WO2011122372A1 - 水素製造装置及び燃料電池システム - Google Patents

水素製造装置及び燃料電池システム Download PDF

Info

Publication number
WO2011122372A1
WO2011122372A1 PCT/JP2011/056603 JP2011056603W WO2011122372A1 WO 2011122372 A1 WO2011122372 A1 WO 2011122372A1 JP 2011056603 W JP2011056603 W JP 2011056603W WO 2011122372 A1 WO2011122372 A1 WO 2011122372A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift reaction
unit
temperature shift
selective oxidation
low temperature
Prior art date
Application number
PCT/JP2011/056603
Other languages
English (en)
French (fr)
Inventor
晃 後藤
俊幸 海野
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201180016522.5A priority Critical patent/CN102822086B/zh
Priority to EP11762605.1A priority patent/EP2554511A4/en
Priority to US13/637,880 priority patent/US9012098B2/en
Publication of WO2011122372A1 publication Critical patent/WO2011122372A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00283Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a hydrogen production apparatus that generates a reformed gas containing hydrogen using raw fuel and steam, and a fuel cell system equipped with such a hydrogen production apparatus.
  • the hydrogen production apparatus in the above technical field includes a low temperature shift reaction unit for reducing the carbon monoxide concentration of the reformed gas after the reforming unit for reforming the raw fuel and steam to generate reformed gas. And a selective oxidation reaction section.
  • the reforming part is often heated by a burner because the reforming reaction is a high-temperature endothermic reaction. Therefore, high-temperature reformed gas is discharged from the outlet of the reforming section, and the burner exhaust gas flows in the vicinity of the outlet of the reforming section.
  • the low temperature shift reaction part and the selective oxidation reaction part have a high temperature discharged from the outlet of the reforming part.
  • the reformed gas is introduced after being cooled by a heat exchanger or the like.
  • the burner exhaust gas is often cooled with raw water or the like in a heat exchanger without being in direct contact with the low temperature shift reaction section and the selective oxidation reaction section, and exhausted to the outside of the hydrogen production apparatus.
  • the low-temperature shift reaction unit and the selective oxidation reaction unit are quickly heated to reduce the startup time.
  • An electric heater may be provided in the low temperature shift reaction part or the selective oxidation reaction part for raising the temperature at the start-up (see, for example, Patent Documents 1 and 2).
  • the present invention provides a hydrogen production apparatus that can quickly raise the temperature of the low temperature shift reaction section and the selective oxidation reaction section while suppressing the consumption of startup energy, and a fuel cell system including such a hydrogen production apparatus.
  • the purpose is to do.
  • a hydrogen production apparatus is a hydrogen production apparatus that generates a reformed gas containing hydrogen using raw fuel and steam, and is provided so as to surround a burner and a flame of the burner.
  • a combustion cylinder that discharges exhaust gas from the burner from one side, a reformer that is provided in a cylindrical shape so as to surround the combustion cylinder, and that generates a reformed gas by reforming raw fuel and steam, and a combustion cylinder Between the combustion chamber and the reforming section, is folded on the other side of the reforming section, and extends to the predetermined side through the outside of the reforming section.
  • the low temperature shift reaction part is provided in a cylindrical shape so as to be along the extension part on one of the inside and the outside of the extension part of the exhaust gas flow path, and the selective oxidation reaction part is extended to the exhaust gas flow path. It is provided in a cylindrical shape along the extended portion on the other side of the existing portion inside and outside. For this reason, when the exhaust gas from the burner is caused to flow through the exhaust gas flow path when the hydrogen production apparatus is activated, the low temperature shift reaction part and the selective oxidation reaction part are heated by the heat of the exhaust gas, and the temperature is raised. As described above, according to this hydrogen production apparatus, the use of the electric heater in the low temperature shift reaction unit and the selective oxidation reaction unit is not required at the time of start-up. The temperature of the oxidation reaction part can be quickly raised.
  • the hydrogen production apparatus further includes an evaporating unit that heats the stored water with ambient heat to generate water vapor, and the evaporating unit extends between the extended portion and the low temperature shift reaction unit. And at least one of the extension part, the inside of the low temperature shift reaction part and the selective oxidation reaction part, and the outside of the extension part, the low temperature shift reaction part and the selective oxidation reaction part. You may be provided in the cylinder shape so that a part may be followed.
  • the fuel cell system includes the hydrogen production apparatus and a fuel cell stack that generates power using the reformed gas generated by the hydrogen production apparatus.
  • this fuel cell system includes the hydrogen production apparatus described above, it is possible to quickly increase the temperature of the low temperature shift reaction unit and the selective oxidation reaction unit while suppressing the consumption of startup energy.
  • the present invention it is possible to quickly raise the temperature of the low temperature shift reaction part and the selective oxidation reaction part while suppressing the consumption of the startup energy.
  • FIG. 1 is a block diagram of a fuel cell system according to an embodiment of the present invention. It is an end view of the hydrogen production apparatus of FIG. It is an end elevation of the hydrogen production device of other embodiments of the present invention. It is an end elevation of the hydrogen production device of other embodiments of the present invention.
  • a hydrogen processing apparatus (FPS: Fuel Processing System) 1 is used as a hydrogen supply source in a fuel cell system 100 for home use, for example.
  • the hydrogen production apparatus 1 here uses petroleum-based hydrocarbons as a raw fuel, and supplies a reformed gas containing hydrogen to a cell stack (fuel cell stack) 20.
  • the cell stack 20 generates power using the reformed gas generated by the hydrogen production apparatus 1.
  • alcohols, ethers, biofuels, natural gas, city gas, and the like may be used as raw fuel.
  • kerosene and LP gas, naphtha, light oil, and the like can be used as raw fuels as petroleum-based hydrocarbons.
  • various types other than the solid polymer type may be used as the cell stack 20
  • the hydrogen production apparatus 1 includes a desulfurization section 2 and a cylindrical main body section 3 having a central axis as an axis G.
  • the desulfurization unit 2 desulfurizes the raw fuel introduced from the outside with a desulfurization catalyst to remove sulfur, and supplies the raw fuel to a feed unit 5 described later.
  • the main body 3 includes a feed unit 5, a reforming unit 6, a shift reaction unit 7, a selective oxidation reaction unit 8, and an evaporation unit 9, which are integrally configured.
  • the feed unit 5 combines and mixes the raw fuel and steam (steam) desulfurized in the desulfurization unit 2 to generate a mixed gas (mixed fluid), and supplies the generated mixed gas to the reforming unit 6 while diffusing. .
  • the reforming section (SR: Steam Reforming) 6 steam-reforms the mixed gas supplied from the feed section 5 with a reforming catalyst (reforming catalyst section) 6x to generate a reformed gas. Supply to shift reaction unit 7.
  • the reforming section 6 has a cylindrical outer shape with the central axis as the axis G, and is provided on the upper end side of the main body section 3.
  • the reforming unit 6 uses the burner 10 as a heat source for heating the reforming catalyst 6x of the reforming unit 6.
  • raw fuel is supplied as burner fuel from the outside and burned.
  • the burner 10 is attached to a combustion cylinder 11 provided at the upper end of the main body 3 and having the axis G as a central axis so that a flame by the burner 10 is surrounded.
  • the exhaust gas that is the combustion gas of the burner 10 is discharged to the outside through the exhaust gas passage L1.
  • a part of the raw fuel desulfurized in the desulfurization unit 2 may be supplied as burner fuel and burned.
  • the shift reaction unit 7 lowers the carbon monoxide concentration (CO concentration) of the reformed gas supplied from the reforming unit 6, and causes the carbon monoxide in the reformed gas to undergo a shift reaction that is an exothermic reaction. Convert to hydrogen and carbon dioxide.
  • the shift reaction section 7 here performs the shift reaction in two stages, and performs a high temperature shift reaction section (HTS: HTS: a shift reaction at a high temperature (for example, 400 ° C. to 600 ° C.)).
  • High Temperature Shift (12) a low temperature shift reaction part (LTS: Low Temperature Shift) 13 that performs a low temperature shift reaction that is a shift reaction at a temperature lower than the temperature of the high temperature shift reaction (for example, 150 ° C. to 350 ° C.), have.
  • the high temperature shift reaction unit 12 causes the carbon monoxide in the reformed gas supplied from the reforming unit 6 to undergo a high temperature shift reaction with the high temperature shift catalyst 12x, thereby reducing the CO concentration of the reformed gas.
  • the high temperature shift reaction section 12 has a cylindrical outer shape with the central axis as the axis G, and is disposed adjacent to the radially outer side of the reforming section 6 so that the high temperature shift catalyst 12x surrounds the lower end of the reforming catalyst 6x. ing.
  • the high temperature shift reaction unit 12 supplies the reformed gas having a reduced CO concentration to the low temperature shift reaction unit 13.
  • the low temperature shift reaction unit 13 causes the carbon monoxide in the reformed gas subjected to the high temperature shift reaction in the high temperature shift reaction unit 12 to undergo a low temperature shift reaction by the low temperature shift catalyst 13x, thereby reducing the CO concentration of the reformed gas.
  • the low temperature shift reaction part 13 has a cylindrical outer shape with the central axis as the axis G, and is disposed on the lower end side of the main body part 3.
  • the low temperature shift reaction unit 13 supplies the reformed gas having a reduced CO concentration to the selective oxidation reaction unit 8.
  • a selective oxidation reaction unit (PROX) 8 further reduces the CO concentration in the reformed gas subjected to the low temperature shift reaction in the low temperature shift reaction unit 13. This is because if a high concentration of carbon monoxide is supplied to the cell stack 20, the catalyst of the cell stack 20 is poisoned and the performance is greatly reduced.
  • the selective oxidation reaction unit 8 selectively performs a selective oxidation reaction that is an exothermic reaction between the carbon monoxide in the reformed gas and the air introduced from the outside by the selective oxidation catalyst 8x. Oxidizes and converts to carbon dioxide.
  • the selective oxidation reaction portion 8 has a cylindrical outer shape with the central axis as the axis G, and is disposed so as to constitute the outermost peripheral side of the main body portion 3 from the lower end of the main body portion 3 to the upper end side of a predetermined length. ing.
  • This selective oxidation reaction unit 8 leads the reformed gas with the CO concentration further reduced to the outside.
  • the evaporation unit 9 cools the ambient heat, that is, the low-temperature shift reaction unit 13, the selective oxidation reaction unit 8 and the heat moved from the exhaust gas flow path L1 (the low-temperature shift reaction unit 13, the selective oxidation reaction unit 8 and the exhaust gas are cooled). With the obtained heat), the water stored inside is vaporized to generate water vapor.
  • the evaporator 9 is of a jacket type and has a cylindrical shape with the central axis as the axis G. The evaporation unit 9 supplies the generated water vapor to the feed unit 5.
  • the hydrogen production apparatus 1 first, at least one of burner fuel and off-gas from the cell stack 20 (residual gas not used for reaction in the cell stack 20) and air are supplied to the burner 10 and burned, and the combustion is improved by such combustion.
  • the quality catalyst 6x is heated.
  • the raw fuel desulfurized in the desulfurization unit 2 and the water vapor from the evaporation unit 9 are mixed in the feed unit 5 to generate a mixed gas.
  • This mixed gas is supplied to the reforming unit 6 and subjected to steam reforming by the reforming catalyst 6x, whereby a reformed gas is generated.
  • the generated reformed gas has its carbon monoxide concentration lowered to, for example, 1% or less by the shift reaction unit 7 and mixed with air introduced from the outside, and then the carbon monoxide concentration by the selective oxidation reaction unit 8. Is reduced to 10 ppm or less and led to the cell stack 20 in the subsequent stage.
  • the temperature of each part is set as follows in order to suitably perform the catalytic reaction with the respective catalysts 6x, 12x, 13x, and 8x. That is, the temperature of the mixed gas flowing into the reforming unit 6 is set to about 300 to 550 ° C., and the temperature of the reformed gas flowing out of the reforming unit 6 is set to 550 ° C. to 800 ° C. and flows into the high temperature shift reaction unit 12 The temperature of the reformed gas is 400 to 600 ° C., and the temperature of the reformed gas flowing out from the high temperature shift reaction unit 12 is 300 to 500 ° C. Further, the temperature of the reformed gas flowing into the low temperature shift reaction unit 13 is set to 150 ° C.
  • the temperature of the reformed gas flowing out from the low temperature shift reaction unit 13 is set to 150 ° C. to 250 ° C.
  • the temperature of the reformed gas flowing into 8 is set to 90 ° C. to 210 ° C. (120 ° C. to 190 ° C.).
  • the combustion cylinder 11 is provided at the lower end of the burner 10 so as to surround the flame of the burner 10.
  • the combustion cylinder 11 discharges the exhaust gas that is the combustion gas of the burner 10 from the lower side (one side).
  • the reformer 6 is provided in a cylindrical shape (here, a cylindrical outer shape with the central axis as the axis G as described above) so as to surround the combustion cylinder 11.
  • the exhaust gas flow path L1 passes between the combustion cylinder 11 and the reforming section 6 from the lower side of the combustion cylinder 11 and is folded back on the upper side (the other side) of the reforming section 6. It is provided in a cylindrical shape so as to extend downward.
  • the high temperature shift reaction unit 12 is provided in a cylindrical shape so as to surround the reforming unit 6 and to be surrounded by a portion L1a passing through the outside of the reforming unit in the exhaust gas flow path L1.
  • the low temperature shift reaction part 13 is provided in the cylinder shape so that it may be surrounded by the part (extension part) L1b extended in the lower side among the exhaust gas flow paths L1.
  • the low temperature shift reaction unit 13 is provided in a cylindrical shape along the portion L1b on the inner side (here, in the radial direction) of the portion L1b of the exhaust gas passage L1.
  • the evaporator 9 is provided in a cylindrical shape so as to surround the portion L1b of the exhaust gas flow path L1.
  • the selective oxidation reaction unit 8 is provided in a cylindrical shape so as to surround the evaporation unit 9.
  • the selective oxidation reaction unit 8 is provided in a cylindrical shape along the portion L1b on the outside (here, radially outside) of the portion L1b of the exhaust gas flow path L1.
  • the upper end portion (the end portion on the other side) of the low temperature shift reaction portion 13 is located above the upper end portion of the selective oxidation reaction portion 8.
  • the upper end part of the evaporation part 9 is located outside the lower end part (the end part on one side) of the high temperature shift reaction part 12.
  • the feed unit 5 reaches the lower end of the reforming unit 6 from a position facing the combustion tube 11 on the lower side of the combustion tube 11.
  • the reformed gas flow path L2 through which the reformed gas generated in the reforming unit 6 circulates moves from the upper end of the reforming unit 6 to the high temperature shift reaction unit 12 and the low temperature shift reaction unit 13 from the upper side to the lower side. Further, the selective oxidation reaction section 8 passes from the lower side to the upper side and reaches the cell stack 20.
  • the water flow path L3 for circulating the water introduced into the evaporation section 9 passes through the preheating section 15 provided in the downstream portion of the selective oxidation reaction section 8 in the reformed gas flow path L2 and passes through the evaporation section 9.
  • the preheating unit 15 preheats the water introduced into the evaporation unit 9 by the heat of the reformed gas derived from the selective oxidation reaction unit 8.
  • the water vapor channel L4 for circulating the water vapor generated in the evaporation unit 9 joins the feed fuel unit 5 from the upper end of the evaporation unit 9 to the raw fuel channel L5 for circulating the raw fuel.
  • the low temperature shift reaction unit 13 is provided in a cylindrical shape along the portion L1b inside the portion L1b of the exhaust gas flow path L1, and is selectively oxidized.
  • the reaction portion 8 is provided in a cylindrical shape along the portion L1b outside the portion L1b of the exhaust gas flow path L1. Therefore, when the exhaust gas that is the combustion gas of the burner 10 is circulated through the exhaust gas passage L1 when the hydrogen production apparatus 1 is started up, not only the reforming unit 6 and the high temperature shift reaction unit 12 but also the low temperature shift reaction due to the heat of the exhaust gas.
  • the part 13, the selective oxidation reaction part 8 and the evaporation part 9 are also heated to raise the temperature.
  • the evaporation part 9 is provided in a cylindrical shape along the part L1b between the part L1b of the exhaust gas flow path L1 and the selective oxidation reaction part 8.
  • water is introduced into the evaporating section 9 and further raw fuel and water vapor are introduced into the reforming section 6 to generate reformed gas in the reforming section 6, not only the heat of the exhaust gas but also the low temperature.
  • the reaction heat of the shift reaction unit 13 and the reaction heat of the selective oxidation reaction unit 8 are transferred to the evaporation unit 9. Therefore, each of the low temperature shift reaction unit 13 and the selective oxidation reaction unit 8 can be maintained at an appropriate reaction temperature.
  • the upper end of the low temperature shift reaction unit 13 is located above the upper end of the selective oxidation reaction unit 8. Thereby, the upper end part of the low temperature shift reaction part 13 becomes closer to the flame of the burner 10 than the upper end part of the selective oxidation reaction part 8, and moreover, the exhaust gas flowing through the part L1b of the exhaust gas flow path L1 further upstream. It will be heated. Accordingly, the upper end portion of the low temperature shift reaction unit 13 serving as an inlet for the reformed gas to the low temperature shift catalyst 13x is set higher than the upper end portion of the selective oxidation reaction unit 8 serving as the outlet for the reformed gas from the selective oxidation catalyst 8x. Can be hot.
  • the preheating unit 15 preheats the water introduced into the evaporation unit 9 by the heat of the reformed gas derived from the selective oxidation reaction unit 8. Thereby, it can prevent that the water introduced into the evaporation part 9 bumps, and can suppress that the influence of an evaporation vibration arises in the water vapor
  • the upper end of the evaporation unit 9 is located outside the lower end of the high temperature shift reaction unit 12. Thereby, since the upper end part of the evaporation part 9 will be heated, the amount of water evaporated in the evaporation part 9 can be increased and water vapor
  • the water level WF of the water stored in the evaporation unit 9 is higher than the upper end of the low temperature shift reaction unit 13 and the upper end of the selective oxidation reaction unit 8. It is adjusted so that it is located on the upper side. Thereby, since the reaction heat of the low temperature shift reaction part 13 and the reaction heat of the selective oxidation reaction part 8 are reliably transferred to the water in the evaporation part 9, the low temperature shift reaction part 13 and the selective oxidation reaction part 8 are appropriately reacted. The temperature can be stably maintained.
  • the hydrogen production apparatus is not limited to the one provided with the high temperature shift reaction unit and the low temperature shift reaction unit as the one that causes the carbon monoxide in the reformed gas to undergo the shift reaction, and may include only the low temperature shift reaction unit. Good.
  • the upper end of the evaporation unit 9 is located outside the lower end of the reforming unit 6. It is preferable. In this case, since the upper end portion of the evaporation unit 9 is heated, the amount of water evaporated in the evaporation unit 9 can be increased, and water vapor can be stably introduced into the reforming unit 6.
  • the exhaust gas flow path is not limited to the one extending downward after passing through the outside of the reforming section, and is further folded after passing through the outside of the reforming section 6 as shown in FIG. It may be an exhaust gas flow path L1 extending upward. In this case, the height of the hydrogen production apparatus 1 can be suppressed and the hydrogen production apparatus 1 can be downsized.
  • the low temperature shift reaction part may be provided in a cylindrical shape along the extension part outside the extension part of the exhaust gas flow path, and the selective oxidation reaction part is a part of the extension part of the exhaust gas flow path. It may be provided in the cylinder shape so that the extension part may be followed inside.
  • the installation position of the evaporating unit is not limited only between the extended portion of the exhaust gas flow channel and the selective oxidation reaction unit.
  • the evaporating part is between the extended part of the exhaust gas flow path and the low temperature shift reaction part, between the extended part and the selective oxidation reaction part, inside the extended part, the low temperature shift reaction part and the selective oxidation reaction part, In addition, it is only necessary that at least one of the extended portion, the low temperature shift reaction portion, and the selective oxidation reaction portion is provided in a cylindrical shape along the extended portion.
  • the reforming unit of the hydrogen production apparatus is not limited to the one using the steam reforming reaction, and other reforming reactions are used as long as the reformed gas is generated using raw fuel and steam. It may be a thing.
  • an arrangement arrangement in which the hydrogen production apparatus 1 is turned upside down for example, a hydrogen production apparatus configured with the burner 10 installed in the lower part
  • the hydrogen production apparatus may not include a desulfurizer.
  • tubular shape includes not only a substantially cylindrical shape but also a substantially polygonal tubular shape.
  • the substantially cylindrical shape and the substantially polygonal cylindrical shape mean a cylindrical shape and a polygonal cylindrical shape in a broad sense such as those substantially equal to the cylindrical shape and the polygonal cylindrical shape, and those including at least a cylindrical shape and a polygonal cylindrical shape. ing.
  • the said embodiment is made into the coaxial structure which makes the center axis
  • the present invention it is possible to quickly raise the temperature of the low temperature shift reaction part and the selective oxidation reaction part while suppressing the consumption of the startup energy.
  • SYMBOLS 1 Hydrogen production apparatus, 6 ... Reforming part, 8 ... Selective oxidation reaction part, 9 ... Evaporation part, 10 ... Burner, 11 ... Combustion cylinder, 13 ... Low temperature shift reaction part, 20 ... Cell stack (fuel cell stack), DESCRIPTION OF SYMBOLS 100 ... Fuel cell system, L1 ... Exhaust gas flow path, L1b ... part (extension part).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 水素製造装置1は、バーナ10と、バーナ10の火炎を囲むように設けられ、バーナ10の排ガスを一方の側から排出する燃焼筒11と、燃焼筒11を囲むように筒状に設けられ、原燃料及び水蒸気を改質反応させて改質ガスを生成する改質部6と、燃焼筒11と改質部6との間を通って改質部6の他方の側で折り返され、かつ改質部6の外側を通って所定の側に延在するように筒状に設けられ、燃焼筒11の一方の側から排出された排ガスを流通させる排ガス流路L1と、排ガス流路L1のうち所定の側に延在する延在部分L1bの内側及び外側の一方において延在部分L1bに沿うように筒状に設けられ、改質部6で生成された改質ガスをシフト反応させて改質ガスの一酸化炭素濃度を低下させる低温シフト反応部13と、延在部分L1bの内側及び外側の他方において延在部分L1bに沿うように筒状に設けられ、低温シフト反応部13でシフト反応させられた改質ガスを選択酸化反応させて一酸化炭素濃度を更に低下させる選択酸化反応部8と、を備える。

Description

水素製造装置及び燃料電池システム
 本発明は、原燃料及び水蒸気を用いて、水素を含有する改質ガスを生成する水素製造装置、並びにそのような水素製造装置を備える燃料電池システムに関する。
 上記技術分野の水素製造装置には、原燃料及び水蒸気を改質反応させて改質ガスを生成する改質部の後段に、改質ガスの一酸化炭素濃度を低下させるための低温シフト反応部及び選択酸化反応部が設けられたものがある。改質部は、改質反応が高温の吸熱反応であることから、バーナで加熱されることが多い。そのため、改質部の出口からは高温の改質ガスが排出され、改質部の出口近傍にはバーナの排気ガスが流通する。一方、シフト反応及び選択酸化反応は、触媒の反応条件から改質反応よりも低温で行われることから、低温シフト反応部及び選択酸化反応部には、改質部の出口から排出された高温の改質ガスが熱交換器等で冷却された後に導入されることが多い。更に、バーナの排気ガスは、低温シフト反応部及び選択酸化反応部と直接接することなく熱交換器において原料水等で冷却され、水素製造装置の外部へ排気されることが多い。そのため、水素製造装置の起動時には、内部の各触媒を使用可能温度まで加熱する際に、低温シフト反応部及び選択酸化反応部を素早く昇温させ、起動時間の短縮化を図ることを目的に、低温シフト反応部や選択酸化反応部に、起動時の昇温用として電気ヒータが設けられる場合がある(例えば、特許文献1,2参照)。
特開2006-248864号公報 特開2007-335224号公報
 しかしながら、水素製造装置の起動時に、低温シフト反応部及び選択酸化反応部を素早く昇温させるために電気ヒータが使用されると、多くの起動エネルギを消費するおそれがある。
 そこで、本発明は、起動エネルギの消費を抑制して、低温シフト反応部及び選択酸化反応部を素早く昇温させることができる水素製造装置、並びにそのような水素製造装置を備える燃料電池システムを提供することを目的とする。
 上記目的を達成するために、水素製造装置は、原燃料及び水蒸気を用いて、水素を含有する改質ガスを生成する水素製造装置であって、バーナと、バーナの火炎を囲むように設けられ、バーナの排ガスを一方の側から排出する燃焼筒と、燃焼筒を囲むように筒状に設けられ、原燃料及び水蒸気を改質反応させて改質ガスを生成する改質部と、燃焼筒と改質部との間を通って改質部の他方の側で折り返され、かつ改質部の外側を通って所定の側に延在するように筒状に設けられ、燃焼筒の一方の側から排出された排ガスを流通させる排ガス流路と、排ガス流路のうち所定の側に延在する延在部分の内側及び外側の一方において延在部分に沿うように筒状に設けられ、改質部で生成された改質ガスをシフト反応させて改質ガスの一酸化炭素濃度を低下させる低温シフト反応部と、延在部分の内側及び外側の他方において延在部分に沿うように筒状に設けられ、低温シフト反応部でシフト反応させられた改質ガスを選択酸化反応させて一酸化炭素濃度を更に低下させる選択酸化反応部と、を備える。
 この水素製造装置では、低温シフト反応部が排ガス流路の延在部分の内側及び外側の一方において延在部分に沿うように筒状に設けられており、選択酸化反応部が排ガス流路の延在部分の内側及び外側の他方において延在部分に沿うように筒状に設けられている。そのため、水素製造装置の起動時にバーナの排ガスが排ガス流路を流通させられると、排ガスの熱によって低温シフト反応部及び選択酸化反応部が加熱されて昇温させられる。このように、この水素製造装置によれば、起動時に低温シフト反応部及び選択酸化反応部での電気ヒータの使用が不要となるので、起動エネルギの消費を抑制して、低温シフト反応部及び選択酸化反応部を素早く昇温させることができる。
 また、上記水素製造装置においては、貯留された水を周囲の熱によって加熱して水蒸気を生成する蒸発部を更に備え、蒸発部は、延在部分と低温シフト反応部との間、延在部分と選択酸化反応部との間、延在部分、低温シフト反応部及び選択酸化反応部の内側、並びに、延在部分、低温シフト反応部及び選択酸化反応部の外側の少なくとも一つにおいて、延在部分に沿うように筒状に設けられていてもよい。この構成によれば、蒸発部に水が導入され、更に改質部に原燃料及び水蒸気が導入されて、改質部で改質ガスが生成されるようになると、排ガスの熱だけでなく低温シフト反応部の反応熱及び選択酸化反応部の反応熱が蒸発部に移動する。従って、低温シフト反応部及び選択酸化反応部をそれぞれ適切な反応温度に維持することができる。
 また、燃料電池システムは、上記水素製造装置と、水素製造装置によって生成された改質ガスを用いて発電を行う燃料電池スタックと、を備える。
 この燃料電池システムは、上述した水素製造装置を備えているので、起動エネルギの消費を抑制して、低温シフト反応部及び選択酸化反応部を素早く昇温させることができる。
 本発明によれば、起動エネルギの消費を抑制して、低温シフト反応部及び選択酸化反応部を素早く昇温させることができる。
本発明の一実施形態の燃料電池システムのブロック図である。 図1の水素製造装置の端面図である。 本発明の他の実施形態の水素製造装置の端面図である。 本発明の他の実施形態の水素製造装置の端面図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1に示されるように、水素製造装置(FPS:Fuel Processing System)1は、例えば家庭用の燃料電池システム100において水素供給源として利用されるものである。ここでの水素製造装置1は、原燃料として石油系炭化水素が用いられ、水素を含有する改質ガスをセルスタック(燃料電池スタック)20に供給する。セルスタック20は、水素製造装置1によって生成された改質ガスを用いて発電を行う。
 なお、原燃料としては、アルコール類、エーテル類、バイオ燃料、天然ガス、都市ガス等を用いてもよい。また、石油系炭化水素としては、灯油、LPガスの他、ナフサ、軽油等を原燃料として使用することができる。また、セルスタック20としては、固体高分子形の他、種々のものを用いてもよい。
 図1及び図2に示されるように、水素製造装置1は、脱硫部2と、中心軸を軸Gとする円柱状外形の本体部3と、を備えている。脱硫部2は、外部から導入された原燃料を脱硫触媒によって脱硫して硫黄分を除去し、この原燃料を後述のフィード部5へ供給する。本体部3は、フィード部5、改質部6、シフト反応部7、選択酸化反応部8及び蒸発部9を備え、これらが一体で構成されている。
 フィード部5は、脱硫部2で脱硫した原燃料及び水蒸気(スチーム)を合流・混合させて混合ガス(混合流体)を生成すると共に、生成した混合ガスを拡散しつつ改質部6に供給する。改質部(SR:Steam Reforming)6は、フィード部5により供給された混合ガスを改質触媒(改質触媒部)6xによって水蒸気改質して改質ガスを生成し、この改質ガスをシフト反応部7へ供給する。
 この改質部6は、中心軸を軸Gとする円筒状外形を呈し、本体部3の上端側に設けられている。また、改質部6は、水蒸気改質反応が吸熱反応であるため、改質部6の改質触媒6xを加熱するための熱源としてバーナ10を利用している。
 バーナ10では、外部から原燃料がバーナ燃料として供給されて燃焼される。このバーナ10は、本体部3の上端部に設けられ軸Gを中心軸とする燃焼筒11に、バーナ10による火炎が取り囲まれるよう取り付けられている。バーナ10の燃焼ガスである排ガスは、排ガス流路L1を介して外部に排出される。なお、バーナ10においては、脱硫部2で脱硫した原燃料の一部が、バーナ燃料として供給されて燃焼される場合もある。
 シフト反応部7は、改質部6から供給された改質ガスの一酸化炭素濃度(CO濃度)を低下させるものであり、改質ガス中の一酸化炭素を発熱反応であるシフト反応させて水素及び二酸化炭素に転換する。ここでのシフト反応部7は、シフト反応を2段階に分けて行っており、高温(例えば400°C~600°C)でのシフト反応である高温シフト反応を行う高温シフト反応部(HTS:High Temperature Shift)12と、高温シフト反応の温度よりも低温(例えば150°C~350°C)でのシフト反応である低温シフト反応を行う低温シフト反応部(LTS:Low Temperature Shift)13と、を有している。
 高温シフト反応部12は、改質部6から供給された改質ガス中の一酸化炭素を高温シフト触媒12xによって高温シフト反応させ、改質ガスのCO濃度を低下させる。高温シフト反応部12は、中心軸を軸Gとする円筒状外形を呈しており、高温シフト触媒12xが改質触媒6xの下端部を囲繞するよう改質部6の径方向外側に隣接配置されている。この高温シフト反応部12は、CO濃度を低下させた改質ガスを低温シフト反応部13へ供給する。
 低温シフト反応部13は、高温シフト反応部12で高温シフト反応させた改質ガス中の一酸化炭素を低温シフト触媒13xによって低温シフト反応させ、改質ガスのCO濃度を低下させる。低温シフト反応部13は、中心軸を軸Gとする円筒状外形を呈しており、本体部3の下端側に配設されている。この低温シフト反応部13は、CO濃度を低下させた改質ガスを選択酸化反応部8へ供給する。
 選択酸化反応部(PROX:Preferential Oxidation)8は、低温シフト反応部13で低温シフト反応させた改質ガス中のCO濃度を更に低下させる。これは、セルスタック20に高濃度の一酸化炭素を供給すると、セルスタック20の触媒が被毒して大きく性能低下するためである。この選択酸化反応部8は、具体的には、改質ガス中の一酸化炭素と外部から導入される空気とを、選択酸化触媒8xによって発熱反応である選択酸化反応させることで、選択的に酸化して二酸化炭素に転換する。
 この選択酸化反応部8は、中心軸を軸Gとする円筒状外形を呈しており、本体部3の下端から所定長上端側にて該本体部3の最外周側を構成するよう配設されている。この選択酸化反応部8は、CO濃度を更に低下させた改質ガスを外部へ導出する。
 蒸発部9は、周囲の熱、すなわち、低温シフト反応部13、選択酸化反応部8及び排ガス流路L1から移動させた熱(低温シフト反応部13、選択酸化反応部8及び排ガスを冷却して得た熱)で、内部に貯留された水を気化させて水蒸気を生成する。蒸発部9は、ジャケット型のものであり、中心軸を軸Gとする円筒状を呈している。この蒸発部9は、生成した水蒸気をフィード部5に供給する。
 この水素製造装置1では、まず、バーナ燃料及びセルスタック20からのオフガス(セルスタック20で反応に使用されない残ガス)の少なくとも一方と空気とがバーナ10に供給されて燃焼され、かかる燃焼によって改質触媒6xが加熱される。そして、バーナ10の排ガス(排気ガス)が排ガス流路L1を流通して外部へ排気される。
 これと共に、脱硫部2で脱硫された原燃料と蒸発部9からの水蒸気とがフィード部5で混合され、混合ガスが生成される。この混合ガスは、改質部6に供給されて改質触媒6xで水蒸気改質され、これにより、改質ガスが生成される。生成された改質ガスは、シフト反応部7によってその一酸化炭素濃度が例えば1%以下まで低下され、外部から導入された空気と混合された後、選択酸化反応部8によってその一酸化炭素濃度が10ppm以下まで低下され、後段のセルスタック20へ導出される。
 なお、本実施形態においては、例えば各触媒6x,12x,13x,8xにて触媒反応を好適に行うため、次のように各部位の温度が設定されている。すなわち、改質部6に流入する混合ガスの温度が約300~550℃とされ、改質部6から流出する改質ガスの温度が550℃~800℃とされ、高温シフト反応部12に流入する改質ガスの温度が400℃~600℃とされ、高温シフト反応部12から流出する改質ガスの温度が300℃~500℃とされている。また、低温シフト反応部13に流入する改質ガスの温度が150℃~350℃とされ、低温シフト反応部13から流出する改質ガスの温度が150℃~250℃とされ、選択酸化反応部8に流入する改質ガスの温度が90℃~210℃(120℃~190℃)とされている。
 次に、上述したバーナ10、燃焼筒11、排ガス流路L1、改質部6、高温シフト反応部12、低温シフト反応部13、選択酸化反応部8、蒸発部9の配置関係について、より詳細に説明する。
 図2に示されるように、燃焼筒11は、バーナ10の火炎を囲むようにバーナ10の下端部に設けられている。燃焼筒11は、バーナ10の燃焼ガスである排ガスを下側(一方の側)から排出する。改質部6は、燃焼筒11を囲むように筒状(ここでは、上述したように中心軸を軸Gとする円筒状外形)に設けられている。排ガス流路L1は、燃焼筒11の下側から燃焼筒11と改質部6との間を通って改質部6の上側(他方の側)で折り返され、かつ改質部6の外側を通って下側に延在するように筒状に設けられている。高温シフト反応部12は、改質部6を囲み、かつ排ガス流路L1のうち改質部の外側を通る部分L1aに囲まれるように筒状に設けられている。
 低温シフト反応部13は、排ガス流路L1のうち下側に延在する部分(延在部分)L1bに囲まれるように筒状に設けられている。換言すれば、低温シフト反応部13は、排ガス流路L1の部分L1bの内側(ここでは、径方向内側)において部分L1bに沿うように筒状に設けられている。蒸発部9は、排ガス流路L1の部分L1bを囲むように筒状に設けられている。選択酸化反応部8は、蒸発部9を囲むように筒状に設けられている。換言すれば、選択酸化反応部8は、排ガス流路L1の部分L1bの外側(ここでは、径方向外側)において部分L1bに沿うように筒状に設けられている。
 低温シフト反応部13の上端部(他方の側の端部)は、選択酸化反応部8の上端部よりも上側に位置している。蒸発部9の上端部は、高温シフト反応部12の下端部(一方の側の端部)の外側に位置している。そして、改質部6で改質ガスが生成されているときは、蒸発部9に貯留された水の水面WFは、低温シフト反応部13の上端部及び選択酸化反応部8の上端部よりも上側に位置するように調整される。
 なお、フィード部5は、燃焼筒11の下側において燃焼筒11に対向する位置から改質部6の下端部に至っている。改質部6で生成された改質ガスを流通させる改質ガス流路L2は、改質部6の上端部の外側から、高温シフト反応部12及び低温シフト反応部13を上側から下側へと通り、更に選択酸化反応部8を下側から上側へと通ってセルスタック20に至っている。
 また、蒸発部9に導入される水を流通させる水流路L3は、改質ガス流路L2のうち選択酸化反応部8の下流側の部分に設けられた予熱部15を通って、蒸発部9の下端部に至っている。予熱部15は、蒸発部9に導入される水を、選択酸化反応部8から導出された改質ガスの熱によって予熱する。蒸発部9で生成された水蒸気を流通させる水蒸気流路L4は、蒸発部9の上端部から、原燃料を流通させる原燃料流路L5に合流してフィード部5に至っている。
 以上説明したように、燃料電池システム100の水素製造装置1では、低温シフト反応部13が排ガス流路L1の部分L1bの内側において当該部分L1bに沿うように筒状に設けられており、選択酸化反応部8が排ガス流路L1の部分L1bの外側において当該部分L1bに沿うように筒状に設けられている。そのため、水素製造装置1の起動時にバーナ10の燃焼ガスである排ガスが排ガス流路L1を流通させられると、排ガスの熱によって、改質部6及び高温シフト反応部12だけでなく、低温シフト反応部13、選択酸化反応部8及び蒸発部9も加熱されて昇温させられる。このように、水素製造装置1によれば、起動時に低温シフト反応部13及び選択酸化反応部8での電気ヒータの使用が不要となるので、起動エネルギの消費を抑制して、低温シフト反応部13及び選択酸化反応部8を素早く昇温させることができる。
 また、蒸発部9が、排ガス流路L1の部分L1bと選択酸化反応部8との間において、当該部分L1bに沿うように筒状に設けられている。これにより、蒸発部9に水が導入され、更に改質部6に原燃料及び水蒸気が導入されて、改質部6で改質ガスが生成されるようになると、排ガスの熱だけでなく低温シフト反応部13の反応熱及び選択酸化反応部8の反応熱が蒸発部9に移動する。従って、低温シフト反応部13及び選択酸化反応部8をそれぞれ適切な反応温度に維持することができる。
 なお、このような蒸発部9を備えている場合、改質部6、各シフト反応部12,13及び選択酸化反応部8が排ガスの熱によってある程度加熱された後に、蒸発部9に水を導入することで、過熱水蒸気の熱によって、改質部6、各シフト反応部12,13及び選択酸化反応部8を更に加熱することができる。
 また、低温シフト反応部13の上端部が、選択酸化反応部8の上端部よりも上側に位置している。これにより、低温シフト反応部13の上端部は、選択酸化反応部8の上端部よりもバーナ10の火炎に近くなり、しかも、より上流側で、排ガス流路L1の部分L1bを流通する排ガスによって加熱されることになる。従って、低温シフト触媒13xへの改質ガスの導入口となる低温シフト反応部13の上端部を、選択酸化触媒8xからの改質ガスの導出口となる選択酸化反応部8の上端部よりも高温にすることができる。
 また、予熱部15が、蒸発部9に導入される水を、選択酸化反応部8から導出された改質ガスの熱によって予熱する。これにより、蒸発部9に導入される水が突沸するのを防止して、改質部6に導入される水蒸気に蒸発振動の影響が生じるのを抑制することができる。
 また、蒸発部9の上端部が、高温シフト反応部12の下端部の外側に位置している。これにより、蒸発部9の上端部が加熱されることになるため、蒸発部9において蒸発される水量を多くして、水蒸気を改質部6に安定的に導入することができる。
 また、改質部6で改質ガスが生成されているときは、蒸発部9に貯留された水の水面WFが、低温シフト反応部13の上端部及び選択酸化反応部8の上端部よりも上側に位置するように調整される。これにより、低温シフト反応部13の反応熱及び選択酸化反応部8の反応熱が蒸発部9内の水に確実に移動するので、低温シフト反応部13及び選択酸化反応部8をそれぞれ適切な反応温度に安定的に維持することができる。
 以上、本発明の一実施形態について説明したが、本発明は、上述した実施形態に限定されるものではない。
 例えば、水素製造装置は、改質ガス中の一酸化炭素をシフト反応させるものとして高温シフト反応部及び低温シフト反応部を備えるものに限定されず、低温シフト反応部のみを備えるものであってもよい。なお、図3に示されるように、改質ガスのシフト反応が低温シフト反応部13のみで行われる場合には、蒸発部9の上端部は、改質部6の下端部の外側に位置していることが好ましい。この場合、蒸発部9の上端部が加熱されることになるため、蒸発部9において蒸発される水量を多くして、水蒸気を改質部6に安定的に導入することができる。
 また、排ガス流路は、改質部の外側を通った後に下側に延在するものに限定されず、図4に示されるように、改質部6の外側を通った後に更に折り返されて上側に延在する排ガス流路L1であってもよい。この場合、水素製造装置1の高さを抑えて、水素製造装置1の小型化を図ることができる。
 また、低温シフト反応部は、排ガス流路の延在部分の外側において当該延在部分に沿うように筒状に設けられていてもよく、選択酸化反応部は、排ガス流路の延在部分の内側において当該延在部分に沿うように筒状に設けられていてもよい。
 また、蒸発部の設置位置は、排ガス流路の延在部分と選択酸化反応部との間のみに限定されない。蒸発部は、排ガス流路の延在部分と低温シフト反応部との間、当該延在部分と選択酸化反応部との間、当該延在部分、低温シフト反応部及び選択酸化反応部の内側、並びに、当該延在部分、低温シフト反応部及び選択酸化反応部の外側の少なくとも一つにおいて、当該延在部分に沿うように筒状に設けられていればよい。
 また、水素製造装置の改質部は、水蒸気改質反応を利用するものに限定されず、原燃料及び水蒸気を用いて改質ガスを生成するものであれば、他の改質反応を利用するものであってもよい。また、水素製造装置の配置構成については、上記水素製造装置1を上下反転したような配置構成(例えば、バーナ10が下部に設置されて構成された水素製造装置)としてもよい。また、水素製造装置は、脱硫器を備えない場合もある。
 ちなみに、上記の「筒状」とは、略円筒状だけでなく、略多角筒状を含むものである。また、略円筒状及び略多角筒状とは、円筒状及び多角筒状に概略等しいものや、円筒状及び多角筒状の部分を少なくとも含むもの等の広義の円筒状及び多角筒状を意味している。また、上記実施形態は、好ましいとして、中心軸を軸Gとする同軸構成とされているが、本発明は、略同軸又は軸Gに沿った構成とされていてもよい。
 本発明によれば、起動エネルギの消費を抑制して、低温シフト反応部及び選択酸化反応部を素早く昇温させることができる。
 1…水素製造装置、6…改質部、8…選択酸化反応部、9…蒸発部、10…バーナ、11…燃焼筒、13…低温シフト反応部、20…セルスタック(燃料電池スタック)、100…燃料電池システム、L1…排ガス流路、L1b…部分(延在部分)。

Claims (3)

  1.  原燃料及び水蒸気を用いて、水素を含有する改質ガスを生成する水素製造装置であって、
     バーナと、
     前記バーナの火炎を囲むように設けられ、前記バーナの排ガスを一方の側から排出する燃焼筒と、
     前記燃焼筒を囲むように筒状に設けられ、前記原燃料及び前記水蒸気を改質反応させて前記改質ガスを生成する改質部と、
     前記燃焼筒と前記改質部との間を通って前記改質部の他方の側で折り返され、かつ前記改質部の外側を通って所定の側に延在するように筒状に設けられ、前記燃焼筒の一方の側から排出された前記排ガスを流通させる排ガス流路と、
     前記排ガス流路のうち前記所定の側に延在する延在部分の内側及び外側の一方において前記延在部分に沿うように筒状に設けられ、前記改質部で生成された前記改質ガスをシフト反応させて前記改質ガスの一酸化炭素濃度を低下させる低温シフト反応部と、
     前記延在部分の内側及び外側の他方において前記延在部分に沿うように筒状に設けられ、前記低温シフト反応部でシフト反応させられた前記改質ガスを選択酸化反応させて前記一酸化炭素濃度を更に低下させる選択酸化反応部と、を備える、水素製造装置。
  2.  貯留された水を周囲の熱によって加熱して前記水蒸気を生成する蒸発部を更に備え、
     前記蒸発部は、前記延在部分と前記低温シフト反応部との間、前記延在部分と前記選択酸化反応部との間、前記延在部分、前記低温シフト反応部及び前記選択酸化反応部の内側、並びに、前記延在部分、前記低温シフト反応部及び前記選択酸化反応部の外側の少なくとも一つにおいて、前記延在部分に沿うように筒状に設けられている、請求項1記載の水素製造装置。
  3.  請求項1又は2記載の水素製造装置と、
     前記水素製造装置によって生成された前記改質ガスを用いて発電を行う燃料電池スタックと、を備える、燃料電池システム。
PCT/JP2011/056603 2010-03-30 2011-03-18 水素製造装置及び燃料電池システム WO2011122372A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180016522.5A CN102822086B (zh) 2010-03-30 2011-03-18 氢制造装置以及燃料电池***
EP11762605.1A EP2554511A4 (en) 2010-03-30 2011-03-18 HYDROGEN PRODUCTION APPARATUS AND FUEL CELL SYSTEM
US13/637,880 US9012098B2 (en) 2010-03-30 2011-03-18 Hydrogen production apparatus and fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-078818 2010-03-30
JP2010078818A JP5610812B2 (ja) 2010-03-30 2010-03-30 水素製造装置及び燃料電池システム

Publications (1)

Publication Number Publication Date
WO2011122372A1 true WO2011122372A1 (ja) 2011-10-06

Family

ID=44712083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056603 WO2011122372A1 (ja) 2010-03-30 2011-03-18 水素製造装置及び燃料電池システム

Country Status (5)

Country Link
US (1) US9012098B2 (ja)
EP (1) EP2554511A4 (ja)
JP (1) JP5610812B2 (ja)
CN (1) CN102822086B (ja)
WO (1) WO2011122372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164241A (ja) * 2012-02-13 2013-08-22 Denso Corp 熱交換装置
EP2735541A1 (en) * 2012-06-25 2014-05-28 Panasonic Corporation Fuel processing device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164816A1 (ja) * 2011-05-27 2012-12-06 パナソニック株式会社 水素生成装置及び燃料電池システム
WO2013042739A1 (ja) 2011-09-22 2013-03-28 旭硝子株式会社 強化用ガラス板
EP2662133A1 (en) * 2012-05-09 2013-11-13 Casale Chemicals S.A. A method for revamping a secondary reformer
CN103693618B (zh) * 2013-12-19 2015-04-22 华南理工大学 一种利用汽车尾气余热进行自热重整制氢的制氢反应器
KR101771303B1 (ko) * 2015-02-16 2017-08-24 한국가스공사 연료처리장치
US9840413B2 (en) 2015-05-18 2017-12-12 Energyield Llc Integrated reformer and syngas separator
US9843062B2 (en) 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
CN109798508B (zh) * 2017-11-17 2020-11-03 韩国能量技术研究院 原料预热部一体型水蒸气改质器及含其的氢制备***
US10651487B2 (en) * 2017-11-20 2020-05-12 Industrial Technology Research Institute Modular apparatus of fuel cell system
TWI658639B (zh) * 2017-11-20 2019-05-01 財團法人工業技術研究院 燃料電池系統的模組化設備

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252604A (ja) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd 水素生成装置とそれを備える燃料電池システム
JP2006076850A (ja) * 2004-09-10 2006-03-23 Nippon Oil Corp 改質装置および方法ならびに燃料電池システム
JP2006248864A (ja) 2005-03-11 2006-09-21 Nippon Oil Corp 水素製造装置および燃料電池システム
JP2007335224A (ja) 2006-06-15 2007-12-27 Mitsubishi Heavy Ind Ltd Co除去器、燃料電池発電システム及びco除去器の昇温運転方法
JP2008120604A (ja) * 2006-11-08 2008-05-29 Idemitsu Kosan Co Ltd 改質器、改質処理方法、改質ユニットおよび燃料電池システム
JP2009078954A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 改質装置
JP2009274886A (ja) * 2008-05-12 2009-11-26 Aisin Seiki Co Ltd 改質装置用燃焼装置、改質装置および燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2259386C (en) 1996-06-28 2002-06-25 Matsushita Electric Works, Ltd. Modification apparatus
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
EP1324414A3 (en) 2001-12-25 2003-11-26 Matsushita Electric Industrial Co., Ltd. Hydrogen generation system and fuel cell system having the same
CA2521702C (en) * 2004-02-12 2009-12-08 Ishikawajima-Harima Heavy Industries Co., Ltd. Fuel reforming apparatus and method for starting said fuel reforming apparatus
KR101127688B1 (ko) 2004-12-07 2012-03-23 에스케이이노베이션 주식회사 원통형 소형 개질 장치
US8216323B2 (en) * 2005-06-30 2012-07-10 General Electric Company System and method for hydrogen production
JP5135209B2 (ja) 2006-04-11 2013-02-06 パナソニック株式会社 水素生成装置、これを備える燃料電池システムおよびその運転方法
CN101500940B (zh) * 2006-09-05 2012-11-21 松下电器产业株式会社 氢生成装置以及燃料电池***
JP4740277B2 (ja) 2008-03-18 2011-08-03 アイシン精機株式会社 改質装置
CA2724183A1 (en) * 2008-05-15 2009-11-19 Panasonic Corporation Hydrogen generator and fuel cell power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252604A (ja) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd 水素生成装置とそれを備える燃料電池システム
JP2006076850A (ja) * 2004-09-10 2006-03-23 Nippon Oil Corp 改質装置および方法ならびに燃料電池システム
JP2006248864A (ja) 2005-03-11 2006-09-21 Nippon Oil Corp 水素製造装置および燃料電池システム
JP2007335224A (ja) 2006-06-15 2007-12-27 Mitsubishi Heavy Ind Ltd Co除去器、燃料電池発電システム及びco除去器の昇温運転方法
JP2008120604A (ja) * 2006-11-08 2008-05-29 Idemitsu Kosan Co Ltd 改質器、改質処理方法、改質ユニットおよび燃料電池システム
JP2009078954A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 改質装置
JP2009274886A (ja) * 2008-05-12 2009-11-26 Aisin Seiki Co Ltd 改質装置用燃焼装置、改質装置および燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554511A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164241A (ja) * 2012-02-13 2013-08-22 Denso Corp 熱交換装置
EP2735541A1 (en) * 2012-06-25 2014-05-28 Panasonic Corporation Fuel processing device
EP2735541A4 (en) * 2012-06-25 2015-01-14 Panasonic Ip Man Co Ltd FUEL TREATMENT DEVICE
US9144781B2 (en) 2012-06-25 2015-09-29 Panasonic International Property Management Co., Ltd. Fuel processing device

Also Published As

Publication number Publication date
EP2554511A1 (en) 2013-02-06
US20130065145A1 (en) 2013-03-14
CN102822086B (zh) 2014-12-31
JP2011207710A (ja) 2011-10-20
JP5610812B2 (ja) 2014-10-22
EP2554511A4 (en) 2014-04-09
US9012098B2 (en) 2015-04-21
CN102822086A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2011122372A1 (ja) 水素製造装置及び燃料電池システム
JP5154272B2 (ja) 燃料電池用改質装置
JP5476392B2 (ja) 燃料電池システム
JP5409486B2 (ja) 水素製造装置及び燃料電池システム
JP5103236B2 (ja) 改質装置
JP2006206382A (ja) 水素発生装置および方法
JP5272183B2 (ja) 燃料電池用改質装置
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP5161621B2 (ja) 燃料電池用改質装置
WO2011122373A1 (ja) 水素製造装置、燃料電池システム及び水素製造装置の起動方法
JP5634729B2 (ja) 水素製造装置及び燃料電池システム
JP5538028B2 (ja) 水素製造装置及び燃料電池システム
JP5462687B2 (ja) 水素製造装置及び燃料電池システム
JP5534899B2 (ja) 水素製造装置及び燃料電池システム
JP2011207726A (ja) 水素製造装置及び燃料電池システム
JP4835273B2 (ja) 水素生成装置および燃料電池システム
JP2003303610A (ja) 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置
JP5538025B2 (ja) 水素製造装置及び燃料電池システム
JP2014009130A (ja) 水素製造装置及び燃料電池システム
JP2015010012A (ja) 燃料処理装置
JP5513210B2 (ja) 水素製造装置及び燃料電池システム
JP2013234076A (ja) 水素生成装置
JP2011207729A (ja) 水素製造装置及び燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016522.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011762605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637880

Country of ref document: US