WO2011121691A1 - リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池 - Google Patents

リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池 Download PDF

Info

Publication number
WO2011121691A1
WO2011121691A1 PCT/JP2010/007176 JP2010007176W WO2011121691A1 WO 2011121691 A1 WO2011121691 A1 WO 2011121691A1 JP 2010007176 W JP2010007176 W JP 2010007176W WO 2011121691 A1 WO2011121691 A1 WO 2011121691A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
electrode active
material layer
Prior art date
Application number
PCT/JP2010/007176
Other languages
English (en)
French (fr)
Inventor
謙一 厚朴
名倉 健祐
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020117029491A priority Critical patent/KR101313437B1/ko
Priority to US13/377,112 priority patent/US8658312B2/en
Priority to JP2012507923A priority patent/JP5391328B2/ja
Priority to CN201080023178.8A priority patent/CN102449818B/zh
Publication of WO2011121691A1 publication Critical patent/WO2011121691A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium ion battery, and more particularly to improvement of a positive electrode in a lithium ion battery.
  • the lithium ion battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • a positive electrode active material contained in the positive electrode lithium-containing cobalt oxides such as Li w CoO 2 (w is a value that varies depending on charge / discharge of the battery, the same applies hereinafter) and the like are widely known.
  • Lithium-containing cobalt oxide has a high potential with respect to lithium, is excellent in reliability, and is relatively easy to synthesize.
  • Lithium ion batteries using lithium-containing nickel oxide are expected to be applied to uses such as electric vehicles, hybrid cars, electric tools, and power storage power sources. For this reason, in order to obtain a battery having excellent durability and reliability and high input / output characteristics, the following proposals have been made.
  • Patent Document 1 discloses a lithium-containing nickel oxide containing different elements such as Co, Al, and Mn. According to Patent Document 1, such a lithium-containing nickel oxide has low reactivity with a nonaqueous electrolyte, and can be used as a positive electrode active material to reduce the internal resistance of a lithium ion battery.
  • Patent Document 2 discloses a lithium ion battery including, as a positive electrode, lithium nickel cobalt manganate and lithium carbonate having an average particle diameter of 5 to 30 ⁇ m. According to Patent Document 2, by mixing lithium carbonate having an average particle diameter of 5 to 30 ⁇ m with nickel cobalt lithium manganate, both can be mixed uniformly, and as a result, reliability during overcharge can be improved. Can be improved.
  • the lithium-containing nickel oxide produces lithium hydroxide by reacting with moisture in the atmosphere, and further, the produced lithium hydroxide reacts with carbon dioxide in the atmosphere to produce lithium carbonate, or Lithium carbonate is produced by directly reacting with carbon dioxide in the atmosphere. For this reason, lithium carbonate tends to adhere to the surface.
  • Such adhesion of lithium carbonate to the surface also occurs in the lithium-containing nickel oxide described in Patent Document 1.
  • Lithium ion batteries that contain lithium-containing nickel oxide with lithium carbonate attached to the surface of the positive electrode not only in an overcharged state but also when stored in a high temperature environment, the gas inside the battery is decomposed by the decomposition of lithium carbonate. May occur. Such generation of gas also occurs in the lithium ion battery disclosed in Patent Document 2. Moreover, it is preferable that generation
  • the present invention solves the above-mentioned problems, provides a positive electrode excellent in input / output characteristics, durability and reliability, including lithium-containing nickel oxide as a positive electrode active material, and lithium ion using the positive electrode
  • An object is to provide a battery.
  • One aspect of the present invention includes a positive electrode current collector and a positive electrode active material layer formed on a surface of the positive electrode current collector, and the positive electrode active material layer has the general formula (1): Li x Ni 1- ( p + q + r) Co p Al q M r O 2 + y (M excludes transition elements (Ni and Co), at least one element selected from the group consisting of Mg, Ca, Zn and Bi, 0.
  • a positive electrode active material layer comprising lithium-containing nickel oxide represented by 8 ⁇ x ⁇ 1.4, ⁇ 0.1 ⁇ y ⁇ 0.1, 0 ⁇ (p + q + r) ⁇ 0.7) and lithium carbonate
  • the low concentration region is a positive electrode for a lithium ion battery occupying the remaining range on the positive electrode current collector side of the positive electrode active material layer.
  • the concentration of lithium carbonate on the surface side of the positive electrode active material layer is higher than the concentration of lithium carbonate on the positive electrode current collector side, the input / output characteristics of the lithium ion battery are improved.
  • Polarization between the positive electrode and the negative electrode during charging / discharging of the battery occurs mainly on the surface portion of the electrode.
  • the concentration of lithium carbonate is high on the surface side of the positive electrode active material layer. Can suppress the occurrence of polarization.
  • the positive electrode has a difference in lithium carbonate concentration between the surface side of the positive electrode active material layer and the positive electrode current collector side, the concentration of lithium carbonate is increased on the surface side of the positive electrode active material layer.
  • the concentration of lithium carbonate in the entire positive electrode active material layer can be lowered. Therefore, the lithium ion battery using the positive electrode can suppress the generation of gas due to decomposition of lithium carbonate compared to the case where the concentration of lithium carbonate is high in the entire positive electrode active material layer, and has durability and reliability. improves.
  • an inner layer-forming positive electrode mixture containing lithium-containing nickel oxide represented by the general formula (1) and lithium carbonate is applied to the surface of the positive electrode current collector.
  • Forming an outer layer by applying a positive electrode mixture for forming an outer layer containing lithium-containing nickel oxide represented by the general formula (1) and lithium carbonate to the surface of the inner layer The lithium content ratio x 2 of the lithium-containing nickel oxide contained in the outer layer forming positive electrode mixture is greater than the Li content ratio x 1 of the lithium-containing nickel oxide contained in the inner layer forming positive electrode mixture, It is a manufacturing method of the positive electrode for lithium ion batteries.
  • lithium in the positive electrode active material reacts with moisture in the atmosphere to produce lithium hydroxide, and further, lithium hydroxide reacts with carbon dioxide in the atmosphere to produce lithium carbonate, or Reacts directly with atmospheric carbon dioxide to produce lithium carbonate. Therefore, in the positive electrode manufactured by the above manufacturing method, the Li content ratio x of the lithium-containing nickel oxide is higher in the outer layer on the surface side of the positive electrode active material layer than in the inner layer on the positive electrode current collector side. The concentration of lithium is also higher in the outer layer on the surface side of the positive electrode active material layer than in the inner layer on the positive electrode current collector side. As a result, the concentration of lithium carbonate can be changed discontinuously in the thickness direction of the positive electrode active material layer.
  • Still another aspect of the present invention is to apply a positive electrode mixture containing lithium-containing nickel oxide represented by the above general formula (1) and lithium carbonate to the surface of a positive electrode current collector, and thereby form a positive electrode active material
  • a method for producing a positive electrode for a lithium ion battery comprising: a step of forming a layer; and a step of exposing the positive electrode active material layer to a gas flow containing at least one of wet air and carbon dioxide.
  • Li of the lithium-containing nickel oxide generates lithium hydroxide by the water vapor that has penetrated from the surface of the positive electrode active material layer to the inside, and the generated lithium hydroxide further generates carbon dioxide in the atmosphere.
  • the lithium-containing nickel oxide directly generates lithium carbonate by the carbon dioxide gas that has penetrated from the surface of the positive electrode active material layer to the inside.
  • concentration of lithium carbonate can be continuously changed in the thickness direction of a positive electrode active material layer.
  • the surface side of the positive electrode active material layer can be a high concentration region where the concentration of lithium carbonate is high, and the positive electrode current collector side can be a low concentration region where the concentration of lithium carbonate is low.
  • Still another aspect of the present invention is a lithium ion battery including the above-described positive electrode, a negative electrode, a separator separating the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the input / output characteristics, durability, and reliability can be improved.
  • a positive electrode 1 for a lithium ion battery shown in FIG. 1 includes a positive electrode current collector 2 and a positive electrode active material layer 3 formed on the surface of the positive electrode current collector 2.
  • the positive electrode active material layer 3 includes an inner layer 4 formed on the surface of the positive electrode current collector 2 and an outer layer 5 formed on the surface of the inner layer 4.
  • Both the inner layer 4 and the outer layer 5 have the general formula (1) as a positive electrode active material: Li x Ni 1- (p + q + r) Co p Al q Mr O 2 + y (M is a transition element (Ni and At least one element selected from the group consisting of Mg, Ca, Zn and Bi, 0.8 ⁇ x ⁇ 1.4, ⁇ 0.1 ⁇ y ⁇ 0.1, 0 ⁇ (p + q + r) Lithium-containing nickel oxide represented by ⁇ 0.7) and lithium carbonate. Further, the concentration of lithium carbonate in the outer layer 5 is higher than the concentration of lithium carbonate in the inner layer 4.
  • the positive electrode active material layer 3 in which the concentration of lithium carbonate changes discontinuously in the thickness direction can be formed, for example, by the following procedure.
  • a slurry or paste-like positive electrode mixture for forming the inner layer 4 is prepared by dispersing a lithium-containing nickel oxide represented by the general formula (1) and a binder in a dispersion medium.
  • the inner layer 4 is formed by applying the positive electrode mixture thus obtained to the surface of the positive electrode current collector and drying it.
  • a positive electrode mixture for forming an outer layer was formed in the same manner as described above except that a lithium-containing nickel oxide having a large lithium content ratio x compared to the lithium-containing nickel oxide used for the positive electrode mixture for forming an inner layer was used.
  • the outer layer forming positive electrode mixture thus obtained is applied to the surface of the inner layer 4 and dried to form the outer layer 5.
  • a positive electrode 1a for a lithium ion battery shown in FIG. 2 includes a positive electrode current collector 2 and a positive electrode active material layer 3a formed on the surface of the positive electrode current collector 2.
  • the positive electrode active material layer 3a includes lithium-containing nickel oxide represented by the general formula (1) as a positive electrode active material and lithium carbonate. Moreover, the positive electrode active material layer 3a has a concentration gradient of lithium carbonate therein. The concentration of lithium carbonate in the positive electrode active material layer 3a is high on the surface side of the positive electrode active material layer 3a and low on the positive electrode current collector 2 side.
  • the positive electrode active material layer 3a in which the concentration of lithium carbonate continuously changes in the thickness direction can be formed, for example, by the following procedure.
  • a slurry or paste-like positive electrode mixture is prepared by dispersing a lithium-containing nickel oxide represented by the general formula (1) and a binder in a dispersion medium.
  • the positive electrode mixture thus obtained is applied to the surface of the positive electrode current collector and dried to form a positive electrode active material layer.
  • the positive electrode active material layer is exposed to a gas stream containing at least one of humid air and carbon dioxide gas. Thereby, a continuous concentration gradient can be given to the lithium carbonate concentration of the positive electrode active material layer 3a.
  • the concentration of lithium carbonate in the positive electrode active material layer 3a is high on the surface side and decreases toward the positive electrode current collector 2 side.
  • lithium carbonate has adhered to the surface normally. For this reason, lithium carbonate is contained in the positive electrode mixture, and lithium carbonate is contained in any of the inner layer 4, the outer layer 5 and the positive electrode active material layer 3a formed by applying this positive electrode mixture. Depending on the amount of lithium carbonate previously attached to the lithium-containing nickel oxide, lithium carbonate may be added separately to the positive electrode mixture.
  • the positive electrode mixture can further contain an additive such as a conductive agent.
  • the positive electrode current collector 2 include a current collector used for a positive electrode of a lithium ion battery without any particular limitation.
  • a current collector used for a positive electrode of a lithium ion battery without any particular limitation.
  • aluminum, an aluminum alloy, or the like can be used in the form of a foil, a film, a film, a sheet, or the like.
  • the thickness of the positive electrode current collector 2 can be appropriately set in the range of 1 to 500 ⁇ m according to the capacity and size of the lithium ion battery.
  • x represents the content ratio of Li.
  • the value of x varies depending on the charge / discharge of the battery.
  • lithium-containing nickel oxide (Li x Ni 1- (p + q + r) Co contained in the positive electrode mixture for forming the inner layer 4 is used.
  • the content ratio x 2 of Li in the lithium-containing nickel oxide contained in the positive electrode mixture to form the outer layer 5 any lithium In a state before charging / discharging the ion battery, x 2 > x 1 is set.
  • the Li content ratio x 1 in the positive electrode mixture for forming the inner layer 4 is preferably 0.8 to 1.1, more preferably 0.9 to 1.0.
  • x 1 is below 0.8, there is a tendency that the lithium content of the lithium-containing nickel oxide is insufficient, there is a possibility to reduce the capacity of the lithium ion battery.
  • the Li content ratio x 2 in the positive electrode mixture for forming the outer layer 5 is preferably 1.0 to 1.4, and more preferably 1.0 to 1.2. 1.0 to 1.1 is particularly preferred.
  • x 2 exceeds 1.4 there is a tendency that the amount of lithium carbonate attached to the surface of the lithium-containing nickel oxide is excessive. In this case, since insertion and removal of lithium ions are hindered by lithium carbonate, the input / output characteristics of the lithium ion battery may be degraded.
  • the positive electrode active material layer 3 formed by applying and drying the inner layer forming positive electrode mixture and the outer layer forming positive electrode mixture is usually rolled by pressing several times with a roller or the like.
  • the packing density of the positive electrode active material is preferably 2 to 3.9 g / cm 3 .
  • the thickness of the outer layer 5 is preferably 2 to 80% and more preferably 5 to 50% with respect to the total thickness of the positive electrode active material layer 3. If the thickness ratio of the outer layer 5 is less than 2% of the total thickness, the effect of improving the input / output characteristics may be difficult to obtain. Conversely, if the thickness ratio of the outer layer 5 exceeds 80% of the total thickness, the thickness of the inner layer 4 tends to be too small, and it is difficult to obtain the effect of suppressing the amount of gas generated during high-temperature storage. There is a risk.
  • the range of the Li content ratio x of the lithium-containing nickel oxide contained in the positive electrode mixture is before charging / discharging the lithium ion battery.
  • 0.8 ⁇ x ⁇ 1.4 is preferable, and 0.9 ⁇ x ⁇ 1.1 is more preferable.
  • x is less than 0.8, the lithium content of the lithium-containing nickel oxide tends to be insufficient, and the capacity of the lithium ion battery may be reduced.
  • x exceeds 1.4 the amount of lithium carbonate attached to the surface of the lithium-containing nickel oxide tends to be excessive. In this case, since insertion and removal of lithium ions are hindered by lithium carbonate, the input / output characteristics of the lithium ion battery may be degraded.
  • the relative humidity of the humid air is preferably 1 to 70% RH, and preferably 5 to 50%. RH is more preferred. If the relative humidity of the humid air is less than 1% RH, the effect of forming a concentration gradient of lithium carbonate in the positive electrode active material layer 3a may be insufficient. If the relative humidity of the humid air exceeds 70% RH, moisture tends to adhere excessively to the positive electrode active material layer 3a. In this case, excessive lithium carbonate may adhere to the positive electrode active material.
  • the temperature of the humid air is preferably 5 to 300 ° C, more preferably 20 to 110 ° C. If the temperature of the humid air is below 5 ° C., the effect of forming a lithium carbonate concentration gradient in the positive electrode active material layer 3a may be insufficient. If the temperature of the humid air exceeds 300 ° C., excess lithium carbonate may adhere to the positive electrode active material.
  • the concentration of carbon dioxide in the gas flow containing carbon dioxide is 0.01% by volume or more.
  • 0.03 volume% or more is more preferable. If the concentration of carbon dioxide is less than 0.01% by volume, the effect of forming a concentration gradient of lithium carbonate inside the positive electrode active material layer 3a may be insufficient.
  • the temperature of the gas stream containing carbon dioxide gas is preferably 5 to 300 ° C, more preferably 20 to 110 ° C. If the temperature of the gas flow containing carbon dioxide gas is lower than 5 ° C., the effect of forming a concentration gradient of lithium carbonate in the positive electrode active material layer 3a may be insufficient. If the temperature of the gas stream containing carbon dioxide gas exceeds 300 ° C., excess lithium carbonate may adhere to the positive electrode active material.
  • p, q, and r indicate the content ratios of Co, Al, and element M in this order.
  • the sum of p, q, and r (p + q + r) indicates the amount of substitution of Co, Al, and element M as different elements with respect to Ni in the lithium-containing nickel oxide.
  • the range of (p + q + r) is preferably 0 ⁇ (p + q + r) ⁇ 0.7, and more preferably 0.1 ⁇ (p + q + r) ⁇ 0.4.
  • the range of p indicating the Co content ratio is preferably 0 ⁇ p ⁇ 0.7, more preferably 0 ⁇ p ⁇ 0.7, and particularly preferably 0.1 ⁇ p ⁇ 0.3.
  • the range of q indicating the Al content ratio is preferably 0 ⁇ q ⁇ 0.3, more preferably 0 ⁇ q ⁇ 0.3, and particularly preferably 0.01 ⁇ q ⁇ 0.2.
  • the range of r indicating the content ratio of the element M is preferably 0 ⁇ r ⁇ 0.4.
  • the range of 1- (p + q + r) indicating the Ni content ratio is 0.3 ⁇ [1- (p + q + r)] ⁇ 1, preferably 0.6 ⁇ [1- (p + q + r)] ⁇ 0.
  • the element M includes at least one element selected from the group consisting of transition elements (excluding Ni and Co), Mg, Ca, Zn, and Bi.
  • transition elements other than Ni and Co include Sc, Ti, V, Cr, Mn, Fe, Cu, Y, and Zr.
  • the element M is an arbitrary constituent element and is not particularly limited. However, when the lithium-containing nickel oxide contains an element constituting the above group, sintering when the lithium-containing nickel oxide is synthesized by firing is performed. Can be promoted. Moreover, the cycle characteristic and reliability of a lithium ion battery can be improved by containing the element which comprises the said group.
  • the lithium-containing nickel oxide represented by the general formula (1) may be an embodiment that does not contain the element M.
  • the lithium-containing nickel oxide has a general formula: Li x Ni 1- (p + q) Co p Al q O 2 + y (0.8 ⁇ x ⁇ 1.4, ⁇ 0.1 ⁇ y ⁇ 0.1, 0 ⁇ (p + q) ⁇ 0.7).
  • y represents an oxygen excess amount or an oxygen deficiency amount, and the range is preferably ⁇ 0.1 to 0.1. If y is out of the above range, the amount of excess oxygen or oxygen deficiency tends to increase and the crystal structure tends to be distorted, which may reduce the reversibility during charge / discharge.
  • the lithium-containing nickel oxide represented by the general formula (1) may be fluorinated.
  • the degree of the fluorination treatment when the total content of Ni, Co, Al and element M in the lithium-containing nickel oxide is 1, the fluorine content ratio z is 0 ⁇ z ⁇ 0.1. preferable.
  • the content ratio z of F in the above range, the high temperature storage characteristics of the lithium ion battery can be improved.
  • z exceeds 0.1 the content of F tends to be excessive and the crystal structure tends to be distorted. In this case, the reversibility during charging / discharging may be reduced.
  • binder contained in the positive electrode mixture examples include, but are not limited to, binders used for the positive electrode of a lithium ion battery.
  • fluorine-containing polymers such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), modified PVDF, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer; styrene -Rubbers such as butadiene rubber; polyolefin resins such as polyethylene and polypropylene.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • tetrafluoroethylene-hexafluoropropylene copolymer vinylidene fluoride-tetrafluoroethylene copolymer
  • styrene -Rubbers such as butadiene rubber
  • polyolefin resins such as polyethylene and
  • Examples of the conductive agent include graphites; carbon blacks such as acetylene black, ketjen black, furnace black, lamp black, and thermal black; carbon fibers and metal fibers.
  • the content ratio of the positive electrode active material is preferably 80 to 98% by mass, and more preferably 85 to 96% by mass with respect to the total amount of the positive electrode active material layer.
  • the content of the binder is preferably 10% by mass or less, more preferably 1 to 10% by mass with respect to the total amount of the positive electrode active material layer.
  • the content of the conductive agent is preferably 20% by mass or less, and more preferably 1 to 20% by mass with respect to the total amount of the positive electrode active material layer.
  • the concentration of lithium carbonate contained on the positive electrode current collector side of the positive electrode active material layer is such that the concentration of lithium carbonate contained on the surface side of the positive electrode active material layer is reduced from the viewpoint of reducing the amount of gas generated by decomposition of lithium carbonate during high temperature storage. Is preferably 0.5 to 90%, more preferably 1 to 80%, and particularly preferably 1 to 50%.
  • the lithium-containing nickel oxide having a high lithium carbonate concentration is superior in input / output characteristics as compared with the lithium-containing nickel oxide having a low lithium carbonate concentration, although the reason is not clear.
  • lithium carbonate is decomposed to produce gas, which may reduce the durability and reliability of the battery.
  • concentration of lithium carbonate contained on the positive electrode current collector 2 side of the positive electrode active material layer is set to a range of 0.5 to 90% with respect to the concentration of lithium carbonate contained on the surface side, Occurrence can be suppressed.
  • the concentration of lithium carbonate can be measured by X-ray photoelectron spectroscopy (XPS).
  • the concentration of lithium carbonate is represented, for example, by the ratio (C1s / Ni2p) between the spectral intensity of the C1s band attributed to lithium carbonate and the spectral intensity of the Ni2p band attributed to lithium-containing nickel oxide.
  • the ratio of spectral intensities on the surface side of the cathode active material layer appears higher than the spectral intensity ratio (C1s / Ni2p) on the positive electrode current collector side of the positive electrode active material layer.
  • the lithium ion battery according to the present invention is characterized by including the above-described positive electrode for a lithium ion battery, and other components other than the positive electrode are not particularly limited.
  • a lithium ion battery 10 shown in FIG. 3 includes a positive electrode 1 for a lithium ion battery, a negative electrode 12 capable of inserting and extracting lithium, and a separator 13 interposed between the positive electrode 1 and the negative electrode 12 in a spiral shape.
  • a rotated electrode group 14 is provided.
  • the negative electrode 12 includes a negative electrode current collector 17 and a negative electrode active material layer 18 formed on both surfaces of the negative electrode current collector 17.
  • the electrode group 14 is housed in a battery case 19 together with a non-aqueous electrolyte (not shown).
  • a separator is also disposed between the electrode plate group 14 and the inner periphery of the battery case 19.
  • the battery case 19 is a substantially cylindrical member having one end closed by the bottom 20 and the other end opened.
  • the bottom portion 20 includes a through hole 21 for fitting the negative electrode terminal in the central portion.
  • the through hole 21 is sealed by the convex portion 23 of the negative current collecting terminal plate 22, and the edge of the through hole 21 and the surface of the convex portion 23 are joined to each other by seam welding or the like.
  • the convex portion 23 of the negative current collecting terminal plate 22 is also used as a negative electrode terminal.
  • the other end of the battery case 19 is sealed by a sealing plate 24 and an insulating gasket 25 attached to the periphery of the sealing plate 24.
  • the positive electrode current collector 2 includes an exposed portion 27 where the positive electrode active material layer 3 is not formed on one end 26 side in the winding axis direction of the electrode group 14.
  • the exposed portion 27 is electrically connected to a sealing plate 24 that is also used as a positive electrode terminal via a positive electrode current collecting terminal plate 28 disposed on the one end 26 side of the electrode group 14 in the battery case 19.
  • the negative electrode current collector 17 includes an exposed portion 30 where the negative electrode active material layer 18 is not formed on the other end 29 side in the winding axis direction of the electrode group 14.
  • the exposed portion 30 is electrically connected to the negative electrode current collector terminal plate 22 disposed on the other end 29 side of the electrode group 14 in the battery case 19.
  • the tip of the exposed portion 27 of the positive electrode current collector 2 is a flat portion 31 plastically deformed toward the inner peripheral side of the electrode group 14, and the flat portion 31 is joined to the positive electrode current collector terminal plate 28.
  • the tip of the exposed portion 30 of the negative electrode current collector 17 is also a flat portion 32 plastically deformed toward the inner peripheral side of the electrode group 14, and the flat portion 32 is joined to the negative electrode current collector terminal plate 22.
  • the lithium ion battery 10 shown in FIG. 3 has a so-called tabless current collection structure in which current is collected directly from the positive electrode current collector 2 and the negative electrode current collector 17 of the electrode group 14.
  • the negative electrode active material layer 18 of the negative electrode 12 is, for example, applied to a negative electrode current collector 17 by applying a slurry or paste-like negative electrode mixture obtained by dispersing a negative electrode active material and a binder in a dispersion medium, and then drying. Is formed.
  • the negative electrode active material layer 18 thus formed is usually rolled by pressing several times with a roller or the like.
  • Examples of the negative electrode current collector 17 include a current collector used for a negative electrode of a lithium ion battery without any particular limitation. Specifically, stainless steel, nickel, copper, or the like can be used in the form of a foil, a film, a film, a sheet, or the like. The thickness of the negative electrode current collector 17 can be appropriately set in the range of 1 to 500 ⁇ m according to the capacity and size of the lithium ion battery.
  • the negative electrode active material examples include, without limitation, a negative electrode active material that can be used for lithium ion batteries and capable of occluding and releasing lithium. Specific examples include carbon materials such as graphite and amorphous carbon; silicon and oxides thereof; tin and oxides thereof. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode mixture can further contain an additive such as a conductive agent.
  • the conductive agent include those exemplified as the conductive agent used for forming the positive electrode active material layer.
  • the content ratio of the negative electrode active material is preferably 93 to 99% by mass with respect to the total amount of the negative electrode active material layer.
  • the content ratio of the binder is preferably 1 to 10% by mass with respect to the total amount of the negative electrode active material layer.
  • the content ratio of the conductive agent is preferably 20% by mass or less, more preferably 1 to 20% by mass with respect to the total amount of the negative electrode active material layer.
  • the separator 13 is interposed between the positive electrode 1 and the negative electrode 12 to separate the positive electrode 1 and the negative electrode 12.
  • Examples of the separator 13 include microporous thin films, woven fabrics, and nonwoven fabrics that have a high ion permeability and sufficient mechanical strength, and have insulating properties.
  • the material of the separator is preferably a polyolefin such as polypropylene or polyethylene from the viewpoint that it has excellent durability and can exhibit a shutdown function during overheating.
  • the thickness of the separator is generally 5 to 300 ⁇ m, but 10 to 30 ⁇ m is particularly preferable.
  • the separator may be a single layer film made of one material, or a composite film or a multilayer film made of two or more materials.
  • the separator has a porosity of preferably 30 to 70%, more preferably 35 to 60%. The porosity indicates the ratio of the volume of the hole portion to the total volume of the separator.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
  • a nonaqueous solvent various non-aqueous solvents used for the non-aqueous electrolyte of the lithium ion battery can be mentioned without particular limitation.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate
  • chain carbonates such as DMC, EMC and diethyl carbonate
  • cyclic ethers such as tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane
  • chain ethers such as 1,2-dimethoxyethane and 1,2-diethoxyethane
  • cyclic esters such as ⁇ -butyrolactone
  • chain esters such as methyl acetate.
  • lithium salt examples include various lithium salts used as a solute in the non-aqueous electrolyte of a lithium ion battery. Specifically, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and the like. These can be used individually by 1 type and can also be used in combination of 2 or more type.
  • the concentration of the lithium salt is preferably 0.5 to 2 mol / L.
  • the non-aqueous electrolyte preferably further contains a cyclic carbonate having at least one carbon-carbon unsaturated bond.
  • a cyclic carbonate decomposes on the negative electrode to form a film having high lithium ion conductivity. This coating contributes to the improvement of charge / discharge efficiency.
  • the cyclic carbonate having at least one carbon-carbon unsaturated bond include vinylene carbonate, 3-methyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate and the like.
  • a part of hydrogen atoms may be substituted with fluorine atoms.
  • the amount of the cyclic carbonate ester dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / L.
  • the nonaqueous electrolyte may further contain a benzene derivative that decomposes during overcharge and forms a film on the electrode.
  • a benzene derivative inactivates the battery during overcharge.
  • Specific examples include a benzene derivative having a phenyl group and a cyclic compound group adjacent to the phenyl group, and more specifically, cyclohexylbenzene, biphenyl, diphenyl ether, and the like.
  • the content of the benzene derivative is preferably 10% by volume or less of the whole non-aqueous solvent.
  • the nonaqueous electrolyte may be in a gel form or a solid form.
  • the gel-like non-aqueous electrolyte includes a non-aqueous solvent, a lithium salt, and a polymer material that holds the non-aqueous solvent and the lithium salt.
  • the polymer material include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, and vinylidene fluoride-hexafluoropropylene copolymer.
  • the solid nonaqueous electrolyte for example, a polymer solid electrolyte used for a lithium ion battery can be mentioned without particular limitation.
  • Example 1 (1) Preparation of positive electrode active material Lithium carbonate (Li 2 CO 3 ) and a coprecipitated hydroxide represented by Ni 0.75 Co 0.2 Al 0.05 (OH) 2 Mixing was performed so that the ratio of the total number of Ni, Co, and Al in the precipitated hydroxide (Ni + Co + Al) was 1: 1, and the resulting mixture was calcined at 700 ° C. for 20 hours in an oxygen atmosphere. . After firing, the fired product was crushed and classified to obtain a lithium-containing nickel oxide having an average particle size of 10 ⁇ m. The composition of the obtained lithium-containing nickel oxide (positive electrode active material A) was LiNi 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.00.
  • Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 are so adjusted that the ratio of the number of moles of Li to the number of moles of the sum of Ni, Co and Al is 1.05: 1.
  • the resulting mixture was calcined at 700 ° C. for 20 hours in an oxygen atmosphere. After firing, the fired product was crushed and classified to obtain a lithium-containing nickel oxide having an average particle size of 10 ⁇ m.
  • the composition of the obtained lithium-containing nickel oxide (positive electrode active material B) was Li 1.05 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.05.
  • a positive electrode mixture was prepared by mixing 90 parts by mass of the positive electrode active material A and 5 parts by mass of an N-methyl-2-pyrrolidone (NMP) solution containing polyvinylidene fluoride (PVDF).
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • a slurry A was obtained.
  • a positive electrode mixture slurry B was obtained by mixing 90 parts by mass of the positive electrode active material B and an NMP solution containing 5 parts by mass of PVDF.
  • the inner layer was formed by applying and drying the positive electrode mixture slurry A on both surfaces of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector.
  • the positive electrode mixture slurry B was applied to the surface of the inner layer and dried to form an outer layer.
  • the thickness ratio of the inner layer to the outer layer was adjusted to be 4: 1.
  • the obtained laminate was pressed with a pair of rollers and rolled to obtain a positive electrode having a total thickness of 120 ⁇ m. After rolling, the inner layer had a thickness of 40 ⁇ m and the outer layer had a thickness of 10 ⁇ m.
  • the exposed part of the positive electrode current collector in which the inner layer and the outer layer are not formed is provided on one side along the length direction of the positive electrode current collector with a width of about several mm from the edge of the positive electrode current collector.
  • the inner layer and the outer layer of the positive electrode thus obtained it is considered that a small amount of lithium carbonate is generated due to the reaction between lithium and moisture in the air and carbon dioxide. Therefore, when the inner layer and the outer layer of the obtained positive electrode were observed by XPS, the presence of lithium carbonate was detected. Moreover, as a result of measuring the lithium carbonate concentration of the inner layer and the outer layer by XPS, the ratio of the lithium carbonate concentration of the inner layer to the lithium carbonate concentration of the outer layer was 5%.
  • a negative electrode mixture slurry was obtained by mixing 95 parts by mass of artificial graphite powder and an NMP solution containing 5 parts by mass of PVDF.
  • a negative electrode active material layer was formed by applying and drying a negative electrode mixture slurry on both surfaces of a 10 ⁇ m thick copper foil as a negative electrode current collector.
  • the thus obtained laminate including the negative electrode active material layer on both sides of the negative electrode current collector was pressed and rolled with a pair of rollers to obtain a negative electrode having a total thickness of 200 ⁇ m.
  • an exposed portion of the negative electrode current collector in which the negative electrode active material layer is not formed is provided on one side along the length direction of the negative electrode current collector with a width of about several mm from the end side of the negative electrode current collector. .
  • Ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3.
  • a non-aqueous electrolyte was prepared by dissolving vinylene carbonate and LiPF 6 in the non-aqueous solvent thus obtained.
  • the content ratio of vinylene carbonate was adjusted to 1% by mass with respect to the total amount of the nonaqueous solvent.
  • the concentration of LiPF 6 in the non-aqueous electrolyte was adjusted to 1.0 mol / L.
  • the positive electrode and the negative electrode were placed between the positive electrode and the negative electrode with a microporous separator (a composite film of polyethylene and polypropylene, product number “2300” manufactured by Celgard Co., Ltd.), thickness
  • the electrode group was obtained by winding in a spiral shape with 25 ⁇ m) in between.
  • the positive electrode current collector exposed portion and the negative electrode current collector exposed portion were adjusted so as to be arranged at opposite ends in the winding axis direction of the electrode group.
  • Each of the positive electrode current collector exposed portion and the negative electrode current collector exposed portion was bent at the tip end toward the winding axis of the electrode group to form a flat portion.
  • a positive electrode current collector terminal plate (thickness 0.3 mm) made of aluminum is welded to the flat part of the positive electrode current collector exposed part, and a nickel negative electrode side current collector is attached to the flat part of the negative electrode current collector exposed part.
  • a terminal plate (thickness 0.3 mm) was welded.
  • the electrode group thus obtained was inserted into a bottomed cylindrical battery case having a diameter of 18 mm and a height of 65 mm. Subsequently, 5.2 mL of nonaqueous electrolyte was injected into the battery case. Thus, a lithium ion battery having a design capacity of 2200 mAh was obtained.
  • the initial discharge capacity was measured by the following procedure. First, the battery was charged to 4.2 V at a charging current of 0.2 C in an atmosphere of 20 ° C. Subsequently, it was discharged to 3 V with a discharge current of 1 C. The discharge capacity at this time was measured and used as the initial discharge capacity.
  • the high temperature storage characteristics were measured by the following procedure. First, the battery was charged in a 20 ° C. atmosphere at a charging current of 0.2 C until the SOC reached 100%. Thereafter, the battery was left in a constant temperature bath at 60 ° C. for 336 hours. After the battery was taken out from the thermostatic bath and sufficiently cooled to room temperature, the amount of gas generated inside the battery and the amount of carbon dioxide contained in the gas were analyzed by gas chromatography.
  • Example 2 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Al was 1.030: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.030 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.030. A battery was fabricated in the same manner as in Example 1 except that this lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 3 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Al was 1.031: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.031 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.031.
  • a battery was fabricated in the same manner as in Example 1 except that the lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 4 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio between the number of moles of Li and the total number of moles of Ni, Co, and Al was 1.032: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.032 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.032. A battery was fabricated in the same manner as in Example 1 except that this lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 5 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio of the number of moles of Li to the total number of moles of Ni, Co and Al was 1.034: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.034 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.034. A battery was fabricated in the same manner as in Example 1 except that this lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 6 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio of the number of moles of Li to the total number of moles of Ni, Co and Al was 1.080: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.080 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.080. A battery was fabricated in the same manner as in Example 1 except that this lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 7 Li 2 CO 3 and Ni 0.75 Co 0.2 Al 0.05 (OH) 2 were mixed so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Al was 1.140: 1. Except for this, a lithium-containing nickel oxide having an average particle size of 10 ⁇ m was obtained in the same manner as in Example 1. The composition of the obtained lithium-containing nickel oxide was Li 1.140 Ni 0.75 Co 0.2 Al 0.05 O 2 , and the Li content ratio x was 1.140. A battery was fabricated in the same manner as in Example 1 except that this lithium-containing nickel oxide was used in place of the positive electrode active material B to form an outer layer of the positive electrode.
  • Example 8 A battery was fabricated in the same manner as in Example 1, except that the coating amounts of the positive electrode mixture slurries A and B were changed so that both the inner layer and the outer layer were adjusted to have a thickness after rolling of 25 ⁇ m. .
  • Example 9 The same as in Example 1 except that the coating amount of the positive electrode mixture slurry A and B was changed so that the inner layer had a thickness after rolling of 10 ⁇ m and the outer layer had a thickness after rolling of 40 ⁇ m. Thus, a battery was produced.
  • Example 10 Example except that the coating amount of the positive electrode mixture slurry A and B was changed so that the thickness after rolling of the inner layer was 47.5 ⁇ m and the thickness after rolling of the outer layer was 2.5 ⁇ m. In the same manner as in Example 1, a battery was produced.
  • Example 11 The same procedure as in Example 1 was conducted except that the coating amount of the positive electrode mixture slurry A and B was changed so that the inner layer had a thickness after rolling of 49 ⁇ m and the outer layer had a thickness after rolling of 1 ⁇ m. Thus, a battery was produced.
  • Example 12 The positive electrode mixture slurry A prepared in Example 1 was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector and dried to form a positive electrode active material layer having a thickness of 50 ⁇ m. . Next, the obtained positive electrode active material was exposed to a humid air flow having a relative humidity of 40% RH and a temperature of 25 ° C. for 2 minutes. A battery was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
  • Comparative Example 1 The positive electrode mixture slurry A prepared in Example 1 was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector and dried. After drying, the mixture was pressed and rolled with a pair of rollers to obtain a positive electrode having a total thickness of 120 ⁇ m, which was provided with a positive electrode active material layer having a thickness of 50 ⁇ m on both surfaces of the aluminum foil. A battery was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
  • Comparative Example 2 The positive electrode mixture slurry B prepared in Example 1 was applied to both sides of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector and dried. After drying, the mixture was pressed and rolled with a pair of rollers to obtain a positive electrode having a total thickness of 120 ⁇ m, which was provided with a positive electrode active material layer having a thickness of 50 ⁇ m on both surfaces of the aluminum foil. A battery was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
  • Comparative Example 3 The positive electrode mixture slurry B prepared in Example 1 was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector and dried to form an inner layer. Subsequently, the outer layer was formed by apply
  • Comparative Example 4 The positive electrode active material A and the positive electrode active material B prepared in Example 1 were mixed at a mass ratio of 8: 2.
  • a positive electrode mixture slurry was prepared by mixing 90 parts by mass of the mixture thus obtained and an NMP solution containing 5 parts by mass of PVDF.
  • a battery was produced in the same manner as in Comparative Example 1 except that the obtained positive electrode mixture slurry was used.
  • Comparative Example 5 The surface of the positive electrode was washed with water by immersing the positive electrode produced in the same manner as in Example 1 in 25 ° C. water for 15 minutes. A battery was fabricated in the same manner as in Example 1 except that the positive electrode after washing with water was used.
  • the ratio of the lithium carbonate concentration in the inner layer to the lithium carbonate concentration in the outer layer was measured in the same manner as in Example 1.
  • the initial discharge capacity, input / output characteristics, and high-temperature storage characteristics of the batteries obtained in Examples 2 to 12 and Comparative Examples 1 to 5 were measured in the same manner as in Example 1.
  • the measurement results are shown in Table 1. Note that the rate of change dV / dA indicating the input / output characteristics is a relative value with the value in Comparative Example 2 being 100. The larger the relative value, the smaller the gradient of current and voltage, indicating better input / output characteristics.
  • Li content ratio x indicates the Li content ratio of the lithium-containing nickel oxide contained in the positive electrode active material layer.
  • the positive electrode active material layer has a two-layer structure of “inner layer” and “outer layer”, the content ratio of the lithium-containing nickel oxide contained in each layer is shown.
  • the “ratio of the LiCO 3 concentration of the inner layer to the outer layer” is relative to the lithium carbonate concentration in the outer layer 5 measured by XPS when the positive electrode active material layer 3 is formed as a laminate of the inner layer 4 and the outer layer 5.
  • concentration ratio (%) of lithium carbonate in the inner layer 4 is shown.
  • the battery of Example 1 has the same input / output characteristics as the battery of Comparative Example 2, whereas the amount of generated gas and the amount of CO 2 are reduced as compared with Comparative Example 2. I was able to. Further, the battery of Example 1 has a generated gas amount and CO 2 amount of Comparative Example 4 (a simple mixed product of lithium-containing nickel oxide having a large amount of lithium carbonate and lithium-containing nickel oxide having a small amount of lithium carbonate). ), But the input / output characteristics were improved as compared with Comparative Example 4. This is presumably because lithium carbonate contained in the lithium-containing nickel oxide improves the input / output characteristics, while the gas generated during high-temperature storage is due to decomposition of lithium carbonate.
  • the battery of Example 1 improved the input / output characteristics as compared with the battery of Comparative Example 3, and the amount of generated gas and the amount of CO 2 decreased.
  • the battery of Example 1 was provided with an active material layer excellent in input / output characteristics in the upper layer, and therefore, the potential difference generated between the electrodes during charging and discharging could be greatly given to the positive electrode active material excellent in input / output characteristics. This is probably because
  • the battery of Comparative Example 5 in which the positive electrode was washed with water, the amount of generated gas and the amount of CO 2 were suppressed as compared with Example 1, but the input / output characteristics were significantly reduced.
  • the concentration of lithium carbonate contained in the positive electrode current collector side (inner layer side) of the positive electrode active material layer was such that the lithium carbonate contained in the surface side (outer layer side) of the positive electrode active material layer It can be seen that as the concentration decreases, the input / output characteristics are slightly improved while the amount of generated gas is greatly increased. This is presumably because the positive electrode active material on the positive electrode surface greatly contributes to the input / output characteristics of the entire positive electrode, and the total amount of lithium carbonate contained in the positive electrode active material layer greatly contributes to the amount of generated gas.
  • the concentration of lithium carbonate contained in the positive electrode current collector side of the positive electrode active material layer is included in the surface side of the positive electrode active material layer. It can be seen that the content is preferably 1 to 80% with respect to the lithium carbonate concentration.
  • the batteries of Examples 1 and 8 to 11 had the same input / output characteristics except for the battery of Example 11, but the amounts of generated gas and CO 2 were different. This is presumably because the positive electrode active material on the surface of the positive electrode active material layer greatly contributes to the input / output characteristics of the entire positive electrode.
  • the thickness of the outer layer containing the positive electrode active material excellent in input / output characteristics was too thin, it was used as a decomposition product of the nonaqueous electrolyte formed on the surface of the positive electrode active material layer with charge / discharge. It is thought that the positive electrode active material excellent in input / output characteristics was covered with the derived film. Therefore, it can be seen that the thickness of the outer layer is preferably 5 to 50% of the total thickness of the positive electrode active material in order to achieve both the input / output characteristics of the battery and durability and reliability.
  • the positive electrode for lithium ion batteries and the lithium ion battery of the present invention are excellent in input / output characteristics, durability and reliability, for example, electric vehicles, hybrid cars, electrically assisted bicycles, electric motors that require high output are required. It is suitable as a power source for tools, emergency power sources, load leveling power sources, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、正極活物質としてリチウム含有ニッケル酸化物を含む、入出力特性、耐久性および信頼性に優れた正極と、この正極を用いたリチウムイオン電池を提供することを目的とする。上記正極は、正極集電体と、正極集電体の表面に形成された正極活物質層とを備える。正極活物質層は、一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(Ni、Coを除く)など、0.8≦x≦1.4、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含み、炭酸リチウムの高濃度領域と、炭酸リチウムの低濃度領域とを備える。高濃度領域は、正極活物質層の表面から全厚みの2~80%の範囲を占め、低濃度領域は、正極集電体側の残りの範囲を占める。

Description

リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池
 本発明は、リチウムイオン電池に関し、詳しくは、リチウムイオン電池における正極の改良に関する。
 リチウムイオン電池は、正極と、負極と、正極および負極の間に配置されるセパレータと、非水電解質とを備える。正極に含まれる正極活物質としては、LiwCoO2(wは電池の充放電により変動する値、以下同じ)などのリチウム含有コバルト酸化物が広く知られている。リチウム含有コバルト酸化物は、リチウムに対する電位が高く、信頼性に優れ、合成が比較的容易である。
 一方、近年、リチウムイオン電池のさらなる高容量化を図る観点から、LiwNiO2などのリチウム含有ニッケル酸化物を正極活物質として用いることが検討され、実用化されている。リチウム含有ニッケル酸化物を用いたリチウムイオン電池は、電気自動車、ハイブリッドカー、電動工具、電力貯蔵用電源などの用途への適用が期待されている。このため、耐久性および信頼性に優れ、入出力特性が高い電池を得るために、以下の提案がされている。
 特許文献1には、Co、Al、Mnなどの異種元素を含有させたリチウム含有ニッケル酸化物が開示されている。特許文献1によれば、このようなリチウム含有ニッケル酸化物は非水電解質との反応性が低く、正極活物質として用いることにより、リチウムイオン電池の内部抵抗を低下させることができる。
 特許文献2には、正極に、ニッケルコバルトマンガン酸リチウムと、平均粒径5~30μmの炭酸リチウムとを含むリチウムイオン電池が開示されている。特許文献2によれば、平均粒径が5~30μmの炭酸リチウムを、ニッケルコバルトマンガン酸リチウムと混合することにより、両者を均一に混合させることができ、その結果、過充電時の信頼性を向上させることができる。
特開2006-127955号公報 特開2008-181830号公報
 しかしながら、リチウム含有ニッケル酸化物は、大気中の水分と反応することにより水酸化リチウムを生成し、さらに生成した水酸化リチウムが大気中の二酸化炭素と反応することにより炭酸リチウムを生成するか、あるいは、大気中の二酸化炭素と直接反応することにより炭酸リチウムを生成する。このため、表面に炭酸リチウムが付着しやすい。このような表面への炭酸リチウムの付着は、特許文献1に記載のリチウム含有ニッケル酸化物においても同様に生じる。表面に炭酸リチウムが付着したリチウム含有ニッケル酸化物を正極に含むリチウムイオン電池は、過充電状態にある場合だけでなく、高温環境下で保存した場合においても、炭酸リチウムの分解により電池内部でガスが発生するおそれがある。このようなガスの発生は、特許文献2に開示のリチウムイオン電池においても同様に生じる。また、このようなガスの発生は、リチウムイオン電池の耐久性および信頼性を向上させる観点より、抑制されることが好ましい。
 炭酸リチウムの分解によるガス発生を抑制するには、例えば、リチウム含有ニッケル酸化物を洗浄して、表面に付着した炭酸リチウムを除去する方法が考えられる。しかしながら、理由は定かではないが、洗浄が施されたリチウム含有ニッケル酸化物を正極活物質として用いたリチウムイオン電池は、炭酸リチウムの付着量が多いリチウム含有ニッケル酸化物を用いた場合に比べて、入出力特性が低くなる。
 本発明は、上述の課題を解決して、正極活物質としてリチウム含有ニッケル酸化物を含む、入出力特性、耐久性および信頼性に優れた正極を提供すること、およびその正極を用いたリチウムイオン電池を提供することを目的とする。
 本発明の一局面は、正極集電体と、正極集電体の表面に形成された正極活物質層と、を備え、正極活物質層は、一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素、0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含み、正極活物質層は、炭酸リチウムの濃度が高い高濃度領域と、炭酸リチウムの濃度が低い低濃度領域とを備え、高濃度領域が、正極活物質層の表面から全厚みの2~80%の範囲を占め、低濃度領域が、正極活物質層の正極集電体側の残りの範囲を占める、リチウムイオン電池用正極である。
 上記のように、正極活物質層の表面側における炭酸リチウムの濃度が、正極集電体側における炭酸リチウムの濃度よりも高いときは、リチウムイオン電池の入出力特性が向上する。電池の充放電時における正極および負極間の分極は、主として電極の表面部分で生じるが、上記正極によれば、正極活物質層の表面側で炭酸リチウムの濃度が高いことから、正極の表面部分で分極が生じるのを抑制できる。また、上記正極は、正極活物質層の表面側と正極集電体側とで炭酸リチウムの濃度に差が設けられていることから、正極活物質層の表面側で炭酸リチウムの濃度を高くしながら、正極活物質層全体における炭酸リチウムの濃度を低くすることができる。それゆえ、上記正極を用いたリチウムイオン電池は、正極活物質層全体で炭酸リチウムの濃度が高い場合に比べて、炭酸リチウムの分解によるガス発生を抑制することができ、耐久性および信頼性が向上する。
 本発明の他の一局面は、正極集電体の表面に、上記一般式(1)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む内層形成用正極合剤を塗布して内層を形成する工程と、内層の表面に、上記一般式(1)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む外層形成用正極合剤を塗布して外層を形成する工程と、を含み、外層形成用正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率x2が、内層形成用正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率x1より大きい、リチウムイオン電池用正極の製造方法である。
 正極活物質中のリチウムは、上述のとおり、大気中の水分と反応して水酸化リチウムを生成し、さらに水酸化リチウムが大気中の二酸化炭素と反応して炭酸リチウムを生成するか、あるいは、大気中の二酸化炭素と直接反応して炭酸リチウムを生成する。従って、上記製造方法により製造された正極は、正極集電体側の内層に比べて正極活物質層の表面側の外層において、リチウム含有ニッケル酸化物のLiの含有比率xが高くなっており、炭酸リチウムの濃度も、正極集電体側の内層に比べて正極活物質層の表面側の外層で高くなる。その結果、正極活物質層の厚さ方向で炭酸リチウムの濃度を不連続に変化させることができる。
 本発明のさらに他の一局面は、正極集電体の表面に、上記一般式(1)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む正極合剤を塗布して正極活物質層を形成する工程と、正極活物質層を、湿り空気および炭酸ガスの少なくともいずれか1種を含むガス流に曝す工程と、を含む、リチウムイオン電池用正極の製造方法である。
 上記製造方法によれば、正極活物質層の表面から内部へと浸透した水蒸気によって、リチウム含有ニッケル酸化物のLiが水酸化リチウムを生成し、さらに生成した水酸化リチウムが、大気中の二酸化炭素と反応して炭酸リチウムを生成する。あるいは、正極活物質層の表面から内部へと浸透した炭酸ガスによって、リチウム含有ニッケル酸化物が、直接に炭酸リチウムを生成する。このため、正極活物質層の厚さ方向で炭酸リチウムの濃度を連続的に変化させることができる。さらに、正極活物質層の表面側を、炭酸リチウムの濃度が高い高濃度領域とし、正極集電体側を、炭酸リチウムの濃度が低い低濃度領域とすることができる。
 本発明のさらに他の一局面は、上述の正極と、負極と、正極および負極の間を隔離するセパレータと、非水電解質とを備える、リチウムイオン電池である。
 本発明によれば、正極活物質としてリチウム含有ニッケル酸化物を含むリチウムイオン電池において、その入出力特性、耐久性および信頼性に優れたものとすることができる。
実施形態における正極の一例を模式的に示す横断面図である。 実施形態における正極の他の一例を模式的に示す横断面図である。 実施形態における円筒型リチウムイオン電池の縦断面図である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明および添付する図面を参照することによって、より明白となる。
 最初に、本発明に係るリチウムイオン電池用正極の好ましい実施形態を説明する。
 図1に示すリチウムイオン電池用正極1は、正極集電体2と、正極集電体2の表面に形成された正極活物質層3とを含む。正極活物質層3は、正極集電体2の表面に形成された内層4と、内層4の表面に形成された外層5とからなる。内層4および外層5はいずれも、正極活物質としての一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素、0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む。また、外層5における炭酸リチウムの濃度は、内層4における炭酸リチウムの濃度よりも高い。
 図1に示すように、厚さ方向で炭酸リチウムの濃度が不連続に変化する正極活物質層3は、例えば、以下の手順により形成することができる。まず、一般式(1)で表されるリチウム含有ニッケル酸化物と、結着剤とを分散媒に分散させることにより、内層4を形成するためのスラリーまたはペースト状の正極合剤を調製する。こうして得られた正極合剤を正極集電体の表面に塗布して、乾燥させることにより、内層4を形成する。次に、内層形成用正極合剤に用いたリチウム含有ニッケル酸化物と比べてリチウムの含有比率xが大きいリチウム含有ニッケル酸化物を用いること以外は上記と同様にして、外層形成用正極合剤を調製する。こうして得られた外層形成用正極合剤を、内層4の表面に塗付して、乾燥させることにより、外層5を形成する。
 図2に示すリチウムイオン電池用正極1aは、正極集電体2と、正極集電体2の表面に形成された正極活物質層3aとを含む。正極活物質層3aは、正極活物質としての一般式(1)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む。また、正極活物質層3aは、その内部に炭酸リチウムの濃度勾配を有する。正極活物質層3aにおける炭酸リチウムの濃度は、正極活物質層3aの表面側において高く、正極集電体2側において低い。
 図2に示すように、厚さ方向で炭酸リチウムの濃度が連続的に変化する正極活物質層3aは、例えば、以下の手順により形成することができる。まず、一般式(1)で表されるリチウム含有ニッケル酸化物と、結着剤とを分散媒に分散させることにより、スラリーまたはペースト状の正極合剤を調製する。こうして得られた正極合剤を正極集電体の表面に塗布して、乾燥させることにより、正極活物質層を形成する。
 次いで、こうして形成された正極活物質層の内部に炭酸リチウムの濃度勾配を形成するために、正極活物質層を、湿り空気および炭酸ガスの少なくともいずれか1種を含むガス流に曝す。これにより、正極活物質層3aの炭酸リチウム濃度に連続的な濃度勾配を与えることができる。正極活物質層3aの炭酸リチウム濃度は、表面側で高く、正極集電体2側にかけて低くなる。
 本実施形態に用いられる一般式(1)で表されるリチウム含有ニッケル酸化物は、通常、その表面に炭酸リチウムが付着している。このため、正極合剤には炭酸リチウムが含まれ、この正極合剤を塗布して形成される内層4、外層5および正極活物質層3aのいずれにおいても炭酸リチウムが含まれる。正極合剤には、リチウム含有ニッケル酸化物に予め付着していた炭酸リチウムの量に応じて、別途、炭酸リチウムを添加してもよい。
 なお、正極合剤には、さらに導電剤などの添加剤を含有させることができる。
 正極集電体2の具体例としては、リチウムイオン電池の正極に用いられる集電体が特に限定なく挙げられる。具体的には、アルミニウム、アルミニウム合金などを、箔、膜、フィルム、シートなどの形態で用いることができる。正極集電体2の厚みは、1~500μmの範囲で、リチウムイオン電池の容量、サイズなどに合わせて適宜設定することができる。
 正極活物質層3、3aに含まれる一般式(1)で表されるリチウム含有ニッケル酸化物において、xは、Liの含有比率を示す。このxの値は、電池の充放電により変動する。
 図1に示す正極1における正極活物質層3を形成する場合において、内層4を形成するための正極合剤に含まれるリチウム含有ニッケル酸化物(LixNi1-(p+q+r)CopAlqr2+y)のLiの含有比率x1と、外層5を形成するための正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率x2とは、いずれもリチウムイオン電池に対して充放電を行う前の状態において、x2>x1となるように設定される。
 内層4形成用正極合剤におけるLiの含有比率x1は、0.8~1.1が好ましく、0.9~1.0がより好ましい。x1が0.8を下回ると、リチウム含有ニッケル酸化物のリチウム含有量が不足する傾向があり、リチウムイオン電池の容量を低下させるおそれがある。一方、外層5形成用正極合剤におけるLiの含有比率x2は、1.0~1.4が好ましく、1.0~1.2がより好ましい。1.0~1.1が特に好ましい。x2が1.4を上回ると、リチウム含有ニッケル酸化物の表面に付着する炭酸リチウムの量が過剰になる傾向がある。この場合、リチウムイオンの挿入および脱離が炭酸リチウムによって阻害されるため、リチウムイオン電池の入出力特性を低下させるおそれがある。
 内層形成用正極合剤および外層形成用正極合剤の塗布および乾燥により形成された正極活物質層3は、通常、ローラなどにより数回プレスすることにより圧延される。圧延後の正極活物質層3において、正極活物質の充填密度は、2~3.9g/cm3であることが好ましい。
 外層5の厚さは、正極活物質層3全体の厚さに対して、2~80%が好ましく、5~50%がより好ましい。外層5の厚さの割合が全体の厚さの2%を下回ると、入出力特性を改善する効果が得られにくくなるおそれがある。逆に、外層5の厚さの割合が全体の厚さの80%を上回ると、内層4の厚さが小さくなりすぎる傾向があり、高温保存時のガス発生量を抑制する効果が得られにくくなるおそれがある。
 図2に示す正極1aにおける正極活物質層3aを形成する場合において、正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率xの範囲は、リチウムイオン電池に対して充放電を行う前の状態において、0.8≦x≦1.4が好ましく、0.9≦x≦1.1がより好ましい。xが0.8を下回ると、リチウム含有ニッケル酸化物のリチウム含有量が不足する傾向があり、リチウムイオン電池の容量を低下させるおそれがある。一方、xが1.4を上回ると、リチウム含有ニッケル酸化物の表面に付着する炭酸リチウムの量が過剰になる傾向がある。この場合、リチウムイオンの挿入および脱離が炭酸リチウムによって阻害されるため、リチウムイオン電池の入出力特性を低下させるおそれがある。
 図2に示す正極活物質層3aを、湿り空気を含むガス流に正極活物質を曝すことにより形成する場合において、湿り空気の相対湿度としては、1~70%RHが好ましく、5~50%RHがより好ましい。湿り空気の相対湿度が1%RHを下回ると、正極活物質層3aの内部に炭酸リチウムの濃度勾配を形成する効果が不十分になるおそれがある。湿り空気の相対湿度が70%RHを上回ると、正極活物質層3aに対して過剰に水分が付着する傾向がある。この場合、正極活物質に過剰の炭酸リチウムが付着するおそれがある。
 湿り空気の温度は、5~300℃が好ましく、20~110℃がより好ましい。湿り空気の温度が5℃を下回ると、正極活物質層3aの内部に炭酸リチウムの濃度勾配を形成する効果が不十分になるおそれがある。湿り空気の温度が300℃を上回ると、正極活物質に過剰の炭酸リチウムが付着するおそれがある。
 図2に示す正極活物質層3aを、炭酸ガスを含むガス流に正極活物質を曝すことにより形成する場合において、炭酸ガスを含むガス流の二酸化炭素の濃度は、0.01体積%以上が好ましく、0.03体積%以上がより好ましい。二酸化炭素の濃度が0.01体積%を下回ると、正極活物質層3aの内部に炭酸リチウムの濃度勾配を形成する効果が不十分になるおそれがある。
 炭酸ガスを含むガス流の温度は、5~300℃が好ましく、20~110℃がより好ましい。炭酸ガスを含むガス流の温度が5℃を下回ると、正極活物質層3aの内部に炭酸リチウムの濃度勾配を形成する効果が不十分になるおそれがある。炭酸ガスを含むガス流の温度が300℃を上回ると、正極活物質に過剰の炭酸リチウムが付着するおそれがある。
 本実施形態に用いられる一般式(1)で表されるリチウム含有ニッケル酸化物において、p、qおよびrは、順に、Co、Alおよび元素Mについての含有比率を示している。p、qおよびrの和(p+q+r)は、リチウム含有ニッケル酸化物中のNiに対して、異種元素としてのCo、Alおよび元素Mが置換している量を示す。(p+q+r)の範囲は、0<(p+q+r)≦0.7が好ましく、0.1≦(p+q+r)≦0.4がより好ましい。(p+q+r)が小さすぎる場合、すなわちCo、Alおよび元素Mによってリチウム含有ニッケル酸化物中のNiを置換している量が少なすぎる場合は、正極活物質としてのサイクル寿命および熱安定性が低下する傾向がある。逆に、(p+q+r)が大きすぎる場合、すなわちCo、Alおよび元素Mによる置換量が多すぎる場合は、正極活物質の容量が低下する傾向がある。
 Coの含有比率を示すpの範囲は、0≦p≦0.7が好ましく、0<p<0.7がより好ましく、0.1≦p≦0.3が特に好ましい。Alの含有比率を示すqの範囲は、0≦q≦0.3が好ましく、0<q<0.3がより好ましく、0.01≦q≦0.2が特に好ましい。元素Mの含有比率を示すrの範囲は、0≦r≦0.4が好ましい。なお、Niの含有比率を示す1-(p+q+r)の範囲は、0.3≦[1-(p+q+r)]<1であり、好ましくは、0.6≦[1-(p+q+r)]≦0.9である。
 元素Mとしては、遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素が挙げられる。NiおよびCoを除く遷移元素としては、Sc、Ti、V、Cr、Mn、Fe、Cu、Y、Zrなどが挙げられる。元素Mは、任意の構成元素であって、特に限定されないが、リチウム含有ニッケル酸化物が上記群を構成する元素を含有することにより、リチウム含有ニッケル酸化物を焼成により合成するときの焼結を促進することができる。また、上記群を構成する元素を含有することにより、リチウムイオン電池のサイクル特性や信頼性を向上させることができる。
 一般式(1)で表されるリチウム含有ニッケル酸化物は、元素Mを含まない態様であってもよい。この場合において、リチウム含有ニッケル酸化物は、一般式:LixNi1-(p+q)CopAlq2+y(0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q)≦0.7)で表される。
 一般式(1)で表されるリチウム含有ニッケル酸化物において、yは酸素過剰量または酸素欠損量を示し、その範囲は-0.1~0.1が好ましい。yが上記範囲を外れると、酸素過剰量または酸素欠損量が多くなりすぎて結晶構造が歪む傾向があり、充放電時の可逆性を低下させるおそれがある。
 一般式(1)で表されるリチウム含有ニッケル酸化物は、フッ素化処理が施されたものであってもよい。フッ素化処理の程度としては、リチウム含有ニッケル酸化物中のNi、Co、Alおよび元素Mの含有量の総和を1としたときに、フッ素の含有比率zとして、0≦z≦0.1が好ましい。Fの含有比率zを上記範囲に設定することにより、リチウムイオン電池の高温保存特性を改善させることができる。一方、zが0.1を上回るときは、Fの含有量が多くなりすぎて結晶構造が歪む傾向がある。この場合、充放電時の可逆性を低下させるおそれがある。
 正極合剤に含まれる結着剤としては、リチウムイオン電池の正極に用いられる結着剤を特に限定なく挙げることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体などの含フッ素ポリマー;スチレン-ブタジエンゴムなどのゴム;ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂が挙げられる。これらは1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 導電剤としては、黒鉛類;アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維、金属繊維などが挙げられる。
 正極活物質の含有割合は、正極活物質層の総量に対し、80~98質量%が好ましく、85~96質量%がより好ましい。結着剤の含有割合は、正極活物質層の総量に対し、10質量%以下が好ましく、1~10質量%がより好ましい。導電剤の含有割合は、正極活物質層の総量に対し、20質量%以下が好ましく、1~20質量%がより好ましい。
 正極活物質層の正極集電体側に含まれる炭酸リチウムの濃度は、高温保存時に炭酸リチウムの分解によるガス発生量が減少させるという観点から、正極活物質層の表面側に含まれる炭酸リチウムの濃度に対して、0.5~90%が好ましく、1~80%がより好ましく、1~50%が特に好ましい。
 なお、炭酸リチウムの濃度が高いリチウム含有ニッケル酸化物は、理由は定かではないが、炭酸リチウムの濃度が低いリチウム含有ニッケル酸化物に比べて入出力特性に優れる。しかし、高温保存時には、炭酸リチウムが分解されてガスが生じるため、電池の耐久性および信頼性を低下させるおそれがある。一方、正極活物質層の正極集電体2側に含まれる炭酸リチウムの濃度を、表面側に含まれる炭酸リチウムの濃度に対して0.5~90%の範囲に設定することで、ガスの発生を抑制することができる。
 炭酸リチウムの濃度は、エックス線光電子分光分析法(XPS)により測定することができる。炭酸リチウムの濃度は、例えば、炭酸リチウムに起因するC1sバンドのスペクトル強度と、リチウム含有ニッケル酸化物に起因するNi2pバンドのスペクトル強度との比(C1s/Ni2p)で表される。正極活物質層の表面側に含まれる炭酸リチウムの濃度が、正極活物質層の正極集電体側に含まれる炭酸リチウムの濃度より高いときには、正極活物質層の表面側におけるスペクトル強度の比(C1s/Ni2p)が、正極活物質層の正極集電体側におけるスペクトル強度の比(C1s/Ni2p)よりも高く現れる。
 次に、本発明に係るリチウムイオン電池の好ましい実施形態を説明する。
 本発明に係るリチウムイオン電池は、上述のリチウムイオン電池用正極を備えることに特徴を有しており、正極以外の他の構成要素については特に制限されない。
 図3に示すリチウムイオン電池10は、上記リチウムイオン電池用正極1と、リチウムを吸蔵および放出可能な負極12と、正極1および負極12の間に介在されたセパレータ13と、が渦巻状に捲回された電極群14を備えている。負極12は、負極集電体17と、負極集電体17の両側の表面に形成された負極活物質層18とを含む。
 電極群14は、図示を省略する非水電解質とともに、電池ケース19内に収容されている。なお、極板群14と電池ケース19の内周との間にも、セパレータが配置されている。電池ケース19は、一端が底部20により塞がれ、他端が開口した略円筒形の部材である。底部20は、負極端子を嵌め合わせるための貫通孔21を中央部分に備えている。貫通孔21は、負極側集電端子板22の凸部23によって封鎖されており、貫通孔21の縁部と凸部23の表面とは、シーム溶接などにより互いに接合されている。負極側集電端子板22の凸部23は、負極端子として兼用される。電池ケース19の他端は、封口板24と、封口板24の周縁に取り付けられた絶縁ガスケット25とによって封鎖されている。
 正極集電体2は、電極群14の捲回軸方向の一端26側に、正極活物質層3が形成されていない露出部27を備えている。露出部27は、電池ケース19内で電極群14の一端26側に配置される正極集電端子板28を介して、正極端子としても用いられる封口板24と電気的に接続している。一方、負極集電体17は、電極群14の捲回軸方向の他端29側に、負極活物質層18が形成されていない露出部30を備えている。露出部30は、電池ケース19内で電極群14の他端29側に配置される負極集電端子板22と電気的に接続している。正極集電体2の露出部27の先端は、電極群14の内周側へと塑性変形された平坦部31であって、平坦部31が正極集電端子板28に接合されている。同様に、負極集電体17の露出部30の先端も、電極群14の内周側へと塑性変形された平坦部32であって、平坦部32が負極集電端子板22に接合されている。このように、図3に示すリチウムイオン電池10は、電極群14の正極集電体2および負極集電体17から直接集電する、いわゆるタブレス集電構造を有している。
 負極12の負極活物質層18は、例えば、負極活物質と、結着剤とを分散媒に分散させて得られるスラリーまたはペースト状の負極合剤を、負極集電体17に塗布して乾燥させることにより形成される。こうして形成された負極活物質層18は、通常、ローラなどにより数回プレスすることにより圧延される。
 負極集電体17としては、リチウムイオン電池の負極に用いられる集電体が、特に限定なく挙げられる。具体的には、ステンレス鋼、ニッケル、銅などを、箔、膜、フィルム、シートなどの形態で用いることができる。負極集電体17の厚みは、1~500μmの範囲で、リチウムイオン電池の容量、サイズなどに合わせて適宜設定することができる。
 負極活物質としては、リチウムイオン電池に用いられる、リチウムの吸蔵および放出が可能な負極活物質が特に限定なく挙げられる。具体的には、グラファイト、非晶質カーボンなどの炭素材料;ケイ素およびその酸化物;スズおよびその酸化物などが挙げられる。
負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 結着剤としては、正極活物質層の形成に用いられる結着剤として例示したものと同様のものが挙げられる。
 負極合剤には、さらに導電剤などの添加剤を含有させることができる。導電剤としては、正極活物質層の形成に用いられる導電剤として例示したものと同様のものが挙げられる。
 負極活物質の含有割合は、負極活物質層の総量に対し、93~99質量%が好ましい。結着剤の含有割合は、負極活物質層の総量に対し、1~10質量%が好ましい。導電剤の含有割合は、負極活物質層の総量に対し、20%質量以下が好ましく、1~20質量%がより好ましい。
 セパレータ13は、正極1と負極12との間に介在して、正極1と負極12とを隔離する。セパレータ13としては、イオン透過度が大きく、機械的強度が充分な、絶縁性を有する微多孔性薄膜、織布および不織布が挙げられる。セパレータの材質は、ポリプロピレン、ポリエチレンなどのポリオレフィンが、耐久性に優れ、過熱時にシャットダウン機能を発揮できるという観点から好ましい。セパレータの厚さは、一般に5~300μmであるが、特に10~30μmが好ましい。さらに、セパレータは、1種の材料からなる単層膜であってもよく、2種以上の材料からなる複合膜または多層膜であってもよい。セパレータの空孔率は、30~70%が好ましく、35~60%がより好ましい。空孔率とは、セパレータ全体の体積に占める孔部の体積の割合を示す。
 非水電解質は、非水溶媒と、非水溶媒に溶解されるリチウム塩とを含む。
 非水溶媒としては、リチウムイオン電池の非水電解質に用いられる各種の非水溶媒を特に限定なく挙げることができる。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状炭酸エステル;DMC、EMC、ジエチルカーボネートなどの鎖状炭酸エステル;テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソランなどの環状エーテル;1,2-ジメトキシエタン、1,2-ジエトキシエタンなどの鎖状エーテル;γ-ブチロラクトンなどの環状エステル;酢酸メチルなどの鎖状エステルが挙げられる。これらは1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 リチウム塩としては、リチウムイオン電池の非水電解液に溶質として用いられる各種のリチウム塩が挙げられる。具体的には、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが挙げられる。これらは1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。リチウム塩の濃度は0.5~2mol/Lが好ましい。
 非水電解質は、さらに、炭素-炭素不飽和結合を少なくとも1つ有する環状炭酸エステルを含有させることが好ましい。このような環状炭酸エステルは、負極上で分解してリチウムイオン伝導性の高い被膜を形成する。この被膜は、充放電効率の向上に寄与する。炭素-炭素不飽和結合を少なくとも1つ有する環状炭酸エステルとしては、ビニレンカーボネート、3-メチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどが挙げられる。上記環状炭酸エステルは、水素原子の一部がフッ素原子で置換されていてもよい。上記環状炭酸エステルの非水溶媒に対する溶解量は、0.5~2mol/Lが好ましい。
 非水電解質は、さらに、過充電時に分解して電極上に被膜を形成するようなベンゼン誘導体を含んでいてもよい。このようなベンゼン誘導体は、過充電時に電池を不活性化する。具体的には、フェニル基、およびフェニル基に隣接する環状化合物基を有するベンゼン誘導体が挙げられ、さらに具体的には、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。ベンゼン誘導体の含有量は、非水溶媒全体の10体積%以下が好ましい。
 また、非水電解質は、ゲル状であってもよく、固体状であってもよい。ゲル状の非水電解質は、非水溶媒と、リチウム塩と、非水溶媒およびリチウム塩が保持される高分子材料とを含む。高分子材料としては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などが挙げられる。固体状の非水電解質としては、例えばリチウムイオン電池に用いられる高分子固体電解質を特に限定なく挙げることができる。
 以下、本発明を実施例によりさらに具体的に説明する。なお、本発明の範囲は実施例に何ら限定されるものではない。
 実施例1
 (1)正極活物質の作製
 炭酸リチウム(Li2CO3)と、Ni0.75Co0.2Al0.05(OH)2で表される共沈水酸化物とを、炭酸リチウムにおけるLiのモル数と、上記共沈水酸化物におけるNi、CoおよびAlの総和(Ni+Co+Al)のモル数との比が1:1となるように混合して、得られた混合物を、酸素雰囲気下において、700℃で20時間焼成した。焼成後、焼成物を解砕して分級することにより、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物(正極活物質A)の組成はLiNi0.75Co0.2Al0.052であって、Liの含有比率xは1.00であった。
 一方、Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.05:1となるように混合して、得られた混合物を、酸素雰囲気下において、700℃で20時間焼成した。焼成後、焼成物を解砕して分級することにより、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物(正極活物質B)の組成はLi1.05Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.05であった。
 (2)正極の作製
 90質量部の正極活物質Aと、5質量部のポリフッ化ビニリデン(PVDF)を含むN-メチル-2-ピロリドン(NMP)溶液と、を混合することにより、正極合剤スラリーAを得た。一方、90質量部の正極活物質Bと、5質量部のPVDFを含むNMP溶液と、を混合することにより、正極合剤スラリーBを得た。
 正極集電体としての厚み20μmのアルミニウム箔の両面に、正極合剤スラリーAを塗布して乾燥することにより、内層を形成した。次いで、内層の表面に、正極合剤スラリーBを塗布して乾燥することにより、外層を形成した。内層と外層との厚さの比は、4:1となるように調整した。得られた積層体を一対のローラで加圧して圧延することにより、総厚さが120μmの正極を得た。圧延後において、内層の厚さは40μm、外層の厚さは10μmであった。なお、正極集電体の長さ方向に沿った一辺に、正極集電体の端縁から数mm程度の幅で、内層および外層が形成されていない正極集電体の露出部を設けた。
 こうして得られた正極の内層および外層には、リチウムと、空気中の水分および二酸化炭素との反応により、微量の炭酸リチウムが生成していると考えられる。そこで、得られた正極の内層および外層をXPSにより観察したところ、炭酸リチウムの存在が検出された。また、内層および外層の炭酸リチウム濃度をXPSにより測定した結果、外層の炭酸リチウム濃度に対する内層の炭酸リチウム濃度の比率は、5%であった。
 (3)負極の作製
 95質量部の人造黒鉛粉末と、5質量部のPVDFを含むNMP溶液と、を混合することにより、負極合剤スラリーを得た。負極集電体としての厚み10μmの銅箔の両面に、負極合剤スラリーを塗布して乾燥することにより、負極活物質層を形成した。こうして得られた、負極集電体の両面に負極活物質層を備える積層体を、一対のローラで加圧して圧延することにより、総厚さが200μmの負極を得た。なお、負極集電体の長さ方向に沿った一辺に、負極集電体の端辺から数mm程度の幅で、負極活物質層が形成されていない負極集電体の露出部を設けた。
 (4)非水電解質の調製
 エチレンカーボネートと、エチルメチルカーボネートとを、1:3の体積比で混合した。こうして得られた非水溶媒に対して、ビニレンカーボネートと、LiPF6とを溶解させることにより、非水電解質を調製した。ビニレンカーボネートの含有割合は、非水溶媒の全量に対して1質量%となるように調整した。非水電解質中のLiPF6の濃度は、1.0mol/Lとなるように調整した。
 (5)円筒型電池の作製
 上記正極と、上記負極とを、正極および負極の間に、微多孔性セパレータ(ポリエチレンとポリプロピレンとの複合フィルム、セルガード(株)製の品番「2300」、厚さ25μm)を挟んで渦巻状に捲回することにより、電極群を得た。正極と負極とを重ね合わせる際には、正極集電体露出部と負極集電体露出部とが、電極群の捲回軸方向において互いに反対側の端部に配置されるように調整した。正極集電体露出部および負極集電体露出部は、各先端部を電極群の捲回軸側に折り曲げて、平坦部を形成した。正極集電体露出部の平坦部には、アルミニウム製の正極側集電端子板(厚み0.3mm)を溶接し、負極集電体露出部の平坦部には、ニッケル製の負極側集電端子板(厚み0.3mm)を溶接した。こうして得られた電極群を、直径18mm、高さ65mmの有底円筒形の電池ケースに挿入した。次いで、電池ケース内に、5.2mLの非水電解質を注液した。こうして、設計容量が2200mAhのリチウムイオン電池を得た。
 (6)リチウムイオン電池の物性評価
 得られたリチウムイオン電池を室温で約24時間放置することにより、開回路電圧を安定させた。その後、以下のようにして、電池の初期放電容量、入出力特性、および高温保存特性についての評価を行った。その結果を表1に示す。
 初期放電容量は次の手順により測定した。まず、電池を、20℃の雰囲気下において、充電電流0.2Cで4.2Vまで充電した。次いで、放電電流1Cで3Vまで放電させた。このときの放電容量を測定して、初期放電容量とした。
 入出力特性は次の手順により測定した。まず、電池を、20℃の雰囲気下において、充電電流0.2Cで充電状態(SOC)が50%になるまで充電した。その後30分間ほど、電池を室温で放置し、開回路電圧を安定させた。その後、電流値1Cで、各10秒間の充電および放電を行った。この時の充放電開始電圧V2(V)と、SOCが50%の状態における開回路電圧V1(V)との差を、流した電流値(1C=2200mA)で割ることにより、電流に対する電圧の変化率dV/dAを求めた。
 高温保存特性は次の手順により測定した。まず、電池を、20℃の雰囲気下において、充電電流0.2CでSOCが100%になるまで充電した。その後、60℃の恒温槽中において、電池を336時間放置した。恒温槽から電池を取り出して、室温まで十分に冷却させた後、ガスクロマトグラフ法により電池内部に発生したガス量およびそのガス中に含まれる炭酸ガス量を分析した。
 実施例2
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.030:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.030Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.030であった。このリチウム含有ニッケル酸化物を正極活物質Bに代えて用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例3
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.031:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.031Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.031であった。正極活物質Bに代えて上記リチウム含有ニッケル酸化物を用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例4
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.032:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.032Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.032であった。このリチウム含有ニッケル酸化物を正極活物質Bに代えて用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例5
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.034:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.034Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.034であった。このリチウム含有ニッケル酸化物を正極活物質Bに代えて用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例6
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.080:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.080Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.080であった。このリチウム含有ニッケル酸化物を正極活物質Bに代えて用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例7
 Li2CO3と、Ni0.75Co0.2Al0.05(OH)2とを、Liのモル数と、Ni、CoおよびAlの総和のモル数との比が1.140:1となるように混合したこと以外は実施例1と同様にして、平均粒径が10μmのリチウム含有ニッケル酸化物を得た。得られたリチウム含有ニッケル酸化物の組成はLi1.140Ni0.75Co0.2Al0.052であって、Liの含有比率xは1.140であった。このリチウム含有ニッケル酸化物を正極活物質Bに代えて用いることにより、正極の外層を形成したこと以外は、実施例1と同様にして電池を作製した。
 実施例8
 正極合剤スラリーAおよびBの塗布量を変更して、内層および外層の圧延後の厚さがいずれも25μmとなるように調整したこと以外は、実施例1と同様にして、電池を作製した。
 実施例9
 正極合剤スラリーAおよびBの塗布量を変更して、内層の圧延後の厚さが10μm、外層の圧延後の厚さが40μmとなるように調整したこと以外は、実施例1と同様にして、電池を作製した。
 実施例10
 正極合剤スラリーAおよびBの塗布量を変更して、内層の圧延後の厚さが47.5μm、外層の圧延後の厚さが2.5μmとなるように調整したこと以外は、実施例1と同様にして、電池を作製した。
 実施例11
 正極合剤スラリーAおよびBの塗布量を変更して、内層の圧延後の厚さが49μm、外層の圧延後の厚さが1μmとなるように調整したこと以外は、実施例1と同様にして、電池を作製した。
 実施例12
 実施例1で調製した正極合剤スラリーAを、正極集電体としての厚み20μmのアルミニウム箔の両面に塗布して、乾燥することにより、各層の厚さが50μmの正極活物質層を形成した。次いで、得られた正極活物質を、相対湿度が40%RH、温度が25℃の湿り空気流に2分間曝した。得られた正極を用いたこと以外は、実施例1と同様にして電池を作製した。
 比較例1
 正極集電体としての厚み20μmのアルミニウム箔の両面に、実施例1で調製した正極合剤スラリーAを塗布して乾燥した。乾燥後、一対のローラで加圧して圧延することにより、アルミニウム箔の両面にそれぞれ厚さ50μmの正極活物質層を備えた、総厚さ120μmの正極を得た。得られた正極を用いたこと以外は、実施例1と同様にして電池を作製した。
 比較例2
 正極集電体としての厚み20μmのアルミニウム箔の両面に、実施例1で調製した正極合剤スラリーBを塗布して乾燥した。乾燥後、一対のローラで加圧して圧延することにより、アルミニウム箔の両面にそれぞれ厚さ50μmの正極活物質層を備えた、総厚さ120μmの正極を得た。得られた正極を用いたこと以外は、実施例1と同様にして電池を作製した。
 比較例3
 正極集電体としての厚み20μmのアルミニウム箔の両面に、実施例1で調整した正極合剤スラリーBを塗布して乾燥することにより、内層を形成した。次いで、内層の表面に、実施例1で調製した正極合剤スラリーAを塗布して乾燥することにより、外層を形成した。内層と外層との厚さの比は4:1となるように調整した。得られた積層体を一対のローラで加圧して圧延することにより、総厚さが120μmの正極を得た。圧延後において、内層の厚さは40μm、外層の厚みは10μmであった。この正極は、正極活物質層の内層および外層の組成が、実施例1における内層および外層の組成と逆であった。
 こうして得られた正極を用いたこと以外は、実施例1と同様にして、電池10を作製した。
 比較例4
 実施例1で調製された正極活物質Aと正極活物質Bとを、8:2の質量比で混合した。こうして得られた混合物90質量部と、5質量部のPVDFを含むNMP溶液と、を混合することにより、正極合剤スラリーを調製した。得られた正極合剤スラリーを用いたこと以外は、比較例1と同様にして、電池を作製した。
 比較例5
 実施例1と同様にして作製した正極を、25℃の水に15分間浸漬することにより、正極の表面を水洗した。水洗後の正極を用いたこと以外は、実施例1と同様にして、電池を作製した。
 実施例2~11および比較例3における正極について、外層の炭酸リチウム濃度に対する内層の炭酸リチウム濃度の比率を、実施例1と同様にして測定した。実施例2~12および比較例1~5で得られた電池の初期放電容量、入出力特性および高温保存特性を、実施例1と同様にして測定した。測定結果を表1に示す。
 なお、入出力特性を示す変化率dV/dAは、比較例2における値を100とする相対値で示した。相対値が大きいほど、電流と電圧の勾配が小さく、入出力特性が優れていることを示す。
 下記表1において、「Liの含有比率x」は、正極活物質層に含まれるリチウム含有ニッケル酸化物のLiの含有比率を示す。正極活物質層が「内層」および「外層」の2層構造の場合は、各層に含まれるリチウム含有ニッケル酸化物についての含有比率を示す。また、「外層に対する内層のLiCO3濃度の比率」は、正極活物質層3を内層4と外層5との積層体として形成した場合において、XPSにより測定された、外層5における炭酸リチウムの濃度に対する内層4における炭酸リチウムの濃度の比率(%)を示す。
Figure JPOXMLDOC01-appb-T000001
 *1:実施例12の正極活物質層において、リチウム含有ニッケル酸化物のLiの含有比率xは、正極活物質層の表面側から正極集電体側にかけて、連続的に低くなるように変化していた。
 *2:比較例4の正極活物質層は、Liの含有比率xが互いに異なる2種のリチウム含有ニッケル酸化物を含有していた。
 *3:比較例5は、正極に対して水洗処理を施した。
 表1に示すように、実施例1の電池は、その入出力特性が、比較例2の電池と同等であるのに対し、発生ガス量およびCO2量を比較例2に比べて低減させることができた。また、実施例1の電池は、その発生ガス量およびCO2量が、比較例4(炭酸リチウム量の多いリチウム含有ニッケル酸化物と、炭酸リチウム量の少ないリチウム含有ニッケル酸化物との単純混合品)と同等であったのに対し、その入出力特性を比較例4に比べて向上させることができた。これは、リチウム含有ニッケル酸化物中に含有される炭酸リチウムが入出力特性を向上させる一方で、高温保存時に発生するガスは炭酸リチウムの分解によるものであると考えられる。
 また、実施例1の電池は、比較例3の電池と比べて入出力特性が向上し、発生ガス量およびCO2量が減少した。これは、実施例1の電池は入出力特性に優れた活物質層を上層に設けたために、充放電時に電極間に生じた電位差を入出力特性に優れた正極活物質に大きく与えることができたためであると考えられる。また、実施例1の電池は、正極活物質層全体に含まれる炭酸リチウム量が比較例3の電池と比べて少ないために、発生ガス量およびCO2量が減少したと考えられる。
 正極を水洗した比較例5の電池は、実施例1に比べて発生ガス量およびCO2量が抑制されたが、入出力特性が大幅に低下した。
 また、実施例1~7の電池から、正極活物質層の正極集電体側(内層側)に含まれる炭酸リチウムの濃度が、正極活物質層の表面側(外層側)に含まれる炭酸リチウムの濃度に対して減少していくにつれて、入出力特性が僅かに向上するのに対し、発生ガス量が大きく増加したことがわかる。これは、正極表面の正極活物質が正極全体の入出力特性に大きく寄与し、正極活物質層中に含まれる炭酸リチウムの量の総和が発生ガス量に大きく寄与するためと考えられる。従って、電池の入出力特性と、耐久性および信頼性とを両立させるためには、正極活物質層の正極集電体側に含まれる炭酸リチウムの濃度を、正極活物質層に表面側に含まれる炭酸リチウムの濃度に対して1~80%とすることが好ましいことがわかる。
 さらに、実施例1および8~11の電池は、実施例11の電池を除いて入出力特性は同等であるが、発生ガス量およびCO2量が異なった。これは、正極活物質層表面の正極活物質が正極全体の入出力特性に大きく寄与しているためと考えられる。実施例11の電池は、入出力特性に優れた正極活物質を含む外層の厚みが薄すぎたために、充放電に伴って正極活物質層の表面に形成される非水電解質の分解物などに由来する被膜によって、入出力特性に優れた正極活物質が覆われたと考えられる。従って、電池の入出力特性と、耐久性および信頼性とを両立させるためには、外層の厚みを、正極活物質全体の厚みに対して5~50%とすることが好ましいことがわかる。
 本発明のリチウムイオン電池用正極およびリチウムイオン電池は、入出力特性、耐久性および信頼性に優れていることから、例えば、高い出力が要求される、電気自動車、ハイブリッドカー、電動アシスト自転車、電動工具、非常用電源、負荷平準用電源などの電源として好適である。

Claims (6)

  1.  正極集電体と、前記正極集電体の表面に形成された正極活物質層と、を備え、
     前記正極活物質層は、一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素、0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含み、
     前記正極活物質層は、炭酸リチウムの濃度が高い高濃度領域と、炭酸リチウムの濃度が低い低濃度領域とを備え、
     前記高濃度領域が、前記正極活物質層の表面から全厚みの2~80%の範囲を占め、前記低濃度領域が、前記正極活物質層の前記正極集電体側の残りの範囲を占めることを特徴とするリチウムイオン電池用正極。
  2.  前記高濃度領域における炭酸リチウムの濃度に対する前記低濃度領域における炭酸リチウムの濃度の比率が0.5~90%である請求項1に記載のリチウムイオン電池用正極。
  3.  正極集電体の表面に、一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素、0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む内層形成用正極合剤を塗布して内層を形成する工程と、
     前記内層の表面に、前記一般式(1)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む外層形成用正極合剤を塗布して外層を形成する工程と、を含み、
     前記外層形成用正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率x2が、前記内層形成用正極合剤に含まれるリチウム含有ニッケル酸化物のLiの含有比率x1より大きいことを特徴とするリチウムイオン電池用正極の製造方法。
  4.  前記x1が0.8~1.1であり、前記x2が1.0~1.4である請求項3に記載のリチウムイオン電池用正極の製造方法。
  5.  正極集電体の表面に、一般式(1):LixNi1-(p+q+r)CopAlqr2+y(Mは遷移元素(NiおよびCoを除く)、Mg、Ca、ZnおよびBiからなる群より選ばれる少なくとも1種の元素、0.8≦x≦1.4、-0.1≦y≦0.1、0<(p+q+r)≦0.7)で表されるリチウム含有ニッケル酸化物と、炭酸リチウムとを含む正極合剤を塗布して正極活物質層を形成する工程と、
     前記正極活物質層を、湿り空気および炭酸ガスの少なくともいずれか1種を含むガス流に曝す工程と、を含むことを特徴とするリチウムイオン電池用正極の製造方法。
  6.  請求項1に記載の正極と、負極と、前記正極および前記負極の間を隔離するセパレータと、非水電解質とを備えることを特徴とするリチウムイオン電池。
PCT/JP2010/007176 2010-03-31 2010-12-09 リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池 WO2011121691A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117029491A KR101313437B1 (ko) 2010-03-31 2010-12-09 리튬이온 전지용 양극, 그 제조방법, 및 상기 양극을 이용한 리튬이온전지
US13/377,112 US8658312B2 (en) 2010-03-31 2010-12-09 Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
JP2012507923A JP5391328B2 (ja) 2010-03-31 2010-12-09 リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池
CN201080023178.8A CN102449818B (zh) 2010-03-31 2010-12-09 锂离子电池用正极、其制造方法以及使用了所述正极的锂离子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-082900 2010-03-31
JP2010082900 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011121691A1 true WO2011121691A1 (ja) 2011-10-06

Family

ID=44711487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007176 WO2011121691A1 (ja) 2010-03-31 2010-12-09 リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池

Country Status (5)

Country Link
US (1) US8658312B2 (ja)
JP (1) JP5391328B2 (ja)
KR (1) KR101313437B1 (ja)
CN (1) CN102449818B (ja)
WO (1) WO2011121691A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037774A (ja) * 2011-08-03 2013-02-21 Toyota Motor Corp リチウムイオン二次電池用正極の製造方法
JP2015128052A (ja) * 2013-11-28 2015-07-09 株式会社Gsユアサ 蓄電素子
JP2018061019A (ja) * 2016-09-30 2018-04-12 旭化成株式会社 非水系リチウム蓄電素子
US10541413B2 (en) 2016-04-11 2020-01-21 Tesla, Inc. Drying procedure in manufacturing process for cathode material
JP2020205266A (ja) * 2016-05-27 2020-12-24 ユミコア 小粒径のニッケルリチウム金属複合酸化物粉体の製造方法
WO2022202291A1 (ja) * 2021-03-23 2022-09-29 三洋電機株式会社 非水電解質二次電池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2517460A (en) * 2013-08-21 2015-02-25 Univ Newcastle Metal-air batteries
JP2015115244A (ja) * 2013-12-13 2015-06-22 株式会社Gsユアサ リチウム二次電池用正極、リチウム二次電池、バッテリーモジュール、及びバッテリーモジュールを搭載した自動車
CN105895949A (zh) * 2014-10-08 2016-08-24 江苏海四达电源股份有限公司 高容量大电流放电的圆柱型2200mAh锂离子动力电池制备
KR20170005531A (ko) 2015-07-06 2017-01-16 전영권 이온전지
US10403447B2 (en) 2016-01-22 2019-09-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
EP3392897B1 (en) * 2016-01-22 2020-06-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
TWI624980B (zh) 2016-01-22 2018-05-21 Asahi Chemical Ind 非水系鋰型蓄電元件
CN108475587B (zh) 2016-01-22 2019-07-09 旭化成株式会社 非水系锂型蓄电元件
EP3770933B1 (en) 2016-01-22 2022-01-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
CN110164700B (zh) 2016-01-22 2021-07-30 旭化成株式会社 非水系锂型蓄电元件
CN108475588B (zh) 2016-01-22 2020-06-12 旭化成株式会社 非水系锂蓄电元件
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
CN107785578B (zh) * 2016-08-25 2019-06-11 宁德时代新能源科技股份有限公司 正极添加剂及其制备方法、正极片及锂离子二次电池
WO2018164640A1 (en) * 2017-03-08 2018-09-13 Nanyang Technological University Electrode, electrochemical cell and methods of forming the same
WO2019022541A2 (ko) * 2017-07-26 2019-01-31 주식회사 엘지화학 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
KR102160572B1 (ko) * 2017-07-26 2020-09-28 주식회사 엘지화학 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
CN109119674B (zh) * 2018-10-16 2024-07-05 苏州创能新能源实业有限公司 一种动力锂电池
KR20210055591A (ko) * 2019-11-07 2021-05-17 주식회사 엘지화학 Lno 함량이 상이한 이중층 구조의 합제층을 포함하는 양극 및 이를 포함하는 이차전지
CN112701248A (zh) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 一种正极极片及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329268A (ja) * 1991-05-02 1992-11-18 Sony Corp 非水電解質二次電池
JPH05182667A (ja) * 1991-12-28 1993-07-23 Sony Corp 正極材料の製造方法
JPH07245105A (ja) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池とその正極活物質
JP2007227310A (ja) * 2006-02-27 2007-09-06 Toyota Motor Corp リチウムイオン二次電池、及びその製造方法
JP2009245954A (ja) * 2009-07-28 2009-10-22 Toyota Motor Corp 被覆正極活物質、非水系二次電池用正極、及び、非水系二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020112A1 (en) 1991-04-26 1992-11-12 Sony Corporation Nonaqueous electrolyte secondary battery
JP4100341B2 (ja) * 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2006127955A (ja) 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP5230108B2 (ja) * 2007-01-26 2013-07-10 三洋電機株式会社 非水電解質二次電池
JP2008300302A (ja) * 2007-06-04 2008-12-11 Panasonic Corp 非水電解質二次電池及び非水電解質二次電池用正極の製造方法
CN101651211A (zh) * 2008-08-11 2010-02-17 比亚迪股份有限公司 一种正极材料组合物和包括该组合物的正极及电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329268A (ja) * 1991-05-02 1992-11-18 Sony Corp 非水電解質二次電池
JPH05182667A (ja) * 1991-12-28 1993-07-23 Sony Corp 正極材料の製造方法
JPH07245105A (ja) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池とその正極活物質
JP2007227310A (ja) * 2006-02-27 2007-09-06 Toyota Motor Corp リチウムイオン二次電池、及びその製造方法
JP2009245954A (ja) * 2009-07-28 2009-10-22 Toyota Motor Corp 被覆正極活物質、非水系二次電池用正極、及び、非水系二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037774A (ja) * 2011-08-03 2013-02-21 Toyota Motor Corp リチウムイオン二次電池用正極の製造方法
JP2015128052A (ja) * 2013-11-28 2015-07-09 株式会社Gsユアサ 蓄電素子
US9350049B2 (en) 2013-11-28 2016-05-24 Gs Yuasa International Ltd. Electric storage device and electric storage apparatus
US10541413B2 (en) 2016-04-11 2020-01-21 Tesla, Inc. Drying procedure in manufacturing process for cathode material
JP2020205266A (ja) * 2016-05-27 2020-12-24 ユミコア 小粒径のニッケルリチウム金属複合酸化物粉体の製造方法
JP2018061019A (ja) * 2016-09-30 2018-04-12 旭化成株式会社 非水系リチウム蓄電素子
WO2022202291A1 (ja) * 2021-03-23 2022-09-29 三洋電機株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US8658312B2 (en) 2014-02-25
KR101313437B1 (ko) 2013-10-01
CN102449818A (zh) 2012-05-09
KR20120024742A (ko) 2012-03-14
JPWO2011121691A1 (ja) 2013-07-04
JP5391328B2 (ja) 2014-01-15
US20120094177A1 (en) 2012-04-19
CN102449818B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5391328B2 (ja) リチウムイオン電池用正極、その製造方法、および前記正極を用いたリチウムイオン電池
US11637277B2 (en) Positive-electrode active material and battery
JP5260821B2 (ja) リチウムイオン二次電池
JP5917049B2 (ja) 非水電解質二次電池及びその製造方法
JP2013137947A (ja) リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
WO2010125729A1 (ja) 非水電解質二次電池用正極板およびその製法並びに非水電解質二次電池
JP2014194842A (ja) リチウムイオン二次電池
JP2007335143A (ja) リチウムイオン二次電池
JP5813336B2 (ja) 非水電解質二次電池
US10497928B2 (en) Positive-electrode active material and battery
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
WO2012111547A1 (ja) 非水電解質二次電池及びその製造方法
WO2021117480A1 (ja) 非水電解液二次電池
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
US10749167B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP6920639B2 (ja) 非水電解質二次電池用正極
WO2021111931A1 (ja) 非水電解液二次電池
JP6119641B2 (ja) 円筒形非水電解液二次電池
WO2017056423A1 (ja) 非水電解質二次電池
JP2006156021A (ja) 非水電解質二次電池
WO2017022222A1 (ja) 非水電解質二次電池
JP2013137939A (ja) 非水電解質二次電池
JP7117539B2 (ja) 負極活物質および電池
JPWO2020110690A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6756301B2 (ja) 負極活物質粒子、負極、リチウムイオン二次電池、および負極活物質粒子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023178.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13377112

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117029491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848873

Country of ref document: EP

Kind code of ref document: A1