WO2011113209A1 - 一种用于为机器到机器通信分配处理资源的方法和装置 - Google Patents

一种用于为机器到机器通信分配处理资源的方法和装置 Download PDF

Info

Publication number
WO2011113209A1
WO2011113209A1 PCT/CN2010/071159 CN2010071159W WO2011113209A1 WO 2011113209 A1 WO2011113209 A1 WO 2011113209A1 CN 2010071159 W CN2010071159 W CN 2010071159W WO 2011113209 A1 WO2011113209 A1 WO 2011113209A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
base station
service data
control signaling
proportional relationship
Prior art date
Application number
PCT/CN2010/071159
Other languages
English (en)
French (fr)
Inventor
孔令山
管鲍
钱荣福
韦宇
吕平宝
季利军
王继康
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN201080060805.5A priority Critical patent/CN102714797B/zh
Priority to PCT/CN2010/071159 priority patent/WO2011113209A1/zh
Publication of WO2011113209A1 publication Critical patent/WO2011113209A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to wireless communications, and more particularly to machine-to-machine wireless communications in LTE. Background technique
  • M2M communication Machine to Machine Communication
  • M2M communication may become a feature or application in IMT-Advanced.
  • VzW the US mobile operator, has a more aggressive view on the development of M2M.
  • M2M communication has its specific traffic model, specific Quality of Service (QoS) requirements, and may also have specific location or time distribution characteristics.
  • QoS Quality of Service
  • M2M communication has begun to appear in 2G/3G, but the ratio is very small and has not been considered separately.
  • M2M will play an important role, but in the design of eNB and E-UTRAN (Evolved Universal Terrestrial Radio Access Network) networking, the existing solution is to focus on the statistical characteristics of the entire network in the traffic model. , treat M2M machine terminals and mobile phones that communicate with people in a unified way, no The characteristics of M2M are well considered, and the allocation of processing resources is fixed, designed according to ordinary H2H communication. For example, the processing resource occupied by the control plane is smaller than the processing resource occupied by the user data plane, thereby causing the control plane to be limited, thereby causing the average data rate to decrease and the average packet length to be reduced. Summary of the invention
  • the present invention designs a customized eNB dedicated to M2M, which can be used in a specific area or separately for an M2M application, and can increase the system capacity by 10 times to 80 compared to a general-purpose eNB mainly serving H2H (human to human). Times, saving transmission resources and significantly improving cost performance.
  • the base station determines the proportional relationship between the control signaling and the service data according to the traffic model of the machine-to-machine communication or the real-time traffic information of the machine-to-machine communication, and then reasonably controls the signaling according to the proportional relationship.
  • the service data allocation processing resource allocates more processing resources to the control plane when the number of messages processed by the control plane is much larger than the number of messages of the normal person-to-person user terminal or the control plane of the person-to-machine user terminal communication.
  • a method for serving machine-to-machine communication in a base station of an LTE wireless communication network comprising the steps of: acquiring control signaling and service data for machine-to-machine communication a proportional relationship; a corresponding processing resource is allocated to the control signaling and the service data according to the proportional relationship between the control signaling and the service data.
  • the base station obtains the proportional relationship between the control signaling and the service data by estimating a traffic model of the machine-to-machine communication.
  • a processing apparatus for serving machine-to-machine communication in a base station of an LTE wireless communication network comprising: obtaining means for acquiring control of said machine-to-machine communication And a distribution device, configured to allocate corresponding processing resources for the control signaling and the service data according to the proportional relationship between the control signaling and the service data.
  • the obtaining means is further configured to: obtain the proportional relationship between the control signaling and the service data according to a traffic model that estimates the machine-to-machine communication.
  • the processing load of the control plane of the eNB is very large, and the amount of user plane data is small, similar to short message service, and the uplink data is obviously more than the downlink.
  • the M2M terminal for example, includes sensors in the Internet of Things, is mainly used to report the data collected by the sensor to the network side. Therefore, in the M2M communication, the uplink data obviously has downlink data;
  • the QoS requirements are lower, the default bearer (Default Bearer) can generally meet the needs, and the scheduling delay can be large;
  • M2M is generally used in industry, with its specific regionality. If M2M with less resources and lower QoS requirements is the main application in a specific area (such as coal mine, port, oil field), then it is mainly human and human.
  • the traditional eNB designed for communication cannot meet the needs well: The control plane will have performance bottlenecks, the user plane resources will be idle, the downlink will be idle more, and the equipment cost is low.
  • FIG. 1 shows a schematic diagram of a network topology structure in accordance with an embodiment of the present invention
  • FIG. 2 shows a flowchart of a system method in accordance with an embodiment of the present invention
  • FIG. 3 illustrates a schematic diagram of processing resources for proportional control signaling and service data allocation according to an embodiment of the present invention
  • Figure 4 shows a block diagram of a device in accordance with an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a network topology according to an embodiment of the present invention.
  • the base station 1 is located in an LTE wireless communication network.
  • the terminal devices 2a and 2b are both machine-to-machine terminal devices.
  • the terminal devices 2a and 2b may be sensors or the like.
  • a general human-to-human user terminal for example, a mobile terminal 2c.
  • the base station 1 does not provide services to these mobile terminals 2c, and the mobile terminal 2c is served by other base stations.
  • step S20 the base station 1 broadcasts cell identification information to the cell under its jurisdiction, so that the device-to-machine terminal device can access the cell, but an ordinary person-to-person user terminal, such as a mobile phone, cannot access the cell. .
  • the base station 1 will be described using the home base station technology as an example, and step S20 will be described.
  • the base station 1 broadcasts an evolved E-UTRAN Cell Global Identifier (ECGI) to the cell under its jurisdiction, and the identifier includes a closed subscriber group ID (CSG). ID).
  • ECGI E-UTRAN Cell Global Identifier
  • CSG closed subscriber group ID
  • ID The concept of a closed user group is that a user signs up with a certain operator to install a home base station at home, and the user wants the home base station to provide services only to family members and a number of specific visitors.
  • 3GPP proposed a closed user group concept for access control in the Release 8 version.
  • a closed subscriber group refers to a group of subscribers who are allowed to access one or more specific cells, where one or more cells are restricted and conditional when accessing the subscriber, while a normal cell may allow all of the operators. Legally subscribed users and roaming users access. And the same user can belong to multiple closed user groups, each closed user group is identified by a closed user group ID, and the UE maintains a closed user group ID list (allowing CSG ID list) of the closed user group to which it belongs, in this list
  • the CSG cells included in other CSG IDs other than the UE are inaccessible to the UE.
  • each CSG cell broadcasts a CSG ID, and members of the closed subscriber group identified by the CSG ID can access the cell. Therefore, the CSG ID is also used to indicate that the base station 1 allows the machine-to-machine terminal device to access the cell under the jurisdiction of the base station 1.
  • the group identity list of the closed subscriber group to which it is added is stored on the terminal device 2a, that is, the list indicates which CSG groups the terminal device 2a is, in other words, which base stations the terminal device 2a can access. In the closed user group that is served.
  • the terminal device 2a receives the cell identification information broadcasted by the base station 1, in step S21, the terminal device 2a determines, according to the acquired cell identity information and the pre-stored cell list that is allowed to access, whether the cell under the jurisdiction of the base station 1 allows the machine to the machine. The terminal device 2a is connected.
  • the terminal device 2a extracts the closed subscriber group identifier CSG ID from the cell identity information received by the base station 1, and then searches for the CSG ID of the base station 1 in the allowed CSG ID list pre-stored by the terminal device 2a, if pre-stored. If the CSG ID of the base station 1 is found in the CSG ID list, the terminal device 2a is a member of the CSG under the control of the base station 1. Therefore, in step S22, the terminal device 2a can access the cell under the jurisdiction of the base station 1, that is, The terminal device 2a can reside in a cell under the jurisdiction of the base station 1.
  • a normal user terminal for example, the mobile phone user terminal 2c may also receive the cell identification information broadcasted by the base station 1, in step S21, because the user terminal 2c does not have a The base station 1 corresponds to the CSG ID. In fact, the normal user terminal 2c may not belong to any closed subscriber group. Therefore, the user terminal 2c determines whether the cell under the jurisdiction of the base station 1 allows the machine-to-machine terminal device 2c to access. Therefore, the base station 1 does not allow the user terminal 2c to camp in the cell under the jurisdiction of the base station 1, i.e., in step S22, the user terminal 2c cannot camp in the cell under the jurisdiction of the base station 1.
  • An embodiment of the present invention is specifically described above by using a technology of a home base station.
  • a technology of a home base station In this manner, only 3-10 such base stations are required, that is, a macro cell providing a large area is continuously covered, and a handover parameter of the cell is set.
  • the cell selection and reselection parameters so that the machine-to-machine terminal only switches between the cells under the jurisdiction of such a base station, and only resides in such a cell, and the human-to-machine terminal cannot be switched. To such a cell, it is also not possible to camp on such a cell. Logically this is an independent dedicated machine-to-machine LTE wireless network that does not affect the use of human-to-human and human-to-machine terminals.
  • step S23 the base station 1 acquires a proportional relationship between the control signaling of the machine-to-machine communication and the service data.
  • the base station 1 can obtain the proportional relationship between the control signaling and the service data by estimating a traffic model of machine-to-machine communication.
  • base station 1 may obtain the proportional relationship of control signaling to the traffic data by analyzing a typical traffic model for machine-to-machine communication.
  • Video surveillance is not considered. Those skilled in the art can understand that if video surveillance is considered, the parameters in the traffic model need to be corrected, but the principle is the same:
  • each cell supports 400 machine terminal devices and establishes communication with base station 1 at the same time.
  • the average call duration is 3.68 seconds, and the traffic per machine-to-machine terminal is approximately 0.01 Irish (Erl).
  • base station 1 can support 1093 Ireland by querying the Erlang B table, so base station 1 can support more than 100,000 machine-to-machine terminal equipment.
  • the Erlang B table also known as the Erl B table, reflects the relationship between traffic volume, channel number, and call loss rate. Usually, the call loss rate required by urban areas is 2%, and that of suburbs is 5%. Generally, in the case where the number of telephone lines, that is, the number of channels is determined, the higher the call loss rate, the larger the traffic volume. One channel is completely occupied by an hour and the traffic generated is 1 Ireland.
  • the number of control signaling messages to be processed per second on the Uu, SI, and X2 interfaces of the control plane of the base station 1 is about 4000, and the user plane bandwidth in one cell in the data plane is 43.5 kbps DL, 869.6 kbps UL.
  • the control plane load of the base station 1 is increased by about 4 times, but the user plane DL rate is reduced to about 1 / 300, and the UL rate is reduced to about 1 of the original. / 7.
  • control signaling the message processed by the base station 1 on the control plane
  • data processed by the base station 1 on the data plane is the service data, that is, 4000 of the above examples correspond to the number of control signaling.
  • 43.5 kbps and 869.6 kbps correspond to the data transmission rate of the service data.
  • control signaling and traffic The proportional relationship of the data can be expressed as the base station 1 is increased by about 4 times the control plane load relative to the original conventional base station, and the user plane downlink rate is reduced to about 1/
  • the uplink rate is reduced to about 1 / 7 of the original.
  • the base station 1 In order to increase the system capacity and support more machine-to-machine terminal equipment, it is necessary to allocate more physical resources to the control plane of the base station 1 than the conventional general-purpose base station, assuming that one cell supports 1200 active machine-to-machine terminals, Under other conditions, the base station 1 can support about 3,585 Ireland. Therefore, the base station 1 can support 350,000 machine-to-machine terminal devices, so the control plane of the base station 1 needs to process about 12,000 interfaces per second.
  • Capacity can be further increased by optimizing the user data surface.
  • Hypothetical time division duplex system
  • the rate is approximately 326.1 kbps and the upstream rate is 6521.7 kbps.
  • the control plane load of the base station 1 is increased by about 30 times, but the user plane only increases the line rate by about 20%, and the downlink rate is still reduced to about 1 / 40.
  • the interface message processed by the base station 1 on the control plane is control signaling
  • the data processed by the base station 1 on the data plane is the service data, that is, the number of control signals corresponding to 30000 in the above example corresponds to the number of control signaling.
  • 326.1 kbps and 6521.7 kbps correspond to the data transmission rate of the service data.
  • the proportional relationship between the control signaling and the service data can be expressed as the base station 1 is increased by about 30 times the control plane load relative to the original conventional base station, and the user plane downlink rate is reduced to the original At about 1 / 40, the upstream rate has increased by about 20%.
  • the base station 1 supports 400 active machine-to-machine terminal devices, 1200 activated machine-to-machine terminal devices and 3000 activated machines, respectively.
  • the number of activated machine-to-machine terminal devices supported by the base station 1 is not limited to the three examples listed above, and those skilled in the art may Network deployment parameters and network configuration, establish a business model, and obtain the proportional relationship between the corresponding control signaling and business data.
  • step S20-step S22 It can be omitted, that is, the base station 1 directly allocates the processing resources of the base station according to the traffic model, without premising that the terminal device resides in the base station 1.
  • step S23 may also occur before step S20-step S22, that is, the base station 1 first allocates processing resources for control signaling and service data according to the traffic model, and then broadcasts cell identification information. Used to access machine-to-machine terminal equipment.
  • the traffic model is not required to be derived, and the base station 1 can monitor the traffic of the control signaling and the service data of the base station 1 in real time, and obtain the proportional relationship between the control signaling and the service data, so as to be reasonably allocated.
  • the processing resources of the base station since it is necessary to detect the traffic of the control plane and the data plane in real time, step S20 - step S22 is necessary, that is, the machine-to-machine terminal device 2a or 2b first resides in the base station 1.
  • the base station 1 can detect the number of messages of the Uu, S1, and X2 interfaces of the control plane of the base station 1 in a period of time, and detect the data transmission rate of the user plane of the base station 1 in the same period of time, for example, The sum of the uplink and downlink data transmission rates, thereby obtaining the proportional relationship between the control signaling and the service data.
  • step S24 the base station 1 allocates corresponding processing resources for the control signaling and the service data according to the proportional relationship between the obtained control signaling and the service data.
  • multiple multi-core processors can be assigned to the control plane of base station 1, either on a digital signal processor or field programmable gate array, or on one or more powerful commercial servers.
  • the base station 1 obtains the proportional relationship between the control signaling and the service data by estimating the traffic model of the machine-to-machine communication as an example. For example, under the traffic model in which the base station 1 supports 400 active users, the control plane load of the base station 1 is increased by about 4 times, but the user plane DL rate is reduced to about 1/300, and the UL rate is reduced to the original. Approximately 1 / 7; accordingly, the processing resources allocated to the control plane, including the processor, memory, and bandwidth, are more processing resources than the existing base stations serving ordinary human-to-human user terminals.
  • the processor allocated to the control plane of the original general base station is a single core processor
  • the processor allocated for the control plane of the base station 1 of the machine to machine communication network may be a dual core processor, four
  • the core processor is even an eight-core processor, as long as it matches the load of the control signaling it processes.
  • the base station 1 also allocates corresponding processing resources for the service data.
  • the processing resources allocated by the base station 1 for the service data are equal to the processing resources allocated by the existing universal base station for the service data, or slightly less than the existing general-purpose resources. The processing resource allocated by the base station for the service data.
  • the base station 1 can also allocate processing resources for control signaling, uplink service data and downlink service data according to the ratio between the control signaling, the upper service data and the downlink service data.
  • the control plane load of the base station 1 is increased by about 30 times, but the user plane only increases the line rate by about 20%, and the downlink rate is still reduced to about 1/40.
  • the processor allocated to the control plane of the original universal base station is a single core processor
  • the processor allocated to the base station 1 of the machine-to-machine communication network may be a quad-core processor or even an eight-core processor.
  • the processor ...even a 30-core processor, as long as it matches the load of the control signaling processed by the control plane of the base station.
  • the base station 1 also allocates corresponding processing resources for the uplink service data and the downlink service data.
  • the processing resources allocated by the base station 1 for the service data are equal to or slightly less than the processing resources allocated by the existing universal base station for the service data.
  • the processing resources allocated by the existing general base station for the service data, and most of the processing resources allocated for the service data, for example, 70% are allocated to the uplink service data, and the remaining part, for example, 30% is reassigned to the downlink.
  • Business data Those skilled in the art can understand that 70% and 30% of the above-mentioned allocation ratios are only exemplary. In actual operation, the ratio can be configured according to the proportional relationship between the specific control signaling and the service data.
  • Figure 3 shows an example of proportionally controlling signaling and traffic data processing resources. Schematic diagram.
  • the largest block in Figure 3 represents the strongest ability to process the processing resources allocated by the control signaling.
  • the next largest box is represented as the upstream user plane, ie the processing assigned by the upstream data plane.
  • Resources Second the smallest box indicates the least amount of processing resources allocated for the downstream user plane.
  • step S23 the control signaling of the base station 1 and the traffic of the service data are monitored in real time, and the proportional relationship between the control signaling and the service data is obtained as an example.
  • Step S24 is described.
  • processing resources are allocated for the control plane and the user plane, and the initially allocated policies may be allocated according to a statistical business model or randomly.
  • the base station 1 has a total of 32 core processors, and the base station 1 initially allocates a 2-core processor for the control plane, which is a user data plane 2 core processor. Then, the base station 1 further monitors the traffic information according to the real-time monitoring. For example, the base station 1 monitors the interfaces of the respective control planes, and finds that the 2-core processor allocated to the base station 1 cannot meet the requirement, and then dynamically allocates more to the control plane.
  • the processing resources for example, allocate a 2-core processor to the control plane of the base station 1. This solution can realize the dynamic allocation of processing resources, and effectively improve the utilization rate of processing resources in use.
  • a dedicated frequency band networking may also be used. It is assumed that even if only 5M dedicated bandwidth is used, 5-10 machine-to-machine terminal devices are scheduled in each transmission time interval, the maximum delay time is 100-200ms, and one cell can support 1000 active users, and one base station can support With 280,000 users, as long as 4 base stations can form a dedicated network of millions of machine-to-machine terminal equipment, it is extremely cost-effective.
  • the terminal devices 2a and 2b are all under the jurisdiction of the base station 1, and their data links may pass through the core network directly.
  • the base station 1 internally performs the exchange. Specifically: if two machine-to-machine terminal devices are under the jurisdiction of the same base station, the evolved packet core will indicate the identity of the calling party and the called user of the base station, and the corresponding radio bearer (E-UTRAN Radio Access Bearer), the base station 1 After receiving the local exchange indication of the core network, a switching connection is directly established in the base station for the data flows of the two terminal devices.
  • the default bearer is still reserved between the base station 1 and the core network, but the base station 1 does not transmit data on the default bearer.
  • a correspondence table between the temporary mobile subscriber identity and the cell wireless network temporary identity is also reserved in the base station 1.
  • FIG 4 shows a block diagram of a device in accordance with an embodiment of the present invention.
  • the processing device 10 is located in the base station 1.
  • the processing device 10 includes an obtaining device 100 and a dispensing device 101.
  • the processing device 10 further includes a broadcasting device (not shown).
  • the broadcast device broadcasts cell identification information to the cell under the jurisdiction of the base station 1 so that the device-to-machine terminal device can access the cell, but the ordinary person-to-person user terminal, such as a mobile phone or a laptop computer, cannot access the cell. .
  • the broadcast device will be described by taking the base station 1 as an example using the home base station technology.
  • the broadcast device broadcasts an E-UTRAN Cell Global Identifier (ECGI) to the cell under its jurisdiction, and the identifier includes a closed subscriber group ID (CSG). ID).
  • ECGI E-UTRAN Cell Global Identifier
  • CSG closed subscriber group ID
  • ID The concept of a closed user group is that a user signs up with a certain operator to install a home base station at home. The user wants the home base station to provide services only to family members and a number of specific visitors. For this requirement of the home base station, 3GPP proposed in the Release 8 version the access control concept using the closed subscriber group.
  • a closed subscriber group refers to a group of subscribers who are allowed to access one or more specific cells, where one or more cells are restricted and conditional when accessing the subscriber, while a normal cell may allow all of the operators. Legally subscribed users and roaming users access. And the same user can belong to multiple closed user groups, each closed user group is identified by a closed user group ID, and the UE maintains a closed user group ID list (allowing CSG ID list) of the closed user group to which it belongs, in this list
  • the CSG cells included in other CSG IDs other than the UE are inaccessible to the UE.
  • each CSG cell broadcasts a CSG ID, and members of the closed subscriber group identified by the CSG ID can access the cell. Therefore, the CSG ID is also used to indicate that the base station 1 allows the machine-to-machine terminal device to access the cell under the jurisdiction of the base station 1.
  • the group identity list of the closed subscriber group to which it is added is stored on the terminal device 2a, that is, the list indicates which CSG groups the terminal device 2a is, in other words, which base stations the terminal device 2a can access.
  • the terminal device 2a After the terminal device 2a receives the cell identity information broadcast by the base station 1, the terminal device 2a determines the base station 1 according to the acquired cell identity information and the pre-stored cell list that is allowed to access. Whether the cell under the jurisdiction allows the machine to machine terminal device 2a to access.
  • the terminal device 2a extracts the closed subscriber group identifier CSG ID from the cell identity information received by the base station 1, and then searches for the CSG ID of the base station 1 in the allowed CSG ID list pre-stored by the terminal device 2a, if pre-stored.
  • the CSG ID of the base station 1 is found in the CSG ID list, and the terminal device 2a determines that the terminal device 2a is a member of the CSG under the control of the base station 1. Therefore, the terminal device 2a accesses the terminal device 2a to the cell under the jurisdiction of the base station 1. That is, the terminal device 2a can reside in a cell under the jurisdiction of the base station 1.
  • a normal user terminal for example, the mobile phone user terminal 2c may also receive the cell identification information broadcasted by the base station 1, but there is no corresponding to the base station 1 in the user terminal 2c.
  • the CSG ID in fact, the ordinary user terminal 2c may not belong to any closed subscriber group, and therefore, the subscriber terminal 2c judges that the base station 1 does not allow the subscriber terminal 2c to camp in the cell under the jurisdiction of the base station 1.
  • the acquisition means 100 of the base station 1 acquires a proportional relationship between the control signaling of the machine-to-machine communication and the service data.
  • the obtaining means 100 can obtain the proportional relationship between the control signaling and the service data by estimating a traffic model of machine-to-machine communication.
  • the obtaining device 100 can obtain the proportional relationship between the control signaling and the service data by analyzing a typical traffic model of machine-to-machine communication.
  • the average call duration is 3.68 seconds, and the traffic per machine-to-machine terminal is approximately 0.01 Irish (Erl).
  • base station 1 can support 1093 Ireland by querying the Erlang B table, so base station 1 can support more than 100,000 machine-to-machine terminal equipment.
  • the Erlang B table also known as the Erl B table, reflects the relationship between traffic volume, channel number, and call loss rate. Usually the urban callback rate is 2%, and the suburb is 5%. Generally, in the case where the number of telephone lines, that is, the number of channels is determined, the higher the call loss rate, the larger the traffic volume. A channel is completely occupied for an hour and the traffic generated is 1 Ireland.
  • the obtaining apparatus 100 estimates that the number of control signaling messages to be processed per second on the Uu, Sl, and X2 interfaces of the control plane of the base station 1 is about 4000, and the users in one cell on the data plane.
  • the area bandwidth is 43.5 kbps DL, 869.6 kbps UL.
  • the control plane load of the base station 1 is increased by about 4 times, but the user plane DL rate is reduced to about 1 / 300, and the UL rate is reduced to about 1 of the original. / 7.
  • the message processed by the base station 1 on the control plane is control signaling
  • the data processed by the base station 1 on the data plane is the service data
  • 4000 of the above examples correspond to the number of control signaling.
  • 43.5 kbps and 869.6 kbps correspond to the data transmission rate of the service data. Therefore, in this example, the proportional relationship between the control signaling and the service data can be expressed as the base station 1 is increased by about 4 times the control plane load relative to the original conventional base station, and the user plane downlink rate is reduced to the original About 1 / 300, the upstream rate is reduced to about 1 / 7 of the original.
  • the base station 1 In order to increase the system capacity and support more machine-to-machine terminal equipment, it is necessary to allocate more physical resources to the control plane of the base station 1 than the conventional general-purpose base station, assuming that one cell supports 1200 active machine-to-machine terminals, In the case where the other conditions are unchanged, the base station 1 can support about 3,585 Ireland. Therefore, the base station 1 can support 350,000 machine-to-machine terminal devices, so the control plane of the base station 1 needs to process about 12,000 interfaces per second.
  • Capacity can be further increased by optimizing the user data surface.
  • Hypothetical time division duplex system
  • the control plane of the base station 1 needs to process about 30,000 interface messages per second, and the user plane downlink rate is about 326.1 kbps.
  • the upstream rate is 6521.7 kbps.
  • the control plane load of the base station 1 is increased by about 30 times, but the user plane only increases the line rate by about 20%, and the downlink rate is still reduced to about 1 / 40.
  • the interface message processed by the base station 1 on the control plane is control signaling
  • the data processed by the base station 1 on the data plane is the service data, that is, the number of control signals corresponding to 30000 in the above example corresponds to the number of control signaling.
  • the proportional relationship between the control signaling and the service data can be expressed as the base station 1 is increased by about 30 times the control plane load relative to the original conventional base station, and the user plane downlink rate is reduced to the original At about 1 / 40, the upstream rate has increased by about 20%.
  • the above obtaining means 100 respectively acquires the proportional relationship between the control signaling of the base station 1 and the service data when the base station 1 supports 400 active machine-to-machine terminal devices and 3000 activated machine-to-machine terminal devices, respectively.
  • the number of activated machine-to-machine terminal devices supported by the base station 1 is not limited to the above enumerated examples, and those skilled in the art can refer to actual networks. Deploy parameters and network configuration, establish a service model, and obtain the proportional relationship between control signaling and service data.
  • the foregoing scheme for allocating the processing resources of the base station according to the traffic model is a static processing resource allocation scheme.
  • the processing resources are allocated to the control plane and the data plane of the base station according to the traffic model.
  • the operation performed by the acquisition device does not depend on the result of the operation performed by the broadcast device, that is, there is no apparent prior relationship between the two. In other words, in this scheme, the broadcast device can be omitted.
  • the traffic model is not required to be derived, and the base station 1 can obtain the control signal by monitoring the control signaling of the base station 1 and the traffic of the service data in real time.
  • the proportional relationship with the service data is used to reasonably allocate the processing resources of the base station, because in this solution, the acquiring apparatus 100 needs to detect the traffic of the control plane and the data plane of the base station in real time, and therefore, the broadcasting apparatus is necessary, that is, The machine-to-machine terminal device 2a or 2b first resides in the base station 1.
  • the obtaining apparatus 100 may detect the number of messages of the Uu, S1, and X2 interfaces of the control plane of the base station 1 in a period of time, and detect the data transmission rate of the user plane of the base station 1 in the same period of time. For example, the sum of the uplink and downlink data transmission rates, thereby obtaining the proportional relationship between the control signaling and the service data.
  • the allocating means 101 allocates corresponding processing resources for the control signaling and the service data according to the proportional relationship between the obtained control signaling and the service data.
  • distribution device 101 can allocate multiple multi-core processors for the control plane of base station 1, either on a digital signal processor or field programmable gate array, or on one or more powerful commercial servers.
  • the acquisition device 100 obtains the proportional relationship between the control signaling and the service data by estimating the traffic model of the machine-to-machine communication as an example.
  • the control plane load of the base station 1 is increased by about 4 times, but the user plane DL rate is reduced to about 1/300, and the UL rate is reduced to the original.
  • the processing resources allocated by the distribution device 101 for the control plane including the processor, memory, and bandwidth, are more than the processing resources of the existing base station serving the ordinary human-to-human user terminal.
  • the processor allocated to the control plane of the original general base station is a single core processor
  • the processor allocated by the distribution device 101 to the control plane of the base station 1 of the machine-to-machine communication network may be dual-core processing.
  • a quad-core processor or even an eight-core processor can match the load of the control signaling it processes.
  • the allocating device 101 also allocates corresponding processing resources for the service data.
  • the processing resources allocated by the base station 1 for the service data are equal to the processing resources allocated by the existing universal base station for the service data, or slightly less than the existing ones.
  • the processing resources allocated by the general base station for the service data are equal to the processing resources allocated by the existing universal base station for the service data, or slightly less than the existing ones.
  • the allocating means 101 can also allocate processing resources for control signaling, uplink traffic data and downlink traffic data according to the ratio between the control signaling, the uplink traffic data and the downlink traffic data.
  • the control plane load of the base station 1 is increased by about 30 times, but the user plane only increases the line rate by about 20%, and the downlink rate is still reduced to about 1/40. Be explained.
  • the processor allocated to the control plane of the original universal base station is a single core processor
  • the processor allocated by the distribution device 101 to the base station 1 of the machine-to-machine communication network may be a quad-core processor or even It is an eight-core processor...even a 30-core processor, as long as it matches the load of the control signaling handled by the control plane of the base station.
  • the allocating device 101 also allocates corresponding processing resources for the uplink service data and the downlink service data.
  • the processing resources allocated by the distribution device 101 for the service data are equal to the processing resources allocated by the existing universal base station for the service data, or Slightly less than the processing resources allocated by the existing general base station for the service data, and the allocating device 101 allocates most of the processing resources allocated for the service data, for example, 70% to the uplink service data, and the remaining portion, for example, 30 % is reassigned to the downlink business data.
  • 70% and 30% of the above-mentioned allocation ratios are only exemplary. In actual operation, the ratio can be configured according to the proportional relationship between the specific control signaling and the service data.
  • the acquisition device 101 is described by taking the real-time monitoring of the control signaling of the base station 1 and the traffic of the service data, and obtaining the proportional relationship between the control signaling and the service data.
  • the distribution device 101 first allocates processing resources for the control plane and the user plane, and the initially assigned policies may be allocated according to a statistical business model or randomly.
  • the base station 1 has a total of 32 core processors, and the distribution device 101 initially allocates a 2-core processor for the control plane, which is a user data plane 2 core processor. Then, the distribution device 101 is further based on the traffic information monitored in real time. For example, the acquisition device 100 monitors the interfaces of the respective control planes and finds that the 2-core processor allocated to the base station 1 is no longer sufficient.
  • the control plane allocates more processing resources, for example, a 2-core processor for the control plane of the base station 1.
  • the solution can realize the dynamic allocation of processing resources, and effectively improve the utilization of processing resources in use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种用于为机器到机器通信分配
处理资源的方法和装置 技术领域
本发明涉及无线通信, 尤其涉及 LTE中机器到机器无线通信。 背景技术
传统的有人参与的通信的特点是运行的应用是不特定的。 例如, 用户通过用户终端的输入设备, 例如键盘、 鼠标、 写字板等等, 选择 浏览网页、 播放视频等等, 因而发起了不同的应用。 相对应地, 机器 到机器的通信 ( Machine to Machine Communication, M2M通信 )是 在实体设备之间进行的, 并不必然需要与人交互的数据通信。 M2M 通信与现有的人机交互的模型的不同之处在于:
- 新的或者不同的市场应用场景;
- 更低的花费;
- 潜在的大量的机器通信终端;
- 每个机器终端的大部分的业务量较小。
因此, M2M通信可能成为 IMT-Advanced中的一个特点或者应用。 美国的移动营运商 VzW对 M2M的发展所持的观点比较激进, 认为在 2015年, LTE移动终端的类型分布为机器终端: 用户终端 = 3 : 1 , M2M终端比例达到 75%。 保守估计, 在 LTE大规模成熟商用的时候, M2M将在所有终端中占据约 30%份额。
M2M通信作为新的行业应用,有其特定的话务模型、特定的服务 质量 ( Quality of Service, QoS ) 需求, 还可能有特定的位置或时间分 布等特征。
M2M通信作为新业务, 在 2G/3G已开始出现, 但比例很少, 没 有单独考虑。 在未来的 LTE时代, M2M将占据重要角色, 但是在设 计 eNB 和 E-UTRAN ( Evolved Universal Terrestrial Radio Access Network ) 组网的方案中, 现有的方案是在话务模型只是关注整个网 络的统计特征, 把 M2M机器终端和人与人通信的手机统一对待, 没 有很好考虑 M2M的特点, 处理资源的分配都是固定的, 按照普通的 H2H通信设计的。 例如, 控制面占用的处理资源小于用户数据面所占 用的处理资源, 从而造成控制面受限的状态, 因而导致平均数据速率 降低, 平均分组长度减小。 发明内容
本发明设计一种专用于 M2M的定制 eNB, 可在特定地区使用, 或 为 M2M应用单独组网, 相比主要为 H2H ( human to human )服务的通 用型 eNB, 能提高***容量 10倍一 80倍, 节省传输资源, 显著提高性 价比。 其中, 基站根据机器到机器通信的话务模型, 或者根据机器到 机器通信的实时的流量信息, 确定控制信令与业务数据之间的比例关 系, 然后根据该比例关系合理地为控制信令和业务数据分配处理资 源, 当控制面处理的消息个数远大于普通的人到人用户终端或者人到 机器用户终端通信的控制面的消息个数, 为控制面分配更多的处理资 源。
根据本发明的第一方面,提供了一种在 LTE无线通信网络的基站 中用于为机器到机器通信服务的方法, 其中, 包括以下步骤: 获取机 器到机器通信的控制信令与业务数据的比例关系; 根据所述控制信令 与所述业务数据的所述比例关系, 为所述控制信令和所述业务数据分 配相应的处理资源。
优选地, 基站通过估计所述机器到机器通信的话务模型, 获取所 述控制信令与所述业务数据的所述比例关系。
根据本发明的第二方面,提供了一种在 LTE无线通信网络的基站 中用于为机器到机器通信服务的处理装置, 其中, 包括: 获取装置, 用于获取所述机器到机器通信的控制信令和业务数据比例关系; 分配 装置, 用于根据所述控制信令与所述业务数据的所述比例关系, 为控 制信令和业务数据分配相应的处理资源。
优选地, 该获取装置还用于: 根据估计所述机器到机器通信的话 务模型, 获取所述控制信令与所述业务数据的所述比例关系。
本发明的技术方案充分考虑了 M2M终端的以下特点: 1. 大部分 M2M终端没有移动性或 [艮少移动;
2. 基于 M2M应用的典型话务模型, eNB的控制面的处理负荷很 大, 而用户面数据量很小, 类似短消息业务, 且上行数据明显多于下 行。 因为 M2M终端, 例如, 包括物联网中的传感器, 主要用于向网 络侧报告该传感器所采集的数据, 因此, 在 M2M通信中, 上行数据 明显多有下行数据;
3. QoS要求较低, 预设承载 ( Default Bearer ) —般能满足需要, 调度延迟可以较大;
4. M2M—般为行业应用, 有其特定的地域性, 如果在一个特定 地区 (如煤矿, 港口, 油田 ), 占用资源较少、 QoS要求较低的 M2M 为主要应用, 那么主要为人与人之间通信而设计的传统的 eNB 不能 很好的满足需要: 控制面将有性能瓶颈, 用户面资源闲置, 下行闲置 更多, 设备性价比低。
5. 在一个特定区域内 (如煤矿, 港口, 油田 ), 不少 M2M通信 发生在同一个 eNB内, 数据通过 EPC是浪费。
采用本发明的技术方案, 能够提高***容量, 节省传输资源, 显 著提高性价比。 附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描 述, 本发明的以上及其它特征、 目的和优点将会变得更加明显:
图 1示出了根据本发明的一个具体实施方式的网络拓朴结构示意 图;
图 2示出了根据本发明的一个具体实施方式的***方法流程图; 图 3示出了根据本发明的一个具体实施方式的按照比例为控制信 令和业务数据分配处理资源的示意图;
图 4示出了根据本发明的一个具体实施方式的装置框图。
附图中, 相同或者相似的附图标识代表相同或者相似的部件。 具体实施方式 图 1 示出了根据本发明的一个具体实施方式的网络拓朴结构示 意图。 其中, 基站 1位于 LTE无线通信网络中。 终端设备 2a和 2b 均为机器到机器终端设备。 例如终端设备 2a和 2b可以是传感器等。 图 1中还示出了普通的人到人的用户终端, 例如, 手机终端 2c, 在本 实施方式中, 基站 1不向这些手机终端 2c提供服务, 手机终端 2c由 其他基站服务。
图 2示出了根据本发明的一个具体实施方式的***方法流程图。 首先,在步骤 S20中,基站 1向其所辖的小区广播小区标识信息, 以便于机器到机器的终端设备能够接入该小区, 但普通的人到人的用 户终端, 例如手机, 不能接入。
以下, 以基站 1采用家庭基站技术为例, 对步骤 S20进行说明。 例如, 基站 1向其所辖的小区广播演进的通用陆基无线接入网小 区全球标识(E-UTRAN Cell Global Identifier, ECGI ), 该标识中包含 了封闭用户组标识 (closed subscriber group ID, CSG ID )。 所谓封闭 用户组的概念, 即某用户与某运营商签约在自家安装家庭基站, 该用 户希望家庭基站只对家庭成员和若干特定来访客人等提供服务。针对 家庭基站的这种要求, 3GPP在 Release8版本提出采用封闭用户组的 概念进行访问控制。封闭用户组指的是允许接入一个或多个特定小区 的一群签约用户, 这里的一个或多个小区接入用户时是受限的、 有条 件的, 而普通蜂窝小区可允许运营商的所有合法签约用户和漫游用户 接入。 并且同一用户可属于多个封闭用户组, 每个封闭用户组由一个 封闭用户组 ID所标识, UE维护一张它所属封闭用户组的封闭用户组 ID列表(允许 CSG ID列表),在这个列表之外的其他 CSG ID所包含 的 CSG小区对该 UE而言是不可访问的。 并且每个 CSG小区广播一 个 CSG ID, 这个 CSG ID所标识的闭合用户群的成员可以访问该小 区。 因此, 该 CSG ID也即用于指示基站 1允许机器到机器终端设备 接入基站 1所辖的小区的指示信息。
相应地, 在终端设备 2a上保存了其所加入的封闭用户组的组标 识列表, 也即, 该列表表示了终端设备 2a是哪些 CSG组的成员, 换 言之, 终端设备 2a可以接入到哪些基站所服务的封闭用户组中。 在 终端设备 2a接收到基站 1所广播的小区标识信息后, 在步骤 S21中, 终端设备 2a根据获取的小区标识信息以及预存的允许接入的小区列 表, 判断基站 1所辖小区是否允许机器到机器终端设备 2a接入。 例 如, 终端设备 2a从由基站 1处接收到的小区标识信息中提取出封闭 用户组标识 CSG ID, 然后再在终端设备 2a所预存的允许 CSG ID列 表中查找基站 1的 CSG ID,如果在预存的允许 CSG ID列表中找到了 基站 1的 CSG ID, 则表示终端设备 2a是基站 1所辖的 CSG的成员, 因此在步骤 S22中, 终端设备 2a可以接入基站 1所辖的小区, 也即, 终端设备 2a可以驻留在基站 1所辖的小区中。
在一个变化的实施方式中, 例如, 普通的用户终端, 例如, 手机 用户终端 2c可能也接收到了来自基站 1所广播的小区标识信息, 在 步骤 S21,中, 因为用户终端 2c中未存有与基站 1相对应的 CSG ID, 事实上, 普通的用户终端 2c可能不属于任何封闭用户组, 因此, 用 户终端 2c判断基站 1所辖小区是否允许机器到机器终端设备 2c接入。 因此, 基站 1不允许该用户终端 2c驻留在基站 1所辖的小区中, 也 即, 在步骤 S22,中, 用户终端 2c不能驻留在基站 1所辖的小区中。
以上利用家庭基站的技术, 对本发明的一个实施方式进行具体的 描述, 在这种方式下, 只需要 3-10 个此类基站, 即提供大片区域的 宏小区连续覆盖, 通过设置小区的切换参数和小区选择与重选参数, 使的机器到机器终端只在这类基站所辖的小区间切换, 并只驻留在此 类小区中, 也让人到人的以及人到机器的终端不能切换到此类小区, 也不能驻留在此类小区。 逻辑上这是一个独立的专用的机器到机器的 LTE无线网络, 不影响人到人的以及人到机器的终端的使用。
然后, 在步骤 S23中, 基站 1获取机器到机器通信的控制信令与 业务数据的比例关系。
基站 1可以通过估计机器到机器通信的话务模型, 获取控制信令 与所述业务数据的所述比例关系。
在一个实施方式中, 基站 1可以通过分析机器到机器通信的典型 的话务模型, 获取控制信令与所述业务数据的所述比例关系。
首先分析机器到机器通信的一个典型的话务模型, 在该话务模型 中未考虑视频监控。 本领域技术人员可以理解, 如果考虑视频监控, 需要对该话务模型中的参数进行修正, 但原理相同:
忙时呼叫尝试 = 10 次;
一次呼叫传输的上行分组数 =1, 分组大小 =1000 Byte;
一次呼叫传输的下行分组数 =1 , 分组大小 =50 Byte;
其中约 70%为移动终端发起的呼叫。在通信过程中只需要建立缺 省承载, 不需要建立专用承载。 当仅在热点地区使用时机器到机器通 信, 切换比例很低, 估计约为 1%。 即使被普遍使用时, 因为数据量 很少, 呼叫保持时间很短, 切换比例仍然很低, 估计低于 5%。
根据上述机器到机器通信的典型的话务模型和 3GPP LTE的相关 规范, 假设一个小区支持 400个激活机器到机器终端设备, 也即, 每 个小区支持 400个机器终端设备同时与基站 1建立通信, 基站 1有 3 个这样的小区, 基于流量的内容释放定时器 = 3秒, 也即, 连接建立 后超过 3秒仍没有数据传输就释放该连接。 平均呼叫时长为 3.68秒, 则每个机器到机器终端设备的话务量约为 0.01爱尔兰(Erl )。假设 2% 呼损率, 通过查询 Erlang B表, 基站 1能支持 1093爱尔兰, 因此基 站 1能支持 10万以上机器到机器终端设备。 其中, Erlang B表也即 Erl B表, 反映了话务量、 信道数及呼损率之间的关系。 通常市区要 求的呼损率为 2%, 郊区为 5%。 一般地, 在电话线数, 也即信道数确 定的情形下, 呼损率越高, 话务量越大。 一个信道被完全占用了一个 小时所产生的话务量为 1爱尔兰。
因此, 根据上述话务模型, 估计出基站 1 的控制面将要在 Uu, SI , X2接口每秒处理的控制信令消息个数约为 4000个, 而在数据 面在一个小区内用户面带宽为 43.5kbps DL, 869.6kbps UL。 相比每 个小区支持 400个人到人手机的基站, 基站 1的控制面负荷约增加为 原来的 4倍, 但用户面 DL速率减少为原来的约 1 / 300 , UL速率减 少为原来的约 1 / 7。应能理解,基站 1在控制面所处理的消息即为控 制信令, 基站 1在数据面处理的数据即为业务数据, 也即, 上述例子 中的 4000个对应了控制信令的个数, 且 43.5kbps以及 869.6kbps对 应了业务数据的数据传输速率。 因此, 在该例子中, 控制信令与业务 数据的比例关系可以表示为基站 1相对于原有的传统的基站, 控制面 负荷约增加为原来的 4 倍, 而用户面下行速率减少为原来的约 1 /
300 , 上行速率减少为原来的约 1 / 7。
为提高***容量, 支持更多机器到机器终端设备, 相比传统的通 用型的基站,需要为基站 1的控制面分配更多的物理资源, 假设一个 小区支持 1200个激活机器到机器终端, 在其他条件不变的情形下, 基站 1能支持约 3585爱尔兰, 因此, 基站 1 内能支持 35万个机器到 机器的终端设备, 因此基站 1的控制面约需每秒处理 12000个接口消 ii
通过优化用户数据面, 可进一步提高容量。 假设时分双工***共
20M带宽, 采用 TDD DL/UL Config=0, special subframe Config=5, 为 物理随机接入信道和物理上行控制信道预留了足够资源, 并且假设每 个传输时间间隔有 30个机器到机器终端设备被调度, 如果最大允许 延迟为 100ms, 釆用最简单的公平轮回调度, 也即, 采用时间片轮转 的方式, 每个机器到机器终端设备每 100ms被调度一次, 一个小区可 以支持 3000个激活用户, 假设其他前提不变的情形下, 基站 1 能够 支持约 8990爱尔兰, 从而支持约 88万机器到机器终端设备, 此时, 基站 1的控制面约需每秒处理 30000个接口消息, 用户面下行速率约 为 326.1kbps, 上行速率为 6521.7 kbps。 相比传统的每个小区支持 400个人到人手机的通用型基站, 基站 1的控制面负荷约增加为原来 的 30倍, 但用户面上行速率只增加约 20%, 下行速率仍然减少到约 1 / 40。 应能理解, 基站 1在控制面所处理的接口消息即为控制信令, 基站 1在数据面处理的数据即为业务数据,也即,上述例子中的 30000 个对应了控制信令的个数,且 326.1kbps以及 6521.7 kbps对应了业务 数据的数据传输速率。 因此, 在该例子中, 控制信令与业务数据的比 例关系可以表示为基站 1相对于原有的传统的基站, 控制面负荷约增 加为原来的 30倍, 而用户面下行速率减少为原来的约 1 / 40 , 上行 速率增加了约 20%。
上文中分别讨论了当基站 1分别支持 400个激活的机器到机器终 端设备, 1200个激活的机器到机器终端设备以及 3000个激活的机器 到机器终端设备时, 基站 1的控制信令与业务数据之间的比例关系。 当然, 本领域技术人员可以理解, 在实际的 LTE通信***中, 基站 1 所支持的激活的机器到机器终端设备的个数并不限于以上所列举的 三个例子, 本领域技术人员可以根据实际的网络部署参数以及网络配 置情况, 建立业务模型, 并获取相应的控制信令和业务数据的比例关 系。
上述的根据话务模型分配基站的处理资源的方案, 是一种静态的 处理资源分配方案, 在另一个实施方式中, 在根据话务模型分配基站 的处理资源的方案中, 步骤 S20-步骤 S22是可以省略的, 也即, 基站 1直接根据话务模型分配基站的处理资源, 而不需要以终端设备驻留 在基站 1中为前提。 当然, 在另一个实施方式中, 步骤 S23也可以发 生在步骤 S20-步骤 S22之前, 也即, 基站 1先根据话务模型为控制信 令和业务数据分配处理资源, 然后再广播小区标识信息, 用于接入机 器到机器的终端设备。
以下, 在一个变化的实施方式中, 不需要导出话务模型, 基站 1 可以通过实时监测基站 1的控制信令和业务数据的流量, 获取控制信 令和业务数据的比例关系, 从而合理地分配基站的处理资源, 因为需 要实时地检测控制面和数据面的流量,所以步骤 S20-步骤 S22是必需 的, 也即, 机器到机器终端设备 2a或 2b首先要驻留在基站 1中。
例如, 基站 1可以检测基站 1 的控制面在一个时间段内的 Uu、 S l、 X2接口的消息的个数, 并且检测基站 1 的用户面在该同一个时 间段内的数据传输速率, 例如, 上行和下行的数据传输速率的总和, 从而获取控制信令和业务数据的比例关系。
然后, 在步骤 S24中, 基站 1根据获取的控制信令与业务数据的 比例关系, 为控制信令和业务数据分配相应的处理资源。 例如, 可以 为基站 1的控制面分配多个多核处理器, 或者在数字信号处理器或者 现场可编程门阵列上实现, 或者在一台或多台强劲的商用服务器上实 现。
首先以基站 1通过估计机器到机器通信的话务模型, 获取到控制 信令与业务数据的比例关系为例进行说明。 例如, 在基站 1支持 400个激活用户的话务模型下, 基站 1的控 制面负荷约增加为原来的 4倍, 但用户面 DL速率减少为原来的约 1 / 300 , UL速率减少为原来的约 1 / 7; 因此, 相应地为控制面分配 的处理资源, 包括处理器、 内存和带宽均比现有的服务于普通的人到 人的用户终端的基站的处理资源多。 例如, 如果为原有的通用的基站 的控制面所分配的处理器为单核处理器, 则为在机器到机器通信网络 的基站 1的控制面所分配的处理器可以是双核处理器、 四核处理器甚 至是八核处理器, 只要与其所处理的控制信令的负荷相匹配即可。 此 外, 基站 1还为业务数据分配相应的处理资源, 例如, 基站 1为业务 数据所分配的处理资源与现有的通用基站为业务数据所分配的处理 资源持平, 或者略少于现有的通用基站为业务数据所分配的处理资 源。
在一个变化的实施方式中, 基站 1还可以根据控制信令、 上行业 务数据和下行业务数据之间的比例, 为控制信令、 上行业务数据和下 行业务数据分配处理资源。
以基站 1支持 3000个激活的机器到机器终端设备, 基站 1的控 制面负荷约增加为原来的 30倍,但用户面上行速率只增加约 20%, 下 行速率仍然减少到约 1 / 40为例进行说明。 例如, 如果为原有的通用 的基站的控制面所分配的处理器为单核处理器, 则为在机器到机器通 信网络的基站 1 所分配的处理器可以是四核处理器甚至是八核处理 器 ... ...甚至是 30核处理器, 只要与该基站的控制面所处理的控制信 令的负荷相匹配即可。 此外, 基站 1还为上行业务数据和下行业务数 据分配相应的处理资源, 例如, 基站 1为业务数据所分配的处理资源 与现有的通用基站为业务数据所分配的处理资源持平, 或者略少于现 有的通用基站为业务数据所分配的处理资源, 并且将为业务数据所分 配的处理资源中的大部分, 例如 70%分配给上行业务数据, 剩余的部 分, 例如 30%再分配给下行业务数据。 本领域技术人员可以理解, 上 述的分配的比例中的 70%和 30%仅为示例的, 在实际的操作过程中, 可以根据具体控制信令与业务数据的比例关系, 按照比例进行配置。 图 3示出了一个示例的按照比例为控制信令和业务数据分配处理资源 的示意图。 图 3中最大的方框表示为控制信令所分配的处理资源的能 力最强, 从图 3中可以看出, 次大的方框表示为上行用户面, 也即上 行数据面所分配的处理资源其次, 最小的方框表示为下行用户面所分 配的处理资源最少。
在一个变化的实施方式中, 以在步骤 S23中, 实时的监测基站 1 的控制信令和业务数据的流量, 获取控制信令和业务数据的比例关系 为例, 对步骤 S24进行描述。
例如, 首先为控制面和用户面分配处理资源, 该初始分配的策略 既可以是按照统计的业务模型进行分配, 也可以是随机地进行分配。 例如, 基站 1一共有 32核处理器, 基站 1初始时为控制面分配 2核 处理器, 为用户数据面 2核处理器。 然后, 基站 1再根据实时监控的 流量信息, 例如, 基站 1通过监控各个控制面的接口, 发现为基站 1 所分配的 2核处理器已经不能满足需要时, 再动态地为控制面分配更 多的处理资源, 例如, 再为基站 1的控制面分配 2核处理器。 该方案 可以实现处理资源的动态分配, 有效地提高了使用中的处理资源的 'J 用率。
当然, 除了上述的逻辑组网的方式外, 在另一个实施方式中, 也 可以采用专用频段组网。 假设即使只用 5M专用带宽时, 每个传输时 间间隔内有 5-10 个机器到机器终端设备被调度, 最大延迟时间为 100-200ms, 一个小区能支持 1000个激活用户, 一个基站能支持约 28 万用户,只要 4个基站就能组成一个百万机器到机器终端设备的专网, 具有极高性价比。
在特定区域内, 当基站 1所辖的小区内的两个机器到机器终端设 备通信时, 例如, 终端设备 2a和 2b均由基站 1所辖, 他们的数据链 路可不经过核心网, 直接在基站 1 内部完成交换。 具体地: 如果两个 机器到机器终端设备由同一个基站所辖, 演进分组核心将指示该基站 主叫用户和被叫用户的标识, 及相应的无线 载 (E-UTRAN Radio Access Bearer ),基站 1在收到核心网的本地交换指示后, 为这两个终 端设备的数据流在基站内直接建立交换连接。在基站 1与核心网之间, 仍然保留默认承载, 但基站 1并不在该默认承载上传输数据。 此外, 基站 1内还保留临时移动订户标识与小区无线网络临时标识之间的对 应表。
图 4示出了根据本发明的一个具体实施方式的装置框图。 其中, 处理装置 10位于基站 1中, 处理装置 10包括获取装置 100和分配装 置 101 , 可选地, 处理装置 10还包括广播装置 (图中未示出)。
首先, 广播装置向基站 1所辖的小区广播小区标识信息, 以便于 机器到机器的终端设备能够接入该小区, 但普通的人到人的用户终 端, 例如手机、 笔记本电脑等, 不能接入。
以下, 以基站 1采用家庭基站技术为例, 对广播装置进行说明。 例如, 广播装置向其所辖的小区广播演进的通用陆基无线接入网 小区全球标识 ( E-UTRAN Cell Global Identifier, ECGI ), 该标识中包 含了封闭用户组标识 (closed subscriber group ID, CSG ID )。 所谓封 闭用户组的概念, 即某用户与某运营商签约在自家安装家庭基站, 该 用户希望家庭基站只对家庭成员和若干特定来访客人等提供服务。针 对家庭基站的这种要求, 3GPP在 Release 8版本提出釆用封闭用户组 的概念进行访问控制。封闭用户组指的是允许接入一个或多个特定小 区的一群签约用户, 这里的一个或多个小区接入用户时是受限的、 有 条件的, 而普通蜂窝小区可允许运营商的所有合法签约用户和漫游用 户接入。 并且同一用户可属于多个封闭用户组, 每个封闭用户组由一 个封闭用户组 ID所标识, UE维护一张它所属封闭用户组的封闭用户 组 ID列表(允许 CSG ID列表), 在这个列表之外的其他 CSG ID所 包含的 CSG小区对该 UE而言是不可访问的。 并且每个 CSG小区广 播一个 CSG ID,这个 CSG ID所标识的闭合用户群的成员可以访问该 小区。 因此, 该 CSG ID也即用于指示基站 1允许机器到机器终端设 备接入基站 1所辖的小区的指示信息。
相应地, 在终端设备 2a上保存了其所加入的封闭用户组的组标 识列表, 也即, 该列表表示了终端设备 2a是哪些 CSG组的成员, 换 言之, 终端设备 2a可以接入到哪些基站所服务的封闭用户组中。 在 终端设备 2a接收到基站 1所广播的小区标识信息后, 终端设备 2a根 据获取的小区标识信息以及预存的允许接入的小区列表, 判断基站 1 所辖小区是否允许机器到机器终端设备 2a接入。 例如, 终端设备 2a 从由基站 1 处接收到的小区标识信息中提取出封闭用户组标识 CSG ID, 然后再在终端设备 2a所预存的允许 CSG ID列表中查找基站 1 的 CSG ID, 如果在预存的允许 CSG ID列表中找到了基站 1的 CSG ID, 则终端设备 2a判断终端设备 2a是基站 1所辖的 CSG的成员, 因此终端设备 2a将终端设备 2a接入基站 1所辖的小区, 也即, 终端 设备 2a可以驻留在基站 1所辖的小区中。
在一个变化的实施方式中, 例如, 普通的用户终端, 例如, 手机 用户终端 2c可能也接收到了来自基站 1所广播的小区标识信息, 但 是在用户终端 2c中未存有与基站 1相对应的 CSG ID, 事实上, 普通 的用户终端 2c可能不属于任何封闭用户组, 因此, 用户终端 2c判断 基站 1不允许该用户终端 2c驻留在基站 1所辖的小区中。
然后, 基站 1的获取装置 100获取机器到机器通信的控制信令与 业务数据的比例关系。
获取装置 100可以通过估计机器到机器通信的话务模型, 获取控 制信令与所述业务数据的所述比例关系。
在一个实施方式中, 获取装置 100可以通过分析机器到机器通信 的典型的话务模型, 获取控制信令与所述业务数据的所述比例关系。
首先分析机器到机器通信的典型的话务模型:
忙时呼叫尝试 = 10 次;
一次呼叫传输的上行分组数 =1 , 分组大小 =1000 Byte;
一次呼叫传输的下行分组数 =1 , 分组大小 =50 Byte;
其中约 70%为移动终端发起的呼叫。在通信过程中只需要建立缺 省承载, 不需要建立专用承载。 当仅在热点地区使用时机器到机器通 信, 切换比例很低, 估计约为 1%。 即使被普遍使用时, 因为数据量 很少, 呼叫保持时间很短, 切换比例仍然很低, 估计低于 5%。
根据上述机器到机器通信的典型的话务模型和 3GPP LTE的相关 规范, 假设一个小区支持 400个激活机器到机器终端设备, 也即, 每 个小区支持 400个机器终端设备同时与基站 1建立通信, 基站 1有 3 个这样的小区, 基于流量的内容释放定时器 = 3秒, 也即, 连接建立 后超过 3秒仍没有数据传输就释放该连接。 平均呼叫时长为 3.68秒, 则每个机器到机器终端设备的话务量约为 0.01爱尔兰(Erl )。假设 2% 呼损率, 通过查询 Erlang B表, 基站 1能支持 1093爱尔兰, 因此基 站 1能支持 10万以上机器到机器终端设备。 其中, Erlang B表也即 Erl B表, 反映了话务量、 信道数及呼损率之间的关系。 通常市区要 求的呼损率为 2%, 郊区为 5%。 一般地, 在电话线数, 也即信道数确 定的情形下, 呼损率越高, 话务量越大。 一个信道被完全占用了一个 小时所产生的话务量为 1爱尔兰。
因此, 根据上述话务模型, 获取装置 100估计出基站 1的控制面 将要在 Uu、 Sl、 X2接口每秒处理的控制信令消息个数约为 4000个, 而在数据面在一个小区内用户面带宽为 43.5kbps DL, 869.6kbps UL。 相比每个小区支持 400个人到人手机的基站, 基站 1的控制面负荷约 增加为原来的 4倍, 但用户面 DL速率减少为原来的约 1 / 300 , UL 速率减少为原来的约 1 / 7。应能理解,基站 1在控制面所处理的消息 即为控制信令, 基站 1在数据面处理的数据即为业务数据, 也即, 上 述例子中的 4000 个对应了控制信令的个数, 且 43.5kbps 以及 869.6kbps 对应了业务数据的数据传输速率。 因此, 在该例子中, 控 制信令与业务数据的比例关系可以表示为基站 1相对于原有的传统的 基站, 控制面负荷约增加为原来的 4倍, 而用户面下行速率减少为原 来的约 1 / 300 , 上行速率减少为原来的约 1 / 7。
为提高***容量, 支持更多机器到机器终端设备, 相比传统的通 用型的基站,需要为基站 1的控制面分配更多的物理资源, 假设一个 小区支持 1200个激活机器到机器终端, 在其他条件不变的情形下, 基站 1能支持约 3585爱尔兰, 因此, 基站 1 内能支持 35万个机器到 机器的终端设备, 因此基站 1的控制面约需每秒处理 12000个接口消 自、
通过优化用户数据面, 可进一步提高容量。 假设时分双工***共
20M带宽, 采用 TDD DL/UL Config=0, special subframe Config=5, 为 物理随机接入信道和物理上行控制信道预留了足够资源, 并且假设每 个传输时间间隔有 30个机器到机器终端设备被调度, 如果最大允许 延迟为 100ms, 采用最简单的公平轮回调度, 也即, 釆用时间片轮转 的方式, 每个机器到机器终端设备每 100ms被调度一次, 一个小区可 以支持 3000个激活用户, 假设其他前提不变的情形下, 基站 1 能够 支持约 8990爱尔兰, 从而支持约 88万机器到机器终端设备, 此时, 基站 1的控制面约需每秒处理 30000个接口消息, 用户面下行速率约 为 326.1kbps, 上行速率为 6521.7 kbps。 相比传统的每个小区支持 400个人到人手机的通用型基站, 基站 1的控制面负荷约增加为原来 的 30倍, 但用户面上行速率只增加约 20%, 下行速率仍然减少到约 1 / 40。 应能理解, 基站 1在控制面所处理的接口消息即为控制信令, 基站 1在数据面处理的数据即为业务数据,也即,上述例子中的 30000 个对应了控制信令的个数,且 326.1kbps以及 6521.7 kbps对应了业务 数据的数据传输速率。 因此, 在该例子中, 控制信令与业务数据的比 例关系可以表示为基站 1相对于原有的传统的基站, 控制面负荷约增 加为原来的 30倍, 而用户面下行速率减少为原来的约 1 / 40 , 上行 速率增加了约 20%。
上文中获取装置 100分别获取了当基站 1分别支持 400个激活的 机器到机器终端设备和 3000个激活的机器到机器终端设备时,基站 1 的控制信令与业务数据之间的比例关系。 当然, 本领域技术人员可以 理解, 在实际的 LTE通信***中, 基站 1所支持的激活的机器到机器 终端设备的个数并不限于以上所列举的例子, 本领域技术人员可以根 据实际的网络部署参数以及网络配置情况, 建立业务模型, 并获取相 应的控制信令和业务数据的比例关系。
上述的根据话务模型分配基站的处理资源的方案, 是一种静态的 处理资源分配方案, 当然, 本领域技术人员可以理解, 在根据话务模 型为基站的控制面和数据面分配处理资源的方案中, 获取装置所执行 的操作并不依赖于广播装置所执行的操作的结果, 也即, 两者之间没 有明显的先后顺序关系, 换言之, 在该方案中, 广播装置是可以省略 的。
以下, 在一个变化的实施方式中, 不需要导出话务模型, 基站 1 可以通过实时监测基站 1的控制信令和业务数据的流量, 获取控制信 令和业务数据的比例关系, 从而合理地分配基站的处理资源, 因为在 该方案中, 获取装置 100需要实时地检测基站的控制面和数据面的流 量, 因此, 广播装置是必需的, 也即, 机器到机器终端设备 2a或 2b 首先要驻留在基站 1中。
例如, 获取装置 100可以通过检测基站 1的控制面在一个时间段 内的 Uu、 S l、 X2接口的消息的个数, 并且检测基站 1的用户面在该 同一个时间段内的数据传输速率, 例如, 上行和下行的数据传输速率 的总和, 从而获取控制信令和业务数据的比例关系。
然后,分配装置 101根据获取的控制信令与业务数据的比例关系 , 为控制信令和业务数据分配相应的处理资源。 例如, 分配装置 101可 以为基站 1的控制面分配多个多核处理器, 或者在数字信号处理器或 者现场可编程门阵列上实现, 或者在一台或多台强劲的商用服务器上 实现。
首先以获取装置 100通过估计机器到机器通信的话务模型, 获取 到控制信令与业务数据的比例关系为例进行说明。
例如, 在基站 1支持 400个激活用户的话务模型下, 基站 1的控 制面负荷约增加为原来的 4倍, 但用户面 DL速率减少为原来的约 1 / 300 , UL速率减少为原来的约 1 / 7; 因此, 相应地分配装置 101 为控制面分配的处理资源, 包括处理器、 内存和带宽均比现有的服务 于普通的人到人的用户终端的基站的处理资源多。 例如, 如果为原有 的通用的基站的控制面所分配的处理器为单核处理器, 则分配装置 101为在机器到机器通信网络的基站 1的控制面所分配的处理器可以 是双核处理器、 四核处理器甚至是八核处理器, 只要与其所处理的控 制信令的负荷相匹配即可。 此外, 分配装置 101还为业务数据分配相 应的处理资源, 例如, 基站 1为业务数据所分配的处理资源与现有的 通用基站为业务数据所分配的处理资源持平, 或者略少于现有的通用 基站为业务数据所分配的处理资源。
在一个变化的实施方式中, 分配装置 101还可以根据控制信令、 上行业务数据和下行业务数据之间的比例, 为控制信令、 上行业务数 据和下行业务数据分配处理资源。 以基站 1支持 3000个激活的机器到机器终端设备, 基站 1的控 制面负荷约增加为原来的 30倍,但用户面上行速率只增加约 20%, 下 行速率仍然减少到约 1 / 40为例进行说明。 例如, 如果为原有的通用 的基站的控制面所分配的处理器为单核处理器, 则分配装置 101为在 机器到机器通信网络的基站 1所分配的处理器可以是四核处理器甚至 是八核处理器……甚至是 30核处理器, 只要与该基站的控制面所处 理的控制信令的负荷相匹配即可。 此外, 分配装置 101还为上行业务 数据和下行业务数据分配相应的处理资源, 例如, 分配装置 101为业 务数据所分配的处理资源与现有的通用基站为业务数据所分配的处 理资源持平, 或者略少于现有的通用基站为业务数据所分配的处理资 源, 并且分配装置 101将为业务数据所分配的处理资源中的大部分, 例如 70%分配给上行业务数据, 剩余的部分, 例如 30%再分配给下行 业务数据。 本领域技术人员可以理解, 上述的分配的比例中的 70%和 30%仅为示例的, 在实际的操作过程中, 可以根据具体控制信令与业 务数据的比例关系, 按照比例进行配置。
在一个变化的实施方式中, 以获取装置 100实时的监测基站 1的 控制信令和业务数据的流量, 获取控制信令和业务数据的比例关系为 例, 对分配装置 101进行描述。
例如, 分配装置 101首先为控制面和用户面分配处理资源, 该初 始分配的策略既可以是按照统计的业务模型进行分配, 也可以是随机 地进行分配。 例如, 基站 1一共有 32核处理器, 分配装置 101初始 时为控制面分配 2核处理器, 为用户数据面 2核处理器。 然后, 分配 装置 101再根据实时监控的流量信息, 例如, 获取装置 100通过监控 各个控制面的接口, 发现为基站 1所分配的 2核处理器已经不能满足 需要时,分配装置 101再动态地为控制面分配更多的处理资源,例如, 再为基站 1的控制面分配 2核处理器。 该方案可以实现处理资源的动 态分配, 有效地提高了使用中的处理资源的利用率。
本技术领域的一般技术人员可以通过研究说明书、公开的内容及 附图和所附的权利要求书, 理解和实施对披露的实施方式的其他改 变。 在权利要求中, 措词 "包括" 不排除其他的元素和步骤, 并且措 辞 "一个,, 不排除复数。 在发明的实际应用中, 一个零件可能执行权 利要求中所引用的多个技术特征的功能。权利要求中的任何附图标记 不应理解为对范围的限制。

Claims

权 利 要 求 书
1. 一种在 LTE无线通信网络的基站中用于为机器到机器通信服 务的方法, 其中, 包括以下步骤:
a. 荻取所述机器到机器通信的控制信令与业务数据的比例关 系;
b. 根据所述控制信令与所述业务数据的所述比例关系, 为所述 控制信令和所述业务数据分配相应的处理资源。
2. 根据权利要求 1所述的方法, 其中, 所述步骤 a还包括:
- 通过估计所述机器到机器通信的话务模型,获取所述控制信令 与所述业务数据的所述比例关系。
3. 根据权利要求 1所述的方法, 其中, 所述步骤 a还包括:
- 通过监测所述基站的所述控制信令和所述业务数据的流量, 获取所述控制信令和所述业务数据的所述比例关系。
4. 根据权利要求 3所述的方法, 其中, 所述业务数据包括上行 业务数据和下行业务数据,
所述步骤 a还包括: 通过监测所述基站的所述控制信令、 所述 上行业务数据和所述下行业务数据的流量, 获取所述控制信令、 所 述上行业务数据和所述下行业务数据之间的所述比例关系;
所述步骤 b还包括: 根据所述控制信令、 所述上行业务数据和 所述下行业务数据之间的所述比例关系, 为所述控制信令、 所述上 行业务数据和所述下行业务数据分配相应的处理资源。
5. 根据权利要求 3或 4所述的方法, 其中, 所述步骤 a之前还 包括:
i. 广播小区标识信息, 其中, 所述小区标识信息中包括用于指 示所述基站允许机器到机器终端设备接入所述基站所辖的小区的指 示信息。
6. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述步骤 b之后还包括:
- 为所述基站分配专用的频率资源用于为所述机器到机器通信 服务。
7. 根据权利要求 1至 6中任一项所述的方法, 其中, 所述处理 资源包括处理器、 内存、 带宽。
8. 一种在 LTE无线通信网络的基站中用于为机器到机器通信服 务的处理装置, 其中, 包括:
获取装置, 用于获取所述机器到机器通信的控制信令和业务数 据比例关系;
分配装置, 用于根据所述控制信令与所述业务数据的所述比例 关系, 为所述控制信令和所述业务数据分配相应的处理资源。
9. 根据权利要求 8所述的处理装置, 其中, 所述获取装置还用 于:
通过估计所述机器到机器通信的话务模型, 获取所述控制信令 与所述业务数据的所述比例关系。
10. 根据权利要求 8所述的处理装置, 其中, 所述获取装置还用 于:
通过监测所述基站的所述控制信令和所述业务数据的流量, 获 取所述控制信令与所述业务数据的所述比例关系。
11. 根据权利要求 10所述的处理装置, 其中, 所述业务数据包 括上行业务数据和下行业务数据,
所述获取装置还用于, 通过监测所述基站的所述控制信令、 所 述上行业务数据和所述下行业务数据的流量, 获取所述控制信令、 所述上行业务数据和所述下行业务数据之间的所述比例关系;
所述分配装置还用于: 根据所述控制信令、 所述上行业务数据 和所述下行业务数据之间的所述比例关系, 为所述控制信令、 所述 上行业务数据和所述下行业务数据分配相应的处理资源。
12. 根据权利要求 10或 11所述的处理装置, 其中, 还包括: 广播装置, 用于广播小区标识信息, 其中, 所述小区标识信息 中包括用于指示所述基站允许机器到机器终端设备接入所述基站所 辖的小区的指示信息。
13. 根据权利要求 8至 10中任一项所述的处理装置, 其中, 所 述分配装置还用于, 为所述基站分配专用的频率资源用于为所述机 器到机器通信服务。
14. 根据权利要求 8至 13中任一项所述的处理装置, 其中, 所 述处理资源包括处理器、 内存、 带宽。
PCT/CN2010/071159 2010-03-19 2010-03-19 一种用于为机器到机器通信分配处理资源的方法和装置 WO2011113209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080060805.5A CN102714797B (zh) 2010-03-19 2010-03-19 一种用于为机器到机器通信分配处理资源的方法和装置
PCT/CN2010/071159 WO2011113209A1 (zh) 2010-03-19 2010-03-19 一种用于为机器到机器通信分配处理资源的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071159 WO2011113209A1 (zh) 2010-03-19 2010-03-19 一种用于为机器到机器通信分配处理资源的方法和装置

Publications (1)

Publication Number Publication Date
WO2011113209A1 true WO2011113209A1 (zh) 2011-09-22

Family

ID=44648427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071159 WO2011113209A1 (zh) 2010-03-19 2010-03-19 一种用于为机器到机器通信分配处理资源的方法和装置

Country Status (2)

Country Link
CN (1) CN102714797B (zh)
WO (1) WO2011113209A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780542A (zh) * 2014-01-13 2015-07-15 株式会社日立制作所 通信网络***、多业务动态资源分配装置及方法
CN105611489A (zh) * 2016-01-20 2016-05-25 深圳市金溢科技股份有限公司 广域物联网m2m通信网络中的终端、基站及通信机制
CN111355805A (zh) * 2020-03-06 2020-06-30 苏州浪潮智能科技有限公司 一种网络通信方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582117B (zh) * 2018-06-08 2023-05-09 ***通信有限公司研究院 一种资源调度方法、业务传输方法、网络侧设备及终端
CN110659145B (zh) * 2019-09-05 2023-03-21 北京达佳互联信息技术有限公司 数据检测的方法、装置、后台服务器及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127719A (zh) * 2007-09-27 2008-02-20 中兴通讯股份有限公司 用于lte***的无线资源分配的指示方法
CN101360025A (zh) * 2007-07-31 2009-02-04 华为技术有限公司 一种上行***资源分配的方法、***和装置
CN101500312A (zh) * 2008-02-01 2009-08-05 中兴通讯股份有限公司 一种可用资源分配方法
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及***、基站和用户设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264379C (zh) * 2003-12-05 2006-07-12 大唐移动通信设备有限公司 时分双工移动通信***中上下行资源的分配方法和装置
KR100675134B1 (ko) * 2004-09-02 2007-01-29 엘지노텔 주식회사 이동통신 시스템에서 중계선의 스케쥴링 가변 처리 장치및 그 방법
US7471654B2 (en) * 2004-12-29 2008-12-30 Alcatel-Lucent Usa Inc. Channel assignment based on service type and wireless communication environment
CN101026468A (zh) * 2006-02-20 2007-08-29 华为技术有限公司 一种业务数据的传输方法及装置
CN101345985A (zh) * 2007-07-12 2009-01-14 华为技术有限公司 一种无线通信***中提高资源利用率的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360025A (zh) * 2007-07-31 2009-02-04 华为技术有限公司 一种上行***资源分配的方法、***和装置
CN101127719A (zh) * 2007-09-27 2008-02-20 中兴通讯股份有限公司 用于lte***的无线资源分配的指示方法
CN101500312A (zh) * 2008-02-01 2009-08-05 中兴通讯股份有限公司 一种可用资源分配方法
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及***、基站和用户设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780542A (zh) * 2014-01-13 2015-07-15 株式会社日立制作所 通信网络***、多业务动态资源分配装置及方法
CN105611489A (zh) * 2016-01-20 2016-05-25 深圳市金溢科技股份有限公司 广域物联网m2m通信网络中的终端、基站及通信机制
CN111355805A (zh) * 2020-03-06 2020-06-30 苏州浪潮智能科技有限公司 一种网络通信方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN102714797A (zh) 2012-10-03
CN102714797B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
RU2222876C2 (ru) Оптимальное использование логических каналов в сети подвижной связи
CN107534482B (zh) 移动通信***、通信终端和方法
US20190320436A1 (en) Information transmission method and radio access network device
US11678226B2 (en) Methods and apparatus for providing wireless services to a customer premises
WO2013155941A1 (zh) 动态频谱共享方法和装置
KR20080096875A (ko) 이동통신 시스템의 무선자원 할당 제어방법
WO2021102782A1 (en) Access control at a relay user equipment
JP6064034B2 (ja) 基地局標準リリースモデル処理方法及び装置、端末、基地局
CN102695199A (zh) 一种实现无线资源控制的方法及***
EP2724580B1 (en) Interference control
WO2011113209A1 (zh) 一种用于为机器到机器通信分配处理资源的方法和装置
JP2015515200A (ja) 負荷バランシング
CN102695211A (zh) 一种无线资源控制方法及***
JP5699881B2 (ja) 無線通信システム、無線基地局、移動局および無線通信方法
KR101296578B1 (ko) Lte 네트워크를 위한 페이징 노드 장치 및 페이징 방법
US10383047B2 (en) Method and apparatus for establishing a service in a first frequency
CN114339724B (zh) 应用于集群通信***的集群通信方法、***及存储介质
WO2018138939A1 (ja) 基地局装置、端末装置、無線通信システム、及びシステム情報通知方法
JP6002852B2 (ja) トランキングサービスの実現方法、発展型ノードb及び端末
WO2022194146A1 (zh) 移动接入和回传一体化网络的建立方法、装置及设备
EP4044763A1 (en) Communication method and related device
CN102958168A (zh) 一种认知无线电***资源的重配方法及***
JP6037147B2 (ja) デュアルモード・フェムトapにおけるフロー制御
JP5520681B2 (ja) 通信システム、無線基地局、及び通信制御方法
JP7495275B2 (ja) セルラ通信システム、無線端末、及び基地局

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060805.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847678

Country of ref document: EP

Kind code of ref document: A1