WO2011122594A1 - 石炭ガス化複合発電プラント - Google Patents

石炭ガス化複合発電プラント Download PDF

Info

Publication number
WO2011122594A1
WO2011122594A1 PCT/JP2011/057738 JP2011057738W WO2011122594A1 WO 2011122594 A1 WO2011122594 A1 WO 2011122594A1 JP 2011057738 W JP2011057738 W JP 2011057738W WO 2011122594 A1 WO2011122594 A1 WO 2011122594A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
coal
gas
power plant
turbine
Prior art date
Application number
PCT/JP2011/057738
Other languages
English (en)
French (fr)
Inventor
弘実 石井
北川 雄一郎
柴田 泰成
悠一郎 浦方
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2011235782A priority Critical patent/AU2011235782A1/en
Priority to CN201180005164.8A priority patent/CN102695861B/zh
Priority to US13/515,393 priority patent/US9261020B2/en
Publication of WO2011122594A1 publication Critical patent/WO2011122594A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1612CO2-separation and sequestration, i.e. long time storage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a dry coal-fired air-blown coal gasification combined power plant.
  • Pulverized coal (hereinafter referred to as "pulverized coal") is collected by a pulverized coal duster and supplied to a gasifier through a pulverized coal bottle and a pulverized coal hopper.
  • the pulverized coal When pulverized coal is supplied from the pulverized coal hopper to the gasification furnace, the pulverized coal is transported to the gasification furnace using nitrogen gas which is an inert gas separated from air by an air separator. Also, the oxygen separated from the air by the air separator is led to the gasification furnace to burn the pulverized coal carried by the nitrogen gas. Pulverized coal is partially burned and pyrolyzed in a gasification furnace, and then gasified to become a product gas.
  • nitrogen gas which is an inert gas separated from air by an air separator.
  • the oxygen separated from the air by the air separator is led to the gasification furnace to burn the pulverized coal carried by the nitrogen gas. Pulverized coal is partially burned and pyrolyzed in a gasification furnace, and then gasified to become a product gas.
  • char contained in the product gas is separated through a filter.
  • the char separated by the filter is recovered to the gasifier and burned with the pulverized coal. At that time, the char is transported to the gasifier by the nitrogen gas generated by the air separator. Also, filters that separate chars are prevented from clogging by backwashing with nitrogen gas generated by the air separator.
  • the product gas that has passed through the filter is removed in the gas purification device from sulfur compounds and nitrogen compounds contained in the product gas and is led to the gas turbine as fuel gas.
  • the fuel gas led to the gas turbine is burned with air in the combustor of the gas turbine to become an exhaust gas.
  • the exhaust gas is discharged from the combustor to rotationally drive the turbine of the gas turbine.
  • the coaxially provided compressor is rotationally driven to compress air.
  • power is generated by a generator connected to the end of the rotating shaft.
  • the air compressed by the compressor is supplied to the combustor of the gas turbine and the gasification furnace.
  • the exhaust gas driven to rotate the turbine is led to a waste heat recovery boiler.
  • the exhaust gas led to the exhaust heat recovery boiler turns the water introduced to the exhaust heat recovery boiler by the heat in the exhaust gas into steam.
  • the steam generated in the waste heat recovery boiler rotationally drives a steam turbine installed on the rotation shaft of the gas turbine.
  • the rotating shaft connected to the steam turbine is further driven by the rotational driving of the steam turbine.
  • the generator is driven by the gas turbine and the steam turbine to perform combined power generation to improve the power generation efficiency.
  • the exhaust gas that has given heat to water in the exhaust heat recovery boiler is discharged from the stack to the outside of the integrated coal gasification combined cycle power plant.
  • a part of the exhaust gas derived from the gas turbine is led to the pulverized coal machine. Since the exhaust gas led to the pulverized coal machine is dry and has a large amount of heat, it is used to dry the coal supplied from the raw coal bunker.
  • Patent Document 1 discloses that exhaust gas derived from a gas turbine is recovered and circulated to a combustor or a compressor of the gas turbine with respect to utilization of carbon dioxide discharged from the coal gasification combined cycle power plant as described above. It is done.
  • Patent Document 1 it is necessary to provide an air separator for generating an inert gas for transporting pulverized coal and char to the gasification furnace and an inert gas used for backwashing the filter.
  • an air separator for generating an inert gas for transporting pulverized coal and char to the gasification furnace and an inert gas used for backwashing the filter.
  • the efficiency of the entire plant is reduced because a large power is required to operate the air separator.
  • the installation cost of the plant increases because of the installation of the air separator.
  • the air separator has a problem that the reliability for continuous operation is poor.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a coal gasification combined power plant which can reduce the installation cost of the plant and can prevent the reduction of the efficiency of the plant. Do.
  • the coal gasification combined cycle power plant of the present invention adopts the following means. That is, the integrated coal gasification combined cycle power plant according to the present invention comprises a pulverizer for pulverizing coal, a gasification furnace to which the coal pulverized by the pulverizer is introduced, and fuel gas gasified in the gasification furnace.
  • a waste heat recovery boiler generating steam from exhaust gas led from the gas turbine, a steam turbine to which the steam generated in the waste heat recovery boiler is introduced, the steam turbine, and A generator driven by the gas turbine to generate electric power, and a carbon dioxide recovery device for recovering a carbon dioxide by guiding a part of the exhaust gas led out from the gas turbine, and using the carbon dioxide, coal And pressurizing the hopper of the char to transport the carbon dioxide as a carrier gas to the gasification furnace.
  • nitrogen gas which is an inert gas generated by an air separator
  • nitrogen gas which is an inert gas generated by an air separator
  • a large amount of power is required, resulting in a problem that the efficiency of the integrated coal gasification combined cycle power plant is reduced.
  • the installation cost of the air separation unit increases and the cost of the combined coal gasification combined cycle power plant increases.
  • the air separator has a problem that the reliability during continuous operation is poor.
  • a carbon dioxide recovery device is provided to recover carbon dioxide in exhaust gas derived from a gas turbine.
  • the carbon dioxide recovered by the carbon dioxide recovery device is an inert gas. Therefore, the recovered carbon dioxide can be used to transport the coal to the gasifier. Therefore, it is not necessary to provide a device for separately generating an inert gas, the equipment cost of the integrated coal gasification combined cycle power plant can be reduced, and the efficiency deterioration of the combined coal gasification combined cycle power plant can be prevented.
  • the carbon dioxide recovery device is preferably provided between the gasification furnace and the combustor.
  • the fuel gas produced by the gasifier contains carbon dioxide. Therefore, if a carbon dioxide recovery device is provided between the gasification furnace and the combustor, carbon dioxide in the fuel gas derived from the gasification furnace can be recovered by the carbon dioxide recovery device. Therefore, since it is not necessary to generate an inert gas separately, while reducing the installation cost of a coal gasification combined power plant, efficiency fall of a coal gasification combined power plant can be prevented.
  • a carbon monoxide shift converter that produces carbon monoxide in a fuel gas into a predetermined amount of carbon dioxide be provided upstream of the carbon dioxide recovery device.
  • Carbon monoxide is produced to carbon dioxide by reacting it with steam on a catalyst. Therefore, if a carbon monoxide shift converter is provided on the upstream side of the carbon dioxide recovery device, even if the amount of carbon dioxide in the fuel gas derived from the gasification furnace is less than the predetermined amount, Carbon dioxide can be generated via a carbon monoxide shift converter and a carbon dioxide recovery device can be supplied with a predetermined amount of carbon dioxide. Therefore, since it is not necessary to generate an inert gas separately, while reducing the installation cost of a coal gasification combined power plant, efficiency fall of a coal gasification combined power plant can be prevented.
  • the predetermined amount of carbon dioxide refers to the amount equivalent to 10% of the fuel gas usually led to the carbon dioxide recovery device, but this amount may differ depending on the configuration of the coal and char transportation system.
  • the carbon dioxide recovery device recovers carbon dioxide of a predetermined amount or more necessary for transporting the coal or char and pressurizing the hopper
  • the recovery facility stores the carbon dioxide in the storage facility which is stored outside the plant (for example, underground). By introducing the carbon dioxide, it is possible to reduce the carbon dioxide released directly from the coal gasification combined power plant to the atmosphere.
  • hoppers that supply coal or char are pressurized with an inert gas (for example, carbon dioxide) to supply coal or char to the gasification furnace, but supply coal or char to the gasification furnace In the case of after-air, it is necessary to depressurize and exhaust once and receive the next coal. At this time, the exhaust gas is usually released to the atmosphere.
  • an inert gas for example, carbon dioxide
  • the depressurized exhaust system for depressurizing and evacuating the inside of the hopper does not release carbon dioxide to the atmosphere, and stores the carbon dioxide in a storage facility provided outside the coal gasification combined cycle power plant. Therefore, it is possible to reduce the amount of carbon dioxide emitted from the integrated coal gasification combined cycle power plant to the atmosphere, thereby preventing global warming.
  • the carbon dioxide recovery device be provided downstream of the exhaust heat recovery boiler.
  • the exhaust gas derived from the gas turbine contains carbon dioxide, and the exhaust gas is led to a waste heat recovery boiler. Then, carbon dioxide contained in the exhaust gas discharged from the exhaust heat recovery boiler is recovered by a carbon dioxide recovery device provided downstream of the exhaust heat recovery boiler. Therefore, carbon dioxide in the exhaust gas derived from the exhaust heat recovery boiler can be recovered by the carbon dioxide recovery device.
  • the carbon dioxide recovered by the carbon dioxide recovery device is stored in the storage facility which is stored outside the plant when carbon dioxide greater than a predetermined amount necessary for transporting the coal / char and pressurizing the hopper thereof is recovered.
  • the carbon dioxide By introducing the carbon dioxide, it is possible to reduce the carbon dioxide released from the integrated coal gasification combined cycle power plant to the atmosphere.
  • the amount of carbon dioxide released from the integrated coal gasification combined cycle power plant to the atmosphere can be reduced to prevent global warming.
  • Carbon dioxide in the exhaust gas derived from the gas turbine is recovered by providing a carbon dioxide recovery device.
  • the carbon dioxide recovered by the carbon dioxide recovery device is an inert gas. Therefore, the recovered carbon dioxide can be used to transport the coal to the gasifier. Therefore, it is not necessary to provide a device for separately generating an inert gas, the equipment cost of the integrated coal gasification combined cycle power plant can be reduced, and the efficiency deterioration of the combined coal gasification combined cycle power plant can be prevented.
  • FIG. 1 shows a schematic configuration view of a coal gasification combined cycle power plant according to a first embodiment of the present invention.
  • a coal gasification combined power plant (IGCC; Integrated) fueled by coal Coal Gasification Combined Cycle) 1 is mainly gasified by a coal supply facility 2, a coal gasification furnace (gasification furnace) 9 for gasifying coal supplied from the coal supply facility 2, and a coal gasification furnace 9.
  • Gas turbine 16 driven by burning the fuel gas, steam turbine 25 to which steam generated by utilizing the heat of exhaust gas derived from gas turbine 16 is introduced, gas turbine 16 and steam turbine 25 And a carbon dioxide recovery device 13 to which a part of the exhaust gas derived from the gas turbine 16 is introduced.
  • the coal supply facility 2 is provided on the upstream side of the coal gasification furnace 9 and supplies pulverized coal to the coal gasification furnace 9.
  • the coal supply facility 2 includes a raw coal bunker 3 in which raw coal is stored, a pulverized coal machine 4 for finely pulverizing the raw coal, and a pulverized coal for collecting dust in the pulverized coal which is pulverized to the pulverized coal machine 4
  • a dust collector 5 and a pulverized coal hopper 7 for storing pulverized coal are provided.
  • the raw material coal led from the raw coal bunker 3 to the pulverized coal machine 4 is pulverized by the pulverized coal machine 4 into pulverized coal of several ⁇ m to several hundreds ⁇ m.
  • the pulverized coal pulverized by the pulverized coal machine 4 is collected by the pulverized coal dust collector 5.
  • the pulverized coal collected in the pulverized coal dust collector 5 is led to a pulverized coal hopper 7 through a pulverized coal bin 6 for storing pulverized coal.
  • Pulverized coal in the pulverized coal hopper 7 is pressurized to a predetermined pressure by carbon dioxide gas supplied from a carbon dioxide recovery device 13 described later, and then conveyed to the coal gasification furnace 9 by a constant flow rate.
  • the carbon dioxide gas is used as a pulverized coal carrier gas for transporting the pulverized coal to the coal gasifier 9.
  • carbon dioxide gas which is a pulverized coal carrier gas
  • carbon dioxide gas which is a pulverized coal carrier gas
  • the coal gasification furnace 9 is connected to a coal gasification unit (not shown) formed so that the produced gas generated from the lower side to the upper side flows and a downstream side of the coal gasification part, and from the upper side to the lower side And a heat exchange unit (not shown) formed to flow the product gas.
  • the coal gasification unit is provided with a combustor (not shown) and a reductor (not shown).
  • the combustor burns a portion of pulverized coal and char.
  • a spouted bed is adopted for the combustor, but a fluidized bed type or a fixed bed type may be used.
  • the combustor and the reductor are respectively provided with a combustor burner (not shown) and a reductor burner (not shown). Pulverized coal is supplied from the pulverized coal hopper 7 to these burners.
  • the combustor burner is supplied with air compressed by a compressor 19 of a gas turbine 16 described later. That is, the integrated coal gasification combined cycle power plant 1 of this embodiment is so-called air blowing.
  • the air supplied from the compressor 19 of the gas turbine 16 is used as a gasifying agent.
  • the reductor gas ifies pulverized coal with the high temperature gas from the combustor.
  • combustible product gases such as carbon monoxide and hydrogen are generated from pulverized coal.
  • the coal gasification reaction is an endothermic reaction in which carbon in pulverized coal and char reacts with carbon dioxide and water in high-temperature gas to generate carbon monoxide and hydrogen.
  • Product gas generated in the reductor of the coal gasifier 9 is led to the porous filter 10.
  • the porous filter 10 captures char mixed in the product gas by passing the product gas.
  • the char captured by the porous filter 10 is led to the char hopper 12 through the char bin 11 storing the char.
  • the char recovered in the char hopper 12 is returned to the combustor burner of the coal gasifier 9 together with the carbon dioxide gas supplied by the carbon dioxide recovery device 13 and recycled. Further, the inside of the char hopper 12 is in a pressurized state by being supplied with carbon dioxide gas which is a gas for returning the char to the coal gasification furnace 9.
  • carbon dioxide gas which is a gas for returning the char to the coal gasification furnace 9.
  • the pressure in the char hopper 12 is reduced and exhausted by opening the valve of the depressurizing exhaust system connected to the char hopper 12 which has become empty.
  • the exhaust gas carbon dioxide is all returned to the product gas (not shown) and is not released to the atmosphere because it is a high pressure gas.
  • the product gas that has passed through the porous filter 10 contains sulfur compounds such as hydrogen sulfide and carbonyl sulfide. Therefore, the generated gas is introduced from the porous filter 10 to the gas purification device 15.
  • the gas purification apparatus 15 includes a carbonyl sulfide converter (not shown), a hydrogen sulfide absorption tower (not shown), and a hydrogen sulfide combustion furnace (not shown).
  • the carbonyl sulfide converter catalytically converts carbonyl sulfide in the led product gas to hydrogen sulfide.
  • the product gas containing hydrogen sulfide converted by the carbonyl sulfide converter is led to a hydrogen sulfide absorption column.
  • the hydrogen sulfide in the product gas led to the hydrogen sulfide absorption tower is absorbed with sulfur content by a diethylethanolamine (MEDA) -based absorbent.
  • the product gas which has been absorbed in the diacetylethanolamine-based absorbing solution and from which the sulfur content has been removed is discharged from the hydrogen sulfide absorber as a fuel gas.
  • the sulfur content absorbed by the diacetylethanolamine-based absorbing solution is led to a hydrogen sulfide combustion furnace and burned to be recovered as gypsum.
  • the fuel gas derived from the hydrogen sulfide absorption tower is led from the gas purification device 15 to the gas turbine 16.
  • the fuel gas led to the gas turbine 16 is sent to the combustor 17 of the gas turbine 16.
  • the gas turbine 16 includes a combustor 17, a turbine 18 driven by the exhaust gas burned by the combustor 17, and a compressor 19 for delivering high pressure air to the combustor 17.
  • the introduced fuel gas and air are burned to discharge the exhaust gas.
  • the exhaust gas discharged from the combustor 17 is led to the turbine 18.
  • the exhaust gas led to the turbine 18 rotationally drives the turbine 18.
  • the turbine 18 is driven by the exhaust gas, whereby the rotating shaft 20 connected to the turbine 18 is rotated.
  • the compressor 19 is connected on the rotation shaft 20, and is rotationally driven by the rotation of the rotation shaft 20 to compress air.
  • the air compressed by the compressor 19 is led to the combustor 17 and the coal gasifier 9.
  • a generator 21 is connected to the rotating shaft 20. Therefore, when the rotating shaft 20 rotates, the generator 21 is driven to generate electric power.
  • the exhaust gas that rotationally driven the turbine 18 is led to the exhaust heat recovery boiler 23.
  • the exhaust heat recovery boiler 23 generates steam by the heat of the exhaust gas led from the turbine 18.
  • the exhaust gas whose heat is recovered in the exhaust heat recovery boiler 23 is discharged from the chimney 24 to the outside of the coal gasification combined cycle power plant 1.
  • a part of the exhaust gas that has rotationally driven the turbine 18 is led to the pulverized coal machine 4.
  • the exhaust gas derived from the turbine 18 is used to dry the pulverized coal in the pulverized coal machine 4 because it is dried at a high temperature.
  • the steam generated by the high temperature exhaust gas led from the turbine 18 in the waste heat recovery boiler 23 is supplied to the steam turbine 25.
  • the steam turbine 25 is connected to the same rotation shaft 20 as the gas turbine 18, and is a so-called single-shaft combined system.
  • the present invention is not limited to the single-axis combined system, but may be a separate-axis combined system.
  • the rotating shaft 20 driven by the turbine 18 is increased in driving force by the steam turbine 25. Therefore, the amount of power generation of the generator 21 connected to the rotating shaft 20 is increased.
  • the steam that rotationally drives the steam turbine 25 is led to the condenser 26.
  • the steam that rotationally driven the steam turbine 25 is cooled by the condenser 26 and returned to water, and then is led to the exhaust heat recovery boiler 23.
  • the hot, dry exhaust gas derived from the turbine 18 of the gas turbine 16 is directed to the pulverized coal machine 4.
  • the exhaust gas led to the pulverized coal machine 4 dries the pulverized coal in the pulverized coal machine 4.
  • the exhaust gas led to the pulverized coal machine 4 is led to the carbon dioxide recovery device 13 through the pulverized coal dust collector 5.
  • the exhaust gas led to the carbon dioxide recovery device 13 recovers carbon dioxide in the exhaust gas.
  • the carbon dioxide recovered by the carbon dioxide recovery device 13 is pressurized by the carbon dioxide recovery device compressor 27.
  • the carbon dioxide pressurized by the carbon dioxide recovery device compressor 27 may be led to the pulverized coal hopper 7, the char hopper 12, and the porous filter 10 (not shown).
  • the exhaust gas whose carbon dioxide has been recovered by the carbon dioxide recovery device 13 is led to the chimney 24 together with the exhaust gas derived from the exhaust heat recovery boiler 23.
  • the carbon dioxide led to the pulverized coal hopper 7 is used as a pulverized coal transport gas for transporting the pulverized coal to the coal gasifier 9.
  • the carbon dioxide led to the char hopper 12 is used as a char carrier gas for returning the char to the coal gasifier 9.
  • the carbon dioxide led to the porous filter 10 may be used as a backwashing gas for preventing clogging of the porous filter 10 (not shown). Since carbon dioxide is an inert gas, ignition of pulverized coal and char can be prevented.
  • the carbon dioxide in the exhaust gas derived from the gas turbine 16 is recovered by the carbon dioxide recovery device 13. Since the carbon dioxide recovered by the carbon dioxide recovery apparatus 13 is an inert gas, carbon dioxide can be used to transport the coal to the coal gasification furnace (gasification furnace) 9. Therefore, since it is not necessary to provide the apparatus which generates an inert gas separately, while reducing the installation cost of the coal gasification combined power plant 1, the efficiency fall of the coal gasification combined power plant 1 can be prevented.
  • the exhaust gas led to the carbon dioxide recovery device 13 is necessary for drying of the coal.
  • a fan (not shown) or the like is already installed, and installation of a new device other than the provision of the carbon dioxide recovery device 13 for carbon dioxide recovery is unnecessary. Therefore, it is possible to minimize the increase in facility cost and the increase in power.
  • the coal gasification combined cycle power plant of the present embodiment is a first embodiment in that a carbon dioxide recovery device is provided between the gas purification device and the combustor and a carbon monoxide shift converter is provided on the upstream side of the carbon dioxide recovery device. And the others are similar. Therefore, about the same composition, recovery of carbon dioxide, and the flow of supply, the same numerals are attached and the explanation is omitted.
  • FIG. 1 The schematic block diagram of the coal gasification combined cycle power plant concerning a 2nd embodiment of the present invention is shown by FIG.
  • the carbon dioxide recovery device 13 is provided between the gas purification device 15 and the gas turbine 16.
  • a carbon monoxide shift converter 28 which converts carbon monoxide to carbon dioxide is provided between the gas purification device 15 and the carbon dioxide recovery device 13.
  • the fuel gas from which the sulfur content has been removed by the gas purification device 15 contains about 30% of carbon monoxide.
  • the fuel gas containing carbon monoxide is led to a carbon monoxide shift converter 28.
  • the carbon monoxide shift converter 28 uses a catalyst to catalytically react carbon monoxide and water vapor to generate carbon dioxide and hydrogen.
  • the carbon monoxide in the fuel gas led to the carbon monoxide shift converter 28 is converted to the required amount of carbon dioxide.
  • the predetermined amount of carbon dioxide means an amount corresponding to 10% of the fuel gas led to the carbon dioxide recovery device 13.
  • the carbon dioxide converted by the carbon monoxide shift converter 28 is led to the carbon dioxide recovery unit 13 together with the fuel gas.
  • the converted carbon dioxide and carbon dioxide in the fuel gas derived from the gas purification device 15 are recovered by the carbon dioxide recovery device 13 in a required amount.
  • a part of the carbon dioxide recovered by the carbon dioxide recovery device 13 may be pressurized by the carbon dioxide recovery device compressor 27 and may be led to the pulverized coal hopper 7, the char hopper 12, and the porous filter 10 (shown in FIG. do not do).
  • the remaining carbon dioxide is led to a carbon dioxide storage facility 30 provided in the ground of the integrated coal gasification combined cycle power plant 1.
  • the carbon dioxide not recovered by the carbon dioxide recovery unit 13 and the fuel gas are led to the combustor 17 of the gas turbine 16.
  • the fuel gas produced by the coal gasifier 9 contains carbon dioxide. Therefore, the carbon dioxide recovery device 13 is provided between the gas purification device 15 and the combustor 17 of the gas turbine 16. Therefore, carbon dioxide in the fuel gas derived from the coal gasifier 9 can be recovered by the carbon dioxide recovery device 13. Therefore, since it is not necessary to generate an inert gas separately, while reducing the equipment cost of coal gasification combined power plant 1, the efficiency fall of coal gasification combined power plant 1 can be prevented.
  • the carbon monoxide shift converter 28 is provided upstream of the carbon dioxide recovery device 13. Therefore, even if the amount of carbon dioxide in the fuel gas derived from the coal gasification furnace 9 is less than the predetermined amount, it is converted to carbon dioxide via the carbon monoxide shift converter 28, and a carbon dioxide recovery device A predetermined amount of carbon dioxide can be supplied to 13. Therefore, since it is not necessary to generate an inert gas separately, while reducing the equipment cost of coal gasification combined power plant 1, the efficiency fall of coal gasification combined power plant 1 can be prevented.
  • the carbon dioxide recovered by the carbon dioxide recovery device 13 recovers carbon dioxide of a predetermined amount or more necessary for transporting pulverized coal or char and pressurizing the pulverized coal hopper 7 or char hopper 12, and coal gasification combined power generation Storage outside the plant 1 can reduce carbon dioxide released directly from the coal gasification combined power plant 1 to the atmosphere.
  • the depressurized exhaust system for depressurizing and evacuating the pulverized coal hopper 7 and the char hopper 12 is connected to a storage facility 30 provided outside the coal gasification combined cycle power plant 1 without releasing the carbon dioxide to the atmosphere. , I decided to store. Therefore, the amount of carbon dioxide released from the coal gasification combined cycle power plant 1 to the atmosphere can be reduced, thereby preventing global warming.
  • coal gasification combined cycle power plant of the present embodiment is different from the first embodiment in that a carbon dioxide recovery device is provided between the exhaust heat recovery boiler and the chimney, and the other respects are the same. Therefore, about the same composition, recovery of carbon dioxide, and the flow of supply, the same numerals are attached and the explanation is omitted.
  • FIG. 3 shows a schematic configuration view of a coal gasification combined cycle power plant according to a third embodiment of the present invention.
  • a carbon dioxide recovery device 13 is provided between the exhaust heat recovery boiler 23 and the chimney 24.
  • the exhaust gas that has given heat to the water led to the exhaust heat recovery boiler 23 contains about 10% of carbon dioxide.
  • the carbon dioxide in the exhaust gas is recovered by the carbon dioxide recovery device 13.
  • the carbon dioxide recovered by the carbon dioxide recovery device 13 may be pressurized by the carbon dioxide recovery device compressor 27 and led to the pulverized coal hopper 7, the char hopper 12, and the porous filter 10 (not shown).
  • the exhaust gas containing carbon dioxide not recovered by the carbon dioxide recovery unit 13 is led to the chimney 24.
  • the carbon dioxide recovery device 13 is provided downstream of the exhaust heat recovery boiler 23. Therefore, carbon dioxide in the exhaust gas derived from the exhaust heat recovery boiler 23 can be recovered by the carbon dioxide recovery device 13. Therefore, the amount of carbon dioxide emitted from the integrated coal gasification combined cycle power plant 1 can be reduced.
  • Coal gasification combined power generation by collecting carbon dioxide more than a predetermined amount necessary for conveying pulverized coal and char and pressurizing its pulverized coal hopper 7 and char hopper 12 and storing it outside coal gasification combined cycle power plant 1 Carbon dioxide directly emitted from the plant 1 to the atmosphere can be reduced.
  • the depressurized exhaust system for depressurizing and evacuating the pulverized coal hopper 7 and the char hopper 12 does not release the carbon dioxide to the atmosphere, and is connected to the storage facility 30 provided outside the coal gasification combined cycle power plant 1 for storage. It was decided to. Therefore, it is possible to reduce the amount of carbon dioxide emitted from the integrated coal gasification combined cycle power plant 1 to the atmosphere, thereby preventing global warming.
  • coal gasification combined cycle power plant 2 coal supply facility 3 raw coal bunker 4 pulverized coal machine 5 pulverized coal dust collector 6 pulverized coal bin 7 pulverized coal hopper 9 gasification furnace (coal gasification furnace) 10 porous filter 11 charbin 12 char hopper 13 carbon dioxide recovery device 15 gas purification device 16 gas turbine 17 combustor 18 turbine 19 compressor 20 rotary shaft 21 generator 23 exhaust heat recovery boiler 24 chimney 25 steam turbine 26 water condenser 27 carbon dioxide Recovery device compressor 28 Carbon monoxide shift converter 30 Storage facility

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 石炭が導かれるガス化炉(9)においてガス化された燃料ガスが、燃焼器(17)で燃焼する。この燃焼器(17)を備えるガスタービン(16)から導出された排ガスによって、排熱回収ボイラ(23)が蒸気を発生する。排熱回収ボイラ(23)において発生した蒸気は、蒸気タービン(25)に導かれる。そして、蒸気タービン(25)およびガスタービン(16)によって、発電機(21)が駆動されて発電する。ガスタービン(16)から導出された排ガスの一部は、二酸化炭素回収装置(13)に導かれて二酸化炭素が回収される。この二酸化炭素により、石炭がガス化炉(9)へと搬送される。

Description

石炭ガス化複合発電プラント
 本発明は、特に、乾式給炭空気吹きの石炭ガス化複合発電プラントに関するものである。
 一般に、乾式給炭空気吹きの石炭ガス化複合発電プラントは、原炭バンカーから微粉炭機へと石炭が供給され、微粉炭機において石炭が微粉砕される。粉砕された石炭(以下「微粉炭」という。)は、微粉炭集塵器で捕集され微粉炭ビンおよび微粉炭ホッパを経てガス化炉へと供給される。
 微粉炭が微粉炭ホッパからガス化炉に供給される際には、空気分離器によって空気から分離した不活性ガスである窒素ガスを用いて、微粉炭がガス化炉に搬送される。また、空気分離器によって空気から分離された酸素は、ガス化炉へと導かれて、窒素ガスによって搬送された微粉炭を燃焼させる。微粉炭は、ガス化炉内おいて部分燃焼・熱分解された後、ガス化されて生成ガスとなる。
 生成された生成ガスからは、フィルタを介して生成ガス中に含まれるチャーが分離される。フィルタによって分離されたチャーは、ガス化炉へ回収されて微粉炭と共に燃焼される。その際に、チャーは、空気分離器によって発生させた窒素ガスによってガス化炉へと搬送される。また、チャーを分離するフィルタは、空気分離器によって発生させた窒素ガスを用いて逆洗することによって目詰まりが防止される。
 フィルタを通過した生成ガスは、ガス精製装置において生成ガス中に含まれる硫黄化合物や窒素化合物などが取り除かれて燃料ガスとしてガスタービンへと導かれる。ガスタービンに導かれた燃料ガスは、ガスタービンの燃焼器において空気と共に燃焼されて排ガスとなる。
 排ガスは、燃焼器から排出されてガスタービンのタービンを回転駆動させる。タービンが回転駆動することによって、同軸上に設けられている圧縮機が回転駆動されて空気を圧縮する。また、回転軸の端部に接続されている発電機により発電する。なお、圧縮機が圧縮した空気は、ガスタービンの燃焼器と、ガス化炉とに供給される。
 タービンを回転駆動させた排ガスは、排熱回収ボイラへと導かれる。排熱回収ボイラに導かれた排ガスは、排ガス中の熱量によって排熱回収ボイラに導かれた水を蒸気にする。排熱回収ボイラにおいて発生した蒸気は、ガスタービンの回転軸上に設置されている蒸気タービンを回転駆動させる。蒸気タービンに接続されている回転軸は、蒸気タービンが回転駆動されることによって、さらに駆動される。このように、発電機をガスタービンと蒸気タービンとによって駆動させて複合発電して発電効率を向上させている。
 一方、排熱回収ボイラにおいて水に熱量を与えた排ガスは、煙突から石炭ガス化複合発電プラント外へと排出される。
 また、ガスタービンから導出された排ガス中の一部は、微粉炭機へと導かれる。微粉炭機に導かれた排ガスは、乾燥しておりかつ大きな熱量を有するため、原炭バンカーから供給された石炭の乾燥に用いられる。
 以上のような石炭ガス化複合発電プラントから排出される二酸化炭素の利用について特許文献1には、ガスタービンから導出された排ガスを回収してガスタービンの燃焼器や圧縮機に循環させることが開示されている。
特開平4-1428号公報
 しかしながら、特許文献1に記載の発明は、微粉炭やチャーをガス化炉へと搬送する不活性ガスや、フィルタの逆洗に用いられる不活性ガスを発生させる空気分離器を設ける必要がある。しかし、空気分離器を稼働させるには大きな動力が必要なため、プラント全体の効率が低下するという問題があった。また、空気分離器を設置するためプラントの設備コストが高くなるという問題があった。さらには、空気分離器は、連続運転に対する信頼性が劣るという問題があった。
 本発明は、このような事情に鑑みてなされたものであって、プラントの設置コストを削減でき、かつ、プラントの効率の低下防止が可能な石炭ガス化複合発電プラントを提供することを目的とする。
 上記課題を解決するために、本発明の石炭ガス化複合発電プラントは、以下の手段を採用する。
 すなわち、本発明に係る石炭ガス化複合発電プラントは、石炭を微粉砕する粉砕機と、該粉砕機が微粉砕した石炭が導かれるガス化炉と、該ガス化炉においてガス化された燃料ガスが燃焼する燃焼器を備えるガスタービンと、該ガスタービンから導出された排ガスによって蒸気を発生する排熱回収ボイラと、該排熱回収ボイラにおいて発生した蒸気が導かれる蒸気タービンと、該蒸気タービンおよび前記ガスタービンによって駆動されて発電する発電機と、前記ガスタービンから導出された排ガスの一部が導かれて二酸化炭素を回収する二酸化炭素回収装置と、を備え、前記二酸化炭素を用いて、石炭およびチャーのホッパを加圧し、前記二酸化炭素を搬送ガスとして前記ガス化炉へと搬送するものである。
 従来は、粉砕機によって微粉砕された石炭をガス化炉へと搬送するために空気分離器によって発生させた不活性ガスである窒素ガスを用いていた。しかし、空気分離器を稼働させるためには、大きな動力が必要となり石炭ガス化複合発電プラントの効率が低下するという問題があった。また、石炭ガス化複合発電プラントに空気分離器を設ける必要があるため、空気分離器の設置コストがかかり石炭ガス化複合発電プラントのコストが増すという問題があった。また、空気分離器は、その連続運転時における信頼性が劣るという問題があった。
 本発明は、二酸化炭素回収装置を設けて、ガスタービンから導出される排ガス中の二酸化炭素を回収することとした。二酸化炭素回収装置によって回収される二酸化炭素は、不活性ガスである。そのため、回収した二酸化炭素をガス化炉へ石炭を搬送するために用いることができる。したがって、不活性ガスを別途発生させる装置を設ける必要がなくなり、石炭ガス化複合発電プラントの設備コストを低減することができ、かつ、石炭ガス化複合発電プラントの効率低下を防止することができる。
 本発明に係る石炭ガス化複合発電プラントにおいては、前記二酸化炭素回収装置は、前記ガス化炉と前記燃焼器との間に設けられることが好ましい。
 ガス化炉によって生成される燃料ガス中には、二酸化炭素が含まれている。そこで、ガス化炉と燃焼器との間に二酸化炭素回収装置を設けることとすれば、ガス化炉から導出される燃料ガス中の二酸化炭素を二酸化炭素回収装置によって回収することができる。したがって、不活性ガスを別途発生させる必要がないため、石炭ガス化複合発電プラントの設備コストを低減するとともに、石炭ガス化複合発電プラントの効率低下を防止することができる。
 上記の石炭ガス化複合発電プラントにおいては、前記二酸化炭素回収装置の上流側には、燃料ガス中の一酸化炭素を所定量の二酸化炭素に製造する一酸化炭素シフトコンバータが設けられることが好ましい。
 一酸化炭素は、水蒸気と触媒上で反応させることによって二酸化炭素へと生成される。そこで、一酸化炭素シフトコンバータを二酸化炭素回収装置の上流側に設けることとすれば、ガス化炉から導出される燃料ガス中の二酸化炭素量だけでは所定量に満たない場合であっても、一酸化炭素シフトコンバータを介して二酸化炭素を生成し、二酸化炭素回収装置に所定量の二酸化炭素を供給することができる。したがって、不活性ガスを別途発生させる必要がないため、石炭ガス化複合発電プラントの設備コストを低減するとともに、石炭ガス化複合発電プラントの効率低下を防止することができる。
 なお、所定量の二酸化炭素とは、通常二酸化炭素回収装置に導かれる燃料ガス中の10%相当の量をいうが、この量は石炭およびチャーの搬送システムの構成により異なる場合がある。
 さらに、前記二酸化炭素回収装置は、石炭またはチャーの搬送およびそのホッパの加圧に必要な所定量以上の二酸化炭素を回収した場合、プラント外(たとえば地中など)へ貯留する貯留設備に前記回収された二酸化炭素を導くことにより、石炭ガス化複合発電プラントから直接大気に放出される二酸化炭素を低減することができる。
 また、石炭またはチャーを供給するホッパは、石炭またはチャーをガス化炉に供給するため、不活性ガス(例えば、二酸化炭素)を用いて加圧されるが、石炭またはチャーをガス化炉に供給後空となった場合、一旦減圧・排気して、次の石炭を受け入れる必要がある。この際、排ガスは通常大気に放出される。
 そこで、前記ホッパ内を減圧および排気をする減圧排気系統は、二酸化炭素を大気放出せず、石炭ガス化複合発電プラント外に設けられた貯留設備へ貯留することとした。そのため、石炭ガス化複合発電プラントから大気に放出する二酸化炭素の排出量を低減することでき、地球温暖化防止になる。
 さらに、本発明に係る石炭ガス化複合発電プラントにおいては、前記二酸化炭素回収装置は、前記排熱回収ボイラの下流側に設けられることが好ましい。
 ガスタービンから導出される排ガス中には、二酸化炭素が含まれていて、その排ガスを、排熱回収ボイラに導いている。そして、前記排熱回収ボイラから排出された前記排ガス中に含まれる二酸化炭素は、前記排熱回収ボイラの下流側に設けられた二酸化炭素回収装置により回収される。そのため、前記排熱回収ボイラから導出される排ガス中の二酸化炭素を二酸化炭素回収装置によって回収することができる。
 さらに、前記二酸化炭素回収装置によって回収された二酸化炭素は、石炭・チャーの搬送およびそのホッパの加圧に必要な所定量以上の二酸化炭素を回収した場合、プラント外へ貯留する貯留設備に前記回収された二酸化炭素を導くことにより、石炭ガス化複合発電プラントから直接大気に放出する二酸化炭素を低減することができる。
 また、前述と同様に石炭ガス化複合発電プラントから大気に放出する二酸化炭素の排出量を低減することができ、地球温暖化防止になる。
 ガスタービンから導出される排ガス中の二酸化炭素は、二酸化炭素回収装置を設けることにより回収される。二酸化炭素回収装置によって回収される二酸化炭素は、不活性ガスである。そのため、回収された二酸化炭素をガス化炉へ石炭を搬送するために用いることができる。したがって、不活性ガスを別途発生させる装置を設ける必要がなくなり、石炭ガス化複合発電プラントの設備コストを低減することができ、かつ、石炭ガス化複合発電プラントの効率低下を防止することができる。
本発明の第1実施形態に係る石炭ガス化複合発電プラントの概略構成図である。 本発明の第2実施形態に係る石炭ガス化複合発電プラントの概略構成図である。 本発明の第3実施形態に係る石炭ガス化複合発電プラントの概略構成図である。
[第1実施形態]
 図1には、本発明の第1実施形態に係る石炭ガス化複合発電プラントの概略構成図が示されている。
 図1に示されているように、石炭を燃料とする石炭ガス化複合発電プラント(IGCC;Integrated
Coal Gasification Combined Cycle)1は、主として、石炭供給設備2と、石炭供給設備2から供給された石炭をガス化する石炭ガス化炉(ガス化炉)9と、石炭ガス化炉9によってガス化された燃料ガスを燃焼して駆動されるガスタービン16と、ガスタービン16から導出される排ガスの熱を利用して発生した蒸気が導かれる蒸気タービン25と、ガスタービン16および蒸気タービン25によって駆動される発電機21と、ガスタービン16から導出される排ガスの一部が導かれる二酸化炭素回収装置13とを備えている。
 石炭供給設備2は、石炭ガス化炉9の上流側に設けられており、石炭ガス化炉9へと微粉炭を供給する。
 石炭供給設備2は、原料炭が備蓄されている原炭バンカー3と、原料炭を微粉砕する微粉炭機4と、微粉炭機4に粉砕された微粉炭内のダストを捕集する微粉炭集塵器5と、微粉炭を貯留する微粉炭ホッパ7とを備えている。
 原炭バンカー3から微粉炭機4へと導かれた原料炭は、微粉炭機4によって数μm~数百μmの微粉炭に粉砕される。微粉炭機4が粉砕した微粉炭は、微粉炭集塵器5によって捕集される。微粉炭集塵器5において捕集された微粉炭は、微粉炭を貯蔵する微粉炭ビン6を経て、微粉炭ホッパ7へと導かれる。
 微粉炭ホッパ7内の微粉炭は、後述する二酸化炭素回収装置13から供給される二酸化炭素ガスによって所定の圧力まで加圧され、その後一定流量ずつ石炭ガス化炉9へと搬送される。ここで、二酸化炭素ガスは、微粉炭を石炭ガス化炉9へと搬送する微粉炭搬送ガスとして用いられる。
 また、微粉炭ホッパ7内には、微粉炭搬送ガスである二酸化炭素ガスが供給されることによって加圧状態となっている。しかし、微粉炭ホッパ7内の微粉炭が全て石炭ガス化炉9へと供給されて、微粉炭ホッパ7が空になった場合には、微粉炭ホッパ7内を減圧・排気する必要がある。そこで、空になった微粉炭ホッパ7に接続されている減圧排気系統の弁(図示せず)を開くことにより微粉炭ホッパ7内の減圧・排気を行う。排ガスである二酸化炭素は、図1の場合には、煙突24の入口にもどされ、大気放出される。
 石炭ガス化炉9は、下方から上方へと生成した生成ガスが流されるように形成された石炭ガス化部(図示せず)と、石炭ガス化部の下流側に接続されて、上方から下方へと生成ガスが流されるように形成された熱交換部(図示せず)とを備えている。
 石炭ガス化部には、下方から、コンバスタ(図示せず)及びリダクタ(図示せず)が設けられている。コンバスタは、微粉炭及びチャーの一部分を燃焼させている。コンバスタには、噴流床が採用されているが、流動床式や固定床式であっても構わない。
 コンバスタ及びリダクタには、それぞれ、コンバスタバーナー(図示せず)及びリダクタバーナー(図示せず)が設けられている。これらのバーナーに対して微粉炭ホッパ7から微粉炭が供給される。
 コンバスタバーナーには、後述するガスタービン16の圧縮機19が圧縮した空気が供給されるようになっている。すなわち、本実施形態の石炭ガス化複合発電プラント1は、いわゆる空気吹きとなっている。ここで、ガスタービン16の圧縮機19から供給される空気は、ガス化剤として用いられる。
 リダクタは、コンバスタからの高温ガスによって微粉炭をガス化させている。これにより、微粉炭から一酸化炭素や水素等の可燃性の生成ガスが生成される。石炭ガス化反応は、微粉炭及びチャー中の炭素が高温ガス中の二酸化炭素及び水分と反応して一酸化炭素や水素を生成する吸熱反応である。
 石炭ガス化炉9のリダクタにおいて生成された生成ガスは、ポーラスフィルタ10へと導かれる。ポーラスフィルタ10は、生成ガスが通過することによって生成ガス中に混在するチャーを捕捉する。ポーラスフィルタ10によって捕捉されたチャーは、チャーを貯蔵するチャービン11を経て、チャーホッパ12へと導かれる。
 チャーホッパ12に回収されたチャーは、二酸化炭素回収装置13によって供給される二酸化炭素ガスとともに石炭ガス化炉9のコンバスタバーナーへと返送されてリサイクルされる。
 また、チャーホッパ12内は、チャーを石炭ガス化炉9へと返送するガスである二酸化炭素ガスが供給されることによって加圧状態となっている。しかし、チャーホッパ12内のチャーが全て石炭ガス化炉9へと供給されて、チャーホッパ12が空になった場合には、チャーホッパ12内を減圧・排気する必要がある。そこで、空になったチャーホッパ12に接続されている減圧排気系統の弁を開くことによりチャーホッパ12内の減圧・排気を行う。排ガスである二酸化炭素は、高圧のガスのため、全て生成ガスにもどされ(図示せず)大気には放出されない。
 ポーラスフィルタ10を通過した生成ガスには、硫化水素や硫化カルボニルといった硫黄化合物が含まれている。そのため、ポーラスフィルタ10からガス精製装置15へと生成ガスを導く。ガス精製装置15は、硫化カルボニル変換器(図示せず)と、硫化水素吸収塔(図示せず)と、硫化水素燃焼炉(図示せず)とを備えている。
 硫化カルボニル変換器は、導かれた生成ガス中の硫化カルボニルを触媒反応によって硫化水素へと変換する。硫化カルボニル変換器によって変換された硫化水素を含む生成ガスは、硫化水素吸収塔へと導かれる。硫化水素吸収塔に導かれた生成ガス中の硫化水素は、ジアチルエタノールアミン(MEDA)系の吸収液によって硫黄分が吸収される。ジアチルエタノールアミン系の吸収液に吸収されて硫黄分が除去された生成ガスは、燃料ガスとなって硫化水素吸収塔から導出される。
 一方、ジアチルエタノールアミン系の吸収液に吸収された硫黄分は、硫化水素燃焼炉に導かれて燃焼されて石膏として回収される。
 硫化水素吸収塔から導出された燃料ガスは、ガス精製装置15からガスタービン16へと導かれる。ガスタービン16に導かれた燃料ガスは、ガスタービン16の燃焼器17へと送られる。ガスタービン16は、燃焼器17と、燃焼器17によって燃焼された排ガスによって駆動されるタービン18と、燃焼器17へと高圧空気を送り出す圧縮機19とを備えている。
 燃焼器17では、導かれた燃料ガスと、空気とが燃焼されて排ガスが排出される。燃焼器17から排出される排ガスは、タービン18へと導かれる。タービン18に導かれた排ガスは、タービン18を回転駆動する。タービン18が排ガスによって駆動されることによって、タービン18に接続されている回転軸20が回転される。
 圧縮機19は、回転軸20上に接続されていて、回転軸20が回転されることによって、回転駆動して、空気を圧縮する。圧縮機19によって圧縮された空気は、燃焼器17と石炭ガス化炉9とへ導かれる。また、回転軸20には、発電機21が接続されている。そのため、回転軸20が回転することによって、発電機21が駆動して発電する。
 タービン18を回転駆動させた排ガスは、排熱回収ボイラ23へと導かれる。排熱回収ボイラ23は、タービン18から導かれた排ガスの熱によって蒸気を発生するものである。排熱回収ボイラ23において熱を回収された排ガスは、煙突24から石炭ガス化複合発電プラント1の外へと排出される。
 また、タービン18を回転駆動させた排ガスの一部は、微粉炭機4へと導かれる。タービン18から導出された排ガスは、高温で乾燥しているため微粉炭機4内の微粉炭を乾燥させるために用いられる。
 排熱回収ボイラ23においてタービン18から導かれた高温の排ガスによって発生された蒸気は、蒸気タービン25へと供給される。蒸気タービン25は、ガスタービン18と同回転軸20に接続されており、いわゆる一軸式のコンバインドシステムとなっている。なお、一軸式のコンバインドシステムに限らず、別軸式のコンバインドシステムであっても構わない。
 タービン18によって駆動されている回転軸20は、蒸気タービン25によって駆動力が増加する。そのため、回転軸20に接続されている発電機21の発電量が増加する。
 蒸気タービン25を回転駆動した蒸気は、復水器26へと導かれる。蒸気タービン25を回転駆動した蒸気は、復水器26で冷却されて水に戻された後、排熱回収ボイラ23へと導かれる。
 次に、二酸化炭素の回収、供給の流れについて説明する。
 ガスタービン16のタービン18から導出された高温の乾燥した排ガスは、微粉炭機4へと導かれる。微粉炭機4に導かれた排ガスは、微粉炭機4内の微粉炭を乾燥する。微粉炭機4に導かれた排ガスは、微粉炭集塵器5を経て二酸化炭素回収装置13へと導かれる。
 二酸化炭素回収装置13に導かれた排ガスは、排ガス中の二酸化炭素が回収される。二酸化炭素回収装置13によって回収された二酸化炭素は、二酸化炭素回収装置用圧縮機27によって昇圧される。二酸化炭素回収装置用圧縮機27によって昇圧された二酸化炭素は、微粉炭ホッパ7と、チャーホッパ12と、ポーラスフィルタ10とへ導いても良い(図示しない)。
 なお、二酸化炭素回収装置13によって二酸化炭素が回収された排ガスは、排熱回収ボイラ23から導出された排ガスと共に煙突24へと導かれる。
 微粉炭ホッパ7に導かれた二酸化炭素は、微粉炭を石炭ガス化炉9へと搬送する微粉炭搬送ガスとして用いられる。
 チャーホッパ12に導かれた二酸化炭素は、チャーを石炭ガス化炉9へ返送するチャー搬送ガスとして用いられる。
 ポーラスフィルタ10に導かれた二酸化炭素は、ポーラスフィルタ10の目詰まりを防止するための逆洗用のガスに用いても良い(図示しない)。
 なお、二酸化炭素は、不活性ガスであるため微粉炭やチャーの引火を防止することができる。
 以上の通り、本実施形態に係る石炭ガス化複合発電プラントによれば、以下の作用効果を奏する。
 ガスタービン16から導出された排ガス中の二酸化炭素は、二酸化炭素回収装置13によって回収する。二酸化炭素回収装置13によって回収される二酸化炭素は、不活性ガスであるため、石炭ガス化炉(ガス化炉)9へ石炭を搬送するために二酸化炭素を用いることができる。したがって、不活性ガスを別途発生させる装置を設ける必要がないため、石炭ガス化複合発電プラント1の設備コストを低減するとともに、石炭ガス化複合発電プラント1の効率低下を防止することができる。
 また、二酸化炭素回収装置13に導かれる排ガスは、石炭の乾燥に必要である。しかし、ファン(図示せず)等はすでに設置されており、二酸化炭素回収のため二酸化炭素回収装置13を設ける以外に新たに別の機器の設置は不要である。よって、設備コストの増加と動力の増加を最小限に抑えることが可能となる。
[第2実施形態]
 以下、本発明の第2実施形態について説明する。本実施形態の石炭ガス化複合発電プラントは、ガス精製装置と燃焼器との間に二酸化炭素回収装置を設け、二酸化炭素回収装置の上流側に一酸化炭素シフトコンバータを設ける点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、二酸化炭素の回収、供給の流れについては、同一の符号を付してその説明を省略する。
 図2には、本発明の第2実施形態に係る石炭ガス化複合発電プラントの概略構成図が示されている。
 二酸化炭素回収装置13は、ガス精製装置15とガスタービン16との間に設けられている。また、一酸化炭素を二酸化炭素に転換する一酸化炭素シフトコンバータ28は、ガス精製装置15と二酸化炭素回収装置13との間に設けられている。
 ガス精製装置15によって硫黄分が除去された燃料ガスには、一酸化炭素が約30%含まれている。一酸化炭素を含む燃料ガスは、一酸化炭素シフトコンバータ28へと導かれる。一酸化炭素シフトコンバータ28は、触媒を用いて、一酸化炭素と水蒸気とを触媒反応させて二酸化炭素と水素とを発生するものである。一酸化炭素シフトコンバータ28に導かれた燃料ガス中の一酸化炭素は、所要量の二酸化炭素量分になるように転換される。
 なお、所定量の二酸化炭素とは、二酸化炭素回収装置13に導かれる燃料ガス中の10%相当の量をいう。
 一酸化炭素シフトコンバータ28によって転換された二酸化炭素は、燃料ガスとともに二酸化炭素回収装置13へと導かれる。転換された二酸化炭素と、ガス精製装置15から導出された燃料ガス中の二酸化炭素とは、二酸化炭素回収装置13によって所要量だけ回収される。二酸化炭素回収装置13よって回収された二酸化炭素は、一部が二酸化炭素回収装置用圧縮機27によって昇圧されて微粉炭ホッパ7と、チャーホッパ12と、さらにポーラスフィルタ10とに導いても良い(図示しない)。残りの二酸化炭素は、石炭ガス化複合発電プラント1の地中に設けられている二酸化炭素貯留設備30へと導かれる。
 二酸化炭素回収装置13によって回収されなかった二酸化炭素と、燃料ガスとは、ガスタービン16の燃焼器17へと導かれる。
 以上の通り、本実施形態に係る石炭ガス化複合発電プラントによれば、以下の作用効果を奏する。
 石炭ガス化炉9によって生成される燃料ガス中には、二酸化炭素が含まれている。そこで、ガス精製装置15と、ガスタービン16の燃焼器17との間に二酸化炭素回収装置13を設けることとした。そのため、石炭ガス化炉9から導出された燃料ガス中の二酸化炭素を二酸化炭素回収装置13によって回収することができる。したがって、不活性ガスを別途発生させる必要がないため、石炭ガス化複合発電プラント1の設備コストを低減するとともに、石炭ガス化複合発電プラント1の効率低下を防止することができる。
 一酸化炭素シフトコンバータ28は、二酸化炭素回収装置13の上流側に設けることとした。そのため、石炭ガス化炉9から導出される燃料ガス中の二酸化炭素量だけでは所定量に満たない場合であっても、一酸化炭素シフトコンバータ28を介して二酸化炭素に転換し、二酸化炭素回収装置13に所定量の二酸化炭素を供給することができる。したがって、不活性ガスを別途発生させる必要がないため、石炭ガス化複合発電プラント1の設備コストを低減するとともに、石炭ガス化複合発電プラント1の効率低下を防止することができる。
 前記二酸化炭素回収装置13により回収された二酸化炭素は、微粉炭やチャーの搬送およびその微粉炭ホッパ7やチャーホッパ12の加圧に必要な所定量以上の二酸化炭素を回収し、石炭ガス化複合発電プラント1外に貯留することにより、石炭ガス化複合発電プラント1から直接大気に放出される二酸化炭素を低減することができる。
 また、微粉炭ホッパ7やチャーホッパ12内の減圧・排気をする減圧排気系統は、前記二酸化炭素を大気に放出せず、石炭ガス化複合発電プラント1外に設けられている貯留設備30へ接続し、貯留することとした。そのため、石炭ガス化複合発電プラント1から大気に放出する二酸化炭素の排出量を低減することでき、地球温暖化防止になる。
[第3実施形態]
 以下、本発明の第3実施形態について説明する。本実施形態の石炭ガス化複合発電プラントは、排熱回収ボイラと煙突との間に二酸化炭素回収装置を設ける点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、二酸化炭素の回収、供給の流れについては、同一の符号を付してその説明を省略する。
 図3には、本発明の第3実施形態に係る石炭ガス化複合発電プラントの概略構成図が示されている。
 排熱回収ボイラ23と煙突24との間には、二酸化炭素回収装置13が設けられている。
 排熱回収ボイラ23に導かれた水に熱を与えた排ガスには、二酸化炭素が10%程度含まれている。排ガス中の二酸化炭素は、二酸化炭素回収装置13によって回収される。二酸化炭素回収装置13によって回収された二酸化炭素は、二酸化炭素回収装置用圧縮機27によって昇圧されて微粉炭ホッパ7と、チャーホッパ12と、ポーラスフィルタ10とへ導いても良い(図示しない)。
 二酸化炭素回収装置13によって回収されなかった二酸化炭素を含む排ガスは、煙突24へと導かれる。
 以上の通り、本実施形態に係る石炭ガス化複合発電プラントによれば、以下の作用効果を奏する。
 二酸化炭素回収装置13は、排熱回収ボイラ23の下流側に設けることとした。そのため、排熱回収ボイラ23から導出される排ガス中の二酸化炭素は、二酸化炭素回収装置13によって回収することができる。したがって、石炭ガス化複合発電プラント1から排出される二酸化炭素の量を削減することができる。
 微粉炭やチャーの搬送およびその微粉炭ホッパ7やチャーホッパ12の加圧に必要な所定量以上の二酸化炭素を回収し、石炭ガス化複合発電プラント1外に貯留することにより、石炭ガス化複合発電プラント1から直接大気に放出される二酸化炭素を低減することができる。
 微粉炭ホッパ7やチャーホッパ12内の減圧・排気をする減圧排気系統は、前記二酸化炭素を大気に放出せず、石炭ガス化複合発電プラント1外に設けられている貯留設備30へ接続し、貯留することとした。そのため、石炭ガス化複合発電プラント1から大気に放出する二酸化炭素の排出量を低減することができ、地球温暖化防止になる。
 1 石炭ガス化複合発電プラント
 2 石炭供給設備
 3 原炭バンカー
 4 微粉炭機
 5 微粉炭集塵器
 6 微粉炭ビン
 7 微粉炭ホッパ
 9 ガス化炉(石炭ガス化炉) 
 10 ポーラスフィルタ
 11 チャービン
 12 チャーホッパ
 13 二酸化炭素回収装置
 15 ガス精製装置
 16 ガスタービン
 17 燃焼器
 18 タービン
 19 圧縮機
 20 回転軸
 21 発電機
 23 排熱回収ボイラ
 24 煙突
 25 蒸気タービン
 26 復水器
 27 二酸化炭素回収装置用圧縮機
 28 一酸化炭素シフトコンバータ
 30 貯留設備

Claims (5)

  1.  石炭が導かれるガス化炉と、
     該ガス化炉においてガス化された燃料ガスが燃焼する燃焼器を備えるガスタービンと、
     該ガスタービンから導出された排ガスによって蒸気を発生する排熱回収ボイラと、
     該排熱回収ボイラにおいて発生した蒸気が導かれる蒸気タービンと、
     該蒸気タービンおよび前記ガスタービンによって駆動されて発電する発電機と、
     前記ガスタービンから導出された排ガスの一部が導かれて二酸化炭素を回収する二酸化炭素回収装置と、を備え、
     前記二酸化炭素により、石炭を前記ガス化炉へと搬送することを特徴とする石炭ガス化複合発電プラント。
  2.  前記二酸化炭素回収装置は、前記ガス化炉と前記燃焼器との間に設けられる請求項1に記載の石炭ガス化複合発電プラント。
  3.  前記二酸化炭素回収装置の上流側には、燃料ガス中の一酸化炭素を所定量の二酸化炭素に製造する一酸化炭素シフトコンバータが設けられる請求項2に記載の石炭ガス化複合発電プラント。
  4.  前記二酸化炭素回収装置は、前記排熱回収ボイラの下流側に設けられる請求項1に記載の石炭ガス化複合発電プラント。
  5.  前記ガス化炉に石炭またはチャーを供給するホッパ内が空の場合には、前記ホッパ内の排ガスを二酸化炭素を貯留する貯留設備に導く請求項2から請求項4のいずれかに記載の石炭ガス化複合発電プラント。
PCT/JP2011/057738 2010-03-29 2011-03-29 石炭ガス化複合発電プラント WO2011122594A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2011235782A AU2011235782A1 (en) 2010-03-29 2011-03-29 Integrated coal gasification combined cycle power generation plant
CN201180005164.8A CN102695861B (zh) 2010-03-29 2011-03-29 煤气化复合发电设备
US13/515,393 US9261020B2 (en) 2010-03-29 2011-03-29 Integrated coal gasification combined cycle plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-074618 2010-03-29
JP2010074618A JP5578907B2 (ja) 2010-03-29 2010-03-29 石炭ガス化複合発電プラント

Publications (1)

Publication Number Publication Date
WO2011122594A1 true WO2011122594A1 (ja) 2011-10-06

Family

ID=44712289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057738 WO2011122594A1 (ja) 2010-03-29 2011-03-29 石炭ガス化複合発電プラント

Country Status (5)

Country Link
US (1) US9261020B2 (ja)
JP (1) JP5578907B2 (ja)
CN (1) CN102695861B (ja)
AU (1) AU2011235782A1 (ja)
WO (1) WO2011122594A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266396A (zh) * 2018-11-15 2019-01-25 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的整体煤气化燃料电池发电***及方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
JP5355657B2 (ja) * 2011-10-21 2013-11-27 中国電力株式会社 発電システム
JP5863519B2 (ja) * 2012-03-14 2016-02-16 三菱日立パワーシステムズ株式会社 ガス化プラント
KR101890951B1 (ko) 2012-12-20 2018-08-22 에스케이이노베이션 주식회사 합성 가스 및 고품위 석탄의 동시 생산을 위한 건조 및 가스화 통합 공정
CN103232857B (zh) * 2013-04-24 2015-10-28 华东理工大学 一种co2零排放的煤基电力与化工品联产工艺
JP6422689B2 (ja) * 2014-07-09 2018-11-14 三菱日立パワーシステムズ株式会社 ガス化炉設備、ガス化複合発電設備、およびガス化炉設備の起動方法
JP6407618B2 (ja) * 2014-08-08 2018-10-17 三菱日立パワーシステムズ株式会社 炭化質燃料ガス化炉用微粉供給システム、炭化質燃料ガス化複合発電設備および炭化質燃料ガス化炉用微粉供給システムの運転方法
WO2017023985A1 (en) * 2015-08-06 2017-02-09 Wormser Energy Solutions, Inc. All-steam gasification with carbon capture
KR102149133B1 (ko) * 2015-09-24 2020-08-28 미쓰비시주코마린마시나리 가부시키가이샤 배열 회수 장치, 내연 기관 시스템과 선박 및 배열 회수 방법
EP3359628B1 (en) 2015-10-06 2022-03-02 Wormser Energy Solutions, Inc. Method and apparatus for adiabatic calcium looping
JP6556639B2 (ja) * 2016-02-05 2019-08-07 三菱日立パワーシステムズ株式会社 ガス化システム及びガス化システムの運転方法
WO2018132567A1 (en) * 2017-01-15 2018-07-19 Wormser Energy Solutions, Inc All-steam gasification for supercritical co2 power cycle system
CN107035444A (zh) * 2017-04-21 2017-08-11 华电电力科学研究院 一种耦合火力发电和co2转化的零碳多联产***及方法
CN107201251B (zh) * 2017-06-23 2023-08-22 西安热工研究院有限公司 一种基于煤气化的太阳能储能和利用***及方法
CN108913219A (zh) * 2018-09-21 2018-11-30 西安热工研究院有限公司 一种基于煤气化的太阳能利用***及方法
CN109372636B (zh) * 2018-10-30 2023-11-03 中国华能集团清洁能源技术研究院有限公司 一种零碳排放的三循环整体煤气化燃料电池发电***及方法
CN113348230A (zh) * 2019-01-23 2021-09-03 沃姆泽能源解决方案股份有限公司 带有固体燃料制备***的全蒸汽气化
CN111960698A (zh) * 2019-08-20 2020-11-20 中国科学院工程热物理研究所 工业窑炉设备的燃料供给***及方法、工业窑炉设备
CN110749522B (zh) * 2019-11-13 2020-09-22 扎鲁特旗扎哈淖尔煤业有限公司 一种粉碎式煤品质鉴别装置
WO2021108395A1 (en) 2019-11-25 2021-06-03 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture
CN111019711B (zh) * 2019-12-16 2021-09-14 武汉科技大学 一种生活垃圾热裂解气化工艺
EP3878807A1 (en) 2020-03-13 2021-09-15 Clariant International Ltd Process for the production of synthesis gas via allothermic gasification with controlled carbon dioxide reduction
CN112413571B (zh) * 2020-11-19 2023-07-18 西安西热锅炉环保工程有限公司 一种天然气锅炉综合利用***及其运行方法
CN113186001A (zh) * 2021-04-07 2021-07-30 新兴铸管股份有限公司 高炉煤气精脱硫***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237222A (ja) * 1990-02-09 1991-10-23 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電プラント
JPH04116232A (ja) * 1990-09-07 1992-04-16 Babcock Hitachi Kk 石炭ガス化複合発電方法
JPH09257236A (ja) * 1996-01-17 1997-09-30 Mitsubishi Heavy Ind Ltd 粉粒体供給装置
JP2000027659A (ja) * 1998-07-15 2000-01-25 Hitachi Ltd 石炭ガス化複合プラント
JP2002285175A (ja) * 2001-03-26 2002-10-03 Babcock Hitachi Kk ジメチルエーテル併産複合発電システムとその運用方法
JP2008534862A (ja) * 2005-04-05 2008-08-28 サーガス・エーエス 低co2火力発電プラント
WO2009110034A1 (ja) * 2008-03-06 2009-09-11 株式会社Ihi 酸素燃焼ボイラの一次再循環排ガス流量制御方法及び装置
JP2010059940A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703807A (en) * 1971-01-15 1972-11-28 Laval Turbine Combined gas-steam turbine power plant
US4164124A (en) * 1975-06-11 1979-08-14 Combustion Turbine Power, Inc. Turbine system using unclean fuel
JPS61175241A (ja) * 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
AU638543B2 (en) 1990-02-09 1993-07-01 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases and integrated coal gasification combined cycle power generation plant
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
US5456066A (en) * 1993-07-12 1995-10-10 The United States Of America As Represented By The United States Department Of Energy Fuel supply system and method for coal-fired prime mover
JPH09228807A (ja) * 1996-02-26 1997-09-02 Ishikawajima Harima Heavy Ind Co Ltd 石炭ガス化複合発電システム
JP3722960B2 (ja) * 1997-09-03 2005-11-30 三菱重工業株式会社 発電用石炭の乾燥・パージ方法及びその装置
JP3947887B2 (ja) * 1998-10-07 2007-07-25 三菱マテリアル株式会社 石炭の発電設備用燃料への転換方法及びその装置
JP2001049268A (ja) * 1999-08-06 2001-02-20 Electric Power Dev Co Ltd 石炭ガス化設備における給炭方法及び装置
NO20051687D0 (no) * 2005-04-05 2005-04-05 Sargas As Termisk kraftanlegg med lavt CO2 utslipp
US8001788B2 (en) * 2007-04-06 2011-08-23 Babcock & Wilcox Power Generation Group, Inc. Method and apparatus for preparing pulverized coal used to produce synthesis gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237222A (ja) * 1990-02-09 1991-10-23 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電プラント
JPH04116232A (ja) * 1990-09-07 1992-04-16 Babcock Hitachi Kk 石炭ガス化複合発電方法
JPH09257236A (ja) * 1996-01-17 1997-09-30 Mitsubishi Heavy Ind Ltd 粉粒体供給装置
JP2000027659A (ja) * 1998-07-15 2000-01-25 Hitachi Ltd 石炭ガス化複合プラント
JP2002285175A (ja) * 2001-03-26 2002-10-03 Babcock Hitachi Kk ジメチルエーテル併産複合発電システムとその運用方法
JP2008534862A (ja) * 2005-04-05 2008-08-28 サーガス・エーエス 低co2火力発電プラント
WO2009110034A1 (ja) * 2008-03-06 2009-09-11 株式会社Ihi 酸素燃焼ボイラの一次再循環排ガス流量制御方法及び装置
JP2010059940A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266396A (zh) * 2018-11-15 2019-01-25 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的整体煤气化燃料电池发电***及方法
CN109266396B (zh) * 2018-11-15 2024-01-19 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的整体煤气化燃料电池发电***及方法

Also Published As

Publication number Publication date
US9261020B2 (en) 2016-02-16
AU2011235782A1 (en) 2012-06-21
CN102695861A (zh) 2012-09-26
JP5578907B2 (ja) 2014-08-27
CN102695861B (zh) 2015-03-25
US20120247080A1 (en) 2012-10-04
JP2011208513A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2011122594A1 (ja) 石炭ガス化複合発電プラント
TWI422739B (zh) 適度氣化複合循環發電設備
US20110139047A1 (en) Integrated coal gasification combined cycle power generation system
JP2020506983A (ja) 超臨界co2発電サイクルシステムのための全蒸気ガス化
US8439993B2 (en) Method and apparatus to transport solids
JP6660790B2 (ja) 微粉炭供給システム及びその運転方法並びに石炭ガス化発電設備
US9890331B2 (en) Gasification facility
US20140026483A1 (en) Systems for preheating feedstock
JP7043285B2 (ja) ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法
JP6008514B2 (ja) ガス化ガスのガス精製装置
JP5675297B2 (ja) ガス化設備および石炭ガス化複合発電設備
JP2001348578A (ja) 炭素系化石燃料とバイオマスのガス化装置およびガス化方法
JP2011185240A (ja) ガスタービンおよびこれを備えたガス化複合発電プラント
JP6957198B2 (ja) ガス化炉設備およびこれを備えたガス化複合発電設備
JP5606045B2 (ja) ガス化設備
JP6556639B2 (ja) ガス化システム及びガス化システムの運転方法
JP3952236B2 (ja) 化石燃料ガス化発電プラントおよびその機器の予熱方法
JP2011201945A (ja) ガス化炉およびこれを備えた石炭ガス化発電プラント
JP2011174454A (ja) ガス化発電プラント
KR20150138498A (ko) 석탄가스화 복합발전 시스템
JP5920920B2 (ja) 石炭火力発電システム
JP2019178230A (ja) ガス化炉システム
US8535418B2 (en) Gaseous byproduct removal from synthesis gas
JP2018141042A (ja) ガス化炉設備およびこれを備えたガス化複合発電設備ならびにガス化炉設備の運転方法
JP2012172131A (ja) 空気分離手段およびこれを備えたガス化炉プラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011235782

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13515393

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011235782

Country of ref document: AU

Date of ref document: 20110329

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762818

Country of ref document: EP

Kind code of ref document: A1