WO2011111715A1 - 細胞周期を制御する核酸 - Google Patents

細胞周期を制御する核酸 Download PDF

Info

Publication number
WO2011111715A1
WO2011111715A1 PCT/JP2011/055412 JP2011055412W WO2011111715A1 WO 2011111715 A1 WO2011111715 A1 WO 2011111715A1 JP 2011055412 W JP2011055412 W JP 2011055412W WO 2011111715 A1 WO2011111715 A1 WO 2011111715A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
mir
expression
microrna
cell
Prior art date
Application number
PCT/JP2011/055412
Other languages
English (en)
French (fr)
Inventor
圭太 木下
哲郎 吉田
陽史 山田
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2011111715A1 publication Critical patent/WO2011111715A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids

Definitions

  • the present invention relates to a cell growth regulator using a nucleic acid, a diagnostic or therapeutic agent for a disease caused by an abnormal cell cycle, a cell cycle variation method, a cell growth control method, a nucleic acid target gene expression suppression method or expression promotion method,
  • the present invention relates to a screening method for a cell growth regulator.
  • MicroRNA which is a kind of nucleic acid, is a small non-coding single-stranded RNA consisting of about 22 nucleotides that are not translated into protein, and is known to exist in many organisms including humans (non-patent literature). 1, 2). MicroRNAs are generated from genes that are transcribed into single or clustered microRNA precursors. That is, the primary transcript, primary-microRNA (pri-miRNA), is first transcribed from the gene, and then in a stepwise process from pri-miRNA to mature microRNA, a precursor of about 70 bases with a characteristic hairpin structure. -microRNA (pre-miRNA) is generated from pri-miRNA. Furthermore, mature microRNA is generated from pre-miRNA by Dicer-mediated processing (Non-patent Document 3).
  • Mature microRNAs are thought to be involved in post-transcriptional control of gene expression by binding complementarily to the target mRNA and suppressing translation of the mRNA, or by degrading the mRNA. Although the mechanism by which microRNA suppresses the expression of target mRNA is not completely clarified, an outline has been elucidated by recent studies. MicroRNA binds to a partially complementary sequence in the 3 'untranslated region (3'-UTR) of the target mRNA, suppresses its translation, or suppresses expression by degrading the target mRNA . Although the above complementarity may not be perfect, it has been shown that complementarity of the 2nd to 8th bases from the 5 ′ end of the microRNA is particularly important.
  • Non-Patent Document 4 RNA having microRNA-like activity can be designed by using a sequence complementary to the sequence present at the 3 ′ end of any mRNA as a seed sequence. Unlike siRNA, microRNA usually refers only to RNA that is “naturally present in cells”. Therefore, a microRNA-like sequence designed in this way may be particularly referred to as “artificial microRNA”.
  • the microRNA database miRBase (http://microrna.sanger.ac.uk/) contains 885 microRNAs for humans and 10,097 types for all biological species.
  • microRNAs expressed in mammals including humans those known for their physiological functions include miR-181 (Non-patent Document 5) involved in blood cell differentiation and miR-375 (involved in insulin secretion).
  • Non-patent document 6) is only a small part, and many of them have unclear physiological activity.
  • studies using nematodes and Drosophila have revealed that microRNAs play various important roles in the development and differentiation of living organisms. There has been a report suggesting a relationship (Non-patent Document 7).
  • Non-patent Document 8 It is also known that about half of the human microRNAs found so far are present at chromosomal abnormalities or fragile sites of chromosomes known in human cancer.
  • Examples of cancer-microRNA relationships reported so far include the miR-15a / miR-16 cluster on chromosome 13q14, which is deleted in B-cell chronic lymphocytic leukemia (B-CLL), It is predicted that the deletion is one of the causes of B-CLL (Non-patent Document 10).
  • B-CLL the expression of miR-29 and miR-181 is further reduced.
  • Tcl1 known as a proto-oncogene
  • Non-patent Document 11 In lung cancer, expression of Let-7, which is one of microRNAs, is decreased, and one of its targets is Ras known as a proto-oncogene (Non-patent Documents 12 and 13).
  • Non-Patent Document 14 15 Bcl6 or Cdk6 known as proto-oncogenes
  • Many microRNAs have decreased expression in cancer cells, but there are also microRNAs in which gene amplification and overexpression are seen in cancer cells. For example, in a region where gene amplification is observed in malignant lymphoma, there are 6 types of microRNA clusters (miR-17-92). When this miRNA cluster gene is forcibly expressed in a model mouse of human B cell lymphoma, lymphoma It is known that the occurrence of the above is promoted (Non-patent Document 16). It has also been clarified that a gene called BIC, which has been regarded as a candidate oncogene that does not encode a protein overexpressed in Hodgkin lymphoma, encodes miR-155 (Non-patent Document 17).
  • Non-patent Document 24 Cancer growth in an animal model by increasing microRNA expression by administering microRNA or its precursor from outside the body, or by reducing its expression by administering its antisense oligonucleotide Reported that tumor formation of colon cancer cell lines transplanted by miR-34a administration was suppressed (Non-patent Document 24), tumors of breast cancer cell lines transplanted by miR-21 antisense administration There are only a few reports (Non-patent Document 25) that formation was suppressed.
  • abnormalities in the cell cycle are one of the causes of cancer.
  • checkpoint in G1 / S phase, G2 / M phase, M phase, etc.
  • stops cell cycle in response to adverse growth conditions .
  • these cell cycle checkpoints are broken as a result of gene abnormalities and the like, resulting in abnormal cell proliferation.
  • genes that control the cell cycle function as oncogenes and tumor suppressor genes.
  • anticancer agents aimed at selectively causing cancer cell death by acting on these cell cycles have also been developed, especially the taxane system that disrupts microtubule spindle formation, which is important for M-phase progression Many compounds and vinca alkaloid compounds are already on the market.
  • CDK inhibitors, M phase kinase (PLK, Aurora) inhibitors and the like are expected as anticancer agents as low molecular weight compounds that act on cell cycle regulators and stop the cell cycle at a certain place.
  • microRNAs involved in the cell cycle include Let-7 family targeting Cdc34 and accumulating cells in G2 / M phase (Non-patent Document 26), miR-107 and miR-185 are non-small cell lung cancer The cell line is arrested in the G1 phase (Non-patent Document 27), and miR-21 and miR-221 antisense bodies arrest pancreatic cancer cells in the G1 phase, and then cause apoptosis (Non-patent Document 28). )and so on. There is also a report that found a microRNA that acts on the cell cycle of mouse ES cells (Non-patent Document 29). However, there has been no report to date that microRNAs that affect the cell cycle of cancer cells have been exhaustively searched, and as a result, microRNAs that cause cancer cell growth suppression and cell death have been found.
  • microRNAs expressed in various human organs, analyzing their functions, and elucidating the relationship with diseases.
  • the discovery of microRNAs that cause cell cycle fluctuations in cancer cells and, as a result, suppress cell growth of cancer cells and cause cell death not only helps understand the mechanism of carcinogenesis, It is expected that it will lead to the development of therapeutic drugs, and to new diagnostic and therapeutic methods for cancer using them.
  • An object of the present invention is to provide nucleic acids useful for cell cycle control and methods for using them.
  • a cell growth regulator comprising as an active ingredient any of the following nucleic acids (a) to (h): (A) Nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (b) Nucleic acid comprising 17 to 28 bases comprising a nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (C) a nucleic acid comprising a base sequence represented by any one of SEQ ID NOs: 1 to 407 and having a nucleotide sequence having 90% or more identity (d) comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 Nucleic acid that hybridizes with a complementary strand of nucleic acid under stringent conditions (e) A nucleic acid comprising the second to eighth base sequences of the base sequence represented by any one of SEQ ID NOs: 1 to 407 (f) SEQ ID NOs: 408 to 920 A nucleic acids
  • nucleic acid is microRNA or a microRNA precursor.
  • a cell growth regulator comprising, as an active ingredient, a nucleic acid having a base sequence complementary to the base sequence of the nucleic acid according to [1].
  • a cell growth regulator comprising the vector that expresses the nucleic acid according to any one of [1] to [3] as an active ingredient.
  • a cell growth regulator comprising, as an active ingredient, a substance that suppresses the expression of the gene having the target base sequence of the nucleic acid according to [1].
  • a cell growth regulator comprising, as an active ingredient, a substance that promotes the expression of the gene having the target base sequence of the nucleic acid according to [1].
  • the cell growth regulator according to [5] or [6], wherein the substance that suppresses or promotes expression is a nucleic acid.
  • the cell growth regulator according to [7], wherein the nucleic acid is siRNA.
  • a cell growth regulator comprising the vector expressing the nucleic acid according to [7] as an active ingredient.
  • a cell cycle containing the nucleic acid according to any one of [1] to [3], the vector according to [4], or the substance according to any one of [5] to [8] as an active ingredient A therapeutic or diagnostic agent for a disease caused by an abnormality.
  • a diagnostic agent for a disease caused by abnormal cell cycle comprising as an active ingredient a reagent for detecting the expression level of the nucleic acid according to [1], mutation of the nucleic acid, and mutation of the genome encoding the nucleic acid.
  • [12] Diseases caused by abnormal cell cycle are cancer, arteriosclerosis, rheumatoid arthritis, benign prostatic hyperplasia, vascular restenosis after percutaneous transvascular coronary angioplasty, pulmonary fibrosis, glomerulonephritis and autoimmune disease
  • a method for diagnosing a disease caused by an abnormal cell cycle comprising detecting the expression level of the nucleic acid according to [1], a mutation of the nucleic acid, and a mutation of a genome encoding the nucleic acid.
  • An agent for controlling expression of a target gene of the nucleic acid comprising the nucleic acid according to [1] or [3] as an active ingredient.
  • the agent for controlling expression of a target gene of nucleic acid according to [1] comprising the vector according to [4] as an active ingredient.
  • a cell cycle fluctuation method characterized by using the nucleic acid according to [1] or [3].
  • a cell cycle variation method comprising using the vector according to [4].
  • a method for changing the cell cycle comprising using a substance such as an antisense nucleic acid, siRNA, decoy nucleic acid or the like that suppresses or promotes the expression of the target gene of the nucleic acid according to [1].
  • a method for controlling cell proliferation comprising using the nucleic acid according to [1] or [3].
  • a method for controlling cell proliferation comprising using the vector according to [4].
  • a method for controlling cell proliferation comprising using a substance such as an antisense nucleic acid, siRNA, or decoy nucleic acid that suppresses or promotes expression of a target gene of the nucleic acid according to [1].
  • a substance such as an antisense nucleic acid, siRNA, or decoy nucleic acid that suppresses or promotes expression of a target gene of the nucleic acid according to [1].
  • the method for suppressing expression or promoting expression of a target gene of a nucleic acid according to [1] wherein the vector according to [4] is used.
  • a method for screening a cell growth inhibitor characterized by using the promotion of the expression of the nucleic acid according to [1] as an index.
  • a screening method for a cell growth inhibitor comprising suppressing the expression of a target gene of the nucleic acid according to [1] as an index.
  • a screening method for a cell growth promoter wherein suppression of the expression of the nucleic acid according to [1] is used as an index.
  • a screening method for a cell growth promoting agent characterized by promoting expression of a target gene of the nucleic acid according to [1].
  • a cell growth inhibitor or a cell growth promoter a diagnostic or therapeutic agent for a disease caused by an abnormality in the cell cycle, an expression inhibitor or promoter for a target gene of a nucleic acid such as microRNA, a cell cycle variation method
  • a method for inhibiting cell growth or a method for promoting cell growth can be provided.
  • Figure 1 shows miR-148a, miR-148b, and miR-152, and, as a control, Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 and Dnmt1 siRNA at a final concentration of 50 nM in HeLa cells or AGS cells, respectively.
  • the results of quantification and evaluation of Dnmt1 mRNA expression by RT-PCR after 24 hours or 48 hours of transfection and culturing are shown.
  • the amount of Dnmt1 mRNA was semi-quantified, the amount of mRNA of gapdh (D-glyceraldehyde-3-phosphate dehydrogenase) of the corresponding sample was calculated as an internal control.
  • Figure 2 shows miR-148a, miR-148b, and miR-152, and Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 and Dnmt1 siRNA at a final concentration of 50 nM as controls, respectively, in HeLa cells or AGS cells. The result of having evaluated the expression of the protein of Dnmt1 by immunoblotting after transfection for 72 hours is shown.
  • the nucleic acid used in the present invention may be any molecule in which nucleotides and molecules having functions equivalent to those of nucleotides are polymerized, such as RNA that is a polymer of ribonucleotides and polymers of deoxyribonucleotides. Examples thereof include a polymer in which DNA, RNA and DNA are mixed, and a nucleotide polymer containing a nucleotide analog, and may be a nucleotide polymer containing a nucleic acid derivative.
  • the nucleic acid in the present invention may be a single-stranded nucleic acid or a double-stranded nucleic acid.
  • the double-stranded nucleic acid also includes a double-stranded nucleic acid in which one strand is hybridized under stringent conditions to the other strand.
  • nucleotide analogues are used to improve or stabilize nuclease resistance, to increase affinity with complementary strand nucleic acids, to increase cell permeability, or to be visualized as compared to RNA or DNA.
  • any molecule may be used as long as it is a modification of ribonucleotide, deoxyribonucleotide, RNA or DNA, and it may be a naturally occurring molecule or a non-natural molecule such as a sugar-modified nucleotide analog or phosphodiester. Examples thereof include binding modified nucleotide analogs.
  • the sugar moiety-modified nucleotide analog may be any one obtained by adding or substituting any chemical structural substance to a part or all of the chemical structure of the sugar of the nucleotide.
  • any chemical structural substance for example, 2'-O-methyl Nucleotide analogues substituted with ribose, nucleotide analogues substituted with 2'-O-propylribose, nucleotide analogues substituted with 2'-methoxyethoxyribose, substituted with 2'-O-methoxyethylribose Nucleotide analogues, nucleotide analogues substituted with 2'-O- [2- (guanidinium) ethyl] ribose, nucleotide analogues substituted with 2'-O-fluororibose, introducing a bridging structure into the sugar moiety Bridged Nucleic Acid (BNA) having two circular structures, more specifically,
  • the phosphodiester bond-modified nucleotide analog may be any one obtained by adding or substituting an arbitrary chemical substance to a part or all of the chemical structure of a phosphodiester bond of a nucleotide.
  • Examples include nucleotide analogues substituted with thioate linkages, nucleotide analogues substituted with N3'-P5 'phosphoramidate linkages [Cell engineering, 16 , 1463-1473 (1997)] [RNAi method And Antisense, Kodansha (2005)].
  • nucleic acid derivative in order to improve nuclease resistance, to stabilize, to increase affinity with a complementary strand nucleic acid, to increase cell permeability, or to be visualized as compared with nucleic acid, Any molecule added with another chemical substance may be used, for example, 5′-polyamine addition derivative, cholesterol addition derivative, steroid addition derivative, bile acid addition derivative, vitamin addition derivative, Cy5 addition derivative, Cy3 addition derivative, Examples thereof include 6-FAM addition derivatives and biotin addition derivatives.
  • nucleic acid of the present invention examples include nucleic acids represented by the following (a) to (k).
  • Nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (b) Nucleic acid comprising 17 to 28 bases comprising a nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (C) a nucleic acid comprising a base sequence represented by any one of SEQ ID NOs: 1 to 407 and having a nucleotide sequence having 90% or more identity (d) comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 Nucleic acid that hybridizes with a complementary strand of nucleic acid under stringent conditions (e) A nucleic acid comprising the second to eighth base sequences of the base sequence represented by any one of SEQ ID NOs: 1 to 407 (f) (a) to ( a double-stranded nucleic acid comprising the nucleic acid of e) and a
  • a single-stranded nucleic acid or a nucleic acid containing the single-stranded nucleic acid (i) a nucleic acid consisting of a base sequence represented by any one of SEQ ID NOs: 408 to 920 (j) represented by any one of SEQ ID NOs: 408 to 920
  • a nucleic acid comprising a nucleotide sequence having 90% or more identity to the nucleotide sequence (k) a nucleic acid that hybridizes under stringent conditions with a complementary strand of a nucleic acid comprising the nucleotide sequence represented by any of SEQ ID NOs: 408 to 920 .
  • microRNA refers to single-stranded RNA having a length of 17 to 28 bases.
  • the surrounding genomic sequence containing the microRNA sequence has a sequence that can form a hairpin structure, and the microRNA can be excised from either strand of the hairpin.
  • MicroRNAs complementarily bind to their target mRNA and suppress mRNA translation, or promote post-transcriptional control of gene expression by promoting mRNA degradation.
  • microRNA used in the present invention examples include human microRNA having a base sequence represented by any of SEQ ID NOs: 1 to 38. Furthermore, as a microRNA having the same function as the human microRNA consisting of the base sequence represented by any of SEQ ID NOs: 1 to 38, a base sequence represented by SEQ ID NOs: 39 to 258, which is an ortholog of the human microRNA The nucleic acid which consists of can be mention
  • hsa Homo sapiens, human; mmu, Mus musculus, mouse; rno, Rattus norvegicus, rat; cgr, Cricetulus griseus, Chinese hamster; age, Ateles geoffroyi, red spider monkey; Mnea catamarin; mml, Macaca mulatta, rhesus monkey; mne, Macaca nemestrina, pigtail monkey; pbi, Pygathrix bieti, black goldfish; ggo, Gorilla gorilla, gorilla; ppa, Pan paniscus, bonobo; ptr, Pan troglodytes, chimpanzee; ppy, Pongo , Orangutan; ssy, Symphalangus syndactylus, black-tailed gibbon; lca, Lemur catta, ring-tailed lemur; oan, Ornithorhynchus anatinus, plat
  • microRNA target gene As a mechanism by which microRNA suppresses translation of mRNA of its target gene, mRNA having a base sequence complementary to the 2-8th base sequence on the 5 'end side of microRNA is used as microRNA target gene. [Current Biology, 15 , R458-R460 (2005)]. By this mechanism, the expression of the mRNA is suppressed by the microRNA. Accordingly, microRNAs having the same base sequence on the 2nd to 8th positions on the 5 ′ end side have the same function by suppressing the expression of the same mRNA.
  • a microRNA having the base sequence represented by any one of SEQ ID NOs: 1 to 258 and a microRNA having the same base sequence at the second to eighth positions on the 5 ′ end are composed of base sequences represented by SEQ ID NOs: 259 to 407 Nucleic acids can be raised.
  • Specific examples of the microRNA include a microRNA consisting of SEQ ID NO: 261 for the microRNA of SEQ ID NO: 9, and a microRNA consisting of SEQ ID NO: 271 for the microRNA of SEQ ID NO: 12. be able to. Artificial microRNA is also included in the microRNA of the present invention.
  • Table 2 shows a correspondence table between the microRNAs of SEQ ID NOs: 1 to 258 and the microRNAs having the same base sequence at the second to eighth positions on the 5 ′ end. MicroRNAs having a common seed sequence are considered to have the same function because their target base sequences are considered identical.
  • a microRNA precursor is also preferably used.
  • the microRNA precursor is a nucleic acid having a length of about 50 to about 200 bases, more preferably about 70 to about 100 bases including the nucleic acid of the present invention, and can form a hairpin structure.
  • MicroRNA is produced from a microRNA precursor through processing by a protein called Dicer.
  • microRNA precursor used in the present invention for example, for the human microRNA of SEQ ID NO: 1, a nucleic acid having the base sequence represented by SEQ ID NO: 408 can be mentioned.
  • nucleic acids having the base sequences represented by SEQ ID NOs: 409 to 920 can be exemplified.
  • Table 3 shows a correspondence table between the microRNA and the microRNA precursor in the present invention.
  • the microRNA precursor includes an artificial microRNA precursor.
  • a nucleic acid having 90% or more identity with the base sequence represented by any of SEQ ID NOs: 1 to 920 is BLAST [J. Mol. Biol., 215 , 403 (1990)] or FASTA [ Methods in Enzymology, 183 , 63 (1990)], etc., and preferably at least 90% or more with a nucleic acid comprising a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 920, as the identity.
  • the nucleic acid having 90% or more identity with the base sequence represented by any of SEQ ID NOs: 1 to 920 used in the present invention is preferably the base sequence represented by any of SEQ ID NOs: 1 to 920 It has “the same function” as a nucleic acid consisting of “Same function” means that the target genes are the same.
  • the stringent conditions in the above are 7.5 mL, 1M Na 2 HPO 4 (pH 7.2) 0.6 mL, 10% SDS 21 mL, 50x Denhardt's solution 0.6 mL, 10 mg / Add the other strand labeled with 32 P-ATP to the hybridization buffer consisting of 0.3 mL of mL sonicated salmon sperm DNA, react at 50 ° C overnight, and then wash with 5xSSC / 5% SDS solution at 50 ° C for 10 minutes. Further, the condition is such that the signal can be detected by washing with 1 ⁇ SSC / 1% SDS solution at 50 ° C. for 10 minutes, and then removing the membrane and exposing it to an X-ray film.
  • the nucleic acid that hybridizes under stringent conditions with the complementary sequence of the nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 1 to 920 used in the present invention is preferably any of SEQ ID NOs: 1 to 920 It has “the same function” as the nucleic acid comprising the base sequence represented. “Same function” means that the target genes are the same.
  • any method may be used as long as it can detect the presence of nucleic acid such as microRNA or microRNA precursor in a sample. , (1) Northern hybridization, (2) dot blot hybridization, (3) in situ hybridization, (4) quantitative PCR, (5) differential hybridization, (6) microarray, (7) ribonuclease protection assay Etc.
  • any method may be used as long as it can detect a mutation in the base sequence of a nucleic acid such as microRNA or a microRNA precursor in a sample.
  • a method for detecting a heteroduplex formed by hybridization of a nucleic acid having a non-mutated base sequence and a nucleic acid having a mutant base sequence, or by directly sequencing a base sequence derived from a specimen And a method for detecting the presence or absence of a mutation.
  • the vector for expressing the nucleic acid of the present invention may be any vector designed so that the nucleic acid of the present invention such as microRNA is biosynthesized by introduction into a cell and transcription. Good.
  • a vector capable of expressing the nucleic acid of the present invention such as microRNA in a cell specifically, pCDNA6.2-GW / miR (Invitrogen), pSilencer4.1-CMV (Ambion), Examples include pSINsi-hH1 DNA (Takara Bio), pSINsi-hU6 DNA (Takara Bio), pENTR / U6 (Invitrogen).
  • the target base of the nucleic acid of the present invention such as microRNA (hereinafter referred to as target gene) is used using the nucleic acid of the present invention. Any method may be used as long as it suppresses the expression of the gene having the target base sequence by utilizing the activity of suppressing the expression of mRNA having the sequence.
  • suppression of expression here includes a case where translation from mRNA is suppressed, and a case where the amount of protein translated from mRNA is reduced by cleaving or decomposing mRNA.
  • substances that suppress the expression of mRNA having the target base sequence include nucleic acids such as siRNA and antisense oligonucleotides.
  • the siRNA can be prepared based on the continuous sequence information of the mRNA [Genes Dev., 13 , 3191 (1999)].
  • the number of residues of the base constituting one strand of siRNA is preferably 17 to 30 residues, more preferably 18 to 25 residues, still more preferably 19 to 23 residues.
  • the microRNA has a length of 17 to 28 bases containing a sequence complementary to a continuous 7 base sequence present in the 3 ′ untranslated region of the mRNA of the target gene as the second to eighth base sequences.
  • artificial microRNAs that are single-stranded RNAs.
  • the microRNA sequence is RNA that can be excised from any one strand of the hairpin structure in the cell by the microRNA biosynthetic pathway,
  • the extended sequence is called an artificial microRNA precursor.
  • Artificial microRNAs and artificial microRNA precursors can be designed using the method as described above using a gene whose expression is to be suppressed as a target gene.
  • the target base sequence of a nucleic acid such as microRNA is a base sequence consisting of several bases recognized by the nucleic acid such as microRNA in the present invention, and the expression of mRNA having the base sequence is such as microRNA in the present invention.
  • a base sequence complementary to the 2-8th base sequence on the 5 ′ end side of a nucleic acid such as microRNA in the present invention can be mentioned as a target base sequence.
  • a target sequence complementary to the 2-8th base sequence on the 5 ′ end side of microRNA is prepared, and contains a sequence that completely matches the 3′-UTR base sequence group of human mRNA.
  • mRNA can be determined by selecting by a method such as character string search.
  • the 3'-UTR base sequence group of human mRNA is prepared using the genome sequence and gene position information that can be obtained from "UCSC Human Genome Browser Gateway (http://genome.ucsc.edu/cgi-bin/hgGateway)" be able to.
  • genes having the target base sequences of microRNAs represented by SEQ ID NOs: 1 to 407 include the EntreGene database (http: // www) of the National Center for Biotechnology Information (NCBI) in the United States. .ncbi.nlm.nih.gov / Entrez /) and the genes listed in Table 4 represented by the names (Official Symbol and Gene ID) used.
  • a method for expressing a nucleic acid such as microRNA in a cell includes a method using a nucleic acid that expresses a gene encoding microRNA or the like when introduced into the cell.
  • the nucleic acid in addition to DNA, RNA, or nucleotide analogues, these chimeric molecules or derivatives of the nucleic acids can also be used.
  • the nucleic acid is designed in the same manner as Pre-miR TM miRNA Precursor Molecules (Ambion) or miRIDIAN microRNA Mimics (GE Healthcare), and the nucleic acid such as the microRNA of the present invention is expressed in the cell. Can be made.
  • any method may be used as long as microRNA can finally be produced in the cell.
  • any method may be used as long as microRNA can finally be produced in the cell.
  • (1) In addition to introducing single-stranded RNA as a microRNA precursor, (2) There is a method for introducing microRNA itself and RNA consisting of complementary strands of microRNA and 100% -matched double-stranded RNA, and (3) double-stranded RNA assuming the state after microRNA is cleaved into Dicer. can give. Examples of products using such a method include miCENTURY OX Precursor (B-Bridge), miCENTURY OX siMature (B-Bridge), and miCENTURY OX miNatural (B-Bridge).
  • the method for synthesizing the nucleic acid used in the present invention is not particularly limited, and the nucleic acid can be produced by a method using a known chemical synthesis or an enzymatic transcription method.
  • methods using known chemical synthesis include phosphoramidite method, phosphorothioate method, phosphotriester method, etc.
  • synthesis with ABI3900 high-throughput nucleic acid synthesizer can do.
  • the enzymatic transcription method include transcription using a typical phage RNA polymerase, for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having the target base sequence as a template.
  • the nucleic acid of the present invention is used to promote or suppress the expression or function of a nucleic acid such as the microRNA of the present invention. Any method may be used as long as it is a method for screening a substance to be allowed to be screened. For example, a substance that enhances the effect of suppressing the expression of mRNA having the target base sequence by introducing the vector expressing the nucleic acid of the present invention into a cell, or a substance that promotes the expression of mRNA having the target base sequence A screening method is mentioned.
  • control of cell growth means suppression or promotion of cell growth.
  • cell cycle fluctuation means increasing or decreasing the cell cycle rate at a specific stage (G1, S, M, G2, etc.). An increase in the cell cycle rate at a particular stage indicates the possibility that the cell cycle stops at that stage.
  • the nucleic acid of the present invention suppresses the expression of its target gene and changes the cell cycle. Therefore, the nucleic acid of the present invention, the vector that expresses the nucleic acid of the present invention, the substance that promotes the expression of the nucleic acid of the present invention, and the substance that suppresses the expression of the target gene of the nucleic acid of the present invention are those of mammalian cells such as humans. Since the cell cycle can be changed, it is useful as a drug for pharmaceuticals and research as a cell cycle changing agent.
  • a nucleic acid of the present invention, a vector that expresses the nucleic acid of the present invention, a substance that promotes the expression of the nucleic acid of the present invention, or a substance that suppresses the expression of a target gene of the nucleic acid of the present invention is applied to cells of mammalian cells such as humans. When contacted, the cell cycle in the cell varies.
  • the type of cell is not limited as long as cell cycle fluctuation is observed, but is preferably a mammalian cell such as a human (eg, cancer cell, vascular endothelial cell, fibroblast, synovial cell, lymphocyte, etc.). .
  • a mammalian cell such as a human (eg, cancer cell, vascular endothelial cell, fibroblast, synovial cell, lymphocyte, etc.).
  • non-solid cancer such as leukemia, malignant lymphoma, myeloma, or stomach cancer, esophageal cancer, colon cancer, rectal cancer, pancreatic cancer, liver cancer, kidney cancer, bladder cancer, lung cancer, cervical cancer Solid cancers such as cancer, ovarian cancer, breast cancer, prostate cancer, skin cancer, brain tumor and the like are included.
  • the cancer is preferably cervical cancer, stomach cancer, liver cancer or ovarian cancer.
  • the nucleic acid of the present invention is miR-153, miR-224, miR-320, miR-345, miR-363, miR-373, miR-375, miR-448, miR-519a, miR-519b, miR-519c, In the case of miR-526b or miR-92b, or an ortholog thereof, a microRNA having the same base sequence at the 2nd to 8th positions on the 5 ′ end side, or a microRNA precursor thereof, the nucleic acid of the present invention, the present invention
  • the vector that expresses the nucleic acid of the present invention, the substance that promotes the expression of the nucleic acid of the present invention, and the substance that suppresses the expression of the target gene of the nucleic acid of the present invention increase the G1 phase.
  • the nucleic acid of the present invention is miR-129, miR-148a, miR-148b, miR-149, miR-152, miR-214, miR-217, miR-326, miR-363 *, miR-379, miR-449 , MiR-449b, miR-450, miR-500, miR-518f *, miR-544, miR-549, miR-555, miR-583, miR-585, miR-644, miR-766, miR-769- 3p or miR-96, or an ortholog thereof, 5′-end side 2-8th microRNA having the same base sequence, or a microRNA precursor thereof, the nucleic acid of the present invention, the nucleic acid of the present invention , A substance that promotes the expression of the nucleic acid of the present invention, and a substance that suppresses the expression of the target gene of the nucleic acid of the present invention increase the G2M phase.
  • the nucleic acid of the present invention is miR-154, or its ortholog, 5′-end micro RNA having the same base sequence at the 2nd to 8th positions, or a microRNA precursor thereof
  • the nucleic acid of the present invention the present invention
  • the vector that expresses the nucleic acid of the invention, the substance that promotes the expression of the nucleic acid of the invention, and the substance that suppresses the expression of the target gene of the nucleic acid of the invention increase the S phase and the G2M phase.
  • the nucleic acid of the present invention, the vector that expresses the nucleic acid of the present invention, the substance that promotes the expression of the nucleic acid of the present invention, and the substance that suppresses the expression of the target gene of the nucleic acid of the present invention Is useful as a cell growth inhibitor.
  • the pharmaceutical comprising the nucleic acid of the present invention, the vector expressing the nucleic acid of the present invention, the substance that promotes the expression of the nucleic acid of the present invention, or the substance that suppresses the expression of the target gene of the nucleic acid of the present invention as an active ingredient
  • It can be used for diagnosis or treatment of diseases caused by abnormalities in the cycle (particularly abnormal progression of the cell cycle) (for example, diseases caused by abnormal cell proliferation (particularly diseases caused by abnormally increased cell proliferation or tissue hyperplasia)).
  • a vector that expresses the nucleic acid of the present invention, a substance that promotes the expression of the nucleic acid of the present invention, or a substance that suppresses the expression of the target gene of the nucleic acid of the present invention By administering to a mammal an effective amount of the nucleic acid of the present invention, a vector that expresses the nucleic acid of the present invention, a substance that promotes the expression of the nucleic acid of the present invention, or a substance that suppresses the expression of the target gene of the nucleic acid of the present invention.
  • Diseases resulting from cell cycle abnormalities in the mammal can be treated. Specifically, diseases caused by abnormal progression of the cell cycle include cancer, arteriosclerosis, rheumatoid arthritis, benign prostatic hyperplasia, vascular restenosis after percutaneous transvascular coronary angioplasty, pulmonary fibrosis, thread Spherical nephritis, autoimmune diseases and the like, preferably cancer.
  • non-solid cancer such as leukemia, malignant lymphoma, myeloma, or stomach cancer, esophageal cancer, colon cancer, rectal cancer, pancreatic cancer, liver cancer, kidney cancer, bladder cancer, lung cancer, cervical cancer Solid cancers such as cancer, ovarian cancer, breast cancer, prostate cancer, skin cancer, brain tumor and the like are included.
  • the cancer is preferably cervical cancer, stomach cancer, liver cancer or ovarian cancer.
  • a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid of the present invention, a vector for expressing the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, and the expression of the target gene of the gene of the present invention Since the substance to be promoted can also change the cell cycle of mammalian cells such as humans, it is useful as a drug for drug or research as a cell cycle changing agent.
  • nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid of the present invention, a vector for expressing the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, and the target gene of the gene of the present invention
  • a substance is brought into contact with cells of mammalian cells such as humans, the cell cycle in the cells changes.
  • the type of cell is not limited as long as cell cycle fluctuation is observed, but is preferably a mammalian cell such as a human (eg, cancer cell, vascular endothelial cell, fibroblast, synovial cell, lymphocyte, etc.). .
  • a mammalian cell such as a human (eg, cancer cell, vascular endothelial cell, fibroblast, synovial cell, lymphocyte, etc.).
  • the nucleic acid of the present invention is miR-153, miR-224, miR-320, miR-345, miR-363, miR-373, miR-375, miR-448, miR-519a, miR-519b, miR-519c, miR-526b or miR-92b, or an ortholog thereof, or a microRNA having the same base sequence at the 2nd to 8th positions on the 5 ′ end, or a base sequence of the nucleic acid of the present invention when these are microRNA precursors
  • a nucleic acid comprising a base sequence complementary to the above, a vector that expresses the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, and a substance that promotes the expression of the target gene of the gene of the present invention reduces G1 phase.
  • the nucleic acid of the present invention is miR-129, miR-148a, miR-148b, miR-149, miR-152, miR-214, miR-217, miR-326, miR-363 *, miR-379, miR-449 , MiR-449b, miR-450, miR-500, miR-518f *, miR-544, miR-549, miR-555, miR-583, miR-585, miR-644, miR-766, miR-769- In the case of 3p or miR-96, or these orthologs, microRNAs having the same base sequence at the 2nd to 8th positions on the 5 ′ end, or these microRNA precursors, the base sequence of the nucleic acid of the present invention
  • the base of the nucleic acid of the present invention is miR-154, or its ortholog, 5′-end micro RNA having the same base sequence at the second to eighth positions, or a microRNA precursor thereof
  • the base of the nucleic acid of the present invention A nucleic acid comprising a base sequence complementary to the sequence, a vector that expresses the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, and a substance that promotes the expression of the target gene of the gene of the present invention are the S phase and Reduce G2M phase.
  • a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid of the present invention, a vector for expressing the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, and the target gene of the gene of the present invention Since the substance can promote cell growth of mammalian cells such as humans, it is useful as a cell growth promoter. Accordingly, the expression of a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid of the present invention, a vector that expresses the nucleic acid, a substance that suppresses the expression of the nucleic acid of the present invention, or a target gene of the gene of the present invention.
  • a medicament containing a promoting substance as an active ingredient can be used, for example, as a medicament for increasing the sensitivity of an anticancer agent or radiation therapy by temporarily and locally promoting the growth of cancer cells in cancer treatment.
  • RNA sequence is microRNA can be determined by following the criteria described in RNA, 9 , 277-279 (2003). For example, in the case of a low molecular weight RNA that has been newly acquired and whose base sequence has been determined, it can be performed as follows.
  • RNA predicted to be transcribed from the genomic sequence Predict secondary structure.
  • Genomic sequences are publicly available and are available, for example, from UCSC Genome Bioinformatics (http://genome.ucsc.edu/).
  • RNAfold Nucleic Acids Research, 31 , 3429-3431 (2003)
  • Mfold Nucleic Acids Research, 31 , 3406-3415 (2003)
  • miRBase a database that maps miRBase to existing microRNAs.
  • RNA (1-2) Acquisition of sequence information of low molecular RNA Extracting total RNA from a sample containing mammalian cells such as a human cancer cell line or a cancer patient-derived sample, and containing the microRNA expressed in the cell using the RNA
  • the low molecular weight RNA can be obtained as follows.
  • RNA As a method for obtaining low molecular weight RNA, specifically, a method for separating low molecular weight RNA by 15% polyacrylamide gel electrophoresis according to the method described in Genes & Development, 15 , 188-200 (2000). can give. From this, 5'-terminal dephosphorylation, 3'-adapter ligation, phosphorylation, 5'-adapter ligation, reverse transcription, PCR amplification, concatamerization, and ligation to vector are sequentially cloned, and the clone is cloned. Can be determined.
  • the low molecular RNA can be cloned and the base sequence of the clone can be determined.
  • RNA Cloning kit manufactured by Takara Bio Inc.
  • methods for detecting the expression level of nucleic acid such as microRNA and its precursor include (1) Northern hybridization and (2) dot blot high. Hybridization, (3) in situ hybridization, (4) quantitative PCR, (5) differential hybridization, (6) microarray, (7) ribonuclease protection assay and the like.
  • Northern blotting is a method in which sample-derived RNA is separated by gel electrophoresis, then transferred to a support such as a nylon filter, and a probe appropriately labeled based on the base sequence of the nucleic acid of the present invention is prepared. This is a method for detecting a band specifically bound to the nucleic acid of the present invention by washing, and specifically, for example, according to the method described in Science, 294 , 853-858 (2001). it can.
  • the labeled probe may be a radioisotope, biotin, digoxigenin, a fluorescent group, a chemiluminescent group, etc., and a base sequence of the nucleic acid of the present invention by a method such as nick translation, random priming or phosphorylation at the 5 ′ end. It can be prepared by incorporating DNA or RNA having a complementary sequence, or LNA. Since the binding amount of the labeled probe reflects the expression level of the nucleic acid of the present invention, the expression level of the nucleic acid of the present invention can be quantified by quantifying the amount of bound labeled probe. Electrophoresis, membrane transfer, probe preparation, hybridization, and nucleic acid detection can be performed by the methods described in Molecular Cloning 3rd Edition [Cold Spring Harbor Press, (2001) Cold Spring Harbor, NY] .
  • RNA extracted from tissues and cells is spot-fixed on a membrane in a dotted manner, and then hybridized with a labeled polynucleotide that serves as a probe to detect RNA that specifically hybridizes with the probe. It is a method to do.
  • the probe the same probe as in Northern hybridization can be used. Preparation of RNA, RNA spot, hybridization, and detection of RNA can be performed by the methods described in Molecular Cloning 3rd edition.
  • In situ hybridization uses a paraffin or cryostat section of tissue obtained from a living body or immobilized cells as a specimen, performs hybridization and washing steps with a labeled probe, and observes the nucleic acid of the present invention by microscopic observation. This is a method for examining the distribution and localization in tissues and cells [Methods in Enzymology, 254 , 419 (1995)].
  • the probe the same probe as in Northern hybridization can be used. Specifically, microRNA can be detected according to the method described in Nature Method, 3 , 27 (2006).
  • cDNA synthesized from a sample-derived RNA using a reverse transcription primer and a reverse transcriptase (hereinafter, the cDNA is referred to as a sample-derived cDNA) is used for measurement.
  • a reverse transcription primer used for cDNA synthesis a random primer or a specific RT primer can be used.
  • the specific RT primer refers to a primer having a sequence complementary to a nucleotide sequence corresponding to the nucleic acid of the present invention and its surrounding genomic sequence.
  • a specimen-derived cDNA design from the base sequence corresponding to the nucleic acid of the present invention such as microRNA or microRNA precursor and the surrounding genomic sequence, or the base sequence corresponding to the primer for reverse transcription.
  • PCR is performed using the template-specific primer, the cDNA fragment containing the nucleic acid of the present invention is amplified, and the amount of the nucleic acid of the present invention contained in the sample-derived RNA is detected from the number of cycles until a certain amount is reached. To do.
  • an appropriate region corresponding to the nucleic acid of the present invention and its surrounding genomic sequence is selected, and the 5 ′ end 15 to 40 residues, preferably 20 to 30 residues, of the base sequence of the region is selected.
  • a DNA or LNA set consisting of a sequence and a DNA or LNA set consisting of a sequence complementary to the 3 ′ end 15 to 40 residues, preferably 20 to 30 residues can be used. Specifically, it can be performed according to the method described in Nucleic Acids Research, 32 , e43 (2004).
  • a specific RT primer having a stem-loop structure can also be used as a reverse transcription primer for cDNA synthesis.
  • a reverse transcription reaction can also be performed by adding a polyA sequence to a sample-derived RNA with polyA polymerase and using a base sequence containing an oligo dT sequence as a primer for reverse transcription. .
  • it can be performed using miScript System (Qiagen) or QuantiMir RT Kit (System Biosciences).
  • sample-derived RNA or cDNA is hybridized with a filter or slide glass or silicon or other substrate on which DNA or LNA corresponding to the base sequence containing at least one nucleic acid of the present invention is immobilized, and washing is performed. By doing so, a change in the amount of the nucleic acid of the present invention can be detected.
  • Examples of the method based on such hybridization include a method using differential hybridization [Trends Genet., 7 , 314 (1991)] and a microarray [Genome Res., 6 , 639 (1996)].
  • the difference in the amount of the nucleic acid of the present invention between the control sample and the target sample can be accurately detected by immobilizing an internal control such as a nucleotide sequence corresponding to U6 RNA on a filter or substrate.
  • an internal control such as a nucleotide sequence corresponding to U6 RNA on a filter or substrate.
  • labeled cDNA synthesis using differently labeled dNTPs mixturetures of dATP, dGTP, dCTP, and dTTP
  • the nucleic acid of the present invention can be accurately quantified.
  • the nucleic acid of the present invention can be quantified by directly labeling and hybridizing RNA derived from a control sample and / or target sample.
  • RNA derived from a control sample and / or target sample.
  • a microarray described in Proc. Natl. Acad. Sci. USA, 101 , 9740-9744 (2004), Nucleic Acid Research, 32 , e188 (2004), RNA, 13 , 151-159 (2007), etc.
  • MicroRNA can be detected. Specifically, it can be detected or quantified in the same manner as mirVana miRNA Bioarray (Ambion) and miRNA microarray kit (Agilent Technology).
  • a promoter sequence such as T7 promoter or SP6 promoter is bound to the 3 ′ end of the nucleotide sequence corresponding to the nucleic acid of the present invention or its surrounding genomic sequence, and labeled NTP (ATP, GTP, CTP, UTP).
  • NTP ATP, GTP, CTP, UTP
  • the labeled antisense RNA is synthesized by an in vitro transcription system using a mixture) and RNA polymerase.
  • the labeled antisense RNA is bound to the sample-derived RNA to form an RNA-RNA hybrid, and then digested with ribonuclease A that degrades only single-stranded RNA.
  • the digested product is subjected to gel electrophoresis, and an RNA fragment protected from digestion by forming an RNA-RNA hybrid is detected or quantified as the nucleic acid of the present invention. Specifically, it can be detected or quantified using mirVana miRNA Detection Kit (Ambion).
  • RNA that is a polymer of ribonucleotides not only RNA that is a polymer of ribonucleotides but also DNA that is a polymer of deoxyribonucleotides can be synthesized based on the base sequence.
  • the base sequence of DNA can be determined based on the base sequence of microRNA identified in 1 above.
  • the base sequence of DNA corresponding to the base sequence of RNA can be uniquely determined by replacing U (uracil) contained in the RNA sequence with T (thymine).
  • a polymer in which ribonucleotides and deoxyribonucleotides are mixed, a polymer containing nucleotide analogues, and a nucleic acid derivative can be synthesized in the same manner.
  • the method for synthesizing the nucleic acid of the present invention is not particularly limited, and can be produced by a method using a known chemical synthesis or an enzymatic transcription method.
  • methods using known chemical synthesis include phosphoramidite method, phosphorothioate method, phosphotriester method, etc.
  • synthesis with ABI3900 high-throughput nucleic acid synthesizer can do.
  • the enzymatic transcription method include a transcription method using a typical phage RNA polymerase such as T7, T3, or SP6 RNA polymerase using a plasmid or DNA having the target base sequence as a template.
  • Method for detecting the function of a nucleic acid such as microRNA or microRNA precursor As a method for detecting the function of a nucleic acid such as microRNA, there is a method for detecting whether or not the translation of mRNA having a target base sequence is suppressed. be able to.
  • microRNA suppresses translation of mRNA containing the target base sequence in the 3′-terminal untranslated region (3′-UTR) [Current Biology, 15 , R458-R460 (2005)]. Therefore, a DNA in which the target base sequence for the single-stranded RNA to be measured is inserted into the 3′-UTR of an appropriate reporter gene expression vector is prepared, introduced into a host cell suitable for the expression vector, and one DNA is inserted into the cell. By measuring the expression of the reporter gene when the strand RNA is expressed, it can be detected whether or not it has the function of a microRNA.
  • the reporter gene expression vector may be any vector as long as it has a promoter upstream of the reporter gene and can express the reporter gene in the host cell.
  • Any reporter gene can be used as the reporter gene, for example, firefly luciferase gene, Renilla luciferase gene, chloramphenicol acetyltransferase gene, ⁇ -glucuronidase gene, ⁇ -galactosidase gene, ⁇ -Lactamase gene, aequorin gene, green fluorescent protein gene and DsRed fluorescent gene can be used.
  • Reporter gene expression vectors having such properties include, for example, psiCHECK-1 (Promega), psiCHECK-2 (Promega), pGL3-Control (Promega), pGL4 (Promega), pRNAi-GL ( Takara Bio), pCMV-DsRed-Express (CLONTECH) and the like. Single-stranded RNA can be expressed by the method described in 6 below.
  • the function of single-stranded RNA as a microRNA can be specifically detected as follows. First, host cells are cultured in a multi-well plate or the like to express a reporter gene expression vector having a target sequence and single-stranded RNA. Then, the reporter activity is measured, and the function of the single-stranded RNA as a microRNA is detected by measuring the reporter activity when the single-stranded RNA is expressed compared to the case where the single-stranded RNA is not expressed. can do.
  • Method for detecting mutations in nucleic acids such as microRNA and microRNA precursors As a method for detecting mutations in nucleic acids such as microRNAs and microRNA precursors, heterogeneous nucleic acids formed by hybridization of normal and mutant nucleic acids A method for detecting this strand can be used.
  • Methods for detecting heteroduplex include: (1) heteroduplex detection by polyacrylamide gel electrophoresis [Trends genet., 7 , 5 (1991)], (2) single strand conformation polymorphism analysis [Genomics, 16 , 325-332 (1993)], (3) Chemical cleavage of mismatches (CCM) [Human Genetics (1996), Tom Strachan and Andrew P. Read, BIOS Scientific Publishers Limited ], (4) Enzymatic cleavage method of mismatch [Nature Genetics, 9 , 103-104 (1996)], (5) Denaturing gel electrophoresis [Mutat. Res., 288 , 103-112 (1993)], etc. There are methods.
  • the heteroduplex detection method by polyacrylamide gel electrophoresis is performed as follows, for example. First, using a sample-derived DNA or a sample-derived cDNA as a template, a primer designed based on the genomic base sequence including the base sequence of the nucleic acid of the present invention is amplified as a fragment smaller than 200 ⁇ bp. When heteroduplexes are formed, the mobility is slower than homoduplexes without mutations, and they can be detected as extra bands. If the fragment is smaller than 200 bp, most insertions, deletions and substitutions of 1 base or more can be detected. Heteroduplex analysis is preferably performed on a single gel combined with single-strand conformation analysis described below.
  • SSCP analysis single-strand conformation polymorphism analysis
  • primers designed based on the base sequence of the genome containing the base sequence of the nucleic acid of the present invention using the sample-derived DNA or the sample-derived cDNA as a template
  • the DNA amplified as a fragment smaller than 200 bp is denatured and then migrated in a native polyacrylamide gel.
  • the amplified DNA can be detected as a band by labeling the primer with an isotope or a fluorescent dye, or silver-staining the unlabeled amplification product.
  • a fragment having a mutation can be detected from the difference in mobility.
  • CCM method In the mismatch chemical cleavage method (CCM method), a DNA fragment amplified with a primer designed based on the base sequence of the genome including the base sequence of the nucleic acid of the present invention using the sample-derived DNA or the sample-derived cDNA as a template, By hybridizing with a labeled nucleic acid in which an isotope or a fluorescent label is incorporated into the nucleic acid and treating with osmium tetroxide, one strand of DNA at a mismatched site can be cleaved to detect a mutation.
  • the CCM method is one of the most sensitive detection methods and can be applied to specimens of kilobase length.
  • the mismatch can be cleaved enzymatically by combining RNase A with an enzyme involved in mismatch repair in cells such as T4 phage resol base and endonuclease VII.
  • DGGE method DNA fragments amplified with primers designed based on the base sequence of the genome including the base sequence of the nucleic acid of the present invention using the sample-derived DNA or the sample-derived cDNA as a template. Is electrophoresed using a gel having a chemical denaturant concentration gradient or temperature gradient. The amplified DNA fragment moves in the gel to a position where it is denatured into a single strand and does not move after denaturation. Since there is a difference in the movement of the amplified DNA in the gel with and without the mutation, the presence of the mutation can be detected.
  • a poly (G: C) terminal is preferably attached to each primer.
  • nucleic acid mutation of the present invention can be detected by directly determining and analyzing the base sequence of the specimen-derived DNA or the specimen-derived cDNA.
  • nucleic acids such as microRNAs and microRNA precursors of the present invention
  • Known microRNA sequences and the sequences of the precursors are registered in a database called miRBase at Sanger Center in the UK.
  • Nucleic acids such as the inventive microRNA and microRNA precursors can be made. It can also be prepared using the microRNA sequence obtained by the method described in 1.
  • the nucleic acid of the present invention can be expressed by using a vector in which the nucleic acid of the present invention is biosynthesized by introduction into a cell and transcription. Specifically, based on the nucleotide sequence of the nucleic acid of the present invention or the genomic nucleotide sequence containing the nucleotide sequence, a DNA fragment containing a hairpin portion is prepared and inserted downstream of the promoter of the expression vector to express the expression plasmid.
  • the nucleic acid of the present invention can be expressed by constructing and then introducing the expression plasmid into a host cell suitable for the expression vector.
  • RNA polymerase II (pol II) type promoter or RNA polymerase III which is a transcription system of U6 RNA or H1 RNA. Examples include (pol III) promoters.
  • Examples of the pol II promoter include cytomegalovirus (human CMV) IE (immediate early) gene promoter, SV40 early promoter, and the like.
  • Examples of expression vectors using them include pCDNA6.2-GW / miR (Invitrogen), pSilencer® 4.1-CMV (Ambion), and the like.
  • Examples of pol III promoters include U6 RNA, H1 RNA, and tRNA gene promoters. Examples of expression vectors using them include pSINsi-hH1 DNA (Takara Bio), pSINsi-hU6 DNA (Takara Bio), and pENTR / U6 (Invitrogen).
  • a gene containing the nucleotide sequence of the nucleic acid of the present invention is inserted downstream of the promoter in the viral vector to construct a recombinant viral vector, the vector is introduced into a packaging cell to produce a recombinant virus,
  • a gene containing the nucleotide sequence of the nucleic acid of the present invention can also be expressed by infecting a desired host cell with a recombinant virus.
  • the packaging cell may be any cell as long as it can replenish the deficient protein of the recombinant viral vector deficient in any of the genes encoding proteins necessary for virus packaging, for example, from human kidney HEK293 cells, mouse fibroblast NIH3T3-derived cells, and the like can be used.
  • Proteins supplemented by packaging cells include mouse retrovirus-derived gag, pol, env, etc. for retroviral vectors, and HIV virus-derived gag, pol, env, vpr, vpu for lentiviral vectors. , Vif, tat, rev, nef and other proteins, adenovirus vectors such as E1A and E1B derived from adenovirus, and adeno-associated virus vectors such as Rep (p5, p19, p40), Vp (Cap), etc. Can be used.
  • nucleic acid of the present invention can also be directly introduced into a cell without using a vector.
  • a nucleic acid used in this method in addition to DNA, RNA, or nucleotide analogues, these chimeric molecules or derivatives of the nucleic acids can be used.
  • nucleic acids such as the microRNA and microRNA precursor of the present invention can be expressed in the same manner as Pre-miR TM miRNA Precursor Molecules (Ambion) and miRIDIAN microRNA Mimics (GE Healthcare). it can. When microRNA is expressed, any method can be used as long as microRNA can finally be produced in the cell.
  • RNA in addition to introducing single-stranded RNA as a microRNA precursor, (2) There is a method of introducing microRNA itself and RNA consisting of a complementary strand of microRNA and 100% -matched double-stranded RNA, and (3) double-stranded RNA assuming a state after microRNA is cleaved into Dicer.
  • Examples of products using such a method include miCENTURY OX Precursor (B-Bridge), miCENTURY OX siMature (B-Bridge), miCENTURY OX miNatural (B-Bridge), and the like.
  • the nucleic acid of the present invention is an antisense technology [Bioscience and Industry, 50 , 322 (1992), Chemistry, 46, 681 (1991), Biotechnology, 9 , 358 (1992), Trends in Biotechnology, 10 , 87 (1992), Trends in Biotechnology, 10 , 152 (1992), Cell engineering, 16 , 1463 (1997)] , Triple helix technology [Trends in Biotechnology, 10 , 132 (1992)], Ribozyme technology [Current Opinion in Chemical Biology, 3 , 274 (1999), FEMS Microbiology Reviews, 23 , 257 (1999), Frontiers in Bioscience, 4 , D497 (1999), Chemistry & Biology, 6 , R33 (1999), Nucleic Acids Research, 26 , 5237 (1998), Trends In Biotechnology, 16 , 438 (1998)], Decoy nucleic acid method [Nippon
  • An antisense nucleic acid refers to a nucleic acid capable of suppressing the expression of a target nucleic acid by hybridizing a nucleic acid having a base sequence complementary to the base sequence of a certain target nucleic acid in a specific base sequence.
  • the nucleic acid used for the antisense nucleic acid in addition to DNA, RNA or nucleotide analogues, these chimeric molecules or derivatives of the nucleic acids can also be used.
  • antisense can be produced and expression can be suppressed by following the method described in Nature, 432 , 226 (2004) and the like.
  • nucleic acid of the present invention such as microRNA or microRNA precursor can be suppressed in the same manner as Anti-miR TM miRNA Inhibitors (Ambion) or miRIDIAN microRNA Inhibitors (GE Healthcare).
  • the siRNA is a short double-stranded RNA containing a base sequence of a certain target nucleic acid and can suppress the expression of the target nucleic acid by RNA interference (RNAi).
  • RNAi RNA interference
  • the sequence of siRNA can be appropriately designed based on the conditions of the literature [Genes Dev, 13 , 3191 (1999)] from the target nucleotide sequence.
  • siRNA can be prepared by synthesizing and annealing two RNAs having a sequence of 19 bases selected and a sequence obtained by adding TT to the 3 ′ end of each complementary sequence and annealing.
  • siRNA expression vector such as pSilencer 1.0-U6 (Ambion) or pSUPER (OligoEngine)
  • a vector expressing siRNA can be prepared.
  • siRNA that suppresses the nucleic acid of the present invention such as microRNA
  • any siRNA that can suppress the activity of the nucleic acid may be used.
  • the number of residues of the base constituting one strand of siRNA is preferably 17 to 30 residues, more preferably 18 to 25 residues, still more preferably 19 to 23 residues.
  • the decoy nucleic acid method is a method of reducing the activity of a molecule by introducing a large amount of nucleic acid molecule into a cell and binding a target molecule.
  • a decoy nucleic acid for miRNA can be designed using a single-stranded nucleic acid sequence similar to the target sequence of the miRNA. It is also possible to express such decoy nucleic acid using an expression vector.
  • MicroRNA expressed in the cell using antisense or siRNA or decoy nucleic acid specific to the nucleic acid of the present invention such as microRNA and microRNA precursor expressed in cells whose cell cycle is suppressed and cell growth is reduced And the expression of microRNA precursors can be suppressed.
  • antisense or siRNA or decoy nucleic acid specific to the microRNA or the microRNA precursor By administering an antisense DNA or siRNA or decoy nucleic acid specific for the microRNA or the microRNA precursor, the activity of the microRNA is suppressed, and the action of the microRNA or microRNA precursor in the cell Can be controlled.
  • an antisense oligonucleotide, siRNA or decoy nucleic acid specific for the microRNA or a precursor thereof is used in the patient.
  • an antisense oligonucleotide or siRNA specific to the nucleic acid of the present invention such as microRNA or a precursor thereof is used as the above therapeutic agent
  • the antisense oligonucleotide or siRNA alone or the nucleic acid encoding them is a plasmid.
  • an appropriate expression vector such as a vector, retrovirus vector, adenovirus vector, adeno-associated virus vector, etc.
  • Method of suppressing gene function using nucleic acid of the present invention such as microRNA or microRNA precursor
  • the expression of mRNA having a target base sequence is microscopic. Any method may be used as long as the method uses the activity suppressed by nucleic acids such as RNA.
  • a method of suppressing the expression of the gene by suppressing the translation of mRNA having the target sequence can be expressed by the method described in 5 above.
  • Examples of the mRNA having the target base sequence of the nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 1 to 407 include the gene groups shown in Table 4 above, respectively.
  • the function of the target gene can be suppressed using siRNA for the target gene shown in Table 4.
  • a method for screening a substance that promotes or suppresses the expression or function of a nucleic acid of the present invention such as microRNA or a microRNA precursor of the present invention
  • a nucleic acid of the present invention a nucleic acid such as microRNA or a precursor thereof
  • Substances that promote or suppress expression or function can be screened.
  • expression or function of a selected microRNA or a precursor thereof using a cell expressing a nucleic acid having the base sequence by selecting a base sequence to be screened from the base sequence of the nucleic acid of the present invention. It is possible to screen for a substance that promotes or suppresses.
  • a vector expressing a nucleic acid having the base sequence is used as a host such as an animal cell or yeast as described in 5 above.
  • a transformed cell obtained by introduction into a cell, a cell in which a nucleic acid having the base sequence is directly introduced without using a vector, and the like can also be used.
  • Specific screening methods include methods that use changes in the expression level of nucleic acids such as microRNAs or their precursors to be screened as indicators, as well as mRNAs that have nucleic acid target sequences such as microRNAs, and encoded by them.
  • a method using the change in the expression level of the gene product as an index can be mentioned.
  • A Screening method using as an index a change in the expression level of the nucleic acid of the present invention, such as a microRNA to be screened or a precursor thereof, and a cell expressing the nucleic acid.
  • a change in expression level as an indicator, a substance that promotes or suppresses nucleic acids such as expression of microRNA and its precursor is obtained.
  • the expression level of the nucleic acid can be detected by the method described in 3 above.
  • a test substance is brought into contact with a cell expressing the nucleic acid of the present invention and cultured.
  • the cells expressing the nucleic acid of the present invention are cultured without contacting the test substance.
  • the expression level of the nucleic acid of the present invention in the cells cultured in (ai) and (a-ii) is measured.
  • the expression level of the nucleic acid of the present invention in the cell of (ai) is compared with that in the cell of (a-ii), and the expression of the nucleic acid of the present invention is statistically significant in the cell of (ai).
  • the test substance When the expression has been promoted, the test substance is selected as a substance that can change the cell cycle (suppress cell cycle progression) or a candidate substance that can suppress cell growth.
  • the test substance in the cell (ai), when the expression of the nucleic acid of the present invention is statistically significantly suppressed, the test substance is a substance capable of changing the cell cycle (promoting the progression of the cell cycle). Or it selects as a candidate substance of the substance which can enhance cell growth.
  • the culture conditions in (a-i) and (a-ii) may be culture conditions that are usually used for culturing the cells, and those skilled in the art can appropriately set the culture conditions according to the type of the cells.
  • the culture conditions in (a-i) and (a-ii) are the same except for the presence or absence of the test substance.
  • mRNA having a nucleic acid target sequence such as a microRNA comprising a base sequence represented by any one of SEQ ID NOs: 1 to 407 include: Examples of the gene groups shown in Table 4 above can be given.
  • test substance is brought into contact with a cell expressing the target gene of the nucleic acid of the present invention and cultured.
  • the cell expressing the target gene of the nucleic acid of the present invention is cultured without contacting the test substance.
  • the expression level of the target gene of the nucleic acid of the present invention in the cells cultured in (bi) and (b-ii) is measured.
  • the expression level of the target gene of the nucleic acid of the present invention in the cell of (bi) is compared with that in the cell of (b-ii), and the present invention is statistically significant in the cell of (bi).
  • the test substance is selected as a substance that can change the cell cycle (suppress cell cycle progression) or a candidate substance that can suppress cell growth .
  • the test substance is a substance capable of changing the cell cycle (promoting the progression of the cell cycle).
  • it selects as a candidate substance of the substance which can enhance cell growth.
  • the culture conditions in (b-i) and (b-ii) may be any culture conditions usually used for culturing the cells, and those skilled in the art can appropriately set the culture conditions according to the type of the cells.
  • the culture conditions in (b-i) and (b-ii) are the same except for the difference in the presence or absence of the test substance.
  • the candidate substance selected in (a-iv) or (b-iv) above actually changes the cell cycle (suppresses or promotes cell cycle progression) or suppresses (or promotes) cell proliferation. You may check.
  • the candidate substance is Or a substance that fluctuates the cell cycle (promotes the progression of the cell cycle) or a substance that promotes cell proliferation.
  • the cells used in this confirmation step are preferably mammalian cells that proliferate by culture.
  • Examples of the cells include cancer cells.
  • the culture conditions in (c-i) and (c-ii) may be any culture conditions that are usually used for culturing the cells, and those skilled in the art can appropriately set them according to the type of the cells.
  • the culture conditions in (c-i) and (c-ii) are the same except for the presence or absence of candidate substances.
  • Measurement of the cell cycle is as follows.
  • the measurement of cell proliferation is the following 12. It can be performed by the method described in 1.
  • the nucleic acids of the present invention include miR-106a, miR-106b, miR-122a, miR-124a, miR-147, miR-153, miR-17-5p, miR-224, miR-302d, miR- 320, miR-337, miR-345, miR-363, miR-373, miR-375, miR-431, miR-448, miR-491, miR-493-3p, miR-493-5p, miR-506, miR-507, miR-509, miR-511, miR-512-5p, miR-519a, miR-519b, miR-519c, miR-526b, miR-630 or miR-92b, or their orthologs, 5 'end When microRNAs having the same base sequence on the second to eighth sides or these microRNA precursors are selected, the increase in G1 phase is preferably used as an index.
  • the substance when the candidate substance increases the G1 phase, the substance can be obtained as a substance that increases the G1 phase of the cell cycle. Such a substance has a high possibility of suppressing cell growth like the above-described nucleic acid of the present invention.
  • the candidate substance decreases the G1 phase, the substance can be obtained as a substance that decreases the G1 phase of the cell cycle. In contrast to the nucleic acid of the present invention described above, such a substance is likely to promote cell proliferation.
  • the increase in S phase is preferable to use the increase in S phase as an index. That is, when a candidate substance increases the S phase, the substance can be obtained as a substance that increases the S phase of the cell cycle. Such a substance has a high possibility of suppressing cell growth like the above-described nucleic acid of the present invention. On the other hand, when the candidate substance decreases the S phase, the substance can be obtained as a substance that decreases the S phase of the cell cycle. In contrast to the nucleic acid of the present invention described above, such a substance is likely to promote cell proliferation.
  • the nucleic acids of the present invention include let-7b, let-7d, let-7e, let-7f, let-7g, miR-129, miR-134, miR-142-3p, miR-148a, miR- 148b, miR-149, miR-152, miR-193a, miR-193b, miR-197, miR-202, miR-214, miR-217, miR-221, miR-326, miR-329, miR-34a, miR-34b, miR-34c, miR-363STAR, miR-379, miR-449, miR-449b, miR-450, miR-500, miR-504, miR-512-3p, miR-517a, miR-517b, miR-518fSTAR, miR-542-3p, miR-544, miR-549, miR-552, miR-555, miR-561, miR-583, miR-585, miR-604, miR-637, miR-644
  • an increase in the G2M phase is preferable to use as an index. That is, when a candidate substance increases the G2M phase, the substance can be obtained as a substance that increases the G2M phase of the cell cycle. Such a substance has a high possibility of suppressing cell growth like the above-described nucleic acid of the present invention.
  • the candidate substance decreases the G2M phase, the substance can be obtained as a substance that decreases the G2M phase of the cell cycle. In contrast to the nucleic acid of the present invention described above, such a substance is likely to promote cell proliferation.
  • miR-452 or miR-494, or an ortholog thereof, microRNA having the same base sequence at the 2nd to 8th positions on the 5 ′ end, or a precursor of these microRNAs was selected as the nucleic acid of the present invention.
  • the substance when the candidate substance decreases the G1 and G2M phases, the substance can be obtained as a substance that decreases the G1 and G2M phases of the cell cycle. In contrast to the nucleic acid of the present invention described above, such a substance is likely to promote cell proliferation.
  • the nucleic acid of the present invention includes let-7c, miR-154, miR-196a, miR-222, or miR-98, or an ortholog thereof, 5′-terminal microarrays having the same base sequence at the 2nd to 8th positions.
  • RNA or a microRNA precursor thereof it is preferable to use an increase in S phase and G2M phase as an index. That is, when a candidate substance increases S phase and G2M phase, the substance can be obtained as a substance that increases S phase and G2M phase of the cell cycle. Such a substance has a high possibility of suppressing cell growth like the above-described nucleic acid of the present invention.
  • the substance when the candidate substance decreases the S phase and the G2M phase, the substance can be obtained as a substance that decreases the S phase and the G2M phase of the cell cycle. In contrast to the nucleic acid of the present invention described above, such a substance is likely to promote cell proliferation.
  • the confirmation step it is sufficient to confirm either the effect on the cell cycle or the effect on cell proliferation, but the effect on both may be confirmed.
  • the effect on the cell cycle may be confirmed first, and the effect on cell proliferation may be confirmed for candidate substances for which the effect has been confirmed.
  • Cell growth inhibitor containing the nucleic acid of the present invention such as microRNA or microRNA precursor
  • those that suppress cell growth by controlling the expression of a gene having a target sequence are cell growth inhibitors Can be used as
  • Examples of the active ingredient of the cell growth inhibitor of the present invention include the following nucleic acids (a) to (h).
  • Nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (b) Nucleic acid comprising 17 to 28 bases comprising a nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 (C) a nucleic acid comprising a base sequence represented by any one of SEQ ID NOs: 1 to 407 and having a nucleotide sequence having 90% or more identity (d) comprising a base sequence represented by any of SEQ ID NOs: 1 to 407 Nucleic acid that hybridizes with a complementary strand of nucleic acid under stringent conditions (e) A nucleic acid comprising the second to eighth base sequences of the base sequence represented by any one of SEQ ID NOs: 1 to 407 (f) SEQ ID NOs: 408 to 920 A nucleic acid consisting of a base sequence represented by any of (g
  • the nucleic acids described in (a) to (h) above may be microRNA or a microRNA precursor.
  • a vector that expresses the above nucleic acid can be used as a cell growth inhibitor.
  • a substance that suppresses the expression of a target gene of a nucleic acid such as the above microRNA can also be used as a cell growth inhibitor.
  • a nucleic acid or a vector expressing it can also be used.
  • the substance that suppresses the expression of the target gene include siRNA for the mRNA of the target gene and antisense oligonucleotide for the target gene.
  • the formulation form and administration method of the cell growth inhibitor of the present invention refer to 10. These are the same as diagnostic agents and therapeutic agents containing the nucleic acid of the present invention such as microRNA and microRNA precursor described later.
  • nucleic acids of the present invention control the expression of genes having a target sequence or the expression of the nucleic acids of the present invention such as microRNAs. By controlling, it can be used as a therapeutic agent for diseases caused by abnormal growth of cells such as cancer. Furthermore, siRNA against the target gene of the nucleic acid of the present invention such as microRNA can be used as a therapeutic agent for diseases caused by abnormal growth or differentiation of cells by controlling the expression of the gene.
  • Diseases caused by abnormal cell proliferation include cancer, arteriosclerosis, rheumatoid arthritis, benign prostatic hyperplasia, vascular restenosis after percutaneous transvascular coronary angioplasty, pulmonary fibrosis, glomerulonephritis and autoimmune disease Etc.
  • the diagnostic agent containing the nucleic acid of the present invention is a reagent necessary for quantifying the nucleic acid of the present invention or detecting a mutation, for example, a buffer, a salt, a reaction enzyme, a It may contain a labeled protein that binds to the nucleic acid, a color former for detection, and the like.
  • the therapeutic agent containing the nucleic acid of the present invention as an active ingredient can be administered alone, but usually mixed with one or more pharmacologically acceptable carriers, and the technical field of pharmaceutical sciences It is desirable to administer it as a pharmaceutical formulation produced by any method well known in the art. It is desirable to use the most effective route for treatment, and oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously.
  • Examples of the dosage form include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid
  • Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives.
  • excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
  • Formulations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using a carrier such as cacao butter, hydrogenated fat or carboxylic acid.
  • the spray is prepared using a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.
  • the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the components exemplified as additives for oral preparations can also be added.
  • the dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, weight, etc., but is usually 10 ⁇ g / kg to 20 mg / kg per day for an adult.
  • the therapeutic agent containing the nucleic acid of the present invention as an active ingredient can also be produced by preparing a vector that expresses the nucleic acid of the present invention and a base used for the nucleic acid therapeutic agent [Nature Genet., 8 , 42 (1994)].
  • the base used in the therapeutic agent of the present invention may be any base as long as it is usually used in injections, salt water such as distilled water, sodium chloride or a mixture of sodium chloride and an inorganic salt, mannitol, Examples thereof include a solution of lactose, dextran, glucose and the like, an amino acid solution such as glycine and arginine, an organic acid solution or a mixed solution of a salt solution and a glucose solution, and the like.
  • these bases are mixed with an osmotic pressure adjusting agent, a pH adjusting agent, a vegetable oil such as sesame oil and soybean oil, or an auxiliary such as a surfactant such as lecithin or a nonionic surfactant.
  • An injection may be prepared as a suspension or dispersion. These injections can be prepared as preparations for dissolution at the time of use by operations such as pulverization and freeze-drying.
  • the therapeutic agent of the present invention can be used for treatment as it is in the case of a liquid just before the treatment, or in the case of an individual, dissolved in the above sterilized base as necessary.
  • Examples of the vector for expressing the nucleic acid of the present invention include the recombinant virus vector prepared in 6 above, and more specifically, a retrovirus vector and a lentivirus vector.
  • a viral vector can be prepared by preparing a complex by combining the nucleic acid of the present invention with a polylysine-conjugated antibody specific for an adenovirus hexon protein and binding the resulting complex to an adenovirus vector. .
  • the virus vector stably reaches the target cell, is taken up into the cell by endosomes, is degraded in the cell, and the nucleic acid can be efficiently expressed.
  • nucleic acids of the present invention can also be transferred by non-viral nucleic acid transfer methods. For example, calcium phosphate coprecipitation method [Virology, 52 , 456-467 (1973); Science, 209 , 1414-1422 (1980)], microinjection method [Proc. Natl. Acad. Sci. USA, 77 , 5399-5403 ( Proc. Natl. Acad. Sci.
  • the liposome-mediated membrane fusion-mediated transfer method involves direct administration of a liposome preparation to a target tissue, thereby incorporating the nucleic acid of the present invention and siRNA for a target gene of a nucleic acid such as microRNA into the tissue. And can be expressed [Hum. Gene Ther., 3 , 399 (1992)]. Direct DNA uptake techniques are preferred for targeting DNA directly to a lesion.
  • Receptor-mediated DNA transfer can be performed, for example, by binding DNA (typically in the form of a covalently closed supercoiled plasmid) to a protein ligand via polylysine.
  • the ligand is selected based on the presence of the corresponding ligand receptor on the cell surface of the target cell or tissue.
  • the ligand-DNA conjugate can be injected directly into the blood vessel, if desired, and can be directed to a target tissue where receptor binding and internalization of the DNA-protein complex occurs.
  • adenovirus can be co-infected to disrupt endosomal function.
  • Cell cycle measurement is performed by staining the DNA in the nucleus with a fluorescent dye such as Hoechst dye or Propium Iodide, and then measuring the content per cell using a flow cytometer.
  • a method of measuring can be used (Krishan A., et al: Cancer Res. 1978, 38 : 3656-3662.).
  • M phase cells that are difficult to distinguish from G2 phase by DNA content can be distinguished by staining their chromosomes and observing their characteristic aggregation state (Angulo, R .. et al: Cytometry, 1998, 34 , 143.).
  • immunostaining with phosphorylated histone H3 antibody that is specifically expressed in M phase is also used for chromosome staining.
  • a high content screening system for example, In Cell Analyzer 1000 (GE Healthcare) that can simultaneously observe multiple specimens can be used for observation.
  • the cell proliferation measurement method is not particularly limited as long as it is a method capable of measuring an index reflecting the number of cells and the cell growth rate. Viable cell count measurement, DNA synthesis rate measurement, total protein mass measurement, and the like can be used.
  • An example of a method for evaluating the number of living cells is a method of measuring the amount of ATP in the cells. It is known that the amount of ATP in cells is proportional to the number of cells in culture (J. Immunol. Meth., 160 , 81-88 (1993)). More specific methods for measuring the amount of ATP in cells include the MTT method and the XTT method (J. Immunol. Meth., 65 , 55-63 (1983)).
  • Another example is a method of measuring ATP by luminescence of a luciferin substrate by an ATP-dependent enzyme luciferase.
  • a kit for measuring the amount of ATP in cells for example, CellTite-Glo R Luminescent Cell Viability Assay (manufactured by Promega) may be used.
  • a method for measuring the degree of cell death a method of staining dead cells with a dye such as Propium Iodide, a method of measuring the activity of an enzyme leaked to the outside due to cell death, or the like can be used.
  • a method for measuring the enzyme activity of adenylate kinase leaked out of the cell can be used.
  • ToxiLight Non-Destructive Cytotoxicity BioAssay Kit manufactured by Lonza
  • HeLa human cervical cancer-derived cell line (hereinafter referred to as HeLa) was obtained from the American Type Culture Collection (hereinafter referred to as ATCC), and MEM medium (Invitrogen) containing 10% fetal calf serum (FBS, manufactured by JRH Biosciences). In the incubator with 5% CO 2 concentration at 37 ° C.
  • ATCC American Type Culture Collection
  • FBS fetal calf serum
  • HeLa cells were seeded in a 96-well plate at 3,000 cells per well and cultured overnight in MEM medium containing 10% FBS. One day later, the microRNA precursor was introduced into HeLa cells to a final concentration of 50 nM by a lipofection method, specifically, a method using oligofectamine (manufactured by Invitrogen).
  • MicroRNA precursors include let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, miR-106a, miR-106b, miR-122a, miR-124a, miR- 129, miR-134, miR-142-3p, miR-147, miR-148a, miR-148b, miR-149, miR-152, miR-153, miR-154, miR-17-5p, miR-193a, miR-193b, miR-196a, miR-196b, miR-197, miR-202, miR-214, miR-217, miR-221, miR-222, miR-224, miR-302d, miR-320, miR- 326, miR-329, miR-337, miR-345, miR-34a, miR-34b, miR-34c, miR-363, miR-363 *, miR-373, miR-375, miR-379, miR-431 ,
  • miR-NC # 1 Pre-miR TM miRNA Precursor Molecules-Negative Control # 1 (hereinafter referred to as miR-NC # 1) (Ambion) was also introduced into HeLa cells to serve as a negative control. Lipofection followed the method described in the instructions attached to the product.
  • the cells were fixed with 70% ethanol and subjected to nuclear staining with NIM-DAPI (Beckman® Colter), and the flow cytometer Quanta SC MPL (Beckman Colter)
  • NIM-DAPI Bacillus® Colter
  • SC MPL flow cytometer Quanta SC MPL
  • the DNA content of each cell was measured.
  • Set a gate for each cell cycle stage (G1 phase, S phase, G2M phase) in the histogram of DNA content after measurement calculate the number of cells included in each cell cycle stage, and calculate the number of stages in the total number of living cells The percentage was calculated.
  • the relative cell cycle rate was calculated with the ratio of each cell cycle stage of the HeLa cells in each control group (miR-NC # 1 introduced group) being 1.0.
  • Tables 5-1 to 5-4 show the results of microRNAs that caused cell cycle fluctuations.
  • Tables 6-1 and 6-2 show the correspondence between the microRNAs used in the examples and the sequence listing. The sequence is shown according to the microRNA database, miRBase 9.2, and the sequence of mature microRNA.
  • miR-196b increased S phase and increased the proportion of S phase in the cell cycle.
  • let-7b, let-7d, let-7e, let-7f, let-7g miR-129, miR-134, miR-142-3p, miR-148a, miR-148b, miR-149, miR-152, miR-193a, miR-193b, miR-197, miR-202, miR-214, miR-217, miR-221, miR-326, miR-329, miR-34a, miR-34b, miR-34c, miR- 363 *, miR-379, miR-449, miR-449b, miR-450, miR-500, miR-504, miR-512-3p, miR-517a, miR-517b, miR-518f *, miR-542- 3p, miR-544, miR-549, miR-552, miR-555, miR-561, miR-583, miR-585, miR-60
  • the G1 and G2M phases increased and the cell cycle rate increased.
  • the introduction of let-7c, miR-154, miR-196a, miR-222, and miR-98 miRNAs increased S and G2M phases, and increased the proportion of S and G2M phases in the cell cycle.
  • microRNA precursor was introduced into a cervical cancer-derived cell line, and the influence of the microRNA precursor on the viable cell rate was examined.
  • HeLa cells were seeded in a 384-well plate at 100 cells per well and cultured overnight in MEM medium containing 10% FBS. One day later, the microRNA precursor was introduced into HeLa cells to a final concentration of 50 nM by a lipofection method, specifically, a method using oligofectamine (manufactured by Invitrogen).
  • MicroRNA precursors include let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, miR-106a, miR-106b, miR-122a, miR-124a, miR- 129, miR-134, miR-142-3p, miR-147, miR-148a, miR-148b, miR-149, miR-152, miR-153, miR-154, miR-17-5p, miR-193a, miR-193b, miR-196a, miR-196b, miR-197, miR-202, miR-214, miR-217, miR-221, miR-222, miR-224, miR-302d, miR-320, miR- 326, miR-329, miR-337, miR-345, miR-34a, miR-34b, miR-34c, miR-363, miR-363 *, miR-373, miR-375, miR-379, miR-431 ,
  • miR-NC # 1 Pre-miR TM miRNA Precursor Molecules-Negative Control # 1 (hereinafter referred to as miR-NC # 1) (Ambion) was also introduced into HeLa cells to serve as a negative control. Lipofection followed the method described in the instructions attached to the product.
  • the cell viability was measured using the CellTiter-Glo TM Luminescent Cell Viability Assay (Promega) according to the method described in the instructions attached to the product. .
  • the relative viable cell ratio of each control group was calculated by setting the viable cell ratio of HeLa cells to 100.
  • let-7b, let-7c, let-7d, let-7e, let-7f, let-7g miR-106a, miR-106b, miR-122a, miR-124a, miR-129, miR-134, miR-142-3p, miR-147, miR-148a, miR-148b, miR-149, miR-152, miR-153, miR-154, miR-17-5p, miR-193a, miR-193b, miR-196a, miR-196b, miR-197, miR-202, miR-214, miR-217, miR-221, miR-222, miR-224, miR-302d, miR-320, miR-326, miR-329, miR-337, miR-345, miR-34a, miR-34b, miR-34c, miR-363, miR-363 *, miR-373, miR -375, miR
  • microRNAs that affect the cell cycle in cervical cancer-derived cell lines and gastric cancer-derived cell lines were introduced into cervical cancer-derived cell lines and gastric cancer-derived cell lines, and the influence of microRNA precursors on Dnmt1 was examined by qRT-PCR.
  • An AGS human gastric cancer-derived cell line (hereinafter referred to as AGS) was obtained from the American Type Culture Collection (hereinafter referred to as ATCC), and F12K medium (Invitrogen) containing 10% fetal calf serum (FBS, manufactured by JRH Biosciences). ) In an incubator at 37 ° C. with 5% CO 2 concentration.
  • HeLa cells and AGS cells were seeded in 6-well plates at 10,000 cells per well, and cultured overnight in MEM medium or F12K medium containing 10% FBS.
  • the microRNA precursor was introduced into HeLa cells and AGS cells at a final concentration of 50 nM by a lipofection method, specifically, a method using oligofectamine or Lipofectamine 2000 (manufactured by Invitrogen).
  • a lipofection method specifically, a method using oligofectamine or Lipofectamine 2000 (manufactured by Invitrogen).
  • miR-148a, miR-148b and miR-152 Pre-miR TM miRNA Precursor Molecules (manufactured by Ambion) were used.
  • Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 (hereinafter referred to as miR-NC # 2) (Ambion) was also introduced into HeLa cells and AGS cells to serve as negative controls. Furthermore, Dnmt1 siRNA (Qiagen, SI00300062) was used as a positive control. Lipofection followed the method described in the instructions attached to the product. 24 and 48 hours after the introduction of the microRNA precursor by lipofection, RNA was extracted using miRVana RNA isolation kit (Applied Biosystem) according to the method described in the instructions attached to the product. .
  • microRNAs that affect the cell cycle in cervical cancer-derived cell lines and gastric cancer-derived cell lines include DNA methyltransferase 1 (Dnmt1) MicroRNA precursors were introduced into cervical cancer-derived cell lines and gastric cancer-derived cell lines, and the influence of the microRNA precursors on the expression level of Dnmt1 protein was examined by immunoblotting. HeLa cells and AGS cells were seeded in 6-well plates at 10,000 cells per well, and cultured overnight in MEM medium or F12K medium containing 10% FBS.
  • Dnmt1 DNA methyltransferase 1
  • microRNA precursor was introduced into HeLa cells and AGS cells to a final concentration of 50 nM by a lipofection method, specifically, a method using oligofectamine or Lipofectamine 2000 (manufactured by Invitrogen).
  • a lipofection method specifically, a method using oligofectamine or Lipofectamine 2000 (manufactured by Invitrogen).
  • miR-148a, miR-148b and miR-152 Pre-miR TM miRNA Precursor Molecules (manufactured by Ambion) were used.
  • Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 hereinafter referred to as miR-NC # 2 (Ambion) was also introduced into HeLa cells and AGS cells to serve as negative controls.
  • Dnmt1 siRNA was used as a positive control. Lipofection followed the method described in the instructions attached to the product. 72 hours after introduction of the microRNA precursor by the lipofection method, proteins were extracted using RIPA buffer (Invitrogen) according to the method described in the instructions attached to the product. Furthermore, the Dnmt1 protein level was measured by immunoblotting using an anti-Dnmt1 antibody (NEB (M0231S)). As a result, as shown in FIG. 2, a decrease in the expression level of Dnmt1 protein was observed by introduction of miR-148a, miR-148b and miR-152 miRNAs in both cells.
  • M-phase accumulation rate in cervical cancer-derived cell line in which microRNA was forcibly expressed A microRNA precursor was introduced into a cervical cancer-derived cell line, and the influence of the microRNA precursor on the M-phase accumulation rate was examined.
  • HeLa cells were seeded in a 96-well plate at 3,000 cells per well and cultured overnight in MEM medium containing 10% FBS. One day later, the microRNA precursor was introduced into HeLa cells to a final concentration of 30 nM by a lipofection method, specifically, a method using oligofectamine (manufactured by Invitrogen).
  • Pre-miR TM miRNA Precursor Molecules (made by Ambion) of miR-29b, miR-380-5p, miR-527, miR-193b, miR-485-5p and miR-409-3p as microRNA precursors was used.
  • Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 (hereinafter referred to as miR-NC # 2) (Ambion) was introduced into HeLa cells as a negative control. Lipofection followed the method described in the instructions attached to the product.
  • M phase accumulation rate The average value of the M-phase accumulation rate of HeLa cells in the control group (miR-NC # 2-introduced group) was 4.0%. Using this value as a reference value, the relative value of each M-phase accumulation rate was measured.
  • microRNA precursor was introduced into a cervical cancer-derived cell line, and the influence of the microRNA precursor on the viable cell rate was examined.
  • HeLa cells were seeded in a 96-well plate at 3,000 cells per well and cultured overnight in MEM medium containing 10% FBS. One day later, the microRNA precursor was introduced into HeLa cells to a final concentration of 30 nM by a lipofection method, specifically, a method using oligofectamine (manufactured by Invitrogen).
  • Pre-miR TM miRNA Precursor Molecules (made by Ambion) of miR-29b, miR-380-5p, miR-527, miR-193b, miR-485-5p and miR-409-3p as microRNA precursors was used.
  • Pre-miR TM miRNA Precursor Molecules-Negative Control # 2 (hereinafter referred to as miR-NC # 2) (Ambion) was introduced into HeLa cells as a negative control. Lipofection followed the method described in the instructions attached to the product.
  • the cell viability was measured using the CellTiter-Glo TM Luminescent Cell Viability Assay (Promega) according to the method described in the instructions attached to the product. .
  • the relative viable cell ratio of each control group (miR-NC # 2-introduced group) HeLa cell viability was calculated as 100.
  • the introduction of miR-29b, miR-380-5p, miR-527, miR-193b, miR-485-5p and miR-409-3p miRNA increased to 40.0% or more. A decrease in the viable cell rate was observed.
  • HepG2 liver cancer cell line (hereinafter referred to as HepG2; ATCC HB-8065) is a MEM medium (Invitrogen) containing 10% fetal bovine serum (FBS, manufactured by JRH Biosciences) at 37 ° C and 5% CO 2 concentration. In an incubator. On a 384-well plate, the microRNA precursor was introduced into HepG2 cells by lipofection using oligofectamine (Invitrogen) to a final concentration of 25 nM.
  • FBS fetal bovine serum
  • microRNA and oligofectamine were mixed in advance and dispensed into a 384-well plate, and seeded at 1000 HepG2 cells per well. Details are attached to the product. The method described in the instructions was followed.
  • miRIDIAN miRNA Mimic Library (10.1) manufactured by Dharmacon was used.
  • miR-NC # 2 Pre-miR miRNA Precursor Molecules-Negative Control # 2 (hereinafter referred to as miR-NC # 2) (Ambion) was also introduced into HepG2 cells to serve as a negative control.
  • the viable cell value was measured using CellTiter-Glo Luminescent Cell Viability Assay (Promega) according to the method described in the instructions attached to the product.
  • the relative cell growth inhibition rate of each control group (miR-NC # 2-introduced group) HepG2 cell viable cell value was set to 0 and no cell was set to 100.
  • the introduction of miR-363 *, miR-644 and miR-544 miRNAs showed inhibition rates of 77.2%, 65.7% and 62.9%, respectively.
  • RMG-I ovarian cancer-derived cell line
  • FBS fetal bovine serum
  • a microRNA precursor was introduced into RMG-I cells by a lipofection method using HiPerfect (Qiagen) to a final concentration of 25 nM. Specifically, microRNA and HiPerfect were mixed in advance and dispensed into a 384-well plate, and RMG-I cells were seeded at 1000 cells per well. The method described in the attached instructions was followed. As a precursor of microRNA, miRIDIAN miRNA Mimic Library (10.1) manufactured by Dharmacon was used. A group in which only HiPerfect was introduced into RMG-I cells without a microRNA precursor was prepared and used as a negative control.
  • HiPerfect Qiagen
  • the viable cell value was measured using CellTiter-Glo Luminescent Cell Viability Assay (Promega) according to the method described in the instructions attached to the product.
  • the relative cell growth inhibition rate was calculated by setting the live cell value of RMG-I cells in the control group (Hiperfect only) to 0 and 100 to no cells.
  • inhibition rates of 34.0%, 33.0% and 30.6% were shown, respectively.
  • SK-OV-3 ovarian cancer cell line
  • SK-OV-3 ovarian cancer cell line
  • FBS fetal bovine serum
  • SK-OV-3 was seeded on a 384-well plate at 250 per well, and cultured overnight in McCoy's 5A medium containing 10% FBS.
  • the microRNA precursor was introduced into SK-OV-3 cells to a final concentration of 25 nM by a lipofection method, specifically, a method using HiPerfect (Qiagen).
  • a lipofection method specifically, a method using HiPerfect (Qiagen).
  • miRIDIAN miRNA Mimic Library (10.1) manufactured by Dharmacon was used.
  • a group in which only HiPerfect was introduced into SK-OV-3 cells without a microRNA precursor was prepared and used as a negative control. Lipofection followed the method described in the instructions attached to the product.
  • the viable cell value was measured using CellTiter-Glo Luminescent Cell Viability Assay (Promega) according to the method described in the instructions attached to the product.
  • the relative cell growth inhibition rate was calculated by setting the SK-OV-3 cells in the control group (Hiperfect only) to 0 as the live cell value and 100 as the absence of cells.
  • miR-644, miR-129, miR-96, miR-224 and miR-449b introduced miRNAs, and showed inhibition rates of 50.7%, 39.4%, 33.0%, 31.8% and 30.1%, respectively. .
  • cell growth inhibitor, therapeutic agent and diagnostic agent for diseases caused by cell cycle fluctuation expression inhibitor and promoter of target gene of nucleic acid such as microRNA, cell cycle fluctuation method, nucleic acid such as microRNA
  • the method for suppressing the expression of the target gene, the method for promoting the expression, the screening method for the cell growth inhibitor, etc. are provided, and these are useful in the prevention, diagnosis and / or treatment of diseases caused by cell cycle fluctuations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Toxicology (AREA)

Abstract

 本発明は、配列番号1~920のいずれかで表される塩基配列を含む核酸、当該核酸と90%以上の同一性を有する核酸、当該核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸、若しくは配列番号1~407のいずれかで表される塩基配列の2~8番目の塩基配列を含む核酸または、上記核酸の塩基配列に対して相補的な塩基配列からなる核酸等を用いた細胞増殖制御剤、細胞周期の異常な進行に起因する疾患の診断薬または治療薬、マイクロRNA等の核酸の標的遺伝子の発現抑制剤および発現促進剤等、並びに細胞増殖制御剤のスクリーニング方法を提供する。

Description

細胞周期を制御する核酸
 本発明は、核酸を用いた細胞増殖制御剤、細胞周期異常に起因する疾患の診断薬または治療薬、細胞周期変動方法、細胞増殖制御方法、核酸の標的遺伝子の発現抑制方法または発現促進方法、細胞増殖制御剤のスクリーニング方法に関する。
 核酸の1種であるマイクロRNA (miRNA) は、蛋白質に翻訳されない約22ヌクレオチドからなる小さな非コード一本鎖RNAであり、ヒトを含む生物に多数存在することが知られている(非特許文献1、2)。マイクロRNAは、単一又はクラスター化されたマイクロRNA前駆体に転写される遺伝子から生成される。すなわち、まず遺伝子から一次転写産物であるprimary-microRNA (pri-miRNA)が転写され、次いでpri-miRNAから成熟型マイクロRNAへの段階的プロセシングにおいて、特徴的なヘアピン構造を有する約70塩基のprecursor-microRNA (pre-miRNA)がpri-miRNAから生成される。さらに、Dicer介在によるプロセシングによりpre-miRNAから成熟型マイクロRNAが生成される(非特許文献3)。
 成熟型マイクロRNAは、標的となるmRNAに相補的に結合してmRNAの翻訳を抑制するか、あるいはmRNAを分解することにより、遺伝子発現の転写後制御に関与していると考えられている。
 マイクロRNAが標的mRNAの発現を抑制するメカニズムについては完全には明らかになっていないが、近年の研究により概要が解明されつつある。マイクロRNAは標的となるmRNAの3’非翻訳領域(3’-UTR)中の部分的に相補的な配列に結合し、その翻訳を抑制し、または標的mRNAを分解することで発現を抑制する。上記の相補性は完全でなくても良いが、特にマイクロRNAの5’末端側から2番目から8番目までの塩基の相補性が重要であることが示されており、この領域をマイクロRNAの「シード配列(seed sequence)」と呼ぶこともある(非特許文献4)。シード配列が共通するマイクロRNAは他の配列が異なっていても、共通の標的mRNAの発現を抑制することが示されている。従って、任意のmRNAの3’末端に存在する配列と相補的な配列をシード配列となるようにすることで、マイクロRNA様の活性を有するRNAを設計することができる。マイクロRNAはsiRNAとは異なり、通常「細胞内に天然に存在する」RNAのみを指すことが多いため、このようにして設計したマイクロRNA様配列を特に「人工マイクロRNA」と呼ぶ場合がある。
 2009年7月現在、マイクロRNAのデータベースmiRBase(http://microrna.sanger.ac.uk/)には、ヒトで885種、全生物種で10,097種のマイクロRNAが登録されている。ヒトを含む哺乳類で発現するマイクロRNAの中で、その生理的機能に関して知られているものは、血球系分化に関与するmiR-181(非特許文献5)やインシュリン分泌に関与するmiR-375(非特許文献6)などごく一部のみであり、多くはその生理的活性が未解明である。ただし、線虫やショウジョウバエを用いた研究からマイクロRNAが生物の発生、分化に様々な重要な役割を果たしていることが明らかとなってきており、ヒト疾患との関係においても、特に癌との深い関係を示唆する報告がされている(非特許文献7)。
 マイクロRNAは様々な遺伝子の発現制御に関与することから、マイクロRNAの異常はヒトの種々の疾患に関与していることが予想される。特に癌においては研究が進展しており、多くの癌においてマイクロRNAの発現が正常組織と異なっていること、マイクロRNAの発現プロファイル解析により癌の分類が可能であることなどが報告されている(非特許文献8)。また、これまでに見出されたヒトのマイクロRNAの約半数が、ヒト癌で知られている染色体異常あるいは染色体の脆弱部位に存在することも知られている(非特許文献9)。
 これまでに報告されている癌とマイクロRNAの関係の例としては、B細胞慢性リンパ性白血病(B-CLL)で欠失が見られる染色体13q14にmiR-15a/miR-16クラスターが含まれ、その欠失がB-CLLの原因の一つになっていると予測されること(非特許文献10)、B-CLLにおいてはさらにmiR-29とmiR-181の発現が低下しており、その標的の一つが癌原遺伝子として知られるTcl1であること(非特許文献11)が知られている。肺癌ではマイクロRNAの一つであるLet-7の発現が低下しており、その標的の一つが癌原遺伝子として知られるRasであること(非特許文献12、13)が知られている。また、癌における遺伝子の高メチル化修飾によりmiR-127やmiR-124aといったマイクロRNAの発現が減少しており、その標的が癌原遺伝子として知られるBcl6やCdk6であること(非特許文献14、15)などが知られている。多くのマイクロRNAは癌細胞で発現が低下しているが、逆に癌細胞で遺伝子増幅や過剰発現が見られるマイクロRNAも存在する。例えば、悪性リンパ腫で遺伝子増幅が見られる領域には6種のマイクロRNAからなるクラスター(miR-17-92)が存在し、このmiRNAクラスター遺伝子をヒトB細胞リンパ腫のモデルマウスに強制発現させるとリンパ腫の発生が促進されることが知られている(非特許文献16)。また、以前からホジキンリンパ腫で過剰発現する蛋白質をコードしない癌遺伝子候補とされていたBICと呼ばれる遺伝子は、miR-155をコードしていることも明らかとなっている(非特許文献17)。
 このように癌とマイクロRNAの関係は近年多数報告されているが、その多くは癌細胞での発現異常を示すものであり、マイクロRNAの機能を示した報告は、Let-7、miR-143やmiR-145を癌細胞株に強制発現させることで癌細胞株の増殖を阻害したという報告(非特許文献18、19、20)、miR-16やmiR-34を強制発現させることにより癌細胞株の細胞周期を停止させたという報告(非特許文献21、22)、miR-372やmiR-373を強制発現させることにより細胞の形質転換を引き起こしたという報告(非特許文献23)など、数少ない。体外からマイクロRNAあるいはその前駆体を投与することにより該マイクロRNAの発現を増大させることで、あるいはそのアンチセンスオリゴヌクレオチドを投与してマイクロRNAの発現を減少させることで、動物モデルで癌の増殖を抑制させたという報告は、miR-34a投与により移植した大腸癌細胞株の腫瘍形成が抑制されたという報告(非特許文献24)、miR-21のアンチセンス投与により移植した乳癌細胞株の腫瘍形成が抑制されたという報告(非特許文献25)など、わずかしかない。
 一般に、細胞周期の異常が癌の原因の一つとなっていることが広く知られている。正常細胞の細胞周期においてはチェックポイントと呼ばれる機構がG1/S期、G2/M期、M期など各所に存在し、増殖に不利な条件になった場合にそれに応答して細胞周期を停止する。一方、多くの癌細胞では遺伝子の異常等の結果、これらの細胞周期チェックポイントが破綻し、細胞の増殖異常が生じていることが報告されている。さらに細胞周期を制御している多くの遺伝子が、癌遺伝子、癌抑制遺伝子として機能していることも知られている。従って、これら細胞周期に作用することで癌細胞に選択的に細胞死を引き起こすことを目指した抗癌剤も開発されており、特にM期の進行に重要な微小管の紡錘体形成を撹乱するタキサン系化合物やビンカアルカロイド系化合物が既に多数上市されている。また、細胞周期制御因子に作用して一定の場所で細胞周期を停止させる低分子化合物として、CDK阻害薬やM期キナーゼ(PLK、Aurora)阻害薬等が抗癌剤として期待されている。
 マイクロRNAと細胞周期の関係は未だ殆どわかっていないが、最近幾つかのマイクロRNAが、細胞周期に関与していることが報告されてきている。細胞周期に関与するマイクロRNAの例としては、Let-7ファミリーがCdc34を標的として細胞をG2/M期に集積させること(非特許文献26)、miR-107、miR-185が非小細胞肺癌細胞株をG1期に停止させること(非特許文献27)、miR-21とmiR-221のアンチセンス体が、膵臓癌細胞をG1期に停止させ、その後、アポトーシスを引き起こすこと(非特許文献28)などがある。マウスES細胞の細胞周期に作用するマイクロRNAを見出した報告もある(非特許文献29)。しかし、癌細胞の細胞周期に影響するマイクロRNAを網羅的に探索し、その結果として癌細胞の細胞増殖抑制や細胞死を引き起こすマイクロRNAを見出したという報告は現在までにない。
Science, 294, 853-858, (2001) Cell, 113, 673-676, (2003) Nature Reviews Genetics, 5, 522-531, (2004) Current Biology, 15, R458-R460, (2005) Science, 303, 83-86, (2004) Nature, 432, 226-230, (2004) Nature Reviews Cancer, 6, 259-269, (2006) Nature, 435, 839-843, (2005) Proc. Natl. Acad. Sci. USA, 101, 2999-3004, (2004) Proc. Natl. Acad. Sci. USA, 99, 15524-15529, (2002) Cancer Research, 66, 11590-11593, (2006) Cancer Research, 64, 3753-3756, (2004) Cell, 120, 635-647, (2005) Cancer Cell, 9, 435-443, (2006) Cancer Research, 67, 1424-1429, (2007) Nature, 435, 823-833, (2005) Proc. Natl. Acad. Sci. USA, 102, 3627-3632, (2005) Cancer Research, 64, 3753-3756, (2004) Oncology Reports, 16, 845-850, (2006) Cancer Research, 67, 7713-7722, (2007) Molecular and Cellular Biology, 27, 2240-2252, (2007) Nature, 447, 1130-1134, (2007) Cell, 124, 1169-1181, (2006) Proc. Natl. Acad. Sci. USA, 104, 15472-15477, (2007) Oncogenes, 26, 2799-2803, (2007) Journal of Biological Chemistry, 284, 6605-6609, (2009) PloS ONE, 4, e6677, (2009) Pancreas, 38, e190-199, (2009) Nature Genetics, 40, 1478-83, (2008)
 ヒトの種々の臓器で発現しているマイクロRNAを同定し、その機能を解析し、疾患との関係を解明することにより、新しい治療薬及び診断薬が開発されることが期待される。
 特に、癌細胞の細胞周期変動を引き起こし、その結果として癌細胞の細胞増殖抑制、細胞死を引き起こすマイクロRNAを見出すことは、発癌のメカニズムの理解に役立つのみならず、ヒトの癌の診断薬や治療薬の開発、さらにはそれらを利用した癌の新しい診断法や治療法につながることが期待される。さらに癌以外の疾患に関しても、動脈硬化、関節リウマチ、前立腺肥大症、経皮的経血管的冠動脈形成術後の血管再狭窄、肺線維症、糸球体腎炎、自己免疫疾患など細胞の増殖異常、組織の過形成等が原因となっている疾患の診断薬・治療薬やそれらを利用した診断法・治療法の開発に貢献することが期待される。
 本発明の目的は、細胞周期の制御に有用な核酸、及びそれらの利用法を提供することにある。
 本発明は以下の[1]~[29]に関する。
[1]以下の(a)~(h)のいずれかの核酸を有効成分として含有する、細胞増殖制御剤:
(a)配列番号1~407のいずれかで表される塩基配列からなる核酸
(b)配列番号1~407のいずれかで表される塩基配列からなる核酸を含有する、17~28塩基の核酸
(c)配列番号1~407のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(d)配列番号1~407のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸
(e)配列番号1~407のいずれかで表される塩基配列の2~8番目の塩基配列を含む核酸
(f)配列番号408~920のいずれかで表される塩基配列からなる核酸
(g)配列番号408~920のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(h)配列番号408~920のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸。
[2]核酸がマイクロRNAまたはマイクロRNA前駆体である、[1]に記載の細胞増殖制御剤。
[3][1]に記載の核酸の塩基配列に対して相補的な塩基配列からなる核酸を有効成分として含有する、細胞増殖制御剤。
[4][1]~[3]のいずれかに記載の核酸を発現するベクターを有効成分として含有する、細胞増殖制御剤。
[5][1]に記載の核酸の標的塩基配列を有する遺伝子の発現を抑制する物質を有効成分として含有する、細胞増殖制御剤。
[6][1]に記載の核酸の標的塩基配列を有する遺伝子の発現を促進する物質を有効成分として含有する、細胞増殖制御剤。
[7]発現を抑制または促進する物質が核酸である、[5]または[6]に記載の細胞増殖制御剤。
[8]核酸がsiRNAである、[7]に記載の細胞増殖制御剤。
[9][7]に記載の核酸を発現するベクターを有効成分として含有する、細胞増殖制御剤。
[10][1]~[3]のいずれかに記載の核酸、[4]に記載のベクター、または[5]~[8]のいずれかに記載の物質を有効成分として含有する、細胞周期異常に起因する疾患の治療薬または診断薬。
[11][1]に記載の核酸の発現量、該核酸の変異、該核酸をコードするゲノムの変異を検出する試薬を有効成分として含有する、細胞周期異常に起因する疾患の診断薬。
[12]細胞周期異常に起因する疾患が癌、動脈硬化、関節リウマチ、前立腺肥大症、経皮的経血管的冠動脈形成術後の血管再狭窄、肺線維症、糸球体腎炎および自己免疫疾患からなる群から選ばれる疾患である、[10]または[11]に記載の治療薬または診断薬。
[13][1]~[3]のいずれかに記載の核酸、[4]に記載のベクター、または[5]~[8]のいずれかに記載の物質を有効量投与することを特徴とする、細胞周期異常に起因する疾患の治療方法。
[14][1]に記載の核酸の発現量、該核酸の変異、該核酸をコードするゲノムの変異を検出することを特徴とする、細胞周期異常に起因する疾患の診断方法。
[15]細胞周期異常に起因する疾患の治療薬の製造のための、[1]~[3]および[7]のいずれかに記載の核酸の使用。
[16][1]または[3]に記載の核酸を有効成分として含有する、該核酸の標的遺伝子の発現制御剤。
[17][4]に記載のベクターを有効成分として含有する、[1]に記載の核酸の標的遺伝子の発現制御剤。
[18][1]または[3]に記載の核酸を用いることを特徴とする、細胞周期変動方法。
[19][4]に記載のベクターを用いることを特徴とする、細胞周期変動方法。
[20][1]に記載の核酸の標的遺伝子の発現を抑制または促進するアンチセンス核酸、siRNA、デコイ核酸等の物質を用いることを特徴とする、細胞周期変動方法。
[21][1]または[3]に記載の核酸を用いることを特徴とする、細胞増殖制御方法。
[22][4]に記載のベクターを用いることを特徴とする、細胞増殖制御方法。
[23][1]に記載の核酸の標的遺伝子の発現を抑制または促進するアンチセンス核酸、siRNA、デコイ核酸等の物質を用いることを特徴とする、細胞増殖制御方法。
[24][1]または[3]に記載の核酸を用いることを特徴とする、[1]に記載の核酸の標的遺伝子の発現抑制方法または発現促進方法。
[25][4]に記載のベクターを用いることを特徴とする、[1]に記載の核酸の標的遺伝子の発現抑制方法または発現促進方法。
[26][1]に記載の核酸の発現の促進を指標とすることを特徴とする、細胞増殖抑制剤のスクリーニング方法。
[27][1]に記載の核酸の標的遺伝子の発現の抑制を指標とすることを特徴とする、細胞増殖抑制剤のスクリーニング方法。
[28][1]に記載の核酸の発現の抑制を指標とすることを特徴とする、細胞増殖促進剤のスクリーニング方法。
[29][1]に記載の核酸の標的遺伝子の発現の促進を指標とすることを特徴とする、細胞増殖促進剤のスクリーニング方法。
 本発明により、細胞増殖抑制剤または細胞増殖促進剤、細胞周期の異常に起因する疾患の診断薬または治療薬、マイクロRNAなどの核酸の標的遺伝子の発現抑制剤または発現促進剤、細胞周期変動方法、細胞増殖抑制方法または細胞増殖促進方法を提供することができる。
図1は、miR-148a、miR-148b、およびmiR-152、並びに対照としてPre-miRTM miRNA Precursor Molecules-Negative Control #2、およびDnmt1 siRNAを終濃度50 nMで、それぞれHeLa細胞又はAGS細胞にトランスフェクションして24時間又は48時間培養した後の、Dnmt1のmRNAの発現をRT-PCRにより定量、評価した結果を示す。Dnmt1のmRNA量を準定量するに際しては、対応するサンプルのgapdh(D-glyceraldehyde-3-phosphate dehydrogenase)のmRNA量を内部対照とした上で算出した。 図2は、miR-148a、miR-148b、およびmiR-152、並びに対照としてPre-miRTM miRNA Precursor Molecules-Negative Control #2、およびDnmt1 siRNAを終濃度50 nMで、それぞれHeLa細胞又はAGS細胞にトランスフェクションして72時間培養した後の、Dnmt1の蛋白質の発現をイムノブロッティングにより評価した結果を示す。
 本発明において用いられる核酸としては、ヌクレオチドおよび該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなるものでもよく、例えば、リボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、RNAおよびDNAが混合した重合体、および、ヌクレオチド類似体を含むヌクレオチド重合体をあげることができ、さらに、核酸誘導体を含むヌクレオチド重合体であってもよい。また本発明における核酸は、一本鎖核酸または二本鎖核酸であってもよい。また二本鎖核酸には、一方の鎖に対し、他方の鎖がストリンジェントな条件でハイブリダイズする二本鎖核酸も含まれる。
 本発明においてヌクレオチド類似体としては、RNAまたはDNAと比較して、ヌクレアーゼ耐性の向上または、安定化させるため、相補鎖核酸とのアフィニティーをあげるため、あるいは細胞透過性をあげるため、あるいは可視化させるために、リボヌクレオチド、デオキシリボヌクレオチド、RNAまたはDNAに修飾を施した分子であればいかなる分子でもよく、天然に存在する分子でも非天然の分子でもよく、例えば、糖部修飾ヌクレオチド類似体やリン酸ジエステル結合修飾ヌクレオチド類似体等があげられる。
 糖部修飾ヌクレオチド類似体としては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の化学構造物質を付加あるいは置換したものであればいかなるものでもよく、例えば、2’-O-メチルリボースで置換されたヌクレオチド類似体、2’-O-プロピルリボースで置換されたヌクレオチド類似体、2’-メトキシエトキシリボースで置換されたヌクレオチド類似体、2’-O-メトキシエチルリボースで置換されたヌクレオチド類似体、2’-O-[2-(グアニジウム)エチル]リボースで置換されたヌクレオチド類似体、2’-O-フルオロリボースで置換されたヌクレオチド類似体、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)、より具体的には、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA)、およびエチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175(2004)]があげられ、さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、およびペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等をあげることができる。
 リン酸ジエステル結合修飾ヌクレオチド類似体としては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の化学物質を付加あるいは置換したものであればいかなるものでもよく、例えば、ホスフォロチオエート結合に置換されたヌクレオチド類似体、N3'-P5'ホスフォアミデート結合に置換されたヌクレオチド類似体等をあげることができる[細胞工学, 16, 1463-1473 (1997)][RNAi法とアンチセンス法、講談社(2005)]。
 本発明において核酸誘導体としては、核酸に比べ、ヌクレアーゼ耐性を向上させるため、安定化させるため、相補鎖核酸とのアフィニティーをあげるため、細胞透過性をあげるため、あるいは可視化させるために、該核酸に別の化学物質を付加した分子であればいかなる分子でもよく、例えば、5’-ポリアミン付加誘導体、コレステロール付加誘導体、ステロイド付加誘導体、胆汁酸付加誘導体、ビタミン付加誘導体、Cy5付加誘導体、Cy3付加誘導体、6-FAM付加誘導体、およびビオチン付加誘導体等をあげることができる。
 本発明の核酸としては、例えば以下の(a)~(k)で示される核酸をあげることができる。
(a)配列番号1~407のいずれかで表される塩基配列からなる核酸
(b)配列番号1~407のいずれかで表される塩基配列からなる核酸を含有する、17~28塩基の核酸
(c)配列番号1~407のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(d)配列番号1~407のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸
(e)配列番号1~407のいずれかで表される塩基配列の2~8番目の塩基配列を含む核酸
(f)(a)~(e)の核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる二本鎖核酸、または該二本鎖核酸を含有する核酸
(g)(a)~(e)の核酸と、該核酸とストリンジェントな条件でハイブリダイズする核酸とからなる二本鎖核酸、または該二本鎖核酸を含有する核酸
(h)(f)または(g)の二本鎖核酸が8~28塩基からなるスペーサーオリゴヌクレオチドで連結されたヘアピン構造を有する一本鎖核酸、または該一本鎖核酸を含有する核酸
(i)配列番号408~920のいずれかで表される塩基配列からなる核酸
(j)配列番号408~920のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(k)配列番号408~920のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸。
 上記の核酸としては、マイクロRNAが好ましく用いられる。マイクロRNAとは、17~28塩基長からなる一本鎖RNAをいう。マイクロRNAの該配列を含む周辺ゲノム配列はヘアピン構造を形成し得る配列を有しており、マイクロRNAは該ヘアピンのいずれか片鎖から切り出され得る。マイクロRNAは、その標的となるmRNAに相補的に結合してmRNAの翻訳を抑制し、あるいはmRNAの分解を促進することで遺伝子発現の転写後制御を行う。
 本発明で用いるマイクロRNAとしては、例えば、配列番号1~38のいずれかで表される塩基配列からなるヒトマイクロRNAをあげることができる。さらに配列番号1~38のいずれかで表される塩基配列からなるヒトマイクロRNAと同一の機能を有するマイクロRNAとして、該ヒトマイクロRNAのオーソログである、配列番号39~258で表される塩基配列からなる核酸をあげることができる。具体的な例としては、配列番号1のヒトマイクロRNAのオーソログとして、配列番号39で示される塩基配列からなるものがあげられる。配列番号1~38のマイクロRNAとそのオーソログの対応表を表1に示す。なお、表1の最上段において示されている生物種はそれぞれ以下の通りである。hsa、Homo sapiens、ヒト;mmu、Mus musculus、マウス;rno、Rattus norvegicus、ラット;cgr、Cricetulus griseus、チャイニーズハムスター;age、Ateles geoffroyi、アカクモザル;lla、Lagothrix lagotricha、フンボルトウーリーモンキー;sla、Saguinus labiatus、ムネアカタマリン;mml、Macaca mulatta、アカゲザル;mne、Macaca nemestrina、ブタオザル;pbi、Pygathrix bieti、クロキンシコウ;ggo、Gorilla gorilla、ゴリラ;ppa、Pan paniscus、ボノボ;ptr、Pan troglodytes、チンパンジー;ppy、Pongo pygmaeus、オランウータン;ssy、Symphalangus syndactylus、フクロテナガザル;lca、Lemur catta、ワオキツネザル;oan、Ornithorhynchus anatinus、カモノハシ、cfa、Canis familiaris、イヌ;mdo、Monodelphis domestica、ハイイロジネズミオポッサム;gga、Gallus gallus、ニワトリ;xla、Xenopus laevis、アフリカツメガエル;xtr、Xenopus tropicalis、ニシツメガエル;bta、Bos taurus、ウシ;oar、Ovis aries、ヒツジ;ssc、Sus scrofa、ブタ;dre、Danio rerio、ゼブラフィッシュ;fru、Fugu rubripes、トラフグ;tni、Tetraodon nigroviridis、ミドリフグ。
 ヒト由来マイクロRNAとそのオーソログは、その配列同一性が高いことから、同様の機能を有していると考えられる。また、マイクロRNA名末尾に付加されたアルファベットによりサブグループ化されているマイクロRNA同士もまた、その配列同一性が高いことから、同様の機能を有していると考えられる。
Figure JPOXMLDOC01-appb-T000001
 マイクロRNAがその標的遺伝子のmRNAの翻訳を抑制するメカニズムとして、マイクロRNAの5’末端側2~8番目の塩基配列に対して相補的な塩基配列を有するmRNAが、マイクロRNA標的遺伝子としてマイクロRNAにより認識されることが知られている[Current Biology, 15, R458-R460 (2005)]。このメカニズムにより、該mRNAの発現がマイクロRNAによって抑制される。従って、5’末端側2~8番目が同じ塩基配列を有するマイクロRNAは、同じmRNAの発現を抑制して同様の機能を有する。配列番号1~258のいずれかで表される塩基配列からなるマイクロRNAと5’末端側2~8番目が同じ塩基配列を有するマイクロRNAとして、配列番号259~407で表される塩基配列からなる核酸をあげることができる。該マイクロRNAの具体的な例としては、配列番号9のマイクロRNAに対しては、配列番号261からなるマイクロRNA、配列番号12のマイクロRNAに対しては、配列番号271からなるマイクロRNAをあげることができる。また、人工マイクロRNAも、本発明のマイクロRNAに含まれる。配列番号1~258のマイクロRNAとその5’末端側2~8番目が同じ塩基配列を有するマイクロRNAの対応表を表2に示す。共通のシード配列を有するマイクロRNAは、その標的塩基配列が同一と考えられることから、同様の機能を有していると考えられる。
Figure JPOXMLDOC01-appb-T000002
 上記の核酸としては、マイクロRNA前駆体もまた好ましく用いられる。マイクロRNA前駆体とは、上記本発明の核酸を含む約50~約200塩基長、より好ましくは約70~約100塩基長の核酸であり、且つ、ヘアピン構造を形成し得る核酸である。マイクロRNAは、Dicerと呼ばれる蛋白質によるプロセシングを経て、マイクロRNA前駆体から生成される。
 本発明で用いるマイクロRNA前駆体として、例えば、配列番号1のヒトマイクロRNAに対しては配列番号408で表される塩基配列からなる核酸をあげることができる。また、配列番号2~407で表されるマイクロRNAに対しては配列番号409~920で表される塩基配列からなる核酸をあげることができる。本発明におけるマイクロRNAとマイクロRNA前駆体の対応表を表3に示す。また本発明において、マイクロRNA前駆体には人工マイクロRNA前駆体が含まれる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明において、配列番号1~920のいずれかで表される塩基配列と90%以上の同一性を有する核酸とは、BLAST〔J. Mol. Biol., 215, 403 (1990)〕やFASTA〔Methods in Enzymology, 183, 63 (1990)〕等の解析ソフトを用いて計算したときに、同一性が配列番号1~920のいずれかで表される塩基配列からなる核酸と少なくとも90%以上、好ましくは93%以上、より好ましくは95%以上、さらに好ましくは96%以上、特に好ましくは97%以上、最も好ましくは98%以上である核酸であることを意味する。
 本発明で用いられる、配列番号1~920のいずれかで表される塩基配列と90%以上の同一性を有する核酸は、好ましくは、配列番号1~920のいずれかで表される当該塩基配列からなる核酸と「同一の機能」を有する。「同一の機能」とは、標的遺伝子が同一であることを意味する。
 また上記においてストリンジェントな条件とは、一方の鎖をブロットしたメンブレンに対し、7.5 mL、1M Na2HPO4(pH7.2) 0.6 mL、10% SDS 21 mL、50xDenhardt's solution 0.6 mL、10 mg/mL sonicated salmon sperm DNA 0.3 mLからなるHybridization bufferに、32P-ATPで標識した他方の鎖を加え、50℃で一晩反応させた後、50 ℃で10分間、5xSSC/5%SDS液で洗浄し、更に50℃で10分間、1xSSC/1%SDS液で洗浄し、その後メンブレンを取り出し、X線フィルムに感光させることによりシグナルを検出できる条件である。
 本発明で用いられる、配列番号1~920のいずれかで表される塩基配列からなる核酸の相補配列とストリンジェントな条件でハイブリダイズする核酸は、好ましくは、配列番号1~920のいずれかで表される当該塩基配列からなる核酸と「同一の機能」を有する。「同一の機能」とは、標的遺伝子が同一であることを意味する。
 本発明の核酸を用いてマイクロRNAなどの核酸の発現を検出する方法としては、検体中のマイクロRNAあるいはマイクロRNA前駆体などの核酸の存在が検出できる方法であれば、いかなる方法でもよく、例えば、(1)ノーザンハイブリダイゼーション、(2)ドットブロットハイブリダイゼーション、(3)in situハイブリダイゼーション、(4)定量的PCR、(5)デファレンシャル・ハイブリダイゼーション、(6)マイクロアレイ、(7)リボヌクレアーゼ保護アッセイ等があげられる。
 本発明の核酸を用いてマイクロRNAなどの核酸の変異を検出する方法としては、検体中のマイクロRNAまたはマイクロRNA前駆体などの核酸の塩基配列の変異が検出できる方法であればいかなる方法でもよく、例えば、非変異型塩基配列を有する核酸と変異型塩基配列を有する核酸とのハイブリダイズにより形成されるヘテロ二本鎖を検出する方法や、あるいは、検体由来の塩基配列を直接配列決定して、変異の有無を検出する方法等をあげることができる。
 本発明の核酸を発現するベクターとしては、細胞内に導入して転写されることによりマイクロRNAなどの本発明の核酸が生合成されるように設計されたベクターであればいかなるものであってもよい。細胞内でマイクロRNAなどの本発明の核酸を発現することができるベクターとしては、具体的には、pCDNA6.2-GW/miR(Invitrogen社製)、pSilencer4.1-CMV(Ambion社製)、pSINsi-hH1 DNA(タカラバイオ社製)、pSINsi-hU6 DNA(タカラバイオ社製)、pENTR/U6(Invitrogen社製)等をあげることができる。
 マイクロRNAなどの本発明の核酸の標的塩基配列を有する遺伝子(以下、標的遺伝子という)の発現を抑制する方法としては、本発明の核酸を用いて、マイクロRNAなどの本発明の核酸の標的塩基配列を有するmRNAの発現を抑制する活性を利用して、該標的塩基配列を有する遺伝子の発現を抑制する方法であれば、いかなる方法でもよい。なお、ここで発現を抑制するとは、mRNAからの翻訳を抑制させる場合、およびmRNAを切断あるいは分解することによって、結果としてmRNAから翻訳される蛋白質の量を減少させる場合も含まれる。該標的塩基配列を有するmRNAの発現を抑制する物質としては、具体的にはsiRNAやアンチセンスオリゴヌクレオチドなどの核酸があげられる。該siRNAは、該mRNAの連続した配列情報を基に作製することができる[Genes Dev., 13, 3191 (1999)]。siRNAの一方の鎖を構成する塩基の残基数は、好ましくは17~30残基、より好ましくは18~25残基、さらに好ましくは19~23残基である。
 本発明においては、マイクロRNAには、標的遺伝子のmRNAの3’非翻訳領域に存在する連続する7塩基の配列と相補する配列を2から8番目の塩基配列として含む17~28塩基長からなる一本鎖RNAである人工マイクロRNAも含まれる。配列を含みそれを前後に延長させた配列がヘアピン構造を形成し、該マイクロRNA配列が細胞内でそのヘアピン構造のいずれか片鎖からマイクロRNAの生合成経路によって切り出され得るRNAである場合、その延長された配列を人工マイクロRNA前駆体と呼ぶ。発現抑制したい遺伝子を標的遺伝子として、上記のような方法を用いて人工マイクロRNAおよび人工マイクロRNA前駆体を設計することができる。
 マイクロRNAなどの核酸の標的塩基配列とは、本発明におけるマイクロRNAなどの核酸によって認識される数塩基からなる塩基配列で、且つ、該塩基配列を有するmRNAの発現が本発明におけるマイクロRNAなどの核酸により抑制される塩基配列をいう。マイクロRNAの5’末端側2~8番目の塩基配列に対して相補的な塩基配列を有するmRNAからの翻訳が該マイクロRNAによって抑制されるので[Current Biology, 15, R458-R460 (2005)]、本発明におけるマイクロRNAなどの核酸の5’末端側2~8番目の塩基配列に対して相補的な塩基配列を標的塩基配列としてあげることができる。例えば、マイクロRNAの5’末端側2-8番目の塩基配列に対して相補的な標的配列を用意し、ヒトmRNAの3'-UTR塩基配列群に対して、完全に一致する配列を含有するmRNAを、文字列探索などの方法で選抜することで決定することができる。ヒトmRNAの3'-UTR塩基配列群は、「UCSC Human Genome Browser Gateway(http://genome.ucsc.edu/cgi-bin/hgGateway)」より取得できるゲノム配列および遺伝子位置情報を用いて作製することができる。配列番号1~407で表されるマイクロRNAの標的塩基配列を有した遺伝子の具体的な例としては、米国国立バイオテクノロジー情報センターNational Center for Biotechnology Information(NCBI)のEntreGeneデータベース(http://www.ncbi.nlm.nih.gov/Entrez/)で使われている名前(Official SymbolとGene ID)で表記された表4に記載の遺伝子をあげることができる。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 本発明においてマイクロRNAなどの核酸を細胞に発現させる方法としては、細胞内に導入された際にマイクロRNAなどをコードする遺伝子が発現する核酸を用いる方法があげられる。該核酸としてはDNAやRNA、あるいはヌクレオチド類似体の他、これらのキメラ分子、あるいは該核酸の誘導体も用いることができる。具体的には、Pre-miRTM miRNA Precursor Molecules(Ambion社製)やmiRIDIAN microRNA Mimics(GEヘルスケア社製)と同様に該核酸を設計し、本発明のマイクロRNAなどの核酸を細胞内で発現させることができる。マイクロRNAを発現させる場合は、細胞内で最終的にマイクロRNAができる状態になればいかなる方法でもよく、例えば、(1)マイクロRNA前駆体である一本鎖RNAを導入させる他、(2)マイクロRNAそのもの、およびマイクロRNAの相補鎖からなり、100%マッチの2本鎖からなるRNA、(3)マイクロRNAがDicerに切断された後の状態を想定した2本鎖RNAを導入させる方法があげられる。こうした方法を使用した製品としては、それぞれ例えば、miCENTURY OX Precursor(B-Bridge社製)、miCENTURY OX siMature(B-Bridge社製)、miCENTURY OX miNatural(B-Bridge社製)をあげることができる。
 本発明に用いる核酸を合成する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等にて製造することができる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスフォロチオエート法、ホスホトリエステル法等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型として典型的なファージRNAポリメラーゼ、例えば、T7、T3、またはSP6 RNAポリメラーゼを用いた転写をあげることができる。
 本発明の核酸を用いた、核酸の発現または機能を促進或いは抑制させる物質をスクリーニングする方法としては、本発明の核酸を用いて、本発明のマイクロRNAなどの核酸の発現または機能を促進或いは抑制させる物質をスクリーニングする方法であれば、いかなる方法でもよい。例えば、本発明の核酸を発現するベクターを細胞に導入し、それらの標的塩基配列を有するmRNAの発現を抑制する効果を高める物質、もしくはそれらの標的塩基配列を有するmRNAの発現を促進する物質をスクリーニングする方法があげられる。
 本明細書において、「細胞増殖の制御」とは、細胞増殖を抑制又は促進することを意味する。
 本明細書において、「細胞周期の変動」とは、特定段階(G1期、S期、M期、G2期等)の細胞周期率を増加又は減少させることを意味する。特定段階における細胞周期率の増加は、当該段階において細胞周期が停止する可能性を示す。
 本発明の核酸は、その標的遺伝子の発現を抑制し、細胞周期を変動させる。従って、本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、及び本発明の核酸の標的遺伝子の発現を抑制する物質は、ヒト等の哺乳動物細胞の細胞周期を変動させることができるので、細胞周期変動剤として医薬や研究用試薬として有用である。本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、又は本発明の核酸の標的遺伝子の発現を抑制する物質を、ヒト等の哺乳動物細胞の細胞に接触させると、当該細胞における細胞周期が変動する。
 細胞の種類は、細胞周期の変動が認められる限り限定されないが、好ましくはヒト等の哺乳動物の細胞(例、癌細胞、血管内皮細胞、線維芽細胞、滑膜細胞、リンパ球等)である。
 癌の種類は特に限定されず、白血病、悪性リンパ腫、骨髄腫などの非固形癌、あるいは胃癌、食道癌、大腸癌、直腸癌、膵臓癌、肝臓癌、腎臓癌、膀胱癌、肺癌、子宮頸癌、卵巣癌、乳癌、前立腺癌、皮膚癌、脳腫瘍などの固形癌等が含まれる。癌は、好ましくは、子宮頸癌、胃癌、肝臓癌又は卵巣癌である。
 本発明の核酸が、miR-153、miR-224、miR-320、miR-345、miR-363、miR-373、miR-375、miR-448、miR-519a、miR-519b、miR-519c、miR-526b又はmiR-92b、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、及び本発明の核酸の標的遺伝子の発現を抑制する物質は、G1期を増加させる。
 本発明の核酸が、miR-129、miR-148a、miR-148b、miR-149、miR-152、miR-214、miR-217、miR-326、miR-363*、miR-379、miR-449、miR-449b、miR-450、miR-500、miR-518f*、miR-544、miR-549、miR-555、miR-583、miR-585、miR-644、miR-766、miR-769-3p又はmiR-96、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、及び本発明の核酸の標的遺伝子の発現を抑制する物質は、G2M期を増加させる。
 本発明の核酸が、miR-154、或いはそのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、及び本発明の核酸の標的遺伝子の発現を抑制する物質は、S期及びG2M期を増加させる。
 本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、及び本発明の核酸の標的遺伝子の発現を抑制する物質は、ヒト等の哺乳動物細胞の細胞増殖を抑制することができるので、細胞増殖抑制剤として有用である。従って、本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、又は本発明の核酸の標的遺伝子の発現を抑制する物質を有効成分とする医薬は、細胞周期の異常(特に細胞周期の異常な進行)に起因する疾患(例えば細胞増殖の異常(特に細胞増殖の異常な亢進や組織の過形成)に起因する疾患)の診断または治療に用いることができる。本発明の核酸、本発明の核酸を発現するベクター、本発明の核酸の発現を促進する物質、又は本発明の核酸の標的遺伝子の発現を抑制する物質の有効量を哺乳動物に投与することにより、該哺乳動物における細胞周期の異常に起因する疾患を治療し得る。細胞周期の異常な進行に起因する疾患としては、具体的には、癌、動脈硬化、関節リウマチ、前立腺肥大症、経皮的経血管的冠動脈形成術後の血管再狭窄、肺線維症、糸球体腎炎、自己免疫疾患等、好ましくは癌をあげることができる。
 癌の種類は特に限定されず、白血病、悪性リンパ腫、骨髄腫などの非固形癌、あるいは胃癌、食道癌、大腸癌、直腸癌、膵臓癌、肝臓癌、腎臓癌、膀胱癌、肺癌、子宮頸癌、卵巣癌、乳癌、前立腺癌、皮膚癌、脳腫瘍などの固形癌等が含まれる。癌は、好ましくは、子宮頸癌、胃癌、肝臓癌又は卵巣癌である。
 一方、本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質も、ヒト等の哺乳動物細胞の細胞周期を変動させることができるので、細胞周期変動剤として医薬や研究用試薬として有用である。本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質を、ヒト等の哺乳動物細胞の細胞に接触させると、当該細胞における細胞周期が変動する。
 細胞の種類は、細胞周期の変動が認められる限り限定されないが、好ましくはヒト等の哺乳動物の細胞(例、癌細胞、血管内皮細胞、線維芽細胞、滑膜細胞、リンパ球等)である。
 本発明の核酸が、miR-153、miR-224、miR-320、miR-345、miR-363、miR-373、miR-375、miR-448、miR-519a、miR-519b、miR-519c、miR-526b又はmiR-92b、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質は、G1期を減少させる。
 本発明の核酸が、miR-129、miR-148a、miR-148b、miR-149、miR-152、miR-214、miR-217、miR-326、miR-363*、miR-379、miR-449、miR-449b、miR-450、miR-500、miR-518f*、miR-544、miR-549、miR-555、miR-583、miR-585、miR-644、miR-766、miR-769-3p又はmiR-96、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質は、G2M期を減少させる。
 本発明の核酸が、miR-154、或いはそのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体である場合には、本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質は、S期及びG2M期を減少させる。
 本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、及び本発明の遺伝子の標的遺伝子の発現を促進する物質は、ヒト等の哺乳動物細胞の細胞増殖を促進し得るので、細胞増殖促進剤として有用である。従って、本発明の核酸の塩基配列に対して相補的な塩基配列からなる核酸、当該核酸を発現するベクター、本発明の核酸の発現を抑制する物質、又は本発明の遺伝子の標的遺伝子の発現を促進する物質を有効成分とする医薬は、例えば癌治療において、癌細胞の増殖を一時的に且つ局所的に促進することで抗癌剤や放射線治療の感受性を上昇させる医薬として用いられ得る。
 以下、本発明を詳細に説明する。
1.癌細胞等の哺乳動物細胞で発現する、マイクロRNAおよびマイクロRNA前駆体などの核酸の発現を検出する方法
(1-1)マイクロRNAの同定
 低分子RNA配列がマイクロRNAであるかは、RNA, 9, 277-279 (2003)に記載の基準に従うか否かで判定できる。例えば、新たに取得して塩基配列を決定した低分子RNAの場合、以下のようにして行うことができる。
 取得した低分子RNA塩基配列に対応するDNA配列を5’末端側および3’末端側にそれぞれ50 nt程度伸ばした周辺ゲノム配列を取得し、そのゲノム配列から転写されることが予測されるRNAの2次構造を予測する。その結果、ヘアピン構造を有し、且つ該低分子RNAの塩基配列がヘアピンの片鎖に位置する場合、該低分子RNAはマイクロRNAであると判定できる。ゲノム配列は一般に公開されており、例えば、UCSC Genome Bioinformatics (http://genome.ucsc.edu/) から入手可能である。また、2次構造予測も様々なプログラムが公開されており、例えば、RNAfold [Nucleic Acids Research, 31, 3429-3431 (2003)]やMfold [Nucleic Acids Research, 31, 3406-3415 (2003)] 等を用いることができる。また、既存のマイクロRNA配列は英国サンガーセンターのmiRBaseというデータベースに登録されており、ここに記載の配列と同一か否かで、既存のマイクロRNAと同一か否かを判定することができる。
(1-2)低分子RNAの配列情報の取得
 ヒト癌細胞株、または癌患者由来検体等の哺乳動物細胞含有試料から全RNAを抽出し、該RNAを用い該細胞で発現するマイクロRNAを含有する低分子RNAを以下のようにして取得することができる。
 低分子RNAの取得法としては、具体的には、Genes & Development, 15, 188-200 (2000)に記載の方法に準じて、15%ポリアクリルアミドゲル電気泳動により低分子RNAを分離する方法があげられる。これより5’末端脱リン酸化、3’-アダプターライゲーション、リン酸化、5’-アダプターライゲーション、逆転写、PCR増幅、コンカテマー化、ベクターへのライゲーションを順次経て、低分子RNAをクローニングし、そのクローンの塩基配列を決定することができる。あるいは、例えばScience, 294, 858-862 (2001)に記載の方法に準じて、5’-アデニル化、3’-アダプターライゲーション、5’-アダプターライゲーション、逆転写、PCR増幅、コンカテマー化、ベクターへのライゲーションを順次経て、低分子RNAをクローニングし、そのクローンの塩基配列を決定することもできる。
 また、Nucleic Acids Research, 34, 1765-1771 (2006)に記載の方法により、5’末端脱リン酸化、3’-アダプターライゲーション、リン酸化、5’-アダプターライゲーション、逆転写、PCR増幅、マイクロビーズベクターへのライゲーションを順次経て、低分子RNAをクローニングし、そのマイクロビーズの塩基配列を読み取ることで塩基配列を決定することにより低分子RNAの塩基配列情報を取得することができる。
 低分子RNAを取得するための他の方法として、small RNA Cloning Kit(タカラバイオ社製)を用いた方法があげられる。
(1-3)マイクロRNAなどの核酸の発現量の検出法
 マイクロRNAおよびその前駆体などの核酸の発現量を検出する方法としては、例えば、(1)ノーザンハイブリダイゼーション、(2)ドットブロットハイブリダイゼーション、(3)in situハイブリダイゼーション、(4)定量的PCR、(5)デファレンシャル・ハイブリダイゼーション、(6)マイクロアレイ、(7)リボヌクレアーゼ保護アッセイなどがあげられる。
 ノーザンブロット法とは、検体由来RNAをゲル電気泳動で分離後、ナイロンフィルター等の支持体に転写し、本発明の核酸の塩基配列をもとに適宜標識をしたプローブを作製し、ハイブリダイゼーションおよび洗浄をおこなうことで、本発明の核酸に特異的に結合したバンドを検出する方法であり、具体的には、例えば、Science, 294, 853-858 (2001)に記載の方法等に従って行うことができる。
 標識プローブは、例えば、ニック・トランスレーション、ランダム・プライミングまたは5'末端のリン酸化等の方法により放射性同位体、ビオチン、ジゴキシゲニン、蛍光基、化学発光基等を、本発明の核酸の塩基配列と相補的な配列を有するDNAやRNA、あるいはLNAに取り込ませることで調製できる。標識プローブの結合量は本発明の核酸の発現量を反映することから、結合した標識プローブの量を定量することで本発明の核酸の発現量を定量することができる。電気泳動、メンブレンの移行、プローブの調製、ハイブリダイゼーション、核酸の検出については、モレキュラー・クローニング第3版[Cold Spring Harbor Press, (2001) Cold Spring Harbor, NY]に記載の方法により行うことができる。
 ドットブロットハイブリダイゼーションは、組織や細胞から抽出したRNAを膜上に点状にスポットして固定し、プローブとなる標識したポリヌクレオチドとハイブリダイゼーションを行い、プローブと特異的にハイブリダイズするRNAを検出する方法である。プローブとしてはノーザンハイブリダイゼーションと同様のものを用いることができる。RNAの調製、RNAのスポット、ハイブリダイゼーション、RNAの検出については、モレキュラー・クローニング第3版に記載の方法により行なうことができる。
 in situハイブリダイゼーションは、生体から取得した組織のパラフィンまたはクリオスタット切片、あるいは固定化した細胞を検体として用い、標識したプローブとハイブリダイゼーションならびに洗浄の工程を行い、顕微鏡観察により、本発明の核酸の組織や細胞内での分布や局在を調べる方法である[Methods in Enzymology, 254, 419 (1995)]。プローブとしてはノーザンハイブリダイゼーションと同様のものを用いることができる。具体的には、Nature Method, 3, 27 (2006)に記載の方法に従って、マイクロRNAを検出することができる。
 定量的PCRでは、検体由来RNAから、逆転写用プライマーと逆転写酵素を用いて合成したcDNA(以後、該cDNAを検体由来cDNAと称する)を測定に用いる。cDNA合成に供する逆転写用プライマーとして、ランダムプライマーあるいは特異的RTプライマー等を用いることができる。特異的RTプライマーとは、本発明の核酸およびその周辺ゲノム配列に対応する塩基配列に相補する配列を有するプライマーをいう。
 例えば、検体由来cDNAを合成後、これを鋳型とし、マイクロRNAやマイクロRNA前駆体などの本発明の核酸およびその周辺ゲノム配列に対応する塩基配列、あるいは逆転写用プライマーに対応する塩基配列から設計した鋳型特異的なプライマーを用いてPCRを行い、本発明の核酸を含むcDNAの断片を増幅させ、ある一定量に達するまでのサイクル数から検体由来RNAに含まれる本発明の核酸の量を検出する。鋳型特異的なプライマーとしては、本発明の核酸およびその周辺ゲノム配列に対応する適当な領域を選択し、その領域の塩基配列の5'端15~40残基、好ましくは20~30残基の配列からなるDNAまたはLNA、および3'端15~40残基、好ましくは20~30残基と相補的な配列からなるDNAまたはLNAの組を用いることができる。具体的には、Nucleic Acids Research, 32, e43 (2004)に記載の方法等に準じて行うことができる。
 また、cDNA合成に供する逆転写用プライマーとして、ステム・ループ構造を有した特異的RTプライマーを用いることもできる。具体的には、Nucleic Acid Research, 33, e179 (2005)に記載の方法、あるいは、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて行うことができる。
 更に別の検体由来cDNA合成法として、検体由来RNAに対してpolyAポリメラーゼによりpolyA配列を付加し、オリゴdT配列を含む塩基配列を逆転写用プライマーとして用いることにより、逆転写反応を行うこともできる。具体的には、miScript System(キアゲン社製)やQuantiMir RT Kit(System Biosciences社製)を用いて行うことができる。更に、本発明の核酸を少なくとも1つ以上含む塩基配列に対応するDNAあるいはLNAを固定化させたフィルターあるいはスライドガラスやシリコンなどの基板に対して、検体由来RNAあるいはcDNAをハイブリダイゼーションし、洗浄を行うことにより、本発明の核酸の量の変動を検出することができる。このようなハイブリダイゼーションに基づく方法には、ディファレンシャルハイブリダイゼーション[Trends Genet., 7, 314 (1991)]やマイクロアレイ[Genome Res., 6, 639 (1996)]を用いる方法があげられる。いずれの方法もフィルターあるいは基板上にU6 RNAに対応する塩基配列などの内部コントロールを固定化することで、対照検体と標的検体の間での本発明の核酸の量の違いを正確に検出することができる。また対照検体と標的検体由来のRNAをもとにそれぞれ異なる標識のdNTP(dATP、dGTP、dCTP、dTTPの混合物)を用いて標識cDNA合成を行い、1枚のフィルターあるいは1枚の基盤に2つの標識cDNAを同時にハイブリダイズさせることで正確な本発明の核酸の定量を行うことができる。更には、対照検体および/または標的検体由来のRNAを直接標識してハイブリダイズさせることで本発明の核酸の定量をおこなうこともできる。例えば、Proc. Natl. Acad. Sci. USA, 101, 9740-9744 (2004)やNucleic Acid Research, 32, e188 (2004)、RNA, 13, 151-159 (2007)等に記載のマイクロアレイを用いてマイクロRNAを検出することができる。具体的には、mirVana miRNA Bioarray(Ambion社製)、miRNA microarray kit (アジレント・テクノロジー社製)と同様にして検出または定量することができる。
 リボヌクレアーゼ保護アッセイでは、まず本発明の核酸あるいはその周辺ゲノム配列に対応する塩基配列の3'端にT7プロモーター、SP6プロモーターなどのプロモーター配列を結合し、標識したNTP(ATP、GTP、CTP、UTPの混合物)およびRNAポリメラーゼを用いたイン・ビトロの転写系により、標識したアンチセンスRNAを合成する。該標識アンチセンスRNAを、検体由来RNAと結合させて、RNA-RNAハイブリッドを形成させた後、1本鎖RNAのみを分解するリボヌクレアーゼAで消化する。該消化物をゲル電気泳動し、RNA-RNAハイブリッドを形成することにより消化から保護されたRNA断片を、本発明の核酸として、検出または定量する。具体的には、mirVana miRNA Detection Kit(Ambion社製)を用いて検出または定量することができる。
2.核酸の合成
 上記1のようにして、癌細胞または癌組織等の細胞増殖が亢進している哺乳動物細胞や組織で発現している、あるいは正常組織と比較して発現が増大または減少しているマイクロRNAやマイクロRNA前駆体などの核酸が同定された後は、塩基配列に基づいてリボヌクレオチドの重合体であるRNAだけでなく、デオキシリボヌクレオチドの重合体であるDNAを合成することができる。例えば、上記1で同定したマイクロRNAの塩基配列をもとに、DNAの塩基配列を決定することができる。RNAの塩基配列に対応するDNAの塩基配列は、RNAの配列に含まれるU(ウラシル)をT(チミン)に読み替えることで一義的に決定できる。また、リボヌクレオチドとデオキシリボヌクレオチドが混合した重合体や、ヌクレオチド類似体を含む重合体や核酸の誘導体も同様にして合成することができる。
 本発明の核酸を合成する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等にて製造することができる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスフォロチオエート法、ホスホトリエステル法等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型として典型的なファージRNAポリメラーゼ、例えば、T7、T3、またはSP6 RNAポリメラーゼを用いた転写による方法をあげることができる。
3.マイクロRNAやマイクロRNA前駆体などの核酸の機能を検出する方法
 マイクロRNAなどの核酸の機能を検出する方法としては、標的塩基配列を有するmRNAの翻訳を抑制するか否かで検出する方法をあげることができる。
 マイクロRNAは、その標的塩基配列を3’末端側untranslated region (3’-UTR)に含むmRNAの翻訳を抑制することが知られている[Current Biology, 15, R458-R460 (2005)]。そこで測定しようとする一本鎖RNAに対する標的塩基配列を、適当なレポーター遺伝子発現ベクターの3’-UTRに挿入したDNAを作製し、発現ベクターに適合した宿主細胞に導入し、その細胞に一本鎖RNAを発現させた時にレポーター遺伝子の発現を測定することで、マイクロRNAの機能を有しているか否かを検出することができる。
 レポーター遺伝子発現ベクターは、レポーター遺伝子の上流にプロモーターを有しており、宿主細胞においてレポーター遺伝子を発現できるものであればいかなるものでもよい。レポーター遺伝子としては、あらゆるレポーター遺伝子を使用することが可能であるが、例えば、ホタル・ルシフェラーゼ遺伝子、ウミシイタケ・ルシフェラーゼ遺伝子、クロラムフェニコール・アセチルトランスフェラーゼ遺伝子、β-グルクロニダーゼ遺伝子、β-ガラクトシダーゼ遺伝子、β-ラクタマーゼ遺伝子、エクオリン遺伝子、グリーン・フルオレッセント・プロテイン遺伝子およびDsRed蛍光遺伝子などが利用できる。こうした性質を有するレポーター遺伝子発現ベクターとして、例えば、psiCHECK-1(Promega社製)、psiCHECK-2(Promega社製)、pGL3-Control(Promega社製)、pGL4(Promega社製)、pRNAi-GL(タカラバイオ社製)、pCMV-DsRed-Express(CLONTECH社製)などがあげられる。また、一本鎖RNAは、後述の6に記載した方法で発現させることができる。
 一本鎖RNAのマイクロRNAとしての機能は、具体的には以下のようにして検出することができる。まず宿主細胞をマルチウェルプレート等に培養し、標的配列を有したレポーター遺伝子発現ベクターと一本鎖RNAを発現させる。その後、レポーター活性を測定し、一本鎖RNAを発現させない場合に比べて、一本鎖RNAを発現させた場合のレポーター活性を測定することで、一本鎖RNAのマイクロRNAとしての機能を検出することができる。
4.マイクロRNAやマイクロRNA前駆体などの核酸の変異を検出する方法
 マイクロRNAやマイクロRNA前駆体などの核酸の変異を検出する方法として、正常型と変異型の核酸のハイブリダイズにより形成されるヘテロ二本鎖を検出する方法を用いることができる。
 ヘテロ二本鎖を検出する方法としては、(1)ポリアクリルアミドゲル電気泳動によるヘテロ二本鎖検出法 [Trends genet., 7, 5 (1991)]、(2)一本鎖コンフォメーション多型解析法 [Genomics, 16, 325-332 (1993)]、(3)ミスマッチの化学的切断法 (CCM, chemical cleavage of mismatches) [Human Genetics (1996), Tom Strachan and Andrew P. Read, BIOS Scientific Publishers Limited]、(4)ミスマッチの酵素的切断法 [Nature Genetics, 9, 103-104 (1996)]、(5)変性ゲル電気泳動法 [Mutat. Res., 288, 103-112 (1993)]等の方法があげられる。
 ポリアクリルアミドゲル電気泳動法によるヘテロ二本鎖検出法は、例えば、以下のようにして行う。まず、検体由来DNAあるいは検体由来cDNAをテンプレートとして、本発明の核酸の塩基配列を含むゲノムの塩基配列を基に設計したプライマーにより、200 bpよりも小さい断片として増幅する。ヘテロ二本鎖が形成された場合は、変異を持たないホモ二本鎖よりも移動度が遅く、それらは余分なバンドとして検出することができる。200 bpよりも小さい断片であれば、1塩基以上のほとんどの挿入、欠失、置換を検出することができる。ヘテロ二本鎖解析は、次に述べる一本鎖コンフォメーション解析と組み合わせた1枚のゲルで行うことが望ましい。
 一本鎖コンフォメーション多型解析(SSCP解析;single strand conformation polymorphism analysis)では、検体由来DNAあるいは検体由来cDNAをテンプレートにして、本発明の核酸の塩基配列を含むゲノムの塩基配列に基づき設計したプライマーを用いて、200bpよりも小さい断片として増幅したDNAを変性後に、未変性ポリアクリルアミドゲル中で泳動する。DNA増幅を行う際にプライマーを同位体あるいは蛍光色素で標識するか、または未標識の増幅産物を銀染色することにより、増幅したDNAをバンドとして検出することができる。野生型のパターンとの相違を明らかにするために、コントロールの検体も同時に泳動すると、移動度の違いから変異を持った断片を検出することができる。
 ミスマッチ化学的切断法(CCM法)では、検体由来DNAあるいは検体由来cDNAをテンプレートとして、本発明の核酸の塩基配列を含むゲノムの塩基配列に基づき設計したプライマーで増幅したDNA断片を、本発明の核酸に同位体あるいは蛍光標識をとり込ませた標識核酸とハイブリダイズさせ、四酸化オスミウムで処理することでミスマッチの存在する箇所のDNAの一方の鎖を切断させ、変異を検出することができる。CCM法は最も感度の高い検出法の1つであり、キロベースの長さの検体にも適応できる。
 上記の四酸化オスミウムの代わりに、T4ファージリゾルベースとエンドヌクレアーゼVIIのような細胞内でミスマッチの修復に関与する酵素とRNaseAと組み合わせることで、酵素的にミスマッチを切断することもできる。
 変性ゲル電気泳動法(denaturing gradient gel electrophoresis:DGGE法)では、検体由来DNAあるいは検体由来cDNAをテンプレートに、本発明の核酸の塩基配列を含むゲノムの塩基配列に基づき設計したプライマーで増幅したDNA断片を化学的変性剤の濃度勾配や温度勾配を有するゲルを用いて電気泳動する。増幅したDNA断片はゲル内を一本鎖に変性する位置まで移動し、変性後は移動しなくなる。変異がある場合とない場合では増幅したDNAのゲル内での移動が異なることから、変異の存在を検出することができる。検出感度を上げるにはそれぞれのプライマーにポリ(G:C)端末を付けるとよい。
 また、検体由来DNAあるいは検体由来cDNAの塩基配列を直接的に決定し、解析することにより、本発明の核酸の変異を検出することもできる。
5.本発明のマイクロRNAやマイクロRNA前駆体などの核酸を発現させる方法
 既知のマイクロRNA配列、及びその前駆体の配列は英国サンガーセンターのmiRBaseというデータベースに登録されており、その配列を利用して本発明のマイクロRNAやマイクロRNA前駆体などの核酸を作製することができる。また、1で記載した方法により取得したマイクロRNAの配列を用いて作製することもできる。
 本発明の核酸は、細胞内に導入して転写されることにより本発明の核酸が生合成されるようなベクターを用いることにより発現させることができる。具体的には、本発明の核酸の塩基配列あるいは、その塩基配列を含むゲノムの塩基配列をもとに、ヘアピン部分を含むDNA断片を調製し、発現ベクターのプロモーター下流に挿入して発現プラスミドを造成し、次に該発現プラスミドを、該発現ベクターに適合した宿主細胞に導入することにより本発明の核酸を発現させることができる。
 発現ベクターとしては、宿主細胞において自立複製可能または染色体中への組込みが可能で、本発明の核酸の塩基配列を含む遺伝子を転写できる位置にプロモーターを含有しているものが用いられる。プロモーターとしては、宿主細胞中で本発明の核酸を発現できるものであれば、いかなるものでもよく、例えば、RNA polymerase II(pol II)系プロモーターやU6 RNAやH1 RNAの転写系であるRNA polymerase III(pol III)系プロモーター等をあげることができる。pol II系プロモーターとしては例えば、サイトメガロウィルス(ヒトCMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター等をあげることができる。それらを用いた発現ベクターとして、例えば、pCDNA6.2-GW/miR(Invitrogen社製)、pSilencer 4.1-CMV(Ambion社製)等をあげることができる。pol III系プロモーターとしてはU6 RNAやH1 RNAあるいはtRNA遺伝子のプロモーターをあげることができる。それらを用いた発現ベクターとして、例えば、pSINsi-hH1 DNA(タカラバイオ社製)、pSINsi-hU6 DNA(タカラバイオ社製)、pENTR/U6(Invitrogen社製)などをあげることができる。
 または、本発明の核酸の塩基配列を含む遺伝子をウィルスベクター内のプロモーター下流に挿入して組換えウィルスベクターを造成し、該ベクターをパッケージング細胞に導入して組換えウィルスを生産して、該組換えウィルスを所望の宿主細胞へ感染させることによっても、本発明の核酸の塩基配列を含む遺伝子を発現させることもできる。
 パッケージング細胞はウィルスのパッケージングに必要な蛋白質をコードする遺伝子のいずれかを欠損している組換えウィルスベクターの該欠損する蛋白質を補給できる細胞であればいずれの細胞もよく、例えばヒト腎臓由来のHEK293細胞、マウス線維芽細胞NIH3T3由来の細胞などを用いることができる。パッケージング細胞で補給する蛋白質としては、レトロウィルスベクターの場合はマウスレトロウイルス由来のgag、pol、envなどの蛋白質が、レンチウィルスベクターの場合はHIVウィルス由来のgag、pol、env、vpr、vpu、vif、tat、rev、nefなどの蛋白質、アデノウィルスベクターの場合はアデノウィルス由来のE1A,E1Bなどの蛋白質、また、アデノ随伴ウィルスベクターの場合はRep(p5、p19、p40)、Vp(Cap)などの蛋白質を用いることができる。
 発現ベクターを用いる以外にも、本発明の核酸を、ベクターを用いずに直接細胞に導入することもできる。本手法に用いる核酸としてはDNAやRNA、あるいはヌクレオチド類似体の他、これらのキメラ分子、あるいは該核酸の誘導体を用いることができる。具体的には、Pre-miRTM miRNA Precursor Molecules(Ambion社製)やmiRIDIAN microRNA Mimics(GEヘルスケア社製)と同様にして本発明のマイクロRNAやマイクロRNA前駆体などの核酸を発現させることができる。マイクロRNAを発現させる場合は、細胞内で最終的にマイクロRNAができる状態になればいかなる方法でもよく、例えば、(1)マイクロRNA前駆体である一本鎖RNAを導入する他、(2)マイクロRNAそのもの、およびマイクロRNAの相補鎖からなり、100%マッチの二本鎖からなるRNA、(3)マイクロRNAがDicerに切断された後の状態を想定した二本鎖RNAを導入させる方法があげられる。こうした方法を使用した製品としては、miCENTURY OX Precursor(B-Bridge社製)、miCENTURY OX siMature(B-Bridge社製)、miCENTURY OX miNatural(B-Bridge社製)等をあげることができる。
6.マイクロRNAやマイクロRNA前駆体などの本発明の核酸の活性を抑制する方法
 マイクロRNAやマイクロRNA前駆体などの本発明の核酸は、アンチセンス技術[バイオサイエンスとインダストリー, 50, 322 (1992)、化学, 46, 681 (1991)、Biotechnology, 9, 358 (1992)、Trends in Biotechnology, 10, 87 (1992) 、Trends in Biotechnology, 10, 152 (1992)、細胞工学, 16, 1463 (1997)]、トリプル・ヘリックス技術[Trends in Biotechnology, 10, 132 (1992)]、リボザイム技術[Current Opinion in Chemical Biology, 3, 274 (1999)、FEMS Microbiology Reviews, 23, 257 (1999)、Frontiers in Bioscience, 4, D497 (1999)、Chemistry & Biology, 6, R33 (1999)、Nucleic Acids Research, 26, 5237 (1998)、Trends In Biotechnology, 16, 438 (1998)]、デコイ核酸法[Nippon Rinsho - Japanese Journal of Clinical Medicine, 56, 563 (1998)、Circulation Research, 82, 1023 (1998)、Experimental Nephrology, 5, 429 (1997)、Nippon Rinsho - Japanese Journal of Clinical Medicine, 54, 2583 (1996)、Nucleic Acids Res. 37, e43, (2009)]、あるいはsiRNA(short interfering RNA)を用いて、その活性を抑制することができる。
 アンチセンス核酸とは、ある標的核酸の塩基配列に相補的な塩基配列を有する核酸を塩基配列特異的にハイブリダイゼーションさせ、該標的核酸の発現を抑制できる核酸をいう。アンチセンス核酸に用いる核酸はDNAやRNAまたはヌクレオチド類似体の他、これらのキメラ分子、あるいは該核酸の誘導体も用いることができる。具体的には、Nature, 432, 226 (2004)等に記載の方法に従うことでアンチセンスを作製し、発現を抑制することができる。また、Anti-miRTM miRNA Inhibitors(Ambion社製)やmiRIDIAN microRNA Inhibitors(GEヘルスケア社製)と同様にしてマイクロRNAやマイクロRNA前駆体などの本発明の核酸の発現を抑制することができる。
 siRNAとは、ある標的核酸の塩基配列を含む短い二本鎖RNAであり、RNA干渉(RNAi)により、該標的核酸の発現を抑制できるものをいう。siRNAの配列は、標的とする塩基配列から文献[Genes Dev, 13, 3191 (1999)]の条件に基づいて適宜設計することができる。例えば選択した19塩基の配列および相補的な配列それぞれの3'端にTTを付加した配列を有する2本のRNAを核酸合成機により合成し、アニーリングすることによりsiRNAを作製できる。また、pSilencer 1.0-U6 (Ambion社製)、pSUPER(OligoEngine社製)等のsiRNA発現用ベクターに上記の選択した19塩基の配列に相当するDNAを挿入することにより、該遺伝子の発現を抑制できるsiRNAを発現するベクターを作製することができる。マイクロRNAなどの本発明の核酸を抑制するsiRNAとしては、該核酸の活性を抑制できるものであればいかなるものでもよい。siRNAの一方の鎖を構成する塩基の残基数は、好ましくは17~30残基、より好ましくは18~25残基、さらに好ましくは19~23残基である。
 デコイ核酸法とは、細胞内に核酸分子を大量に導入して標的分子を結合させてしまうことで、その分子の活性を減弱させる方法である。miRNAに対するデコイ核酸はそのmiRNAの標的配列に類似の一本鎖核酸配列を用いて設計することができる。また発現ベクターを用いて、そうしたデコイ核酸を発現させることも可能である。
 細胞周期が抑制され、細胞増殖が低下した細胞で発現するマイクロRNAやマイクロRNA前駆体などの本発明の核酸に特異的なアンチセンスまたはsiRNAまたはデコイ核酸を用いて、当該細胞で発現するマイクロRNAやマイクロRNA前駆体などの発現の抑制を行うことができる。例えば、該マイクロRNAまたは該マイクロRNA前駆体に特異的なアンチセンスDNAまたはsiRNAまたはデコイ核酸を投与することにより、該マイクロRNAの活性を抑制し、当該細胞におけるマイクロRNAまたはマイクロRNA前駆体の作用を制御することができる。
 また、細胞で発現するマイクロRNAまたはその前駆体等の本発明の核酸の発現の異常亢進による患者の場合、該マイクロRNAまたはその前駆体に特異的なアンチセンスオリゴヌクレオチドまたはsiRNAまたはデコイ核酸を患者に投与することにより、当該細胞の機能を制御し、上記発現異常により発症する疾患の治療をすることができる。すなわち、該マイクロRNAまたはその前駆体に特異的なアンチセンスオリゴヌクレオチドまたはsiRNAまたはデコイ核酸は、本発明の核酸の発現の異常な亢進に起因する疾患の治療剤として有用である。
 マイクロRNAまたはその前駆体などの本発明の核酸に特異的なアンチセンスオリゴヌクレオチドまたはsiRNAを上記の治療剤として使用する場合は、アンチセンスオリゴヌクレオチドまたはsiRNAを単独、あるいはこれらをコードする核酸をプラスミドベクター、レトロウィルスベクター、アデノウィルスベクター、アデノ随伴ウィルスベクターなどの適当な発現ベクターに挿入した後、下記9に記載した常法に従って医薬製剤とし、投与することができる。
7.マイクロRNAやマイクロRNA前駆体などの本発明の核酸を用いて遺伝子の機能を抑制する方法
 本発明の核酸を用いて遺伝子の機能を抑制する方法としては、標的塩基配列を有するmRNAの発現をマイクロRNAなどの核酸が抑制する活性を利用する方法であればいかなる方法でもよい。例えば、本発明の核酸を発現させ細胞内のマイクロRNAなどの核酸の量を増加させることにより、標的配列を有するmRNAの翻訳を抑制し、遺伝子の発現を抑制する方法をあげることができる。なお、本発明の核酸を発現させるには、上記5で記載した方法により行なうことができる。配列番号1~407のいずれかで表される塩基配列からなる核酸の標的塩基配列を有するmRNAとしては、例えば、それぞれ前述の表4で示される遺伝子群を例示することができる。
 また、表4で示される標的遺伝子に対するsiRNAを用いて、該標的遺伝子の機能を抑制することができる。
8.マイクロRNAやマイクロRNA前駆体などの本発明の核酸を用いて該核酸の発現または機能を促進または抑制させる物質をスクリーニングする方法
 本発明の核酸を用いて、マイクロRNAまたはその前駆体などの核酸の発現または機能を促進または抑制させる物質をスクリーニングすることができる。例えば、本発明の核酸の塩基配列から、スクリーニングの標的とする塩基配列を選択して、該塩基配列を有する核酸を発現する細胞を利用して、選択したマイクロRNAまたはその前駆体の発現または機能を促進または抑制させる物質をスクリーニングすることができる。
 スクリーニングに用いる、マイクロRNAおよびマイクロRNA前駆体などを発現する細胞としては、癌細胞のほか、上記5で記載したように、該塩基配列を有する核酸を発現するベクターを動物細胞や酵母などの宿主細胞に導入して得られる形質転換細胞や、該塩基配列を有する核酸をベクターを用いずに直接導入した細胞等を用いることもできる。
 具体的なスクリーニング方法としては、スクリーニングの標的とするマイクロRNAまたはその前駆体などの核酸の発現量の変化を指標にする方法の他、マイクロRNAなどの核酸の標的配列を有するmRNAやそれにコードされる遺伝子産物の発現量の変化を指標にする方法をあげることができる。
(a)スクリーニングの標的とするマイクロRNAまたはその前駆体などの本発明の核酸の発現量の変化を指標にするスクリーニング方法
 該核酸を発現する細胞に対し、試験物質を接触させ、選択した核酸の発現量の変化を指標に、マイクロRNAおよびその前駆体の発現などの核酸を促進または抑制させる物質を得る。核酸の発現量は、上記3で記載した方法により検出することができる。
 より具体的には、以下の通りである。
(a-i) 本発明の核酸を発現する細胞に対して、試験物質を接触させ、培養する。
(a-ii) 本発明の核酸を発現する細胞に対して、試験物質を接触させずに、培養する。
(a-iii) (a-i)及び(a-ii)において培養した細胞における本発明の核酸の発現量を測定する。
(a-iv) (a-i)の細胞における本発明の核酸の発現量を、(a-ii)の細胞におけるそれと比較し、(a-i)の細胞において、統計学的に有意に本発明の核酸の発現が促進していた場合には、当該試験物質を、細胞周期を変動(細胞周期の進行を抑制)し得る物質又は細胞増殖を抑制し得る物質の候補物質として選択する。或いは、(a-i)の細胞において、統計学的に有意に本発明の核酸の発現が抑制されていた場合には、当該試験物質を、細胞周期を変動(細胞周期の進行を促進)し得る物質又は細胞増殖を亢進し得る物質の候補物質として選択する。
 (a-i)及び(a-ii)における培養条件は、当該細胞を培養するに際して通常用いられている培養条件であればよく、当業者は適宜その細胞の種類に応じて設定することが出来る。好ましくは、(a-i)と(a-ii)における培養条件は、試験物質の有無の違いを除き、同一である。
(b)スクリーニングの標的とするマイクロRNAなどの核酸の標的配列を有するmRNAやそれにコードされる遺伝子産物の発現量の変化を指標にするスクリーニング方法
 該mRNAを発現する細胞に対し、試験物質を接触させ、選択した核酸の標的配列を有するmRNAやそれにコードされる遺伝子産物の発現量の変化を指標に、マイクロRNAおよびその前駆体などの核酸の発現または機能を促進または抑制させる物質を得る。または、本発明のマイクロRNAなどの核酸の標的配列を適当なレポーター遺伝子発現ベクターの3’-UTRに挿入したDNAを作製して、発現ベクターに適合した宿主細胞に導入し、その細胞に試験物質を接触させ、レポーター遺伝子の発現量の変化を指標に、マイクロRNAおよびその前駆体などの核酸の発現または機能を促進または抑制させる物質を得る。
 標的配列の選択は、上記8で記載した方法により行なうことができ、配列番号1~407でいずれかで表される塩基配列からなるマイクロRNAなどの核酸の標的配列を有するmRNAとしては、例えば、それぞれ前述の表4で示される遺伝子群を例示することができる。
 より具体的には、以下の通りである。
(b-i) 本発明の核酸の標的遺伝子を発現する細胞に対して、試験物質を接触させ、培養する。
(b-ii) 本発明の核酸の標的遺伝子を発現する細胞に対して、試験物質を接触させずに、培養する。
(b-iii) (b-i)及び(b-ii)において培養した細胞における本発明の核酸の標的遺伝子の発現量を測定する。
(b-iv) (b-i)の細胞における本発明の核酸の標的遺伝子の発現量を、(b-ii)の細胞におけるそれと比較し、(b-i)の細胞において、統計学的に有意に本発明の核酸の標的遺伝子の発現が抑制されていた場合には、当該試験物質を、細胞周期を変動(細胞周期の進行を抑制)し得る物質又は細胞増殖を抑制し得る物質の候補物質として選択する。或いは、(b-i)の細胞において、統計学的に有意に本発明の核酸の発現が促進していた場合には、当該試験物質を、細胞周期を変動(細胞周期の進行を促進)し得る物質又は細胞増殖を亢進し得る物質の候補物質として選択する。
 (b-i)及び(b-ii)における培養条件は、当該細胞を培養するに際して通常用いられている培養条件であればよく、当業者は適宜その細胞の種類に応じて設定することが出来る。好ましくは、(b-i)と(b-ii)における培養条件は、試験物質の有無の違いを除き、同一である。
 上述の(a-iv)又は(b-iv)において選択された候補物質が、実際に細胞周期を変動(細胞周期の進行を抑制又は促進)するか、あるいは細胞増殖を抑制(又は促進)するか、確認してもよい。
 より具体的には、以下の通りである。
(c-i) 細胞に対して、候補物質を接触させ、培養する。
(c-ii) 細胞に対して、候補物質を接触させずに、培養する。
(c-iii) (c-i)及び(c-ii)において培養した細胞における細胞周期又は細胞増殖を測定する。
(c-iv) (c-i)の細胞における細胞周期又は細胞増殖を、(c-ii)の細胞におけるそれと比較し、(c-i)の細胞において、統計学的に有意に細胞周期が変動していた(細胞周期の進行が抑制されていた)場合又は細胞増殖が抑制されていた場合には、当該候補物質を、細胞周期を変動する(細胞周期の進行を抑制する)物質又は細胞増殖を抑制する物質として得る。或いは、(c-i)の細胞において、統計学的に有意に細胞周期が変動していた(細胞周期の進行が促進していた)場合又は細胞増殖が促進していた場合には、当該候補物質を、細胞周期を変動する(細胞周期の進行を促進する)物質又は細胞増殖を促進する物質として得る。
 この確認工程において使用する細胞は、培養により増殖する哺乳動物細胞が好ましい。該細胞としては、例えば癌細胞を挙げることが出来る。(c-i)及び(c-ii)における培養条件は、当該細胞を培養するに際して通常用いられている培養条件であればよく、当業者は適宜その細胞の種類に応じて設定することが出来る。好ましくは、(c-i)と(c-ii)における培養条件は、候補物質の有無の違いを除き、同一である。細胞周期の測定は下記11.に、細胞増殖の測定は下記12.に記載された方法により行うことが出来る。
 一態様において、本発明の核酸として、miR-106a、miR-106b、miR-122a、miR-124a、miR-147、miR-153、miR-17-5p、miR-224、miR-302d、miR-320、miR-337、miR-345、miR-363、miR-373、miR-375、miR-431、miR-448、miR-491、miR-493-3p、miR-493-5p、miR-506、miR-507、miR-509、miR-511、miR-512-5p、miR-519a、miR-519b、miR-519c、miR-526b、miR-630又はmiR-92b、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体を選択した場合には、G1期の増加を指標にするのが好ましい。即ち、候補物質がG1期を増加させた場合には、該物質は細胞周期のG1期を増大させる物質として得ることが出来る。このような物質は、上述の本発明の核酸と同様に、細胞増殖を抑制する可能性が高い。一方、候補物質がG1期を低下させた場合には、該物質は、細胞周期のG1期を低下させる物質として得ることが出来る。このような物質は、上述の本発明の核酸とは逆に、細胞増殖を促進する可能性が高い。
 一態様において、本発明の核酸として、miR-196b、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体を選択した場合には、S期の増加を指標にするのが好ましい。即ち、候補物質がS期を増加させた場合には、該物質は細胞周期のS期を増大させる物質として得ることが出来る。このような物質は、上述の本発明の核酸と同様に、細胞増殖を抑制する可能性が高い。一方、候補物質がS期を低下させた場合には、該物質は、細胞周期のS期を低下させる物質として得ることが出来る。このような物質は、上述の本発明の核酸とは逆に、細胞増殖を促進する可能性が高い。
 一態様において、本発明の核酸として、let-7b、let-7d、let-7e、let-7f、let-7g、miR-129、miR-134、miR-142-3p、miR-148a、miR-148b、miR-149、miR-152、miR-193a、miR-193b、miR-197、miR-202、miR-214、miR-217、miR-221、miR-326、miR-329、miR-34a、miR-34b、miR-34c、miR-363STAR、miR-379、miR-449、miR-449b、miR-450、miR-500、miR-504、miR-512-3p、miR-517a、miR-517b、miR-518fSTAR、miR-542-3p、miR-544、miR-549、miR-552、miR-555、miR-561、miR-583、miR-585、miR-604、miR-637、miR-644、miR-661、miR-766、miR-769-3p又はmiR-96、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体を選択した場合には、G2M期の増加を指標にするのが好ましい。即ち、候補物質がG2M期を増加させた場合には、該物質は細胞周期のG2M期を増大させる物質として得ることが出来る。このような物質は、上述の本発明の核酸と同様に、細胞増殖を抑制する可能性が高い。一方、候補物質がG2M期を低下させた場合には、該物質は、細胞周期のG2M期を低下させる物質として得ることが出来る。このような物質は、上述の本発明の核酸とは逆に、細胞増殖を促進する可能性が高い。
 一態様において、本発明の核酸として、miR-452又はmiR-494、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体を選択した場合には、G1及びG2M期の増加を指標にするのが好ましい。即ち、候補物質がG1及びG2M期を増加させた場合には、該物質は細胞周期のG1及びG2M期を増大させる物質として得ることが出来る。このような物質は、上述の本発明の核酸と同様に、細胞増殖を抑制する可能性が高い。一方、候補物質がG1及びG2M期を低下させた場合には、該物質は、細胞周期のG1及びG2M期を低下させる物質として得ることが出来る。このような物質は、上述の本発明の核酸とは逆に、細胞増殖を促進する可能性が高い。
 一態様において、本発明の核酸として、let-7c、miR-154、miR-196a、miR-222又はmiR-98、或いはこれらのオーソログ、5’末端側2~8番目が同じ塩基配列を有するマイクロRNA、又はこれらのマイクロRNA前駆体を選択した場合には、S期及びG2M期の増加を指標にするのが好ましい。即ち、候補物質がS期及びG2M期を増加させた場合には、該物質は細胞周期のS期及びG2M期を増大させる物質として得ることが出来る。このような物質は、上述の本発明の核酸と同様に、細胞増殖を抑制する可能性が高い。一方、候補物質がS期及びG2M期を低下させた場合には、該物質は、細胞周期のS期及びG2M期を低下させる物質として得ることが出来る。このような物質は、上述の本発明の核酸とは逆に、細胞増殖を促進する可能性が高い。
 該確認工程においては、細胞周期に対する効果と、細胞増殖に対する効果のいずれか一方について確認すれば十分であるが、その双方への効果について確認してもよい。例えば、先ず細胞周期に対する効果を確認し、効果が確認された候補物質について細胞増殖に対する効果を確認してもよい。
9.マイクロRNAやマイクロRNA前駆体などの本発明の核酸を含む細胞増殖抑制剤
 本発明の核酸のうち、標的配列を有する遺伝子の発現を制御することにより細胞増殖を抑制するものは、細胞増殖抑制剤として利用することができる。
 本発明の細胞増殖抑制剤の有効成分としては、以下の(a)~(h)の核酸があげられる。
(a)配列番号1~407のいずれかで表される塩基配列からなる核酸
(b)配列番号1~407のいずれかで表される塩基配列からなる核酸を含有する、17~28塩基の核酸
(c)配列番号1~407のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(d)配列番号1~407のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸
(e)配列番号1~407のいずれかで表される塩基配列の2~8番目の塩基配列を含む核酸
(f)配列番号408~920のいずれかで表される塩基配列からなる核酸
(g)配列番号408~920のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
(h)配列番号408~920のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸。
 上記(a)~(h)に記載の核酸は、マイクロRNAまたはマイクロRNA前駆体であってもよい。
 また上記の核酸を発現するベクターも細胞増殖抑制剤として用いることができる。
 一方、上記マイクロRNAなどの核酸の標的遺伝子の発現を抑制する物質を細胞増殖抑制剤として用いることもできる。この物質として核酸やこれを発現するベクターを用いることもできる。また標的遺伝子の発現を抑制する物質としては、該標的遺伝子のmRNAに対するsiRNAや該標的遺伝子に対するアンチセンスオリゴヌクレオチドがあげられる。
 本発明の細胞増殖抑制剤の製剤形態や、投与方法などについては、10.で後述するマイクロRNAやマイクロRNA前駆体などの本発明の核酸を含有する診断薬および治療薬と同様である。
10.本発明のマイクロRNAやマイクロRNA前駆体などの核酸を含有する診断薬および治療薬
 本発明の核酸は、標的配列を有する遺伝子の発現を制御したり、マイクロRNAなどの本発明の核酸の発現を制御することにより、癌等の細胞の増殖異常等に起因する疾患の治療薬として利用することができる。さらに、マイクロRNAなどの本発明の核酸の標的遺伝子に対するsiRNAは、当該遺伝子の発現を制御することにより、細胞の増殖または分化の異常等に起因する疾患の治療薬として利用することができる。細胞の増殖異常等に起因する疾患としては、癌、動脈硬化、関節リウマチ、前立腺肥大症、経皮的経血管的冠動脈形成術後の血管再狭窄、肺線維症、糸球体腎炎および自己免疫疾患等をあげることができる。
 また、本発明の核酸の定量または変異の検出により、癌等の細胞の増殖または分化の異常等に起因する疾患の診断をすることができる。
 本発明の核酸を含有する診断薬は、目的の診断法に応じて、本発明の核酸の定量あるいは変異の検出を行うために必要な試薬、例えば緩衝剤、塩、反応用酵素、本発明の核酸と結合する標識された蛋白、および検出用発色剤等を含んでもよい。
 本発明の核酸を有効成分として含有する治療剤は、単独で投与することもできるが、通常は薬理学的に許容される1つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として投与するのが望ましい。
 投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与をあげることができ、望ましくは静脈内投与をあげることができる。
 投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、坐剤、注射剤、軟膏、テープ剤などがあげられる。
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。
 乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。
 カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤などを添加剤として用いて製造できる。
 非経口投与に適当な製剤としては、注射剤、坐剤、噴霧剤などがあげられる。
 注射剤は、塩溶液、ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。坐剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。また、噴霧剤は受容者の口腔および気道粘膜を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。
 担体として具体的には乳糖、グリセリンなどが例示される。本発明の核酸またはマイクロRNA前駆体、さらには用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、通常成人1日当たり10 μg/kg~20 mg/kgである。
 また、本発明の核酸を有効成分として含有する治療薬は、本発明の核酸を発現するベクターと核酸治療薬に用いる基剤とを調合することにより製造することもできる[Nature Genet., 8, 42(1994)]。
 本発明の治療剤に用いる基剤としては、通常注射剤に用いる基剤であればどのようなものでもよく、蒸留水、塩化ナトリウム又は塩化ナトリウムと無機塩との混合物等の塩溶液、マンニトール、ラクトース、デキストラン、グルコース等の溶液、グリシン、アルギニン等のアミノ酸溶液、有機酸溶液又は塩溶液とグルコース溶液との混合溶液等があげられる。また常法に従い、これらの基剤に浸透圧調整剤、pH調整剤、ゴマ油、ダイズ油等の植物油又はレシチンもしくは非イオン界面活性剤等の界面活性剤等の助剤を用いて、溶液、懸濁液、分散液として注射剤を調製してもよい。これらの注射剤を、粉末化、凍結乾燥等の操作により用時溶解用製剤として調製することもできる。本発明の治療剤は、治療の直前に液体の場合はそのままで、個体の場合は必要により滅菌処理をした上記の基剤に溶解して治療に使用することができる。
 本発明の核酸を発現するベクターは、上記6で作製した組換えウィルスベクターをあげることができ、より具体的には、レトロウィルスベクター及びレンチウィルスベクター等をあげることができる。
 例えば、本発明の核酸を、アデノウィルス・ヘキソン蛋白質に特異的なポリリジン-コンジュゲート抗体と組み合わせてコンプレックスを作製し、得られたコンプレックスをアデノウィルスベクターに結合させることにより、ウィルスベクターを調製することができる。該ウィルスベクターは安定に目的の細胞に到達し、エンドソームによる細胞内に取り込まれ、細胞内で分解され核酸を効率的に発現させることができる。
 また、(-)鎖RNAウィルスであるセンダイウィルスをベースにしたウィルスベクターも開発されており(WO97/16538、WO97/16539)、当該センダイウィルスを用いて、本発明の核酸を組み込んだセンダイウィルスを作製することができる。
 本発明の核酸は、非ウィルス核酸移入法によっても移入することができる。例えば、リン酸カルシウム共沈法[Virology, 52, 456-467 (1973);Science, 209, 1414-1422 (1980)]、マイクロインジェクション法[Proc. Natl. Acad. Sci. USA, 77, 5399-5403 (1980);Proc. Natl. Acad. Sci. USA, 77, 7380-7384 (1980);Cell, 27, 223-231 (1981);Nature, 294, 92-94 (1981)]、リポソームを介した膜融合-介在移入法[Proc. Natl. Acad. Sci. USA, 84, 7413-7417 (1987);Biochemistry, 28, 9508-9514 (1989);J. Biol. Chem., 264, 12126-12129 (1989);Hum. Gene Ther., 3, 267-275 (1992);Science, 249, 1285-1288 (1990);Circulation, 83, 2007-2011 (1992)]あるいは直接DNA取り込みおよび受容体-媒介DNA移入法[Science, 247, 1465-1468 (1990);J. Biol. Chem., 266, 14338-14342 (1991);Proc. Natl. Acad. Sci. USA, 87, 3655-3659 (1991);J. Biol. Chem., 264, 16985-16987 (1989);BioTechniques, 11, 474-485 (1991);Proc. Natl. Acad. Sci. USA, 87, 3410-3414 (1990);Proc. Natl. Acad. Sci. USA, 88, 4255-4259 (1991);Proc. Natl. Acad. Sci. USA, 87, 4033-4037 (1990);Proc. Natl. Acad. Sci. USA, 88, 8850-8854 (1991);Hum. Gene Ther., 3, 147-154 (1991)]等により移入することができる。
 リポソームを介した膜融合-介在移入法は、リポソーム調製物を目的とする組織に直接投与することにより、本発明の核酸および、マイクロRNAなどの核酸の標的遺伝子に対するsiRNAを当該組織の局所に取り込み、および発現させることができる[Hum. Gene Ther., 3, 399 (1992)]。DNAを病巣に直接ターゲッティングするには、直接DNA取り込み技術が好ましい。
 受容体-媒介DNA移入は、例えば、ポリリジンを介して、蛋白質リガンドにDNA(通常、共有的に閉環したスーパーコイル化プラスミドの形態をとる)を結合することによって行う方法をあげることができる。リガンドは、目的細胞または組織の細胞表面上の対応するリガンド受容体の存在に基づいて選択する。当該リガンド-DNAコンジュゲートは、所望により、血管に直接注射することができ、受容体結合およびDNA-蛋白質コンプレックスの内在化が起こる標的組織に指向し得る。DNAの細胞内破壊を防止するために、アデノウィルスを同時感染させて、エンドソーム機能を崩壊させることもできる。
11.癌細胞や他の細胞の細胞周期変動を測定する方法
 細胞周期の測定法としては、核内のDNAをHoechst dyeやPropium Iodide等の蛍光色素により染色した後に、フローサイトメーターによって細胞あたりの含量を測定する方法を用いることができる(Krishan A., et al: Cancer Res. 1978, 38:3656-3662.)。また、DNA含量ではG2期と区別しにくいM期細胞については、染色体を染色することで、その特徴的な凝集状態を観察することで、区別することができる(Angulo, R..et al: Cytometry, 1998, 34, 143.)。染色体の染色にはHoechst dye等によるDNAの染色の他、M期に特異的に発現するリン酸化ヒストンH3抗体による免疫染色も用いられる。観察には蛍光顕微鏡の他、多検体の同時観察が可能なハイコンテントスクリーニングシステム(例えばIn Cell Analyzer 1000(GEヘルスケア社))等も用いることができる。
12.癌細胞の増殖の測定や細胞死の程度を測定する方法
 細胞増殖の測定法としては、細胞数や細胞増殖速度を反映する指標を測定できる方法であれば特に限定されない。生細胞数測定、DNA合成速度測定、総蛋白質量測定などを用いることができる。生細胞数を評価する方法としては、細胞中のATP量を測定する方法があげられる。細胞中のATP量は培養下の細胞数と比例関係にあることが知られている(J. Immunol. Meth., 160, 81-88 (1993))。細胞中のATP量測定のより具体的な方法は、MTT法、XTT法などが挙げられる(J. Immunol. Meth., 65, 55-63 (1983))。また、ATP依存性酵素ルシフェラーゼによるルシフェリン基質の発光にてATPを測定する方法もあげられる。細胞中のATP量の測定キットとして、例えばCellTite-GloR Luminescent Cell viability Assay(Promega社製)等を用いてもよい。細胞死の程度を測定する方法としては、死細胞をPropium Iodide等の色素で染色する方法や、細胞死に伴い細胞外に漏出した酵素の活性を測定する方法等を用いることができる。後者については、例えば細胞外に漏出したアデニル酸キナーゼの酵素活性を測定する方法が利用できる。より具体的には、ToxiLight Non-Destructive Cytotoxicity BioAssay Kit (Lonza社製)等を用いてもよい。
 以下の実施例により、本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
マイクロRNAを強制発現させた子宮頸癌由来細胞株における細胞周期変動率
 マイクロRNAの前駆体を子宮頸癌由来細胞株に導入し、細胞周期変動率に及ぼすマイクロRNA前駆体の影響を調べた。
 HeLaヒト子宮頸癌由来細胞株(以下、HeLaと称す)はAmerican Type Culture Collection(以下、ATCCと称す)より入手し、10%ウシ胎児血清(FBS、JRH Biosciences社製)を含むMEM培地(Invitrogen社製)で37℃の5%CO2濃度のインキュベーター中で培養した。
 HeLa細胞を96穴プレートに1穴あたり3,000個になるように播種し、10%FBSを含むMEM培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamine(Invitrogen社製)を用いた方法により、終濃度が50nMとなるようにHeLa細胞に導入した。マイクロRNAの前駆体としては、let-7b、let-7c、let-7d、let-7e、let-7f、let-7g、miR-106a、miR-106b、miR-122a、miR-124a、miR-129、miR-134、miR-142-3p、miR-147、miR-148a、miR-148b、miR-149、miR-152、miR-153、miR-154、miR-17-5p、miR-193a、miR-193b、miR-196a、miR-196b、miR-197、miR-202、miR-214、miR-217、miR-221、miR-222、miR-224、miR-302d、miR-320、miR-326、miR-329、miR-337、miR-345、miR-34a、miR-34b、miR-34c、miR-363、miR-363*、miR-373、miR-375、miR-379、miR-431、miR-448、miR-449、miR-449b、miR-450、miR-452、miR-491、miR-493-3p、miR-493-5p、miR-494、miR-500、miR-504、miR-506、miR-507、miR-509、miR-511、miR-512-3p、miR-512-5p、miR-517a、miR-517b、miR-518f*、miR-519a、miR-519b、miR-519c、miR-526b、miR-542-3p、miR-544、miR-549、miR-552、miR-555、miR-561、miR-583、miR-585、miR-604、miR-630、miR-637、miR-644、miR-661、miR-766、miR-769-3p、miR-92b、miR-96及びmiR-98のPre-miRTMmiRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #1(以下、miR-NC#1と称す)(Ambion社製)もHeLa細胞に導入し、陰性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した30時間後、または48時間後に70%エタノールで細胞を固定しNIM-DAPI(Beckman Colter社)で核染色を行い、フローサイトメーター Quanta SC MPL (Beckman Colter社)により各細胞のDNA含量を測定した。測定後のDNA含量のヒストグラムに各細胞周期ステージ(G1期、S期、G2M期)ごとにゲートを設定し、各細胞周期ステージに含まれる細胞数を計算し、全生細胞数に占めるステージの割合を計算した。各マイクロRNA前駆体導入細胞について、各対照区(miR-NC#1導入区)のHeLa細胞の各細胞周期ステージの割合を1.0としてそれぞれの相対細胞周期率を計算した。細胞周期の変動を引き起こしたマイクロRNAについて、その結果を表5-1から表5-4に示す。また、実施例に用いているマイクロRNAについて、配列表との対応を表6-1及び表6-2に示す。配列はマイクロRNAデータベース、miRBase 9.2に従い、成熟マイクロRNAの配列を示した。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 各実験は2回独立に行い、30時間後、または48時間後のいずれかの条件で、2回とも1.0を超える相対値を示したマイクロRNAをヒットとした。miR-106a、miR-106b、miR-122a、miR-124a、miR-147、miR-153、miR-17-5p、miR-224、miR-302d、miR-320、miR-337、miR-345、miR-363、miR-373、miR-375、miR-431、miR-448、miR-491、miR-493-3p、miR-493-5p、miR-506、miR-507、miR-509、miR-511、miR-512-5p、miR-519a、miR-519b、miR-519c、miR-526b、miR-630及びmiR-92bの各miRNAの導入により、G1期が増大し、細胞周期中のG1期の割合が増加した。miR-196bの導入により、S期が増大し、細胞周期中のS期の割合が増加した。let-7b、let-7d、let-7e、let-7f、let-7g、miR-129、miR-134、miR-142-3p、miR-148a、miR-148b、miR-149、miR-152、miR-193a、miR-193b、miR-197、miR-202、miR-214、miR-217、miR-221、miR-326、miR-329、miR-34a、miR-34b、miR-34c、miR-363*、miR-379、miR-449、miR-449b、miR-450、miR-500、miR-504、miR-512-3p、miR-517a、miR-517b、miR-518f*、miR-542-3p、miR-544、miR-549、miR-552、miR-555、miR-561、miR-583、miR-585、miR-604、miR-637、miR-644、miR-661、miR-766、miR-769-3p及びmiR-96の各miRNAの導入により、G2M期が増大し、細胞周期中のG2M期の割合が増加した。miR-452及びmiR-494の各miRNAの導入により、G1とG2M期が増大し、細胞周期率が増加した。let-7c、miR-154、miR-196a、miR-222及びmiR-98の各miRNAの導入により、S期とG2M期が増大し、細胞周期中のS期とG2M期の割合が増加した。
マイクロRNAを強制発現させた子宮頸癌由来細胞株における生細胞率
 マイクロRNAの前駆体を子宮頸癌由来細胞株に導入し、生細胞率に及ぼすマイクロRNA前駆体の影響を調べた。
 HeLa細胞を384穴プレートに1穴あたり100個になるように播種し、10%FBSを含むMEM培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamine(Invitrogen社製)を用いた方法により、終濃度が50nMとなるようにHeLa細胞に導入した。マイクロRNAの前駆体としては、let-7b、let-7c、let-7d、let-7e、let-7f、let-7g、miR-106a、miR-106b、miR-122a、miR-124a、miR-129、miR-134、miR-142-3p、miR-147、miR-148a、miR-148b、miR-149、miR-152、miR-153、miR-154、miR-17-5p、miR-193a、miR-193b、miR-196a、miR-196b、miR-197、miR-202、miR-214、miR-217、miR-221、miR-222、miR-224、miR-302d、miR-320、miR-326、miR-329、miR-337、miR-345、miR-34a、miR-34b、miR-34c、miR-363、miR-363*、miR-373、miR-375、miR-379、miR-431、miR-448、miR-449、miR-449b、miR-450、miR-452、miR-491、miR-493-3p、miR-493-5p、miR-494、miR-500、miR-504、miR-506、miR-507、miR-509、miR-511、miR-512-3p、miR-512-5p、miR-517a、miR-517b、miR-518f*、miR-519a、miR-519b、miR-519c、miR-526b、miR-542-3p、miR-544、miR-549、miR-552、miR-555、miR-561、miR-583、miR-585、miR-604、miR-630、miR-637、miR-644、miR-661、miR-766、miR-769-3p、miR-92b、miR-96及びmiR-98のPre-miRTMmiRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #1(以下、miR-NC#1と称す)(Ambion社製)もHeLa細胞に導入し、陰性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した5日後、CellTiter-GloTM Luminescent Cell Viability Assay(Promega社製)を用いて、製品に添付された説明書に記載された方法に従い生細胞率を測定した。対照区(miR-NC#1導入区)のHeLa細胞の生細胞率を100としてそれぞれの相対生細胞率を計算した。その結果、表7-1及び表7-2に示したように、let-7b、let-7c、let-7d、let-7e、let-7f、let-7g、miR-106a、miR-106b、miR-122a、miR-124a、miR-129、miR-134、miR-142-3p、miR-147、miR-148a、miR-148b、miR-149、miR-152、miR-153、miR-154、miR-17-5p、miR-193a、miR-193b、miR-196a、miR-196b、miR-197、miR-202、miR-214、miR-217、miR-221、miR-222、miR-224、miR-302d、miR-320、miR-326、miR-329、miR-337、miR-345、miR-34a、miR-34b、miR-34c、miR-363、miR-363*、miR-373、miR-375、miR-379、miR-431、miR-448、miR-449、miR-449b、miR-450、miR-452、miR-491、miR-493-3p、miR-493-5p、miR-494、miR-500、miR-504、miR-506、miR-507、miR-509、miR-511、miR-512-3p、miR-512-5p、miR-517a、miR-517b、miR-518f*、miR-519a、miR-519b、miR-519c、miR-526b、miR-542-3p、miR-544、miR-549、miR-552、miR-555、miR-561、miR-583、miR-585、miR-604、miR-630、miR-637、miR-644、miR-661、miR-766、miR-769-3p、miR-92b、miR-96及びmiR-98の各miRNAの導入により40%以上の生細胞率の減少が認められた。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
子宮頸癌由来細胞株、および胃癌由来細胞株における細胞周期に影響を及ぼすマイクロRNAのうちDNAメチルトランスフェラーゼ1 (Dnmt1)に影響を及ぼすマイクロRNA
 マイクロRNAの前駆体を子宮頸癌由来細胞株、および胃癌由来細胞株に導入し、Dnmt1に対するマイクロRNA前駆体の影響をqRT-PCRにより調べた。
 AGSヒト胃癌由来細胞株(以下、AGSと称す)はAmerican Type Culture Collection(以下、ATCCと称す)より入手し、10%ウシ胎児血清(FBS、JRH Biosciences社製)を含むF12K培地(Invitrogen社製)で37℃の5%CO2濃度のインキュベーター中で培養した。
 HeLa細胞及びAGS細胞をそれぞれ6穴プレートに1穴あたり10,000個になるように播種し、10% FBSを含むMEM培地またはF12K培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamineまたはLipofectamine2000(Invitrogen社製)を用いた方法により、終濃度が50nMとなるようにHeLa細胞及びAGS細胞に導入した。マイクロRNAの前駆体としては、miR-148a、miR-148b及びmiR-152のPre-miRTM miRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #2(以下、miR-NC#2と称す)(Ambion社製)もHeLa細胞及びAGS細胞に導入し、陰性コントロールとした。さらにDnmt1 siRNA(Qiagen社製・SI00300062)を陽性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した24時間後および48時間後、miRVana RNA isolation kit(Applied Biosystem社製)を用いて、製品に添付された説明書に記載された方法に従いRNAを抽出した。さらにSuperScriptIII RT-reaction kit (Invitrogen社製)を用いて逆転写反応を行い、qRT-PCRによりDnmt1のmRNAレベルの抑制を確認した。用いたプライマーは以下である。Forward: catcctcagggaccacatct(配列番号921)、Reverse: gtgacggttgtgctgaagaa(配列番号922)。その結果、図1に示したように、両細胞においてmiR-148a、miR-148b及びmiR-152の各miRNAの導入により20-40%程度のDnmt1発現の減少が認められた。
子宮頸癌由来細胞株、および胃癌由来細胞株における細胞周期に影響を及ぼすマイクロRNAのうちDNAメチルトランスフェラーゼ1 (Dnmt1)に影響を及ぼすマイクロRNA
 マイクロRNAの前駆体を子宮頸癌由来細胞株及び胃癌由来細胞株に導入し、Dnmt1蛋白質発現量に対するマイクロRNA前駆体の影響をimmunoblottingにより調べた。
 HeLa細胞及びAGS細胞をそれぞれ6穴プレートに1穴あたり10,000個になるように播種し、10% FBSを含むMEM培地またはF12K培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamine又はLipofectamine2000(Invitrogen社製)を用いた方法により、終濃度が50nMとなるようにHeLa細胞及びAGS細胞に導入した。マイクロRNAの前駆体としては、miR-148a、miR-148b及びmiR-152のPre-miRTM miRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #2(以下、miR-NC#2と称す)(Ambion社製)もHeLa細胞及びAGS細胞に導入し、陰性コントロールとした。さらにDnmt1 siRNAを陽性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した72時間後、RIPAバッファー(Invitrogen社製)を用いて、製品に添付された説明書に記載された方法に従いタンパクを抽出した。さらに抗Dnmt1抗体 (NEB社製(M0231S))を用いて、immunoblottingによりDnmt1蛋白質レベルを測定した。その結果、図2に示したように、両細胞においてmiR-148a、miR-148b及びmiR-152の各miRNAの導入によりDnmt1蛋白質発現量の減少が認められた。
マイクロRNAを強制発現させた子宮頸癌由来細胞株におけるM期集積率
 マイクロRNAの前駆体を子宮頸癌由来細胞株に導入し、M期集積率に及ぼすマイクロRNA前駆体の影響を調べた。
 HeLa細胞を96穴プレートに1穴あたり3,000個になるように播種し、10%FBSを含むMEM培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamine(Invitrogen社製)を用いた方法により、終濃度が30nMとなるようにHeLa細胞に導入した。マイクロRNAの前駆体としては、miR-29b、miR-380-5p、miR-527、miR-193b、miR-485-5p及びmiR-409-3pのPre-miRTM miRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #2(以下、miR-NC#2と称す)(Ambion社製)もHeLa細胞に導入し、陰性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した30時間後、または48時間後に100%メタノールで細胞を固定しbisBenzimide H 33342 trihydrochoride(Hoechst、SIGMA社)で核染色を行い、IN cell analyzer 1000(GE Healthcare社)によりM期に特徴的な染色体の凝集像を示す細胞の割合(M期集積率)の定量を行った。対照区(miR-NC#2導入区)のHeLa細胞のM期集積率の平均値は4.0%であった。この値を基準値としてそれぞれのM期集積率の相対値を測定した。さらに、同一メタノール固定サンプルをM期に特異的な発現を示す抗リン酸化ヒストンH3抗体(セルシグナリング社、#9701)により染色し、IN cell analyzer(GE Healthcare社)で同様にリン酸化ヒストンH3発現細胞の割合の測定を行った。上記と同様に対照区(miR-NC#2導入区)のHeLa細胞のM期集積率を基準値として、それぞれのM期集積率の相対値を測定した。その結果、表8に示したように、miR-29b、miR-380-5p、miR-527、miR-193、miR-485-5p及びmiR-409-3pの各miRNAの導入によりHoechst染色とリン酸化ヒストンH3抗体によるM期集積率の増加が認められた。
Figure JPOXMLDOC01-appb-T000042
マイクロRNAを強制発現させた子宮頸癌由来細胞株における生細胞率
 マイクロRNAの前駆体を子宮頸癌由来細胞株に導入し、生細胞率に及ぼすマイクロRNA前駆体の影響を調べた。
 HeLa細胞を96穴プレートに1穴あたり3,000個になるように播種し、10%FBSを含むMEM培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、oligofectamine(Invitrogen社製)を用いた方法により、終濃度が30 nMとなるようにHeLa細胞に導入した。マイクロRNAの前駆体としては、miR-29b、miR-380-5p、miR-527、miR-193b、miR-485-5p及びmiR-409-3pのPre-miRTM miRNA Precursor Molecules(Ambion社製)を用いた。また、Pre-miRTM miRNA Precursor Molecules-Negative Control #2(以下、miR-NC#2と称す)(Ambion社製)もHeLa細胞に導入し、陰性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した5日後、CellTiter-GloTM Luminescent Cell Viability Assay(Promega社製)を用いて、製品に添付された説明書に記載された方法に従い生細胞率を測定した。対照区(miR-NC#2導入区)のHeLa細胞の生細胞率を100としてそれぞれの相対生細胞率を計算した。その結果、表9に示したように、miR-29b、miR-380-5p、miR-527、miR-193b、miR-485-5p及びmiR-409-3pの各miRNAの導入により40.0%以上の生細胞率の減少が認められた。
Figure JPOXMLDOC01-appb-T000043
マイクロRNAを強制発現させた肝臓癌由来細胞株における細胞増殖阻害率
 マイクロRNAの前駆体を肝臓癌由来細胞株に導入し、細胞増殖阻害に及ぼすマイクロRNA前駆体の影響を調べた。
 HepG2肝臓癌由来細胞株(以下、HepG2と称す;ATCC HB-8065)は10%ウシ胎児血清(FBS、JRH Biosciences社製)を含むMEM培地(Invitrogen社製)で37℃の5%CO2濃度のインキュベーター中で培養した。
 384穴プレート上で、マイクロRNA前駆体を終濃度25nMとなるようにoligofectamine(Invitrogen社製)を用いたリポフェクション法にてHepG2細胞に導入した。具体的には、予めマイクロRNAとoligofectamineとを混合して384穴プレートに分注し、そこにHepG2細胞を1穴あたり1000個になるように播種することで実施し、詳細は製品に添付された説明書に記載された方法に従った。マイクロRNAの前駆体は、Dharmacon社製のmiRIDIAN miRNA Mimic Library (10.1)を用いた。また、Pre-miR miRNA Precursor Molecules-Negative Control #2(以下、miR-NC#2と称す)(Ambion社製)もHepG2細胞に導入し、陰性コントロールとした。
 リポフェクション法により該マイクロRNA前駆体を導入した3日後、CellTiter-Glo Luminescent Cell Viability Assay(Promega社製)を用いて、製品に添付された説明書に記載された方法に従い生細胞値を測定した。対照区(miR-NC#2導入区)のHepG2細胞の生細胞値を0、細胞無しを100としてそれぞれの相対細胞増殖阻害率を計算した。その結果、miR-363*、miR-644及びmiR-544の各miRNAの導入により、それぞれ77.2%、65.7%、62.9%の阻害率を示した。
マイクロRNAを強制発現させた卵巣癌由来細胞株における増殖阻害率
 マイクロRNAの前駆体を卵巣癌由来細胞株に導入し、細胞増殖阻害に及ぼすマイクロRNA前駆体の影響を調べた。
 RMG-I卵巣癌由来細胞株(以下、RMG-Iと称す)は医薬研究基盤研究所(JCRB)より入手し、10%ウシ胎児血清(FBS、JRH Biosciences社製)を含むF-12培地(Invitrogen社製)で37℃の5%CO2濃度のインキュベーター中で培養した。
 384穴プレート上で、マイクロRNA前駆体を終濃度25nMとなるようにHiPerfect(キアゲン社製)を用いたリポフェクション法にてRMG-I細胞に導入した。具体的には、予めマイクロRNAとHiPerfectとを混合して384穴プレートに分注し、そこにRMG-I細胞を1穴あたり1000個になるように播種することで実施し、詳細は製品に添付された説明書に記載された方法に従った。マイクロRNAの前駆体は、Dharmacon社製のmiRIDIAN miRNA Mimic Library (10.1)を用いた。また、マイクロRNA前駆体を含まずHiPerfectのみをRMG-I細胞に導入した群を用意して、陰性コントロールとした。
 リポフェクション法により該マイクロRNA前駆体を導入した3日後、CellTiter-Glo Luminescent Cell Viability Assay(Promega社製)を用いて、製品に添付された説明書に記載された方法に従い生細胞値を測定した。対照区(Hiperfectのみ)のRMG-I細胞の生細胞値を0、細胞無しを100としてそれぞれの相対細胞増殖阻害率を計算した。その結果、miR-544、miR-644及びmiR-449の各miRNAの導入により、それぞれ34.0%、33.0%、30.6%の阻害率を示した。
 また別の卵巣癌細胞株としてSK-OV-3卵巣癌細胞株(以下、SK-OV-3と称す)に対してRNAの前駆体を導入し、細胞増殖阻害に及ぼすマイクロRNA前駆体の影響を調べた。
 SK-OV-3細胞はATCCより入手し、10%ウシ胎児血清(FBS、JRH Biosciences社製)を含むMcCoy’s 5A培地(Invitrogen社製)で37℃の5%CO2濃度のインキュベーター中で培養した。
 SK-OV-3を384穴プレートに1穴あたり250個になるように播種し、10%FBSを含むMcCoy’s 5A培地で一晩培養した。1日後、マイクロRNA前駆体をリポフェクション法、具体的には、HiPerfect(キアゲン社製)を用いた方法により、終濃度が25nMとなるようにSK-OV-3細胞に導入した。マイクロRNAの前駆体は、Dharmacon社製のmiRIDIAN miRNA Mimic Library (10.1)を用いた。また、マイクロRNA前駆体を含まずHiPerfectのみをSK-OV-3細胞に導入した群を用意して、陰性コントロールとした。リポフェクションは、製品に添付された説明書に記載された方法に従った。
 リポフェクション法により該マイクロRNA前駆体を導入した3日後、CellTiter-Glo Luminescent Cell Viability Assay(Promega社製)を用いて、製品に添付された説明書に記載された方法に従い生細胞値を測定した。対照区(Hiperfectのみ)のSK-OV-3細胞の生細胞値を0、細胞無しを100としてそれぞれの相対細胞増殖阻害率を計算した。その結果、miR-644、miR-129、miR-96、miR-224及びmiR-449bの各miRNAの導入により、それぞれ50.7%、39.4%、33.0%、31.8%、30.1%の阻害率を示した。
 本発明により、細胞増殖抑制剤、細胞周期変動に起因する疾患の治療薬および診断薬、マイクロRNA等の核酸の標的遺伝子の発現抑制剤および発現促進剤、細胞周期変動方法、マイクロRNA等の核酸の標的遺伝子の発現抑制方法および発現促進方法、並びに細胞増殖抑制剤のスクリーニング方法等が提供され、これらは細胞周期変動に起因する疾患の予防、診断および/または治療等において有用である。
 本出願は、日本で出願された特願2010-052417(出願日:2010年3月9日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (29)

  1.  以下の(a)~(h)のいずれかの核酸を有効成分として含有する、細胞増殖制御剤:
    (a)配列番号1~407のいずれかで表される塩基配列からなる核酸
    (b)配列番号1~407のいずれかで表される塩基配列からなる核酸を含有する、17~28塩基の核酸
    (c)配列番号1~407のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
    (d)配列番号1~407のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸
    (e)配列番号1~407のいずれかで表される塩基配列の2~8番目の塩基配列を含む核酸
    (f)配列番号408~920のいずれかで表される塩基配列からなる核酸
    (g)配列番号408~920のいずれかで表される塩基配列と90%以上の同一性を有する塩基配列からなる核酸
    (h)配列番号408~920のいずれかで表される塩基配列からなる核酸の相補鎖とストリンジェントな条件でハイブリダイズする核酸。
  2.  核酸がマイクロRNAまたはマイクロRNA前駆体である、請求項1に記載の細胞増殖制御剤。
  3.  請求項1に記載の核酸の塩基配列に対して相補的な塩基配列からなる核酸を有効成分として含有する、細胞増殖制御剤。
  4.  請求項1~3のいずれか1項に記載の核酸を発現するベクターを有効成分として含有する、細胞増殖制御剤。
  5.  請求項1に記載の核酸の標的塩基配列を有する遺伝子の発現を抑制する物質を有効成分として含有する、細胞増殖制御剤。
  6.  請求項1に記載の核酸の標的塩基配列を有する遺伝子の発現を促進する物質を有効成分として含有する、細胞増殖制御剤。
  7.  発現を抑制または促進する物質が核酸である、請求項5または6に記載の細胞増殖制御剤。
  8.  核酸がsiRNAである、請求項7に記載の細胞増殖制御剤。
  9.  請求項7に記載の核酸を発現するベクターを有効成分として含有する、細胞増殖制御剤。
  10.  請求項1~3のいずれかに記載の核酸、請求項4に記載のベクター、または請求項5~8のいずれか1項に記載の物質を有効成分として含有する、細胞周期異常に起因する疾患の治療薬または診断薬。
  11.  請求項1に記載の核酸の発現量、該核酸の変異、該核酸をコードするゲノムの変異を検出する試薬を有効成分として含有する、細胞周期異常に起因する疾患の診断薬。
  12.  細胞周期異常に起因する疾患が、癌、動脈硬化、関節リウマチ、前立腺肥大症、経皮的経血管的冠動脈形成術後の血管再狭窄、肺線維症、糸球体腎炎および自己免疫疾患からなる群から選ばれる疾患である、請求項10または11に記載の治療薬または診断薬。
  13.  請求項1~3のいずれかに記載の核酸、請求項4に記載のベクター、または請求項5~8のいずれか1項に記載の物質を有効量投与することを特徴とする、細胞周期異常に起因する疾患の治療方法。
  14.  請求項1に記載の核酸の発現量、該核酸の変異、該核酸をコードするゲノムの変異を検出することを特徴とする、細胞周期異常に起因する疾患の診断方法。
  15.  細胞周期異常に起因する疾患の治療薬の製造のための、請求項1~3および7のいずれか1項に記載の核酸の使用。
  16.  請求項1または3に記載の核酸を有効成分として含有する、該核酸の標的遺伝子の発現制御剤。
  17.  請求項4に記載のベクターを有効成分として含有する、請求項1に記載の核酸の標的遺伝子の発現制御剤。
  18.  請求項1または3に記載の核酸を用いることを特徴とする、細胞周期変動方法。
  19.  請求項4に記載のベクターを用いることを特徴とする、細胞周期変動方法。
  20.  請求項1に記載の核酸の標的遺伝子の発現を抑制または促進するアンチセンス核酸、siRNA、デコイ核酸等の物質を用いることを特徴とする、細胞周期変動方法。
  21.  請求項1または3に記載の核酸を用いることを特徴とする、細胞増殖制御方法。
  22.  請求項4に記載のベクターを用いることを特徴とする、細胞増殖制御方法。
  23.  請求項1に記載の核酸の標的遺伝子の発現を抑制または促進するアンチセンス核酸、siRNA、デコイ核酸等の物質を用いることを特徴とする、細胞増殖制御方法。
  24.  請求項1または3に記載の核酸を用いることを特徴とする、請求項1に記載の核酸の標的遺伝子の発現抑制方法または発現促進方法。
  25.  請求項4に記載のベクターを用いることを特徴とする、請求項1に記載の核酸の標的遺伝子の発現抑制方法または発現促進方法。
  26.  請求項1に記載の核酸の発現の促進を指標とすることを特徴とする、細胞増殖抑制剤のスクリーニング方法。
  27.  請求項1に記載の核酸の標的遺伝子の発現の抑制を指標とすることを特徴とする、細胞増殖抑制剤のスクリーニング方法。
  28.  請求項1に記載の核酸の発現の抑制を指標とすることを特徴とする、細胞増殖促進剤のスクリーニング方法。
  29.  請求項1に記載の核酸の標的遺伝子の発現の促進を指標とすることを特徴とする、細胞増殖促進剤のスクリーニング方法。
PCT/JP2011/055412 2010-03-09 2011-03-08 細胞周期を制御する核酸 WO2011111715A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010052417 2010-03-09
JP2010-052417 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111715A1 true WO2011111715A1 (ja) 2011-09-15

Family

ID=44563515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055412 WO2011111715A1 (ja) 2010-03-09 2011-03-08 細胞周期を制御する核酸

Country Status (1)

Country Link
WO (1) WO2011111715A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866012A (zh) * 2014-03-03 2014-06-18 吉林大学 可检测感染弓形虫的标识性mmu-miR-217-5p
WO2014126233A1 (ja) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 マイクロrnaの測定方法、並びに、がん治療剤及びこれを含有するがん治療のための医薬組成物
US9758785B2 (en) 2012-07-12 2017-09-12 Baylor College Of Medicine miR-520 microRNAs sensitize cancers to platinum-based therapy
CN109852597A (zh) * 2019-03-21 2019-06-07 云南师范大学 一种β-半乳糖苷酶galRBM20_1及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029790A1 (fr) * 2006-09-04 2008-03-13 Kyowa Hakko Kirin Co., Ltd. Nouvel acide nucléique
JP2008519606A (ja) * 2004-11-12 2008-06-12 アンビオン インコーポレーティッド miRNAおよびmiRNA阻害分子に関する方法および組成物
JP2008541737A (ja) * 2005-06-03 2008-11-27 サウザーン アデレード ヘルス サービス−ファインダーズ メディカル センター マイクロrna発現の変化した細胞を標的とすること
WO2009044895A1 (ja) * 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 標的遺伝子の発現を抑制する組成物
WO2009044899A1 (ja) * 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 細胞の増殖を制御する核酸
JP2009532392A (ja) * 2006-04-03 2009-09-10 サンタリス ファーマ アー/エス antimiRNAアンチセンスオリゴヌクレオチドを含む医薬組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519606A (ja) * 2004-11-12 2008-06-12 アンビオン インコーポレーティッド miRNAおよびmiRNA阻害分子に関する方法および組成物
JP2008541737A (ja) * 2005-06-03 2008-11-27 サウザーン アデレード ヘルス サービス−ファインダーズ メディカル センター マイクロrna発現の変化した細胞を標的とすること
JP2009532392A (ja) * 2006-04-03 2009-09-10 サンタリス ファーマ アー/エス antimiRNAアンチセンスオリゴヌクレオチドを含む医薬組成物
WO2008029790A1 (fr) * 2006-09-04 2008-03-13 Kyowa Hakko Kirin Co., Ltd. Nouvel acide nucléique
WO2009044895A1 (ja) * 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 標的遺伝子の発現を抑制する組成物
WO2009044899A1 (ja) * 2007-10-03 2009-04-09 Kyowa Hakko Kirin Co., Ltd. 細胞の増殖を制御する核酸

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758785B2 (en) 2012-07-12 2017-09-12 Baylor College Of Medicine miR-520 microRNAs sensitize cancers to platinum-based therapy
EP2872634B1 (en) * 2012-07-12 2018-08-22 Baylor College Of Medicine Micrornas sensitize cancers to therapy
WO2014126233A1 (ja) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 マイクロrnaの測定方法、並びに、がん治療剤及びこれを含有するがん治療のための医薬組成物
JPWO2014126233A1 (ja) * 2013-02-15 2017-02-02 国立大学法人 東京医科歯科大学 マイクロrnaの測定方法、並びに、がん治療剤及びこれを含有するがん治療のための医薬組成物
US9994843B2 (en) 2013-02-15 2018-06-12 National University Corporation Tokyo Medical And Dental University Method for assaying microRNA, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
JP2018143248A (ja) * 2013-02-15 2018-09-20 国立大学法人 東京医科歯科大学 マイクロrnaの測定方法、並びに、がん治療剤及びこれを含有するがん治療のための医薬組成物
US10876115B2 (en) 2013-02-15 2020-12-29 National University Corporation Tokyo Medical And Dental University Method for assaying MicroRNA, cancer therapeutic agent, and medical composition containing same for cancer therapy
CN103866012A (zh) * 2014-03-03 2014-06-18 吉林大学 可检测感染弓形虫的标识性mmu-miR-217-5p
CN103866012B (zh) * 2014-03-03 2016-04-13 吉林大学 可检测感染弓形虫的标识性mmu-miR-217-5p
CN109852597A (zh) * 2019-03-21 2019-06-07 云南师范大学 一种β-半乳糖苷酶galRBM20_1及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107454843B (zh) 包含微小核糖核酸作为活性成分的用于治疗癌症的药物组合物
EP2208499A1 (en) Nucleic acid capable of regulating the proliferation of cell
Zhang et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice
Li et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy
Nemeth et al. Non-coding RNAs in disease: from mechanisms to therapeutics
EP2925866B1 (en) Circular rna for inhibition of microrna
Larsson et al. Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1
US9056135B2 (en) MicroRNA biomarkers for human breast and lung cancer
US10519443B2 (en) Microrna inhibitor system and methods of use thereof
US20090209621A1 (en) Compositions and methods for decreasing microrna expression for the treatment of neoplasia
EP2077326A1 (en) Novel nucleic acid
WO2009148137A1 (ja) 肥満細胞の脱顆粒を制御する核酸
EP2123752A2 (en) Novel nucleic acid
WO2010103015A1 (en) Microrna for diagnostic and therapeutic purposes in cardiovascular diseases
WO2011019074A1 (ja) 細胞または臓器の線維化を制御する核酸
KR101667169B1 (ko) 암 치료제
KR20100064516A (ko) 마이크로rna를 유효성분으로 포함하는 항암제 및 그 제조방법
WO2011111715A1 (ja) 細胞周期を制御する核酸
JP2011093892A (ja) がん抑制的マイクロrnaを含む腫瘍増殖抑制剤
KR101993894B1 (ko) 마이크로 rna를 포함하는 이중나선 올리고 rna 구조체
KR101861738B1 (ko) 마이크로 rna를 포함하는 이중나선 올리고 rna 구조체
WO2011010737A1 (ja) マイクロrna切断用のガイド核酸
奥村翔 Development of antisense oligonucleotides for suppressing breast cancer cell proliferation and the system for evaluating drug response of cardiomyocytes
Paluschinski The Functional Analysis and Characterization of the Liver-Specific MicroRNA miR 122 and of its Associated Target Genes
WO2010004816A1 (ja) 肥満細胞の脱顆粒抑制剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP