WO2011125279A1 - 窒化物系半導体素子およびその製造方法 - Google Patents

窒化物系半導体素子およびその製造方法 Download PDF

Info

Publication number
WO2011125279A1
WO2011125279A1 PCT/JP2011/001027 JP2011001027W WO2011125279A1 WO 2011125279 A1 WO2011125279 A1 WO 2011125279A1 JP 2011001027 W JP2011001027 W JP 2011001027W WO 2011125279 A1 WO2011125279 A1 WO 2011125279A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
based semiconductor
nitride
plane
electrode
Prior art date
Application number
PCT/JP2011/001027
Other languages
English (en)
French (fr)
Inventor
横川 俊哉
満明 大屋
山田 篤志
加藤 亮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180003875.1A priority Critical patent/CN102687292B/zh
Priority to EP11765181.0A priority patent/EP2541624A4/en
Priority to JP2011520267A priority patent/JP4843123B2/ja
Publication of WO2011125279A1 publication Critical patent/WO2011125279A1/ja
Priority to US13/596,849 priority patent/US8729587B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a nitride semiconductor device and a method for manufacturing the same.
  • the present invention relates to a GaN-based semiconductor light-emitting element such as a light-emitting diode and a laser diode in the wavelength range of the visible range such as ultraviolet to blue, green, orange and white.
  • a GaN-based semiconductor light-emitting element such as a light-emitting diode and a laser diode in the wavelength range of the visible range such as ultraviolet to blue, green, orange and white.
  • Such light-emitting elements are expected to be applied to display, illumination, optical information processing fields, and the like.
  • the present invention also relates to a method for manufacturing an electrode used for a nitride semiconductor device.
  • a nitride semiconductor having nitrogen (N) as a group V element is considered promising as a material for a short-wavelength light-emitting element because of its large band gap.
  • LEDs blue light emitting diodes
  • Green LEDs and semiconductor lasers made of GaN-based semiconductors have also been put into practical use (see, for example, Patent Documents 1 and 2).
  • FIG. 1 schematically shows a unit cell of GaN.
  • FIG. 2 shows four basic vectors a 1 , a 2 , a 3 , and c that are generally used to represent the surface of the wurtzite crystal structure in the 4-index notation (hexagonal crystal index).
  • the basic vector c extends in the [0001] direction, and this direction is called “c-axis”.
  • a plane perpendicular to the c-axis is called “c-plane” or “(0001) plane”.
  • c-axis” and “c-plane” may be referred to as “C-axis” and “C-plane”, respectively.
  • a c-plane substrate that is, a substrate having a (0001) plane on the surface is used as a substrate on which a GaN-based semiconductor crystal is grown.
  • polarization Electro Mechanical Polarization
  • the “c-plane” is also called “polar plane”.
  • a piezoelectric field is generated along the c-axis direction in the InGaN quantum well in the active layer.
  • the piezo electric field When such a piezo electric field is generated in the active layer, the electron and hole distribution in the active layer is displaced, so that the internal quantum efficiency is lowered, and a semiconductor laser causes an increase in threshold current. In the case of an LED, an increase in power consumption and a decrease in light emission efficiency are caused. In addition, the piezo electric field is screened as the injected carrier density is increased, and the emission wavelength is also changed.
  • a substrate having a nonpolar plane, for example, a (10-10) plane called m-plane perpendicular to the [10-10] direction is used. It is being considered.
  • m plane may be expressed as “M plane”.
  • the m-plane is a plane parallel to the c-axis (basic vector c), and is orthogonal to the c-plane.
  • Ga atoms and nitrogen atoms exist on the same atomic plane, and therefore no polarization occurs in the direction perpendicular to the m plane.
  • the m-plane is a general term for the (10-10) plane, the (-1010) plane, the (1-100) plane, the (-1100) plane, the (01-10) plane, and the (0-110) plane.
  • the X plane may be referred to as a “growth plane”, and a semiconductor layer formed by the X plane growth may be referred to as an “X plane semiconductor layer”.
  • a GaN-based semiconductor element grown on an m-plane substrate can exhibit a remarkable effect as compared with that grown on a c-plane substrate, but has the following problems. That is, a GaN-based semiconductor device grown on an m-plane substrate has a higher contact resistance than that grown on a c-plane substrate, which uses a GaN-based semiconductor device grown on an m-plane substrate. It has become a major technical obstacle.
  • the inventor of the present application diligently studied to solve the problem that the contact resistance of the GaN-based semiconductor element grown on the non-polar m-plane is high. Found a means that can be.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a structure and a manufacturing method capable of reducing contact resistance in a GaN-based semiconductor element grown on a m-plane substrate.
  • the nitride-based semiconductor device of the present invention includes a nitride-based semiconductor multilayer structure having a p-type GaN-based semiconductor region, and an electrode provided on the p-type GaN-based semiconductor region, and the p-type GaN-based semiconductor region
  • the angle formed by the normal to the principal surface and the normal to the m-plane is 1 ° or more and 5 ° or less, and the electrode is in contact with the principal surface of the p-type GaN-based semiconductor region, and Pt, Mo, and An Mg alloy layer composed of a metal selected from the group consisting of Pd and Mg is included.
  • the electrode includes the Mg alloy layer and a metal layer formed on the Mg alloy layer, and the metal layer is included in the Mg alloy layer among Pt, Mo, and Pd. It is made of metal.
  • the p-type GaN-based semiconductor region is a p-type contact layer.
  • the thickness of the Mg alloy layer is not less than 0.1 nm and not more than 5 nm.
  • the thickness of the Mg alloy layer is equal to or less than the thickness of the metal layer.
  • the N concentration in the Mg alloy layer is lower than the Ga concentration.
  • the Mg alloy layer has an island shape.
  • the semiconductor device includes a semiconductor substrate that supports the nitride-based semiconductor multilayer structure.
  • the light source of the present invention is a light source including a nitride-based semiconductor light-emitting device and a wavelength conversion unit including a fluorescent material that converts a wavelength of light emitted from the nitride-based semiconductor light-emitting device, the nitride-based semiconductor light-emitting device
  • a semiconductor light emitting device includes a nitride-based semiconductor multilayer structure having a p-type GaN-based semiconductor region, and an electrode provided on the p-type GaN-based semiconductor region, and a method of a principal surface in the p-type GaN-based semiconductor region An angle formed by a line and a normal of the m-plane is 1 ° or more and 5 ° or less, and the electrode is in contact with the main surface of the p-type GaN-based semiconductor region and is made of a group consisting of Pt, Mo, and Pd.
  • An Mg alloy layer composed of a selected metal and Mg is included.
  • the method for manufacturing a nitride-based semiconductor device comprises a step (a) of preparing a substrate and a GaN-based semiconductor, and the angle formed by the normal of the main surface of the semiconductor and the normal of the m-plane is 1.
  • the step of forming the Mg alloy layer includes forming a Mg layer on the main surface of the p-type GaN-based semiconductor region, and forming Pt, Mo, and Pd on the Mg layer. Forming a conductive layer selected from the group consisting of, and alloying the Mg layer and at least a part of the conductive layer by performing a heat treatment.
  • the heat treatment is performed at a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the heat treatment is performed at a temperature of 550 ° C. or higher and 650 ° C. or lower.
  • the step of forming the Mg layer performs deposition of Mg on the main surface of the p-type GaN-based semiconductor region by irradiating an electron beam in a pulsed manner.
  • the Mg layer is deposited on the nitride-based semiconductor multilayer structure with a thickness of 0.1 nm to 5 nm.
  • An embodiment includes a step of removing the substrate after performing the step (b).
  • the step of forming the Mg alloy layer includes the step of forming a mixture or compound of Mg and a metal selected from the group consisting of Pt, Mo, and Pd on the main surface of the p-type GaN-based semiconductor region.
  • the process of vapor-depositing and the process of heat-processing are included.
  • the electrode on the nitride semiconductor stacked structure includes the Mg alloy layer, and the Mg alloy layer is in contact with the surface (m-plane) of the p-type GaN semiconductor region.
  • the contact resistance can be reduced.
  • the m-plane p-type GaN-based semiconductor region even when a p-type GaN-based semiconductor region having a main surface inclined at an angle of 1 ° to 5 ° from the m-plane is used, the m-plane p-type GaN-based semiconductor region (m-plane The same effect is obtained as in the case of using a p-type GaN-based semiconductor region whose principal surface is a surface with an inclination of less than 1 °.
  • a perspective view schematically showing a unit cell of GaN Perspective view showing basic vectors a 1 , a 2 , a 3 and c of wurtzite crystal structure (A) is a cross-sectional schematic diagram of the nitride-based semiconductor light emitting device 100 according to the embodiment of the present invention, (b) is a diagram showing an m-plane crystal structure, and (c) is a diagram showing a c-plane crystal structure.
  • the figure which shows the current-voltage characteristic at the time of making two Pd / Pt electrodes contact a p-type GaN layer The figure which shows the current-voltage characteristic at the time of making two Mg alloy layer electrodes contact a p-type GaN layer Graph showing specific contact resistance ( ⁇ ⁇ cm 2 ) in the case of using the above-mentioned Pd / Pt electrode and MgPt alloy / Pt electrode TLM electrode pattern Graph showing the dependence of heat treatment temperature on contact resistance Profile diagram of Ga depth direction in electrode structure (Mg / Pt) by SIMS analysis
  • Profile diagram of N depth direction in electrode structure (Mg / Pt) by SIMS analysis (A) is a graph showing current-voltage characteristics of a light emitting diode using an electrode made of MgPt alloy / Pt layer, an electrode made of Mg / Pt layer, and an electrode made of Pt / Pd layer
  • (b) is a graph showing the current-voltage characteristics of the light emitting di
  • Graph showing contact resistance values (A), (b) is a drawing substitute photograph of an optical microscope showing the surface state of the electrode made of MgPt alloy / Pt layer and the surface state of the electrode made of Mg / Pt layer, respectively.
  • (A) is a graph showing contact resistance when using an electrode composed of an Au layer and MgAu alloy / Au layer, and (b) and (c) are the surfaces of the MgAu alloy / Au layer and Au layer electrodes, respectively.
  • Substitute photo of optical microscope showing Sectional drawing which shows embodiment of a white light source Sectional drawing which shows the gallium nitride type compound semiconductor light-emitting device 100a which concerns on other embodiment of this invention.
  • (A) is a figure which shows typically the crystal structure (wurtzite type crystal structure) of a GaN-type compound semiconductor
  • (b) is the relationship between the normal of m surface, + c-axis direction, and a-axis direction
  • a perspective view showing (A) And (b) is sectional drawing which shows the arrangement
  • (A) And (b) is sectional drawing which shows typically the main surface and its vicinity area
  • FIG. 3A schematically shows a cross-sectional configuration of the nitride-based semiconductor light-emitting device 100 according to the embodiment of the present invention.
  • a nitride-based semiconductor light emitting device 100 shown in FIG. 3A is a semiconductor device made of a GaN-based semiconductor, and has a nitride-based semiconductor multilayer structure.
  • the nitride-based semiconductor light-emitting device 100 of this embodiment is formed on a GaN-based substrate 10 having an m-plane as a surface 12, a semiconductor multilayer structure 20 formed on the GaN-based substrate 10, and the semiconductor multilayer structure 20.
  • the electrode 30 is provided.
  • the semiconductor multilayer structure 20 is an m-plane semiconductor multilayer structure formed by m-plane growth, and its surface is an m-plane.
  • the surface of the GaN-based substrate 10 is an m-plane depending on the growth conditions.
  • at least the surface (main surface) of the p-type semiconductor region in contact with the electrode in the semiconductor multilayer structure 20 may be an m-plane.
  • the nitride-based semiconductor light-emitting device 100 of the present embodiment includes the GaN substrate 10 that supports the semiconductor multilayer structure 20, but may include another substrate instead of the GaN substrate 10, or the substrate may be removed. It is also possible to use it in the state.
  • FIG. 3B schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate surface) of the nitride-based semiconductor whose surface is an m-plane. Since Ga atoms and nitrogen atoms exist on the same atomic plane parallel to the m-plane, no polarization occurs in the direction perpendicular to the m-plane. That is, the m-plane is a nonpolar plane, and no piezo electric field is generated in the active layer grown in the direction perpendicular to the m-plane.
  • the added In and Al are located at the Ga site and replace Ga. Even if at least part of Ga is substituted with In or Al, no polarization occurs in the direction perpendicular to the m-plane.
  • a GaN-based substrate having an m-plane on the surface is referred to as an “m-plane GaN-based substrate” in this specification.
  • an m-plane substrate GaN substrate is used and a semiconductor is grown on the m-plane of the substrate.
  • the surface of the substrate does not need to be an m-plane, and the substrate does not need to remain in the final device.
  • FIG. 3C schematically shows a crystal structure in a nitride semiconductor cross section (cross section perpendicular to the substrate surface) having a c-plane surface.
  • Ga atoms and nitrogen atoms do not exist on the same atomic plane parallel to the c-plane.
  • polarization occurs in a direction perpendicular to the c-plane.
  • a GaN-based substrate having a c-plane on the surface is referred to as a “c-plane GaN-based substrate” in this specification.
  • the c-plane GaN-based substrate is a general substrate for growing GaN-based semiconductor crystals. Since the positions of the Ga (or In) atomic layer and the nitrogen atomic layer parallel to the c-plane are slightly shifted in the c-axis direction, polarization is formed along the c-axis direction.
  • a semiconductor multilayer structure 20 is formed on the surface (m-plane) 12 of the m-plane GaN-based substrate 10.
  • the Al d Ga e N layer 26 is located on the side opposite to the m-plane 12 side with respect to the active layer 24.
  • the active layer 24 is an electron injection region in the nitride semiconductor light emitting device 100.
  • the Al u Ga v In w N layer 22 of the present embodiment is a first conductivity type (n-type) Al u Ga v In w N layer 22.
  • an undoped GaN layer may be provided between the active layer 24 and the Al d Ga e N layer 26.
  • the Al composition ratio d need not be uniform in the thickness direction.
  • the Al composition ratio d may change continuously or stepwise in the thickness direction. That is, the Al d Ga e N layer 26 may have a multilayer structure in which a plurality of layers having different Al composition ratios d are stacked, and the dopant concentration may also change in the thickness direction. .
  • the uppermost part of the Al d Ga e N layer 26 (upper surface part of the semiconductor multilayer structure 20) is composed of a layer (GaN layer) in which the Al composition ratio d is zero. Is preferred.
  • the electrode 30 of the present embodiment is an electrode including an Mg alloy layer 32 composed of Pt and Mg, and a metal layer 34 composed of Pt is formed on the Mg alloy layer 32.
  • the “Mg alloy layer” means a layer in which a metal such as Pt is mixed in Mg at a concentration of% order (for example, 1%) or more.
  • the metal Pt constituting the metal layer 34 is mixed in a concentration on the order of%.
  • the Mg alloy layer 32 in the electrode 30 is in contact with the p-type semiconductor region of the semiconductor multilayer structure 20 and functions as a part of the p-type electrode (p-side electrode).
  • the Mg alloy layer 32 is in contact with the Al d Ga e N layer 26 doped with the second conductivity type (p-type) dopant.
  • the Al d Ga e N layer 26 is doped with Mg as a dopant, for example.
  • Zn or Be may be doped as a p-type dopant other than Mg.
  • a metal layer that is difficult to form an alloy with Mg as compared with Au can be used in addition to the Pt layer. That is, at least one metal selected from the group consisting of Pt, Mo, and Pd may be used. Conversely, Au, which is easy to form an alloy with Mg, is not preferable as the material of the metal layer 34 that contacts the Mg alloy layer 32.
  • Pt, Mo, and Pd are metals that are difficult to alloy with Mg as compared with Au, but an alloy layer can be formed by reacting with a part of Mg by heat treatment described later.
  • the Mg alloy layer 32 is preferably formed by performing a heat treatment after depositing a metal layer such as Pt on the Mg layer. If the metal layer deposited before the heat treatment is relatively thick, the metal layer 34 remains on the Mg alloy layer 32 formed by the heat treatment. On the other hand, if the metal layer deposited before the heat treatment is relatively thin, all of the metal layer 34 may be alloyed with Mg by the heat treatment. In this case, only the Mg alloy layer 32 exists as the electrode 30.
  • the Mg alloy layer 32 may be formed by performing heat treatment after performing vapor deposition using a mixture or compound of metal and Mg constituting the metal layer 34 as a vapor deposition source.
  • the metal layer 34 does not exist on the Mg alloy layer 32 immediately after the Mg alloy layer 32 is deposited.
  • the electrode 30 may be constituted only by the Mg alloy layer 32 without depositing the metal layer 34 on the Mg alloy layer 32, and the metal layer 34 may be formed on the Mg alloy layer 32 as necessary. It may be deposited.
  • At least a part of the Mg alloy layer 32 may be agglomerated in an island shape (island shape) by heat treatment after lamination, and may be formed at intervals. At this time, Pt constituting the metal layer 34 enters between the island-like Mg alloys. At least a part of the metal layer 34 may be aggregated in an island shape.
  • An electrode layer or a wiring layer made of a metal or alloy other than these metals may be formed on each of the above electrodes, in addition to the above metal layer or alloy layer.
  • the thickness of the electrode 30 of this embodiment is, for example, 1 to 200 nm.
  • the Mg alloy layer 32 is thinner than the metal layer 34, and the thickness of the Mg alloy layer 32 is, for example, 5 nm or less (preferably Is 0.1 nm or more and 5 nm or less).
  • the thickness of the Mg layer deposited before the heat treatment is larger than 5 nm, a part of the Mg layer is not alloyed after the heat treatment, and the Mg alloy layer 32 and the Al d Ga e N layer 26 In some cases, the Mg layer may remain. This is because a metal such as Pt constituting the metal layer 34 is difficult to form an alloy with Mg.
  • the thickness of the Mg layer deposited before the heat treatment is preferably 5 nm or less, and the thickness of the Mg alloy layer 32 formed by the heat treatment is also preferably 5 nm or less.
  • the thickness of the metal layer (for example, Pt layer) 34 located on the Mg alloy layer 32 is, for example, 200 nm or less (preferably 1 nm to 200 nm).
  • the reason why the Mg alloy layer 32 is thinner than the metal layer 34 is that between the Mg alloy layer 32 and the Al d Ga e N layer 26 due to the strain balance between the Mg alloy layer 32 and the metal layer 34 being lost. This is to prevent the occurrence of peeling.
  • the metal layer 34 plays an important role in preventing the Mg alloy layer 32 from being oxidized, but is not necessarily required.
  • the thickness of the GaN-based substrate 10 having the m-plane surface 12 is, for example, 100 to 400 ⁇ m. This is because there is no problem in handling the wafer if the substrate thickness is about 100 ⁇ m or more.
  • the substrate 10 of the present embodiment may have a laminated structure as long as it has an m-plane surface 12 made of a GaN-based material. That is, the GaN-based substrate 10 of the present embodiment includes a substrate having an m-plane at least on the surface 12, and therefore, the entire substrate may be GaN-based or a combination with other materials. It doesn't matter.
  • an electrode 40 (n-type electrode) is formed on a part of an n-type Al u Ga v In w N layer (for example, thickness 0.2 to 2 ⁇ m) 22 located on the substrate 10. Is formed.
  • a recess 42 is formed in the region where the electrode 40 is formed in the semiconductor multilayer structure 20 so that a part of the n-type Al u Ga v In w N layer 22 is exposed.
  • An electrode 40 is provided on the surface of the n-type Al u Ga v In w N layer 22 exposed at the recess 42.
  • the electrode 40 is composed of, for example, a laminated structure of a Ti layer, an Al layer, and a Pt layer, and the thickness of the electrode 40 is, for example, 100 to 200 nm.
  • the active layer 24 of the present embodiment includes a GaInN / GaN multiple quantum well (MQW) in which Ga 0.9 In 0.1 N well layers (eg, 9 nm thick) and GaN barrier layers (eg, 9 nm thick) are alternately stacked. It has a structure (for example, a thickness of 81 nm).
  • MQW multiple quantum well
  • a p-type Al d Ga e N layer 26 is provided on the active layer 24.
  • the thickness of the p-type Al d Ga e N layer 26 is, for example, 0.2 to 2 ⁇ m.
  • an undoped GaN layer may be provided between the active layer 24 and the Al d Ga e N layer 26.
  • a second conductivity type (for example, p-type) GaN layer may be formed on the Al d Ga e N layer 26. It is also possible to form a contact layer made of p + -GaN on the GaN layer, and further form an Mg alloy layer 32 on the contact layer made of p + -GaN. Incidentally, a contact layer made of GaN, instead think of the Al d Ga e N layer 26 is another layer, it can be considered to be a part of the Al d Ga e N layer 26.
  • FIG. 4A shows current-voltage characteristics when two Pd / Pt electrodes are in contact with the p-type GaN layer
  • FIG. 4B shows current when two Mg alloy layer electrodes are in contact with the p-type GaN layer.
  • the voltage characteristics are shown.
  • a Pd / Pt electrode an electrode formed by forming a Pd layer and a Pt layer in this order on a p-type m-plane GaN layer and then performing heat treatment in a nitrogen atmosphere (m-plane GaN (Pd / Pt)) was used.
  • an Mg alloy layer electrode As an Mg alloy layer electrode, an Mg layer and a Pt layer are vapor-deposited in this order on a p-type m-plane GaN layer and then heat-treated in a nitrogen atmosphere (m-plane GaN (MgPt alloy). / Pt)).
  • m-plane GaN (MgPt alloy). / Pt) m-plane GaN (MgPt alloy). / Pt)
  • the Mg layer in contact with the p-type GaN layer and a part of the Pt layer (side in contact with the Mg layer) are alloyed, and the Mg alloy layer is further p-type.
  • a good Mg alloy layer electrode MgPt alloy / Pt electrode
  • Each curve of the current-voltage characteristics shown in FIG. 4A and FIG. 4B corresponds to the distance between the electrodes of the TLM (Transmission Line Method) electrode pattern shown in FIG. 4D.
  • FIG. 4D shows a state in which a plurality of electrodes of 100 ⁇ m ⁇ 200 ⁇ m are arranged at intervals of 8 ⁇ m, 12 ⁇ m, 16 ⁇ m, and 20 ⁇ m.
  • FIG. 4C is a graph showing specific contact resistance ( ⁇ ⁇ cm 2 ) in the case of using the above-described Pd / Pt electrode and MgPt alloy / Pt electrode. Contact resistance was evaluated using the TLM method.
  • “1.0E-01” shown on the vertical axis means “1.0 ⁇ 10 ⁇ 1 ”
  • “1.0E-02” means “1.0 ⁇ 10 ⁇ 2 ”.
  • “1.0E + X” means “1.0 ⁇ 10 X ”.
  • Pd is a metal having a large work function that has been conventionally used as a p-type electrode.
  • Pd is in contact with the p-type GaN layer
  • the graph of FIG. 4A shows a Schottky non-ohmic characteristic (Schottky voltage: about 2 V). Show.
  • no Schottky voltage appears in the graph of FIG. 4B (current-voltage characteristics of the Mg alloy layer electrode), and it can be seen that this Mg alloy layer electrode forms almost ohmic contact with the p-type GaN layer.
  • the disappearance of the Schottky voltage is very important in reducing the operating voltage of devices such as light emitting diodes and laser diodes.
  • the MgPt alloy / Pt electrode shows a specific contact resistance ( ⁇ ⁇ cm 2 ) that is almost an order of magnitude lower than that of the Pd / Pt electrode.
  • ⁇ ⁇ cm 2 a specific contact resistance
  • the Mg / Pt electrode when the Mg / Pt electrode is brought into contact with the c-plane p-type GaN layer, a slightly lower contact resistance can be obtained than in the case of the Pd / Pt electrode.
  • the contact surface is m-plane, the Mg / Pt electrode exhibits a significantly lower contact resistance than the Pd / Pt electrode (see Japanese Patent Application No. 2009-536554). It is presumed that similar results can be obtained in the present invention using the MgPt alloy / Pt electrode.
  • FIG. 5 shows an electrode (that is, m-plane GaN (MgPt alloy) formed by depositing an Mg layer and a Pt layer in this order on the m-plane of a p-type GaN layer and then performing heat treatment in a nitrogen atmosphere. / Pt)).
  • an electrode that is, m-plane GaN (MgPt alloy) formed by depositing an Mg layer and a Pt layer in this order on the m-plane of a p-type GaN layer and then performing heat treatment in a nitrogen atmosphere.
  • the result of the electrode m-plane GaN (Pd / Pt) formed by forming a Pd layer and a Pt layer in this order on the p-type m-plane GaN layer and then performing heat treatment in a nitrogen atmosphere. It also shows.
  • the data shown in FIG. 5 was obtained from a sample in which an Mg layer was deposited using a pulse vapor deposition method.
  • the pulse deposition method will be described later.
  • the Mg layer is deposited by a pulse vapor deposition method, and metals other than Mg (Pd, Pt, Au) are deposited by a normal electron beam vapor deposition method.
  • the MgPt alloy / Pt electrode and the Pd / Pt electrode are in contact with the m-plane GaN layer doped with Mg.
  • Mg of 7 ⁇ 10 19 cm ⁇ 3 is doped in a region 20 nm deep from the surface (the outermost surface region having a thickness of 20 nm). Further, a region where the depth from the surface of the m-plane GaN layer exceeds 20 nm is doped with 1 ⁇ 10 19 cm ⁇ 3 of Mg.
  • the concentration of the p-type impurity is locally increased in the outermost surface region of the GaN layer in contact with the p-type electrode, the contact resistance can be minimized.
  • the Mg layer contacts the p-type m-plane GaN layer before the heat treatment, whereas the Mg layer is alloyed with the Pt layer by performing the heat treatment at a temperature of 500 ° C. or higher.
  • the Mg alloy layer is in contact with the m-plane GaN layer of the mold.
  • FIG. 5 shows that in the case of an m-plane GaN (MgPt alloy / Pt) electrode, when the heat treatment temperature reaches 600 ° C., the contact resistance further decreases.
  • the contact resistance increases compared with the heat treatment temperature of 600 ° C., but is smaller than the contact resistance in the case of the conventional m-plane GaN (Pd / Pt) electrode. .
  • the heat treatment temperature of the MgPt alloy / Pt electrode is preferably 500 ° C. or higher, for example.
  • a predetermined temperature for example, 800 ° C.
  • the temperature is more preferably 550 ° C. or higher and 650 ° C. or lower where the contact resistance is further reduced.
  • FIG. 6 shows the result of obtaining a profile in the depth direction of Ga in the electrode structure (MgPt alloy / Pt) using SIMS.
  • the Mg layer thickness before heat treatment was 2 nm, and the Pt layer thickness was 75 nm.
  • the Mg alloy layer thickness became 2 nm by the heat treatment.
  • the heat treatment was performed at 600 ° C. for 10 minutes in a nitrogen atmosphere.
  • the vertical axis of the graph shows the signal intensity of the SIMS detector, which is proportional to the atomic concentration.
  • the distance 0 ⁇ m on the horizontal axis in FIG. 6 substantially corresponds to the position of the interface between the p-type GaN layer and the Mg alloy layer.
  • the origin (0 ⁇ m) on the horizontal axis was adjusted to the Ga peak position.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the vertical axis is normalized with the Ga concentration in the as-depo (before heat treatment) GaN crystal being 1.
  • the intensity of 1 ⁇ 10 ⁇ 3 on the vertical axis is approximately equivalent to 1 ⁇ 10 19 cm ⁇ 3 as the concentration.
  • the Ga concentration in the Mg alloy layer is increased as compared with that before the heat treatment. From this result, it is understood that Ga is diffused in the Mg alloy layer by the heat treatment. Furthermore, since the contact resistance is low in the sample heat-treated at a temperature of 500 ° C. or higher, the details of the cause are unknown, but there is a correlation between the Ga diffusion amount in the Mg alloy layer and the contact resistance. It was confirmed. And in the sample from which the lowest contact resistance was obtained, it was confirmed that the Ga concentration in the Mg alloy layer is 10 19 cm ⁇ 3 or more.
  • FIG. 7 shows the results obtained by using SIMS for the depth profile of nitrogen atoms in the electrode structure (MgPt alloy / Pt).
  • the Mg layer thickness before heat treatment is 2 nm
  • the Pt layer thickness is 75 nm.
  • the Mg alloy layer thickness became 2 nm by the heat treatment.
  • the heat treatment was performed at 600 ° C. for 10 minutes in a nitrogen atmosphere.
  • the vertical axis of the graph of FIG. 7 is the N intensity
  • the horizontal axis is the distance in the depth direction.
  • N intensity of 1 ⁇ 10 -3 corresponds approximately to the N concentration of 1 ⁇ 10 19 cm -3.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the vertical axis is normalized with the N concentration in the as-depo (before heat treatment) GaN crystal being 1.
  • the origin (0 ⁇ m) on the horizontal axis substantially corresponds to the position of the interface between the p-type GaN layer and the Mg layer. As apparent from FIG. 7, even in the electrode structure after the heat treatment, no diffusion of N is observed in the Mg alloy layer.
  • Ga atoms in the p-type GaN layer are It has been found that although N diffuses to the electrode side, N atoms hardly diffuse to the electrode side. As a result, Ga atoms are insufficient and Ga vacancies are formed on the outermost surface of the p-type GaN layer. Since Ga vacancies have acceptor properties, when Ga vacancies increase near the interface between the electrode and the p-type GaN layer, holes easily pass through the Schottky barrier at this interface by tunneling. Thereby, when the Mg alloy layer is formed so as to be in contact with the p-type GaN layer having the m-plane as a surface, the contact resistance is considered to be reduced.
  • the crystallinity of the GaN crystal is deteriorated by the elimination of N atoms.
  • the contact resistance is high when the Mg alloy layer is formed so as to be in contact with GaN having the c-plane as the surface.
  • each element (Ga, N) similarly occurs even when a part of Ga is substituted with Al or In in the GaN layer in contact with the Mg alloy layer.
  • an element other than Mg is doped as a dopant in the GaN-based semiconductor layer in contact with the Mg alloy layer.
  • the m-plane GaN substrate 10 is an n-type GaN substrate (for example, a thickness of 100 ⁇ m)
  • the Al u Ga v In w N layer 22 is an n-type GaN layer (for example, a thickness of 2 ⁇ m).
  • An active layer 24 is formed on the Al u Ga v In w N layer 22.
  • the semiconductor multilayer structure 20 including at least the active layer 24 is formed on the m-plane GaN substrate 10.
  • the active layer 24 is composed of, for example, an InGaN well layer and a GaN barrier layer having an In composition ratio of about 25%, the well layer thickness is 9 nm, the barrier layer thickness is 9 nm, and the well layer period is three periods. .
  • the Al d Ga e N layer 26 of this embodiment is doped with Mg as a p-type dopant.
  • Mg is doped to the Al d Ga e N layer 26 by, for example, about 10 18 cm ⁇ 3 .
  • an undoped GaN layer (not shown) is formed between the active layer 24 and the Al d Ga e N layer 26.
  • a second conductivity type (for example, p-type) GaN layer (not shown) is formed on the Al d Ga e N layer 26.
  • an Mg alloy layer 32 is formed on the contact layer made of p + -GaN, and a Pt layer 34 is formed thereon.
  • the laminated structure of the Mg alloy layer 32 and the Pt layer 34 becomes an electrode (p-type electrode) 30.
  • the semiconductor multilayer structure 20, Al u Ga v In w recess (recess) 42 for exposing the surface of the N layer 22 is formed, it is located on the bottom surface of the recess 42 Al u Ga v In w N layer 22
  • An electrode (n-type electrode) 40 is formed on the substrate.
  • the size of the recess 42 is, for example, a width (or diameter) of 20 ⁇ m and a depth of 1 ⁇ m.
  • the electrode 40 is, for example, an electrode having a laminated structure of a Ti layer, an Al layer, and a Pt layer (for example, the thickness is 5 nm, 100 nm, and 10 nm, respectively).
  • the operating voltage (Vop) can be reduced by about 1.3 V compared to a conventional m-plane LED using a Pd / Pt electrode, and as a result. It was found that power consumption can be reduced.
  • an m-plane substrate 10 is prepared.
  • a GaN substrate is used as the substrate 10.
  • the GaN substrate of the present embodiment is obtained by using the HVPE (Hydride Vapor Phase Epitaxy) method.
  • a thick film GaN on the order of several mm is grown on a c-plane sapphire substrate.
  • an m-plane GaN substrate is obtained by cutting the thick film GaN in the direction perpendicular to the c-plane and the m-plane.
  • the production method of the GaN substrate is not limited to the above, and a method of producing an ingot of bulk GaN using a liquid phase growth method such as a sodium flux method or a melt growth method such as an ammonothermal method, and cutting it in the m plane But it ’s okay.
  • a gallium oxide, a SiC substrate, a Si substrate, a sapphire substrate, or the like can be used in addition to a GaN substrate.
  • the plane orientation of the SiC or sapphire substrate is also m-plane.
  • the growth surface may not necessarily be the m-plane depending on the growth conditions. It is sufficient that at least the surface of the semiconductor multilayer structure 20 is m-plane.
  • crystal layers are sequentially formed on the substrate 10 by MOCVD (Metal Organic Chemical Vapor Deposition).
  • an Al u Ga v In w N layer 22 is formed on the m-plane GaN substrate 10.
  • Al u Ga v In w N layer 22 for example, AlGaN having a thickness of 3 ⁇ m is formed.
  • a GaN layer is formed by supplying TMG (Ga (CH 3 ) 3 ), TMA (Al (CH 3 ) 3 ), and NH 3 on the m-plane GaN substrate 10 at 1100 ° C. accumulate.
  • the active layer 24 is formed on the Al u Ga v In w N layer 22.
  • the active layer 24 has a GaInN / GaN multiple quantum well (MQW) structure with a thickness of 81 nm in which a Ga 0.9 In 0.1 N well layer with a thickness of 9 nm and a GaN barrier layer with a thickness of 9 nm are alternately stacked.
  • MQW multiple quantum well
  • the growth temperature is preferably lowered to 800 ° C. in order to incorporate In.
  • an Al d Ga e N layer 26 is formed on the undoped GaN layer.
  • the Al d Ga e N layer 26 for example, by supplying TMG, NH 3 , TMA, TMI and Cp 2 Mg (cyclopentadienyl magnesium) as a p-type impurity, p-Al 0.14 Ga 0.86 having a thickness of 70 nm is provided. N is formed.
  • Cp 2 Mg is supplied as a p-type impurity.
  • the p-GaN contact layer, the Al d Ga e N layer 26, the undoped GaN layer, and a part of the active layer 24 are removed to form a recess 42, and Al x Ga y In z
  • the n-type electrode formation region of the N layer 22 is exposed.
  • a Ti / Pt layer is formed as the n-type electrode 40 on the n-type electrode formation region located at the bottom of the recess 42.
  • an Mg layer (thickness 2 nm) is formed on the p-GaN contact layer, and a Pt layer (thickness 75 nm) is further formed on the Mg layer.
  • a portion of the Pt layer disposed on the Mg layer side enters the Mg layer, and the Mg alloy layer 32 is formed.
  • the portion of the Pt layer that did not form an alloy with the Mg layer remains as the Pt layer 34 on the Mg alloy layer 32.
  • the heat treatment of this embodiment serves both as a heat treatment for forming the Mg alloy layer and a heat treatment for diffusing Ga atoms in the p-type GaN layer to the electrode side.
  • a technique in which deposition is performed while the source metal is pulse-evaporated is used to form the Mg layer. More specifically, the Mg metal in the crucible held in vacuum is irradiated with an electron beam in a pulsed manner to evaporate the source metal in a pulsed manner. The source metal molecules or atoms adhere to the p-GaN contact layer, and an Mg layer is formed. For example, the pulse has a pulse width of 0.5 seconds and a repetition of 1 Hz. By such a method, a dense and good quality film was formed as the Mg layer. The reason why the Mg layer becomes dense is thought to be that the kinetic energy of Mg atoms or Mg atom clusters that collide with the p-GaN contact layer is increased by performing pulse deposition.
  • Mg is an element that is easily oxidized by contact with water or air.
  • the pulse vapor deposition method of the present embodiment is used, an Mg layer that is hardly oxidized and excellent in water resistance and oxygen resistance can be obtained.
  • a method of performing vapor deposition while vaporizing the source metal (Mg metal) in a pulsed manner is employed, but other methods can be employed as long as the Mg layer can be formed. is there.
  • a method for forming a dense and high-quality Mg layer for example, sputtering, thermal CVD, molecular beam epitaxy (MBE), or the like can be employed.
  • the substrate 10 and part of the Al u Ga v In w N layer 22 may be removed by using a method such as laser lift-off, etching, and polishing. In this case, only the substrate 10 may be removed, or only a part of the substrate 10 and the Al u Ga v In w N layer 22 may be selectively removed. Of course, the substrate 10 and the Al u Ga v In w N layer 22 may be left without being removed.
  • the nitride-based semiconductor light-emitting device 100 of this embodiment is formed.
  • nitride-based semiconductor light emitting device 100 of the present embodiment when a voltage is applied between the n-type electrode 40 and the p-type electrode 30, holes are transferred from the p-type electrode 30 toward the active layer 24. Electrons are injected from the active layer 24 toward the active layer 24 to emit light having a wavelength of 450 nm, for example.
  • FIG. 8A shows current-voltage characteristics of a light emitting diode using an electrode made of MgPt alloy / Pt layer on m-plane GaN.
  • the characteristics of the nitride semiconductor of the light emitting diode are the same, and the characteristics of the light emitting diode using the electrode made of the Pd / Pt layer (conventional example) and the light emitting diode using the electrode made of the Mg / Pt layer are also shown. Show.
  • the configuration of the electrodes and the heat treatment conditions in these light emitting diodes are as shown in Table 3 below.
  • This light-emitting diode has a structure in which an n-type GaN layer, an InGaN well layer (three layers) and a GaN barrier layer (two layers) are alternately laminated on an m-plane GaN substrate, and a p-type GaN layer is laminated. It has been done. Further, an Mg / Pt electrode or a Pd / Pt electrode is provided as a p-type electrode on the p-type GaN layer. The n-type electrode is formed on the n-type GaN layer by etching the p-type GaN layer and the active layer to expose the n-type GaN layer.
  • the conventional electrode electrode made of Pd / Pt layer
  • the electrode of this embodiment electrode made of MgPt alloy / Pt layer
  • the rise voltage of the light emitting diode using the electrode made of the Pd / Pt layer is about 3.2 V
  • the rise voltage of the light emitting diode using the electrode made of the MgPt alloy / Pt layer is about 2.7 V.
  • the rising voltage in this embodiment is a smaller value than the conventional one.
  • the light emitting diode using the electrode made of the MgPt alloy / Pt layer is 1.3 V or more smaller than the light emitting diode using the electrode made of the Pd / Pt layer. I understand that.
  • the operating voltage can be significantly reduced as compared with the conventional case.
  • the rise voltage and current value of the light emitting diode using the electrode of this embodiment are 20 mA.
  • the value of the operating voltage is slightly larger than the value of the light emitting diode using the electrode made of the Mg / Pt layer.
  • FIG. 8B is a graph showing comparison of contact resistances of the MgPt alloy / Pt electrode, the Pd / Pt electrode, and the Mg / Pt electrode. In any sample, the electrode is in contact with the p-type GaN layer.
  • the heat treatment temperature and heat treatment time are as shown in Table 5 below.
  • the contact resistance of the electrode made of MgPt alloy / Pt layer is lower than the contact resistance of the electrode made of Pd / Pt layer.
  • the contact resistance of the electrode made of MgPt alloy / Pt layer is slightly higher than the contact resistance of the electrode made of Mg / Pt layer.
  • the electrical characteristics (rising voltage and operating voltage characteristics) and contact resistance of the electrode of this embodiment are slightly inferior to those of the electrode made of the Mg / Pt layer. ing. However, in terms of adhesion, the electrode of this embodiment exhibits characteristics superior to those of the Mg / Pt layer, and it can be said that the electrode of this embodiment is superior in terms of reliability.
  • FIG. 9A is a drawing-substituting photograph of an optical microscope of the electrode surface in a light-emitting device having an electrode made of MgPt alloy / Pt layer
  • FIG. 9B is an electrode in the light-emitting device having an electrode made of Mg / Pt layer. It is a drawing substitute photograph of the surface optical microscope.
  • the p-type electrode 30 did not peel at all as shown in FIG. 9A, but in the light emitting device having an electrode made of Mg / Pt layer, As shown in FIG. 9B, some of the ends of the p-type electrode 130 were peeled off.
  • FIG. 9B is a photograph of a selected light emitting element in which an electrode is seen to be peeled off. Even in a device having an electrode made of an Mg / Pt layer, the electrode is peeled off with a high probability. Does not occur.
  • FIG. 10 (a) shows the result of forming an Au layer or MgAu alloy / Au layer electrode on an m-plane GaN layer and measuring its specific contact resistance ( ⁇ ⁇ cm 2 ).
  • the specific contact resistance is a value of the specific contact resistance after the electrode is formed and heat treatment is performed.
  • the MgAu alloy / Au layer electrode was formed by laminating the Mg layer and the Au layer and then performing a heat treatment at a temperature of 600 ° C. for 10 minutes. Since Mg and Au are easily alloyed by the heat treatment, the Mg layer and the Au layer are considered to be a laminate of the MgAu alloy and the Au layer (that is, MgAu alloy / Au layer) after the heat treatment.
  • the characteristic of the specific contact resistance is worse when the MgAu alloy / Au layer electrode is used than when the Au layer electrode is used. It has been confirmed that the contact resistance of the Au layer electrode is substantially equal to the contact resistance of the electrode made of the Pd / Pt layer. From the result of FIG. 10A, MgAu is better than the electrode made of the Pd / Pt layer. It can be seen that the electrode made of the alloy / Au layer shows a higher contact resistance. This point is significantly different from the result of the characteristic improvement in the configuration of the electrode (for example, MgPt alloy / Pt layer) of the present embodiment.
  • Mg is an element that is easily oxidized by contact with water or air, it is not used as a single electrode of the Mg layer but as a laminate of Au layers (after heat treatment, MgAu alloy / Au layer).
  • the configuration to be made can be one of the candidates for consideration.
  • the contact characteristics of the MgAu alloy / Au layer are higher than that of the Au layer, so that the contact characteristics are poor.
  • the excellent contact resistance characteristics of the configuration of the present embodiment (for example, MgPt alloy / Pt layer) are considered by those skilled in the art in view of the poor measurement result of the electrode composed of the MgAu alloy and the Au layer. It seems to have had an unpredictable effect.
  • the absolute value of the contact resistance in the Au electrode is relatively low (3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm 2 or less). This is because the Mg doping amount is optimized in the m-plane GaN layer used in this experiment.
  • a Schottky voltage was observed.
  • Au is not preferable as a material for an electrode brought into contact with the p-type GaN layer having the m-plane as a surface.
  • the electrode of this embodiment for example, MgPt alloy / Pt
  • the contact resistance was measured
  • a value of 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm 2 or less was measured.
  • the current-voltage characteristics are measured by bringing the electrode of this embodiment into contact with the p-type GaN layer, no Schottky voltage is observed, and the electrode of this embodiment has an ohmic contact with the p-type GaN layer having the m-plane surface. It was found to form a contact.
  • FIG. 10 (b) is a drawing-substituting photograph showing the surface of the MgAu alloy / Au layer electrode after the heat treatment
  • FIG. 10 (c) is a drawing showing the surface of the Au layer electrode after the heat treatment. It is a substitute photo. When both were compared, it was found that the film quality of the MgAu alloy / Au layer electrode was poor.
  • Patent Documents 3 and 4 have no description that the crystal plane of the gallium nitride-based semiconductor layer is the m-plane, and therefore, the disclosure of these documents discloses an electrode on the c-plane gallium nitride-based semiconductor layer. It is related to the technology that formed.
  • Patent Document 3 relates to a structure in which an Au layer is laminated on an Mg layer, and even if an electrode having the laminated structure is formed on the m-plane, the effect of the electrode of this embodiment can be obtained. Not.
  • Patent Document 4 refers to a metal layer made of Ni, Cr, and Mg, but the disclosed examples are only those having an electrode structure with a Ni layer as a lower layer.
  • Patent Documents 3 and 4 both relate to an electrode structure formed on a c-plane gallium nitride semiconductor layer, and neither a problem nor a solution regarding contact resistance to an m-plane gallium nitride semiconductor layer is taught.
  • the inventor of the present application shows that the electrode structure (Mg electrode) in which the Mg layer is in contact with the p-type GaN layer having the m-plane as the surface exhibits low contact resistance. Disclosed.
  • the contact resistance of the Mg alloy layer electrode of the present invention is higher than the contact resistance of the electrode of the prior application.
  • the effect of reducing the operating voltage of the light emitting diode using the Mg alloy layer electrode of the present invention is remarkable as shown in FIG.
  • the Mg alloy layer has higher adhesion to the semiconductor multilayer structure than the Mg layer, it can be said that the Mg alloy layer is superior to the Mg electrode in improving yield and device reliability in the mass production process.
  • Factors that cause strong adhesion between the Mg alloy layer and the semiconductor multilayer structure include that it is difficult to be oxidized by adding Pt (or Mo, Pd) to Mg, and that warping due to strain is suppressed by improving hardness, Furthermore, it is conceivable that Pt (or Mo, Pd) in the Mg alloy layer is in contact with the semiconductor multilayer structure, so that the adhesion is enhanced as compared with the case of Mg alone.
  • the light emitting device may be used as a light source as it is.
  • the light-emitting element according to the present invention can be suitably used as a light source (for example, a white light source) having an extended wavelength band when combined with a resin or the like including a fluorescent material for wavelength conversion.
  • FIG. 11 is a schematic diagram showing an example of such a white light source.
  • the light source of FIG. 11 includes a light emitting device 100 having the configuration shown in FIG. 3A and a phosphor that converts the wavelength of light emitted from the light emitting device 100 into a longer wavelength (for example, YAG: Yttrium Aluminum Garnet). And a resin layer 200 in which is dispersed.
  • the light emitting element 100 is mounted on a support member 220 having a wiring pattern formed on the surface, and a reflection member 240 is disposed on the support member 220 so as to surround the light emitting element 100.
  • the resin layer 200 is formed so as to cover the light emitting element 100.
  • the actual surface (main surface) of the m-plane semiconductor layer does not need to be a plane that is completely parallel to the m-plane, and is inclined at a slight angle (greater than 0 ° and less than ⁇ 1 °) from the m-plane. May be. It is difficult to form a substrate or a semiconductor layer having a surface that is completely parallel to the m-plane from the viewpoint of manufacturing technology. For this reason, when an m-plane substrate or an m-plane semiconductor layer is formed by the current manufacturing technology, the actual surface is inclined from the ideal m-plane. Since the inclination angle and orientation vary depending on the manufacturing process, it is difficult to accurately control the inclination angle and inclination orientation of the surface.
  • the surface (main surface) of the substrate or semiconductor is intentionally inclined at an angle of 1 ° or more from the m-plane.
  • the gallium nitride-based compound semiconductor light-emitting element in the embodiment described below includes a p-type semiconductor region having a main surface that is inclined at an angle of 1 ° or more from the m-plane.
  • FIG. 12 is a cross-sectional view showing the gallium nitride compound semiconductor light emitting device 100a of this embodiment.
  • the gallium nitride-based compound semiconductor light emitting device 100a In order to form a p-type semiconductor region whose main surface is a surface inclined at an angle of 1 ° or more from the m-plane, the gallium nitride-based compound semiconductor light emitting device 100a according to this embodiment has an angle of 1 ° or more from the m-plane.
  • a GaN substrate 10a whose main surface is an inclined surface is used.
  • a substrate whose main surface is inclined at an angle of 1 ° or more from the m-plane is generally referred to as an “off substrate”.
  • the off-substrate can be manufactured by slicing the substrate from the single crystal ingot and polishing the surface of the substrate so that the main surface is intentionally inclined in a specific direction from the m-plane.
  • a semiconductor multilayer structure 20a is formed on the GaN substrate 10a.
  • the semiconductor layers 22a, 24a, and 26a shown in FIG. 12 are inclined at an angle of 1 ° or more from the m-plane. This is because when various semiconductor layers are stacked on the inclined main surface of the substrate, the surfaces (main surfaces) of these semiconductor layers are also inclined from the m-plane.
  • a sapphire substrate or SiC substrate having a surface inclined in a specific direction from the m-plane may be used.
  • at least the surface of the p-type semiconductor region in contact with the p-type electrode 30a in the semiconductor multilayer structure 20a may be inclined at an angle of 1 ° or more from the m-plane.
  • FIG. 13A is a diagram schematically showing a crystal structure (wurtzite crystal structure) of a GaN-based compound semiconductor, and shows a structure obtained by rotating the crystal structure in FIG. 2 by 90 °.
  • the + c plane is a (0001) plane in which Ga atoms appear on the surface, and is referred to as a “Ga plane”.
  • the ⁇ c plane is a (000-1) plane in which N (nitrogen) atoms appear on the surface, and is referred to as an “N plane”.
  • the + c plane and the ⁇ c plane are parallel to each other, and both are perpendicular to the m plane.
  • the c-plane Since the c-plane has polarity, the c-plane can be divided into a + c-plane and a ⁇ c-plane in this way, but there is no significance in distinguishing the non-polar a-plane into the + a-plane and the ⁇ a-plane. .
  • the + c-axis direction shown in FIG. 13A is a direction extending perpendicularly from the ⁇ c plane to the + c plane.
  • the a-axis direction corresponds to the unit vector a 2 in FIG. 2 and faces the [-12-10] direction parallel to the m-plane.
  • FIG. 13B is a perspective view showing the correlation between the normal of the m-plane, the + c-axis direction, and the a-axis direction.
  • the normal of the m-plane is parallel to the [10-10] direction and is perpendicular to both the + c-axis direction and the a-axis direction, as shown in FIG.
  • the fact that the main surface of the GaN-based compound semiconductor layer is inclined at an angle of 1 ° or more from the m-plane means that the normal line of the main surface of the semiconductor layer is inclined at an angle of 1 ° or more from the normal line of the m-plane. means.
  • FIG. 14A and 14B are cross-sectional views showing the relationship between the main surface and the m-plane of the GaN-based compound semiconductor layer, respectively.
  • This figure is a cross-sectional view perpendicular to both the m-plane and the c-plane.
  • FIG. 14 shows an arrow indicating the + c-axis direction.
  • the m-plane is parallel to the + c-axis direction. Accordingly, the normal vector of the m-plane is perpendicular to the + c axis direction.
  • the normal vector of the main surface in the GaN-based compound semiconductor layer is inclined in the c-axis direction from the normal vector of the m-plane. More specifically, in the example of FIG. 14A, the normal vector of the principal surface is inclined toward the + c plane, but in the example of FIG. 14B, the normal vector of the principal surface is ⁇ Inclined to the c-plane side.
  • the inclination angle (inclination angle ⁇ ) of the normal vector of the principal surface with respect to the normal vector of the m plane in the former case is a positive value, and the inclination angle ⁇ in the latter case is a negative value. I will decide. In either case, it can be said that “the main surface is inclined in the c-axis direction”.
  • FIGS. 15A and 15B are cross-sectional views corresponding to FIGS. 14A and 14B, respectively, and show the vicinity of the main surface in the p-type semiconductor region inclined in the c-axis direction from the m-plane. Show.
  • each step has a height equivalent to a monoatomic layer (2.7 mm) and is arranged in parallel at substantially equal intervals (30 mm or more).
  • a main surface inclined from the m-plane as a whole is formed, but it is considered that a large number of m-plane regions are exposed microscopically.
  • FIG. 16 is a cross-sectional TEM photograph of the p-type semiconductor region inclined by 1 ° in the ⁇ c axis direction from the m-plane.
  • the m-plane is clearly exposed on the surface of the p-type semiconductor region, and it is confirmed that the inclination is formed by atomic steps.
  • the surface of the GaN-based compound semiconductor layer whose main surface is inclined from the m-plane has such a structure because the m-plane is originally very stable as a crystal plane. A similar phenomenon is considered to occur even if the inclination direction of the normal vector of the main surface is oriented to a plane orientation other than the + c plane and the ⁇ c plane.
  • the inclination angle is in the range of 1 ° to 5 °.
  • the surface (main surface) of the p-type gallium nitride compound semiconductor layer is inclined at an angle of 1 ° or more from the m-plane, the surface in contact with the p-type electrode has a large number of m-plane regions. Therefore, it is considered that the contact resistance does not depend on the inclination angle.
  • FIG. 17 shows that an electrode of an Mg / Pt layer is formed on a p-type semiconductor region inclined by 0 °, 2 °, or 5 ° in the ⁇ c axis direction from the m-plane, and its contact resistance ( ⁇ ⁇ cm 2 ) is shown.
  • It is a graph which shows the measurement result.
  • the vertical axis of the graph is the specific contact resistance
  • the horizontal axis is the inclination angle (angle formed by the normal of the m-plane and the normal of the surface in the p-type semiconductor region) ⁇ .
  • the specific contact resistance is a value of the specific contact resistance after the electrode is formed and heat treatment is performed. As can be seen from the results of FIG.
  • the contact resistance has a substantially constant value. Even when the portion of the electrode that contacts the p-type semiconductor region is made of an alloy of Mg and Pt, if the inclination angle ⁇ from the m-plane is 5 ° or less, the contact resistance is considered to be a substantially constant value. .
  • the contact resistance is reduced by the configuration of the present invention if the inclination angle ⁇ of the surface of the p-type semiconductor region is 5 ° or less.
  • the absolute value of the inclination angle ⁇ is limited to 5 ° or less.
  • the actual inclination angle ⁇ may be shifted from 5 ° by about ⁇ 1 ° due to manufacturing variations. It is difficult to completely eliminate such manufacturing variations, and such a small angular deviation does not hinder the effects of the present invention.
  • the contact resistance can be reduced in a GaN-based semiconductor multilayer structure in which the angle formed by the normal of the main surface and the normal of the m-plane is 1 ° or more and 5 ° or less. Therefore, a GaN-based semiconductor multilayer in which the angle formed by the normal of the main surface and the normal of the m-plane is 1 ° or more and 5 ° or less, which has conventionally been difficult to actively use due to poor contact resistance characteristics The industrial applicability of the structure is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明の窒化物系半導体素子は、表面12がm面から1°以上5°以下の角度で傾斜したp型GaN系半導体領域を有する窒化物系半導体積層構造20と、p型GaN系半導体領域上に設けられた電極30とを備える。電極30は、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層32を含み、Mg合金層32は、半導体積層構造20におけるp型GaN系半導体領域の表面12に接触している。

Description

窒化物系半導体素子およびその製造方法
 本発明は、窒化物系半導体素子およびその製造方法に関する。特に、本発明は、紫外から青色、緑色、オレンジ色および白色などの可視域全般の波長域における発光ダイオード、レーザダイオード等のGaN系半導体発光素子に関する。このような発光素子は、表示、照明および光情報処理分野等への応用が期待されている。また、本発明は、窒化物系半導体素子に用いる電極の製造方法にも関する。
 V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体:AlxGayInzN(0≦x,y,z≦1、x+y+z=1)の研究は盛んに行われ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている(例えば、特許文献1、2参照)。
 GaN系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlxGayInzN(0≦x,y,z≦1、x+y+z=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
 図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。
 GaN系半導体を用いて半導体素子を作製する場合、GaN系半導体結晶を成長させる基板として、c面基板すなわち(0001)面を表面に有する基板が使用される。しかしながら、c面においてはGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、分極(Electrical Polarization)が形成される。このため、「c面」は「極性面」とも呼ばれている。分極の結果、活性層におけるInGaNの量子井戸にはc軸方向に沿ってピエゾ電界が発生する。このようなピエゾ電界が活性層に発生すると、活性層内における電子およびホールの分布に位置ずれが生じるため、内部量子効率が低下し、半導体レーザであれば、しきい値電流の増大が引き起こされ、LEDであれば、消費電力の増大や発光効率の低下が引き起こされる。また、注入キャリア密度の上昇と共にピエゾ電界のスクリーニングが起こり、発光波長の変化も生じる。
 そこで、これらの課題を解決するため、非極性面、例えば[10-10]方向に垂直な、m面と呼ばれる(10-10)面を表面に有する基板(m面GaN系基板)を使用することが検討されている。ここで、ミラー指数を表すカッコ内の数字の左に付された「-」は、「バー」を意味する。「m面」は、「M面」と表記される場合もある。m面は、図2に示されるように、c軸(基本ベクトルc)に平行な面であり、c面と直交している。m面においてはGa原子と窒素原子は同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。その結果、m面に垂直な方向に半導体積層構造を形成すれば、活性層にピエゾ電界も発生しないため、上記課題を解決することができる。m面は、(10-10)面、(-1010)面、(1-100)面、(-1100)面、(01-10)面、(0-110)面の総称である。
 なお、本明細書では、六方晶ウルツ鉱構造のX面(X=c、m)に垂直な方向にエピタキシャル成長が生じることを「X面成長」と表現する。X面成長において、X面を「成長面」と称し、X面成長によって形成された半導体の層を「X面半導体層」と称する場合がある。
特開2001-308462号公報 特開2003-332697号公報 特開平8-64871号公報 特開平11-40846号公報
 上述のように、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものと比較して顕著な効果を発揮し得るが、次のような問題がある。すなわち、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものよりもコンタクト抵抗が高く、それが、m面基板上で成長させたGaN系半導体素子を使用する上で大きな技術的な障害となっている。
 そのような状況の中、本願発明者は、非極性面であるm面上に成長させたGaN系半導体素子が持つコンタクト抵抗が高いという課題を解決すべく、鋭意検討した結果、コンタクト抵抗を低くすることができる手段を見出した。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、m面基板上で結晶成長させたGaN系半導体素子におけるコンタクト抵抗を低減できる構造および製造方法を提供することにある。
 本発明の窒化物系半導体素子は、p型GaN系半導体領域を有する窒化物系半導体積層構造と、前記p型GaN系半導体領域上に設けられた電極とを備え、前記p型GaN系半導体領域における主面の法線とm面の法線とが形成する角度が1°以上5°以下であり、前記電極は、前記p型GaN系半導体領域の前記主面に接触し、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を含む。
 ある実施形態において、前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される。
 ある実施形態において、前記電極は、前記Mg合金層と、前記Mg合金層の上に形成された金属層とを含み、前記金属層は、Pt、MoおよびPdのうち前記Mg合金層に含まれる金属から形成されている。
 ある実施形態において、前記窒化物系半導体積層構造は、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層を有し、前記活性層は光を発する。
 ある実施形態において、前記p型GaN系半導体領域はp型コンタクト層である。
 ある実施形態において、前記Mg合金層の厚さは0.1nm以上5nm以下である。
 ある実施形態において、前記Mg合金層の厚さは前記金属層の厚さ以下である。
 ある実施形態において、前記Mg合金層中のN濃度はGa濃度よりも低い。
 ある実施形態において、前記Mg合金層はアイランド状である。
 ある実施形態において、前記窒化物系半導体積層構造を支持する半導体基板を有している。
 本発明の光源は、窒化物系半導体発光素子と、前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部とを備える光源であって、前記窒化物系半導体発光素子は、p型GaN系半導体領域を有する窒化物系半導体積層構造と、前記p型GaN系半導体領域上に設けられた電極とを備え、前記p型GaN系半導体領域における主面の法線とm面の法線とが形成する角度が1°以上5°以下であり、前記電極は、前記p型GaN系半導体領域の前記主面に接触し、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を含む。
 ある実施形態において、前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される。
 本発明の窒化物系半導体素子の製造方法は、基板を用意する工程(a)と、GaN系半導体からなり、前記半導体の主面の法線とm面の法線とが形成する角度が1°以上5°以下であるp型GaN系半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、前記窒化物系半導体積層構造の前記p型GaN系半導体領域の前記主面上に電極を形成する工程(c)とを含み、前記工程(c)は、前記p型GaN系半導体領域の前記主面上に、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を形成する工程を含む。
 ある実施形態において、前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される。
 ある実施形態において、前記Mg合金層を形成する工程は、前記p型GaN系半導体領域の前記主面上に、Mg層を形成する工程と、前記Mg層の上に、Pt、MoおよびPdからなる群から選択される導電層を形成する工程と、加熱処理を行なうことにより、前記Mg層と前記導電層の少なくとも一部とを合金化する工程とを含む。
 ある実施形態において、前記加熱処理は、500℃以上700℃以下の温度で実行される。
 ある実施形態において、前記加熱処理は、550℃以上650℃以下の温度で実行される。
 ある実施形態において、前記Mg層を形成する工程は、パルス的に電子ビームを照射することによってMgを前記p型GaN系半導体領域の前記主面の上に蒸着させることを実行する。
 ある実施形態において、前記Mg層は0.1nm以上5nm以下の厚さで前記窒化物系半導体積層構造の上に堆積される。
 ある実施形態は、前記工程(b)を実行した後において、前記基板を除去する工程を含む。
 ある実施形態において、前記Mg合金層を形成する工程は、Mgと、Pt、MoおよびPdからなる群から選択される金属との混合物または化合物を、前記p型GaN系半導体領域の前記主面上に蒸着する工程と、加熱処理を行なう工程とを含む。
 本発明の窒化物系半導体素子によれば、窒化物系半導体積層構造上の電極がMg合金層を含み、そのMg合金層がp型GaN系半導体領域の表面(m面)に接触していることにより、コンタクト抵抗を低減することができる。本発明では、m面から1°以上5°以下の角度で傾斜した面を主面とするp型GaN系半導体領域を用いた場合であっても、m面p型GaN系半導体領域(m面からの傾斜が1°未満の面を主面とするp型GaN系半導体領域)を用いた場合と同様の効果を奏する。
GaNの単位格子を模式的に示す斜視図 ウルツ鉱型結晶構造の基本ベクトルa1、a2、a3、cを示す斜視図 (a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面模式図、(b)はm面の結晶構造を表す図、(c)はc面の結晶構造を表す図 2つのPd/Pt電極をp型GaN層に接触させた場合の電流-電圧特性を示す図 2つのMg合金層電極をp型GaN層に接触させた場合の電流-電圧特性を示す図 上述のPd/Pt電極、およびMgPt合金/Pt電極を用いた場合のそれぞれにおける固有コンタクト抵抗(Ω・cm2)を示すグラフ TLM電極のパターン図 コンタクト抵抗について熱処理温度の依存性を示すグラフ SIMS分析による電極構造(Mg/Pt)におけるGaの深さ方向のプロファイル図 SIMS分析による電極構造(Mg/Pt)におけるNの深さ方向のプロファイル図 (a)はMgPt合金/Pt層からなる電極、Mg/Pt層からなる電極、およびPt/Pd層からなる電極を用いた発光ダイオードの電流-電圧特性を示すグラフ、(b)は発光ダイオードのコンタクト抵抗の値を示すグラフ (a)、(b)は、それぞれ、MgPt合金/Pt層からなる電極の表面の状態とMg/Pt層からなる電極の表面状態を示す光学顕微鏡の図面代用写真 (a)は、Au層、および、MgAu合金/Au層からなる電極を用いた場合のコンタクト抵抗を示すグラフ、(b)および(c)はそれぞれMgAu合金/Au層およびAu層の電極の表面を示す光学顕微鏡の図面代用写真 白色光源の実施形態を示す断面図 本発明の他の実施形態に係る窒化ガリウム系化合物半導体発光素子100aを示す断面図 (a)は、GaN系化合物半導体の結晶構造(ウルツ鉱型結晶構造)を模式的に示す図であり、(b)は、m面の法線と、+c軸方向およびa軸方向との関係を示す斜視図 (a)および(b)は、それぞれ、GaN系化合物半導体層の主面とm面との配置関係を示す断面図 (a)および(b)は、それぞれ、p型GaN系化合物半導体層の主面とその近傍領域を模試的に示す断面図 m面から-c軸方向に1°傾斜したp型半導体領域の断面TEM写真 m面から-c軸方向に0°、2°、または5°傾斜したp型半導体領域の上にMg/Pt層の電極を形成し、そのコンタクト抵抗(Ω・cm2)を測定した結果を示すグラフ
 以下、図面を参照しながら、本発明の実施の形態を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
 図3(a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面構成を模式的に示している。図3(a)に示した窒化物系半導体発光素子100は、GaN系半導体からなる半導体デバイスであり、窒化物系半導体積層構造を有している。
 本実施形態の窒化物系半導体発光素子100は、m面を表面12とするGaN系基板10と、GaN系基板10の上に形成された半導体積層構造20と、半導体積層構造20の上に形成された電極30とを備えている。本実施形態では、半導体積層構造20は、m面成長によって形成されたm面半導体積層構造であり、その表面はm面である。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしもGaN系基板10の表面がm面であることが必須とならない。本発明の構成においては、少なくとも半導体積層構造20のうち、電極と接触するp型半導体領域の表面(主面)がm面であればよい。
 本実施形態の窒化物系半導体発光素子100は、半導体積層構造20を支持するGaN基板10を備えているが、GaN基板10に代えて他の基板を備えていても良いし、基板が取り除かれた状態で使用されることも可能である。
 図3(b)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示している。Ga原子と窒素原子は、m面に平行な同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。すなわち、m面は非極性面であり、m面に垂直な方向に成長した活性層内ではピエゾ電界が発生しない。なお、添加されたInおよびAlは、Gaのサイトに位置し、Gaを置換する。Gaの少なくとも一部がInやAlで置換されていても、m面に垂直な方向に分極は発生しない。
 m面を表面に有するGaN系基板は、本明細書では「m面GaN系基板」と称される。m面に垂直な方向に成長した窒化物系半導体積層構造を得るには、典型的には、m面基板GaN基板を用い、その基板のm面上に半導体を成長させればよい。しかし、前述したように、基板の表面がm面である必要は無く、また、最終的なデバイスに基板が残っている必要も無い。
 参考のために、図3(c)に、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。Ga原子と窒素原子は、c面に平行な同一原子面上に存在しない。その結果、c面に垂直な方向に分極が発生する。c面を表面に有するGaN系基板を、本明細書では「c面GaN系基板」と称する。
 c面GaN系基板は、GaN系半導体結晶を成長させるための一般的な基板である。c面に平行なGa(又はIn)の原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、c軸方向に沿って分極が形成される。
 再び、図3(a)を参照する。m面GaN系基板10の表面(m面)12の上には、半導体積層構造20が形成されている。半導体積層構造20は、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層24と、AldGaeN層(d+e=1,d≧0,e≧0)26とを含んでいる。AldGaeN層26は、活性層24を基準にしてm面12の側とは反対の側に位置している。ここで、活性層24は、窒化物系半導体発光素子100における電子注入領域である。
 本実施形態の半導体積層構造20には、他の層も含まれており、活性層24と基板10との間には、AluGavInwN層(u+v+w=1,u≧0,v≧0,w≧0)22が形成されている。本実施形態のAluGavInwN層22は、第1導電型(n型)のAluGavInwN層22である。また、活性層24とAldGaeN層26との間に、アンドープのGaN層を設けてもよい。
 AldGaeN層26において、Alの組成比率dは、厚さ方向に一様である必要は無い。AldGaeN層26において、Alの組成比率dが厚さ方向に連続的または階段的に変化していても良い。すなわち、AldGaeN層26は、Alの組成比率dが異なる複数の層が積層された多層構造を有していても良いし、ドーパントの濃度も厚さ方向に変化していてもよい。なお、コンタクト抵抗低減の観点から、AldGaeN層26の最上部(半導体積層構造20の上面部分)は、Alの組成比率dがゼロである層(GaN層)から構成されていることが好ましい。
 半導体積層構造20の上には、電極30が形成されている。本実施形態の電極30は、PtとMgから構成されるMg合金層32を含む電極であり、Mg合金層32の上には、Ptからなる金属層34が形成されている。なお、「Mg合金層」とは、%オーダー(例えば1%)以上の濃度でPt等の金属がMg中に混和している層を意味する。本実施形態におけるMg合金層32には、金属層34を構成する金属Ptが%オーダーの濃度で混和している。
 電極30におけるMg合金層32は、半導体積層構造20のp型半導体領域に接触しており、p型電極(p側電極)の一部として機能する。本実施形態では、Mg合金層32は、第2導電型(p型)のドーパントがドープされたAldGaeN層26に接触している。AldGaeN層26には、例えば、ドーパントとしてMgがドープされている。Mg以外のp型ドーパントとして、例えばZn、Beなどがドープされていても良い。
 Mg合金層32の表面に接触する金属層34としては、Pt層の他、Au(金)に比べるとMgと合金を形成し難い金属の層を用いることができる。すなわち、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属を用いればよい。逆に、Mg合金層32と接触する金属層34の材料として、Mgと合金を形成し易いAuは好ましく無い。Pt、Mo、Pdは、Auに比べるとMgとの間で合金化しにくい金属であるが、後述する熱処理により、Mgの一部と反応して合金層が形成され得る。
 Mg合金層32は、Mg層の上にPtなどの金属層を堆積した後に、熱処理を行なうことによって好適に形成される。熱処理の前に堆積した金属層が比較的厚ければ、熱処理によって形成されたMg合金層32の上に金属層34が残る。一方、熱処理の前に堆積した金属層が比較的薄ければ、熱処理によって金属層34の全てがMgと合金化する場合がある。この場合には、電極30としてMg合金層32のみが存在する。
 なお、Mg合金層32は、金属層34を構成する金属とMgとの混合物または化合物を蒸着源として蒸着を行った後に熱処理を行うことによって形成してもよい。この場合、Mg合金層32を蒸着した直後には、Mg合金層32の上に金属層34は存在していない。その後、Mg合金層32の上に金属層34を堆積せずに、電極30をMg合金層32のみから構成させてもよいし、必要に応じて、Mg合金層32の上に金属層34を堆積してもよい。
 Mg合金層32の少なくとも一部は、積層後の熱処理によってアイランド状(島状)に凝集を起こし、互いに間隔を置いて形成されていてもよい。このとき、金属層34を構成するPtは各アイランド状Mg合金の間に入り込んでいる。金属層34の少なくとも一部がアイランド状に凝集していてもよい。
 上記の各電極の上には、上述の金属層または合金層とは別に、これらの金属以外の金属または合金からなる電極層や配線層が形成されていても良い。
 本実施形態の電極30の厚さは、例えば、1~200nmである。Mg合金層32の上に金属層34が設けられている場合には、Mg合金層32は、金属層34よりも薄い層であり、Mg合金層32の厚さは、例えば、5nm以下(好ましくは0.1nm以上5nm以下)である。熱処理の前に堆積したMg層の厚さが5nmよりも大きい場合には、熱処理を行った後に、Mg層の一部が合金化されず、Mg合金層32とAldGaeN層26との間にMg層が残存することがある。これは、金属層34を構成するPtなどの金属がMgと合金を形成しにくいことに起因する。Mg層が残存すると、下地の半導体積層構造20との密着性が比較的低い場合がある。そのため、熱処理の前に堆積するMg層の厚さは5nm以下であることが好ましく、熱処理によって形成されるMg合金層32の厚さも5nm以下であることが好ましい。
 また、Mg合金層32の上に位置する金属層(例えば、Pt層)34の厚さは、例えば、200nm以下(好ましくは1nm~200nm)である。Mg合金層32が金属層34よりも薄い層であるのは、Mg合金層32と金属層34との歪みのバランスが崩れることによるMg合金層32とAldGaeN層26との間での剥離が生じないようにするためである。金属層34は、Mg合金層32の酸化防止などにおいて重要な役割を担うが、必ずしも必要というわけではない。
 また、m面の表面12を有するGaN系基板10の厚さは、例えば、100~400μmである。これはおよそ100μm以上の基板厚であればウエハのハンドリングに支障が生じないためである。なお、本実施形態の基板10は、GaN系材料からなるm面の表面12を有していれば、積層構造を有していても構わない。すなわち、本実施形態のGaN系基板10は、少なくとも表面12にm面が存在している基板も含み、したがって、基板全体がGaN系であってもよいし、他の材料との組み合わせであっても構わない。
 本実施形態の構成では、基板10の上に位置するn型のAluGavInwN層(例えば、厚さ0.2~2μm)22の一部に、電極40(n型電極)が形成されている。図示した例では、半導体積層構造20のうち電極40が形成される領域は、n型のAluGavInwN層22の一部が露出するように凹部42が形成されている。その凹部42にて露出したn型のAluGavInwN層22の表面に電極40が設けられている。電極40は、例えば、Ti層とAl層とPt層との積層構造から構成されており、電極40の厚さは、例えば、100~200nmである。
 本実施形態の活性層24は、Ga0.9In0.1N井戸層(例えば、厚さ9nm)とGaNバリア層(例えば、厚さ9nm)とが交互に積層されたGaInN/GaN多重量子井戸(MQW)構造(例えば、厚さ81nm)を有している。
 活性層24の上には、p型のAldGaeN層26が設けられている。p型のAldGaeN層26の厚さは、例えば、0.2~2μmである。なお、上述したように、活性層24とAldGaeN層26との間には、アンドープのGaN層を設けてもよい。
 加えて、AldGaeN層26の上に、第2導電型(例えば、p型)のGaN層を形成することも可能である。そして、そのGaN層の上に、p+-GaNからなるコンタクト層を形成し、さらに、p+-GaNからなるコンタクト層上に、Mg合金層32を形成することも可能である。なお、GaNからなるコンタクト層を、AldGaeN層26とは別の層であると考える代わりに、AldGaeN層26の一部であると考えることもできる。
 図4Aは、2つのPd/Pt電極をp型GaN層に接触させた場合の電流-電圧特性を、図4Bは、2つのMg合金層電極をp型GaN層に接触させた場合の電流-電圧特性を示す。Pd/Pt電極としては、p型のm面GaN層上にPd層およびPt層をこの順に形成した後、窒素雰囲気中で熱処理を行なうことにより形成した電極(m面GaN(Pd/Pt))を用いた。Mg合金層電極としては、p型のm面GaN層上に、Mg層およびPt層をこの順に蒸着した後、窒素雰囲気中で熱処理を行なうことによって合金化された電極(m面GaN(MgPt合金/Pt))を用いた。これらの電極の構成および熱処理条件は以下の表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、表1に示す熱処理を行なうことによって、p型GaN層上に接するMg層とPt層の一部(Mg層に接する側)とを合金化させ、さらにMg合金層がp型GaN層と接した状態で加熱されることにより、良好なMg合金層電極(MgPt合金/Pt電極)を形成することができる。
 図4A、図4Bに示す電流-電圧特性の各曲線は、図4Dに示すTLM(Transmission Line Method)電極パターンの電極間距離に対応したものである。図4Dは、100μm×200μmの複数の電極が、8μm、12μm、16μm、20μmだけ間隔を空けて配置された状態を示している。
 図4Cは、上述のPd/Pt電極、およびMgPt合金/Pt電極を用いた場合のそれぞれにおける固有コンタクト抵抗(Ω・cm2)を示すグラフである。コンタクト抵抗はTLM法を用いて評価した。なお、縦軸に示した「1.0E-01」は「1.0×10-1」を意味し、「1.0E-02」は「1.0×10-2」を意味し、すなわち、「1.0E+X」は、「1.0×10X」の意味である。
 Pdはp型電極として従来用いられてきた仕事関数の大きな金属である。Pd/Pt電極ではPdがp型GaN層に接触しており、図4Aのグラフ(Pd/Pt電極の電流-電圧特性)は、ショットキー型の非オーミック特性(ショットキー電圧:約2V)を示している。一方、図4Bのグラフ(Mg合金層電極の電流-電圧特性)にはショットキー電圧が現れておらず、このMg合金層電極は、p型GaN層とほぼオーミックコンタクトを形成することがわかる。ショットキー電圧の消失は、発光ダイオードやレーザダイオード等のデバイス動作電圧を低減する上で非常に重要である。
 さらに、図4Cに示すように、Pd/Pt電極よりもMgPt合金/Pt電極のほうが一桁近くも低い固有コンタクト抵抗(Ω・cm2)を示す。本実施形態では、仕事関数の大きな金属を用いるという従来のp型電極のアプローチでは得ることのできない非常に顕著な効果を得ることに成功している。
 なお、Mg/Pt電極をc面p型GaN層と接触させた場合には、Pd/Pt電極の場合よりも若干低いコンタクト抵抗が得られる。接触面がm面の場合には、Mg/Pt電極は、Pd/Pt電極より顕著に低いコンタクト抵抗を示す(特願2009-536554号参照)。MgPt合金/Pt電極を用いた本発明でも同様の結果が得られると推測される。
 次に、コンタクト抵抗について熱処理温度の依存性を説明する。
 図5は、p型のGaN層のm面上に、Mg層およびPt層をこの順に蒸着した後、窒素雰囲気中で熱処理を行なうことによって合金化させた電極(すなわち、m面GaN(MgPt合金/Pt))の結果を示している。また、対比として、p型のm面GaN層上にPd層およびPt層をこの順に形成した後、窒素雰囲気中で熱処理を行なうことによって形成した電極(m面GaN(Pd/Pt))の結果も示している。
 図5に示すデータは、パルス蒸着法を用いてMg層を堆積したサンプルから得たものである。パルス蒸着法については、後述する。本願明細書における本発明の実験例では、いずれも、Mg層をパルス蒸着法によって堆積し、Mg以外の金属(Pd、Pt、Au)は、通常の電子ビーム蒸着法によって堆積している。
 MgPt合金/Pt電極、およびPd/Pt電極は、Mgがドープされたm面GaN層に接触している。これらの電極が接触するm面GaN層では、表面から深さ20nmの領域(厚さ20nmの最表面領域)に7×1019cm-3のMgがドープされている。また、m面GaN層の表面からの深さが20nmを超える領域には、1×1019cm-3のMgがドープされている。このように、p型電極が接触するGaN層の最表面領域においてp型不純物の濃度を局所的に高めると、コンタクト抵抗を最も低くすることができる。また、このような不純物ドーピングを行なうことにより、電流―電圧特性の面内ばらつきも低減するため、駆動電圧のチップ間ばらつきを低減できるという利点も得られる。このため、本願に開示している実験例では、いずれも、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgをドープし、それよりも深い領域には1×1019cm-3のMgをドープしている。
 熱処理前における各層の厚さは、以下の表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 まず、Pd/Pt電極の場合、コンタクト抵抗は、500℃の熱処理の前後で、ほとんど変化しなかった。熱処理温度が500℃を超えると、コンタクト抵抗の上昇が見られた。
 一方、MgPt合金/Pt電極の場合は、熱処理温度が500℃以上になると、コンタクト抵抗は急に低下した。本実施形態では、熱処理前にp型のm面GaN層に接するのはMg層であるのに対し、500℃以上の温度で熱処理を行なうことによってMg層がPt層と合金化し、熱処理後にp型のm面GaN層に接するのはMg合金層になる。図5から、m面GaN(MgPt合金/Pt)電極の場合、熱処理温度が600℃になると、コンタクト抵抗はさらに低下していることがわかる。さらに昇温して700℃の熱処理を行なうと、コンタクト抵抗は600℃の熱処理温度のときよりも上昇するものの、従来のm面GaN(Pd/Pt)の電極の場合のコンタクト抵抗よりは小さかった。
 したがって、MgPt合金/Pt電極の熱処理温度としては、例えば、500℃以上が好ましい。700℃を超えて所定温度(例えば800℃)以上になると、電極やGaN層の膜質の劣化が進むため、上限は700℃以下が好ましい。加えて、さらにコンタクト抵抗が低くなる、550℃以上650℃以下の温度範囲であることがさらに好ましい。
 図6は、電極構造(MgPt合金/Pt)においてGaの深さ方向のプロファイルを、SIMSを用いて得た結果を示す。熱処理前におけるMg層厚は2nmであり、Pt層厚は75nmであった。熱処理によってMg合金層厚は2nmとなった。熱処理は、窒素雰囲気中600℃で10分間行なった。グラフの縦軸は原子濃度と比例関係にある、SIMSの検出器の信号強度を示す。図6における横軸の距離0μmはp型GaN層とMg合金層との界面の位置にほぼ相当する。なお、横軸の原点(0μm)は、Gaピークの位置に合わせた。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。縦軸は、as-depo(熱処理前)のGaN結晶中のGa濃度を1として規格化している。また母体の原子密度から算定すると、縦軸の強度の1×10-3は濃度として1×1019cm-3にほぼ相当する。
 図6に示すように、熱処理後には、熱処理前と比べて、Mg合金層中のGa濃度が増加している。この結果から、熱処理によって、Mg合金層中にGaが拡散していることがわかる。さらに、500℃以上の温度で熱処理を行なった試料ではコンタクト抵抗が低くなることから、その原因の詳細は不詳であるが、Mg合金層中のGa拡散量とコンタクト抵抗との間の相関があることが確認された。そして、最も低いコンタクト抵抗が得られた試料では、Mg合金層中のGa濃度は1019cm-3以上であることが確認された。
 図7は、電極構造(MgPt合金/Pt)における窒素原子の深さ方向プロファイルを、SIMSを用いて得た結果を示す。熱処理前におけるMg層厚は2nmであり、Pt層厚は75nmである。熱処理によってMg合金層厚は2nmとなった。熱処理は、窒素雰囲気中600℃で10分間行なった。図7のグラフの縦軸はN強度であり、横軸は深さ方向の距離である。1×10-3のN強度は1×1019cm-3のN濃度にほぼ相当する。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。縦軸は、as-depo(熱処理前)のGaN結晶中のN濃度を1として規格化している。横軸の原点(0μm)は、p型GaN層とMg層との界面の位置にほぼ相当する。図7から明らかなように、熱処理後の電極構造においても、Mg合金層中にNの拡散はみられない。
 以上のように、本願発明者は、Mg合金層がm面を表面とするp型GaN層と接するように熱処理(窒素雰囲気中600度10分間)を行なうと、p型GaN層のGa原子は電極側へ拡散するが、N原子は電極側へほとんど拡散しないということを見出した。その結果、p型GaN層の最表面では、Ga原子が不足し、Ga空孔が形成される。Ga空孔はアクセプター的性質を有するため、電極とp型GaN層の界面の近傍でGa空孔が増加すると、この界面のショットキー障壁を正孔がトンネリングによって通過しやすくなる。これにより、m面を表面とするp型GaN層と接するようにMg合金層を形成した場合には、コンタクト抵抗が低減されると考えられる。
 一方、本願発明者は、Mg合金層がm面ではなくc面を表面とするp型GaN層と接するように熱処理(窒素雰囲気中600度10分間)を行なうと、Ga原子だけでなくN原子も電極側へ拡散することを見いだした。また、この場合にはコンタクト抵抗が高いことを確認した。Ga原子だけでなくN原子も電極側へ拡散すると、p型GaN層の最表面では、ドナー的性質を有するN空孔も形成される。その結果、p型GaN層の最表面では、Ga空孔とN空孔との間で電荷補償が起こる。また、N原子が抜けることによってGaN結晶の結晶性は悪化すると考えられる。これらの原因から、c面を表面とするGaNと接するようにMg合金層を形成した場合には、コンタクト抵抗が高いと考えられる。
 この発見は、原子間結合力や表面状態などの物理的性質がm面GaNとc面GaNの両者において全く異なることを示すものである。
 なお、このような各元素(Ga、N)の挙動は、Mg合金層が接触するGaN層において、Gaの一部がAlやInで置換されていても同様に生じると推定される。また、Mg合金層が接触するGaN系半導体層中にドーパントとしてMg以外の元素がドープされている場合でも同様であると推定される。
 次に、再び図3(a)を参照しながら、本実施形態の構成をさらに詳述する。
 図3(a)に示すように、本実施形態の発光素子100では、m面GaN基板10と、基板10上に形成されたAluGavInwN層(u+v+w=1,u≧0,v≧0,w≧0)22とが形成されている。この例では、m面GaN基板10は、n型GaN基板(例えば、厚さ100μm)であり、AluGavInwN層22は、n型GaN層(例えば、厚さ2μm)である。AluGavInwN層22の上には活性層24が形成されている。言い換えると、m面GaN基板10の上には、少なくとも活性層24を含む半導体積層構造20が形成されている。
 半導体積層構造20において、AlxGayInzN層22の上には、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層24が形成されている。活性層24は、例えば、In組成比が約25%のInGaN井戸層とGaNバリア層で構成され、井戸層の厚さは9nm、バリア層の厚さは9nm、井戸層周期は3周期である。活性層24の上には、第2導電型(p型)のAldGaeN層(d+e=1, d≧0,e≧0)26が形成されている。第2導電型(p型)のAldGaeN層(d+e=1,d≧0, e≧0)26は例えば、Al組成比が10%のAlGaN層で厚さは0.2μmである。本実施形態のAldGaeN層26には、p型のドーパントとして、Mgがドープされている。ここでMgは、AldGaeN層26に対して、例えば、1018cm-3程度ドープされている。またこの例では、活性層24とAldGaeN層26との間に、アンドープのGaN層(不図示)が形成されている。
 さらに、この例においては、AldGaeN層26の上には、第2導電型(例えば、p型)のGaN層(不図示)が形成されている。さらに、p+-GaNからなるコンタクト層上には、Mg合金層32が形成されており、その上にPt層34が形成されている。このMg合金層32とPt層34の積層構造が電極(p型電極)30となる。
 なお、半導体積層構造20には、AluGavInwN層22の表面を露出させる凹部(リセス)42が形成されており、凹部42の底面に位置するAluGavInwN層22には、電極(n型電極)40が形成されている。凹部42の大きさは、例えば、幅(または径)は20μmであり、深さは1μmである。電極40は、例えば、Ti層とAl層とPt層(例えば、厚さはそれぞれ、5nm、100nm、10nm)の積層構造から成る電極である。
 本実施形態の窒化物系半導体発光素子100によれば、動作電圧(Vop)を、従来のPd/Pt電極を用いたm面LEDの場合よりも約1.3V低減させることができ、その結果、消費電力を低減できることがわかった。
 次に、引き続き図3(a)を参照しながら、本実施形態の窒化物系半導体発光素子100の製造方法を説明する。
 まず、m面基板10を用意する。本実施形態では、基板10として、GaN基板を用いる。本実施形態のGaN基板は、HVPE(Hydride Vapor Phase Epitaxy)法を用いて得られる。
 例えば、まずc面サファイア基板上に数mmオーダの厚膜GaNを成長する。その後、厚膜GaNをc面に垂直方向、m面で切り出すことによりm面GaN基板が得られる。GaN基板の作製方法は、上記に限らず、例えばナトリウムフラックス法などの液相成長やアモノサーマル法などの融液成長方法を用いてバルクGaNのインゴットを作製し、それをm面で切り出す方法でも良い。
 基板10としては、GaN基板の他、例えば、酸化ガリウム、SiC基板、Si基板、サファイア基板などを用いることができる。基板上にm面から成るGaN系半導体をエピタキシャル成長するためのは、SiCやサファイア基板の面方位もm面である方が良い。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしも成長用表面がm面であることが必須とならない場合もあり得る。少なくとも半導体積層構造20の表面がm面であれば良い。本実施形態では、基板10の上に、MOCVD(Metal Organic Chemical Vapor Deposition)法により結晶層を順次形成していく。
 次に、m面GaN基板10の上に、AluGavInwN層22を形成する。AluGavInwN層22として、例えば、厚さ3μmのAlGaNを形成する。GaNを形成する場合には、m面GaN基板10の上に、1100℃でTMG(Ga(CH33)、TMA(Al(CH33)およびNH3を供給することによってGaN層を堆積する。
 次に、AluGavInwN層22の上に、活性層24を形成する。この例では、活性層24は、厚さ9nmのGa0.9In0.1N井戸層と、厚さ9nmのGaNバリア層が交互に積層された厚さ81nmのGaInN/GaN多重量子井戸(MQW)構造を有している。Ga0.9In0.1N井戸層を形成する際には、Inの取り込みを行なうために、成長温度を800℃に下げることが好ましい。
 次に、活性層24の上に、例えば厚さ30nmのアンドープGaN層を堆積する。次いで、アンドープGaN層の上に、AldGaeN層26を形成する。AldGaeN層26として、例えば、TMG、NH3、TMA、TMIおよびp型不純物としてCp2Mg(シクロペンタジエニルマグネシウム)を供給することにより、厚さ70nmのp-Al0.14Ga0.86Nを形成する。
 次に、AldGaeN層26の上に、例えば厚さ0.5μmのp-GaNコンタクト層を堆積する。p-GaNコンタクト層を形成する際には、p型不純物としてCp2Mgを供給する。
 その後、塩素系ドライエッチングを行なうことにより、p-GaNコンタクト層、AldGaeN層26、アンドープGaN層および活性層24の一部を除去して凹部42を形成し、AlxGayInzN層22のn型電極形成領域を露出させる。次いで、凹部42の底部に位置するn型電極形成領域の上に、n型電極40として、Ti/Pt層を形成する。
 さらに、p-GaNコンタクト層の上に、Mg層(厚さ2nm)を形成し、さらにMg層上にPt層(厚さ75nm)を形成する。その後、窒素雰囲気下、600℃で10分間の熱処理を行なうことによって、Pt層のうちMg層側に配置する部分がMg層へ進入し、Mg合金層32が形成される。Pt層のうちMg層と合金を形成しなかった部分は、Mg合金層32の上にPt層34として残る。本実施形態の熱処理は、Mg合金層形成のための熱処理とp型GaN層のGa原子を電極側へ拡散させるための熱処理とを兼ねている。
 本実施形態では、Mg層の形成に原料金属をパルス的に蒸発させながら蒸着を行なう手法(パルス蒸着法)を用いている。より具体的には、真空中に保持したるつぼ中のMg金属に、パルス的に電子ビームを照射し、パルス的に原料金属を蒸発させる。その原料金属分子または原子がp-GaNコンタクト層に付着し、Mg層が形成される。パルスは例えばパルス幅0.5秒、繰り返し1Hzである。このような手法により、Mg層として緻密で良好な品質の膜が形成された。Mg層が緻密になる理由は、パルス的な蒸着を行なうことにより、p-GaNコンタクト層に衝突するMg原子またはMg原子クラスタの運動エネルギーが増加するためであると考えられる。
 一般にMgは水や空気との接触により酸化されやすい元素である。しかし、本実施形態のパルス蒸着法を用いると、酸化されにくく、耐水、耐酸素性に優れたMg層が得られる。
 なお、本実施形態では、原料金属(Mg金属)をパルス的に蒸発させながら蒸着を行なう手法を採用しているが、Mg層を形成できるのであれば、他の手法を採用することも可能である。緻密で良質なMg層を形成する他の手法としては、例えばスパッタリング、熱CVD法や分子線エピタキシ(MBE)などを採用することが可能である。
 なお、その後、レーザリフトオフ、エッチング、研磨などの方法を用いて、基板10、AluGavInwN層22の一部までを除去してもよい。この場合、基板10のみを除去してもよいし、基板10およびAluGavInwN層22の一部だけを選択的に除去してもよい。もちろん、基板10、AluGavInwN層22を除去せずに残してもよい。以上の工程により、本実施形態の窒化物系半導体発光素子100が形成される。
 本実施形態の窒化物系半導体発光素子100において、n型電極40とp型電極30との間に電圧を印加すると、p型電極30から活性層24に向かって正孔が、n型電極40から活性層24に向かって電子が注入され、例えば450nm波長の発光が生じる。
 ここで、図8(a)に、m面GaN上にMgPt合金/Pt層からなる電極を用いた発光ダイオードの電流-電圧特性を示す。比較のため、発光ダイオードの窒化物系半導体の構造を同じで、Pd/Pt層からなる電極を用いた発光ダイオード(従来例)、およびMg/Pt層からなる電極を用いた発光ダイオードの特性も示す。これらの発光ダイオードにおける電極の構成および熱処理条件は、以下の表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 この発光ダイオードの構成は、m面GaN基板上に、n型GaN層、InGaN井戸層(3層)とGaNバリア層(2層)とが交互に積層された活性層、p型GaN層が積層されたものである。さらにp型GaN層上にはp型電極として、Mg/Pt電極またはPd/Pt電極を設けている。n型電極は、p型GaN層、活性層をエッチングし、n型GaN層を露出させ、n型GaN層上に形成している。
 まず、従来の電極(Pd/Pt層からなる電極)と本実施形態の電極(MgPt合金/Pt層からなる電極)とを比較する。Pd/Pt層からなる電極を用いた発光ダイオードの立ち上がり電圧は約3.2Vであるのに対し、MgPt合金/Pt層からなる電極を用いた発光ダイオードの立ち上がり電圧は約2.7Vであり、本実施形態の立ち上がり電圧は従来よりも小さい値である。また、電流値20mAでの動作電圧で比較すると、MgPt合金/Pt層からなる電極を用いた発光ダイオードでは、Pd/Pt層からなる電極を用いた発光ダイオードよりも1.3V以上小さくなっていることがわかる。このように、本実施形態の電極を用いた発光ダイオードでは、従来と比較して動作電圧の大幅な低減が可能である。
 次に、本実施形態の電極(MgPt合金/Pt層からなる電極)とMg/Pt層からなる電極とを比較すると、本実施形態の電極を用いた発光ダイオードの立ち上がり電圧および電流値20mAでの動作電圧の値は、Mg/Pt層からなる電極を用いた発光ダイオードの値よりもやや大きい。
 図8(b)はMgPt合金/Pt電極、Pd/Pt電極およびMg/Pt電極の各々のコンタクト抵抗を比較して示すグラフである。いずれのサンプルでも、電極はp型GaN層に接触している。
 熱処理前における各層の厚さは、以下の表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 また、熱処理温度および熱処理時間は以下の表5に示す通りである。
Figure JPOXMLDOC01-appb-T000005
 図8(b)に示すように、MgPt合金/Pt層からなる電極のコンタクト抵抗は、Pd/Pt層からなる電極のコンタクト抵抗よりも低下している。また、MgPt合金/Pt層からなる電極のコンタクト抵抗は、Mg/Pt層からなる電極のコンタクト抵抗よりもやや高い値である。
 図8(a)、(b)に示す結果から、本実施形態の電極の電気特性(立ち上がり電圧および動作電圧の特性)およびコンタクト抵抗は、Mg/Pt層からなる電極よりもやや劣る値となっている。しかしながら、密着性という点では、本実施形態の電極はMg/Pt層よりも優れた特性を示し、本実施形態の電極は信頼性という点で優れているといえる。
 図9(a)はMgPt合金/Pt層からなる電極を有する発光素子における電極表面の光学顕微鏡の図面代用写真であり、図9(b)はMg/Pt層からなる電極を有する発光素子における電極表面の光学顕微鏡の図面代用写真である。MgPt合金/Pt層からなる電極を有する発光素子では、図9(a)に示すようにp型電極30の剥がれは全く生じていなかったが、Mg/Pt層からなる電極を有する発光素子では、図9(b)に示すようにp型電極130の端の一部に剥がれが生じているものもあった。なお、図9(b)は、形成した発光素子のうち電極に剥がれが見られるものを選んで撮影したものであり、Mg/Pt層からなる電極を有するデバイスにおいても、高い確率で電極の剥がれが生じるわけではない。
 次に、図10を参照しながら、Au層、および、MgAu合金/Au層からなる電極を用いた例(比較例)について説明する。図10(a)は、m面のGaN層の上に、Au層、または、MgAu合金/Au層の電極を形成し、その固有コンタクト抵抗(Ω・cm2)を測定した結果を示している。なお、この固有コンタクト抵抗は、電極を形成して熱処理を行った後の固有コンタクト抵抗の値である。MgAu合金/Au層の電極は、Mg層とAu層とを積層した後に温度600℃で10分間の熱処理を行なうことによって形成した。熱処理によりMgとAuとは容易に合金化するため、Mg層およびAu層は、熱処理後にはMgAu合金とAu層との積層(すなわちMgAu合金/Au層)になっていると考えられる。
 図10(a)の結果からわかるように、Au層の電極に比べ、MgAu合金/Au層の電極を用いた場合の方が固有コンタクト抵抗の特性は悪化する。なお、Au層の電極のコンタクト抵抗は、Pd/Pt層からなる電極のコンタクト抵抗とほぼ等しいことを確認しており、図10(a)の結果から、Pd/Pt層からなる電極よりもMgAu合金/Au層からなる電極のほうが高いコンタクト抵抗を示すことがわかる。この点、本実施形態の電極(例えば、MgPt合金/Pt層)の構成における特性向上の結果と顕著に相違する。なお、上述したように、Mgは水や空気との接触により酸化されやすい元素であるので、Mg層の単独での電極では無くAu層の積層体(熱処理後はMgAu合金/Au層)として使用される構成は検討候補の一つに成り得る。しかしながら、実際には、Au層と比較してMgAu合金/Au層のコンタクト抵抗は高くなるがゆえに、コンタクト特性は悪い。換言すると、本実施形態の構成(例えば、MgPt合金/Pt層)のコンタクト抵抗の特性が優れていることは、MgAu合金とAu層からなる電極の測定結果が悪かったことを鑑みると、当業者にとって予見できない効果を有していたと思われる。
 なお、図10(a)に示す結果では、Au電極(またはPd/Pt電極)におけるコンタクト抵抗の絶対値が比較的低い(3×10-3Ω・cm2以下)。これは、本実験で用いたm面GaN層では、Mgドープ量が最適化されているためである。しかし、2つのAu電極(またはPd/Pt電極)をp型GaN層に接触させて電流-電圧特性を測定すると、ショットキー電圧が観測された。このように、Auは、m面を表面とするp型GaN層に接触させる電極の材料として好ましくない。一方、m面GaN層を用いて本実施形態の電極(例えば、MgPt合金/Pt)を作製してコンタクト抵抗を測定したところ、5×10-4Ω・cm2以下の値が測定された。また、本実施形態の電極をp型GaN層に接触させて電流-電圧特性を測定すると、ショットキー電圧は観測されず、本実施形態の電極はm面を表面とするp型GaN層とオーミックコンタクトを形成することがわかった。
 また、図10(b)は、熱処理後のMgAu合金/Au層の電極の表面を示す図面代用写真であり、一方、図10(c)は、熱処理後のAu層の電極の表面を示す図面代用写真である。両者を比べると、MgAu合金/Au層の電極の方の膜質が悪いことがわかった。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項では無く、勿論、種々の改変が可能である。
 なお、本発明の実施形態と本質的に構成を異にするものであるが、関連する構造が特許文献3、4に開示されている。しかしながら、特許文献3および4には、窒化ガリウム系半導体層の結晶面がm面であることの記載は一切無く、したがって、これらの文献の開示はc面の窒化ガリウム系半導体層の上に電極を形成した技術に関するものである。特に、特許文献3は、Mg層の上にAu層を積層した構成に関するものであり、その積層構造の電極を仮にm面上に形成したとしても、本実施形態の電極の効果が得られるものでは無い。また、特許文献4は、Ni、Cr、Mgからなる金属層に言及しているが、開示されている実施例はNi層を下層にした電極構造を有しているもののみである。特許文献3、4とも、c面の窒化ガリウム系半導体層の上に形成された電極構造に関するものであり、m面の窒化ガリウム系半導体層に対するコンタクト抵抗に関する問題も解決策も教示されていない。
 また、本願発明者は、先願(特願2009-030147号)において、m面を表面とするp型GaN層にMg層が接触している電極構造(Mg電極)が低いコンタクト抵抗を示すことを開示した。本願発明のMg合金層電極のコンタクト抵抗は、上記先願の電極のコンタクト抵抗よりも高い値である。しかし、従来のPd/Pt電極と比較すると、本願発明のMg合金層電極を用いた発光ダイオードの動作電圧の低減効果は顕著であることは図8(a)で示した通りである。また、Mg合金層はMg層と比較して半導体積層構造との密着性が強いため、量産過程における歩留まり向上やデバイス信頼性向上において前記Mg電極よりも優位であるといえる。Mg合金層と半導体積層構造との密着性が強い要因としてはMgにPt(あるいはMo、Pd)を加えることにより酸化されにくくなること、硬度が向上することにより歪みによる反り返りが抑制されること、さらにはMg合金層中のPt(あるいはMo、Pd)が半導体積層構造と接することでMg単体のときよりも密着性が強化されることなどが考えられる。
 本発明に係る上記の発光素子は、そのまま光源として使用されても良い。しかし、本発明に係る発光素子は、波長変換のための蛍光物質を備える樹脂などと組み合わせれば、波長帯域の拡大した光源(例えば白色光源)として好適に使用され得る。
 図11は、このような白色光源の一例を示す模式図である。図11の光源は、図3(a)に示す構成を有する発光素子100と、この発光素子100から放射された光の波長を、より長い波長に変換する蛍光体(例えばYAG:Yttrium Alumninum Garnet)が分散された樹脂層200とを備えている。発光素子100は、表面に配線パターンが形成された支持部材220上に搭載されており、支持部材220上には発光素子100を取り囲むように反射部材240が配置されている。樹脂層200は、発光素子100を覆うように形成されている。
 なお、本発明におけるコンタクト構造は、Mg合金層と接触するp型半導体領域がGaN系半導体、すなわちAlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体からなる場合に前述の優れた効果を発揮する。このようなコンタクト抵抗低減の効果は、当然に、LED以外の発光素子(半導体レーザ)や、発光素子以外のデバイス(例えばトランジスタや受光素子)においても得ることが可能である。
 実際のm面半導体層の表面(主面)は、m面に対して完全に平行な面である必要は無く、m面から僅かな角度(0度より大きく±1°未満)で傾斜していても良い。表面がm面に対して完全に平行な表面を有する基板や半導体層を形成することは、製造技術の観点から困難である。このため、現在の製造技術によってm面基板やm面半導体層を形成した場合、現実の表面は理想的なm面から傾斜してしまう。傾斜の角度および方位は、製造工程によってばらつくため、表面の傾斜角度および傾斜方位を正確に制御することは難しい。なお、基板や半導体の表面(主面)をm面から1°以上の角度で傾斜させることを意図的に行う場合がある。以下に説明する実施形態における窒化ガリウム系化合物半導体発光素子は、m面から1°以上の角度で傾斜した面を主面とするp型半導体領域を備えている。
 [他の実施形態]
 図12は、本実施形態の窒化ガリウム系化合物半導体発光素子100aを示す断面図である。m面から1°以上の角度で傾斜した面を主面とするp型半導体領域を形成するため、本実施形態に係る窒化ガリウム系化合物半導体発光素子100aは、m面から1°以上の角度で傾斜した面を主面とするGaN基板10aを用いている。主面がm面から1°以上の角度で傾斜している基板は、一般に「オフ基板」と称される。オフ基板は、単結晶インゴットから基板をスライスし、基板の表面を研磨する工程で、意図的にm面から特定方位に傾斜した面を主面とするように作製され得る。このGaN基板10a上に、半導体積層構造20aを形成する。図12に示す半導体層22a、24a、26aは主面がm面から1°以上の角度で傾斜している。これは傾斜した基板の主面上に、各種半導体層が積層されると、これらの半導体層の表面(主面)もm面から傾斜するからである。GaN基板10aの代わりに、例えば、m面から特定方向に傾斜した面を表面とするサファイア基板やSiC基板を用いてもよい。また、本実施形態の構成においては、少なくとも半導体積層構造20aのうち、p型電極30aと接触するp型半導体領域の表面がm面から1°以上の角度で傾斜していればよい。
 次に、図13~図17を参照しながら、本実施形態におけるp型半導体領域の傾斜について詳細を説明する。
 図13(a)は、GaN系化合物半導体の結晶構造(ウルツ鉱型結晶構造)を模式的に示す図であり、図2の結晶構造の向きを90°回転させた構造を示している。GaN結晶のc面には、+c面および-c面が存在する。+c面はGa原子が表面に現れた(0001)面であり、「Ga面」と称される。一方、-c面はN(窒素)原子が表面に現れた(000-1)面であり、「N面」と称される。+c面と-c面とは平行な関係にあり、いずれも、m面に対して垂直である。c面は、極性を有するため、このように、c面を+c面と-c面に分けることができるが、非極性面であるa面を、+a面と-a面に区別する意義はない。
 図13(a)に示す+c軸方向は、-c面から+c面に垂直に延びる方向である。一方、a軸方向は、図2の単位ベクトルa2に対応し、m面に平行な[-12-10]方向を向いている。図13(b)は、m面の法線、+c軸方向、およびa軸方向の相互関係を示す斜視図である。m面の法線は、[10-10]方向に平行であり、図13(b)に示されるように、+c軸方向およびa軸方向の両方に垂直である。
 GaN系化合物半導体層の主面がm面から1°以上の角度で傾斜するということは、この半導体層の主面の法線がm面の法線から1°以上の角度で傾斜することを意味する。
 次に、図14を参照する。図14(a)および(b)は、それぞれ、GaN系化合物半導体層の主面およびm面の関係を示す断面図である。この図は、m面およびc面の両方に垂直な断面図である。図14には、+c軸方向を示す矢印が示されている。図14に示したように、m面は+c軸方向に対して平行である。従って、m面の法線ベクトルは、+c軸方向に対して垂直である。
 図14(a)および(b)に示す例では、GaN系化合物半導体層における主面の法線ベクトルが、m面の法線ベクトルからc軸方向に傾斜している。より詳細に述べれば、図14(a)の例では、主面の法線ベクトルは+c面の側に傾斜しているが、図14(b)の例では、主面の法線ベクトルは-c面の側に傾斜している。本明細書では、前者の場合におけるm面の法線べクトルに対する主面の法線ベクトルの傾斜角度(傾斜角度θ)を正の値にとり、後者の場合における傾斜角度θを負の値にとることにする。いずれの場合でも、「主面はc軸方向に傾斜している」といえる。
 本実施形態では、p型半導体領域の傾斜角度が1°以上5°以下の範囲、および、傾斜角度が-5°以上-1°以下の範囲にあるので、p型半導体領域の傾斜角度が0°より大きく±1°未満の場合と同様に本発明の効果を奏することができる。以下、図15を参照しながら、この理由を説明する。図15(a)および(b)は、それぞれ、図14(a)および(b)に対応する断面図であり、m面からc軸方向に傾斜したp型半導体領域における主面の近傍領域を示している。傾斜角度θが5°以下の場合には、図15(a)および(b)に示すように、p型半導体領域の主面に複数のステップが形成される。各ステップは、単原子層分の高さ(2.7Å)を有し、ほぼ等間隔(30Å以上)で平行に並んでいる。このようなステップの配列により、全体としてm面から傾斜した主面が形成されるが、微視的には多数のm面領域が露出していると考えられる。
 図16は、m面から-c軸方向に1°傾斜したp型半導体領域の断面TEM写真である。p型半導体領域の表面には、m面が明確に表出しており、傾斜は原子ステップによって形成されていることが確認される。主面がm面から傾斜したGaN系化合物半導体層の表面がこのような構造となるのは、m面がもともと結晶面として非常に安定だからである。同様の現象は、主面の法線ベクトルの傾斜方向が+c面および-c面以外の面方位を向いていても生じると考えられる。主面の法線ベクトルが例えばa軸方向に傾斜していても、傾斜角度が1°以上5°以下の範囲にあれば同様であると考えられる。以上より、p型窒化ガリウム系化合物半導体層の表面(主面)をm面から1°以上の角度で傾斜している場合であっても、p型電極に接触する面は多数のm面領域が露出しているため、コンタクト抵抗は傾斜角に依存しないものと考えられる。
 図17は、m面から-c軸方向に0°、2°、または5°傾斜したp型半導体領域の上にMg/Pt層の電極を形成し、そのコンタクト抵抗(Ω・cm2)を測定した結果を示すグラフである。グラフの縦軸は固有コンタクト抵抗、横軸は傾斜角度(m面の法線とp型半導体領域における表面の法線とが形成する角度)θである。なお、この固有コンタクト抵抗は、電極を形成して熱処理を行った後の固有コンタクト抵抗の値である。図17の結果から分かるように、傾斜角度θが5°以下であれば、コンタクト抵抗は、ほぼ一定の値となる。電極のうちp型半導体領域に接触する部分がMgとPtの合金からなる場合にも、m面からの傾斜角度θが5°以下であれば、コンタクト抵抗は、ほぼ一定の値となると考えられる。
 以上から、p型半導体領域の表面の傾斜角度θが5°以下であれば、本発明の構成によりコンタクト抵抗は低減されると考えられる。
 なお、傾斜角度θの絶対値が5°より大きくなると、ピエゾ電界によって内部量子効率が低下する。このため、ピエゾ電界が顕著に発生するのであれば、m面成長により半導体発光素子を実現することの意義が小さくなる。したがって、本発明では、傾斜角度θの絶対値を5°以下に制限する。しかし、傾斜角度θを例えば5°に設定した場合でも、製造ばらつきにより、現実の傾斜角度θは5°から±1°程度ずれる可能性がある。このような製造ばらつきを完全に排除することは困難であり、また、この程度の微小な角度ずれは、本発明の効果を妨げるものでもない。
 本発明によれば、主面の法線とm面の法線とが形成する角度が1°以上5°以下であるGaN系半導体積層構造体において、そのコンタクト抵抗を低減することができる。したがって、従来、コンタクト抵抗の特性の悪さから積極的な利用が困難であった、主面の法線とm面の法線とが形成する角度が1°以上5°以下であるGaN系半導体積層構造体の産業上の利用可能性が向上する。
 10、10a  基板(GaN系基板)
 12、12a  基板の表面(m面)
 20、20a  半導体積層構造
 22、22a  AluGavInwN層
 24、24a  活性層
 26、26a  AldGaeN層
 30、30a  p型電極
 32  Mg合金層
 34  金属層(Pt層)
 40、40a  n型電極
 42、42a  凹部
 100、100a  窒化物系半導体発光素子
 200  樹脂層
 220  支持部材
 240  反射部材

Claims (21)

  1.  p型GaN系半導体領域を有する窒化物系半導体積層構造と、
     前記p型GaN系半導体領域上に設けられた電極と
    を備え、
     前記p型GaN系半導体領域における主面の法線とm面の法線とが形成する角度が1°以上5°以下であり、
     前記電極は、前記p型GaN系半導体領域の前記主面に接触し、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を含む、窒化物系半導体素子。
  2.  前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される請求項1に記載の窒化物系半導体素子。
  3.  前記電極は、前記Mg合金層と、前記Mg合金層の上に形成された金属層とを含み、
     前記金属層は、Pt、MoおよびPdのうち前記Mg合金層に含まれる金属から形成されている、請求項1または2に記載の窒化物系半導体素子。
  4.  前記窒化物系半導体積層構造は、
     AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層を有し、前記活性層は光を発する、請求項1から3の何れか一つに記載の窒化物系半導体素子。
  5.  前記p型GaN系半導体領域はp型コンタクト層である、請求項1から4の何れか一つに記載の窒化物系半導体素子。
  6.  前記Mg合金層の厚さは0.1nm以上5nm以下である、請求項1から5の何れか一つに記載の窒化物系半導体素子。
  7.  前記Mg合金層の厚さは前記金属層の厚さ以下である、請求項3に記載の窒化物系半導体素子。
  8.  前記Mg合金層中のN濃度はGa濃度よりも低い、請求項1から7の何れか一つに記載の窒化物系半導体素子。
  9.  前記Mg合金層はアイランド状である請求項1から8の何れか一つに記載の窒化物系半導体素子。
  10.  前記窒化物系半導体積層構造を支持する半導体基板を有している、請求項1から9の何れか一つに記載の窒化物系半導体素子。
  11.  窒化物系半導体発光素子と、
     前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部と
    を備える光源であって、
     前記窒化物系半導体発光素子は、
     p型GaN系半導体領域を有する窒化物系半導体積層構造と、
     前記p型GaN系半導体領域上に設けられた電極とを備え、
     前記p型GaN系半導体領域における主面の法線とm面の法線とが形成する角度が1°以上5°以下であり、
     前記電極は、前記p型GaN系半導体領域の前記主面に接触し、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を含む、光源。
  12.  前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される請求項11に記載の光源。
  13.  基板を用意する工程(a)と、
     GaN系半導体からなり、前記半導体の主面の法線とm面の法線とが形成する角度が1°以上5°以下であるp型GaN系半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、
     前記窒化物系半導体積層構造の前記p型GaN系半導体領域の前記主面上に電極を形成する工程(c)と
    を含み、
     前記工程(c)は、
     前記p型GaN系半導体領域の前記主面上に、Pt、MoおよびPdからなる群から選択される金属とMgとから構成されるMg合金層を形成する工程を含む、窒化物系半導体素子の製造方法。
  14.  前記p型GaN系半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成される請求項13に記載の窒化物系半導体素子の製造方法。
  15.  前記Mg合金層を形成する工程は、
     前記p型GaN系半導体領域の前記主面上に、Mg層を形成する工程と、
     前記Mg層の上に、Pt、MoおよびPdからなる群から選択される導電層を形成する工程と、
     加熱処理を行なうことにより、前記Mg層と前記導電層の少なくとも一部とを合金化する工程とを含む、請求項13または14に記載の窒化物系半導体素子の製造方法。
  16.  前記加熱処理は、500℃以上700℃以下の温度で実行される、請求項15に記載の窒化物系半導体素子の製造方法。
  17.  前記加熱処理は、550℃以上650℃以下の温度で実行される、請求項16に記載の窒化物系半導体素子の製造方法。
  18.  前記Mg層を形成する工程は、パルス的に電子ビームを照射することによってMgを前記p型GaN系半導体領域の前記主面の上に蒸着させることを実行する、請求項15から17の何れか一つに記載の窒化物系半導体素子の製造方法。
  19.  前記Mg層は0.1nm以上5nm以下の厚さで前記窒化物系半導体積層構造の上に堆積される、請求項15から18の何れか一つに記載の窒化物系半導体素子の製造方法。
  20.  前記工程(b)を実行した後において、前記基板を除去する工程を含む、請求項13から19の何れか一つに記載の窒化物系半導体素子の製造方法。
  21.  前記Mg合金層を形成する工程は、
     Mgと、Pt、MoおよびPdからなる群から選択される金属との混合物または化合物を、前記p型GaN系半導体領域の前記主面上に蒸着する工程と、
     加熱処理を行なう工程とを含む、請求項13または14に記載の窒化物系半導体素子の製造方法。
PCT/JP2011/001027 2010-04-01 2011-02-23 窒化物系半導体素子およびその製造方法 WO2011125279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180003875.1A CN102687292B (zh) 2010-04-01 2011-02-23 氮化物系半导体元件及其制造方法
EP11765181.0A EP2541624A4 (en) 2010-04-01 2011-02-23 SEMICONDUCTOR NITRIDE ELEMENT AND METHOD OF MANUFACTURING THE SAME
JP2011520267A JP4843123B2 (ja) 2010-04-01 2011-02-23 窒化物系半導体素子およびその製造方法
US13/596,849 US8729587B2 (en) 2010-04-01 2012-08-28 Nitride semiconductor element and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-085221 2010-04-01
JP2010085221 2010-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/596,849 Continuation US8729587B2 (en) 2010-04-01 2012-08-28 Nitride semiconductor element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2011125279A1 true WO2011125279A1 (ja) 2011-10-13

Family

ID=44762251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001027 WO2011125279A1 (ja) 2010-04-01 2011-02-23 窒化物系半導体素子およびその製造方法

Country Status (5)

Country Link
US (1) US8729587B2 (ja)
EP (1) EP2541624A4 (ja)
JP (1) JP4843123B2 (ja)
CN (1) CN102687292B (ja)
WO (1) WO2011125279A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021606A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
US8729587B2 (en) 2010-04-01 2014-05-20 Panasonic Corporation Nitride semiconductor element and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573154B2 (ja) * 2014-06-05 2019-09-11 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
EP3776672A4 (en) * 2018-03-30 2021-12-29 The Regents of The University of California Method of fabricating non-polar and semi-polar devices using epitaxial lateral overgrowth

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711430A (ja) * 1993-06-29 1995-01-13 Mitsubishi Electric Corp 電子ビーム蒸着装置と電子ビームを用いた溶接装置及び自由電子レーザ装置
JPH0864871A (ja) 1994-08-22 1996-03-08 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子
JPH1140846A (ja) 1997-07-15 1999-02-12 Nec Corp 窒化ガリウム系半導体のp型電極およびその形成方法
JPH11274554A (ja) * 1998-03-26 1999-10-08 Toshiba Corp III−V族化合物半導体発光素子のp側電極及びIII−V族化合物半導体発光素子
JP2001160656A (ja) * 1999-12-01 2001-06-12 Sharp Corp 窒化物系化合物半導体装置
JP2001308462A (ja) 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
JP2003332697A (ja) 2002-05-09 2003-11-21 Sony Corp 窒化物半導体素子及びその製造方法
JP2008153285A (ja) * 2006-12-14 2008-07-03 Rohm Co Ltd 窒化物半導体装置および窒化物半導体製造方法
JP2009030147A (ja) 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd 冷延鋼板およびめっき鋼板ならびに該鋼板の製造方法
JP2009536554A (ja) 2006-05-09 2009-10-15 ショーン・ピー・フォティク 手持ち式吸引注射器及び方法
WO2010103804A1 (ja) * 2009-03-11 2010-09-16 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010116703A1 (ja) * 2009-04-06 2010-10-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294493A (ja) 1997-02-21 1998-11-04 Toshiba Corp 半導体発光デバイス
US6281524B1 (en) 1997-02-21 2001-08-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JPH10294531A (ja) 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体発光素子
JP4183299B2 (ja) 1998-03-25 2008-11-19 株式会社東芝 窒化ガリウム系化合物半導体発光素子
JP4292619B2 (ja) 1999-03-24 2009-07-08 パナソニック株式会社 半導体装置の製造方法
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
US6649942B2 (en) 2001-05-23 2003-11-18 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
KR100612832B1 (ko) 2003-05-07 2006-08-18 삼성전자주식회사 고성능의 질화갈륨계 광소자 구현을 위한 니켈계 고용체를 이용한 오믹 접촉 형성을 위한 금속박막 및 그 제조방법
JP2005268581A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
US7408199B2 (en) * 2004-04-02 2008-08-05 Nichia Corporation Nitride semiconductor laser device and nitride semiconductor device
KR100725610B1 (ko) * 2006-04-18 2007-06-08 포항공과대학교 산학협력단 오믹 전극 형성 방법 및 반도체 발광 소자
JP2008277323A (ja) 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 半導体発光素子およびウエハ
JP2008109066A (ja) 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
WO2008047907A1 (fr) * 2006-10-20 2008-04-24 Panasonic Electric Works Co., Ltd. Substrat de saphir, élément luminescent à semi-conducteur nitrure utilisant le substrat de saphir, et procédé destiné à fabriquer l'élément luminescent à semi-conducteur nitrure
JP2008235804A (ja) 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
JP2008258503A (ja) 2007-04-06 2008-10-23 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法
KR100835116B1 (ko) 2007-04-16 2008-06-05 삼성전기주식회사 질화물 반도체 발광 소자
JP4924185B2 (ja) 2007-04-27 2012-04-25 住友電気工業株式会社 窒化物半導体発光素子
WO2010052810A1 (ja) 2008-11-06 2010-05-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4843123B2 (ja) 2010-04-01 2011-12-21 パナソニック株式会社 窒化物系半導体素子およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711430A (ja) * 1993-06-29 1995-01-13 Mitsubishi Electric Corp 電子ビーム蒸着装置と電子ビームを用いた溶接装置及び自由電子レーザ装置
JPH0864871A (ja) 1994-08-22 1996-03-08 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子
JPH1140846A (ja) 1997-07-15 1999-02-12 Nec Corp 窒化ガリウム系半導体のp型電極およびその形成方法
JPH11274554A (ja) * 1998-03-26 1999-10-08 Toshiba Corp III−V族化合物半導体発光素子のp側電極及びIII−V族化合物半導体発光素子
JP2001160656A (ja) * 1999-12-01 2001-06-12 Sharp Corp 窒化物系化合物半導体装置
JP2001308462A (ja) 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
JP2003332697A (ja) 2002-05-09 2003-11-21 Sony Corp 窒化物半導体素子及びその製造方法
JP2009536554A (ja) 2006-05-09 2009-10-15 ショーン・ピー・フォティク 手持ち式吸引注射器及び方法
JP2008153285A (ja) * 2006-12-14 2008-07-03 Rohm Co Ltd 窒化物半導体装置および窒化物半導体製造方法
JP2009030147A (ja) 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd 冷延鋼板およびめっき鋼板ならびに該鋼板の製造方法
WO2010103804A1 (ja) * 2009-03-11 2010-09-16 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010116703A1 (ja) * 2009-04-06 2010-10-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541624A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729587B2 (en) 2010-04-01 2014-05-20 Panasonic Corporation Nitride semiconductor element and manufacturing method therefor
WO2013021606A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
JP5512046B2 (ja) * 2011-08-09 2014-06-04 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
US8928004B2 (en) 2011-08-09 2015-01-06 Panasonic Intellectual Property Management Co., Ltd. Structure for growth of nitride semiconductor layer, stacked structure, nitride-based semiconductor element, light source, and manufacturing method for same

Also Published As

Publication number Publication date
EP2541624A4 (en) 2013-05-15
CN102687292B (zh) 2014-09-24
JP4843123B2 (ja) 2011-12-21
US20120319156A1 (en) 2012-12-20
EP2541624A1 (en) 2013-01-02
US8729587B2 (en) 2014-05-20
JPWO2011125279A1 (ja) 2013-07-08
CN102687292A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4558846B1 (ja) 窒化物系半導体素子およびその製造方法
JP4486701B1 (ja) 窒化物系半導体素子およびその製造方法
JP4568379B1 (ja) 窒化物系半導体素子およびその製造方法
JP4792136B2 (ja) 窒化物系半導体素子およびその製造方法
WO2010116703A1 (ja) 窒化物系半導体素子およびその製造方法
JP5232338B2 (ja) 窒化物系半導体素子およびその製造方法
JP5373230B2 (ja) 窒化物半導体発光素子およびその製造方法
JP5776021B2 (ja) 窒化物系半導体素子及び光源
JP4843123B2 (ja) 窒化物系半導体素子およびその製造方法
JP4659926B2 (ja) 窒化物系半導体素子およびその製造方法
JP4909448B2 (ja) 窒化物系半導体素子およびその製造方法
JP4820465B1 (ja) 窒化物系半導体素子およびその製造方法
JP4843122B2 (ja) 窒化物系半導体素子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003875.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011520267

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011765181

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE