WO2011120187A1 - 磁浮轨道梁端构造结构 - Google Patents

磁浮轨道梁端构造结构 Download PDF

Info

Publication number
WO2011120187A1
WO2011120187A1 PCT/CN2010/000392 CN2010000392W WO2011120187A1 WO 2011120187 A1 WO2011120187 A1 WO 2011120187A1 CN 2010000392 W CN2010000392 W CN 2010000392W WO 2011120187 A1 WO2011120187 A1 WO 2011120187A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rail
main load
track
slab
Prior art date
Application number
PCT/CN2010/000392
Other languages
English (en)
French (fr)
Inventor
吴祥明
万建军
莫凡
黄靖宇
成广伟
李文沛
曾国锋
叶丰
陈定祥
洪少枝
刘万明
洛嘉
何大海
Original Assignee
上海磁浮交通发展有限公司
上海磁浮交通工程技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海磁浮交通发展有限公司, 上海磁浮交通工程技术研究中心 filed Critical 上海磁浮交通发展有限公司
Priority to PCT/CN2010/000392 priority Critical patent/WO2011120187A1/zh
Publication of WO2011120187A1 publication Critical patent/WO2011120187A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type

Definitions

  • the present invention relates to a beam end construction type, and more particularly to a rail beam end construction type for a high speed maglev transportation system. Background technique
  • the track arranged in the existing normally-guided high-speed maglev transportation system usually has an independent track beam structure.
  • the beam end has a large gap to break, and the functional surface is fixed on both sides of the track. The end of the beam is broken.
  • the beam end angle index has always been a control index that affects the volume and processing difficulty of the track beam.
  • a cantilever beam bridge or T-structure in a highway bridge system two cantilever beams are connected by connecting hanging beams or two ⁇ structures are connected, and the ends of the hanging beam beams placed thereon are supported by the ox legs.
  • the hanging beam has the advantages of convenient construction and simplified force, the effect is not obvious in overcoming the beam end angle effect.
  • the prior art has solved the problem of longitudinal deformation coordination of the rail and its lower support by setting a horizontally rigid hard adjusting device, the railway can continuously track the bridge gap, but the longitudinal deformation of the railway track and The functional surface of the maglev track has different characteristics at the end of the beam, and the prior art cannot be applied to the high-speed maglev transportation system. Disclosure of invention
  • the object of the present invention is to provide a structure structure of a magnetic floating track beam end, which can reduce the effect of the folding angle generated at the beam end when the magnetic floating track beam is deformed by optimizing the beam end structural form.
  • the technical solution of the present invention provides a magnetic floating track beam end structure, wherein the track beam comprises a main load bearing structure, and an upper functional surface structure disposed on the main load bearing structure;
  • the upper functional surface structure comprises a cross-beam structure for connecting adjacent rail beams, a bearing platform disposed on the main load-bearing structure, and a slab track beam disposed on the rail-bearing platform.
  • the main load-bearing structure is disposed on the pier column such that the end gaps of the two adjacent main load-bearing structures are located above the pier column.
  • the bottom end of the beam end of the main load-bearing structure is provided with an adjustable support; the adjustable support base reliably connects the main load-bearing structure with the pier column, and controls the installation deviation of the main load-bearing structure and the pier without the height adjustment Evenly settle.
  • the above-mentioned railing table is longitudinally disconnected at the same position from the above-mentioned slab track beam provided above.
  • the cross-beam structure is spanned on the end gap of the adjacent main load-bearing structure, and penetrates to a certain distance within the beam span of the main load-bearing structure at both ends, so that two adjacent rail-bearing platforms provided with the slab track beam are located Both ends of the above-mentioned cross-beam structure.
  • the above-mentioned rail-bearing platform is integrally poured with the main load-bearing structure and works together.
  • the above-mentioned rail-bearing platform is separately manufactured from the main load-bearing structure and does not work together.
  • a plurality of movable supports are arranged at the bottom of the straddle structure, and the movable support is reliably connected to the main load-bearing structure, so that the top surface of the straddle structure is at the same level as the top surface of the slab track beam.
  • the above-mentioned span beam structure is a ⁇ -type monolithic member beam.
  • the above-mentioned rail-bearing table has the same length as the above-mentioned main load-bearing structure below.
  • the traverse beam structure is placed on the gap of the end of the adjacent rail-bearing slab beam, and penetrates to a certain distance within the beam span of the above-mentioned rail-bearing platform at both ends, so that the slab-type rail beam placed on the above-mentioned rail-bearing platform is located above Both sides of the span beam structure.
  • a plurality of movable supports are disposed at the bottom of the straddle structure, and the movable support is reliably connected to the track receiving platform such that the top surface of the straddle structure is at the same level as the top surface of the slab track beam.
  • the above span beam structure is a plate type span beam.
  • the upper functional surface structure comprises a plurality of cross-slit layered structures stacked on the main load-bearing structure, wherein the cross-slit layered structure continuously spans the gap of the layered structure below the cross-beam structure and extends at both ends
  • the beam gap is set after a certain distance, so that the beam gaps of the adjacent two layers of the above-mentioned cross-slit layered structure are longitudinally staggered.
  • the cross-beam structure of the above-mentioned cross-slit layered structure is a second integral member beam, which is layered underneath On the slit of the structure, the two ends of the rail-mounted rail beam are disposed at both ends, so that the joint between the second rail-stand and the second integral member beam is longitudinally disconnected from the gap of the lower layered structure.
  • the second integral member beam is reliably coupled to the rail or span structure comprised by the adjacent adjacent sub-layer structure by the movable support provided at the bottom.
  • the cross-slit layered structure includes a second railing station placed on the orbital or span structure of the adjacent adjacent layered structure.
  • the cross-beam structure of the above-mentioned cross-slit layered structure is a second plate type span beam which is placed on the gap of the adjacent second rail-bearing table, and the second rail-bearing platform at both ends is further provided with a plate-type track beam, so that the above-mentioned plate type
  • the joint between the track beam and the second plate type span beam is longitudinally offset from the beam gap of the adjacent second rail track below.
  • the magnetic floating track beam end structure provided by the invention has the advantages that: the invention can transmit the force and adjust the height through the movable support, so that the integral component beam can have good adaptability and coordination, Coping with the overall deformation of the track beam of the double-layer structure or the vertical deformation caused by uneven settlement;
  • the invention is provided with a monolithic member beam or a plate type span beam as a cross-beam structure, and the angle of the front support at the beam end of the main load-bearing structure is decomposed to the two ends of the cross-beam structure, thereby effectively reducing the upper functional surface structure when the track is deformed.
  • the maximum angle of the beam end generated at the joint breakage can further reduce the construction accuracy requirements and construction difficulty of the main load-bearing structure under the angle index of the same upper functional surface structure.
  • FIG. 1 is a cross-slit connection diagram of a beam end structure structure of the present invention in the beam end of the first embodiment
  • FIG. 2 is a cross-sectional view showing the application of the cross-beam connection structure of the magnetic floating track beam end structure of the present invention in the first embodiment
  • Figure 3 is a cross-slit connection diagram of the beam end of the magnetic floating track beam end structure of the present invention in the second embodiment
  • Figure 4 is a cross-sectional view showing the application of the cross-beam connection structure of the magnetic floating track beam end structure of the present invention in the second embodiment
  • Fig. 5 is a cross-slit connection pattern of the beam end structure structure of the present invention in the beam end of the third embodiment. The best way to implement the invention
  • the magnetic floating track beam end structure provided by the present invention comprises a main load-bearing structure 1 disposed on the pier 60 and an upper functional surface structure 2 disposed on the main load-bearing structure 1.
  • the pier 60 is a number of independent pillars made by pouring concrete on the site after the foundation part is completed on the ground.
  • the prefabricated or cast-in-place main load-bearing structure 1 is reliably connected to the pier 60 by the adjustable support 11 provided at the bottom of the beam end, so that the supporting fracture joints of the two adjacent main load-bearing structures 1 are located above the pier 60, The force of the main load-bearing structure 1 is transmitted to the pier 60 through the adjustable support 11.
  • the adjustable support 11 is also capable of solving the installation deviation problem of the entire rail beam due to ground subsidence and the like by height adjustment.
  • the upper functional surface structure 2 includes a straddle structure 40 for connecting adjacent rail beams, a rail table 20 which is sequentially disposed on the main load bearing structure 1, and a slab track beam 30.
  • the slab track beam 30 is both a load-bearing structure of the maglev train 70 and a guiding structure for the train 70 to float. Therefore, it is prefabricated by the factory and has a relatively accurate tolerance size.
  • the rail-bearing table 20 is pre-fabricated or cast-in-place with the main load-bearing structure 1 for positioning the reference for mounting the slab track beam 30.
  • the railing table 20 is flush with the beam of the slab track beam 30 disposed above it, i.e., longitudinally broken at the same position.
  • the straddle structure 40 spans the support fracture of the main load-bearing structure 1 above the pier 60, and penetrates to a certain distance within the beam span of the adjacent two main load-bearing structures 1 at both ends, so that the adjacent rail-bearing table 20 Located at both ends of the straddle structure 40.
  • the movable bearing structure 50 is reliably connected to the main load-bearing structure 1 by a plurality of movable supports 50 disposed at the bottom of the sill structure 40 such that the top surface of the sill structure 40 is at the same level as the top surface of the slab track beam 30 disposed on the railing table 20.
  • the straddle structure 40 is a factory-prepared ⁇ -type monolithic member beam 41 having a relatively precise tolerance dimension.
  • the folding angle previously supported at the beam end of the main load bearing structure 1 is decomposed to both ends of the integral member beam 41; and then the force is transmitted and the height is adjusted by the movable support 50, so that The integral component beam 41 can have good adaptability to cope with double knots
  • the maximum folding angle of the beam end caused by the deformation of the rail can be reduced by about 50% at the joint of the upper functional surface structure 2, thereby reducing the folding angle index of the same upper functional surface structure 2 Construction accuracy requirements and construction difficulty of the main load-bearing structure 1.
  • Step 1 The factory is prefabricated or cast-in-place, and the main load-bearing structure 1 and the rail-bearing table 20 are cast into one body; the main load-bearing structure 1 of the rail-bearing table 20 is slightly shorter at the beam end than below;
  • Step 2 Factory prefabricated slab track beam 30 and integral member beam 41 as straddle structure 40; Step 3. Place the main load bearing structure 1 on the pier 60 so that the supporting fracture of the adjacent main load bearing structure 1 is located at the pier Directly above 60, finely adjusted by adjustable support 11;
  • Step 4 Place the integral member beam 41 as the straddle structure 40 on the supporting fracture of the adjacent main load bearing structure 1, and place the slab track beam 30 on the bearing table 20 on both sides of the integral member beam 41, through the activity.
  • the support 50 is finely positioned to ensure sufficient deformation coordination in the longitudinal direction.
  • the structure structure of the maglev track beam end involved in this embodiment is similar to the structure in the above embodiment, and includes an adjustable support 11 disposed at the bottom of the beam end. a main load-bearing structure 1 on the column 60, and an upper functional surface structure 2 disposed on the main load-bearing structure 1; the upper functional surface structure 2 includes a cross-beam structure 40 that reliably connects adjacent rail beams through the movable support 50, and is sequentially disposed The rail table 20 and the swing rail beam 30 on the main load-bearing structure 1.
  • the length of the main load-bearing structure 1 in the present embodiment is the same as the length of the main load-bearing structure 1 under the same, that is, the beam joint of the bearing platform 20 is longitudinally flush with the supporting fracture of the main load-bearing structure 1, and is located at the pier.
  • the straddle structure 40 is a prefabricated slab beam 42 that is placed across the gap of the beam end of the adjacent rail table 20 so that the slab track beam 30 placed on the rail table 20 is located. The slab spans both sides of the beam 42.
  • the slab beam 42 and the rail table 20 are reliably connected by the movable support 50 provided at the bottom, so that the slab beam 42 and the top surface of the slab track beam 30 are at the same level and height adjustment is made to cope with the overallity of the track beam. Deformation and uneven settlement.
  • the slab beam 42 as the traverse structure 40 and the movable support 50 is disposed to decompose the angle of the support at the beam end of the main load-bearing structure 1 to both ends of the slab beam 42;
  • the force and the adjustment height have sufficient adaptability to cope with vertical deformation, effectively reduce the maximum angle of the beam end, and further reduce the construction accuracy requirements and construction difficulty of the main load-bearing structure 1 under the angle index of the same upper functional surface structure 2.
  • the process flow for manufacturing the structure structure of the magnetic floating track beam end according to the embodiment is similar to that in the first embodiment, and specifically includes the following steps:
  • Step 1 The factory is prefabricated or cast-in-place, and the main load-bearing structure 1 and the rail-bearing table 20 are integrally cast; the length of the rail-bearing table 20 is the same as the length of the main load-bearing structure 1 below;
  • Step 2 Factory prefabricated slab track beam 30 and slab spanner 42;
  • Step 3 Place the main load-bearing structure 1 on the pier 60 so that the gap between the adjacent main load-bearing structures 1 and the adjacent rail-bearing table 20 is located directly above the pier 60, and the adjustable support 11 is refined. Positioning; Step 4. Place the slab beam 42 as a straddle structure 40 on the beam joint of the adjacent rail table 20, so that the slab track beam 30 placed on the railing table 20 is located at the two of the slab beam 42 On the side, the movable support 50 is finely positioned to ensure sufficient deformation coordination in the vertical direction.
  • the structure structure of the maglev track beam end involved in this embodiment is similar to the structure in the above embodiment, and includes an adjustable support 11 disposed at the bottom of the beam end.
  • the upper functional surface structure 2 is a plurality of stacked cross-slit layered structures, that is, the above-mentioned layered structure continuously spans the gap of the lower layer structure through the provided cross-beam structure 40, and is at both ends Set the beam gap after extending a certain distance.
  • the straddle structure 40 can be a monolithic member beam, a slab span beam, or a monolithic member beam and a slab span beam.
  • a second integral member beam 410 is further disposed on the first beam gap 801 disposed between the rail bearing table 20 and the integral component beam 41 on the main load-bearing structure 1.
  • the bottom of the second integral member beam 410 is respectively provided with a second railing table 200 which is integrally casted with the lower railing platform 20, so that the second integral component beam 410 and the second
  • the seam between the rail-bearing tables 200 is longitudinally offset from the first beam gap 801, and the second rail-mounted platform 200 is also provided with support.
  • the slab track beam 30, which is guided by the maglev train 70, is adjusted by the movable support 50 such that the top surface of the slab track beam 30 is at the same level as the top surface of the second integral member beam 410.
  • a second railing table 200 is disposed on the railing table 20 and the integral component beam 41, so that the joint of the adjacent second railing station 200 and the railing table 20 and the second of the integral component beam 41
  • the beam gap 802 is longitudinally flush
  • a second plate span 420 is further disposed on the second beam gap 802, and a movable support 50 is disposed at the bottom thereof to be reliably connected to the second track stand 200.
  • a slab track beam 30 is further disposed on both ends of the second slab beam 420 and the second rail gantry 200, so that the joint between the slab track beam 30 and the second slab beam 420 is longitudinally offset from the second beam gap 802; Finally, the movable support 50 is adjusted so that the top surface of the slab track beam 30 is at the same height as the top surface of the second slab beam 420.
  • the upper functional surface structure 2 is provided with a plurality of stacked cross-slit layered structures, the longitudinal gaps of the adjacent two layers are longitudinally staggered, thereby further reducing the maximum folding angle of the beam ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Description

磁浮轨道梁端构造结构 技术领域
本发明涉及一种梁端构造型式, 特别涉及一种用于高速磁浮交通***的 轨道梁端构造型式。 背景技术
在现有常导高速磁浮交通***中布置的轨道通常具有独立的轨道梁结 构, 使用简支梁或连续梁时, 梁端均有较大的缝隙断开, 同时功能面固定于 轨道两侧, 也在梁端处断开。
根据结构力学特点,在墩柱发生不均匀沉降或者轨道受载或温度变形时, 在两个断开的相邻梁的梁端位置将产生较大的切向折角。 这种切向折角被磁 浮车辆控制***视作一种线路短波偏差, 会影响磁浮的运营, 情况严重时, 还会影响到磁浮的运行安全。 因此在轨道梁设计和加工时, 梁端折角指标一 直是一个影响到轨道梁加工体量和加工难度的控制指标。
在公路桥梁***中的悬臂梁桥或 T构中, 通过设置挂梁来连接两悬臂梁 或连接两 τ构, 用牛腿支撑放置在其上的挂梁梁端。 挂梁虽然有方便施工和 简化受力的优点, 但是在克服梁端折角效应方面, 效果不是很明显。
在铁路桥梁方面,现有技术中虽然有通过设置水平伸缩的硬质调节装置, 来解决铁轨与其下部支撑的纵向变形协调问题, 使铁路能够在桥梁缝隙处连 续铺轨, 但是铁路轨道的纵向变形与磁浮轨道的功能面在梁端断开的特点不 同, 现有技术不能适用于高速磁浮交通***。 发明的公开
本发明的目的是提供一种磁浮轨道梁端构造结构, 能够通过对梁端构造 形式的优化, 降低磁浮轨道梁发生变形时在梁端产生的折角效应。
为了达到上述目的, 本发明的技术方案是提供一种磁浮轨道梁端构造结 构, 其特征在于, 上述轨道梁包含主承重结构, 和设置在主承重结构上的上 层功能面结构; 上述上层功能面结构包含用于连接相邻轨道梁的跨梁结构, 设置在主承 重结构上的承轨台, 设置在承轨台上的板式轨道梁。
上述主承重结构设置在墩柱上, 使相邻两个主承重结构的端部缝隙位于 上述墩柱上方。
上述主承重结构的梁端底部设置有可调支座; 上述可调支座将上述主承 重结构与上述墩柱可靠连接, 并通过高度调整来控制上述主承重结构的安装 偏差和墩柱的不均匀沉降。
上述承轨台与其上方设置的上述板式轨道梁在相同位置纵向断开。 上述跨梁结构跨设在相邻主承重结构的端部缝隙上, 并在两端均深入到 主承重结构的梁跨内一定距离, 使相邻两个设置有板式轨道梁的承轨台位于 上述跨梁结构的两端。
上述承轨台与主承重结构整体浇筑, 共同工作。
上述承轨台与主承重结构分开制作, 不共同工作。
上述跨梁结构底部设置若干活动支座, 通过上述活动支座与上述主承重 结构可靠连接, 使上述跨梁结构的顶面与上述板式轨道梁的顶面处在同一水 平高度。
上述跨梁结构是 π型的整体式构件梁。
上述承轨台与其下方的上述主承重结构的长度相同。
上述跨梁结构跨放在相邻承轨台梁端的缝隙上, 并在两端均深入到上述 承轨台的梁跨内一定距离, 使放置在上述承轨台上的板式轨道梁, 位于上述 跨梁结构的两侧。
上述跨梁结构底部设置若干活动支座, 通过上述活动支座与上述承轨台 可靠连接, 使上述跨梁结构的顶面与上述板式轨道梁的顶面处在同一水平高 度。
上述跨梁结构是板式跨梁。
上述上层功能面结构包含若干层叠放在主承重结构上的跨缝分层结构, 上述跨缝分层结构通过设有的跨梁结构连续跨过其下方分层结构的缝隙, 并 在两端延伸一定距离后才设置梁缝, 使相邻两层上述跨缝分层结构的梁缝纵 向错开。
上述跨缝分层结构的跨梁结构是第二整体式构件梁, 其跨设在下方分层 结构的缝隙上, 两端设置有安装板式轨道梁的第二承轨台, 使上述第二承轨 台与第二整体式构件梁的接缝与下方分层结构的缝隙纵向断开。
上述第二整体式构件梁通过底部设置的活动支座可靠连接在下方相邻分 层结构包含的承轨台或跨梁结构上。
上述跨缝分层结构包含放置在下方相邻分层结构的承轨台或跨梁结构上 的第二承轨台。
上述跨缝分层结构的跨梁结构是第二板式跨梁, 其跨放在相邻第二承轨 台的缝隙上, 两端的第二承轨台上还设置有板式轨道梁, 使上述板式轨道梁 与上述第二板式跨梁的接缝与下方相邻第二承轨台的梁缝纵向错开。
上述第二板式跨梁通过底部设置的活动支座可靠连接在第二承轨台上。 本发明提供的磁浮轨道梁端构造结构, 与现有技术相比, 其优点在于: 本发明由于通过活动支座传递受力和调整高度, 使整体式构件梁能具有良好 的适应协调能力, 以应对双层结构的轨道梁的整体变形或是不均匀沉降造成 的竖向变形的发生;
本发明由于设置了作为跨梁结构的整体式构件梁或板式跨梁, 将先前支 撑在主承重结构梁端的折角分解到跨梁结构的两端, 有效降低了轨道变形时 在上层功能面结构的断缝处产生的梁端最大折角, 进而可以降低相同上层功 能面结构的折角指标下主承重结构的施工精度要求和施工难度。 附图的简要说明
图 1是本发明磁浮轨道梁端构造结构在实施例 1中梁端的跨缝连接型式 图;
图 2是本发明磁浮轨道梁端构造结构在实施例 1中跨梁连接应用断面型 式图;
图 3是本发明磁浮轨道梁端构造结构在实施例 2中梁端的跨缝连接型式 图;
图 4是本发明磁浮轨道梁端构造结构在实施例 2中跨梁连接应用断面型 式图;
图 5是本发明磁浮轨道梁端构造结构在实施例 3中梁端的跨缝连接型式 图。 实现本发明的最佳方式
以下结合附图说明本发明的具体实施方式。 实施例 1
请配合参见图 1和图 2所示, 本发明提供的磁浮轨道梁端构造结构, 包 含设置在墩柱 60上的主承重结构 1,和设置在主承重结构 1上的上层功能面 结构 2。
墩柱 60是在地面完成基础部分之后,现场绑扎钢筋,浇注混凝土制出的 若干独立支柱。 工厂预制或现浇的主承重结构 1 , 通过其梁端底部设置的可 调支座 11与墩柱 60可靠连接, 使相邻两个主承重结构 1的支撑断缝位于墩 柱 60上方, 将主承重结构 1的受力经过可调支座 11传递至墩柱 60。 该可调 支座 11 还能够通过高度调整来解决整个轨道梁由于地面沉降等带来的安装 偏差问题。
上层功能面结构 2包含用于连接相邻轨道梁的跨梁结构 40、依次设置在 主承重结构 1上的承轨台 20、 板式轨道梁 30。
板式轨道梁 30既是磁浮列车 70的承载结构,又是使列车 70浮起运行的 导向结构, 因此是由工厂预制的, 具有较为精确的公差尺寸。
承轨台 20是与主承重结构 1由工厂预制或现浇为一体的,用于定位安装 板式轨道梁 30的基准。 在本实施例中, 承轨台 20与其上方设置的板式轨道 梁 30的梁缝齐平, 即在相同位置纵向断开。
跨梁结构 40跨过主承重结构 1在墩柱 60上方的支撑断缝, 并在两端均 深入到相邻两个主承重结构 1的梁跨内一定距离,使相邻的承轨台 20位于该 跨梁结构 40的两端。通过跨梁结构 40底部设置的若干活动支座 50与主承重 结构 1可靠连接, 使跨梁结构 40的顶面与设置在承轨台 20上的板式轨道梁 30的顶面处在同一水平高度。 在本实施例中, 该跨梁结构 40是由工厂预制 的 π型整体式构件梁 41, 具有较精确的公差尺寸。
作为跨梁结构 40的整体式构件梁 41的设置, 将先前支撑在主承重结构 1梁端的折角分解到整体式构件梁 41的两端; 再通过活动支座 50传递受力 和调整高度,使整体式构件梁 41能具有良好的适应协调能力, 以应对双层结 构的轨道梁的整体变形或是不均匀沉降造成的竖向变形的发生。 在保证上层 功能面结构 2刚度的情况下, 能够使轨道变形产生的梁端最大折角在上层功 能面结构 2的断缝处降低约 50%,进而可以降低相同上层功能面结构 2的折 角指标下主承重结构 1的施工精度要求和施工难度。 制造本发明上述磁浮轨道梁端构造结构的工艺流程如下:
步骤 1.工厂预制或是现浇, 将主承重结构 1和承轨台 20浇注为一体; 使该承轨台 20在梁端略短于其下方的主承重结构 1 ;
步骤 2.工厂预制板式轨道梁 30和作为跨梁结构 40的整体式构件梁 41; 步骤 3.在墩柱 60上放置主承重结构 1 , 使相邻主承重结构 1的支撑断 缝位于墩柱 60的正上方, 通过可调支座 11精调定位;
步骤 4.在相邻主承重结构 1的支撑断缝上放置作为跨梁结构 40的整体 式构件梁 41,在整体式构件梁 41两侧的承轨台 20上放置板式轨道梁 30,通 过活动支座 50精调定位, 保证在纵向有足够的变形协调能力。 实施例 2
请配合参见图 3和图 4所示, 在本实施例中涉及的磁浮轨道梁端构造结 构, 与上述实施例中结构相类似, 包含通过其梁端底部设置的可调支座 11 设置在墩柱 60上的主承重结构 1,和设置在主承重结构 1上的上层功能面结 构 2;上层功能面结构 2包含通过活动支座 50可靠连接相邻轨道梁的跨梁结 构 40, 和依次设置在主承重结构 1上的承轨台 20、 扳式轨道梁 30。
不同点在于,本实施例中所述承轨台 20与其下方的主承重结构 1的长度 相同,即承轨台 20的梁缝与主承重结构 1的支撑断缝纵向齐平,均位于墩柱 60的正上方。 而本实施例中所述跨梁结构 40是由工厂预制的板式跨梁 42, 其跨放在相邻承轨台 20梁端的缝隙上, 使放置在承轨台 20上的板式轨道梁 30位于该板式跨梁 42的两侧。通过底部设置的活动支座 50可靠连接板式跨 梁 42及承轨台 20, 使板式跨梁 42与板式轨道梁 30的顶面处在同一水平高 度, 并进行高度调整, 以应对轨道梁的整体变形和不均匀沉降。
上述作为跨梁结构 40、 设置活动支座 50的板式跨梁 42, 将支撑在主承 重结构 1梁端的折角分解到板式跨梁 42的两端; 再通过活动支座 50传递受 力和调整高度, 具有足够应对竖向变形的适应协调能力, 有效降低梁端的最 大折角, 进而降低相同上层功能面结构 2的折角指标下主承重结构 1的施工 精度要求和施工难度。 制造本实施例所述磁浮轨道梁端构造结构的工艺流程与实施例 1中相类 似, 具体包含如下步骤:
步骤 1. 工厂预制或是现浇, 将主承重结构 1和承轨台 20浇注为一体; 使该承轨台 20与其下方的主承重结构 1长度相同;
步骤 2. 工厂预制板式轨道梁 30和板式跨梁 42;
步骤 3. 在墩柱 60上放置主承重结构 1 , 使相邻主承重结构 1之间、 相 邻承轨台 20之间的缝隙均位于墩柱 60的正上方,通过可调支座 11精调定位; 步骤 4. 在相邻承轨台 20的梁缝上放置作为跨梁结构 40的板式跨梁 42, 使放置在承轨台 20上的板式轨道梁 30位于该板式跨梁 42的两侧,通过活动 支座 50精调定位, 保证在竖向有足够的变形协调能力。 实施例 3
请参见图 5所示, 在本实施例中涉及的磁浮轨道梁端构造结构, 与上述 实施例中结构相类似, 包含通过其梁端底部设置的可调支座 11 设置在墩柱 60上的主承重结构 1, 和设置在主承重结构 1上的上层功能面结构 2; 该上 层功能面结构 2包含通过活动支座 50可靠连接其下方相邻轨道梁的跨梁结构 40。
不同点在于, 上层功能面结构 2是若干层叠放的跨缝分层结构, 即位于 上方的分层结构通过设有的跨梁结构 40连续跨过其下方分层结构的缝隙,并 在两端延伸一定距离后才设置梁缝。该跨梁结构 40可以是整体式构件梁、板 式跨梁, 或间隔使用整体式构件梁和板式跨梁。
如图 5所示的一种实施例中,设置在主承重结构 1上的承轨台 20与整体 式构件梁 41之间的第一梁缝 801上进一步设置有一第二整体式构件梁 410, 其底部设有活动支座 50;该第二整体式构件梁 410两侧分别设置有与下方承 轨台 20—体浇筑的第二承轨台 200,使第二整体式构件梁 410与第二承轨台 200之间的接缝与第一梁缝 801纵向错开, 第二承轨台 200上还设置有支撑 及导向磁浮列车 70运行的板式轨道梁 30, 用活动支座 50调整, 使板式轨道 梁 30顶面与第二整体式构件梁 410顶面处于同一高度。
另外, 在承轨台 20与整体式构件梁 41上设置有第二承轨台 200, 使相 邻的第二承轨台 200的接缝与承轨台 20和整体式构件梁 41的第二梁缝 802 纵向齐平, 在第二梁缝 802上进一步设置有一第二板式跨梁 420, 其底部设 置有活动支座 50与第二承轨台 200可靠连接。第二板式跨梁 420两端、第二 承轨台 200上还设置有板式轨道梁 30,使板式轨道梁 30与第二板式跨梁 420 之间的接缝与第二梁缝 802纵向错开;最后用活动支座 50调整,使板式轨道 梁 30顶面与第二板式跨梁 420顶面处于同一高度。
由于上层功能面结构 2设置了若干叠放的跨缝分层结构, 使相邻两层的 梁缝纵向错开, 从而达到进一步降低梁端最大折角的效果。
制造本实施例所述磁浮轨道梁端构造结构的工艺流程与实施例 1、2中基 本相同。 尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求
1.一种磁浮轨道梁端构造结构, 其特征在于, 所述轨道梁包含主承重结 构 (1 ), 和设置在主承重结构 (1 ) 上的上层功能面结构 (2);
所述上层功能面结构 (2) 包含用于连接相邻轨道梁的跨梁结构 (40), 设置在主承重结构 (1 ) 上的承轨台 (20), 设置在承轨台 (20) 上的板式轨 道梁 (30)。
2.如权利要求 1所述的磁浮轨道梁端构造结构, 其特征在于, 所述主承 重结构 (1 ) 设置在墩柱 (60) 上, 使相邻两个主承重结构 (1 ) 的端部缝隙 位于所述墩柱 (60) 上方。
3.如权利要求 2所述的磁浮轨道梁端构造结构, 其特征在于, 所述主承 重结构 (1 ) 的梁端底部设置有可调支座 (11 ); 所述可调支座 (11 ) 将所述 主承重结构(1 )与所述墩柱(60)可靠连接, 并通过高度调整来控制所述主 承重结构 (1 ) 的安装偏差和墩柱 (60) 的不均匀沉降。
4.如权利要求 2所述的磁浮轨道梁端构造结构, 其特征在于, 所述承轨 台 (20) 与其上方设置的所述板式轨道梁 (30) 在相同位置纵向断开。
5.如权利要求 4所述的磁浮轨道梁端构造结构, 其特征在于, 所述跨梁 结构(40)跨设在相邻主承重结构(1 )的端部缝隙上, 并在两端均深入到主 承重结构(1 ) 的梁跨内一定距离, 使相邻两个设置有板式轨道梁(30)的承 轨台 (20) 位于所述跨梁结构 (40) 的两端。
6.如权利要求 5所述的磁浮轨道结构, 其特征在于, 所述承轨台 (20) 与主承重结构 (1 ) 整体浇筑, 共同工作。
7.如权利要求 5所述的磁浮轨道结构, 其特征在于, 所述承轨台 (20) 与主承重结构 (1 ) 分开制作, 不共同工作。
8.如权利要求 5所述的磁浮轨道梁端构造结构, 其特征在于, 所述跨梁 结构(40)底部设置若干活动支座(50), 通过所述活动支座(50)与所述主 承重结构( 1 )可靠连接,使所述跨梁结构(40)的顶面与所述板式轨道梁(30) 的顶面处在同一水平高度。
9.如权利要求 1所述的磁浮轨道梁端构造结构, 其特征在于, 所述跨梁 结构 (40) 是 π型的整体式构件梁 (41 )。
10. 如权利要求 1所述的磁浮轨道梁端构造结构,其特征在于,所述承 轨台 (20) 与其下方的所述主承重结构 (1 ) 的长度相同。
11. 如权利要求 10所述的磁浮轨道梁端构造结构, 其特征在于, 所述 跨梁结构 (40) 跨放在相邻承轨台 (20) 梁端的缝隙上, 并在两端均深入到 所述承轨台 (20) 的梁跨内一定距离, 使放置在所述承轨台 (20) 上的板式 轨道梁 (30), 位于所述跨梁结构 (40) 的两侧。
12. 如权利要求 11所述的磁浮轨道梁端构造结构, 其特征在于, 所述 跨梁结构(40)底部设置若干活动支座(50), 通过所述活动支座(50)与所 述承轨台 (20) 可靠连接, 使所述跨梁结构 (40) 的顶面与所述板式轨道梁
(30) 的顶面处在同一水平高度。
13. 如权利要求 1所述的磁浮轨道梁端构造结构,其特征在于,所述跨 梁结构 (40) 是板式跨梁 (42)。
14. 如权利要求 1所述的磁浮轨道梁端构造结构,其特征在于,所述上 层功能面结构 (2) 包含若干层叠放在主承重结构 (1 ) 上的跨缝分层结构, 所述跨缝分层结构通过设有的跨梁结构 (40) 连续跨过其下方分层结构的缝 隙, 并在两端延伸一定距离后才设置梁缝, 使相邻两层所述跨缝分层结构的 梁缝纵向错开
15. 如权利要求 14所述的磁浮轨道梁端构造结构, 其特征在于, 所述 跨缝分层结构的跨梁结构 (40) 是第二整体式构件梁 (410), 其跨设在下方 分层结构的缝隙上, 两端设置有安装板式轨道梁(30)的第二承轨台(200), 使所述第二承轨台 (200) 与第二整体式构件梁 (410) 的接缝与下方分层结 构的缝隙纵向断开。
16. 如权利要求 15所述的磁浮轨道梁端构造结构, 其特征在于, 所述 第二整体式构件梁(410)通过底部设置的活动支座 0)可靠连接在下方相 邻分层结构包含的承轨台 (200) 或跨梁结构 (40) 上。
17. 如权利要求 14所述的磁浮轨道梁端构造结构, 其特征在于, 所述 跨缝分层结构包含放置在下方相邻分层结构的承轨台(200)或跨梁结构(40) 上的第二承轨台 (200)。
18. 如权利要求 17 述的磁浮轨道梁端构造结构, 其特征在于, 所述 跨缝分层结构的跨梁结构 (40) 是第二板式跨梁 (420), 其跨放在相邻第二 承轨台 (200) 的缝隙上, 两端的第二承轨台 (200) 上还设置有板式轨道梁
(30), 使所述板式轨道梁 (30) 与所述第二板式跨梁 (420) 的接缝与下方 相邻第二承轨台 (200) 的梁缝纵向错开。
19. 如权利要求 18所述的磁浮轨道梁端构造结构, 其特征在于, 所述 第二板式跨梁(420)通过底部设置的活动支座(50)可靠连接在第二承轨台
(200) 上。
PCT/CN2010/000392 2010-03-29 2010-03-29 磁浮轨道梁端构造结构 WO2011120187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000392 WO2011120187A1 (zh) 2010-03-29 2010-03-29 磁浮轨道梁端构造结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000392 WO2011120187A1 (zh) 2010-03-29 2010-03-29 磁浮轨道梁端构造结构

Publications (1)

Publication Number Publication Date
WO2011120187A1 true WO2011120187A1 (zh) 2011-10-06

Family

ID=44711276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000392 WO2011120187A1 (zh) 2010-03-29 2010-03-29 磁浮轨道梁端构造结构

Country Status (1)

Country Link
WO (1) WO2011120187A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436930A (zh) * 2016-09-29 2017-02-22 中建二局第三建筑工程有限公司 一种地上超限沉降后浇带结构体系及施工方法
CN107142795A (zh) * 2016-03-01 2017-09-08 北京控股磁悬浮技术发展有限公司 一种磁悬浮列车轨道及其接头装置
CN110029536A (zh) * 2019-03-11 2019-07-19 中铁磁浮交通投资建设有限公司 中低速磁浮轨道梁大位移模块化伸缩装置的施工方法
CN110184863A (zh) * 2019-06-28 2019-08-30 上海交通大学 一种宽翼缘梁上板式轨道梁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806566A1 (de) * 1998-02-17 1999-08-19 Pfeifer Ausgleichplatte für Eisenbahnbrücken
EP1167625A2 (de) * 2000-06-21 2002-01-02 Arnulf Stog Übergangskonstruktion für Gleise von Eisenbahnbrücken
EP1172479A2 (de) * 2000-07-11 2002-01-16 BWG GmbH & Co. KG Unterstützung für Schienen
JP2003184006A (ja) * 2001-12-13 2003-07-03 Topy Ind Ltd 磁気浮上式リニアモーターカー用軌道遊間調整装置
CN101223317A (zh) * 2005-07-12 2008-07-16 马克斯·博格建筑两合公司 桥梁结构上的固定车行道
CN101270568A (zh) * 2007-11-06 2008-09-24 铁道第四勘察设计院 用于解决大梁缝地段的轨道桥接轨道板技术
CN101583761A (zh) * 2007-01-17 2009-11-18 马克斯·博格建筑两合公司 具有混凝土砼条的固定车行道

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806566A1 (de) * 1998-02-17 1999-08-19 Pfeifer Ausgleichplatte für Eisenbahnbrücken
EP1167625A2 (de) * 2000-06-21 2002-01-02 Arnulf Stog Übergangskonstruktion für Gleise von Eisenbahnbrücken
EP1172479A2 (de) * 2000-07-11 2002-01-16 BWG GmbH & Co. KG Unterstützung für Schienen
JP2003184006A (ja) * 2001-12-13 2003-07-03 Topy Ind Ltd 磁気浮上式リニアモーターカー用軌道遊間調整装置
CN101223317A (zh) * 2005-07-12 2008-07-16 马克斯·博格建筑两合公司 桥梁结构上的固定车行道
CN101583761A (zh) * 2007-01-17 2009-11-18 马克斯·博格建筑两合公司 具有混凝土砼条的固定车行道
CN101270568A (zh) * 2007-11-06 2008-09-24 铁道第四勘察设计院 用于解决大梁缝地段的轨道桥接轨道板技术

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142795A (zh) * 2016-03-01 2017-09-08 北京控股磁悬浮技术发展有限公司 一种磁悬浮列车轨道及其接头装置
CN107142795B (zh) * 2016-03-01 2019-06-18 北京控股磁悬浮技术发展有限公司 一种磁悬浮列车轨道及其接头装置
CN106436930A (zh) * 2016-09-29 2017-02-22 中建二局第三建筑工程有限公司 一种地上超限沉降后浇带结构体系及施工方法
CN106436930B (zh) * 2016-09-29 2019-06-14 中建二局第三建筑工程有限公司 一种地上超限沉降后浇带结构体系及施工方法
CN110029536A (zh) * 2019-03-11 2019-07-19 中铁磁浮交通投资建设有限公司 中低速磁浮轨道梁大位移模块化伸缩装置的施工方法
CN110184863A (zh) * 2019-06-28 2019-08-30 上海交通大学 一种宽翼缘梁上板式轨道梁

Similar Documents

Publication Publication Date Title
WO2013029530A1 (zh) 无砟轨道***
WO2003025285A1 (fr) Structure de voie pour le transit par voie rapide
US8281722B2 (en) Solid track comprising a concrete strip
WO2011120187A1 (zh) 磁浮轨道梁端构造结构
CN109989330B (zh) 连续式轨道及其架设方法
CN204589822U (zh) 一种独柱双悬臂盖梁抱箍施工支撑***
CN113931077A (zh) 一种在施工空间受限预制箱梁架桥机架设施工方法
KR100788275B1 (ko) 반단면 프리캐스트 바닥판을 갖는 교량 구조
WO2011120186A1 (zh) 客运磁浮交通线路的轨道***
CN105908629A (zh) 用于公铁合建段公路箱梁的下行式移动模架及其使用方法
CN205474612U (zh) 一种城市轨道交通用h型预制轨道板
EP1092065A1 (en) Railway system and its supporting structure, as well as their method of construction
CN109235274B (zh) 一种新型顶推施工临时垫梁***及其施工方法
CN215714288U (zh) 多向变形可调整板式无砟轨道
CN202298390U (zh) 无砟轨道抢通设备
CN107938854A (zh) 一种利用预埋件的钢梁安装方法
CN210826952U (zh) 一种宽翼缘梁上板式轨道梁
RU2755804C1 (ru) Безбалластный железнодорожный путь для грузопассажирского высокоскоростного движения и способ его сооружения
CN211689879U (zh) 适用于小箱梁或板梁的大长宽比支撑装置
CN209584870U (zh) 用于长线法预制多种线型悬臂拼装节段的台座结构
RU2385981C2 (ru) Подмости
CN112647371A (zh) 利用二次浇筑将预制单元板连接成整体道床的施工方法
JP6618116B2 (ja) 橋脚の建設方法
CN201605498U (zh) 高速铁路底座可调型模板
CN106192715B (zh) 无支架施工的src门式刚架桥梁结构及其施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10848649

Country of ref document: EP

Kind code of ref document: A1