WO2011122448A1 - Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material Download PDF

Info

Publication number
WO2011122448A1
WO2011122448A1 PCT/JP2011/057242 JP2011057242W WO2011122448A1 WO 2011122448 A1 WO2011122448 A1 WO 2011122448A1 JP 2011057242 W JP2011057242 W JP 2011057242W WO 2011122448 A1 WO2011122448 A1 WO 2011122448A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
aqueous electrolyte
Prior art date
Application number
PCT/JP2011/057242
Other languages
French (fr)
Japanese (ja)
Inventor
加瀬 克也
周平 小田
竜一 葛尾
小山 裕
Original Assignee
住友金属鉱山株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, トヨタ自動車株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2012508250A priority Critical patent/JP5518182B2/en
Priority to US13/638,171 priority patent/US8999573B2/en
Priority to KR1020127028055A priority patent/KR101535325B1/en
Priority to KR1020157005734A priority patent/KR101679996B1/en
Priority to CN201180024955.5A priority patent/CN103026537B/en
Publication of WO2011122448A1 publication Critical patent/WO2011122448A1/en
Priority to US14/564,261 priority patent/US9553311B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, a positive electrode active material used as a positive electrode material of the non-aqueous electrolyte secondary battery, a method for producing the positive electrode active material, and a precursor used for producing the positive electrode active material. More specifically, a positive electrode active material comprising a lithium nickel composite oxide, a nonaqueous electrolyte secondary battery using the positive electrode active material as a positive electrode, a method for producing the lithium nickel composite oxide, and nickel as a precursor thereof It relates to a composite hydroxide.
  • non-aqueous electrolyte secondary batteries and nickel-metal hydride batteries have become important as power sources for mounting on vehicles powered by electricity, or power sources mounted on personal computers, mobile terminals, and other electrical products.
  • the nature is increasing.
  • a non-aqueous electrolyte secondary battery that is lightweight and obtains a high energy density is expected to be suitably used as a high-output power source for mounting on a vehicle.
  • an electrode active material layer capable of reversibly occluding and releasing lithium ions on the surface of the electrode current collector, specifically, A positive electrode active material layer and a negative electrode active material layer are provided.
  • a paste in which a positive electrode active material composed of a composite oxide containing a transition metal such as lithium or nickel as a constituent metal element is dispersed in an appropriate solvent composed of an aqueous solvent such as water or various organic solvents And a slurry-like composition (hereinafter, these compositions are simply referred to as “paste”), and the paste is applied on a positive electrode current collector to form a positive electrode active material layer.
  • lithium nickel composite oxide composed mainly of nickel: LiNi 1-x M x O 2 (M is other than Ni)
  • M is other than Ni
  • One or more other suitable metal elements have a higher theoretical lithium ion storage capacity than conventional lithium cobalt composite oxides, and cost-effective metal materials such as cobalt. Since it has the advantage that the amount used can be reduced, it has been attracting attention as a positive electrode material suitable for the production of lithium ion secondary batteries.
  • both the charge capacity and the discharge capacity are higher than that of the lithium cobalt composite oxide, but there is a problem that the cycle characteristics are inferior.
  • the battery performance is relatively easily lost.
  • JP-A-8-78006 (Patent Document 1), it is composed of a complex oxide having a layered structure represented by the general formula: Li a Ni b M 1 c M 2 O 2 , where M 1 is Co.
  • a positive electrode active material has been proposed in which M 2 contains at least one element selected from B, Al, In, and Sn.
  • the output characteristics at high and low temperatures as a secondary battery are extremely important characteristics when mounted on equipment used in environments with large temperature changes, especially when considering use in cold regions. It is necessary to have sufficient output characteristics at low temperatures.
  • Patent Document 2 As an attempt to improve the output characteristics at a low temperature, for example, in Japanese Patent Application Laid-Open No. 11-288716 (Patent Document 2), primary particles are gathered radially to form spherical or elliptical secondary particles having an average particle diameter of 5 to 20 ⁇ m.
  • lithium ions can be uniformly intercalated and deintercalated from the surface of the secondary particles into the crystal, and have a high capacity and excellent heavy load characteristics and low temperature efficiency discharge characteristics. It is said that a battery will be obtained.
  • the surface of the secondary particles is covered with the conductive material, the binder, or the gas adsorbed on the surface during the synthesis of the positive electrode active material, so that the movement of lithium ions is inhibited, In particular, it is considered that low-temperature efficient discharge characteristics cannot be obtained sufficiently.
  • Patent Document 3 describes a ratio D50 / the ratio between the average length r in the short direction of primary particles and the particle size D50 at which the volume cumulative frequency of the particle size distribution of secondary particles reaches 50%.
  • FWHM (003) and FWHM (104) are preferably 0.7 ⁇ FWHM (003) / FWHM (104) ⁇ 0.9, and further 0.1 ° ⁇ FWHM (003) ⁇ 0. 16 ° and 0.13 ° ⁇ FWHM (104) ⁇ 0.2 ° are more preferable.
  • Patent Document 4 a lithium ion secondary expressed by a general formula: LiMO 2 (M is at least one selected from the group consisting of Co, Ni, Fe, Mn, and Cr).
  • a positive electrode active material for a battery which is composed of particles in which single crystals each having a fine crystallite as a unit are aggregated, and the crystallite and the shape of the particle are three-dimensionally isotropic shapes. In other words, a positive electrode active material in the range of 500 to 750 mm in the (003) vector direction and 450 to 1000 mm in the (110) vector direction has been proposed.
  • the crystallite size is used to express the three-dimensional isotropic shape of the particle, but no mention is made of the influence of the crystallite size itself. Further, the purpose is to achieve both thermal stability during charging and charge / discharge cycle characteristics, and is unrelated to improvement in low-temperature output.
  • the nickel composite compound used as a raw material for the lithium nickel composite oxide that is, the precursor of the positive electrode active material.
  • a method for producing a lithium nickel composite oxide a method is generally used in which a lithium compound and a nickel composite compound composed of nickel, cobalt, and a metal element M are mixed and baked.
  • the nickel composite compound hydroxides, oxides, nitrates, and the like are used. Since the shape, particle diameter, and crystallinity of the product are controlled, the hydroxide or the hydroxide is obtained by firing. It is common to use oxides that can be used.
  • Patent Document 5 in the production of a positive electrode active material composed of lithium nickelate represented by the general formula: LiNiO 2 , primary particles having a particle size of 1 ⁇ m or less are aggregated. It describes that nickel hydroxide and lithium hydroxide forming secondary particles are heat-treated in an oxygen atmosphere to obtain lithium nickelate.
  • the openings of the layer of primary particles having a layer structure of nickel hydroxide by taking an oriented grain structure toward the outside of the secondary particles, the end faces of the generated LiNiO 2 layers was also maintain its shape It is said that the intercalation / deintercalation reaction of Li in charge / discharge proceeds more smoothly because it is oriented toward the outside of the powder particles.
  • Patent Document 6 As a positive electrode active material precursor, a general formula: Ni 1-x A x (OH) 2 (A is cobalt or manganese, 0.10 ⁇ x ⁇ 0 .5), and is composed of a laminated body or a single crystal with a uniform crystal orientation, the primary particle diameter is 0.5 to 5 ⁇ m, and the full width at half maximum by X-ray diffraction obtained by sampling most easily oriented is (001 ) ⁇ 0.3 deg. , (101) ⁇ 0.43 deg. Nickel hydroxide having a peak intensity ratio I (101) / I (001) ⁇ 0.5 has been proposed.
  • the crystallite diameter is 40 nm (400 mm) or more, specifically, the range of 430 to 1190 mm is disclosed.
  • JP-A-8-78006 Japanese Patent Laid-Open No. 11-288716 JP 2000-243394 A JP-A-10-308218 JP 7-335220 A Japanese Patent Laid-Open No. 11-60243 JP 2000-30893
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of obtaining a battery having good output characteristics in a high temperature environment or a low temperature environment, particularly at a low temperature, while maintaining battery characteristics such as charge / discharge capacity and cycle characteristics.
  • the object is to provide a positive electrode active material for a battery.
  • the present inventor has intensively studied on improving the output characteristics of the non-aqueous electrolyte secondary battery at a low temperature. As a result, it is possible to improve the low-temperature output characteristics by distributing the pores through which the electrolyte solution can penetrate into the positive electrode active material with a certain size, and such pores constitute the positive electrode active material. It was found that the crystallite diameter of the lithium nickel composite oxide can be controlled by making it a specific size. Furthermore, there is a close correlation between the crystal properties of the nickel composite hydroxide as a precursor and the crystal properties of the finally obtained lithium nickel composite oxide. The inventors have found that the positive electrode active material can be obtained by controlling the full width at half maximum (full width at half maximum). The present invention has been completed based on these findings.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula: Li w (Ni 1-xy Co x Al y) 1-z M z O 2 (0.98 ⁇ w ⁇ 1.10, 0.05 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.05, where M is at least one selected from Mg, Fe, Cu, Zn, and Ga It consists of lithium nickel composite oxide comprised by the secondary particle which the primary particle represented by (metal element) aggregated.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a (003) plane crystallite diameter of the lithium nickel composite oxide constituting the positive electrode active material, which is determined by X-ray diffraction and Scherrer formula. It is characterized in that it is 1200-1600cm, preferably 1200-1500cm.
  • Precursor for obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula: (Ni 1-xy Co x Al y) 1-z M z (OH) 2 (0.05 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.05, where M is at least one metal element selected from Mg, Fe, Cu, Zn, and Ga)
  • the precursor is preferably one in which the surface of a hydroxide composed of Ni, Co, and M represented by the above general formula is coated with aluminum hydroxide.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a precursor comprising the above nickel composite hydroxide, or a precursor oxide obtained by oxidizing and baking the precursor, and a lithium compound. And the obtained mixture is fired in an oxidizing atmosphere to obtain a lithium nickel composite oxide having the above composition and characteristics.
  • a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode active material layer formed of a positive electrode active material for a non-aqueous electrolyte secondary battery having the above composition and characteristics on a positive electrode current collector. .
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention By using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery having excellent output characteristics at low temperatures can be obtained.
  • the positive electrode active material of the present invention having such characteristics can be easily obtained by using the precursor of the present invention. Therefore, it can be said that the industrial value of the present invention is extremely large.
  • a lithium ion secondary battery which is a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide as the positive electrode active material, moves between the positive electrode active material and the electrolyte, It proceeds by reversibly entering and exiting the positive electrode active material. For this reason, the ease of movement of lithium ions during charge / discharge, that is, mobility greatly affects the charge / discharge characteristics, particularly the output characteristics and rate characteristics of the secondary battery.
  • the movement of lithium ions can be broadly divided into movement within the positive electrode active material, movement at the interface between the positive electrode active material and the electrolyte, and movement in the electrolyte, but movement in the electrolyte depends on the electrolyte, It is unrelated to the positive electrode active material.
  • a secondary battery is formed using a positive electrode active material having a low internal resistance even at low temperatures, in other words, a positive electrode active material having a high lithium ion mobility at this interface. Need to get.
  • the mobility of lithium ions at the interface between the positive electrode active material and the electrolyte solution depends on the lithium ion insertion / removability from the surface of the positive electrode active material. Dependent. That is, the larger the area of the positive electrode active material surface, the larger the contact area between the positive electrode active material and the electrolytic solution, which is advantageous for the movement of lithium ions during charging and discharging.
  • the area of the surface of the positive electrode active material means the area of the part where the electrolyte solution can come into contact. That is, the fine pores included in the surface area measured by the nitrogen adsorption method or the like cannot enter the electrolyte and may not contribute to contact with the electrolyte. The area of is excluded. Therefore, it can be said that it is necessary to obtain a battery having good output characteristics that a large number of pores having a size that allows the electrolyte to enter are distributed in the positive electrode active material.
  • the positive electrode active material is composed of secondary particles in which the primary particles are aggregated, if the primary particles are fine, a large number of pores existing between the primary particles inside the positive electrode active material will be distributed. Since the fine pores are fine, the penetration of the electrolytic solution is impossible, and the area that can be contacted by the electrolytic solution is not increased.
  • the pores existing between the primary particles become larger in diameter and the ratio of the number of pores into which the electrolyte solution can enter increases, but the number of distributed pores also increases. Estimated to decrease. Furthermore, if the primary particles become too coarse, the proportion of pores in the particles is extremely reduced, and the intrusion route of the electrolytic solution is reduced, so that the output characteristics are rather deteriorated. Therefore, when the primary particles have a size within a certain range, a large number of pores into which the electrolytic solution can enter between the primary particles exist, and the area that can be contacted by the electrolytic solution can be increased.
  • the average diameter of the primary particles can be adopted, but the single crystal constituting the primary particles increases and the primary particle size also increases.
  • the crystallite size which is an index of the size of, is suitable. Since the primary particles have a certain size, the size of the pores between the primary particles is increased, a path for the electrolyte to enter the positive electrode active material is secured, and the primary particles inside the positive electrode active material are also Can be contacted.
  • the primary particles themselves have a large surface area. That is, by securing the electrolyte penetration path into the positive electrode active material, the number of primary particles that can be contacted with the electrolytic solution is increased, and the surface area of each primary particle is increased so that the electrolytic solution is in contact with the positive electrode active material.
  • the area of the positive electrode active material to be increased can be greatly increased.
  • the primary particle diameter is increased to ensure the entry path of the electrolyte, and the surface area of the primary particles is increased to increase the effective surface area. be able to.
  • the primary particles are considered to be composed of single crystals, and as the single crystals become larger, the difference in particle size between the single crystals exposed on the surface also increases, and as a result, the irregularities on the surface of the primary particles become larger. Because it is.
  • the crystallite diameter as an index, it is possible to evaluate both the securing of the electrolyte intrusion route and the effective surface area of the primary particle surface.
  • the crystallite diameter is usually determined by Scherrer's formula shown by the following formula (1).
  • the crystal plane used in the calculation formula can be arbitrarily selected. However, in the case of lithium nickel composite oxide, the (00n) plane that is perpendicular to the layer of the layered structure in which lithium intercurrents has an X-ray diffraction pattern. This is suitable because the peak intensity is large, and the (003) plane where the peak intensity is particularly large is suitable.
  • D 0.9 ⁇ / ⁇ cos ⁇ (1)
  • D Crystallite diameter ( ⁇ ) ⁇ : Broadening of diffraction peak (rad) depending on crystallite size ⁇ : X-ray wavelength [CuK ⁇ ] ( ⁇ ) ⁇ : Diffraction angle (°)
  • the (003) plane crystallite diameter of the lithium nickel composite oxide obtained by X-ray diffraction and the Scherrer equation is controlled to be in the range of 1200 to 1600 mm, preferably 1200 to 1500 mm.
  • the primary particles are fine and the pores existing between the primary particles inside the positive electrode active material become fine. It becomes impossible for the electrolytic solution to enter the surface, and a sufficient contact area with the electrolytic solution cannot be obtained.
  • the (003) plane crystallite diameter exceeds 1600 mm, the primary particles become too coarse, the proportion of pores in the secondary particles is extremely reduced, and the intrusion route of the electrolytic solution is reduced.
  • the target low-temperature output can be obtained in the range of 1200 to 1600 ⁇ , but the output is flat in the range of 1200 to 1500 ⁇ ⁇ ⁇ , so within that range to obtain a stable low-temperature output. Is desirable.
  • the particle size of the primary particles has a correlation with the (003) plane crystallite size, and the particle size of the primary particles can be controlled in a preferable state by controlling the crystallite size within the above range.
  • the particle diameter of the secondary particles is preferably 5 to 20 ⁇ m, particularly 7 to 12 ⁇ m, as an average particle diameter by a laser diffraction scattering method.
  • the positive electrode active material of the present invention is composed of a hexagonal lithium-nickel composite oxide having a layered structure. However, in order to improve the thermal stability of the lithium-nickel composite oxide, a sufficient capacity can be obtained. Further, Co and Al are added. Specifically, the molar ratio of Co to the total of Ni, Co, and Al is 0.05 to 0.3, preferably 0.1 to 0.2, Al is 0.01 to 0.1, Preferably 0.02 to 0.05 is added.
  • At least one metal element selected from Mg, Fe, Cu, Zn, and Ga is used with respect to the total of metal elements other than Li. 0.05 or less can be added at a molar ratio.
  • the precursor as a raw material for the positive electrode active material has the general formula: Ni 1-xy Co x Al y) 1-z M z (OH) 2 (0.05 ⁇ x ⁇ 0.3,0. 01 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.05, where M is a nickel composite hydroxide represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga)
  • M is a nickel composite hydroxide represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga
  • the nickel composite hydroxide is characterized in that the half width (full width at half maximum) of the (101) plane by X-ray diffraction is 0.45 to 0.8 °.
  • the structure of the precursor is already composed of secondary particles formed by agglomeration of primary particles, similarly to the positive electrode active material obtained using the precursor.
  • the precursor is preferably one in which the surface of a hydroxide composed of Ni, Co, and M represented by the above general formula is coated with aluminum hydroxide from the viewpoint of improving output characteristics.
  • the (003) plane crystallite diameter is 1200 to 1600 mm.
  • a lithium nickel composite oxide is obtained. If the (101) plane half width by X-ray diffraction of the nickel composite hydroxide is less than 0.45 °, the crystallite diameter of the lithium nickel composite oxide exceeds 1600 mm. On the other hand, when the half width exceeds 0.8 °, the crystallite diameter of the lithium nickel composite oxide becomes less than 1200 mm.
  • the half width is preferably set to 0.5 to 0.8 °.
  • the crystal properties of the nickel composite hydroxide can be obtained by X-ray diffraction as in the case of the lithium nickel composite oxide.
  • the (101) plane was focused on because the half width of the (101) plane was manufactured. This is because it varies greatly depending on conditions, particularly crystallization reaction conditions. Although it is possible to use the full width at half maximum of the crystal plane other than the (101) plane as an index, there are few changes due to manufacturing conditions, and the crystallite diameter of the obtained positive electrode active material cannot be sufficiently controlled.
  • the method for producing a positive electrode active material according to the present invention is characterized in that the precursor or a precursor oxide obtained by oxidizing and baking the precursor and a lithium compound are mixed and then fired in an oxidizing atmosphere. It is what.
  • the precursor is produced by using, for example, a known technique (such as a coprecipitation method) for obtaining a metal hydroxide by neutralizing an aqueous metal salt solution, and the pH, temperature, and reaction solution during the neutralization reaction. It can be obtained by controlling the Ni solubility of the reaction solution by the NH 3 concentration of
  • Cobalt salts include cobalt sulfate, cobalt chloride and cobalt nitrate, and M metal salts include sulfate and chloride. And nitrates can be used.
  • the conditions may vary depending on the production apparatus and its scale. Specifically, for example, when nickel sulfate is used as the nickel salt, the pH during the neutralization reaction is preferably more than 10 and less than 11.5, more preferably Is 10.5 to 11.0, the temperature is preferably 40 to 55 ° C., more preferably 45 to 55 ° C., and the NH 3 concentration in the reaction solution is preferably 5 to 20 g / L.
  • the precursor is obtained by controlling the solubility to preferably 25 to 100 ppm by mass, more preferably 30 to 80 ppm by mass.
  • Ni solubility of the reaction solution When the Ni solubility of the reaction solution is less than 25 mass ppm, nucleation during the crystallization reaction increases, and the (101) half width of the resulting nickel composite hydroxide exceeds 0.8 °. There is. Moreover, when Ni solubility exceeds 100 mass ppm, the crystal growth at the time of a crystallization reaction will be accelerated
  • the Ni solubility of the reaction solution is controlled by the pH and temperature during the neutralization reaction and the NH 3 concentration in the reaction solution.
  • the pH during the neutralization reaction is 11.
  • the temperature is 5 or more, the temperature is less than 40 ° C., or the NH 3 concentration in the reaction solution is less than 5 g / L, the Ni solubility of the reaction solution is less than 25 ppm by mass.
  • the pH during the neutralization reaction is 10 or less, the temperature exceeds 55 ° C., or the NH 3 concentration in the reaction solution exceeds 20 g / L, the Ni solubility of the reaction solution exceeds 100 mass ppm. End up.
  • the Ni solubility of the reaction solution is out of the predetermined range, and in any case, preferable crystallinity is obtained as a precursor for obtaining a positive electrode active material having excellent battery characteristics. It is not possible to obtain nickel composite hydroxide.
  • the above reaction conditions are examples, and even if the (101) plane half-value width exceeds the above range due to the influence of the production apparatus and its scale, the above conditions and the (101) plane half price By referring to the relationship of the width, the (101) plane half width can be easily adjusted according to each situation.
  • a mixed salt aqueous solution containing a nickel salt, a cobalt salt, and an M metal salt mixed in a predetermined ratio in a pH-adjusted reaction solution such as water and an alkaline aqueous solution are prepared.
  • a coprecipitation method in which hydroxides of nickel, cobalt, and M metal are coprecipitated can be mentioned.
  • the ratio of Ni, Co, and M in the mixed salt aqueous solution may follow the composition ratio in the lithium nickel composite oxide that is the positive electrode active material to be finally obtained.
  • the obtained nickel-cobalt composite hydroxide is a secondary particle in which primary particles are aggregated, and the shape of the secondary particle is spherical, and the average particle size by the laser diffraction scattering method is 5 It is preferable to adjust so as to be ⁇ 20 ⁇ m.
  • the shape and average particle diameter of the particles can be controlled by the mixing speed and coprecipitation conditions of the mixed salt aqueous solution and the alkaline aqueous solution.
  • the production of nickel-cobalt composite hydroxide is preferably performed by the coprecipitation method described above, but in addition, after producing nickel hydroxide by crystallization method, cobalt hydroxide is precipitated on the surface, It is possible to obtain a precursor composed of secondary particles formed by agglomeration of primary particles by a method of finely pulverizing the produced nickel-cobalt composite hydroxide particles to obtain a target particle size by a spray drying method. it can.
  • the obtained nickel-cobalt composite hydroxide is filtered, washed with water, and dried, and these treatments may be performed by ordinary methods.
  • the precursor is a nickel composite hydroxide containing Al, and can also be obtained by neutralizing a mixed salt aqueous solution containing Al. In order to uniformize the Al content in each particle, nickel composite hydroxide is used. After obtaining the product, the nickel composite hydroxide is preferably contained by coating with aluminum hydroxide.
  • nickel composite hydroxide is made into a slurry, and the slurry is stirred while adjusting the pH, and an aqueous solution containing an aluminum salt such as sodium aluminate is added to coat the nickel composite hydroxide with aluminum hydroxide.
  • an aqueous solution containing an aluminum salt such as sodium aluminate of desired density
  • pH may be adjusted and aluminum hydroxide may be made to adsorb
  • the positive electrode active material of the present invention is prepared by mixing a precursor obtained by the above crystallization method or a precursor oxide obtained by oxidizing and baking the precursor and a lithium compound, and then firing in an oxidizing atmosphere. It is obtained by doing.
  • Reactivity with Li can be improved by oxidizing and baking the precursor. In this case, since the reaction with Li proceeds sufficiently in a short time, productivity can be improved.
  • the oxidation roasting temperature is preferably 650 to 750 ° C, more preferably 700 to 750 ° C. If it is less than 650 degreeC, the oxide film formed on the surface is not enough, and if it exceeds 750 degreeC, since a surface area will reduce too much and the reactivity with Li will fall, it is unpreferable.
  • the oxidation roasting atmosphere is not a problem as long as it is a non-reducing atmosphere, and an air atmosphere or an oxygen atmosphere is preferable.
  • the oxidation roasting time and the furnace to be treated are not particularly limited, and may be appropriately set depending on the amount to be treated and the oxidation roasting temperature.
  • the mixing with the lithium compound is performed by mixing the precursor or the precursor oxide and the lithium compound at a composition ratio of the lithium nickel composite oxide which is the positive electrode active material to be finally obtained.
  • the mixing can be performed by using a dry mixer or a mixing granulator such as a V blender, a Spartan luzer, a Redige mixer, a Julia mixer, or a vertical granulator, and is preferably performed within a suitable time range for uniform mixing.
  • a dry mixer or a mixing granulator such as a V blender, a Spartan luzer, a Redige mixer, a Julia mixer, or a vertical granulator, and is preferably performed within a suitable time range for uniform mixing.
  • Calcination is not particularly limited and can be performed using a normal method and apparatus, but the temperature at the time of calcination is preferably 700 to 760 ° C, more preferably 740 to 760 ° C.
  • the temperature at the time of firing is less than 700 ° C.
  • the crystallinity of the lithium nickel composite oxide constituting the positive electrode active material is not sufficiently developed, and the (003) plane crystallite diameter may be less than 1100 mm.
  • the (003) plane crystallite diameter of the lithium nickel composite oxide may exceed 1600 mm, and the secondary particles of the lithium nickel composite oxide may be sintered. May occur and the secondary particles may become coarse.
  • the firing time is not particularly limited, and it is sufficient that a time for the above reaction to sufficiently proceed is obtained, and it is preferably about 1 to 10 hours.
  • the oxidizing atmosphere is not particularly limited. However, in order to sufficiently develop the crystallinity of the lithium nickel composite oxide, an oxygen atmosphere containing 60 to 100% by volume of oxygen is preferable.
  • the lithium compound is not particularly limited, but is preferably lithium hydroxide or a hydrate thereof.
  • Lithium hydroxide has a low melting temperature and melts within the range of the above calcination temperature, and the reaction becomes a liquid phase-solid phase reaction, so that it can be sufficiently reacted with the nickel composite hydroxide.
  • lithium carbonate or the like it does not melt within the range of the firing temperature, and may not sufficiently react with the nickel composite hydroxide.
  • the non-aqueous electrolyte secondary battery of the present invention is characterized in that a positive electrode active material layer formed of the positive electrode active material is provided on a positive electrode current collector. The details will be described below.
  • a powdered positive electrode active material, a conductive material, and a binder are mixed, a solvent, preferably an aqueous solvent is added, and this is kneaded to prepare a positive electrode mixture aqueous paste.
  • a solvent preferably an aqueous solvent is added, and this is kneaded to prepare a positive electrode mixture aqueous paste.
  • Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery.
  • the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass
  • the content of the positive electrode active material is 80 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery
  • the conductive material The content of is preferably 2 to 15 parts by mass and the content of the binder is preferably 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressure may be applied by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be used for production of a battery by cutting it into an appropriate size according to the intended battery.
  • the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.
  • the conductive agent for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
  • the binder plays a role of holding the active material particles, and is preferably a water-soluble polymer material that dissolves in water.
  • Hydrophilic polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), polyvinyl alcohol (PVA), polyethylene oxide (PEO) ) Etc.
  • a polymer material having water dispersibility can be preferably used.
  • fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • vinyl acetate copolymer vinyl acetate copolymer
  • styrene examples include rubbers such as butadiene block copolymer (SBR), acrylic acid knitted SBR resin (SBR latex), and gum arabic.
  • SBR butadiene block copolymer
  • SBR latex acrylic acid knitted SBR resin
  • gum arabic gum arabic
  • the aqueous paste can be prepared by adding the positive electrode active material of the present invention, the above-exemplified conductive agent, and the additive such as the binder to an appropriate aqueous solvent, and dispersing or dissolving the mixture.
  • the active material layer forming paste can be applied to the surface of the current collector with a predetermined thickness using a coating apparatus (coater).
  • the thickness for applying the paste is not particularly limited, and is appropriately set according to the shape and application of the positive electrode and the battery. For example, it is applied to the surface of a foil-like current collector having a thickness of about 10 to 30 ⁇ m so that the thickness after drying is about 5 to 100 ⁇ m.
  • the positive electrode active material layer having a predetermined thickness can be formed on the surface of the current collector by drying the application using an appropriate dryer. The positive electrode active material layer thus obtained is pressed as desired to obtain a positive electrode sheet having a desired thickness.
  • Negative electrode The negative electrode composite material in which the negative electrode is made of metal lithium, lithium alloy, or the like, or a negative electrode active material capable of occluding and desorbing lithium ions, mixed with a binder, and added with an appropriate solvent to form a paste. Is applied to the surface of a metal foil current collector such as copper and dried, and if necessary, it is compressed to increase the electrode density.
  • the negative electrode active material for example, a carbon material such as natural graphite, artificial graphite, non-graphitizable carbonaceous material, graphitizable carbonaceous material, or a material having a combination of these can be suitably used.
  • (C) Separator A separator is interposed between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent examples include (1) cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, (2) chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, (3 ) Selected from ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, (4) sulfur compounds such as ethyl methyl sulfone and butane sultone, (5) phosphorus compounds such as triethyl phosphate and trioctyl phosphate, and other organic solvents One kind can be used alone, or two or more kinds can be mixed and used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and
  • LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 or the like can be used alone or a complex salt thereof.
  • concentration of a supporting salt it may be the same as that of the electrolyte solution used with the conventional lithium ion secondary battery, and there is no restriction
  • An electrolytic solution containing an appropriate lithium compound (supporting salt) at a concentration of about 0.1 to 5 mol / L can be used.
  • non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte solution described above may be various, such as a cylindrical type and a laminated type. Can be.
  • the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. Connect between the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside using a current collecting lead, etc., and seal the battery case to complete the nonaqueous electrolyte secondary battery. .
  • the non-aqueous electrolyte secondary battery of the present invention is for the non-aqueous electrolyte secondary battery of the present invention having crystallinity in which the (003) plane crystallite diameter determined by X-ray diffraction and Scherrer formula is in the range of 1200 to 1600 ⁇ Since the positive electrode active material is used as the positive electrode material, for example, the low temperature output in a low temperature environment of ⁇ 30 ° C. is improved by 20% or more compared to the conventional material.
  • the crystalline properties of the lithium metal composite oxide more specifically, the positive electrode active material produced by adjusting the crystallite diameter of the (003) plane to an appropriate size is used as the positive electrode material, and non-aqueous An electrolyte secondary battery (lithium ion secondary battery) was manufactured and its performance was evaluated.
  • Example 1 Positive electrode active material
  • the positive electrode active material was manufactured in the following procedures. That is, nickel sulfate (NiSO 4 ) as a nickel supply source and cobalt sulfate (CoSO 4 ) as a cobalt supply source are mixed so that the molar ratio of Ni: Co is 85:15. A total of 104.5 g / L nickel cobalt mixed salt aqueous solution was prepared.
  • the nickel-cobalt composite hydroxide dispersed in an aqueous solution of sodium aluminate and sodium hydroxide (NaOH) 20g / L (NaAlO 2) is dissolved, the slurry was prepared, with stirring an aqueous solution of sulfuric acid (H 2 The mixture was neutralized with SO 4 ) to deposit aluminum hydroxide on the surface of the nickel cobalt composite hydroxide. In addition, about the whole amount of sodium aluminate, it precipitated as aluminum hydroxide. The slurry was washed with water, filtered, and then dried at about 100 ° C., and then heated to 700 ° C. in an air atmosphere and oxidized and baked for 5 hours, whereby nickel cobalt aluminum composite oxide (Ni 0.82 Co 0.15 Al 0.03 O) was synthesized.
  • Ni 0.82 Co 0.15 Al 0.03 O nickel cobalt aluminum composite oxide
  • lithium hydroxide (LiOH) as a lithium supply source is added to the nickel-cobalt-aluminum composite oxide, and the molar ratio of Li to the total of all other constituent metal elements (Ni, Co, Al): Li /
  • a mixed raw material for lithium nickel composite oxide was prepared by mixing in an amount such that (Ni + Co + Al) was 1.05.
  • the mixed raw material is calcined by holding at 750 ° C. for 7 hours in an oxygen atmosphere to synthesize lithium nickel composite oxide (Li 1.05 (Ni 0.82 Co 0.15 Al 0.03 ) O 2 ) to produce the positive electrode.
  • An active material was obtained.
  • the half width of the (003) plane of the obtained positive electrode active material was similarly measured using an X-ray diffractometer, and the (003) plane was calculated from the obtained (003) plane half width by Scherrer's formula.
  • the crystallite diameter of 1346 was determined. The results are shown in Table 1.
  • Non-aqueous electrolyte secondary battery (lithium ion secondary battery) (2-1) Positive electrode An aqueous paste was prepared using the obtained positive electrode active material. That is, in forming the positive electrode active material layer in the positive electrode, the positive electrode active material, acetylene black as a conductive material, carboxymethyl cellulose (CMC) as a binder, and polytetrafluoroethylene (PTFE), The material was weighed so that the mass ratio of the material was 88: 10: 1: 1, and added to an aqueous solvent (ion-exchanged water) so that the solid content of the material was 54% by mass. Subsequently, it mixed for 50 minutes with the planetary mixer, and the aqueous paste for positive electrode active material layer formation was obtained.
  • aqueous solvent ion-exchanged water
  • the obtained aqueous paste was applied to both surfaces of a 15 ⁇ m-thick aluminum foil serving as a positive electrode current collector so that the total coating amount (solid content conversion) was 9.5 g / cm 2 .
  • the moisture in the applied paste is dried, it is stretched into a sheet shape with a roller press to adjust the layer thickness (total layer thickness including the thickness of the positive electrode current collector) to 60 ⁇ m, and the positive electrode active material layer
  • a positive electrode (positive electrode sheet) for a lithium ion secondary battery was produced.
  • Negative Electrode Graphite (coated with amorphous carbon) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) have a mass ratio of these materials of 98.
  • a paste for forming a negative electrode active material layer was prepared by mixing with ion-exchanged water so that the ratio was 1: 1.
  • the layer thickness (total thickness including the thickness of the negative electrode current collector) is adjusted to 60 ⁇ m by stretching it into a sheet with a roll press, and the negative electrode active material layer
  • a negative electrode (negative electrode sheet) for a lithium ion secondary battery was produced.
  • the positive electrode sheet and the negative electrode sheet were stacked together with two porous separators, wound, and crushed from the stacking direction to form a flat electrode body.
  • the electrode body is housed in a battery case, and an electrolyte in which a supporting salt LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a volume ratio of 1: 1. Injected.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the positive electrode current collector and the negative electrode current collector were connected to terminals connected to the outside using current collecting leads, etc., and the battery case was sealed to produce a lithium ion secondary battery.
  • a lithium ion secondary battery for testing was constructed by charging up to 4.1 V with a constant current of 2 A as a conditioning treatment.
  • the lithium ion secondary battery was evaluated by examining the output characteristics under low temperature conditions. That is, after a constant current discharge up to 3.0 V under a temperature condition of 25 ° C., the battery was charged with a constant current and a constant voltage and adjusted to 40% SOC (State of Charge). Thereafter, the current was appropriately changed at ⁇ 30 ° C., the voltage 2 seconds after the start of discharge was measured, and an IV characteristic graph of the sample battery was created. The discharge cut voltage was 2.0V. The output value (W) obtained from this IV characteristic graph was 124 W. The evaluation results are shown in Table 1.
  • Example 2 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 10.5 during crystallization of the nickel cobalt composite hydroxide.
  • the Ni solubility of the slurry during crystallization was 80 ppm by mass.
  • the (101) plane half-value width of the precursor was 0.471 °
  • the (003) plane crystallite diameter of the positive electrode active material was 1589 mm
  • the ⁇ 30 ° C. output value of the lithium ion secondary battery was 121 W. The results are shown in Table 1.
  • the nickel-cobalt-magnesium composite hydroxide is dispersed in an aqueous solution in which sodium hydroxide (NaOH) and 20 g / L sodium aluminate (NaAlO 2 ) are dissolved, and a slurry is prepared. 2 SO 4 ), and aluminum hydroxide was precipitated on the surface of the nickel cobalt magnesium composite hydroxide. In addition, about the whole amount of sodium aluminate, it precipitated as aluminum hydroxide. The slurry was washed with water, filtered, and then dried at about 100 ° C., and then heated to 700 ° C. in an air atmosphere and oxidatively roasted for 5 hours, whereby nickel cobalt magnesium aluminum composite oxide (Ni 0.81 Co 0.13 Mg 0.03 Al 0.03 O) was synthesized.
  • Ni 0.81 Co 0.13 Mg 0.03 Al 0.03 O nickel cobalt magnesium aluminum composite oxide
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that this nickel cobalt magnesium aluminum composite oxide was used.
  • the half width of the (101) plane of the precursor was 0.508 °
  • the crystallite diameter of the (003) plane of the positive electrode active material was 1490 mm
  • the output value of the lithium ion secondary battery at ⁇ 30 ° C. was 122W. The results are shown in Table 1.
  • Example 1 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 12.5 during crystallization of the nickel cobalt composite hydroxide. In addition, Ni solubility of the slurry during crystallization was 10 mass ppm. The (101) plane half width of the precursor was 0.958 °, the (003) plane crystallite diameter of the positive electrode active material was 967 mm, and the -30 ° C. output value of the lithium ion secondary battery was 89 W. The results are shown in Table 1.
  • Example 2 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 10 at the time of crystallization of the nickel cobalt composite hydroxide.
  • the Ni solubility of the slurry during crystallization was 200 ppm by mass.
  • the (101) plane half-value width of the precursor was 0.389 °
  • the (003) plane crystallite diameter of the positive electrode active material was 1728 mm
  • the ⁇ 30 ° C. output value of the lithium ion secondary battery was 112 W. The results are shown in Table 1.
  • Example 3 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 11.5 during the crystallization of the nickel cobalt composite hydroxide. In addition, Ni solubility of the slurry during crystallization was 20 mass ppm. The half-width of the (101) plane of the precursor was 0.846 °, the crystallite diameter of the (003) plane of the positive electrode active material was 1123 mm, and the output value of the lithium ion secondary battery at ⁇ 30 ° C. was 119 W. The results are shown in Table 1. (Evaluation) FIG. 1 shows the relationship between the (003) plane crystallite diameter of the positive electrode active material and the ⁇ 30 ° C.

Abstract

Disclosed is a positive electrode active material for a non-aqueous electrolyte secondary battery, whereby it is possible to obtain a battery with a high initial discharge capacity and good output characteristics at low temperatures. The positive electrode active material used as positive electrode material comprises a lithium-nickel complex oxide which comprises a secondary particle formed by a primary particle indicated by the general formula Liw (Ni1-x-yCoxAly)1-zMzO2 (in the formula 0.98≦w≦1.10, 0.05≦x≦0.3, 0.01≦y≦0.1, 0≦z≦0.05, and M is at least one type of metal element selected from Mg, Fe, Cu, Zn, and Ga) and whereby the (003) surface crystalline diameter of said lithium-nickel complex oxide found using X-ray diffraction and the Scherrer equation is between 1200 and 1600 Å.

Description

非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
 本発明は、非水系電解質二次電池、該非水系電解質二次電池の正極材料として用いられる正極活物質、該正極活物質の製造方法および該正極活物質の製造に用いる前駆体に関する。より具体的には、リチウムニッケル複合酸化物からなる正極活物質、該正極活物質を正極として用いた非水系電解質二次電池、および該リチウムニッケル複合酸化物の製造方法とその前駆体であるニッケル複合水酸化物に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, a positive electrode active material used as a positive electrode material of the non-aqueous electrolyte secondary battery, a method for producing the positive electrode active material, and a precursor used for producing the positive electrode active material. More specifically, a positive electrode active material comprising a lithium nickel composite oxide, a nonaqueous electrolyte secondary battery using the positive electrode active material as a positive electrode, a method for producing the lithium nickel composite oxide, and nickel as a precursor thereof It relates to a composite hydroxide.
 近年、非水系電解質二次電池やニッケル水素電池などの二次電池は、電気を駆動源とする車両への搭載用電源、あるいはパソコンおよび携帯端末、その他の電気製品などに搭載される電源として重要性が高まっている。特に、軽量で高エネルギ密度が得られる非水系電解質二次電池は、車両搭載用高出力電源として好適に用いられるものとして期待されている。 In recent years, secondary batteries such as non-aqueous electrolyte secondary batteries and nickel-metal hydride batteries have become important as power sources for mounting on vehicles powered by electricity, or power sources mounted on personal computers, mobile terminals, and other electrical products. The nature is increasing. In particular, a non-aqueous electrolyte secondary battery that is lightweight and obtains a high energy density is expected to be suitably used as a high-output power source for mounting on a vehicle.
 かかる非水系電解質二次電池として典型的なリチウムイオン二次電池の構成においては、電極集電体の表面に、リチウムイオンを可逆的に吸蔵および放出し得る電極活物質層、具体的には、正極活物質層および負極活物質層が設けられている。たとえば、正極の場合、リチウム、ニッケルなどの遷移金属を構成金属元素として含む複合酸化物からなる正極活物質を、水などの水系溶媒や各種の有機溶剤などからなる適切な溶媒に分散させたペースト状組成物やスラリー状組成物(以下、これらの組成物を単に「ペースト」と称する。)を得て、該ペーストを正極集電体上に塗布することにより、正極活物質層を形成している。 In the configuration of a typical lithium ion secondary battery as such a non-aqueous electrolyte secondary battery, an electrode active material layer capable of reversibly occluding and releasing lithium ions on the surface of the electrode current collector, specifically, A positive electrode active material layer and a negative electrode active material layer are provided. For example, in the case of a positive electrode, a paste in which a positive electrode active material composed of a composite oxide containing a transition metal such as lithium or nickel as a constituent metal element is dispersed in an appropriate solvent composed of an aqueous solvent such as water or various organic solvents And a slurry-like composition (hereinafter, these compositions are simply referred to as “paste”), and the paste is applied on a positive electrode current collector to form a positive electrode active material layer. Yes.
 ところで、リチウムイオン二次電池の正極活物質を構成する複合酸化物のうち、ニッケルを主体として構成される、いわゆるリチウムニッケル複合酸化物:LiNi1-xx2(Mは、Ni以外の適切な他の1種または2種以上の金属元素)は、従来のリチウムコバルト複合酸化物と比較して、理論上のリチウムイオン吸蔵容量が大きく、また、コバルトのようなコスト高の金属材料の使用量を削減できるといった利点を有することから、リチウムイオン二次電池の製造に好適な正極材料として注目されている。 By the way, among the composite oxides constituting the positive electrode active material of the lithium ion secondary battery, a so-called lithium nickel composite oxide composed mainly of nickel: LiNi 1-x M x O 2 (M is other than Ni) One or more other suitable metal elements) have a higher theoretical lithium ion storage capacity than conventional lithium cobalt composite oxides, and cost-effective metal materials such as cobalt. Since it has the advantage that the amount used can be reduced, it has been attracting attention as a positive electrode material suitable for the production of lithium ion secondary batteries.
 従来提案されている製造方法によって得られたリチウムニッケル複合酸化物を正極活物質として利用すると、リチウムコバルト複合酸化物よりも充電容量、放電容量ともに高いが、サイクル特性に劣るという問題がある。また、高温環境もしくは低温環境下における使用に際して、電池性能を比較的損ないやすいという欠点を有している。 When a lithium nickel composite oxide obtained by a conventionally proposed manufacturing method is used as a positive electrode active material, both the charge capacity and the discharge capacity are higher than that of the lithium cobalt composite oxide, but there is a problem that the cycle characteristics are inferior. In addition, when used in a high temperature environment or a low temperature environment, the battery performance is relatively easily lost.
 サイクル特性を向上させるために、リチウムニッケル複合酸化物に、異種元素を添加置換する試みがなされている。たとえば、特開平8-78006号公報(特許文献1)では、一般式:LiaNib1 c22で示される層状構造を有する複合酸化物からなり、M1はCoであり、M2は少なくともB、Al、In、Snから選ばれた1種以上の元素を含む正極活物質が提案されている。 In order to improve the cycle characteristics, attempts have been made to add and replace different elements in the lithium nickel composite oxide. For example, in JP-A-8-78006 (Patent Document 1), it is composed of a complex oxide having a layered structure represented by the general formula: Li a Ni b M 1 c M 2 O 2 , where M 1 is Co. A positive electrode active material has been proposed in which M 2 contains at least one element selected from B, Al, In, and Sn.
 この提案によれば、サイクル特性は向上するものの、添加元素の存在によって正極活物質のリチウムイオンをインターカレーション・デインターカレーションできる範囲を狭めることとなるため、放電容量を低下させる傾向がある。この放電容量の低下は、特に放電電流が大きい重負荷条件や、低温で電解液の移動度が小さくなる低温効率放電条件において、顕著になることが知られている。 According to this proposal, although the cycle characteristics are improved, the range in which the lithium ions of the positive electrode active material can be intercalated and deintercalated is narrowed by the presence of the additive element, so that the discharge capacity tends to be reduced. . It is known that this decrease in the discharge capacity becomes remarkable especially under heavy load conditions where the discharge current is large and low temperature efficiency discharge conditions where the mobility of the electrolyte solution becomes low at low temperatures.
 二次電池としての高温あるいは低温での出力特性は、温度変化の大きい環境で使用する機器に搭載して使用する際には、きわめて重要な特性であり、特に寒冷地での使用を考慮した場合、低温で十分な出力特性を有する必要がある。 The output characteristics at high and low temperatures as a secondary battery are extremely important characteristics when mounted on equipment used in environments with large temperature changes, especially when considering use in cold regions. It is necessary to have sufficient output characteristics at low temperatures.
 低温での出力特性を向上させる試みとして、たとえば、特開平11-288716号公報(特許文献2)において、一次粒子が放射状に集まって平均粒径5~20μmの球状ないし楕円状の二次粒子を形成している、一般式:LixNiyCo1-y2(0<x<1.10、0.75<y<0.90)で表されるニッケルコバルト酸リチウムからなる正極活物質が提案されている。 As an attempt to improve the output characteristics at a low temperature, for example, in Japanese Patent Application Laid-Open No. 11-288716 (Patent Document 2), primary particles are gathered radially to form spherical or elliptical secondary particles having an average particle diameter of 5 to 20 μm. A positive electrode active material formed of lithium nickel cobaltate represented by the general formula: Li x Ni y Co 1-y O 2 (0 <x <1.10, 0.75 <y <0.90) Has been proposed.
 この提案によれば、リチウムイオンが、二次粒子表面から結晶内へ均一にインターカレーション・デインターカレーションでき、高容量で、かつ重負荷特性および低温効率放電特性に優れたリチウムイオン二次電池が得られるとされている。しかしながら、上記の正極活物質を用いた場合、導電材や結着剤、あるいは正極活物質合成時に表面に吸着したガスにより、二次粒子の表面が覆われるため、リチウムイオンの移動が阻害され、特に低温効率放電特性が十分に得られないと考えられる。 According to this proposal, lithium ions can be uniformly intercalated and deintercalated from the surface of the secondary particles into the crystal, and have a high capacity and excellent heavy load characteristics and low temperature efficiency discharge characteristics. It is said that a battery will be obtained. However, when the above positive electrode active material is used, the surface of the secondary particles is covered with the conductive material, the binder, or the gas adsorbed on the surface during the synthesis of the positive electrode active material, so that the movement of lithium ions is inhibited, In particular, it is considered that low-temperature efficient discharge characteristics cannot be obtained sufficiently.
 一方、大電流充放電特性、すなわち出力特性改善の試みとして、正極活物質を構成する一次粒子と二次粒子の大きさに注目した提案がなされている。たとえば、特開2000-243394号公報(特許文献3)には、一次粒子の短尺方向平均長さrと二次粒子の粒度分布の体積累積頻度が50%に達する粒径D50との比D50/rを特定の範囲とすることで、放電電位が高く大電流特性に優れ、かつサイクル特性に優れる正極活物質が提案されている。 On the other hand, as an attempt to improve large current charge / discharge characteristics, that is, output characteristics, proposals have been made focusing on the size of primary particles and secondary particles constituting the positive electrode active material. For example, Japanese Patent Laid-Open No. 2000-243394 (Patent Document 3) describes a ratio D50 / the ratio between the average length r in the short direction of primary particles and the particle size D50 at which the volume cumulative frequency of the particle size distribution of secondary particles reaches 50%. By setting r in a specific range, a positive electrode active material having a high discharge potential, excellent large current characteristics, and excellent cycle characteristics has been proposed.
 また、正極活物質の結晶性に関しても記載され、正極活物質として用いることのできる複合酸化物の粉末X線回折のミラー指数hklにおける(003)面および(104)面での回折ピークの半価幅FWHM(003)およびFWHM(104)の関係が、0.7≦FWHM(003)/FWHM(104)≦0.9であることが好ましく、さらに0.1°≦FWHM(003)≦0.16°、かつ0.13°≦FWHM(104)≦0.2°であることがより好ましいとされている。 Moreover, it describes also about the crystallinity of a positive electrode active material, and the half value of the diffraction peak in the (003) plane and the (104) plane in the Miller index hkl of the powder X-ray diffraction of the complex oxide which can be used as a positive electrode active material. The relationship between the widths FWHM (003) and FWHM (104) is preferably 0.7 ≦ FWHM (003) / FWHM (104) ≦ 0.9, and further 0.1 ° ≦ FWHM (003) ≦ 0. 16 ° and 0.13 ° ≦ FWHM (104) ≦ 0.2 ° are more preferable.
 これらは、出力特性に対する正極活物質の結晶性の影響を示すものではあるが、あくまでも大充放電特性と複数の結晶面の相対的な配向性との関係に関するものであって、低温出力の改善についての言及はなされていない。 These show the influence of the crystallinity of the positive electrode active material on the output characteristics, but only relate to the relationship between the large charge / discharge characteristics and the relative orientation of multiple crystal planes, and improve the low-temperature output. There is no mention of.
 また、特開平10-308218号公報(特許文献4)では、一般式:LiMO2(Mは、Co、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種)で表現されるリチウムイオン二次電池用正極活物質であって、微小な結晶子を単位とする単結晶が集合した粒子からなり、該結晶子および該粒子の形状は立体的にほぼ等方的形状であり、結晶子を用いて表現すると、(003)ベクトル方向に500~750Å、(110)ベクトル方向に450~1000Åの範囲にある正極活物質が提案されている。 In JP-A-10-308218 (Patent Document 4), a lithium ion secondary expressed by a general formula: LiMO 2 (M is at least one selected from the group consisting of Co, Ni, Fe, Mn, and Cr). A positive electrode active material for a battery, which is composed of particles in which single crystals each having a fine crystallite as a unit are aggregated, and the crystallite and the shape of the particle are three-dimensionally isotropic shapes. In other words, a positive electrode active material in the range of 500 to 750 mm in the (003) vector direction and 450 to 1000 mm in the (110) vector direction has been proposed.
 この提案では、粒子の立体的な等方的形状を表現するために結晶子の大きさが用いられているが、結晶子の大きさそのものの影響については何らの言及もなされていない。また、その目的は、充電時の熱安定性と充放電サイクル特性の両立であって、低温出力の改善とは無関係である。 In this proposal, the crystallite size is used to express the three-dimensional isotropic shape of the particle, but no mention is made of the influence of the crystallite size itself. Further, the purpose is to achieve both thermal stability during charging and charge / discharge cycle characteristics, and is unrelated to improvement in low-temperature output.
 一方、リチウムニッケル複合酸化物の原料として用いられるニッケル複合化合物、すなわち正極活物質の前駆体の性状に着目して、正極活物質を改善する試みもなされている。リチウムニッケル複合酸化物の製造方法は、一般的にリチウム化合物と、ニッケル、コバルト、金属元素Mからなるニッケル複合化合物とを、混合および焼成することにより合成する方法が用いられている。ニッケル複合化合物には、水酸化物、酸化物、硝酸塩などが用いられるが、生成物の形状や粒子径、結晶性状を制御しやすことから、水酸化物あるいは該水酸化物を焼成して得られる酸化物を用いることが一般的である。 On the other hand, attempts have been made to improve the positive electrode active material by paying attention to the properties of the nickel composite compound used as a raw material for the lithium nickel composite oxide, that is, the precursor of the positive electrode active material. As a method for producing a lithium nickel composite oxide, a method is generally used in which a lithium compound and a nickel composite compound composed of nickel, cobalt, and a metal element M are mixed and baked. As the nickel composite compound, hydroxides, oxides, nitrates, and the like are used. Since the shape, particle diameter, and crystallinity of the product are controlled, the hydroxide or the hydroxide is obtained by firing. It is common to use oxides that can be used.
 たとえば、特開平7-335220号公報(特許文献5)には、一般式:LiNiO2で表されるニッケル酸リチウムからなる正極活物質の製造において、粒径が1μm以下の一次粒子が集合して二次粒子を形成している水酸化ニッケルと水酸化リチウムとを、酸素雰囲気下で熱処理して、ニッケル酸リチウムを得ることが記載されている。 For example, in Japanese Patent Laid-Open No. 7-335220 (Patent Document 5), in the production of a positive electrode active material composed of lithium nickelate represented by the general formula: LiNiO 2 , primary particles having a particle size of 1 μm or less are aggregated. It describes that nickel hydroxide and lithium hydroxide forming secondary particles are heat-treated in an oxygen atmosphere to obtain lithium nickelate.
 さらに、水酸化ニッケルの層構造を有する一次粒子の層の開口部が、二次粒子の外側に向けて配向した粒子構造をとることにより、生成したLiNiO2の層の端面もその形状を維持したまま粉体粒子の外側に向かって配向するため、充放電におけるLiのインターカレーション・デインターカレーション反応がより円滑に進むとされている。 Furthermore, the openings of the layer of primary particles having a layer structure of nickel hydroxide, by taking an oriented grain structure toward the outside of the secondary particles, the end faces of the generated LiNiO 2 layers was also maintain its shape It is said that the intercalation / deintercalation reaction of Li in charge / discharge proceeds more smoothly because it is oriented toward the outside of the powder particles.
 しかしながら、この提案においては、得られる正極活物質の粒子形状と配向性が維持されることが開示されているのみであり、得られる正極活物質の結晶性に対する水酸化ニッケルの影響については言及されていない。 However, this proposal only discloses that the particle shape and orientation of the obtained positive electrode active material are maintained, and the influence of nickel hydroxide on the crystallinity of the obtained positive electrode active material is mentioned. Not.
 また、特開平11-60243公報(特許文献6)では、正極活物質の前駆体として、一般式:Ni1-xx(OH)2(Aはコバルトまたはマンガン、0.10<x<0.5)で示され、結晶方位の揃った積層体または単結晶からなり、一次粒子径が0.5~5μm、最も配向しやすいサンプリングをして得られたX線回折による半値全幅が(001)<0.3deg.、(101)<0.43deg.、かつピーク強度比I(101)/I(001)<0.5である水酸化ニッケルが提案されている。 In JP-A-11-60243 (Patent Document 6), as a positive electrode active material precursor, a general formula: Ni 1-x A x (OH) 2 (A is cobalt or manganese, 0.10 <x <0 .5), and is composed of a laminated body or a single crystal with a uniform crystal orientation, the primary particle diameter is 0.5 to 5 μm, and the full width at half maximum by X-ray diffraction obtained by sampling most easily oriented is (001 ) <0.3 deg. , (101) <0.43 deg. Nickel hydroxide having a peak intensity ratio I (101) / I (001) <0.5 has been proposed.
 この提案によれば、一次粒子の増大を焼成時の焼結ではなく原料の段階で達成することによって、リチウムイオン二次電池の電池性能を低下させることなく、充電時の熱特性を改善できるとしている。しかしながら、得られる正極活物質の結晶性に対する、原料としての水酸化ニッケルの結晶性の影響についての詳細な言及はなく、低温出力の改善についても全く言及はなされていない。 According to this proposal, it is possible to improve the thermal characteristics at the time of charging without deteriorating the battery performance of the lithium ion secondary battery by achieving the increase of the primary particles at the raw material stage instead of sintering at the time of firing. Yes. However, there is no detailed mention about the influence of the crystallinity of nickel hydroxide as a raw material on the crystallinity of the obtained positive electrode active material, and no mention is made about improvement of low-temperature output.
 さらに、正極活物質の電池特性とその粉体特性との関係についての検討もなされている。たとえば、本件出願人は、特開2000-30693号において、[Li]3a[Ni1-x-yCoxAly3b[O26c(ただし、[]の添え字はサイトを表し、x、yは0<x≦0.20、0<y≦0.15なる条件を満たす)で表され、かつ層状構造を有する六方晶系のリチウムニッケル複合酸化物において、不可逆容量の低減を図ることを目的に、該リチウムニッケル複合酸化物の一次粒子が複数集合して二次粒子を形成する構造とし、該一次粒子の平均粒径を0.1μm以上とすることについて提案している。また、一次粒子の平均粒径とX線回折図形の003ピークの半値幅から計算される結晶子径との間にリニアな相関関係があり、X線回折図形の003ピークの半値幅から計算される結晶子径を40nm(400Å)以上、具体的には、430~1190Åの範囲とすることを開示している。 Further, studies have been made on the relationship between the battery characteristics of the positive electrode active material and its powder characteristics. For example, the applicant of the present invention, in JP 2000-30693, [Li] 3a [Ni 1-xy Co x Al y] 3b [O 2] 6c ( where represents a subscript site [], x, y is a condition of 0 <x ≦ 0.20 and 0 <y ≦ 0.15), and a hexagonal lithium nickel composite oxide having a layered structure is intended to reduce irreversible capacity For this purpose, it has been proposed that a plurality of primary particles of the lithium nickel composite oxide be aggregated to form secondary particles, and that the average particle size of the primary particles be 0.1 μm or more. In addition, there is a linear correlation between the average particle size of the primary particles and the crystallite diameter calculated from the half-width of the 003 peak of the X-ray diffraction pattern, which is calculated from the half-width of the 003 peak of the X-ray diffraction pattern. The crystallite diameter is 40 nm (400 mm) or more, specifically, the range of 430 to 1190 mm is disclosed.
 しかしながら、この提案では、電池特性のうち不可逆容量の低減との関係で粉体特性を規制することは開示されているが、低温出力と粉体特性との関係は検討されておらず、低温出力の改善を図るための提案はなされていない。 However, in this proposal, it is disclosed that the powder characteristics are regulated in relation to the reduction of the irreversible capacity among the battery characteristics, but the relationship between the low temperature output and the powder characteristics is not studied, and the low temperature output No proposal has been made to improve this.
特開平8-78006号公報JP-A-8-78006 特開平11-288716号公報Japanese Patent Laid-Open No. 11-288716 特開2000-243394号公報JP 2000-243394 A 特開平10-308218号公報JP-A-10-308218 特開平7-335220号公報JP 7-335220 A 特開平11-60243号公報Japanese Patent Laid-Open No. 11-60243 特開2000-30693号公報JP 2000-30893
 本発明の目的は、充放電容量やサイクル特性などの電池特性を維持しつつ、高温環境下もしくは低温環境下、特に低温での出力特性の良好な電池を得ることが可能な非水系電解質二次電池用正極活物質を提供することにある。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of obtaining a battery having good output characteristics in a high temperature environment or a low temperature environment, particularly at a low temperature, while maintaining battery characteristics such as charge / discharge capacity and cycle characteristics. The object is to provide a positive electrode active material for a battery.
 上述の課題を解決するために、本発明者は、非水系電解質二次電池の低温における出力特性の改善について鋭意検討を行った。その結果、電解液が侵入しうる細孔をある程度の大きさをもって正極活物質内に分布させることで、低温出力特性の改善が可能となり、かつ、かかる細孔は、正極活物質を構成しているリチウムニッケル複合酸化物の結晶子径を特定の大きさとすることにより制御しうるとの知見を得た。さらに、前駆体であるニッケル複合水酸化物の結晶性状と、最終的に得られるリチウムニッケル複合酸化物の結晶性状との間に密接な相関があり、ニッケル複合水酸化物の特定結晶面の半価幅(半値全幅)を制御することにより、上記正極活物質が得られるとの知見を得た。本発明は、これらの知見に基づき完成したものである。 In order to solve the above-mentioned problems, the present inventor has intensively studied on improving the output characteristics of the non-aqueous electrolyte secondary battery at a low temperature. As a result, it is possible to improve the low-temperature output characteristics by distributing the pores through which the electrolyte solution can penetrate into the positive electrode active material with a certain size, and such pores constitute the positive electrode active material. It was found that the crystallite diameter of the lithium nickel composite oxide can be controlled by making it a specific size. Furthermore, there is a close correlation between the crystal properties of the nickel composite hydroxide as a precursor and the crystal properties of the finally obtained lithium nickel composite oxide. The inventors have found that the positive electrode active material can be obtained by controlling the full width at half maximum (full width at half maximum). The present invention has been completed based on these findings.
 すなわち、本発明の非水系電解質二次電池用正極活物質は、一般式:Liw(Ni1-x-yCoxAly1-zz2(0.98≦w≦1.10、0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、Mは、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表される一次粒子が凝集した二次粒子により構成されるリチウムニッケル複合酸化物からなる。 That is, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula: Li w (Ni 1-xy Co x Al y) 1-z M z O 2 (0.98 ≦ w ≦ 1.10, 0.05 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.05, where M is at least one selected from Mg, Fe, Cu, Zn, and Ga It consists of lithium nickel composite oxide comprised by the secondary particle which the primary particle represented by (metal element) aggregated.
 特に、本発明の非水系電解質二次電池用正極活物質は、X線回折およびScherrer式により求められる、該正極活物質を構成する前記リチウムニッケル複合酸化物の(003)面結晶子径が、1200~1600Å、好ましくは1200~1500Åであることを特徴とする。 In particular, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a (003) plane crystallite diameter of the lithium nickel composite oxide constituting the positive electrode active material, which is determined by X-ray diffraction and Scherrer formula. It is characterized in that it is 1200-1600cm, preferably 1200-1500cm.
 本発明の非水系電解質二次電池用正極活物質を得るための前駆体は、一般式:(Ni1-x-yCoxAly1-zz(OH)2(0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、Mは、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表され、X線回折による(101)面半価幅が0.45~0.8°であるニッケル複合水酸化物であり、リチウム化合物と混合し、もしくは酸化焙焼後にリチウム化合物と混合し、得られた混合物を酸化性雰囲気で焼成することにより、本発明の非水系電解質二次電池用正極活物質となる。 Precursor for obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula: (Ni 1-xy Co x Al y) 1-z M z (OH) 2 (0.05 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.05, where M is at least one metal element selected from Mg, Fe, Cu, Zn, and Ga) A nickel composite hydroxide having a (101) plane half width of 0.45 to 0.8 ° by X-ray diffraction, mixed with a lithium compound, or obtained by mixing with a lithium compound after oxidative roasting. By firing the obtained mixture in an oxidizing atmosphere, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is obtained.
 また、前記前駆体は、上記一般式に示されたNi、Co、Mからなる水酸化物の表面が水酸化アルミニウムで被覆されたものであることが好ましい。 Further, the precursor is preferably one in which the surface of a hydroxide composed of Ni, Co, and M represented by the above general formula is coated with aluminum hydroxide.
 本発明の非水系電解質二次電池用正極活物質の製造方法は、上記のニッケル複合水酸化物からなる前駆体、もしくは該前駆体を酸化焙焼して得られる前駆体酸化物と、リチウム化合物とを、混合し、得られた混合物を酸化性雰囲気中で焼成して、上記の組成および特性を有するリチウムニッケル複合酸化物を得ることを特徴とする。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a precursor comprising the above nickel composite hydroxide, or a precursor oxide obtained by oxidizing and baking the precursor, and a lithium compound. And the obtained mixture is fired in an oxidizing atmosphere to obtain a lithium nickel composite oxide having the above composition and characteristics.
 前記焼成の温度を、700~760℃の範囲とすることが好ましく、 前記リチウム化合物として、水酸化リチウムを用いることが好ましい。
 本発明の非水系電解質二次電池は、上記の組成および特性を有する非水系電解質二次電池用正極活物質により形成された正極活物質層を正極集電体の上に備えることを特徴とする。
The firing temperature is preferably in the range of 700 to 760 ° C., and lithium hydroxide is preferably used as the lithium compound.
A non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode active material layer formed of a positive electrode active material for a non-aqueous electrolyte secondary battery having the above composition and characteristics on a positive electrode current collector. .
 本発明の非水系電解質二次電池用正極活物質を用いることで、低温における出力特性が良好な非水系電解質二次電池を得ることができる。このような特性を備える本発明の正極活物質は、本発明の前駆体を用いることで容易に得ることができる。したがって、本発明の工業的価値はきわめて大きいということができる。 By using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery having excellent output characteristics at low temperatures can be obtained. The positive electrode active material of the present invention having such characteristics can be easily obtained by using the precursor of the present invention. Therefore, it can be said that the industrial value of the present invention is extremely large.
リチウムニッケル複合酸化物の(003)面結晶子径と-30℃低温出力の関係を示す図である。It is a figure which shows the relationship between the (003) plane crystallite diameter of lithium nickel complex oxide, and -30 degreeC low temperature output.
発明の実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 正極活物質として、リチウムニッケル複合酸化物を用いた非水系電解質二次電池であるリチウムイオン二次電池の充放電は、正極活物質と電解液の間でリチウムイオンが移動して、リチウムイオンが可逆的に正極活物質中に出入りすることで進行する。このため、充放電時におけるリチウムイオンの移動の容易性、すなわち移動度は、二次電池の充放電特性、特に出力特性やレート特性に大きな影響を及ぼすことになる。 The charge / discharge of a lithium ion secondary battery, which is a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide as the positive electrode active material, moves between the positive electrode active material and the electrolyte, It proceeds by reversibly entering and exiting the positive electrode active material. For this reason, the ease of movement of lithium ions during charge / discharge, that is, mobility greatly affects the charge / discharge characteristics, particularly the output characteristics and rate characteristics of the secondary battery.
 リチウムイオンの移動は、正極活物質内部での移動、正極活物質と電解液の界面での移動、電解液中の移動に大きく分けられるが、電解液中での移動は電解液に依存し、正極活物質とは無関係である。 The movement of lithium ions can be broadly divided into movement within the positive electrode active material, movement at the interface between the positive electrode active material and the electrolyte, and movement in the electrolyte, but movement in the electrolyte depends on the electrolyte, It is unrelated to the positive electrode active material.
 上述のように、リチウムイオンの移動は、正極活物質と電解液の界面を通して行われるため、この界面におけるリチウムイオンの移動度は、電池の内部抵抗にも大きく影響する。すなわち、この界面におけるリチウムイオンの移動度が低いと内部抵抗が大きくなって、電池として良好な出力特性を発現できないこととなる。 As described above, since lithium ions move through the interface between the positive electrode active material and the electrolyte, the mobility of lithium ions at this interface greatly affects the internal resistance of the battery. That is, when the mobility of lithium ions at this interface is low, the internal resistance increases and the battery cannot exhibit good output characteristics.
 特に、低温環境下では、電解液中のリチウムの拡散速度、正極活物質と電解液の界面におけるリチウムイオンの移動度がともに低下する。このため、低温における出力特性の高い電池を得るためには、低温でも内部抵抗の小さな正極活物質、言い換えれば、この界面におけるリチウムイオンの移動度が高い正極活物質を用いて、二次電池を得る必要がある。 In particular, in a low temperature environment, the diffusion rate of lithium in the electrolyte and the mobility of lithium ions at the interface between the positive electrode active material and the electrolyte decrease. For this reason, in order to obtain a battery having high output characteristics at low temperatures, a secondary battery is formed using a positive electrode active material having a low internal resistance even at low temperatures, in other words, a positive electrode active material having a high lithium ion mobility at this interface. Need to get.
 正極活物質と電解液の界面でのリチウムイオンの移動度は、正極活物質表面からのリチウムイオンの挿抜性に依存するが、単位面積あたりの挿抜性が同じであれば、この界面の面積に依存する。すなわち、正極活物質表面の面積が大きいほど、正極活物質と電解液との接触面積が大きくなり、充放電時のリチウムイオンの移動には有利となる。 The mobility of lithium ions at the interface between the positive electrode active material and the electrolyte solution depends on the lithium ion insertion / removability from the surface of the positive electrode active material. Dependent. That is, the larger the area of the positive electrode active material surface, the larger the contact area between the positive electrode active material and the electrolytic solution, which is advantageous for the movement of lithium ions during charging and discharging.
 ここで、正極活物質表面の面積とは、電解液が接触できる部分の面積を意味する。すなわち、窒素吸着法などで測定される表面積に含まれる微細な細孔の部分は、電解液の侵入が不可能で、電解液との接触には寄与しえない場合があり、このような部分の面積は除外される。したがって、電解液が侵入可能なある程度の大きさを持った細孔が正極活物質に多く分布していることが、出力特性の良好な電池を得るために必要であるといえる。 Here, the area of the surface of the positive electrode active material means the area of the part where the electrolyte solution can come into contact. That is, the fine pores included in the surface area measured by the nitrogen adsorption method or the like cannot enter the electrolyte and may not contribute to contact with the electrolyte. The area of is excluded. Therefore, it can be said that it is necessary to obtain a battery having good output characteristics that a large number of pores having a size that allows the electrolyte to enter are distributed in the positive electrode active material.
 正極活物質が、一次粒子が凝集した二次粒子からなる場合、一次粒子が微細であると、正極活物質内部の一次粒子間に存在する細孔は、多数分布することになるが、このような細孔は微細であるため、電解液の侵入が不可能であり、電解液が接触できる面積を増加させることにはならない。 When the positive electrode active material is composed of secondary particles in which the primary particles are aggregated, if the primary particles are fine, a large number of pores existing between the primary particles inside the positive electrode active material will be distributed. Since the fine pores are fine, the penetration of the electrolytic solution is impossible, and the area that can be contacted by the electrolytic solution is not increased.
 一次粒子の大きさが増大するとともに、一次粒子間に存在する細孔は、その径が大きくなり、電解液の侵入が可能な細孔数の割合が増加するが、分布する細孔の数も少なくなると推定される。さらに、一次粒子があまりに粗大になると、粒子中に占める細孔の割合が極端に減少し、電解液の侵入経路を減少させるので、むしろ出力特性の低下につながってしまう。したがって、一次粒子がある範囲の大きさを持つことにより、一次粒子間に電解液の侵入が可能な細孔を多数存在させ、電解液が接触できる面積を増加させることができる。 As the size of the primary particles increases, the pores existing between the primary particles become larger in diameter and the ratio of the number of pores into which the electrolyte solution can enter increases, but the number of distributed pores also increases. Estimated to decrease. Furthermore, if the primary particles become too coarse, the proportion of pores in the particles is extremely reduced, and the intrusion route of the electrolytic solution is reduced, so that the output characteristics are rather deteriorated. Therefore, when the primary particles have a size within a certain range, a large number of pores into which the electrolytic solution can enter between the primary particles exist, and the area that can be contacted by the electrolytic solution can be increased.
 正極活物質中の一次粒子の大きさの指標としては、一次粒子の平均径を採用することもできるが、一次粒子を構成する単結晶が増大して一次粒子径も大きくなることから、単結晶の大きさの指標である結晶子径が適している。一次粒子がある程度の大きさを有することで、一次粒子間の細孔の大きさが大きくなり、正極活物質中への電解液の侵入経路が確保され、正極活物質内部の一次粒子も電解液と接触することが可能となる。 As an index of the size of the primary particles in the positive electrode active material, the average diameter of the primary particles can be adopted, but the single crystal constituting the primary particles increases and the primary particle size also increases. The crystallite size, which is an index of the size of, is suitable. Since the primary particles have a certain size, the size of the pores between the primary particles is increased, a path for the electrolyte to enter the positive electrode active material is secured, and the primary particles inside the positive electrode active material are also Can be contacted.
 一方、電解液が接触できる面積を増加させるためには、一次粒子自体の表面積が大きいことも必要である。すなわち、正極活物質中への電解液の侵入経路を確保することで、電解液と接触可能な一次粒子の個数を増加させるとともに、個々の一次粒子の表面積を増加させることで、電解液が接触する正極活物質の面積を大幅に増加させることができる。 On the other hand, in order to increase the area that can be contacted by the electrolytic solution, it is also necessary that the primary particles themselves have a large surface area. That is, by securing the electrolyte penetration path into the positive electrode active material, the number of primary particles that can be contacted with the electrolytic solution is increased, and the surface area of each primary particle is increased so that the electrolytic solution is in contact with the positive electrode active material. The area of the positive electrode active material to be increased can be greatly increased.
 一次粒子を構成する単結晶を大きくすることで、一次粒子径を増大させて電解液の侵入経路を確保するとともに、一次粒子表面に比較的大きな凹凸を生じさせることにより、有効な表面積を増加させることができる。これは、一次粒子が単結晶より構成されると考えられるため、単結晶が大きくなると表面に露出した単結晶間の粒径の差も大きくなり、その結果として一次粒子表面の凹凸が大きくなると考えられるためである。このように、結晶子径を指標として用いることで、電解液の侵入経路の確保と、一次粒子表面の有効な表面積との両方を評価することができる。 By enlarging the primary crystals that make up the primary particles, the primary particle diameter is increased to ensure the entry path of the electrolyte, and the surface area of the primary particles is increased to increase the effective surface area. be able to. This is because the primary particles are considered to be composed of single crystals, and as the single crystals become larger, the difference in particle size between the single crystals exposed on the surface also increases, and as a result, the irregularities on the surface of the primary particles become larger. Because it is. Thus, by using the crystallite diameter as an index, it is possible to evaluate both the securing of the electrolyte intrusion route and the effective surface area of the primary particle surface.
 結晶子径は、通常、下記式(1)で示されるScherrerの計算式により求められる。計算式に用いる結晶面は任意に選ぶことができるが、リチウムニッケル複合酸化物の場合、リチウムがインターカレントする層状構造の層に垂直な面方位である(00n)面が、X線回折パターンのピーク強度が大きいために適しており、さらにピーク強度が特に大きく現れる(003)面が適している。 The crystallite diameter is usually determined by Scherrer's formula shown by the following formula (1). The crystal plane used in the calculation formula can be arbitrarily selected. However, in the case of lithium nickel composite oxide, the (00n) plane that is perpendicular to the layer of the layered structure in which lithium intercurrents has an X-ray diffraction pattern. This is suitable because the peak intensity is large, and the (003) plane where the peak intensity is particularly large is suitable.
 D=0.9λ/βcosθ  (1)
 D:結晶子径(Å)
 β:結晶子の大きさによる回折ピークの拡がり(rad)
 λ:X線の波長[CuKα](Å)
 θ:回折角(°)
D = 0.9λ / βcos θ (1)
D: Crystallite diameter (Å)
β: Broadening of diffraction peak (rad) depending on crystallite size
λ: X-ray wavelength [CuKα] (Å)
θ: Diffraction angle (°)
 本発明では、X線回折およびScherrer式により求められるリチウムニッケル複合酸化物の(003)面結晶子径が、1200~1600Å、好ましくは1200~1500Åの範囲となるように制御している。リチウムニッケル複合酸化物の(003)面結晶子径が1200Å未満であると、一次粒子が微細であり、正極活物質内部の一次粒子間に存在する細孔が微細となるため、正極活物質内部への電解液の侵入が不可能となり、電解液との十分な接触面積が得られない。一方、(003)面結晶子径が1600Åを超えると、一次粒子が粗大になりすぎて二次粒子中に占める細孔の割合が極端に減少し、電解液の侵入経路を減少させてしまうため、電解液との十分な接触面積が得られない。したがって、(003)面結晶子径が1200Å未満、あるいは1600Åを超えるいずれの場合でも、電解液との接触面積が減少するため、出力特性を低下させてしまうことになる。さらには、1200~1600Åの範囲で目的とする低温出力を得ることができるが、1200~1500Åの範囲では、出力がフラットになるため、安定した低温出力を得るためにはその範囲内とすることが望ましい。 In the present invention, the (003) plane crystallite diameter of the lithium nickel composite oxide obtained by X-ray diffraction and the Scherrer equation is controlled to be in the range of 1200 to 1600 mm, preferably 1200 to 1500 mm. When the (003) plane crystallite diameter of the lithium nickel composite oxide is less than 1200 mm, the primary particles are fine and the pores existing between the primary particles inside the positive electrode active material become fine. It becomes impossible for the electrolytic solution to enter the surface, and a sufficient contact area with the electrolytic solution cannot be obtained. On the other hand, if the (003) plane crystallite diameter exceeds 1600 mm, the primary particles become too coarse, the proportion of pores in the secondary particles is extremely reduced, and the intrusion route of the electrolytic solution is reduced. A sufficient contact area with the electrolytic solution cannot be obtained. Therefore, in any case where the (003) plane crystallite diameter is less than 1200 mm or more than 1600 mm, the contact area with the electrolytic solution is decreased, and the output characteristics are deteriorated. Furthermore, the target low-temperature output can be obtained in the range of 1200 to 1600 Å, but the output is flat in the range of 1200 to 1500 に な る, so within that range to obtain a stable low-temperature output. Is desirable.
 なお、一次粒子の粒径は、(003)面結晶子径と相関があり、結晶子径を上記範囲に制御することで、一次粒子の粒径を好ましい状態に制御することができる。また、前記二次粒子の粒径としては、レーザ回折散乱法による平均粒径として5~20μm、特に7~12μmであることが好ましい。 Note that the particle size of the primary particles has a correlation with the (003) plane crystallite size, and the particle size of the primary particles can be controlled in a preferable state by controlling the crystallite size within the above range. The particle diameter of the secondary particles is preferably 5 to 20 μm, particularly 7 to 12 μm, as an average particle diameter by a laser diffraction scattering method.
 本発明の正極活物質は、層状構造を有する六方晶系のリチウムニッケル複合酸化物により構成されるが、リチウムニッケル複合酸化物の熱安定性を改善するために、十分な容量が得られる範囲において、CoおよびAlがさらに添加されている。具体的には、Ni、Co、Alの合計に対して、モル比で、Coは0.05~0.3、好ましくは0.1~0.2、Alは0.01~0.1、好ましくは0.02~0.05添加される。 The positive electrode active material of the present invention is composed of a hexagonal lithium-nickel composite oxide having a layered structure. However, in order to improve the thermal stability of the lithium-nickel composite oxide, a sufficient capacity can be obtained. Further, Co and Al are added. Specifically, the molar ratio of Co to the total of Ni, Co, and Al is 0.05 to 0.3, preferably 0.1 to 0.2, Al is 0.01 to 0.1, Preferably 0.02 to 0.05 is added.
 また、電池特性を改善するために、添加元素(M)として、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種以上の金属元素を、Li以外の金属元素の合計に対して、モル比で0.05以下添加することができる。 Further, in order to improve battery characteristics, as an additive element (M), at least one metal element selected from Mg, Fe, Cu, Zn, and Ga is used with respect to the total of metal elements other than Li. 0.05 or less can be added at a molar ratio.
 本発明における、上記正極活物質の原料となる前駆体は、一般式:Ni1-x-yCoxAly1-zz(OH)2(0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、MはMg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表されるニッケル複合水酸化物であり、該ニッケル複合水酸化物のX線回折による(101)面の半価幅(半値全幅)が0.45~0.8°であることを特徴とするものである。なお、前駆体の構造は、これを用いて得られる正極活物質と同様に、一次粒子が凝集して形成された二次粒子によりすでに構成されている。 In the present invention, the precursor as a raw material for the positive electrode active material has the general formula: Ni 1-xy Co x Al y) 1-z M z (OH) 2 (0.05 ≦ x ≦ 0.3,0. 01 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.05, where M is a nickel composite hydroxide represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga) The nickel composite hydroxide is characterized in that the half width (full width at half maximum) of the (101) plane by X-ray diffraction is 0.45 to 0.8 °. The structure of the precursor is already composed of secondary particles formed by agglomeration of primary particles, similarly to the positive electrode active material obtained using the precursor.
 前記前駆体は、上記一般式に示されたNi、Co、Mからなる水酸化物の表面を水酸化アルミニウムで被覆したものであることが、出力特性改善の観点から好ましい。 The precursor is preferably one in which the surface of a hydroxide composed of Ni, Co, and M represented by the above general formula is coated with aluminum hydroxide from the viewpoint of improving output characteristics.
 正極活物質を構成するリチウムニッケル複合酸化物と前駆体であるニッケル複合水酸化物の結晶性状には相関があり、ニッケル複合水酸化物の結晶性が高くなると、得られるリチウムニッケル複合酸化物の結晶性も高くなり、結晶子径も大きくなる。リチウムニッケル複合酸化物は、焼成時にニッケル複合水酸化物中にリチウムが侵入することで形成される。したがって、ニッケル複合水酸化物の半価幅により表される結晶性、すなわち結晶子径は、リチウムニッケル複合酸化物においても維持され、結晶性の高いニッケル複合水酸化物を用いることで結晶子が大きいリチウムニッケル複合酸化物が得られるのである。 There is a correlation between the crystalline properties of the lithium nickel composite oxide constituting the positive electrode active material and the precursor nickel composite hydroxide. When the crystallinity of the nickel composite hydroxide increases, the resulting lithium nickel composite oxide The crystallinity is also increased and the crystallite size is increased. The lithium nickel composite oxide is formed by lithium intruding into the nickel composite hydroxide during firing. Therefore, the crystallinity represented by the half width of the nickel composite hydroxide, that is, the crystallite diameter is maintained even in the lithium nickel composite oxide, and the crystallite is formed by using the nickel composite hydroxide having high crystallinity. A large lithium nickel composite oxide can be obtained.
 すなわち、X線回折による(101)面半価幅が0.45~0.8°であるニッケル複合水酸化物を前駆体として用いることで、(003)面結晶子径が1200~1600Åであるリチウムニッケル複合酸化物が得られる。ニッケル複合水酸化物のX線回折による(101)面半価幅が0.45°未満では、リチウムニッケル複合酸化物の結晶子径が1600Åを超えてしまう。一方、該半価幅が0.8°を超えると、リチウムニッケル複合酸化物の結晶子径が1200Å未満となってしまう。また、該半価幅が0.8を超えるニッケル複合水酸化物を用いて結晶子径を1200Å以上と大きくするために、焼成時の温度を上げると、二次粒子の焼結が生じて、二次粒子が粗大化するため、得られる正極活物質の電池特性が低下してしまう。リチウムニッケル複合酸化物の結晶子径を1200~1500Åの範囲内とするためには、該半価幅が0.5~0.8°となるようにすることが好ましい。 That is, by using a nickel composite hydroxide having a (101) half-width of 0.45 to 0.8 ° by X-ray diffraction as a precursor, the (003) plane crystallite diameter is 1200 to 1600 mm. A lithium nickel composite oxide is obtained. If the (101) plane half width by X-ray diffraction of the nickel composite hydroxide is less than 0.45 °, the crystallite diameter of the lithium nickel composite oxide exceeds 1600 mm. On the other hand, when the half width exceeds 0.8 °, the crystallite diameter of the lithium nickel composite oxide becomes less than 1200 mm. Further, in order to increase the crystallite diameter to 1200 mm or more using a nickel composite hydroxide having a half width exceeding 0.8, when the temperature during firing is increased, secondary particles are sintered, Since the secondary particles are coarsened, the battery characteristics of the obtained positive electrode active material are deteriorated. In order to make the crystallite diameter of the lithium nickel composite oxide within the range of 1200 to 1500 mm, the half width is preferably set to 0.5 to 0.8 °.
 ニッケル複合水酸化物の結晶性状は、リチウムニッケル複合酸化物と同様にX線回折により求められるが、本発明において、(101)面に着目したのは、(101)面の半価幅が製造条件、特に晶析反応条件により大きく変わるからである。(101)面以外の結晶面の半価幅を指標として用いることも可能であるが、製造条件による変化が少なく、得られる正極活物質の結晶子径を十分に制御できない場合がある。 The crystal properties of the nickel composite hydroxide can be obtained by X-ray diffraction as in the case of the lithium nickel composite oxide. In the present invention, the (101) plane was focused on because the half width of the (101) plane was manufactured. This is because it varies greatly depending on conditions, particularly crystallization reaction conditions. Although it is possible to use the full width at half maximum of the crystal plane other than the (101) plane as an index, there are few changes due to manufacturing conditions, and the crystallite diameter of the obtained positive electrode active material cannot be sufficiently controlled.
 本発明の正極活物質の製造方法は、前記前駆体もしくは該前駆体を酸化焙焼して得られる前駆体酸化物と、リチウム化合物とを混合した後、酸化性雰囲気中で焼成することを特徴とするものである。 The method for producing a positive electrode active material according to the present invention is characterized in that the precursor or a precursor oxide obtained by oxidizing and baking the precursor and a lithium compound are mixed and then fired in an oxidizing atmosphere. It is what.
 前記前駆体は、その製造方法として、たとえば金属塩水溶液を中和して金属水酸化物を得る公知の技術(共沈法など)を用いて、中和反応時のpH、温度、反応液中のNH3濃度などにより、反応液のNi溶解度を制御することで得られる。 The precursor is produced by using, for example, a known technique (such as a coprecipitation method) for obtaining a metal hydroxide by neutralizing an aqueous metal salt solution, and the pH, temperature, and reaction solution during the neutralization reaction. It can be obtained by controlling the Ni solubility of the reaction solution by the NH 3 concentration of
 原材料であるニッケル塩としては、硫酸ニッケルのほか、塩化ニッケル、硝酸ニッケルなどを、コバルト塩としては、硫酸コバルトのほか、塩化コバルト、硝酸コバルトなどを、M金属塩としては、その硫酸塩、塩化物、硝酸塩などをそれぞれ用いることができる。 In addition to nickel sulfate, nickel chloride and nickel nitrate are used as raw materials. Cobalt salts include cobalt sulfate, cobalt chloride and cobalt nitrate, and M metal salts include sulfate and chloride. And nitrates can be used.
 製造装置およびその規模により条件が変動する場合があるが、具体的には、たとえばニッケル塩として硫酸ニッケルを用いる場合、中和反応時のpHを好ましくは10を超えて11.5未満、より好ましくは10.5~11.0、温度を好ましくは40~55℃、より好ましくは45~55℃、反応液中のNH3濃度を好ましくは5~20g/Lとすることにより、反応液のNi溶解度を好ましくは25~100質量ppm、より好ましくは30~80質量ppmに制御することで、上記前駆体が得られる。 The conditions may vary depending on the production apparatus and its scale. Specifically, for example, when nickel sulfate is used as the nickel salt, the pH during the neutralization reaction is preferably more than 10 and less than 11.5, more preferably Is 10.5 to 11.0, the temperature is preferably 40 to 55 ° C., more preferably 45 to 55 ° C., and the NH 3 concentration in the reaction solution is preferably 5 to 20 g / L. The precursor is obtained by controlling the solubility to preferably 25 to 100 ppm by mass, more preferably 30 to 80 ppm by mass.
 反応液のNi溶解度が25質量ppm未満であると、晶析反応時の核生成が多くなり、得られるニッケル複合水酸化物の(101)面半価幅が0.8°を超えてしまうことがある。また、Ni溶解度が100質量ppmを超えると、晶析反応時の結晶成長が促進され、(101)面半価幅が0.45°未満となってしまうことがある。 When the Ni solubility of the reaction solution is less than 25 mass ppm, nucleation during the crystallization reaction increases, and the (101) half width of the resulting nickel composite hydroxide exceeds 0.8 °. There is. Moreover, when Ni solubility exceeds 100 mass ppm, the crystal growth at the time of a crystallization reaction will be accelerated | stimulated, and a (101) plane half value width may become less than 0.45 degree.
 一方、反応液のNi溶解度は、中和反応時のpH、温度、反応液中のNH3濃度により制御され、ニッケル塩として硫酸ニッケルを用いた場合には、中和反応時のpHが11.5以上になるか、温度が40℃未満となるか、もしくは反応液中のNH3濃度が5g/L未満になると、反応液のNi溶解度が25質量ppm未満になる。また、中和反応時のpHが10以下となるか、温度が55℃を超えるか、もしくは反応液中のNH3濃度が20g/Lを超えると、反応液のNi溶解度が100質量ppmを超えてしまう。いずれかの反応条件が所定値から外れると、反応液のNi溶解度が所定範囲を外れてしまい、いずれの場合も、電池特性に優れた正極活物質を得るための前駆体として、好ましい結晶性を有するニッケル複合水酸化物が得られない。 On the other hand, the Ni solubility of the reaction solution is controlled by the pH and temperature during the neutralization reaction and the NH 3 concentration in the reaction solution. When nickel sulfate is used as the nickel salt, the pH during the neutralization reaction is 11. When the temperature is 5 or more, the temperature is less than 40 ° C., or the NH 3 concentration in the reaction solution is less than 5 g / L, the Ni solubility of the reaction solution is less than 25 ppm by mass. Further, when the pH during the neutralization reaction is 10 or less, the temperature exceeds 55 ° C., or the NH 3 concentration in the reaction solution exceeds 20 g / L, the Ni solubility of the reaction solution exceeds 100 mass ppm. End up. If any of the reaction conditions deviate from the predetermined value, the Ni solubility of the reaction solution is out of the predetermined range, and in any case, preferable crystallinity is obtained as a precursor for obtaining a positive electrode active material having excellent battery characteristics. It is not possible to obtain nickel composite hydroxide.
 上記反応条件は一例であり、製造装置およびその規模などの影響により、その条件では(101)面半価幅が上記範囲を超えてしまう場合であっても、上記条件と(101)面半価幅の関係を参照することで、それぞれの状況に応じて、(101)面半価幅を容易に調整することができる。 The above reaction conditions are examples, and even if the (101) plane half-value width exceeds the above range due to the influence of the production apparatus and its scale, the above conditions and the (101) plane half price By referring to the relationship of the width, the (101) plane half width can be easily adjusted according to each situation.
 上記前駆体の製造方法としては、たとえば、pH調整された水などの反応液中へ、所定割合に配合されたニッケル塩とコバルト塩とM金属塩を含む混合塩水溶液とアルカリ水溶液とを、pHが一定に保持できるように供給して、ニッケルとコバルトとM金属との水酸化物を共沈させる共沈法をあげることができる。混合塩水溶液中のNi、Co、Mの割合は、最終的に得ようとする正極活物質であるリチウムニッケル複合酸化物における組成比に従えばよい。 As a method for producing the precursor, for example, a mixed salt aqueous solution containing a nickel salt, a cobalt salt, and an M metal salt mixed in a predetermined ratio in a pH-adjusted reaction solution such as water and an alkaline aqueous solution are prepared. Can be kept constant, and a coprecipitation method in which hydroxides of nickel, cobalt, and M metal are coprecipitated can be mentioned. The ratio of Ni, Co, and M in the mixed salt aqueous solution may follow the composition ratio in the lithium nickel composite oxide that is the positive electrode active material to be finally obtained.
 上述のように、得られるニッケルコバルト複合水酸化物は、一次粒子が凝集した二次粒子であるが、該二次粒子の形状が球形で、かつ、そのレーザ回折散乱法による平均粒径が5~20μmとなるように、調整することが好ましい。粒子の形状、平均粒径については、上記混合塩水溶液とアルカリ水溶液との混合速度、共沈条件により制御することができる。 As described above, the obtained nickel-cobalt composite hydroxide is a secondary particle in which primary particles are aggregated, and the shape of the secondary particle is spherical, and the average particle size by the laser diffraction scattering method is 5 It is preferable to adjust so as to be ˜20 μm. The shape and average particle diameter of the particles can be controlled by the mixing speed and coprecipitation conditions of the mixed salt aqueous solution and the alkaline aqueous solution.
 なお、ニッケルコバルト複合水酸化物の製造は、上述した共沈法によることが好ましいが、その他、ニッケル水酸化物を晶析法で製造したのち、コバルト水酸化物を表面に析出させる方法や、製造したニッケルコバルト複合水酸化物粒子を微粉砕し、スプレードライ法により目標とする粒子径とする方法などによっても、一次粒子が凝集して形成された二次粒子からなる前駆体を得ることができる。 The production of nickel-cobalt composite hydroxide is preferably performed by the coprecipitation method described above, but in addition, after producing nickel hydroxide by crystallization method, cobalt hydroxide is precipitated on the surface, It is possible to obtain a precursor composed of secondary particles formed by agglomeration of primary particles by a method of finely pulverizing the produced nickel-cobalt composite hydroxide particles to obtain a target particle size by a spray drying method. it can.
 得られたニッケルコバルト複合水酸化物について、ろ過、水洗および乾燥を行なうが、これらの処理は通常に行われる方法でよい。 The obtained nickel-cobalt composite hydroxide is filtered, washed with water, and dried, and these treatments may be performed by ordinary methods.
 上記前駆体は、Alを含有したニッケル複合水酸化物であり、Alを含有した混合塩水溶液を中和することでも得られるが、各粒子におけるAl含有量を均一化するため、ニッケル複合水酸化物を得た後、ニッケル複合水酸化物を水酸化アルミニウムで被覆することで含有させることが好ましい。 The precursor is a nickel composite hydroxide containing Al, and can also be obtained by neutralizing a mixed salt aqueous solution containing Al. In order to uniformize the Al content in each particle, nickel composite hydroxide is used. After obtaining the product, the nickel composite hydroxide is preferably contained by coating with aluminum hydroxide.
 たとえば、ニッケル複合水酸化物をスラリーとし、pHを調整しながらスラリーを撹拌しつつ、アルミン酸ナトリウムなどのアルミニウム塩を含む水溶液を添加することによりアルミニウム水酸化物でニッケル複合水酸化物を被覆することができる。また、スラリーに所望の濃度のアルミン酸ナトリウムなどのアルミニウム塩を含む水溶液を混合した後、pHを調整してニッケル複合水酸化物の粒子表面にアルミニウム水酸化物を吸着させてもよい。 For example, nickel composite hydroxide is made into a slurry, and the slurry is stirred while adjusting the pH, and an aqueous solution containing an aluminum salt such as sodium aluminate is added to coat the nickel composite hydroxide with aluminum hydroxide. be able to. Moreover, after mixing the aqueous solution containing aluminum salts, such as sodium aluminate of desired density | concentration ,, pH may be adjusted and aluminum hydroxide may be made to adsorb | suck to the particle | grain surface of nickel composite hydroxide.
 本発明の正極活物質は、上記の晶析法によって得られた前駆体もしくは該前駆体を酸化焙焼して得られる前駆体酸化物とリチウム化合物とを混合した後、酸化性雰囲気中で焼成することで得られる。 The positive electrode active material of the present invention is prepared by mixing a precursor obtained by the above crystallization method or a precursor oxide obtained by oxidizing and baking the precursor and a lithium compound, and then firing in an oxidizing atmosphere. It is obtained by doing.
 前駆体を酸化焙焼することによって、Liとの反応性を向上させることができる。この場合、Liとの反応が短い時間で十分に進行するので、生産性の向上を図ることができる。酸化焙焼温度は、650~750℃が好ましく、700~750℃がより好ましい。650℃未満では、表面に形成される酸化被膜が十分でなく、750℃を超えると表面積が減少しすぎて、Liとの反応性が低下してしまうため好ましくない。 Reactivity with Li can be improved by oxidizing and baking the precursor. In this case, since the reaction with Li proceeds sufficiently in a short time, productivity can be improved. The oxidation roasting temperature is preferably 650 to 750 ° C, more preferably 700 to 750 ° C. If it is less than 650 degreeC, the oxide film formed on the surface is not enough, and if it exceeds 750 degreeC, since a surface area will reduce too much and the reactivity with Li will fall, it is unpreferable.
 酸化焙焼の雰囲気は、非還元性雰囲気であれば問題なく、大気雰囲気あるいは酸素雰囲気が好ましい。酸化焙焼時間や処理する炉については特に限定されるものでなく、処理する量および酸化焙焼温度により適宜設定すればよい。 The oxidation roasting atmosphere is not a problem as long as it is a non-reducing atmosphere, and an air atmosphere or an oxygen atmosphere is preferable. The oxidation roasting time and the furnace to be treated are not particularly limited, and may be appropriately set depending on the amount to be treated and the oxidation roasting temperature.
 リチウム化合物との混合は、前駆体もしくは前駆体酸化物とリチウム化合物とを、最終的に得ようとする正極活物質であるリチウムニッケル複合酸化物の組成比で混合することにより行なわれる。 The mixing with the lithium compound is performed by mixing the precursor or the precursor oxide and the lithium compound at a composition ratio of the lithium nickel composite oxide which is the positive electrode active material to be finally obtained.
 混合は、Vブレンダ、スパルタンリューザ、レディゲミキサ、ジュリアミキサあるいはバーチカルグラニュエータといった乾式混合機や混合造粒機を用いることができ、均一に混合される適切な時間の範囲で行うことが好ましい。 The mixing can be performed by using a dry mixer or a mixing granulator such as a V blender, a Spartan luzer, a Redige mixer, a Julia mixer, or a vertical granulator, and is preferably performed within a suitable time range for uniform mixing.
 焼成は、特に限定されるものではなく、通常の方法および装置を用いて行うことができるが、焼成時の温度は、700~760℃が好ましく、740~760℃がより好ましい。焼成時の温度が700℃未満であると、正極活物質を構成するリチウムニッケル複合酸化物の結晶性が十分に発達せず、(003)面結晶子径が1100Å未満となることがある。また、焼成時の温度が760℃を超えると、リチウムニッケル複合酸化物の(003)面結晶子径が1600Åを超えてしまうことがあるばかりか、リチウムニッケル複合酸化物の二次粒子の焼結が生じて、二次粒子が粗大化すことがある。 Calcination is not particularly limited and can be performed using a normal method and apparatus, but the temperature at the time of calcination is preferably 700 to 760 ° C, more preferably 740 to 760 ° C. When the temperature at the time of firing is less than 700 ° C., the crystallinity of the lithium nickel composite oxide constituting the positive electrode active material is not sufficiently developed, and the (003) plane crystallite diameter may be less than 1100 mm. Further, if the temperature during firing exceeds 760 ° C., the (003) plane crystallite diameter of the lithium nickel composite oxide may exceed 1600 mm, and the secondary particles of the lithium nickel composite oxide may be sintered. May occur and the secondary particles may become coarse.
 焼成時間も、特に限定されるものではなく、上記反応が十分に進行する時間が得られればよく、1~10時間程度とすることが好ましい。また、酸化性雰囲気についても、特に限定されるものではないが、リチウムニッケル複合酸化物の結晶性を十分に発達させるために、60~100体積%の酸素を含む酸素雰囲気とすることが好ましい。 The firing time is not particularly limited, and it is sufficient that a time for the above reaction to sufficiently proceed is obtained, and it is preferably about 1 to 10 hours. Also, the oxidizing atmosphere is not particularly limited. However, in order to sufficiently develop the crystallinity of the lithium nickel composite oxide, an oxygen atmosphere containing 60 to 100% by volume of oxygen is preferable.
 また、焼成温度までの昇温速度は、速すぎるとリチウム化合物と前駆体水酸化物との分離が起こるので望ましくなく、遅すぎると生産性を悪化させることになるので、2~5℃/分程度とするのが現実的である。 Further, if the rate of temperature rise to the firing temperature is too high, separation of the lithium compound and the precursor hydroxide occurs, which is not desirable, and if it is too slow, productivity is deteriorated, so 2 to 5 ° C./min. It is realistic to set the degree.
 リチウム化合物は、特に限定されるものではないが、水酸化リチウムもしくはその水和物であることが好ましい。水酸化リチウムは、溶融温度が低く、上記焼成温度の範囲で溶融して、反応が液相-固相反応となるため、ニッケル複合水酸化物と十分に反応させることができる。炭酸リチウムなどを用いると、上記焼成温度の範囲では溶融しないため、ニッケル複合水酸化物と十分に反応しない場合がある。 The lithium compound is not particularly limited, but is preferably lithium hydroxide or a hydrate thereof. Lithium hydroxide has a low melting temperature and melts within the range of the above calcination temperature, and the reaction becomes a liquid phase-solid phase reaction, so that it can be sufficiently reacted with the nickel composite hydroxide. When lithium carbonate or the like is used, it does not melt within the range of the firing temperature, and may not sufficiently react with the nickel composite hydroxide.
 本発明の非水系電解質二次電池は、上記の正極活物質により形成された正極活物質層を正極集電体上に備えることを特徴とするものである。以下、その詳細について説明する。 The non-aqueous electrolyte secondary battery of the present invention is characterized in that a positive electrode active material layer formed of the positive electrode active material is provided on a positive electrode current collector. The details will be described below.
 (a)正極
 前述のように得られた非水系電解質二次電池用正極活物質を用いて、たとえば、以下のように、非水系電解質二次電池の正極を作製する。
(A) Positive electrode Using the positive electrode active material for a non-aqueous electrolyte secondary battery obtained as described above, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
 まず、粉末状の正極活物質、導電材、結着剤を混合し、溶媒、好ましくは水系溶媒を添加し、これを混練して、正極合材水系ペーストを作製する。正極合材ペースト中におけるそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶媒を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を80~95質量部とし、導電材の含有量を2~15質量部とし、結着剤の含有量を1~20質量部とすることが望ましい。 First, a powdered positive electrode active material, a conductive material, and a binder are mixed, a solvent, preferably an aqueous solvent is added, and this is kneaded to prepare a positive electrode mixture aqueous paste. Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 80 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery, and the conductive material The content of is preferably 2 to 15 parts by mass and the content of the binder is preferably 1 to 20 parts by mass.
 得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶媒を飛散させる。必要に応じて、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断するなどして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。 The obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressure may be applied by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be used for production of a battery by cutting it into an appropriate size according to the intended battery. However, the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.
 正極の作製にあたって、導電剤としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。 In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、水に溶解する水溶性のポリマー材料が好ましい。親水性のポリマーであるカルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)などがあげられる。また、水分散性を有するポリマー材料を好適に用いることができる。たとえば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸編成SBR樹脂(SBR系ラテックス)、アラビアゴムなどのゴム類が例示される。これらのうちPTFEなどのフッ素系樹脂の使用が好ましい。 The binder plays a role of holding the active material particles, and is preferably a water-soluble polymer material that dissolves in water. Hydrophilic polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), polyvinyl alcohol (PVA), polyethylene oxide (PEO) ) Etc. A polymer material having water dispersibility can be preferably used. For example, fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene Examples include rubbers such as butadiene block copolymer (SBR), acrylic acid knitted SBR resin (SBR latex), and gum arabic. Of these, the use of a fluororesin such as PTFE is preferred.
 水系ペーストは、本発明の正極活物質と上記例示した導電剤と結着材などの添加剤とを、適当な水系溶媒に添加し、分散または溶解させて混合することにより調整することができる。 The aqueous paste can be prepared by adding the positive electrode active material of the present invention, the above-exemplified conductive agent, and the additive such as the binder to an appropriate aqueous solvent, and dispersing or dissolving the mixture.
 調整したペーストを、正極集電体に塗布し、水系溶媒を揮発させて乾燥させた後、圧縮する。典型的には、塗布装置(コータ)を使用して、集電体表面に活物質層形成用ペーストを所定の厚みで塗布することができる。該ペーストを塗布する厚みは特に限定されずに、正極および電池の形状や用途に応じて適宜設定される。たとえば、厚み10~30μm程度の箔状集電体の表面に、乾燥後の厚みが5~100μm程度となるように塗布する。塗布後、適切な乾燥機を用いて塗布物を乾燥することによって、集電体表面に所定の厚みの正極活物質層を形成することができる。このようにして得られた正極活物質層を、所望によりプレスすることによって、目的とする厚みの正極シートを得ることができる。 塗布 Apply the prepared paste to the positive electrode current collector, volatilize the aqueous solvent, dry and then compress. Typically, the active material layer forming paste can be applied to the surface of the current collector with a predetermined thickness using a coating apparatus (coater). The thickness for applying the paste is not particularly limited, and is appropriately set according to the shape and application of the positive electrode and the battery. For example, it is applied to the surface of a foil-like current collector having a thickness of about 10 to 30 μm so that the thickness after drying is about 5 to 100 μm. After the application, the positive electrode active material layer having a predetermined thickness can be formed on the surface of the current collector by drying the application using an appropriate dryer. The positive electrode active material layer thus obtained is pressed as desired to obtain a positive electrode sheet having a desired thickness.
 (b)負極
 負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶媒を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布および乾燥し、必要に応じて、電極密度を高めるべく圧縮して形成したものを使用する。
(B) Negative electrode The negative electrode composite material in which the negative electrode is made of metal lithium, lithium alloy, or the like, or a negative electrode active material capable of occluding and desorbing lithium ions, mixed with a binder, and added with an appropriate solvent to form a paste. Is applied to the surface of a metal foil current collector such as copper and dried, and if necessary, it is compressed to increase the electrode density.
 負極活物質としては、たとえば、天然黒鉛、人造黒鉛、難黒鉛化炭素質のもの、易黒鉛化炭素質のもの、これらを組み合わせた構造を有するものなどの炭素材料を好適に使用できる。 As the negative electrode active material, for example, a carbon material such as natural graphite, artificial graphite, non-graphitizable carbonaceous material, graphitizable carbonaceous material, or a material having a combination of these can be suitably used.
 (c)セパレータ
 正極と負極の間に、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
(C) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
 (d)非水系電解液
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
(D) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
 有機溶媒としては、(1)エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、(2)ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、(3)テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、(4)エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、(5)リン酸トリエチル、リン酸トリオクチルなどのリン化合物、その他の有機溶媒から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。 Examples of the organic solvent include (1) cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, (2) chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, (3 ) Selected from ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, (4) sulfur compounds such as ethyl methyl sulfone and butane sultone, (5) phosphorus compounds such as triethyl phosphate and trioctyl phosphate, and other organic solvents One kind can be used alone, or two or more kinds can be mixed and used.
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22などを単独で、またはそれらの複合塩を用いることができる。支持塩の濃度については、従来のリチウムイオン二次電池で使用される電解液と同様でよく、特に制限はない。適当なリチウム化合物(支持塩)を0.1~5mol/L程度の濃度で含有する電解液を使用することができる。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 or the like can be used alone or a complex salt thereof. About the density | concentration of a supporting salt, it may be the same as that of the electrolyte solution used with the conventional lithium ion secondary battery, and there is no restriction | limiting in particular. An electrolytic solution containing an appropriate lithium compound (supporting salt) at a concentration of about 0.1 to 5 mol / L can be used.
 さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。 Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
 (e)電池の形状、構成
 以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型など、種々のものとすることができる。
(E) Battery shape and configuration The shape of the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte solution described above may be various, such as a cylindrical type and a laminated type. Can be.
 いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。 In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. Connect between the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside using a current collecting lead, etc., and seal the battery case to complete the nonaqueous electrolyte secondary battery. .
 本発明の非水系電解質二次電池は、X線回折およびScherrer式により求められる(003)面結晶子径が、1200~1600Åの範囲となる結晶性を有する本発明の非水系電解質二次電池用正極活物質を正極材料として用いているため、たとえば、-30℃という低温環境下における低温出力が、従来のものと比較して、20%以上向上する。 The non-aqueous electrolyte secondary battery of the present invention is for the non-aqueous electrolyte secondary battery of the present invention having crystallinity in which the (003) plane crystallite diameter determined by X-ray diffraction and Scherrer formula is in the range of 1200 to 1600 Å Since the positive electrode active material is used as the positive electrode material, for example, the low temperature output in a low temperature environment of −30 ° C. is improved by 20% or more compared to the conventional material.
 以下の実施例において、リチウム金属複合酸化物の結晶性状、より詳しくは(003)面の結晶子径を適宜な大きさに調整して製造した正極活物質を正極材料に使用して、非水系電解質二次電池(リチウムイオン二次電池)を製造し、その性能評価を行った。 In the following examples, the crystalline properties of the lithium metal composite oxide, more specifically, the positive electrode active material produced by adjusting the crystallite diameter of the (003) plane to an appropriate size is used as the positive electrode material, and non-aqueous An electrolyte secondary battery (lithium ion secondary battery) was manufactured and its performance was evaluated.
 (実施例1)
 (1)正極活物質
 まず、以下の手順で正極活物質を製造した。すなわち、ニッケル供給源としての硫酸ニッケル(NiSO4)と、コバルト供給源としての硫酸コバルト(CoSO4)とを、モル比でNi:Coが85:15となるように混合して、ニッケルとコバルトの合計で104.5g/Lのニッケルコバルト混合塩水溶液を調製した。
Example 1
(1) Positive electrode active material First, the positive electrode active material was manufactured in the following procedures. That is, nickel sulfate (NiSO 4 ) as a nickel supply source and cobalt sulfate (CoSO 4 ) as a cobalt supply source are mixed so that the molar ratio of Ni: Co is 85:15. A total of 104.5 g / L nickel cobalt mixed salt aqueous solution was prepared.
 次に、反応液として、温度を50℃、該温度におけるpHを11に調整した純水に、前記混合塩水溶液と25質量%アンモニア水溶液(NH3)および25質量%水酸化ナトリウム水溶液(NaOH)とを、前記温度と該温度におけるpHを保持しながら少量ずつ供給して、ニッケルコバルト複合水酸化物を晶析させ、ニッケルコバルト複合水酸化物スラリーを作製した。晶析中の反応液のNi溶解度を測定したところ、40質量ppmであった。また、晶析中の反応液のNH3濃度は、ほぼ10g/Lで一定であった。このスラリーを水洗、ろ過し、次いで約70℃で乾燥することによって、ニッケルコバルト複合水酸化物(Ni0.85Co0.15(OH)2)からなる粉末を得た。 Next, as a reaction solution, pure water adjusted to a temperature of 50 ° C. and a pH of 11 at the temperature was added to the mixed salt aqueous solution, a 25 mass% ammonia aqueous solution (NH 3 ), and a 25 mass% sodium hydroxide aqueous solution (NaOH). Were supplied little by little while maintaining the temperature and the pH at the temperature to crystallize the nickel cobalt composite hydroxide to prepare a nickel cobalt composite hydroxide slurry. It was 40 mass ppm when Ni solubility of the reaction liquid in crystallization was measured. Further, the NH 3 concentration of the reaction solution during crystallization was constant at about 10 g / L. The slurry was washed with water, filtered, and then dried at about 70 ° C. to obtain a powder composed of nickel cobalt composite hydroxide (Ni 0.85 Co 0.15 (OH) 2 ).
 上記ニッケルコバルト複合水酸化物を、水酸化ナトリウム(NaOH)と20g/Lのアルミン酸ナトリウム(NaAlO2)が溶解された水溶液に分散させて、スラリーを調製し、攪拌しつつ硫酸水溶液(H2SO4)で中和し、ニッケルコバルト複合水酸化物表面に水酸化アルミニウムを析出させた。なお、アルミン酸ナトリウムについては、ほぼ全量が、水酸化アルミニウムとして析出した。このスラリーを水洗、ろ過し、次いで約100℃で乾燥した後、大気雰囲気中で700℃に加熱して5時間、酸化焙焼することによって、ニッケルコバルトアルミニウム複合酸化物(Ni0.82Co0.15Al0.03O)を合成した。 The nickel-cobalt composite hydroxide, dispersed in an aqueous solution of sodium aluminate and sodium hydroxide (NaOH) 20g / L (NaAlO 2) is dissolved, the slurry was prepared, with stirring an aqueous solution of sulfuric acid (H 2 The mixture was neutralized with SO 4 ) to deposit aluminum hydroxide on the surface of the nickel cobalt composite hydroxide. In addition, about the whole amount of sodium aluminate, it precipitated as aluminum hydroxide. The slurry was washed with water, filtered, and then dried at about 100 ° C., and then heated to 700 ° C. in an air atmosphere and oxidized and baked for 5 hours, whereby nickel cobalt aluminum composite oxide (Ni 0.82 Co 0.15 Al 0.03 O) was synthesized.
 結晶性を評価するために、得られたニッケルコバルトアルミニウム複合水酸化物の(101)面の半価幅をX線回折装置(PANalytical製X‘Pert PRO)を用いて測定したところ、0.662°であった。この結果を表1に示す。 In order to evaluate the crystallinity, the half width of the (101) plane of the obtained nickel cobalt aluminum composite hydroxide was measured using an X-ray diffractometer (X'Pert PRO from PANalytical). °. The results are shown in Table 1.
 次に、上記ニッケルコバルトアルミニウム複合酸化物に、リチウム供給源としての水酸化リチウム(LiOH)を、Liと他のすべての構成金属元素(Ni、Co、Al)の合計とのモル比:Li/(Ni+Co+Al)が1.05となるような分量で混合し、リチウムニッケル複合酸化物用混合原料を調製した。混合原料の調製後、混合原料を酸素雰囲気中において750℃で7時間保持して焼成することにより、リチウムニッケル複合酸化物(Li1.05(Ni0.82Co0.15Al0.03)O2)を合成して正極活物質を得た。 Next, lithium hydroxide (LiOH) as a lithium supply source is added to the nickel-cobalt-aluminum composite oxide, and the molar ratio of Li to the total of all other constituent metal elements (Ni, Co, Al): Li / A mixed raw material for lithium nickel composite oxide was prepared by mixing in an amount such that (Ni + Co + Al) was 1.05. After preparing the mixed raw material, the mixed raw material is calcined by holding at 750 ° C. for 7 hours in an oxygen atmosphere to synthesize lithium nickel composite oxide (Li 1.05 (Ni 0.82 Co 0.15 Al 0.03 ) O 2 ) to produce the positive electrode. An active material was obtained.
 得られた正極活物質の(003)面の半価幅を、X線回折装置を用いて同様に測定し、得られた(003)面半価幅から、Scherrerの計算式により(003)面の結晶子径を求めたところ、1346Åであった。この結果を表1に示す。 The half width of the (003) plane of the obtained positive electrode active material was similarly measured using an X-ray diffractometer, and the (003) plane was calculated from the obtained (003) plane half width by Scherrer's formula. The crystallite diameter of 1346 was determined. The results are shown in Table 1.
 (2)非水系電解質二次電池(リチウムイオン二次電池)
 (2-1)正極
 得られた正極活物質を用いて、水系ペーストを調製した。すなわち、正極における正極活物質層を形成するにあたり、該正極活物質と、導電材としてのアセチレンブラックと、結着材としてのカルボキシメチルセルロース(CMC)と、ポリテトラフルオロエチレン(PTFE)とを、これらの材料の質量比が88:10:1:1となるように秤量し、上記材料の固形分率が54質量%になるように水系溶媒(イオン交換水)に添加した。次いで、プラネタリーミキサで50分間混合し、正極活物質層形成用の水系ペーストを得た。
(2) Non-aqueous electrolyte secondary battery (lithium ion secondary battery)
(2-1) Positive electrode An aqueous paste was prepared using the obtained positive electrode active material. That is, in forming the positive electrode active material layer in the positive electrode, the positive electrode active material, acetylene black as a conductive material, carboxymethyl cellulose (CMC) as a binder, and polytetrafluoroethylene (PTFE), The material was weighed so that the mass ratio of the material was 88: 10: 1: 1, and added to an aqueous solvent (ion-exchanged water) so that the solid content of the material was 54% by mass. Subsequently, it mixed for 50 minutes with the planetary mixer, and the aqueous paste for positive electrode active material layer formation was obtained.
 次に、得られた水系ペーストを、正極集電体となる厚み15μmのアルミニウム箔の両面に、合計塗布量(固形分換算)が9.5g/cm2となるように塗布した。塗布したペースト中の水分を乾燥させた後、ローラプレス機にてシート状に引き伸ばして層厚(正極集電体の厚みを含む全層厚)を60μmの厚さに調製し、正極活物質層を形成することにより、リチウムイオン二次電池用の正極(正極シート)を作製した。 Next, the obtained aqueous paste was applied to both surfaces of a 15 μm-thick aluminum foil serving as a positive electrode current collector so that the total coating amount (solid content conversion) was 9.5 g / cm 2 . After the moisture in the applied paste is dried, it is stretched into a sheet shape with a roller press to adjust the layer thickness (total layer thickness including the thickness of the positive electrode current collector) to 60 μm, and the positive electrode active material layer Thus, a positive electrode (positive electrode sheet) for a lithium ion secondary battery was produced.
 (2-2)負極
 負極活物質としての(アモルファスカーボンでコーティング処理した)グラファイトと、結着材としてのスチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量比が98:1:1となるようにイオン交換水と混合して、負極活物質層形成用のペーストを調製した。
(2-2) Negative Electrode Graphite (coated with amorphous carbon) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) have a mass ratio of these materials of 98. A paste for forming a negative electrode active material layer was prepared by mixing with ion-exchanged water so that the ratio was 1: 1.
 次に、負極集電体となる厚み10μmの銅箔の両面に、前記ペーストの合計塗布量(固形分換算)が9.0g/cm2となるように塗布した。塗布したペースト中の水分を乾燥させた後、ロールプレス機にてシート状に引き伸ばして層厚(負極集電体の厚みを含む全層厚)を60μmの厚さに調製し、負極活物質層を形成することにより、リチウムイオン二次電池用の負極(負極シート)を作製した。 Next, it apply | coated so that the total application quantity (solid content conversion) of the said paste might be set to 9.0 g / cm < 2 > on both surfaces of 10-micrometer-thick copper foil used as a negative electrode collector. After drying the moisture in the applied paste, the layer thickness (total thickness including the thickness of the negative electrode current collector) is adjusted to 60 μm by stretching it into a sheet with a roll press, and the negative electrode active material layer Thus, a negative electrode (negative electrode sheet) for a lithium ion secondary battery was produced.
 (2-3)リチウムイオン二次電池
 前記正極シートおよび負極シートを2枚の多孔性セパレータとともに積重ね合わせて捲回し、積層方向から押しつぶすことによって電極体を扁平形状に成形した。次に、該電極体を電池ケースに収容し、体積比1:1のエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒に、1mol/Lの濃度で支持塩LiPF6を溶解した電解質を注入した。その後、正極集電体および負極集電体と外部に通ずる各端子との間を、集電用リードなどを用いてそれぞれ接続し、電池ケースを密閉してリチウムイオン二次電池を作製した。さらに、コンディショニング処理として2Aの定電流で4.1Vまで充電することにより、試験用リチウムイオン二次電池を構築した。
(2-3) Lithium Ion Secondary Battery The positive electrode sheet and the negative electrode sheet were stacked together with two porous separators, wound, and crushed from the stacking direction to form a flat electrode body. Next, the electrode body is housed in a battery case, and an electrolyte in which a supporting salt LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a volume ratio of 1: 1. Injected. Thereafter, the positive electrode current collector and the negative electrode current collector were connected to terminals connected to the outside using current collecting leads, etc., and the battery case was sealed to produce a lithium ion secondary battery. Furthermore, a lithium ion secondary battery for testing was constructed by charging up to 4.1 V with a constant current of 2 A as a conditioning treatment.
 (2-4)評価
 上記リチウムイオン二次電池の低温条件下における出力特性を調べることで、評価を行った。すなわち、25℃の温度条件下、3.0Vまでの定電流放電後、定電流定電圧で充電を行って、SOC(State of Charge)40%に調整した。その後、-30℃にて適宜電流を変化させ、放電開始から2秒後の電圧を測定し、サンプル電池のI-V特性グラフを作成した。放電カット電圧は2.0Vとした。このI-V特性グラフから出力値(W)を求めたところ、124Wであった。この評価結果を表1に示す。
(2-4) Evaluation The lithium ion secondary battery was evaluated by examining the output characteristics under low temperature conditions. That is, after a constant current discharge up to 3.0 V under a temperature condition of 25 ° C., the battery was charged with a constant current and a constant voltage and adjusted to 40% SOC (State of Charge). Thereafter, the current was appropriately changed at −30 ° C., the voltage 2 seconds after the start of discharge was measured, and an IV characteristic graph of the sample battery was created. The discharge cut voltage was 2.0V. The output value (W) obtained from this IV characteristic graph was 124 W. The evaluation results are shown in Table 1.
 (実施例2)
 ニッケルコバルト複合水酸化物の晶析時のpH10.5に調整した以外は、実施例1と同様にして、正極活物質を得るとともに評価した。なお、晶析中のスラリーのNi溶解度は80質量ppmであった。前駆体の(101)面半価幅は0.471°、正極活物質の(003)面結晶子径は1589Å、リチウムイオン二次電池の-30℃出力値は121Wであった。それぞれの結果を表1に示す。
(Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 10.5 during crystallization of the nickel cobalt composite hydroxide. The Ni solubility of the slurry during crystallization was 80 ppm by mass. The (101) plane half-value width of the precursor was 0.471 °, the (003) plane crystallite diameter of the positive electrode active material was 1589 mm, and the −30 ° C. output value of the lithium ion secondary battery was 121 W. The results are shown in Table 1.
 (実施例3)
 ニッケル供給源としての硫酸ニッケル(NiSO4)と、コバルト供給源としての硫酸コバルト(CoSO4)、Mg供給源としての硫酸マグネシウム(MgSO4)とを、モル比でNi:Co:Mgが83:14:3となるように混合して、ニッケル、コバルトとマグネシウムの合計で106.3g/Lのニッケルコバルトマグネシウム混合塩水溶液を調製した。
(Example 3)
Nickel sulfate (NiSO 4 ) as a nickel supply source, cobalt sulfate (CoSO 4 ) as a cobalt supply source, magnesium sulfate (MgSO 4 ) as an Mg supply source, and 83: Ni: Co: Mg at a molar ratio of 83: It mixed so that it might become 14: 3, and the nickel cobalt magnesium mixed salt aqueous solution of a total of 106.3 g / L of nickel, cobalt, and magnesium was prepared.
 次に、反応液として、温度を50℃、該温度におけるpHを11に調整した純水に、前記混合塩水溶液と25質量%アンモニア水溶液(NH3)および25質量%水酸化ナトリウム水溶液(NaOH)とを、前記温度と該温度におけるpHを保持しながら少量ずつ供給して、ニッケルコバルトマグネシウム複合水酸化物を晶析させ、ニッケルコバルトマグネシウム複合水酸化物スラリーを作製した。晶析中の反応液のNi溶解度を測定したところ、35質量ppmであった。また、晶析中の反応液のNH3濃度は、ほぼ10g/Lで一定であった。このスラリーを水洗、ろ過し、次いで約70℃で乾燥することによって、ニッケルコバルトマグネシウム複合水酸化物(Ni0.83Co0.14Mg0.03(OH)2)からなる粉末を得た。 Next, as a reaction solution, pure water adjusted to a temperature of 50 ° C. and a pH of 11 at the temperature was added to the mixed salt aqueous solution, a 25 mass% ammonia aqueous solution (NH 3 ), and a 25 mass% sodium hydroxide aqueous solution (NaOH). Were supplied little by little while maintaining the temperature and the pH at the temperature to crystallize the nickel cobalt magnesium composite hydroxide to prepare a nickel cobalt magnesium composite hydroxide slurry. It was 35 mass ppm when Ni solubility of the reaction liquid during crystallization was measured. Further, the NH 3 concentration of the reaction solution during crystallization was constant at about 10 g / L. The slurry was washed with water, filtered, and then dried at about 70 ° C. to obtain a powder composed of nickel cobalt magnesium composite hydroxide (Ni 0.83 Co 0.14 Mg 0.03 (OH) 2 ).
 上記ニッケルコバルトマグネシウム複合水酸化物を、水酸化ナトリウム(NaOH)と20g/Lのアルミン酸ナトリウム(NaAlO2)が溶解された水溶液に分散させて、スラリーを調製し、攪拌しつつ硫酸水溶液(H2SO4)で中和し、ニッケルコバルトマグネシウム複合水酸化物表面に水酸化アルミニウムを析出させた。なお、アルミン酸ナトリウムについては、ほぼ全量が、水酸化アルミニウムとして析出した。このスラリーを水洗、ろ過し、次いで約100℃で乾燥した後、大気雰囲気中で700℃に加熱して5時間、酸化焙焼することによって、ニッケルコバルトマグネシウムアルミニウム複合酸化物(Ni0.81Co0.13Mg0.03Al0.03O)を合成した。 The nickel-cobalt-magnesium composite hydroxide is dispersed in an aqueous solution in which sodium hydroxide (NaOH) and 20 g / L sodium aluminate (NaAlO 2 ) are dissolved, and a slurry is prepared. 2 SO 4 ), and aluminum hydroxide was precipitated on the surface of the nickel cobalt magnesium composite hydroxide. In addition, about the whole amount of sodium aluminate, it precipitated as aluminum hydroxide. The slurry was washed with water, filtered, and then dried at about 100 ° C., and then heated to 700 ° C. in an air atmosphere and oxidatively roasted for 5 hours, whereby nickel cobalt magnesium aluminum composite oxide (Ni 0.81 Co 0.13 Mg 0.03 Al 0.03 O) was synthesized.
 このニッケルコバルトマグネシウムアルミニウム複合酸化物を用いる以外は、実施例1と同様にして、正極活物質を得るとともに評価した。前駆体の(101)面半価幅は0.508°、正極活物質の(003)面結晶子径は1490Å、リチウムイオン二次電池の-30℃出力値は122Wであった。それぞれの結果を表1に示す。 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that this nickel cobalt magnesium aluminum composite oxide was used. The half width of the (101) plane of the precursor was 0.508 °, the crystallite diameter of the (003) plane of the positive electrode active material was 1490 mm, and the output value of the lithium ion secondary battery at −30 ° C. was 122W. The results are shown in Table 1.
(比較例1)
 ニッケルコバルト複合水酸化物の晶析時のpH12.5に調整した以外は、実施例1と同様にして、正極活物質を得るとともに評価した。なお、晶析中のスラリーのNi溶解度は10質量ppmであった。前駆体の(101)面半価幅は0.958°、正極活物質の(003)面結晶子径は967Å、リチウムイオン二次電池の-30℃出力値は89Wであった。それぞれの結果を表1に示す。
(Comparative Example 1)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 12.5 during crystallization of the nickel cobalt composite hydroxide. In addition, Ni solubility of the slurry during crystallization was 10 mass ppm. The (101) plane half width of the precursor was 0.958 °, the (003) plane crystallite diameter of the positive electrode active material was 967 mm, and the -30 ° C. output value of the lithium ion secondary battery was 89 W. The results are shown in Table 1.
(比較例2)
 ニッケルコバルト複合水酸化物の晶析時のpH10に調整した以外は、実施例1と同様にして、正極活物質を得るとともに評価した。なお、晶析中のスラリーのNi溶解度は200質量ppmであった。前駆体の(101)面半価幅は0.389°、正極活物質の(003)面結晶子径は1728Å、リチウムイオン二次電池の-30℃出力値は112Wであった。それぞれの結果を表1に示す。
(Comparative Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 10 at the time of crystallization of the nickel cobalt composite hydroxide. The Ni solubility of the slurry during crystallization was 200 ppm by mass. The (101) plane half-value width of the precursor was 0.389 °, the (003) plane crystallite diameter of the positive electrode active material was 1728 mm, and the −30 ° C. output value of the lithium ion secondary battery was 112 W. The results are shown in Table 1.
(比較例3)
 ニッケルコバルト複合水酸化物の晶析時のpH11.5に調整した以外は、実施例1と同様にして、正極活物質を得るとともに評価した。なお、晶析中のスラリーのNi溶解度は20質量ppmであった。前駆体の(101)面半価幅は0.846°、正極活物質の(003)面結晶子径は1123Å、リチウムイオン二次電池の-30℃出力値は119Wであった。それぞれの結果を表1に示す。

Figure JPOXMLDOC01-appb-T000001
(評価)
 図1に、正極活物質の(003)面結晶子径と-30℃低温出力の関係を示すが、(003)面結晶子径と-30℃低温出力には相関があることがわかる。すなわち、安定して高い低温出力を発現するためには、(003)面結晶子径を1200~1600Åの範囲とすることが必要である。また、表1より、正極活物質の前駆体となるニッケル複合水酸化物の(101)面半価幅を、0.45~0.8°の範囲とする必要があることが理解される。
(Comparative Example 3)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH was adjusted to 11.5 during the crystallization of the nickel cobalt composite hydroxide. In addition, Ni solubility of the slurry during crystallization was 20 mass ppm. The half-width of the (101) plane of the precursor was 0.846 °, the crystallite diameter of the (003) plane of the positive electrode active material was 1123 mm, and the output value of the lithium ion secondary battery at −30 ° C. was 119 W. The results are shown in Table 1.

Figure JPOXMLDOC01-appb-T000001
(Evaluation)
FIG. 1 shows the relationship between the (003) plane crystallite diameter of the positive electrode active material and the −30 ° C. low temperature output, and it can be seen that there is a correlation between the (003) plane crystallite diameter and the −30 ° C. low temperature output. That is, in order to stably produce a high low-temperature output, it is necessary to set the (003) plane crystallite diameter in the range of 1200 to 1600 mm. Further, it can be understood from Table 1 that the (101) plane half-value width of the nickel composite hydroxide serving as the positive electrode active material precursor needs to be in the range of 0.45 to 0.8 °.

Claims (9)

  1.  一般式:Liw(Ni1-x-yCoxAly1-zz2(0.98≦w≦1.10、0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、Mは、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表される一次粒子が凝集した二次粒子により構成されるリチウムニッケル複合酸化物からなり、X線回折およびScherrer式により求められる該リチウムニッケル複合酸化物の(003)面結晶子径が、1200~1600Åであることを特徴とする、非水系電解質二次電池用正極活物質。 General formula: Li w (Ni 1-xy Co x Al y) 1-z M z O 2 (0.98 ≦ w ≦ 1.10,0.05 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0 0.1, 0 ≦ z ≦ 0.05, where M is composed of secondary particles obtained by agglomeration of primary particles represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga) The lithium nickel composite oxide has a (003) plane crystallite diameter of 1200 to 1600 mm determined by X-ray diffraction and Scherrer equation. Positive electrode active material for secondary battery.
  2.  前記(003)面結晶子径が、1200~1500Åであることを特徴とする、請求項1に記載の非水系電解質二次電池用正極活物質。 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the (003) plane crystallite diameter is 1200 to 1500 mm.
  3.  一般式:(Ni1-x-yCoxAly1-zz(OH)2(0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、Mは、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表され、X線回折による(101)面半価幅が0.45~0.8°であるニッケル複合水酸化物からなることを特徴とする、非水系電解質二次電池用正極活物質の前駆体。 General formula: (Ni 1-xy Co x Al y) 1-z M z (OH) 2 (0.05 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0.1,0 ≦ z ≦ 0.05 However, M is represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga), and the (101) plane half width by X-ray diffraction is 0.45 to 0.8 °. A precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a nickel composite hydroxide.
  4.  前記前駆体は、上記一般式に示されたNi、Co、Mからなる水酸化物の表面が水酸化アルミニウムで被覆されたものである、請求項3に記載の非水系電解質二次電池用正極活物質の前駆体。 4. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the precursor is formed by coating a surface of a hydroxide composed of Ni, Co, and M represented by the above general formula with aluminum hydroxide. 5. Active material precursor.
  5.  非水系電解質二次電池用正極活物質を得るための前駆体であって、リチウム化合物と混合し、もしくは酸化焙焼後にリチウム化合物と混合し、得られた混合物を酸化性雰囲気で焼成することにより、請求項1に記載の非水系電解質二次電池用正極活物質となることを特徴とする、請求項3または4に記載の非水系電解質二次電池用正極活物質の前駆体。 A precursor for obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery, which is mixed with a lithium compound, or mixed with a lithium compound after oxidative roasting, and the resulting mixture is fired in an oxidizing atmosphere The precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1.
  6.  請求項3または4に記載の前駆体、もしくは該前駆体を酸化焙焼して得られる前駆体酸化物と、リチウム化合物とを、混合し、得られた混合物を酸化性雰囲気中で焼成して、一般式:Liw(Ni1-x-yCoxAly1-zz2(0.98≦w≦1.10、0.05≦x≦0.3、0.01≦y≦0.1、0≦z≦0.05、ただし、Mは、Mg、Fe、Cu、Zn、Gaから選ばれた少なくとも1種の金属元素)で表される一次粒子が凝集した二次粒子により構成され、X線回折およびScherrer式により求められる(003)面結晶子径が、1200~1600Åである、リチウムニッケル複合酸化物を得ることを特徴とする、非水系電解質二次電池用正極活物質の製造方法。 The precursor according to claim 3 or 4, or a precursor oxide obtained by oxidative roasting of the precursor, and a lithium compound are mixed, and the obtained mixture is fired in an oxidizing atmosphere. , general formula: Li w (Ni 1-xy Co x Al y) 1-z M z O 2 (0.98 ≦ w ≦ 1.10,0.05 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.05, where M is a secondary particle formed by agglomeration of primary particles represented by at least one metal element selected from Mg, Fe, Cu, Zn, and Ga) A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that a lithium-nickel composite oxide having a (003) plane crystallite diameter of 1200 to 1600 ら れ る determined by X-ray diffraction and Scherrer formula is obtained Manufacturing method.
  7.  前記焼成の温度を、700~760℃の範囲とする、請求項6に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6, wherein the firing temperature is in the range of 700 to 760 ° C.
  8.  前記リチウム化合物として、水酸化リチウムを用いる、請求項6または7に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6 or 7, wherein lithium hydroxide is used as the lithium compound.
  9.  請求項1または2に記載の非水系電解質二次電池用正極活物質により形成された正極活物質層を正極集電体の上に備えることを特徴とする、非水系電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode active material layer formed of the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2 on a positive electrode current collector.
PCT/JP2011/057242 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material WO2011122448A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012508250A JP5518182B2 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
US13/638,171 US8999573B2 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
KR1020127028055A KR101535325B1 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
KR1020157005734A KR101679996B1 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN201180024955.5A CN103026537B (en) 2010-03-29 2011-03-24 The presoma of nonaqueous electrolytic active material for anode of secondary cell and manufacture method thereof, this positive active material and employ the nonaqueous electrolytic secondary cell of this positive active material
US14/564,261 US9553311B2 (en) 2010-03-29 2014-12-09 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-075280 2010-03-29
JP2010075280 2010-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/638,171 A-371-Of-International US8999573B2 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US14/564,261 Division US9553311B2 (en) 2010-03-29 2014-12-09 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material

Publications (1)

Publication Number Publication Date
WO2011122448A1 true WO2011122448A1 (en) 2011-10-06

Family

ID=44712157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057242 WO2011122448A1 (en) 2010-03-29 2011-03-24 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material

Country Status (5)

Country Link
US (2) US8999573B2 (en)
JP (1) JP5518182B2 (en)
KR (2) KR101535325B1 (en)
CN (1) CN103026537B (en)
WO (1) WO2011122448A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164693A1 (en) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 Lithium secondary battery
WO2013084851A1 (en) * 2011-12-05 2013-06-13 トヨタ自動車株式会社 Lithium ion secondary battery
WO2014024571A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
WO2014061653A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
WO2014104823A1 (en) * 2012-12-28 2014-07-03 주식회사 엘앤에프신소재 Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
CN104205466A (en) * 2012-03-30 2014-12-10 丰田自动车株式会社 Lithium ion secondary battery
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
JP2015050084A (en) * 2013-09-03 2015-03-16 株式会社Gsユアサ Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP2016091898A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Lithium ion secondary battery
US20160172674A1 (en) * 2013-07-24 2016-06-16 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2016104488A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2016175268A1 (en) * 2015-04-28 2016-11-03 住友金属鉱山株式会社 Aluminum-coated nickel cobalt-containing composite hydroxide and method for manufacturing same, cathode active material for nonaqueous electrolyte secondary battery and method for manufacturing same, and nonaqueous electrolyte secondary battery
EP2963706A4 (en) * 2013-02-28 2016-11-30 Nissan Motor Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2016222483A (en) * 2015-05-28 2016-12-28 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary cell and production method therefor and nonaqueous electrolyte secondary cell
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2019133937A (en) * 2018-01-31 2019-08-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2019212365A (en) * 2018-05-31 2019-12-12 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
US10522830B2 (en) * 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
JP2020047534A (en) * 2018-09-20 2020-03-26 住友金属鉱山株式会社 Nickel complex compound particle, manufacturing method thereof, and manufacturing method of cathode active material for lithium ion secondary battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365711B2 (en) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide and method for producing the same
JP6044463B2 (en) * 2013-06-19 2016-12-14 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide and method for producing the same
KR101785262B1 (en) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 Positive electrode active material, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the positive electrode
JP6287970B2 (en) * 2014-10-30 2018-03-07 住友金属鉱山株式会社 Nickel composite hydroxide and production method thereof
JP6210439B2 (en) * 2014-12-26 2017-10-11 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
CN106252643B (en) * 2015-06-11 2021-05-07 松下知识产权经营株式会社 Positive electrode active material and battery
KR102436419B1 (en) * 2015-10-30 2022-08-25 삼성에스디아이 주식회사 Composite positive electrode active material, preparing method thereof, and lithium secondary battery including positive electrode comprising the same
WO2017169129A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
CN109415224B (en) * 2016-04-08 2022-04-01 汉阳大学校产学协力团 Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
CN106058188A (en) * 2016-07-14 2016-10-26 中南大学 Lithium ion battery composite cathode material LiNi1-x-yMxAlyO2 with core-shell structure and preparation method of lithium ion battery composite cathode material LiNi1-x-yMxAlyO2
CN109716562B (en) * 2016-09-14 2022-07-12 日本电气株式会社 Lithium ion secondary battery
JP6836369B2 (en) * 2016-10-31 2021-03-03 住友化学株式会社 Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
CN106784837A (en) * 2016-11-15 2017-05-31 中南大学 A kind of preparation method of alumina-coated anode material for lithium-ion batteries
CN106920934A (en) * 2017-03-21 2017-07-04 南开大学 The preparation method of the codoping modified ternary precursor of cobalt magnesium and positive electrode based on high-nickel material
CN111132935B (en) * 2017-10-06 2022-07-15 巴斯夫欧洲公司 Electrode active material, its preparation and use
CN107946591A (en) * 2017-11-21 2018-04-20 山东理工大学 A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode
GB201915117D0 (en) * 2019-10-18 2019-12-04 Johnson Matthey Plc Composition for preparation of electrode material
JP6803451B1 (en) * 2019-12-13 2020-12-23 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6804625B1 (en) * 2019-12-17 2020-12-23 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
GB201918699D0 (en) * 2019-12-18 2020-01-29 Johnson Matthey Plc Process
KR102411937B1 (en) * 2020-10-29 2022-06-22 삼성에스디아이 주식회사 Nickel-based active material, positive electrode including the same, and lithium secondary battery employing the positive electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310433A (en) * 1997-05-07 1998-11-24 Ise Kagaku Kogyo Kk Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell
JPH1125957A (en) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode material
JP2000195514A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of nonaqueous solvent secondary battery
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2008214186A (en) * 2000-05-30 2008-09-18 Agc Seimi Chemical Co Ltd Lithium-transition metal compound oxide
JP2011096655A (en) * 2009-09-30 2011-05-12 Toyota Motor Corp Cathode active material and lithium secondary battery using the active material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412195B2 (en) 1993-07-16 2003-06-03 株式会社村田製作所 Method for producing composite perovskite oxide powder
JPH07335220A (en) 1994-06-14 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolytic secondary battery and its positive electrode active material
JPH0878006A (en) 1994-09-06 1996-03-22 Yuasa Corp Lithium secondary battery
JP3591195B2 (en) 1997-03-07 2004-11-17 日亜化学工業株式会社 Cathode active material for lithium ion secondary batteries
JPH1173966A (en) * 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JPH1160243A (en) 1997-08-13 1999-03-02 Mitsui Mining & Smelting Co Ltd Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP4127892B2 (en) 1998-03-31 2008-07-30 日立マクセル株式会社 Lithium ion secondary battery
JP3614670B2 (en) 1998-07-10 2005-01-26 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3032757B1 (en) 1999-02-18 2000-04-17 株式会社東芝 Non-aqueous electrolyte secondary battery
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
DE102004044557B3 (en) * 2004-09-15 2006-06-14 Bayer Inc., Sarnia Mixed metal hydroxides, their preparation and use
JP5618116B2 (en) * 2008-09-12 2014-11-05 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
JP5284221B2 (en) * 2009-08-20 2013-09-11 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310433A (en) * 1997-05-07 1998-11-24 Ise Kagaku Kogyo Kk Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell
JPH1125957A (en) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode material
JP2000195514A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of nonaqueous solvent secondary battery
JP2008214186A (en) * 2000-05-30 2008-09-18 Agc Seimi Chemical Co Ltd Lithium-transition metal compound oxide
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2011096655A (en) * 2009-09-30 2011-05-12 Toyota Motor Corp Cathode active material and lithium secondary battery using the active material

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2012164693A1 (en) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 Lithium secondary battery
JPWO2012164693A1 (en) * 2011-05-31 2014-07-31 トヨタ自動車株式会社 Lithium secondary battery
JP5692617B2 (en) * 2011-05-31 2015-04-01 トヨタ自動車株式会社 Lithium secondary battery
US9577254B2 (en) 2011-12-05 2017-02-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
WO2013084851A1 (en) * 2011-12-05 2013-06-13 トヨタ自動車株式会社 Lithium ion secondary battery
US9831497B2 (en) 2011-12-05 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing active material particles
CN103988348A (en) * 2011-12-05 2014-08-13 丰田自动车株式会社 Lithium ion secondary battery
CN103988348B (en) * 2011-12-05 2016-10-19 丰田自动车株式会社 Lithium rechargeable battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
CN104205466A (en) * 2012-03-30 2014-12-10 丰田自动车株式会社 Lithium ion secondary battery
US9882207B2 (en) 2012-03-30 2018-01-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
CN107134562A (en) * 2012-03-30 2017-09-05 丰田自动车株式会社 Lithium rechargeable battery
WO2014024571A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5916876B2 (en) * 2012-09-28 2016-05-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
CN104335396A (en) * 2012-09-28 2015-02-04 Jx日矿日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JPWO2014051148A1 (en) * 2012-09-28 2016-08-25 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2014061653A1 (en) * 2012-10-17 2016-09-05 戸田工業株式会社 Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
WO2014061653A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US9698420B2 (en) 2012-10-17 2017-07-04 Toda Kogyo Corp. Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
WO2014104823A1 (en) * 2012-12-28 2014-07-03 주식회사 엘앤에프신소재 Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
EP2963706A4 (en) * 2013-02-28 2016-11-30 Nissan Motor Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
US10629902B2 (en) 2013-07-03 2020-04-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
US20160172674A1 (en) * 2013-07-24 2016-06-16 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2015050084A (en) * 2013-09-03 2015-03-16 株式会社Gsユアサ Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
US10522830B2 (en) * 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
JP2016091898A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Lithium ion secondary battery
WO2016104488A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11024847B2 (en) 2014-12-25 2021-06-01 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JPWO2016104488A1 (en) * 2014-12-25 2017-04-27 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016175268A1 (en) * 2015-04-28 2016-11-03 住友金属鉱山株式会社 Aluminum-coated nickel cobalt-containing composite hydroxide and method for manufacturing same, cathode active material for nonaqueous electrolyte secondary battery and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP2016204239A (en) * 2015-04-28 2016-12-08 住友金属鉱山株式会社 Aluminum coated nickel cobalt composite hydroxide particle and manufacturing method therefor, cathode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor and non-aqueous electrolyte secondary battery
US10858265B2 (en) 2015-04-28 2020-12-08 Sumitomo Metal Mining Co., Ltd. Aluminum-coated nickel cobalt containing composite hydroxide and method for manufacturing same, cathode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery
JP2016222483A (en) * 2015-05-28 2016-12-28 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary cell and production method therefor and nonaqueous electrolyte secondary cell
JP2019133937A (en) * 2018-01-31 2019-08-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7225854B2 (en) 2018-01-31 2023-02-21 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2019212365A (en) * 2018-05-31 2019-12-12 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
JP7163624B2 (en) 2018-05-31 2022-11-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2020047534A (en) * 2018-09-20 2020-03-26 住友金属鉱山株式会社 Nickel complex compound particle, manufacturing method thereof, and manufacturing method of cathode active material for lithium ion secondary battery
JP7210957B2 (en) 2018-09-20 2023-01-24 住友金属鉱山株式会社 Nickel composite compound particles, method for producing same, and method for producing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
KR101679996B1 (en) 2016-11-25
US8999573B2 (en) 2015-04-07
CN103026537A (en) 2013-04-03
KR101535325B1 (en) 2015-07-08
US20150108398A1 (en) 2015-04-23
JPWO2011122448A1 (en) 2013-07-08
US9553311B2 (en) 2017-01-24
JP5518182B2 (en) 2014-06-11
KR20130028085A (en) 2013-03-18
KR20150031344A (en) 2015-03-23
US20130108921A1 (en) 2013-05-02
CN103026537B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5518182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
US10833329B2 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP7191342B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US10522830B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
EP2639865B1 (en) Positive active material, method of preparing the same, and lithium secondary battery using the same
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
US20130260248A1 (en) Active material and lithium ion secondary battery
JP2015015244A (en) Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7225684B2 (en) Lithium-nickel-containing composite oxide and method for producing the same, and positive electrode active material for lithium-ion secondary battery using the lithium-nickel-containing composite oxide as a base material and method for producing the same
JP2008257992A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2015004856A1 (en) Mixed active material for lithium secondary batteries, electrode for lithium secondary batteries, lithium secondary battery and electricity storage device
JP2023121802A (en) Lithium nickel-containing composite oxide, positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof
JP7271920B2 (en) Lithium-nickel-containing composite oxide and method for producing the same, and positive electrode active material for lithium-ion secondary battery using the lithium-nickel-containing composite oxide as a base material and method for producing the same
WO2020180408A2 (en) Cobalt-free layered oxide cathodes
JP7235130B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7194493B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024955.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508250

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028055

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638171

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11762679

Country of ref document: EP

Kind code of ref document: A1