowered when tilted in the Y-axis direction compared to when tilted in the X-axis direction at the same tilt angle θ, and the detection signal Vout. The output level can be suppressed.
 この結果、磁電変換素子8は、X軸方向に磁束φを傾斜させたときの検出信号Voutに比べてY軸方向に磁束φを傾斜させたときの検出信号Voutが大きな出力レベルとなる異方性を有する場合でも、この磁電変換素子8の異方性を補うことができる。これにより、ケーシング2がX軸方向に傾斜したときの磁電変換素子8の検出信号Voutと、ケーシング2がY軸方向に傾斜したときの磁電変換素子8の検出信号Voutとは、傾斜角度θに対する出力レベルをほぼ等しくすることができる。 As a result, the magnetoelectric transducer 8 is anisotropic in that the detection signal Vout when the magnetic flux φ is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux φ is tilted in the X-axis direction. Even if it has a property, the anisotropy of this magnetoelectric conversion element 8 can be supplemented. Thereby, the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is inclined in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 8 when the casing 2 is inclined in the Y-axis direction are relative to the inclination angle θ. The output level can be made substantially equal.
 次に、図10ないし図12は本発明の第2の実施の形態を示している。そして、本実施の形態の特徴は、可動体収容空間の凹状曲面は、X軸方向が短手方向となりY軸方向が長手方向となった半割り形状の楕円体面と、該楕円体面の中央部分で接した半球面とを組み合わせた異方性曲面によって形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIGS. 10 to 12 show a second embodiment of the present invention. The feature of the present embodiment is that the concave curved surface of the movable body housing space has a half-shaped ellipsoidal surface in which the X-axis direction is the short direction and the Y-axis direction is the longitudinal direction, and the central portion of the ellipsoidal surface. It is formed by an anisotropic curved surface combined with a hemispherical surface in contact with. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ21は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング22、磁電変換素子8、可動体12によって構成されている。 The inclination sensor 21 includes a casing 22, a magnetoelectric conversion element 8, and a movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
 ケーシング22は、例えば絶縁樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング22は、有底な略円筒状に形成されたケーシング本体23と、該ケーシング本体23の開口部となる上部を施蓋する蓋体24によって構成されている。 The casing 22 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material. The casing 22 includes a casing main body 23 formed in a substantially cylindrical shape with a bottom, and a lid body 24 that covers an upper portion serving as an opening of the casing main body 23.
 ケーシング本体23は、XY面に対して略円形の断面形状を有すると共に、Z軸方向(軸方向)に向けて数mm程度の高さ寸法を有している。また、ケーシング本体23の上部側には略半楕円体状に窪んだ凹部23Aが形成されると共に、該凹部23Aの開口側には円筒状の雄嵌合部23Bが形成されている。 The casing body 23 has a substantially circular cross-sectional shape with respect to the XY plane, and has a height of about several millimeters in the Z-axis direction (axial direction). Further, a concave portion 23A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 23, and a cylindrical male fitting portion 23B is formed on the opening side of the concave portion 23A.
 凹部23Aの表面(露出面)には、上向きに開口した凹状曲面25が形成されている。この凹状曲面25は、X軸方向とY軸方向とで形状が異なる異方性曲面によって形成されている。具体的には、凹状曲面25は、X軸方向が短軸となり、Y軸方向が長軸となった半割り形状の楕円体面25Aと、楕円体面25Aの長手方向の長さ寸法よりも小さく短手方向の長さ寸法よりも大きな直径寸法D2bをもった半球面25Bとを組み合わせた異方性曲面によって形成されている。このとき、楕円体面25Aの中央部分と半球面25Bの中央部分は、いずれも凹状曲面25の最深部25Cに位置して互いに接し、凹部23AはXZ面およびYZ面に対して面対称に形成される。 A concave curved surface 25 opened upward is formed on the surface (exposed surface) of the concave portion 23A. The concave curved surface 25 is formed by an anisotropic curved surface having different shapes in the X-axis direction and the Y-axis direction. Specifically, the concave curved surface 25 is shorter than the half length of the ellipsoidal surface 25A in which the X-axis direction is the short axis and the Y-axis direction is the long axis, and the length in the longitudinal direction of the ellipsoidal surface 25A. It is formed by an anisotropic curved surface combined with a hemispherical surface 25B having a diameter dimension D2b larger than the length dimension in the hand direction. At this time, the central portion of the ellipsoidal surface 25A and the central portion of the hemispherical surface 25B are both located at and in contact with the deepest portion 25C of the concave curved surface 25, and the concave portion 23A is formed symmetrically with respect to the XZ plane and the YZ plane. The
 なお、楕円体面25Aの長軸寸法D2aと半球面25Bの直径寸法D2bは、ケーシング22がXY面のいずれの方向に傾斜したときでも、凹状曲面25の最深部25Cの下側に位置する磁電変換素子8から同じ出力レベルの検出信号Voutが得られるように設定される。 The major axis dimension D2a of the ellipsoidal surface 25A and the diameter dimension D2b of the hemispherical surface 25B are the magnetoelectric conversion located below the deepest portion 25C of the concave curved surface 25, regardless of the direction of the casing 22 in the XY plane. The detection signal Vout having the same output level is obtained from the element 8.
 蓋体24は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部24Aが下方に向けて一体に形成されている。この雌嵌合部24A内にケーシング本体23の雄嵌合部23Bを嵌合挿入することによって、蓋体24はケーシング本体23に取り付けられ、ケーシング本体23と蓋体24との間に半割り形状の楕円体面と略半球面を組み合せた略半楕円体状の可動体収容空間26が形成される。また、蓋体24の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部27が設けられている。 The lid body 24 is formed in a substantially disc shape, and a cylindrical female fitting portion 24A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 23B of the casing main body 23 into the female fitting portion 24A, the lid body 24 is attached to the casing main body 23, and the halved shape is formed between the casing main body 23 and the lid body 24. A substantially semi-elliptical movable body accommodating space 26 is formed by combining the ellipsoidal surface and the substantially hemispherical surface. Further, a rod portion 27 substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid body 24.
 第2の実施の形態では、凹状曲面25は楕円体面25Aと半球面25Bとを組み合わせた異方性曲面によって形成したから、半割り形状の楕円体面のみによって形成した場合に比べて、可動体12と凹状曲面25との接触面積を少なくして、これらの摩擦抵抗を小さくすることができる。このため、傾斜角度θに対する可動体12の応答性を高め、傾斜角度θの検出精度を向上することができる。なお、第2の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。 In the second embodiment, since the concave curved surface 25 is formed by an anisotropic curved surface combining the ellipsoidal surface 25A and the hemispherical surface 25B, the movable body 12 is compared to the case where the concave curved surface 25 is formed only by the half-shaped ellipsoidal surface. And the concave curved surface 25 can be reduced to reduce these frictional resistances. For this reason, the responsiveness of the movable body 12 with respect to the inclination angle θ can be enhanced, and the detection accuracy of the inclination angle θ can be improved. In the second embodiment, the same operational effects as those in the first embodiment can be obtained.
 次に、図13ないし図15は本発明の第3の実施の形態を示している。そして、本実施の形態の特徴は、凹状曲面の最深部側に平坦な底面部を形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 13 to FIG. 15 show a third embodiment of the present invention. The feature of the present embodiment is that a flat bottom portion is formed on the deepest side of the concave curved surface. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ31は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング32、磁電変換素子8、可動体12によって構成されている。 The inclination sensor 31 includes a casing 32, a magnetoelectric conversion element 8, and a movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
 ケーシング32は、例えば絶縁樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング32は、有底な略円筒状に形成されたケーシング本体33と、該ケーシング本体33の開口部となる上部を施蓋する蓋体34によって構成されている。 The casing 32 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material. The casing 32 includes a casing main body 33 formed in a substantially cylindrical shape with a bottom, and a lid body 34 that covers an upper portion serving as an opening of the casing main body 33.
 ケーシング本体33は、XY面に対して略円形の断面形状を有すると共に、Z軸方向(軸方向)に向けて数mm程度の高さ寸法を有している。また、ケーシング本体33の上部側には略半楕円体状に窪んだ凹部33Aが形成されると共に、該凹部33Aの開口側には円筒状の雄嵌合部33Bが形成されている。 The casing body 33 has a substantially circular cross-sectional shape with respect to the XY plane, and has a height dimension of about several millimeters in the Z-axis direction (axial direction). A concave portion 33A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 33, and a cylindrical male fitting portion 33B is formed on the opening side of the concave portion 33A.
 凹部33Aの表面(露出面)には、上向きに開口した異方性曲面からなる凹状曲面35が形成されている。この凹状曲面35は、第1の実施の形態による凹状曲面5とほぼ同様に、X軸方向とY軸方向とで断面形状が異なる異方性曲面によって形成されている。具体的には、凹状曲面35は、X軸方向が短軸となり、Y軸方向が長軸となった半割り形状の略楕円体面によって形成されている。この凹状曲面35は、磁電変換素子8の異方性を補い、ケーシング32がXY面のいずれの方向に傾斜したときでも、磁電変換素子8から同じ出力レベルの検出信号Voutが得られる形状に形成されている。 A concave curved surface 35 made of an anisotropic curved surface opened upward is formed on the surface (exposed surface) of the concave portion 33A. The concave curved surface 35 is formed by an anisotropic curved surface having different cross-sectional shapes in the X-axis direction and the Y-axis direction, almost like the concave curved surface 5 according to the first embodiment. Specifically, the concave curved surface 35 is formed by a substantially ellipsoidal surface having a halved shape in which the X-axis direction is the short axis and the Y-axis direction is the long axis. The concave curved surface 35 compensates for the anisotropy of the magnetoelectric conversion element 8 and is formed in a shape that allows the detection signal Vout of the same output level to be obtained from the magnetoelectric conversion element 8 when the casing 32 is inclined in any direction of the XY plane. Has been.
 凹状曲面35の最深部側には、XY面に平行な例えば小径な楕円形平坦面となった底面部35Aが形成されている。凹部33Aの略楕円体面の表面と底面部35Aの外周との間は、下方向にすぼまる楕円錐台の側面形状の底面連結部35Bで連結されている。この結果、凹状曲面35は、全体として略半楕円体面形状に形成されている。 On the deepest portion side of the concave curved surface 35, a bottom surface portion 35A that is, for example, a small-diameter elliptical flat surface parallel to the XY plane is formed. The surface of the substantially ellipsoidal surface of the recess 33A and the outer periphery of the bottom surface portion 35A are connected by a bottom surface connection portion 35B having a side shape of an elliptical truncated cone that swells downward. As a result, the concave curved surface 35 is formed in a substantially semi-ellipsoidal surface shape as a whole.
 これらの底面部35Aおよび底面連結部25Bは、可動体12の滑動面13を点接触に近い状態で支持する。このため、傾斜角度θが小さいときでも、凹状曲面35と可動体12との間の摩擦抵抗を低減して、可動体12を容易に滑動させることができる。また、凹状曲面35の最深部側には平坦面となった底面部35Aを設けたから、ケーシング32を水平状態に復帰させたときには、可動体12を定常位置となる底面部35Aに確実に戻すことができる。 The bottom surface portion 35A and the bottom surface connection portion 25B support the sliding surface 13 of the movable body 12 in a state close to point contact. For this reason, even when the inclination angle θ is small, the frictional resistance between the concave curved surface 35 and the movable body 12 can be reduced, and the movable body 12 can be easily slid. Further, since the bottom surface portion 35A that is a flat surface is provided on the deepest side of the concave curved surface 35, when the casing 32 is returned to the horizontal state, the movable body 12 is surely returned to the bottom surface portion 35A that is the steady position. Can do.
 蓋体34は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部34Aが下方に向けて一体に形成されている。この雌嵌合部34A内にケーシング本体33の雄嵌合部33Bを嵌合挿入することによって、蓋体34はケーシング本体33に取り付けられ、ケーシング本体33と蓋体34との間に略半楕円体状の可動体収容空間36が形成される。また、蓋体34の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部37が設けられている。 The lid body 34 is formed in a substantially disk shape, and a cylindrical female fitting portion 34A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 33B of the casing main body 33 into the female fitting portion 34A, the lid body 34 is attached to the casing main body 33, and a substantially semi-elliptical shape is provided between the casing main body 33 and the lid body 34. A body-like movable body accommodating space 36 is formed. Further, a rod portion 37 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 34.
 第3の実施の形態では、凹状曲面35の最深部側には平坦面となった底面部35Aを設けたから、底面部35Aは、可動体12の滑動面13を点接触に近い状態で支持する。このため、傾斜角度θが小さいときでも、凹状曲面35と可動体12との間の摩擦抵抗を低減して、可動体12を容易に滑動させることができる。また、ケーシング32を水平状態に復帰させたときには、可動体12を定常位置となる底面部35Aに確実に戻すことができる。なお、第3の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。 In the third embodiment, since the bottom surface portion 35A which is a flat surface is provided on the deepest side of the concave curved surface 35, the bottom surface portion 35A supports the sliding surface 13 of the movable body 12 in a state close to point contact. . For this reason, even when the inclination angle θ is small, the frictional resistance between the concave curved surface 35 and the movable body 12 can be reduced, and the movable body 12 can be easily slid. In addition, when the casing 32 is returned to the horizontal state, the movable body 12 can be reliably returned to the bottom surface portion 35A at the steady position. In the third embodiment, the same operational effects as those in the first embodiment can be obtained.
 第3の実施の形態による凹状曲面35は、第1の実施の形態による凹状曲面5と同様に半割り形状の略楕円体面によって形成したが、第2の実施の形態による凹状曲面25のように、半楕円体面と半球面とを組み合わせた形状に形成してもよい。 The concave curved surface 35 according to the third embodiment is formed by a substantially split ellipsoidal surface like the concave curved surface 5 according to the first embodiment, but like the concave curved surface 25 according to the second embodiment. The semi-ellipsoidal surface and the hemispherical surface may be combined.
 次に、図16は本発明の第4の実施の形態を示している。そして、本実施の形態の特徴は、平滑処理としてのコーティング膜を凹状曲面に形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 16 shows a fourth embodiment of the present invention. The feature of this embodiment is that a coating film as a smoothing process is formed on a concave curved surface. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ41は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング2、磁電変換素子8、可動体12によって構成されている。但し、凹状曲面5の表面には、平滑処理としてフッ素樹脂やシリコン樹脂等による薄いコーティング膜42が形成されている。このコーティング膜42は、例えば潤滑性をもった滑らかな表面を有し、可動体12に対する接触抵抗を低減するものである。 The inclination sensor 41 is constituted by the casing 2, the magnetoelectric conversion element 8, and the movable body 12 in substantially the same manner as the inclination sensor 1 according to the first embodiment. However, a thin coating film 42 made of fluorine resin, silicon resin or the like is formed on the surface of the concave curved surface 5 as a smoothing process. The coating film 42 has, for example, a smooth surface having lubricity, and reduces the contact resistance with respect to the movable body 12.
 かくして、第4の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、第4の実施の形態では、平滑処理としてのコーティング膜42を凹状曲面5に形成したから、凹状曲面5と可動体12との間の摩擦抵抗を小さくすることができる。このため、傾斜角度θの変化に対して可動体12の応答性を高めることができ、傾斜角度θの検出精度を高めることができる。 Thus, the fourth embodiment can provide the same operational effects as the first embodiment. In particular, in the fourth embodiment, since the coating film 42 as the smoothing process is formed on the concave curved surface 5, the frictional resistance between the concave curved surface 5 and the movable body 12 can be reduced. For this reason, the responsiveness of the movable body 12 can be improved with respect to the change of the inclination angle θ, and the detection accuracy of the inclination angle θ can be improved.
 なお、第4の実施の形態では、第1の実施の形態に適用した場合を例に挙げて説明したが、第2,第3の実施の形態に適用してもよい。また、第4の実施の形態では、凹状曲面5の表面にコーティング膜42を形成するものとしたが、可動体12の滑動面13にコーティング膜42を形成してもよく、凹状曲面5と滑動面13の両方にコーティング膜42を形成してもよい。 In addition, although the case where it applied to 1st Embodiment was mentioned as an example in 4th Embodiment and demonstrated, you may apply to 2nd, 3rd Embodiment. In the fourth embodiment, the coating film 42 is formed on the surface of the concave curved surface 5. However, the coating film 42 may be formed on the sliding surface 13 of the movable body 12. A coating film 42 may be formed on both surfaces 13.
 さらに、第4の実施の形態では、平滑処理として樹脂製のコーティング膜42を用いる構成としたが、メッキ等による金属薄膜を形成してもよく、表面研磨処理のように表面の凹凸を低減することができる各種の表面処理が適用可能である。 Furthermore, in the fourth embodiment, the resin coating film 42 is used as the smoothing process. However, a metal thin film by plating or the like may be formed, and surface irregularities are reduced as in the surface polishing process. Various surface treatments that can be applied are applicable.
 なお、前記各実施の形態では、面取り部15を備えた可動体12を用いる構成としたが、面取り部を省いた可動体を用いる構成としてもよい。また、前記各実施の形態では、可動体12の上面周縁部分12Bに断面円弧状の面取り部15を設ける構成とした。しかし、本発明はこれに限らず、例えば図17に示す第1の変形例による傾斜センサ51のように、可動体52の上面周縁部分52BにはC面取りを施して断面直線状の面取り部55を設ける構成としてもよい。この場合、可動体52は、頂点部分52Aが下側に突出した滑動面53と平坦な上面54とを備えるものである。 In each of the above embodiments, the movable body 12 including the chamfered portion 15 is used. However, a movable body that omits the chamfered portion may be used. In each of the above embodiments, the chamfered portion 15 having a circular arc cross section is provided on the upper peripheral edge portion 12B of the movable body 12. However, the present invention is not limited to this. For example, as in the inclination sensor 51 according to the first modification shown in FIG. It is good also as a structure which provides. In this case, the movable body 52 includes a sliding surface 53 and a flat upper surface 54 with the apex portion 52A protruding downward.
 また、可動体52の面取り部55は、可動体52の上側に向かうに従って、可動体52の径方向外側から内側に向けて傾斜した円錐側面を形成する構成としたが、例えば可動体52の高さ方向と平行な円周面を形成してもよい。 Further, the chamfered portion 55 of the movable body 52 is configured to form a conical side surface that is inclined from the radially outer side toward the inner side of the movable body 52 as it goes upward. A circumferential surface parallel to the vertical direction may be formed.
 また、前記各実施の形態では、可動体12は半球面からなる滑動面13の曲率半径r2に近い厚さ寸法を有する構成とした。しかし、本発明はこれに限らず、例えば図18に示す第2の変形例による傾斜センサ61のように、所望な磁束密度の分布が得られる範囲内で、可動体62は半球面からなる滑動面63の曲率半径よりも小さい厚さ寸法(例えば曲率半径の半分程度)を有する構成としてもよい。この場合、可動体62は、頂点部分62Aが下側に突出した滑動面63と平坦な上面64とを備え、頂点部分62Aから上面周縁部分62Bに近付くに従って、その厚さ寸法が漸次小さくなるものである。また、転動が防止できる範囲内で、可動体は、滑動面の曲率半径よりも大きな厚さ寸法を有する構成としてもよい。 In each of the above embodiments, the movable body 12 has a thickness dimension close to the radius of curvature r2 of the sliding surface 13 made of a hemispherical surface. However, the present invention is not limited to this, and the movable body 62 is made of a hemispherical surface within a range where a desired magnetic flux density distribution can be obtained, such as the tilt sensor 61 according to the second modification shown in FIG. A configuration having a thickness dimension smaller than the curvature radius of the surface 63 (for example, about half of the curvature radius) may be adopted. In this case, the movable body 62 includes a sliding surface 63 with a vertex portion 62A projecting downward and a flat upper surface 64, and the thickness dimension gradually decreases from the vertex portion 62A toward the upper surface peripheral portion 62B. It is. Further, the movable body may have a thickness dimension larger than the radius of curvature of the sliding surface within a range in which rolling can be prevented.
 また、前記各実施の形態では、可動体12には上面14の中央部分に位置して円柱状に窪んだ凹陥部16を設ける構成とした。しかし、本発明はこれに限らず、凹陥部を省く構成としてもよく、例えば図19に示す第3の変形例による傾斜センサ71のように、可動体72には上面74の中央部分に位置して凹状に窪んだ凹陥部75を設ける構成としてもよい。この場合でも、可動体72は、半球面からなる滑動面73を備えると共に、頂点部分72Aから上面周縁部分72Bに近付くに従って、その厚さ寸法が漸次小さくなるのが好ましい。 Further, in each of the above embodiments, the movable body 12 is provided with the recessed portion 16 that is located in the central portion of the upper surface 14 and is recessed in a columnar shape. However, the present invention is not limited to this, and may have a configuration in which the recessed portion is omitted. For example, like the tilt sensor 71 according to the third modification shown in FIG. 19, the movable body 72 is positioned at the central portion of the upper surface 74. It is good also as a structure which provides the concave-concave part 75 dented in the concave shape. Even in this case, the movable body 72 preferably includes the sliding surface 73 formed of a hemispherical surface, and the thickness dimension thereof gradually decreases as the apex portion 72A approaches the upper surface peripheral portion 72B.
 また、前記各実施の形態では、略半球形状のマグネットからなる可動体12を用いる構成とした。しかし、本発明はこれに限らず、例えば図20に示す第4の変形例による傾斜センサ81のように、可動体82は、厚肉な円板状(円柱状)のマグネットによって形成してもよい。この場合、円形状をなす下面82Aと上面82Bは互いに逆極性に磁化するものである。 In each of the above embodiments, the movable body 12 made of a substantially hemispherical magnet is used. However, the present invention is not limited to this, and the movable body 82 may be formed of a thick disk-shaped (columnar) magnet, such as the tilt sensor 81 according to the fourth modification shown in FIG. Good. In this case, the circular lower surface 82A and upper surface 82B are magnetized with opposite polarities.
 さらに、図21に示す第5の変形例による傾斜センサ91のように、可動体92は、略球形状のマグネットによって形成してもよい。この場合、可動体92のうち上,下方向の両端側に位置する下部92Aと上部92Bは互いに逆極性に磁化させる。但し、可動体92は、球形状をなしているため、転動変位したときには磁束φの向きが変化する。このため、可動体92の転動変位を規制して可動体92の下部92Aと上部92Bとを常に一定の位置関係とするために、転動規制手段として、例えば上部92Bとケーシング2′の蓋体4′との間にはゴム、バネ等の連結手段93を設けるものである。 Furthermore, like the tilt sensor 91 according to the fifth modification shown in FIG. 21, the movable body 92 may be formed of a substantially spherical magnet. In this case, the lower part 92A and the upper part 92B which are located on both ends in the upper and lower directions of the movable body 92 are magnetized to have opposite polarities. However, since the movable body 92 has a spherical shape, the direction of the magnetic flux φ changes when it is rolled and displaced. For this reason, in order to restrict the rolling displacement of the movable body 92 so that the lower portion 92A and the upper portion 92B of the movable body 92 are always in a fixed positional relationship, for example, the upper 92B and the lid of the casing 2 'are used as rolling restriction means. A connecting means 93 such as rubber or a spring is provided between the body 4 'and the body 4'.
 また、前記各実施の形態では、可動体12はマグネットによって構成した。しかし、本発明はこれに限らず、図22に示す第6の変形例による傾斜センサ101のように、可動体102とは別個に磁束φの発生源となるマグネット105をケーシング2″に設ける構成としてもよい。この場合、可動体102は、磁性材料によって形成されるものの、着磁されている必要はない。また、可動体102は、半球面からなる滑動面103と平坦な上面104とを備え、頂点部分102Aから上面周縁部分102Bに近付くに従って、その厚さ寸法が漸次小さくなる。さらに、マグネット105は、ケーシング2″の蓋体4″に設けると共に、可動体102の滑動面103を介して磁電変換素子8に磁束密度を印加するために、例えば可動体102を挟んで磁電変換素子8とは反対側となる位置に配置するものである。 Further, in each of the above embodiments, the movable body 12 is constituted by a magnet. However, the present invention is not limited to this, and a configuration in which a magnet 105 serving as a generation source of the magnetic flux φ is provided in the casing 2 ″ separately from the movable body 102, as in the tilt sensor 101 according to the sixth modification shown in FIG. In this case, although the movable body 102 is formed of a magnetic material, it is not necessary to be magnetized, and the movable body 102 includes a sliding surface 103 formed of a hemispherical surface and a flat upper surface 104. The thickness dimension gradually decreases as the apex portion 102A approaches the upper surface peripheral portion 102B. Further, the magnet 105 is provided on the lid body 4 ″ of the casing 2 ″ and the sliding surface 103 of the movable body 102 is interposed therebetween. In order to apply the magnetic flux density to the magnetoelectric conversion element 8, for example, it is arranged at a position opposite to the magnetoelectric conversion element 8 with the movable body 102 interposed therebetween.
 また、前記各実施の形態では、可動体12はその全体を磁性体材料を用いて形成するものとした。しかし、本発明はこれに限らず、可動体は、例えば磁性体材料をインサートした状態で半球状をなす外形部分を非磁性の樹脂材料を用いて形成する構成としてもよい。 In each of the embodiments described above, the entire movable body 12 is formed using a magnetic material. However, the present invention is not limited to this, and the movable body may be configured such that, for example, a hemispherical outer shape is formed using a non-magnetic resin material with a magnetic material inserted.
 さらに、前記各実施の形態では、磁束検知センサをケーシング2,22,32の傾斜角度θを検出する傾斜センサ1,21,31,41に適用した場合を例に挙げて説明したが、例えばケーシングが所望の傾斜角度だけ傾いたときに、スイッチのオン、オフを切り換える傾斜スイッチに適用してもよい。 Further, in each of the above-described embodiments, the case where the magnetic flux detection sensor is applied to the inclination sensors 1, 21, 31, 41 for detecting the inclination angle θ of the casings 2, 22, 32 has been described as an example. May be applied to a tilt switch that switches on and off when the switch is tilted by a desired tilt angle.
 1,21,31,41,51,61,71,81,91,101 傾斜センサ(磁束検知センサ)
 2,22,32,2′,2″ ケーシング(非磁性容器)
 5,25,35 凹状曲面
 6,26,36 可動体収容空間
 8 磁電変換素子(磁束密度検知手段)
 12,52,62,72,82,92,102 可動体
 13,53,63,73,103 滑動面
 14,54,64,74,104 上面
 15,55 面取り部
 42 コーティング膜
1, 21, 31, 41, 51, 61, 71, 81, 91, 101 Tilt sensor (magnetic flux detection sensor)
2,22,32,2 ', 2 "casing (non-magnetic container)
5, 25, 35 Concave curved surface 6, 26, 36 Movable body accommodating space 8 Magnetoelectric transducer (magnetic flux density detecting means)
12, 52, 62, 72, 82, 92, 102 Movable body 13, 53, 63, 73, 103 Sliding surface 14, 54, 64, 74, 104 Upper surface 15, 55 Chamfered portion 42 Coating film

Claims (5)

  1.  可動体と、該可動体を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記磁束密度検知手段は、水平面の互いに直交するX軸方向およびY軸方向において、X軸方向に磁束を傾斜させたときの検出信号に比べてY軸方向に磁束を傾斜させたときの検出信号が大きな出力レベルとなる異方性を有し、
     前記可動体収容空間の凹状曲面は、前記磁束密度検知手段の異方性を補うために、X軸方向に比べてY軸方向に向けて前記可動体を大きく変位させる異方性曲面によって形成し、
     前記可動体と前記磁束密度検知手段とを対向配置し、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A non-magnetic container having a movable body, a movable body housing space having an upward concave curved surface that slidably supports the movable body, and a change in magnetic flux density caused by sliding of the movable body provided in the non-magnetic container is detected. A magnetic flux detection sensor having magnetic flux density detection means for performing
    The magnetic flux density detecting means is a detection signal when the magnetic flux is tilted in the Y-axis direction compared to a detection signal when the magnetic flux is tilted in the X-axis direction in the X-axis direction and the Y-axis direction orthogonal to each other on the horizontal plane. Has anisotropy that results in a large output level,
    The concave curved surface of the movable body accommodating space is formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction in order to compensate for the anisotropy of the magnetic flux density detecting means. ,
    The movable body and the magnetic flux density detection means are arranged to face each other,
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  2.  前記可動体は、磁性材料を用いて形成されると共に、底部側に前記可動体収容空間の凹状曲面を滑動する滑動面を備え、該滑動面と上面とが互いに逆極性となった状態で磁化した構成としてなる請求項1に記載の磁束検知センサ。 The movable body is formed using a magnetic material, and has a sliding surface that slides on a concave curved surface of the movable body accommodating space on the bottom side, and is magnetized in a state in which the sliding surface and the upper surface have opposite polarities. The magnetic flux detection sensor according to claim 1, which is configured as described above.
  3.  前記可動体の滑動面と前記可動体収容空間の凹状曲面とのうち少なくともいずれか一方には、平滑処理を施してなる請求項2に記載の磁束検知センサ。 The magnetic flux detection sensor according to claim 2, wherein at least one of the sliding surface of the movable body and the concave curved surface of the movable body housing space is subjected to a smoothing process.
  4.  前記異方性曲面は、前記磁束密度検知手段のX軸方向が短手方向となり前記磁束密度検知手段のY軸方向が長手方向となった半割り形状の楕円体面によって形成してなる請求項1ないし3のいずれかに記載の磁束検知センサ。 2. The anisotropic curved surface is formed by a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is a short direction and the Y-axis direction of the magnetic flux density detection means is a longitudinal direction. 4. The magnetic flux detection sensor according to any one of 3 to 3.
  5.  前記異方性曲面は、前記磁束密度検知手段のX軸方向が短手方向となり前記磁束密度検知手段のY軸方向が長手方向となった半割り形状の楕円体面と、該楕円体面の長手方向の長さ寸法よりも小さく短手方向の長さ寸法よりも大きな直径寸法をもった半球面とを組み合わせて形成してなる請求項1ないし3のいずれかに記載の磁束検知センサ。 The anisotropic curved surface includes a half-shaped ellipsoidal surface in which the X-axis direction of the magnetic flux density detection means is a short direction and the Y-axis direction of the magnetic flux density detection means is a longitudinal direction, and the longitudinal direction of the elliptical surface The magnetic flux detection sensor according to any one of claims 1 to 3, wherein the magnetic flux detection sensor is formed by combining a hemispherical surface having a diameter dimension smaller than the length dimension and smaller than the length dimension in the short direction.
PCT/JP2011/057645 2010-04-02 2011-03-28 Magnetic flux detection sensor WO2011125609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010085967 2010-04-02
JP2010-085967 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011125609A1 true WO2011125609A1 (en) 2011-10-13

Family

ID=44762556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057645 WO2011125609A1 (en) 2010-04-02 2011-03-28 Magnetic flux detection sensor

Country Status (1)

Country Link
WO (1) WO2011125609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621223A (en) * 2016-07-14 2018-01-23 舍弗勒技术股份两合公司 Permanent magnet for the sensor device of the Angle Position that determines permanent magnet
CN114175202A (en) * 2019-07-27 2022-03-11 日本艾礼富株式会社 Tip-over detection sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326520A (en) * 1986-07-21 1988-02-04 Tdk Corp Inclination sensor
JPH0763556A (en) * 1993-08-30 1995-03-10 Kyoto Doki Kk Inclination sensor
JPH08261758A (en) * 1995-03-24 1996-10-11 Mitsuba Electric Mfg Co Ltd Inclination sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326520A (en) * 1986-07-21 1988-02-04 Tdk Corp Inclination sensor
JPH0763556A (en) * 1993-08-30 1995-03-10 Kyoto Doki Kk Inclination sensor
JPH08261758A (en) * 1995-03-24 1996-10-11 Mitsuba Electric Mfg Co Ltd Inclination sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621223A (en) * 2016-07-14 2018-01-23 舍弗勒技术股份两合公司 Permanent magnet for the sensor device of the Angle Position that determines permanent magnet
CN114175202A (en) * 2019-07-27 2022-03-11 日本艾礼富株式会社 Tip-over detection sensor

Similar Documents

Publication Publication Date Title
CN109413305B (en) Multi-lens camera module
US8829894B2 (en) Control device
US9196437B2 (en) Operation input apparatus and operation input detection apparatus
US20080258722A1 (en) Sensor Arrangement
US7958782B2 (en) Device with a magnetic sensor arrangement for detecting acceleration
JP5027191B2 (en) Pressure sensor and adjustment method thereof
WO2006111904A1 (en) A device with a sensor arrangement
JP2000180114A (en) Noncontact type position sensor using tapered bipolar magnet
JP4636211B1 (en) Magnetic flux detection sensor
WO2006106454A1 (en) A device with a sensor arrangement
WO2011125609A1 (en) Magnetic flux detection sensor
JP2009511907A (en) Microelectromechanical magnetometer
JP2008514913A (en) sensor
JP2012251843A (en) Magnet and magnetic detection device using the magnet
WO2012029375A1 (en) Magnetic flux detection sensor
JP5024286B2 (en) Position detection device and vertical / horizontal detection sensor
JP7258348B2 (en) fall detection sensor
JP4618424B2 (en) Tilt sensor
JP2007101299A (en) Magnetic displacement sensor
KR100573675B1 (en) Joystick Pointing Apparatus of Non-contact Type Using Magnetic Sensor and Method for Generating Coordinate Axes thereof
WO2011141718A2 (en) Detection apparatus and method
JP3932768B2 (en) Tilt sensor
JP4125059B2 (en) Multi-axis tilt detector
JPS63201519A (en) Sensor
JP2008192439A (en) Longitudinal and lateral detecting sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP