WO2011120372A1 - 光纤故障检测***、方法、光开关和无源光网络*** - Google Patents

光纤故障检测***、方法、光开关和无源光网络*** Download PDF

Info

Publication number
WO2011120372A1
WO2011120372A1 PCT/CN2011/071672 CN2011071672W WO2011120372A1 WO 2011120372 A1 WO2011120372 A1 WO 2011120372A1 CN 2011071672 W CN2011071672 W CN 2011071672W WO 2011120372 A1 WO2011120372 A1 WO 2011120372A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
face
fiber
optical switch
apc
Prior art date
Application number
PCT/CN2011/071672
Other languages
English (en)
French (fr)
Inventor
温运生
赵峻
王世军
单小磊
王波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011120372A1 publication Critical patent/WO2011120372A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention relates to optical network technologies, and in particular, to a fiber fault detection system, method, optical switch, and passive optical network system. Background technique
  • optical networks are becoming more and more popular in people's daily work and life.
  • the communication of the optical network is completed by a network composed of optical fibers, and the failure of the optical fiber during use causes the data to be transmitted. In this case, it is necessary to quickly locate the location where the optical fiber is faulty, so as to facilitate troubleshooting.
  • a passive optical network is a point-to-multipoint optical access network system that typically distributes optical signals to individual light by installing a 1:N splitter at the output of an Optical Line Terminal (OLT).
  • Optical Network Unit ONU:
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • OLT optical multiplexer
  • OMU optical measurement unit
  • the OMU needs to communicate with the OMT through the ONU. Therefore, the ONU cannot communicate with the OMT through the ONU during the deployment and acceptance phase of the optical network, and the external power source is required to complete the mutual relationship between the optical signal and the electrical signal. change.
  • the prior art method of detecting fiber failure is not only costly, but usually only detects the entire light from the OLT to the ONU. Whether the fiber is faulty or not can not be responsible for the failure of the fiber. Summary of the invention
  • An object of the present invention is to provide a fiber fault detection system and method, an optical switch for optical fiber fault detection, and a passive optical network system, which are used to solve the problems in the prior art.
  • an embodiment of the present invention provides a fiber fault detection system, including a test device, an optical fiber to be tested, and an optical switch, wherein the optical fiber to be tested is connected between the test device and the optical switch;
  • the optical switch includes a first ferrule and a second ferrule, and the first ferrule includes a light transmitting surface respectively disposed at two ends thereof and a first inclined surface physically contacting the APC end surface, and the second ferrule includes a plurality of ferrules respectively disposed thereon a second APC end surface and a reflective surface at both ends, wherein when the first and second APC end faces are opposite, the optical switch is closed, and when the first and second APC end faces are separated, the optical switch Disconnecting;
  • the test device is configured to transmit a test signal to the optical fiber to be tested, and determine whether the optical fiber to be tested is present by detecting whether a reflected signal reflected by the test signal when the optical switch is closed is received. malfunction.
  • the embodiment of the present invention further provides an optical switch, including: a first ferrule and a second ferrule; one end of the first ferrule is a light transmitting surface, and the other end is a first inclined surface physically contacting the APC end surface; One end of the second ferrule is a second APC end face, and the other end is a reflective surface; the first APC end face and the second APC end face have the same radius of curvature and are oppositely disposed; when the first APC end face and the first When the two APC end faces are closed, the optical switch is closed, and when the first APC end face is separated from the second APC end face, the optical switch is turned off.
  • an optical switch including: a first ferrule and a second ferrule; one end of the first ferrule is a light transmitting surface, and the other end is a first inclined surface physically contacting the APC end surface; One end of the second ferrule is a second APC end face, and the other end is a reflective surface; the first
  • the embodiment of the present invention further provides a fiber fault detection method, including: transmitting a test signal to an optical switch through an optical fiber to be tested, wherein the optical switch includes a first ferrule and a second ferrule, and the first ferrule includes The light transmissive surface and the first inclined surface respectively disposed at the two ends thereof are physically contacted with the APC end surface, and the second ferrule includes a second APC end surface and a reflective surface respectively disposed at two ends thereof, wherein the transparent surface is connected to the waiting surface Detecting an optical fiber; detecting whether a reflected signal of the test signal is reflected and returned on a reflective surface of the second ferrule when the first APC end surface and the second APC end surface of the optical switch are mutually aligned, The optical switch is closed when the first APC end face and the second APC end face are opposite each other; and determining whether the optical fiber to be tested is faulty according to the detection result.
  • An embodiment of the present invention further provides a passive optical network system, including: an optical line terminal, an optical distribution network, and a plurality of optical network units, wherein the optical distribution network includes a beam splitter, and the optical splitter is connected to the optical fiber through a trunk optical fiber.
  • the optical line terminal is respectively connected to the plurality of optical network units through a plurality of branch fibers, the optical distribution network is provided with a plurality of optical switches, and the optical switches are respectively coupled to their corresponding branch fibers,
  • the optical switch includes a first ferrule and a second ferrule, and the first ferrule includes a transparent surface disposed at two ends thereof and a first inclined surface physically contacting the APC end surface, and the second ferrule includes two ferrules respectively disposed therein a second APC end surface and a reflecting surface of the end; wherein, when the first APC end surface and the second APC end surface are opposite, the optical switch is closed, when the first APC end surface and the second APC end surface are separated The optical switch is disconnected.
  • the solution provided by the embodiment of the invention provides an optical switch that can be used for detecting fiber faults on the fiber to be tested, and the optical switch can respectively reflect and absorb the test signal in the closed state and the off state, thereby, the central end test device Whether the fiber to be tested is faulty can be determined by transmitting a test signal and detecting whether a reflected signal is received. Since the state switching of the optical switch can be realized simply by controlling the abutment and separation of the APC end faces, it is not necessary to communicate with the test device through the user side device during the fiber failure detection, and on the other hand, due to the APC end face The coupling and separation can be achieved mechanically, without the need for an external power source for photoelectric conversion and at a lower cost.
  • the optical switch can be installed at different positions of the optical fiber to be detected to detect whether there is a fault in different positions of the optical fiber, determine the specific position of the optical fiber in the optical fiber, and improve the efficiency and accuracy of detecting the optical fiber fault.
  • FIG. 1 is a schematic structural view 1 of an optical switch according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view 2 of an optical switch according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first embodiment of an optical fiber fault detection system according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a second embodiment of an optical fiber fault detection system according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a fiber fault detection system applied to a PON system according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a specific embodiment of a fiber fault detection method according to an embodiment of the present invention. Specific form
  • Embodiment 1 of an optical switch for performing fiber fault detection according to an embodiment of the present invention
  • FIG. 1 is a schematic structural diagram 1 of an optical switch for optical fiber fault detection according to an embodiment of the present invention.
  • an optical switch according to an embodiment of the present invention includes a first ferrule 10 and a second ferrule 20, wherein one end of the first ferrule 10 is a first slanted physical contact (APC) end face 101. The other end is a transmissive end face 103; one end of the second ferrule 20 is a second APC end face 102, and the other end is a physical contact (PC) end face 104 having a total reflection function, a first APC end face 101 and a second APC.
  • the end faces of the end faces 102 have the same radius of curvature and are disposed oppositely, and the first ferrule and the second ferrule may be made of a material such as an optical fiber or a ceramic.
  • the transmissive end face 103 can serve as a receiving/reflecting end face of the optical signal.
  • the test signal provided by the external test equipment can enter the first ferrule 10 through the transmissive end face 103, propagate inside the first ferrule 10 and reach the first APC end face 103.
  • the optical switch When the first APC end face 101 and the second APC end face 102 are separated, the optical switch is in an open state, at which time the first APC end face 101 fully absorbs the test signal transmitted from the transmissive end face 103.
  • the optical switch When the first APC end face 101 and the second APC end face 102 are aligned, the optical switch is closed.
  • the test signal will pass through the mating end faces of the first APC end face 101 and the second APC end face 102 to reach the PC end face 104.
  • the PC end face 104 further reflects the test signal, so that the test signal returns according to the original path and passes
  • the transmissive end face 103 is returned to the above external test device.
  • the second APC end face 102 and the first APC end face 101 can be joined or separated by driving the up and down movement of the second ferrule 20.
  • the optical switch provided by the embodiment of the present invention can be applied to a fiber optic network to implement fault detection of the fiber to be tested.
  • a technical solution of an embodiment of the present invention is introduced by using a Passive Optical Network (PON) as an example.
  • PON Passive Optical Network
  • the test device can be connected to the backbone fiber, and the optical switch is usually installed at the other end of the branch fiber opposite to the test device.
  • the branch fiber is faulty detected, the light on the branch fiber to be tested can be controlled.
  • the first APC end face 101 and the second APC end face 102 of the switch are coupled to each other.
  • the test device can send a test signal to the optical switch through the branch fiber to be tested to send a test signal, and if the branch fiber is normal, the test is performed.
  • the signal will pass through the mating end faces of the first APC end face 101 and the second APC end face 102 to reach the PC end face 103, and full-emission total reflection occurs on the PC end face 103, and the reflected signal will return to the test equipment along the original path of the optical fiber;
  • the test device cannot receive the reflected light. Therefore, the test device can determine whether the branch fiber to be tested is faulty by detecting whether the reflected light is received.
  • the first APC end face 101 in the optical switch on the non-measuring branch fiber can be controlled during fault detection. Separating from the second APC end face 102, the corresponding optical switch is turned off, so that the first APC end face 101 absorbs all the test signals transmitted to the local, so that only the optical switch on the optical fiber to be detected performs total reflection of the test signal. .
  • the optical switch used for the optical fiber fault detection in the embodiment of the present invention is installed at different positions of each fiber branch in the PON network, and can easily detect whether the optical fiber to be detected between the test device and the optical switch is faulty, because the optical fiber is cheap, and No external power supply is required, which reduces the cost of optical switches that are responsible for fiber fault location.
  • the first APC end face and the second end of the optical switch on the optical fiber to be detected are The APC end faces are aligned so that the test signal is totally reflected after reaching the PC end face, and the first APC end face of the optical switch on the non-detection fiber is separated from the second APC end face, so that the test signal reaches the first APC end face. All absorbed, so as to ensure that only the test signal of the optical switch on the fiber to be detected can reach the test device, and the optical switch is determined by detecting the different positions of the fiber by installing the optical switch at different positions of the fiber to be detected. The location, which improves the efficiency and accuracy of detecting faults.
  • Embodiment 2 of an optical switch for optical fiber fault detection according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of an optical switch used for optical fiber fault detection according to an embodiment of the present invention.
  • the optical switch according to the embodiment of the present invention further includes: a wavelength division multiplexer 105 and a driving device 106, wherein the wavelength division multiplexer 105 is configured to transmit the test signal sent by the testing device to the optical fiber to be tested. The communication signal is separated and the test signal is conducted to the transmissive end face of the optical switch.
  • the driving device 106 is for driving the engagement or separation of the first APC end face 101 and the second APC end face 102, and can be electrically driven and manually driven.
  • the embodiment of the present invention separates the test signal and the communication signal by the wavelength division multiplexer, so that the detection of the fiber failure does not affect the normal communication of the PON network, and the efficiency and mobility of detecting the fault are improved.
  • the optical switch in the embodiment of the present invention is completely It is made of fiber and has low cost.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of an optical fiber fault detection system according to an embodiment of the present invention.
  • the test fiber fault detection system of the embodiment of the present invention includes a test device 30, an optical fiber to be tested, and an optical switch 31, wherein the test device 30 is configured to transmit a test signal, and test according to whether or not the optical switch is totally reflected back. The signal is used to determine whether the fiber to be tested is faulty.
  • the optical switch 31 can adopt the optical switch described in the above embodiments.
  • the first ferrule 10 and the second ferrule 20 can include the first ferrule 10 and the second ferrule 20, wherein one end of the first ferrule 10 is The first APC end face 101 has a transmissive end face 103 at the other end, the second ferrule 20 has a second APC end face 102 at one end, and the other end is a PC end face 104 having a total reflection function, a first APC end face 101 and a second APC end face 102.
  • the end faces have equal radii of curvature and are oppositely arranged.
  • the test signal When the first APC end face 101 and the second APC end face 102 are aligned, the test signal will pass through the mating end faces of the first APC end face 101 and the second APC end face 102 to reach the PC end face, and the PC end face totally reflects the test signal.
  • the test signal will return to the original path and return to the test device 30 through the fiber to be tested; when the first APC end face 101 and the second APC end face 102 are separated, the first APC end face 101 will be transmitted from the transmissive end face 103.
  • the test signal is fully absorbed to prevent the test signal from being reflected back.
  • the test device transmits the test signal and receives the test signal of the total reflection to determine whether the fault is faulty, and the first APC end face 101 and the second APC end face of the optical switch on the fiber to be detected are required. 102 pairs, so that the test signal is totally reflected after reaching the end face of the PC, and the first APC end face 101 and the second APC end face 102 of the optical switch on the non-detection fiber are separated, so that the test signal reaches the first APC end face 101.
  • FIG. 4 is a schematic structural diagram of a second embodiment of an optical fiber fault detection system according to an embodiment of the present invention.
  • the optical switch in the optical fiber fault detection system of the embodiment of the present invention further includes: a first wavelength division multiplexer 105. a second wavelength division multiplexer io and a driving device 106, wherein the wavelength division multiplexer 105 and the second wavelength division multiplexer io are configured to transmit the test signal sent by the testing device 30 and the optical fiber to be tested under normal working conditions.
  • the communication signal is separated, and the test signal is conducted to the transmissive end face of the optical switch, and the test device 30 for totally reflecting back, the driving device 106 is used to drive the alignment of the first APC end face 101 and the second APC end face 102 or Separation, electronic control mode and manual mode can be used.
  • FIG. 5 is a flowchart of the second embodiment of the optical fiber fault detection system according to the embodiment of the present invention. As shown in Figure 5,
  • Step 501 The test signal transceiver device transmits a test signal.
  • FIG. 6 is a schematic structural diagram of a PON network in a system for testing a fiber fault location according to an embodiment of the present invention.
  • the PON network in the optical network according to the embodiment of the present invention includes an optical line terminal OLT, ATB/TB, and light.
  • a fiber distribution terminal FDT
  • an ONU a test device
  • an optical switch wherein the test device can be implemented by an Optical Time Domain Reflectometer (ODTR), and the OTDR is coupled to the optical fiber of the output end of the OLT through WDM, and the optical switch
  • the optical switch includes an optical switch 1, an optical switch 2, and an optical switch.
  • the optical switch can be installed on the optical fiber of each output port of the optical splitter, the optical fiber of the output port of the ATB/TB, and the optical fiber of the input end of the ONU. 3 and the optical switch 4, because the OTDR and the ONU cannot communicate or are interrupted, it is necessary to detect whether the optical fiber between the OTDR and the ONU is faulty and the location of the fault.
  • first test signals of different wavelengths are transmitted through the test equipment.
  • a test signal with a wavelength between 1625-1675 nm can be selected as the test signal, and the test signal and the communication signal propagate along the optical fiber, and then pass.
  • the optical splitter separates the two, wherein the test signal is conducted by the optical splitter to each optical switch, and the first APC end face and the second APC end face of each optical switch are separated, so the test signal will be the first in each optical switch.
  • An APC end face is fully absorbed and the communication signal continues along the fiber.
  • Step 502 Align the first APC end face and the second APC end face in the optical switch 1.
  • the first APC end face and the second APC end face of the optical switch at the other end of the fiber to be detected are aligned, and the first APC end face and the other optical switch are The two APC end faces are kept separated so that the test signal is completely absorbed at the first APC end face, avoiding the test signal conducted on other optical fibers being reflected or totally reflected by the optical switch on the optical fiber, reducing the test signal noise received by the test device. Opportunity to improve the accuracy of detecting fiber faults.
  • the first APC end surface and the second APC end surface of the optical switch 1 are aligned, and the first APC end surface and the second APC end surface of the other optical switches are kept separated, so that other non-to-be-detected
  • the first APC end face of the optical switch on the optical fiber can completely absorb the test signal, minimize the test signal reflected by the optical switch on the optical fiber that does not need to be detected, avoid the influence of the test signal noise on the detection result, and improve the test fiber. Accuracy, and the test signal smoothly reaches the end face of the PC in the optical switch 1.
  • the driving and disengaging and separating of the first APC end face and the second APC end face can be driven by the driving device
  • the dynamic mode includes electronically controlled driving and manual driving.
  • the driving device can be realized by an electrically controlled driving or a manually driven single pole double throw switch.
  • Step 503 The PC end face in the optical switch 1 totally reflects the test signal.
  • the test signal from the test device reaches the transmissive end face of the optical switch 1, and proceeds to pass through the first APC end face in the optical switch and the opposite end face of the second APC end face to reach the PC end face with total reflection function, and the PC end face will be tested.
  • the signal is totally reflected, and the fully reflected test signal will pass through the opposite end faces of the first APC end face and the second APC end face, and then return to the test device according to the original path of the fiber to be detected, and then enter step 504.
  • Step 504 If the test device receives the test signal that the PC end face of the optical switch 1 is totally reflected back, it indicates that the fiber to be detected in the segment has no fault, otherwise, the fiber to be detected is faulty.
  • test device does not receive the test signal that the optical end of the optical switch 1 is totally reflected back, it indicates that the optical fiber to be detected between the OTDR and the optical switch 1 is faulty, and the test signal cannot reach the PC end surface of the optical switch 1 or is totally reflected.
  • the test signal cannot be returned to the test device; if the test device receives the test signal that the optical end of the optical switch 1 is totally reflected back, it indicates that the fiber to be detected is not faulty.
  • the first APC end face and the second APC end face in the optical switch 1 are separated by the driving device, and then the first APC end face of the optical switch 2 is driven by the driving device. And the second APC end face is matched, so that only the optical switch 2 can totally reflect the received test signal. If the test device does not receive the test signal that is totally reflected back, it indicates that the optical fiber is faulty, since it has been detected.
  • the optical fiber between the OTDR and the optical switch 1 is not faulty, it indicates that the fault exists on the optical fiber between the optical switch 1 and the optical switch 2; if the test device receives the test signal that is totally reflected back, the optical switch 1 and the optical switch 2 are illustrated. There is no fault in the fiber between the two.
  • the optical switch 1 and the optical switch 2 When the optical fiber between the optical switch 1 and the optical switch 2 is not faulty, the first APC end face and the second APC end face in the optical switch 2 are separated, and then the first APC end face and the first in the optical switch 3 are driven by the driving device.
  • the two APC end faces are opposite, and the optical switch 3 is installed at the ONU of the user end.
  • the user can contact the user to manually connect the first APC end face and the second APC end face in the optical switch 3, or can be electronically controlled. .
  • test equipment does not receive the test signal that is totally reflected back, then The barrier exists on the optical fiber between the optical switch 2 and the optical switch 3; if the test device receives the test signal that is totally reflected back, it indicates that the optical fiber between the optical switch 2 and the optical switch 3 is not faulty.
  • the first APC end face and the second APC end face are combined in the optical switch at different positions on the optical fiber, so that the test signal reaches the PC end face with the total reflection function and is totally reflected to the total reflection test.
  • the signal returns to the test equipment along the original path of the fiber to be detected, while keeping the first APC end face and the second APC end face of the other optical switches on the optical network separated, so that the first APC end face of the optical switch reaching the other position is tested.
  • the signal is fully absorbed, and the optical switch is installed at different positions of the fiber to be detected to determine the location of the faulty fiber, including whether the fault is indoors or outdoors, and can effectively reduce the influence of test signal noise and improve the accuracy of fault detection. Sex and efficiency, reducing the interruption time of communication in optical networks.
  • FIG. 7 is a flowchart of a specific embodiment of an optical fiber fault detecting method according to an embodiment of the present invention. As shown in FIG. 7, the specific working process of the optical fiber fault detecting method in the embodiment of the present invention includes the following steps:
  • Step 701 The test device transmits a test signal.
  • the technical solution of the embodiment of the present invention is introduced by taking a PON network as shown in FIG. 6 as an example.
  • test signal and the communication signal propagate along the optical fiber, and then the two are separated by the optical splitter, wherein the test signal is transmitted by the optical splitter to each optical switch, and then the first APC end face of each optical switch and The second APC end faces are separated, so the test signal will be fully absorbed by the first APC end face in each optical switch, and the communication signal continues along the fiber.
  • Step 702 Align the first APC end surface and the second APC end surface in the optical switch.
  • the first APC end face and the second APC end face of the optical switch at the other end of the fiber to be detected are aligned, and the first APC end face and the other optical switch are The two APC end faces are kept in a separated state, so that the first APC end face of the optical switch on the other segment of the optical fiber can fully absorb the test signal, so that the first APC end face in the optical switch on the other non-to-be-detected optical fiber can be tested.
  • the signal is fully absorbed, and the test signal reaches the PC end face in the optical switch.
  • the PC end face in the optical switch 1 totally reflects the test signal.
  • Step 703 If the test device receives the test signal of the total reflection of the PC end face of the optical switch of the optical fiber to be detected, it indicates that the fiber to be detected is not faulty, otherwise, the fiber to be detected is faulty.
  • test device does not receive the test signal from the PC end of the optical switch, it indicates that the fiber to be detected between the OTDR and the optical switch is faulty.
  • the test signal cannot reach the PC end of the optical switch or the test signal of total reflection cannot be used.
  • the test equipment If the test equipment receives the test signal from the PC end of the optical switch, it indicates that there is no fault in the fiber to be detected.
  • the first APC end surface and the second APC end surface of one of the optical switch 1, the optical switch 2, the optical switch 3, and the optical switch 4 are respectively combined, and the other optical switches are The first APC end face and the second APC end face of an optical switch remain separated to detect the location of the fiber failure.
  • the first APC end face and the second APC end face of the optical switch at each position of the optical fiber are combined or separated, so that the total reflection test signal is returned to the test device along the original path of the optical fiber to be detected, so as to reach other
  • the test signal of the first APC end face of the position optical switch is fully absorbed to determine the location of the faulty fiber, reduce the influence of test signal noise, improve the accuracy and efficiency of fault detection, and reduce the interruption time of some optical fibers in the optical network.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

光纤故障检测***、 方法、 光 和无源光网络*** 本申请要求于 2010年 03月 30日提交中国专利局、 申请号为 201010136977.8、 发明名称为 "光纤故障检测***、 方法、 光开关和无源光网络***" 的中国专 利申请的优先权, 其全部内容通过弓 I用结合在本申请中。 技术领域
本发明涉及光网络技术, 特别涉及一种光纤故障检测***、 方法、 光开关 和无源光网络***。 背景技术
随着信息技术的发展, 光网络在人们的日常工作和生活中也越来越普及。 光网络的通信是通过光纤组成的网络来完成, 而光纤在使用过程中发生故障导 致不能传送数据, 这时需要快速定位光纤故障所在的位置,便于排除故障。
无源光网络是一种点到多点的光接入网络***, 其通常通过在光线路终端 (Optical Line Terminal, OLT)的输出端安装 1 : N的分光器, 将光信号分配到各 个光网络单元 (Optical Network Unit, ONU:)。 在检测光纤故障时, 通过在局端 OLT处安装的光复用终端 (Optical Multiplexer Terminal, OMT)向各个光纤分支下 发用于测试光纤故障测试信号, 测试信号的波长与光网络中用于通信的通信信 号的波长不相等, 各个光纤分支的末端光计量单元 (Optical Measurement Unit, OMU)将测试信号反射回去, 测试仪接收各个光纤分支的反射回来的测试信号, 以确定发生故障的光纤分支。
不过, 在检测光纤故障的过程中, OMU需要通过 ONU来与 OMT进行通 信, 所以在光网络的布放和验收阶段无法通过 ONU与 OMT进行通信, 而且需 要外部电源完成光信号与电信号的相互转变。 另一方面, 现有技术中的检测光 纤故障的方法不仅成本高, 而且, 通常只是检测到从 OLT到 ONU之间整条光 纤是否有故障, 不能对光纤故障进行定责。 发明内容
本发明实施例的目的是提供一种光纤故障检测***和方法、 用于光纤故障 检测的光开关及无源光网络***, 用于解决现有技术中存在的问题。
为解决上述问题, 本发明实施例提供了一种光纤故障检测***, 包括测试 设备、 待测光纤和光开关, 其中, 所述待测光纤连接在所述测试设备和所述光 开关之间; 所述光开关包括第一插芯和第二插芯, 所述第一插芯包括分别设置 在其两端的透光面和第一斜面物理接触 APC端面, 所述第二插芯包括分别设置 在其两端的第二 APC端面和反射面,其中,当所述第一、第二 APC端面对合时, 所述光开关闭合, 当所述第一、 第二 APC端面分离时, 所述光开关断开; 所述 测试设备用于向所述待测光纤发射测试信号, 并通过检测是否接收到所述测试 信号在所述光开关闭合时反射回来的反射信号, 判断所述待测光纤是否出现故 障。
本发明实施例还提供了一种光开关, 包括: 第一插芯和第二插芯; 所述第 一插芯的一端为透光面, 另一端为第一斜面物理接触 APC端面; 所述第二插芯 的一端为第二 APC端面,另一端为反射面;所述第一 APC端面与所述第二 APC 端面曲率半径相等,且相对设置; 当所述第一 APC端面与所述第二 APC端面对 合时, 所述光开关闭合, 当所述第一 APC端面与所述第二 APC端面分离时, 所 述光开关断开。
本发明实施例还提供了一种光纤故障检测方法, 包括: 通过待测光纤向光 开关发射测试信号, 其中所述光开关包括第一插芯和第二插芯, 所述第一插芯 包括分别设置在其两端的透光面和第一斜面物理接触 APC端面, 所述第二插芯 包括分别设置在其两端的第二 APC端面和反射面, 其中所述透光面连接至所述 待测光纤; 检测在所述光开关的第一 APC端面和第二 APC端面相互对合时是否 接收到所述测试信号在所述第二插芯的反射面发生反射而返回的反射信号, 其 中在所述第一 APC端面和第二 APC端面相互对合时所述光开关闭合; 根据检测 结果判断所述待测光纤是否出现故障。
本发明实施例还提供了一种无源光网络***, 包括: 光线路终端、 光分配 网络和多个光网络单元, 其中所述光分配网络包括分光器, 所述分光器通过主 干光纤连接到所述光线路终端, 并通过多个分支光纤分别连接到所述多个光网 络单元, 所述光分配网络设置有多个光开关, 所述光开关分别耦合到其对应的 分支光纤, 所述光开关包括第一插芯和第二插芯, 所述第一插芯包括分别设置 在其两端的透光面和第一斜面物理接触 APC端面, 所述第二插芯包括分别设置 在其两端的第二 APC端面和反射面; 其中, 当所述第一 APC端面和第二 APC端 面相对合时, 所述光开关闭合, 当所述第一 APC端面和第二 APC端面相分离时, 所述光开关断开。
本发明实施例提供的方案通过在待测光纤设置可用于进行光纤故障检测的 光开关, 该光开关在闭合和断开状态下可分别实现测试信号的反射和吸收, 由 此, 局端测试设备可通过发射测试信号并检测是否接收到反射信号判断待测光 纤是否出现故障。 由于所述光开关的状态切换可简单地通过控制其 APC端面的 对合和分离实现, 因此在光纤故障检测时无需通过用户侧设备与测试设备通信 实现, 另一方面, 由于所述 APC端面的对合与分离可通过机械方式实现, 无需 外部电源进行光电转换且成本较低。 并且本发明实施例还可通过将光开关安装 在待检测光纤的不同位置, 以检测光纤不同位置是否有故障, 确定光纤故障在 光纤的具***置上, 提高检测光纤故障的效率和准确性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需 要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明实施例光开关的结构示意图一;
图 2为本发明实施例光开关的结构示意图二;
图 3为本发明实施例光纤故障检测***具体实施例一的结构示意图; 图 4为本发明实施例光纤故障检测***具体实施例二的结构示意图; 图 5为本发明实施例光纤故障检测***具体实施例二的工作流程图; 图 6为本发明实施例光纤故障检测***应用在 PON***的结构示意图; 图 7为本发明实施例光纤故障检测方法具体实施例的流程图。 具体实 式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 应当理解, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。
本发明实施例用于进行光纤故障检测的光开关具体实施例一
图 1 为本发明实施例用于光纤故障检测的光开关的结构示意图一。 如图 1 所示, 为本发明实施例的光开关包括第一插芯 10和第二插芯 20, 其中第一插芯 10的一端为第一斜面物理接触 (Angled Physical Contact, APC)端面 101, 另一端 为透射端面 103; 第二插芯 20的一端为第二 APC 端面 102, 另一端为具有全反 射功能的物理接触 (Physical Contact, PC)端面 104, 第一 APC 端面 101和第二 APC 端面 102的端面的曲率半径相等, 并相对设置, 第一插芯和第二插芯可以 是光纤或陶瓷等材料制备。
其中, 透射端面 103可以作为光信号的接收 /反射端面。 在工作中, 由外部 测试设备提供的测试信号可通过透射端面 103进入第一插芯 10, 在第一插芯 10 内部传输并到达第一 APC端面 103。
当第一 APC 端面 101和第二 APC 端面 102分离时, 所述光开关处于断开 状态,此时,第一 APC 端面 101将从透射端面 103透射过来的测试信号全吸收。
当第一 APC 端面 101和第二 APC 端面 102对合时, 所述光开关处理闭合 状态, 测试信号将全通过第一 APC 端面 101和第二 APC 端面 102的对合端面 到达 PC 端面 104, PC端面 104进一歩将该测试信号全反射, 使该测试信号按 原路返回, 并通过透射端面 103返回至上述外部测试装置。
进一歩地, 可以通过驱动第二插芯 20的上下移动使第二 APC 端面 102和 第一 APC 端面 101对合或分离。
本发明实施例提供的光开关可以应用在光纤网络中以实现对待测光纤的故 障检测。 在本发明实施例中, 以无源光网络 (Passive Optical Network, PON)为例 来介绍本发明实施例的技术方案。在 PON网络中,测试设备可连接在主干光纤, 而光开关通常安装在与测试设备相对的分支光纤的另一端, 在对分支光纤进行 故障检测时,可控制所述待测分支光纤上的光开关中的第一 APC 端面 101和第 二 APC 端面 102对合,所述测试设备可通过所述待测分支光纤向所述光开关发 送测试信号发出测试信号后, 若所述分支光纤正常, 测试信号将透过第一 APC 端面 101和第二 APC 端面 102的对合端面到达 PC端面 103,并在 PC端面 103 发生全发射全反射, 反射信号将沿着光纤原路返回到测试设备; 若所述分支光 纤出现故障, 所述测试装置便无法接收到反射光。 因此, 测试设备可通过检测 是否接收到反射光判断待测分支光纤是否出现故障。
同时, 为避免所述测试设备发出的测试信号在其他非待测分支光纤发生反 射而造成干扰, 在进行故障检测时, 可通过控制非待测分支光纤上的光开关中 的第一 APC 端面 101和第二 APC 端面 102分离,使对应光开关处于关断状态, 以使其第一 APC 端面 101将传到本地的测试信号全部吸收,从而只有待检测光 纤上的光开关将测试信号进行全反射。
将本发明实施例用于光纤故障检测的光开关安装在 PON网络中各个光纤分 支的不同位置, 可以方便地检测出测试设备和光开关之间的待检测光纤是否有 故障, 由于光纤价格便宜, 而且不需要外部的电源, 从而降低了光纤故障位置 定责的光开关的成本。
在本发明实施例中, 通过将待检测光纤上的光开关的第一 APC端面和第二 APC 端面对合, 使测试信号顺利到达 PC端面后被全反射, 同时将非待检测光 纤上的光开关的第一 APC 端面和第二 APC 端面分离, 使测试信号到达第一 APC 端面时被全部吸收, 从而保证只有待检测光纤上的光开关全发射的测试信 号才可能到达测试设备, 并通过将光开关安装在待检测光纤的不同位置, 以检 测光纤不同位置是否有故障, 确定光纤故障的位置, 从而提高了检测故障的效 率和准确性。
本发明实施例用于光纤故障检测的光开关具体实施例二
图 2 为本发明实施例用于光纤故障检测的光开关的结构示意图二。 如图 2 所示, 为本发明实施例的光开关还包括: 波分复用器 105和驱动装置 106, 其中 波分复用器 105用于将测试设备发出的测试信号与待测光纤传送的通信信号分 离,并将测试信号传导到光开关的透射端面。驱动装置 106用于驱动第一 APC 端 面 101和第二 APC 端面 102的对合或分离, 可以采用电控驱动和手动驱动。
本发明实施例通过波分复用器将测试信号和通信信号分离, 使在检测光纤 故障不影响 PON网络的正常通信,提高了检测故障的效率和机动性,本发明实施 例中的光开关完全是由光纤制备而成, 成本低。
本发明实施例光纤故障检测***具体实施例一
图 3为本发明实施例光纤故障检测***具体实施例一的结构示意图。如图 3 所示, 本发明实施例测试光纤故障检测***包括测试设备 30、 待测光纤和光开 关 31, 其中, 测试设备 30用于发射测试信号, 以及根据是否接收到光开关全反 射回来的测试信号来判断待测光纤是否有故障; 光开关 31可采用上述实施例所 述的光开关, 比如, 其可包括第一插芯 10和第二插芯 20, 其中第一插芯 10的 一端为第一 APC 端面 101, 另一端为透射端面 103, 第二插芯 20的一端为第二 APC 端面 102, 另一端为具有全反射功能的 PC端面 104, 第一 APC 端面 101 和第二 APC 端面 102的端面的曲率半径相等, 并相对设置。 当第一 APC 端面 101和第二 APC 端面 102对合时, 测试信号将全通过第一 APC 端面 101和第 二 APC 端面 102的对合端面到达 PC 端面, PC端面将该测试信号进行全反射, 该测试信号将按原路返回,并通过待测光纤返回至所述测试设备 30;当第一 APC 端面 101和第二 APC端面 102分离时, 第一 APC 端面 101将从透射端面 103 透射过来的测试信号全部吸收, 以避免测试信号反射回去。
在本发明实施例中, 通过测试设备发射测试信号以及接收被全反射会的测 试信号来判断故障是否有故障,并需要将待检测光纤上的光开关的第一 APC 端 面 101和第二 APC 端面 102对合, 使测试信号顺利到达 PC端面后被全反射, 同时将非待检测光纤上的光开关的第一 APC 端面 101和第二 APC 端面 102分 离, 使测试信号到达第一 APC 端面 101时被全部吸收, 从而保证只有待检测光 纤上的光开关全发射的测试信号才可能到达测试设备, 并通过将光开关安装在 待检测光纤的不同位置, 以检测光纤不同位置是否有故障, 确定光纤故障的位 置, 从而提高了检测故障的效率和准确性。
本发明实施例光纤故障检测***具体实施例二
图 4为本发明实施例光纤故障检测***具体实施例二的结构示意图。如图 4 所示, 进一歩的, 在本发明实施例光纤故障检测***具体实施例一的基础上, 本发明实施例光纤故障检测***中的光开关还包括: 第一波分复用器 105、第二 波分复用器 io 和驱动装置 106, 其中波分复用器 105和第二波分复用器 io 用于将测试设备 30发出的测试信号与待测光纤在正常工作状态下传送的通信信 号分离, 并将测试信号传导到光开关的透射端面,以及用于将全反射回来的测试 设备 30,驱动装置 106用于驱动第一 APC 端面 101和第二 APC 端面 102的对 合或分离, 可以采用电控模式和手动模式。
图 5为本发明实施例光纤故障检测***具体实施例二的工作流程图。如图 5 所示,
歩骤 501、 测试信号收发装置发射测试信号。
在本发明实施例中, 以 PON网络为例来介绍本发明实施例的技术方案, 图 6为本发明实施例测试光纤故障位置的***中 PON网络的结构示意图。 如图 6 所示, 本发明实施例光网络中的 PON网络包括光线路终端 OLT、 ATB/TB、 光 纤分配终端 (FDT)、 ONU、 测试设备和光开关, 其中, 测试设备可以通过光时域 反射仪 (Optical Time Domain Reflectometer, ODTR)来实现, OTDR通过 WDM 耦合到 OLT的输出端的光纤上, 光开关可以安装在分光器的各个输出端口的光 纤上、 ATB/TB的输出端口的光纤上以及 ONU的输入端光纤上, 在本发明实施 例中, 光开关包括光开关 1、 光开关 2、 光开关 3和光开关 4, 由于 OTDR与 ONU之间不能通信或者中断, 需要检测 OTDR与 ONU之间的光纤是否有故障 以及故障的位置。
在测试光纤是否有故障时, 首先通过测试设备发射与通信信号不同波长的 测试信号, 例如可以选择波长为 1625-1675nm之间的测试信号作为测试信号, 测试信号与通信信号沿光纤传播, 然后通过分光器将二者分离, 其中测试信号 被分光器传导到各个光开关处,这时各个光开关中的第一 APC端面和第二 APC 端面均分离, 所以测试信号将被各个光开关中的第一 APC端面全吸收, 而通信 信号沿着光纤继续前进。
歩骤 502、 将光开关 1中的第一 APC端面和第二 APC端面对合。
在测试某一段待检测光纤是否有故障时, 将该段待检测光纤另一端的光关 中的第一 APC端面和第二 APC端面对合, 同时, 其它的光开关的第一 APC端 面和第二 APC端面保持分离状态,以使测试信号在第一 APC端面时被完全吸收, 避免在其它光纤上传导的测试信号被该光纤上的光开关反射或全反射, 减少测 试设备接收到测试信号噪音的机会, 提高检测光纤故障的准确性。
在本发明实施例中, 将光开关 1中的第一 APC端面和第二 APC端面对合, 其它光开关中的第一 APC端面和第二 APC端面保持分离状态,以使其它非待检 测光纤上的光开关中的第一 APC端面能将测试信号全部吸收, 尽量减少其它不 需要检测的光纤上的光开关反射回来的测试信号, 避免测试信号噪声对检测结 果的影响, 提高测试光纤的准确性, 而测试信号则顺利到达光开关 1中的 PC端 面。
可以通过驱动装置来驱动第一 APC端面和第二 APC端面的对合和分离,驱 动的方式包括电控驱动和手动驱动, 在本发明实施例中, 驱动装置可以为电控 驱动或手动驱动的单刀双掷开关实现。
歩骤 503、 光开关 1中的 PC端面将测试信号全反射。
测试设备发出的测试信号到达光开关 1 的透射端面, 继续前进并透过光开 关中的第一 APC端面和第二 APC端面的对合端面, 到达具有全反射功能的 PC 端面, PC端面将测试信号全反射, 被全反射的测试信号将通过第一 APC端面 和第二 APC端面的对合端面后按待检测光纤原路返回到测试设备, 然后进入歩 骤 504。
歩骤 504、如果测试设备接收到光开关 1的 PC端面全反射回来的测试信号, 则说明该段待检测光纤没有故障, 否则, 则说明待检测光纤有故障。
如果测试设备没有接收到光开关 1的 PC端面全反射回来的测试信号,则说 明 OTDR与光开关 1之间的待检测光纤有故障, 测试信号无法到达光开关 1的 PC端面或者被全反射的测试信号无法返回到测试设备; 如果测试设备接收到光 开关 1的 PC端面全反射回来的测试信号, 说明该段待检测光纤没有故障。
在 OTDR与光开关 1之间的光纤没有故障的情况下, 则通过驱动装置将光 开关 1中的第一 APC端面和第二 APC端面分离,然后通过驱动装置将光开关 2 中第一 APC端面和第二 APC端面对合,这样,只有光开关 2才可能将接收到的 测试信号全反射, 如果测试设备没有接收到被全反射回来的测试信号, 则说明 光纤存在故障, 由于已经检测到 OTDR与光开关 1之间的光纤没有故障, 则说 明故障存在于光开关 1和光开关 2之间的光纤上; 如果测试设备接收到全反射 回来的测试信号, 则说明光开关 1和光开关 2之间的光纤没有故障。
在光开关 1和光开关 2之间的光纤没有故障的情况下, 将光开关 2中的第 一 APC端面和第二 APC端面分离,然后通过驱动装置将光开关 3中的第一 APC 端面和第二 APC端面对合, 光开关 3安装在用户端的 ONU处, 测试时可以通 过电话联系用户将光开关 3中的第一 APC端面和第二 APC端面手动对合,也可 以是电控对合。 如果测试设备没有接收到被全反射回来的测试信号, 则说明故 障存在于光开关 2和光开关 3之间的光纤上; 如果测试设备接收到全反射回来 的测试信号, 则说明光开关 2和光开关 3之间的光纤没有故障。
本发明实施例中, 通过将光纤上不同位置的光开关中第一 APC端面和第二 APC端面对合, 以使测试信号到达具有全反射功能的 PC端面后被全反射, 以 全反射测试信号使其沿着待检测光纤原路返回到测试设备, 同时保持光纤网络 上其它的光开关的第一 APC端面和第二 APC端面分离,使到达其它位置的光开 关的第一 APC端面的测试信号被全吸收, 通过将光开关安装在待检测光纤的不 同位置, 以确定故障光纤所在的位置, 包括故障是在户内还是户外, 并能有效 减少测试信号噪音的影响, 提高故障检测的准确性和效率, 减少光网络中通信 的中断时间。
本发明实施例光纤故障检测方法具体实施例
图 7为本发明实施例光纤故障检测方法具体实施例的流程图。 如图 7所示, 本发明实施例光纤故障检测方法的具体工作流程包括如下歩骤:
歩骤 701、 测试设备发射测试信号。
在本发明实施例中, 以如图 6所示的 PON网络为例来介绍本发明实施例的 技术方案。
测试设备发出测试信号后, 测试信号与通信信号沿光纤传播, 然后通过分 光器将二者分离, 其中测试信号被分光器传导到各个光开关处, 这时各个光开 关中的第一 APC端面和第二 APC端面均分离,所以测试信号将被各个光开关中 的第一 APC端面全吸收, 而通信信号沿着光纤继续前进。
歩骤 702、 将光开关中的第一 APC端面和第二 APC端面对合。
在测试某一段待检测光纤是否有故障时, 将该段待检测光纤另一端的光关 中的第一 APC端面和第二 APC端面对合, 同时, 其它的光开关的第一 APC端 面和第二 APC 端面保持分离状态, 以使其它段光纤上的光开关中的第一 APC 端面能将测试信号全部吸收, 以使其它的非待检测光纤上的光开关中的第一 APC端面能将测试信号全部吸收, 而测试信号则顺利到达光开关中的 PC端面。 光开关 1中的 PC端面将测试信号全反射。
歩骤 703、 如果测试设备接收到待检测光纤上光开关的 PC端面全反射回来 的测试信号, 则说明该段待检测光纤没有故障, 否则, 则说明待检测光纤有故 障。
如果测试设备没有接收到光开关的 PC端面全反射回来的测试信号,则说明 OTDR与光开关之间的待检测光纤有故障,测试信号无法到达光开关的 PC端面 或者被全反射的测试信号无法返回到测试设备; 如果测试设备接收到光开关的 PC端面全反射回来的测试信号, 说明该段待检测光纤没有故障。
在本发明实施例中, 可以通过分别将光开关 1、 光开关 2、 光开关 3和光开 关 4中的一个光开关的第一 APC端面和第二 APC端面对合,而其它光开关中的 一个光开关的第一 APC端面和第二 APC端面则保持分离状态,以检测出光纤故 障所在的位置。
本发明实施例中, 通过对合或分离光纤各个位置上的光开关的第一 APC端 面和第二 APC端面,以使全反射测试信号沿着待检测光纤原路返回到测试设备, 使到达其它位置的光开关的第一 APC端面的测试信号被全吸收, 以确定故障光 纤所在的位置, 减少测试信号噪音的影响, 提高故障检测的准确性和效率, 减 少光网络中一些光纤的中断时间。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。
以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述 实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进 行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各 实施例技术方案的范围

Claims

权利要求书
1、 一种光纤故障检测***, 其特征在于, 包括:
测试设备、 待测光纤和光开关, 其中, 所述待测光纤连接在所述测试设备 和所述光开关之间;
所述光开关包括第一插芯和第二插芯, 所述第一插芯包括分别设置在其两 端的透光面和第一斜面物理接触 APC端面,所述第二插芯包括分别设置在其两 端的第二 APC端面和反射面, 其中, 当所述第一、 第二 APC端面对合时, 所述 光开关闭合, 当所述第一、 第二 APC端面分离时, 所述光开关断开;
所述测试设备用于向所述待测光纤发射测试信号, 并检测在所述光开关闭 合时是否接收到所述测试信号在所述第二插芯的反射面发生反射而返回的反 射信号, 并根据检测结果判断所述待测光纤是否出现故障。
2、 如权利要求 1所述的光纤故障检测***, 其特征在于, 还包括第一波 分复用器和第二波分复用器, 所述测试设备和所述光开关分别通过所述第一波 分复用器和所述第二波分复用器连接到所述待测光纤的两端。
3、 如权利要求 2所述的光纤故障检测***, 其特征在于, 还包括局端通 信设备和用户侧通信设备, 其中所述局端通信设备与所述用户侧通信设备通过 所述待测光纤进行通信, 所述局端通信设备连接到所述第一波分复用器, 且所 述用户侧通信设备连接到所述第二波分复用器, 其中所述局端通信设备与所述 用户侧通信设备之间的通信信号的波长与所述测试信号的波长不同。
4、 如权利要求 1至 3任一项所述的光纤故障检测***, 其特征在于, 所 述光开关还包括驱动装置,所述驱动装置用户驱动所述第一 APC端面与所述第 二 APC端面的相互对合或相互分离。
5、 一种光开关, 其特征在于, 包括: 第一插芯和第二插芯,所述第一插芯 的一端为透光面, 另一端为第一斜面物理接触 APC端面,所述第二插芯的一端 为第二 APC端面, 另一端为反射面; 当所述第一 APC端面与所述第二 APC端面 对合时, 所述光开关闭合; 当所述第一 APC端面与所述第二 APC端面分离时, 所述光开关断开。
6、 如权利要求 5所述的光开关, 其特征在于, 所述第一 APC端面与所述 第二 APC端面曲率半径相等, 且相对设置。
7、 如权利要求 5或 6所述的光开关, 其特征在于, 当所述第一 APC端面 与所述第二 APC端面对合时, 由所述透光面入射的光信号通过所述第一、 第二 APC端面在所述反射面发生反射, 且反射光返回所述透光面。
8、 如权利要求 5或 6所述的光开关, 其特征在于, 当所述第一 APC端面 与所述第二 APC端面分离时, 由所述透光面入射的光信号在所述第一 APC端面 被吸收。
9、 如权利要求 5所述的光开关, 其特征在于, 还包括设置在所述第二插 芯的驱动装置, 所述驱动装置用于驱动所述第一 APC端面与所述第二 APC端面 之间的相互对合或相互分离, 以使所述光开关闭合或断开。
10、 一种无源光网络***, 包括光线路终端、 光分配网络和多个光网络单 元, 其中所述光分配网络包括分光器, 所述分光器通过主干光纤连接到所述光 线路终端,并通过多个分支光纤分别连接到所述多个光网络单元,其特征在于: 所述光分配网络设置有多个光开关, 所述光开关分别耦合到其对应的分支 光纤, 所述光开关包括第一插芯和第二插芯, 所述第一插芯包括分别设置在其 两端的透光面和第一斜面物理接触 APC端面,所述第二插芯包括分别设置在其 两端的第二 APC端面和反射面; 其中, 当所述第一 APC端面和第二 APC端面相 对合时, 所述光开关闭合, 当所述第一 APC端面和第二 APC端面相分离时, 所 述光开关断开。
11、 如权利要求 10所述的光开关, 其特征在于, 所述第一 APC端面与所 述第二 APC端面相对设置, 并且二者曲率半径相等。
12、 如权利要求 10所述的无源光网络***, 其特征在于, 在对待测分支 光纤进行检测时, 与所述待测分支光纤相耦合的光开关闭合, 而与非待测光纤 相耦合的光开关断开。
13、 如权利要求 12所述的无源光网络***, 其特征在于, 还包括测试设 备, 所述测试设备耦合到所述主干光纤, 其用于在对所述待测分支光纤进行检 测时发射测试信号, 并检测是否接收到与所述待测分支光线相对应的反射信 号, 并且在无法接收到所述反射信号时判断出所述待测分支光纤出现故障。
14、 如权利要求 13所述的无源光网络***, 其特征在于, 所述与待测分 支光线相对应的反射信号为所述测试信号在与所述待测分支光纤相耦合的光 开关的反射面发生反射而返回的反射信号。
15、 如权利要求 13所述的无源光网络***, 其特征在于, 每个分支光纤 在不同的位置分别耦合有多个光开关, 在对待测分支光纤进行故障检测时与所 述待测分支光纤相耦合的多个光开关分别在不同测试时段闭合, 并且所述测试 设备还用于检测在所述不同测试时刻接收的、 由所述测试信号在所述光开关的 反射面发生反射而返回的反射信号, 并根据所述反射信号判断所述分支光纤的 故障发生位置。
16、 如权利要求 10所述的光开关, 其特征在于, 还包括设置在所述第二 插芯的驱动装置,所述驱动装置用于驱动所述第一 APC端面与所述第二 APC端 面之间的相互对合或相互分离, 以使所述光开关闭合或断开。
17、 一种光纤故障检测方法, 其特征在于, 包括:
通过待测光纤向光开关发射测试信号, 其中所述光开关包括第一插芯和第 二插芯, 所述第一插芯包括分别设置在其两端的透光面和第一斜面物理接触 APC端面, 所述第二插芯包括分别设置在其两端的第二 APC端面和反射面, 其 中所述透光面连接至所述待测光纤;
检测在所述光开关的第一 APC端面和第二 APC端面相互对合时是否接收到 所述测试信号在所述第二插芯的反射面发生反射而返回的反射信号, 其中在所 述第一 APC端面和第二 APC端面相互对合时所述光开关闭合; 根据检测结果判 断所述待测光纤是否出现故障。
18、 根据权利要求 17所述的光纤故障检测方法, 其特征在于, 所述根据 检测结果判断所述待测光纤是否出现故障包括:
在接收到所述反射信号时, 判断出所述待测光纤正常;
在无法接收到所述反射信号时, 判断出所述待测分支光纤出现故障。
19、 根据权利要求 17所述的光纤故障检测方法, 其特征在于, 所述待测 光纤在不同的位置分别耦合有多个光开关, 并且在判断出所述待测光纤出现故 障时, 所述方法还包括:
控制与所述待测光纤相耦合的多个光开关分别在不同测试时段闭合; 检测在所述不同测试时刻接收的、 由所述测试信号在所述光开关的反射面 发生反射而返回的反射信号;
根据所述反射信号判断所述光纤的故障发生位置。
20、 根据权利要求 17至 19中任一项所述的光纤故障检测方法, 其特征在 于, 在所述待测光纤的检测过程中, 控制与非待检测光纤向耦合的光开关中的 第一 APC端面与第二 APC端面保持分离状态。
PCT/CN2011/071672 2010-03-30 2011-03-10 光纤故障检测***、方法、光开关和无源光网络*** WO2011120372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010136977.8A CN102208941B (zh) 2010-03-30 2010-03-30 光纤故障检测***、方法、光开关和无源光网络***
CN201010136977.8 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011120372A1 true WO2011120372A1 (zh) 2011-10-06

Family

ID=44697620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071672 WO2011120372A1 (zh) 2010-03-30 2011-03-10 光纤故障检测***、方法、光开关和无源光网络***

Country Status (2)

Country Link
CN (1) CN102208941B (zh)
WO (1) WO2011120372A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009796A (zh) * 2013-02-25 2014-08-27 中兴通讯股份有限公司 一种无源光网络光纤故障检测方法及***
FR3008566A1 (fr) * 2013-07-09 2015-01-16 Orange Dispositif de surveillance d'un reseau optique a miroir commutable a ouverture biseautee.
CN113904312A (zh) * 2021-10-19 2022-01-07 国网江苏省电力有限公司无锡供电分公司 智能站220kV母差保护组网光纤断链消缺方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200395B (zh) * 2013-04-08 2015-09-30 广州市澳视光电子技术有限公司 一种智能报障***及其网络管理客户端***
CN104144013B (zh) * 2013-05-10 2016-09-28 中国电信股份有限公司 Pon网络故障诊断方法、装置和***
CN105610495A (zh) * 2015-12-16 2016-05-25 国网福建省电力有限公司 一种在运电力光缆的监测***
CN106301547A (zh) * 2016-08-24 2017-01-04 覃嘉雯 一种光纤监测***
CN106452574B (zh) * 2016-10-20 2018-12-21 云南电网有限责任公司电力科学研究院 一种配电网epon***的光接口特性测试平台及方法
US11528079B2 (en) 2017-10-05 2022-12-13 Commscope Technologies Llc Optical fiber testing device and method
CN108809410B (zh) * 2018-05-03 2020-05-01 中国能源建设集团广东省电力设计研究院有限公司 光缆故障检测方法以及光缆故障检测***
CN111030037B (zh) * 2019-11-21 2021-09-17 国网河南省电力公司商丘供电公司 光纤差动保护故障分析***
CN112383845B (zh) * 2020-11-09 2022-10-11 国网四川省电力公司成都供电公司 一种便于pon接入网络链路的测试电路及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183568A (zh) * 1996-11-21 1998-06-03 住友电气工业株式会社 光开关及切换方法
US20030053054A1 (en) * 2001-06-22 2003-03-20 Bulang Li Methods, apparatus, computer program products, and systems for ferrule alignment and fabrication of optical signal controllers
CN101043272A (zh) * 2006-06-08 2007-09-26 华为技术有限公司 光纤线路故障的检测***和方法
EP1980834A1 (en) * 2006-02-03 2008-10-15 Fujikura, Ltd. Light beam path monitoring device and light beam path monitoring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183568A (zh) * 1996-11-21 1998-06-03 住友电气工业株式会社 光开关及切换方法
US20030053054A1 (en) * 2001-06-22 2003-03-20 Bulang Li Methods, apparatus, computer program products, and systems for ferrule alignment and fabrication of optical signal controllers
EP1980834A1 (en) * 2006-02-03 2008-10-15 Fujikura, Ltd. Light beam path monitoring device and light beam path monitoring method
CN101043272A (zh) * 2006-06-08 2007-09-26 华为技术有限公司 光纤线路故障的检测***和方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009796A (zh) * 2013-02-25 2014-08-27 中兴通讯股份有限公司 一种无源光网络光纤故障检测方法及***
CN104009796B (zh) * 2013-02-25 2017-04-05 中兴通讯股份有限公司 一种无源光网络光纤故障检测方法及***
FR3008566A1 (fr) * 2013-07-09 2015-01-16 Orange Dispositif de surveillance d'un reseau optique a miroir commutable a ouverture biseautee.
CN113904312A (zh) * 2021-10-19 2022-01-07 国网江苏省电力有限公司无锡供电分公司 智能站220kV母差保护组网光纤断链消缺方法及装置
CN113904312B (zh) * 2021-10-19 2024-03-22 国网江苏省电力有限公司无锡供电分公司 智能站220kV母差保护组网光纤断链消缺方法及装置

Also Published As

Publication number Publication date
CN102208941B (zh) 2014-01-08
CN102208941A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2011120372A1 (zh) 光纤故障检测***、方法、光开关和无源光网络***
CN102714545B (zh) 光收发模块、无源光网络***、光纤检测方法和***
JP6253659B2 (ja) センサを備えるファイバネットワーク
WO2012065459A1 (zh) 无源光网络光纤故障的检测***和方法
US9059798B2 (en) Passive optical loopback
CN101232328B (zh) 一种定位分支光纤的事件点的方法、光网络及网络设备
CN102098098B (zh) 一种检测无源光网络光纤故障的***
WO2015027859A1 (zh) 光路处理方法和装置
WO2012097554A1 (zh) 光线路终端、无源光网络***及光信号的传输方法
CN102035599A (zh) 一种ftth无源光链路监测***及方法
WO2008092397A1 (fr) Procédé de repérage de point d'événement de fibre, et réseau optique et équipement de réseau associés
CN102142893A (zh) 光分配网络的反射异常检测方法、***及装置
CN101282586B (zh) 无源光网络中的光纤故障检测方法、***及装置
US8428462B2 (en) Self-healing repeater node
WO2011023104A1 (zh) 检测水下设备故障的方法、装置及设备
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及***
CN102752051A (zh) 具有光时域反射功能的光网络单元光组件
CN102684779A (zh) 集中测量装置、故障监控方法和***
CN107078793B (zh) 一种光纤故障诊断方法、装置及***
CN201918994U (zh) Ftth无源光链路监测***
US20240014896A1 (en) Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method
CN104205676B (zh) 光线路终端、光收发模块、***以及光纤检测方法
CN102893539B (zh) 一种光网络监测模块、光通信***及光网络监测方法
KR102451708B1 (ko) 선로 장애 진단 및 이중화 기능을 구비한 pon 송수신 장치와 이를 이용한 선로 장애 진단 및 이중화 방법
CN202522740U (zh) 一种具有双重诊断故障的olt用光组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761946

Country of ref document: EP

Kind code of ref document: A1