WO2011108173A1 - Rope inspection device - Google Patents

Rope inspection device Download PDF

Info

Publication number
WO2011108173A1
WO2011108173A1 PCT/JP2010/073545 JP2010073545W WO2011108173A1 WO 2011108173 A1 WO2011108173 A1 WO 2011108173A1 JP 2010073545 W JP2010073545 W JP 2010073545W WO 2011108173 A1 WO2011108173 A1 WO 2011108173A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
light
outer diameter
diameter value
light receiving
Prior art date
Application number
PCT/JP2010/073545
Other languages
French (fr)
Japanese (ja)
Inventor
淳二 堀
一 仲嶋
正博 鹿井
厚 光井
篤志 船田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012502972A priority Critical patent/JP5436659B2/en
Publication of WO2011108173A1 publication Critical patent/WO2011108173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires

Definitions

  • the present invention relates to a rope inspection device for detecting an outer diameter abnormality by irradiating a running rope with a light beam, obtaining an outer diameter value from the amount of received light detected by a light receiving means opposed across the rope. .
  • a diagnostic apparatus using a projector and a light receiver disposed at positions facing each other across the rope is known (for example, Patent Document 1).
  • the diagnostic apparatus of Patent Document 1 the light beam emitted from the light projecting unit is partially shielded by the wire rope, the light beam not shielded is received by the light receiving unit, and the amount of received light is obtained by frequency analysis. Diagnose wire rope outer diameter abnormalities (wire breakage, wear / deformation, elongation) from the frequency spectrum.
  • JP-A-11-325841 JP-A-11-325841
  • the present invention provides a rope inspection device that can convert the amount of light received by the light receiver into a rope outer diameter using a linear conversion formula and can suppress fluctuations in the amount of light received by the light receiver due to the roll of the rope.
  • the purpose is to do.
  • the width of the light beam in a first direction orthogonal to the optical axis of the light beam and orthogonal to the traveling direction of the rope is a maximum outer diameter value of the rope.
  • a light-inspecting device that detects the amount of light, and a conversion unit that converts the light amount detected by the light-receiving unit into an outer diameter value of the rope. It is characterized by being substantially uniform within a plane perpendicular to the traveling direction and within a range irradiated on the rope.
  • the range irradiated on the rope is a beam range used when measuring the outer diameter value of the rope.
  • the dimension in the first direction (the direction orthogonal to both the optical axis of the light beam and the traveling direction of the rope) (referred to as the “light beam width”) is the rope
  • the width of the rope moving in the first direction during travel (the amount of movement due to the roll of the rope) is made larger than the value obtained by adding the maximum outer diameter value. That is, the width of the light beam is set not only to be larger than the maximum outer diameter value of the rope, but also to prevent the rope from falling out of the measurement beam range even when the rope rolls.
  • the “maximum outer diameter value of the rope” is the maximum value among the outer diameter values of the rope that blocks the light beam.
  • the intensity distribution of the light beam within the measurement beam range is substantially uniform, the relationship between the amount of light received by the light receiving means and the outer diameter of the rope is a substantially linear relationship. Therefore, when converting the amount of light received by the light receiver to the outer diameter of the rope, it can be converted by a relatively simple linear conversion formula.
  • the intensity distribution of the light beam within the measurement beam range is substantially uniform, the amount of light received by the light receiving means is not limited as long as the rope has the same outer diameter even when the position of the rope within the light beam changes. There are few fluctuations.
  • a rope inspection apparatus that can convert the amount of light received by a light receiver into a rope outer diameter by a linear conversion formula and can suppress fluctuations in the amount of light received by a light receiving means due to the roll of the rope. can do.
  • FIG. 3 is a schematic diagram showing uniform light and a measurement beam range when observed from the direction of arrow B in FIG. 1-2.
  • A) is an intensity distribution of light rays in the XX line (upstream side of the homogenizing optical system) in FIG. 1-2, and (b) is a YY line in FIGS. 1-2 and 1-3.
  • FIG. 3 is a schematic diagram showing a positional relationship between a beam shaped into a horizontally long shape and a rope when observed from the direction of arrow B in FIG. 1-2 (a, b).
  • FIG. 3 is a schematic diagram showing a positional relationship between a beam shaped into a rectangle and a rope when observed from the direction of arrow B in FIG. 1-2 (a, b). It is a schematic sectional drawing of a rope.
  • 12 is a graph (position-outer diameter value graph) in which the outer diameter value data used in FIG. 1-11 is plotted against position data.
  • FIG. 9 is a position-outer diameter value graph obtained from a test result of a rope having an internal structure as shown in FIG. 1-8.
  • (A) is a rope position-outer diameter value graph with no abnormal outer diameter
  • (b) is a rope position-outer diameter value graph with loose outer layer strands
  • (c) is a rope with inner layer strands loosened.
  • it is the graph showing the total outer diameter value in each area.
  • Embodiment 1 of this invention it is a graph showing the time-dependent change of the total outer diameter value in the same area.
  • FIG. 3 is a graph (position-outer diameter value graph) in which the outer diameter value data used in FIG. 3B is replotted based on the positions of the tops and valleys of the unevenness.
  • FIG. 17 is a schematic diagram showing a positional relationship between a circular beam and a rope when observed from the direction of arrow B in FIG.
  • FIG. 17 is a schematic diagram showing the positional relationship between an elliptical beam and a rope when observed from the direction of arrow B in FIG. 1-2 for the rope inspection apparatus according to Embodiment 6 of the present invention (a, b).
  • a rope inspection device 1 rope, 2 uniform light, 2M measurement beam, 3 light irradiation means (uniform light irradiation means), 4 light sources, 5 uniformizing optical system, 6 light receiving means (light receiving part), 6L left light receiving part, 6R Right light receiving part, 7 light receiving element, 7L left light receiving element, 7R right light receiving element, 8 condensing lens, 8L left condensing lens, 8R right condensing lens, 15 slit, S opening, 20 conversion means, 21 light receiving part output Processing circuit, 22 AD converter, 23 conversion means, 30 rope position calculation means, 31 encoder, 32 rope position calculation device, 40 storage means (storage device), 50 calculation device, 51 calculation means, 60 measurement beam range, 90 rope Conveyance means, C rope center line, DL position data, P pulse signal, Dir1 first direction, Dir2 length Direction, the traveling direction of DirL light, the traveling direction of DirR rope 1, ext extracted graph, the amplitude value at nor normal.
  • FIG. 1-1 shows a schematic diagram for explaining a detection procedure by the rope inspection apparatus A in the first embodiment.
  • FIG. 1-2 illustrates a case where the light source 4 to the light receiving means (light receiving unit) 6 of the rope inspection apparatus A in Embodiment 1 of the present invention are cut along a plane perpendicular to the traveling direction of the rope 1.
  • a schematic cross section is shown.
  • the rope 1 extends in a direction perpendicular to the paper surface and travels in the longitudinal direction of the rope 1.
  • the rope inspection apparatus A includes a light irradiation unit (uniform light irradiation unit) 3, a slit 15, a light receiving unit (light receiving unit) 6, a conversion unit 20, a rope position calculation unit 30, and a storage unit 40.
  • the uniform light irradiation means 3 is for irradiating the traveling rope 1 with a light beam.
  • the width of the beam in a direction (first direction Dir1) orthogonal to the optical axis and orthogonal to the traveling direction of the rope is larger than the maximum outer diameter value of the rope.
  • the uniform light irradiation means 3 is a beam having a substantially uniform intensity within a measurement beam range 60 (see FIG. 1-3) whose width in the first direction Dir1 is at least larger than the maximum outer diameter value of the rope 1 (uniform 1). Light 2) is emitted.
  • the uniform light irradiating means 3 includes, for example, a light source 4 that emits non-uniform light (FIG. 1-4 (a)) having non-uniform intensity distribution such that the intensity decreases as the distance from the optical axis increases.
  • the light is composed of a homogenizing optical system 5 for making the intensity substantially uniform over at least the measurement beam range 60 (FIG. 1-2). As shown in FIG. 1-4B, the uniform light 2 has a substantially uniform intensity within the measurement beam range 60.
  • the measurement beam range 60 is a range of uniform light (referred to as “measurement beam 2M”) used for measuring the outer diameter of the rope 1 in the uniform light 2.
  • the width of the measurement beam range 60 in the first direction Dir1 (lateral width 61: FIG. 1-3) is determined by considering the maximum outer diameter value of the rope 1, the amplitude of the roll of the rope 1, and the measurement accuracy. It is set to be irradiated.
  • the lateral width 61 is set to, for example, 10 times or more (for example, about 10 to 20 times) the outer diameter 1d of the rope 1.
  • the uniform light irradiating means 3 can be configured only from the light source 4 without using the uniformizing optical system 5.
  • the uniform light irradiation means 3 including the light source 4 and the uniformizing optical system 5 will be mainly described. However, in any example, the uniform light irradiation means 3 including only the light source 4 can be replaced.
  • the light source 4 various known light sources can be used.
  • a light emitting diode or a semiconductor laser is preferable.
  • the homogenizing optical system 5 include a Koehler illumination optical system. In the Kohler illumination system, non-uniform light from the light source 4 is converted into uniform light by a plurality of lenses.
  • the uniformization optical system 5 can be abbreviate
  • the slit 15 blocks a part of the uniform light 2 so that the vertical width of the uniform light 2 in the traveling direction DirR (referred to as “vertical direction”) of the rope 1 is constant.
  • the upper and lower portions of the uniform light 2 (especially the measurement beam 2M) are shielded by the slits 15, and the measurement beam 2M is shaped into a horizontally long beam shape having a constant vertical width.
  • the area shielded by the rope 1 is obtained by “the outer diameter of the rope 1 ⁇ the width of the measuring beam 2M”. Can do. Since the width of the measurement beam 2M is constant, this light shielding area is also constant. Therefore, even if the rope 1 rolls, the light shielding area does not change.
  • the light receiving unit 6 is disposed to face the uniform light irradiation unit 3 with the rope 1 interposed therebetween.
  • the light receiving unit 6 includes a light receiving element 7 for receiving the uniform light 2 (measurement beam 2M) within the measurement beam range 60, and detects the light amount of the measurement beam 2M that has passed through both sides of the rope 1.
  • the light receiving unit 6 may include a condenser lens 8 disposed between the rope 1 and the light receiving element 7. When the spot of the measurement beam 2M is larger than the light receiving element 7, the light receiving part 6 collects the measurement beam 2M. The spot of the measurement beam 2M can be reduced to a width that fits on the light receiving surface of the light receiving element 7 (FIG. 1-2).
  • the light receiving element 7 various known light receiving elements can be used. For example, a semiconductor element or the like is preferable.
  • the condenser lens 8 a general convex lens (biconvex lens, single convex lens) can be used.
  • the calculation device 50 includes a conversion unit 23 and a calculation unit 51.
  • the conversion means 23 performs conversion processing when converting the amount of light received by the light receiving element 7 to the outer diameter value 1d of the rope 1 and constitutes a part of the conversion means 20 described later.
  • the calculation means 51 stores the position data DL of the rope 1 obtained in synchronization with the data of the outer diameter value 1d (outer diameter value data D) together in the storage device.
  • the computing means 51 also performs a process of drawing a graph of the rope outer diameter value 1d with respect to the rope position from the data of the outer diameter value 1d of the rope 1 (outer diameter value data D) and the position data DL.
  • the converting means 20 converts, for example, the outer diameter value 1d of the rope 1 based on the ratio between the total light amount in the measurement range irradiated on the rope and the light amount received by the light receiving element 7, and the light receiving unit output process
  • the circuit 21 is composed of an AD converter 22 and a conversion means 23.
  • the rope position calculation means 30 receives the encoder 31 built in the rope conveyance means 90 and the pulse signal P from the encoder 31, and outputs position data DL.
  • the storage means (for example, a storage device such as a memory) 40 stores the outer diameter value data D and the position data DL. Moreover, the processing data (For example, the graph etc. which were obtained from the calculating means 51 of the calculating device 50 mentioned later) after processing those data are also memorize
  • the uniform light 2 from the uniformizing irradiation means 3 is irradiated to the traveling rope 1 after being shaped by the slit 15 and the uniform light 2 not shielded by the rope 1 is collected.
  • the light is condensed on the light receiving unit 6 by the lens 8 and the amount of light is measured.
  • the conversion means 20 the light amount is converted into the outer diameter value 1 d and stored in the storage device 40.
  • the rope position calculation means 30 specifies the position measured in the traveling rope 1 and stores it in the storage device 40. It is important that the data of the outer diameter value 1d (outer diameter value data D) and the position data DL are stored in the storage device 40 while being synchronized.
  • the calculation means 51 of the calculation device 50 reads the outer diameter value data D and the position data DL from the storage device 40, and plots the outer diameter value data D against the position data DL. Since the obtained graph reflects the characteristics of the outer diameter value 1d of the traveling rope 1, if there is an abnormality in the outer diameter, the abnormality is reflected in the graph and the abnormality can be found.
  • elongated openings S1 and S2 are formed in the slits 15 (151 and 152).
  • the openings S1, S2 are arranged so that the longitudinal direction thereof is orthogonal to the traveling direction DirR of the rope 1.
  • the width S11 of the opening S1 (the vertical dimension in the figure) is smaller than the diameter 61 of the measurement beam range 60 of the uniform light 2
  • the length S12 of the opening S1 ( The dimension in the horizontal direction in the drawing is larger than the diameter 61 of the measurement beam range 60.
  • the width S21 of the opening S2 and the length S22 of the opening S2 are smaller than the diameter 61 of the measurement beam range 60.
  • 1-6 to 1-7 illustrate the uniform light 2 observed from the direction of the arrow B in FIG. 1-2A and the rope 1 that blocks a part of the uniform light 2. .
  • the width 63 of the shaped uniform light 2 is constant ( Fig. 1-6 (a)). Therefore, as can be seen by comparing FIG. 1-6 (a) and FIG. 1-6 (b), even if the rope 1 moves in the left-right direction within the measurement beam range 60, the outer diameter value 1d of the rope 1 As long as does not change, the total area of the uniform light 2 not shielded by the rope 1 does not change.
  • the uniform light 2 outside the measurement beam range 60 may include non-uniform intensity, but the slit 151 does not have the intensity in the vertical direction of the uniform light 2. Shade uniform areas.
  • the width 63 of the uniform light 2 within the measurement beam range 60 after shaping is constant (FIG. 1-7). (A)). Therefore, as can be seen by comparing FIG. 1-7 (a) and FIG. 1-7 (b), even if the rope 1 moves in the left-right direction within the measurement beam range 60, the rope 1 was not shielded from light. The total area of the uniform light 2 does not change. That is, even if the rope 1 rolls and the position of the rope 1 in the measurement beam range 60 changes, the amount of light received by the light receiving unit 6 does not change. Note that, similarly to the slit 151, the slit 152 also shields a non-uniform intensity portion in the vertical direction of the uniform light 2.
  • the horizontally elongated beam after shaping is located outside at least one of the left and right ends and outside the measurement beam region 60.
  • Some uniform light 2 (including light with non-uniform intensity) is included.
  • the slit 152 since the length S22 of the opening S2 is smaller than the diameter 61 of the measurement beam range 60, all of the uniform light 2 outside the measurement beam region 60 can be blocked. Therefore, by passing through the slit 152, a rectangular beam having substantially uniform intensity can be obtained (FIG. 1-7). The intensity distribution of the obtained rectangular beam is shown in FIG.
  • the measurement accuracy of the rope inspection apparatus A is increased. Further, since scattered light from the optical system or the like included in the rope inspection apparatus A can be effectively blocked, the noise of the received light amount data obtained by the light receiving unit 6 can be reduced.
  • the uniform light 2 of the present invention is measured when the intensity is measured in a plane passing through the center line C (FIG. 1-2) of the rope 1 and perpendicular to the optical axis of the beam (the light traveling direction DirL).
  • the intensity distribution of the light within the measurement beam range 60 is substantially uniform.
  • substantially uniform means that the intensity distribution of the measurement beam 2M has a uniformity of 0 to ⁇ 10%.
  • the non-uniform light emitted from the light source 4 has a Gaussian intensity distribution as shown in FIG. For this reason, when the rope 1 is irradiated with non-uniform light, when the rope 1 rolls, even if the area shielded by the rope 1 is the same, the light intensity of the shielded light changes greatly. Even if the beam is shaped by the slit 15, this change in beam intensity cannot be suppressed. On the other hand, if the beam (uniform light) 2 has a substantially uniform intensity distribution within the measurement beam range 60 as shown in FIG. The beam intensities applied are also approximately equal. Therefore, if the uniform light 2 is shaped by the slit 15, the measurement accuracy of the outer diameter value 1d can be increased even if the rope 1 rolls.
  • the influence (measurement error) on the outer diameter value 1d of the rope 1 that is finally calculated may cause the measurement accuracy of the light receiving element 7 and the light amount to It becomes smaller than the error in converting to the outer diameter value 1d. Therefore, in the present invention, uniform light 2 having an intensity distribution of 0 to ⁇ 10% in the measurement beam range 60 is preferable.
  • the measuring method is divided into steps 1 to 6, and the light amount measurement of the uniform light 2 after irradiating the rope 1 (step 1), the light amount is converted into the outer diameter value 1d of the rope 1 (step 2), and the uniform light 2 is Acquisition of position data DL of the irradiated rope 1 (step 3), storage of outer diameter value 1d and position data DL (step 4), data analysis of outer diameter value 1d and position data DL (step 5), and analysis It consists of detecting the outer diameter abnormality of the rope 1 from the data (step 6).
  • Step 1 Measurement of light intensity
  • a rope inspection apparatus A is installed for the rope 1 to be measured.
  • the rope inspection apparatus A is fixed to a building or the like.
  • the rope 1 travels through the fixed rope inspection apparatus A at an arbitrary speed in a direction perpendicular to the paper surface of FIG.
  • the non-uniform light emitted from the light source 4 is made into uniform light 2 through the uniformizing optical system 5, and shaped into a horizontally long shape or a rectangle through the slit 15 (FIGS. 1-6 and 1-7).
  • the shaped measurement beam 2M of the uniform light 2 is irradiated onto the rope 1 and a part thereof is shielded by the rope 1.
  • the measurement beam 2M that is not shielded travels through both sides of the rope 1 (FIG. 1-2).
  • the measurement beam 2M that is not shielded is condensed by the condenser lens 8 and enters the light receiving element 7.
  • the light receiving element 7 outputs a signal corresponding to the amount of light received.
  • the light shielding area increases, so the amount of light received by the light receiving element 7 decreases.
  • the light shielding area decreases.
  • the amount of light received by the element 7 increases.
  • the silhouette of the running rope is reflected in the amount of light received by the light receiving element 7.
  • the uniformizing optical system 5 and the slit 15 are used, the amount of light received by the light receiving element 7 and the silhouette width of the rope 1 (the outer diameter value of the rope 1d) are linear. It becomes a relationship.
  • Step 2 Conversion to rope outer diameter value 1d
  • a signal from the light receiving element 7 (light receiving element 6) is input to the conversion means 20 (FIG. 1-1).
  • the conversion unit 20 includes a light receiving unit output processing circuit 21, an AD converter 22, and a conversion unit 23.
  • a signal (current value) from the light receiving element 7 is input to the light receiving unit output processing circuit 21 and converted into a voltage signal (IV conversion). Further, filter processing for removing noise from the signal from the light receiving element 7 may be performed.
  • the voltage signal output from the light receiving unit output processing circuit 21 is input to the AD converter 22 and converted into a digital signal.
  • the digital signal output from the AD converter 22 is input to the conversion means 23.
  • the conversion means 23 calculates a digital signal by a linear conversion formula (conversion function), and outputs data of the outer diameter value 1d of the rope 1 (outer diameter value data D).
  • the conversion function is obtained by examining the relationship between the rope 1 having various outer diameter values 1d and the digital signal output from the AD converter 22 when the rope 1 is measured by the rope inspection device A in advance. Determined based on gender. Further, instead of the conversion function, a large number of conversion data (a plurality of sets of data indicating the correspondence of the outer diameter value 1d to the digital signal) can be held.
  • the conversion unit 23 refers to the conversion data and converts the input digital signal into corresponding outer diameter value data D.
  • the position data DL of the rope 1 is generated by the rope position calculation means 30 (FIG. 1-1).
  • the rope position calculation means 30 includes an encoder 31 built in the rope transport device 90 and a rope position calculation device 32.
  • the encoder 31 outputs a positive pulse signal P every time the rope conveyance device 90 conveys the rope 1 by a predetermined distance f (for example, 1 m) in a predetermined direction.
  • the rotary encoder outputs a pulse signal P every time the rope conveyance device 90 makes one rotation in the forward direction (for example, clockwise). Further, every time the rope transport device 90 makes one rotation in the reverse direction (for example, counterclockwise), the encoder 31 outputs a negative pulse signal -P.
  • the positive or negative pulse signals P and ⁇ P output from the encoder 31 are input to the rope position calculation device 32.
  • the rope position calculation device 32 sets the position data DL (initial value) of the rope 1 at the time of installation of the rope inspection device A to 0, and adds a predetermined distance f to the position data DL every time a positive pulse signal P is received. Every time the pulse signal -P is received, the predetermined distance f is subtracted to calculate the position data DL when the pulse signals P and -P are received.
  • the obtained position data DL is output from the rope position calculation device 32 and input to the calculation means 51 of the calculation device 50. Since the position data DL is sampled at every predetermined distance f, the sampling time interval also changes when the transport speed of the rope 1 changes. That is, the sampling interval of the position data DL does not depend on time.
  • Step 4 Data storage
  • the outer diameter value data D (step 2) of the rope 1 output from the conversion means 23 of the calculation device 50 and the position data DL (step 3) output from the calculation means 51 of the calculation device 50 are stored in the storage device 40.
  • the outer diameter value data D and the position data DL stored at the same timing are stored while being associated (synchronized).
  • Step 5 by analyzing the data string stored in the storage device 40, the measurement position of the rope 1 at a certain time point and the outer diameter value 1d of the rope 1 at the measurement position are known. be able to. Since the number of data of the outer diameter value data D is larger than the number of data of the position data DL, only a part of the outer diameter value data D is associated with the position data DL.
  • Step 5 Data analysis
  • Two data strings (outer diameter value data D and position data DL) stored in the storage device 40 are subjected to data analysis by the calculation means 51 of the calculation device 50, and finally the outside of the measurement position of the rope 1.
  • the diameter value 1d is plotted.
  • the appearance of the rope travel range is reproduced in the graph obtained by plotting. Since the actual rope 1 has irregularities on the surface, the irregularities also appear in the obtained graph. In order to fully understand the meaning of the graph, first, the rope 1 and the speed of the rope 1 during measurement will be described.
  • Measured rope 1 has a multilayer structure as shown in Fig. 1-8.
  • the rope illustrated in FIGS. 1-8 around the core steel 300, six inner layer strands 200 forming an inner layer are spirally wound.
  • ten outer layer strands 101 to 110 forming the outer layer are wound spirally.
  • the number of the inner layer strand 200 and the outer layer strands 101 to 110 can be changed.
  • a combination of winding directions (S twist, Z twist) of the inner layer strand 200 and the outer layer strands 101 to 110 can be arbitrarily selected.
  • FIG. 1-9 shows a rope 1 in which six outer layer strands 101 to 106 are twisted, and the same outer layer strand repeatedly appears every six in the longitudinal direction Dir2 (traveling direction DirR). I understand. The distance until the same strand appears is called “twist pitch T”. As can be seen from FIG. 1-9, since the outer layer strands 101 to 106 are spirally wound, fine irregularities are formed on the outer surface of the rope 1. Due to this fine unevenness, the outer diameter of the rope 1 also changes periodically.
  • the twist pitch T there is the following relationship between the number of fine irregularities, the twist pitch T, and the number of outer layer strands used.
  • the same number of recesses as the number of outer layer strands used are included (in FIG. 1-9, six outer layer strands and six recesses).
  • the same number of convex portions located at both ends of the twist pitch T is counted as 0.5, the same number of convex portions as the number of outer layer strands are included in the range of the twist pitch T (FIG. 1-9). Then, six outer layer strands and six convex portions are included).
  • the traveling speed of the rope 1 being measured is not constant. As shown in FIG. 1-10, the traveling speed is first accelerated (0 to ⁇ ), then becomes a constant speed ( ⁇ to ⁇ ), and finally decelerated. Stopped ( ⁇ - ⁇ ).
  • time-outer diameter graph In the “time-outer diameter graph” shown in FIG. 1-11, irregularities reflecting fine irregularities on the outer surface of the rope 1 are confirmed.
  • the unevenness of the time-outer diameter graph is not evenly spaced. Specifically, in the time-outer diameter graph, between 0 and ⁇ , the unevenness interval gradually narrows as the speed increases, and between ⁇ and ⁇ , the unevenness interval is uniform because the speed is constant. In the range between ⁇ and ⁇ , the interval between the irregularities gradually increases as the speed decreases.
  • the position data DL stored in synchronization with the outer diameter value data in “Step 4” is used to replace the horizontal axis of the time-outer diameter value graph of FIG. 1-11 with the position data DL.
  • the graph after replacement is shown in FIG. 1-12 (referred to as “position-outer diameter value graph”).
  • position-outer diameter value graph As is apparent from FIG. 1-12, the unevenness is equally spaced in the position-outer diameter value graph. That is, by plotting the outer diameter value data with respect to the position data DL, the interval between the irregularities of the graph does not depend on the speed of the rope 1 at the time of measurement and is always constant.
  • the position-outer diameter graph of FIG. 1-12 is obtained by analyzing the measurement data obtained by measuring the rope 1 illustrated in FIG. 1-9.
  • the twist pitch T and the twist pitch required on the graph are analyzed.
  • the number of irregularities contained in T coincided with the appearance of the rope 1 in FIG. 1-9.
  • the outer diameter value data of the rope 1 is plotted in FIG. 1-12, the protruding direction of the outer layer strand 102 is not reflected. Therefore, in the rope 1 having unevenness on both sides as shown in FIG. 1-6, the outer diameter value increase corresponding to the protrusion on the right side of the rope and the outer diameter value increase corresponding to the protrusion on the left side are the same. The increase is reflected in the graph of FIG. 1-12.
  • step 3 by acquiring the position data DL in step 3, it is possible to detect the outer diameter value data at the positions at regular intervals without being affected by the traveling speed of the rope 1.
  • Step 6 Detection of abnormal outer diameter
  • an abnormality in the outer diameter of the rope 1 occurs, there are a plurality of detection methods. Below, each detection method is demonstrated.
  • FIG. 1-13 shows a state in which the outer layer strand 102 of the rope 1 is loosened by cutting or the like.
  • the portion where the outer layer strand 102 protrudes has a larger outer diameter value 1d, so that a portion having a larger outer diameter value 1d appears each time the rope 1 advances T / 2.
  • FIG. 1-15 is a position-outer diameter graph obtained from the rope 1 (10 outer layer strands, 6 inner layer strands) of FIG. 1-8.
  • the twist pitch T of the outer layer strand is different from the twist pitch t of the inner layer strand.
  • FIG. 1-15 (a) is a graph obtained from the rope 1 having no abnormal outer diameter.
  • FIG. 1-15 (b) is a position-outer diameter value graph obtained from the rope 1 in which one of the outer layer strands 101 to 110 has slackened.
  • FIG. 1-15 (c) is a position-outer diameter value graph obtained from the rope 1 in which one of the inner layer strands 200 has slackened.
  • the inner layer strand 200 since the inner layer strand 200 is completely covered with the outer layer strand, it may be difficult to detect the slack of the inner layer strand 200 only by simple visual recognition.
  • FIG. 1-15 (c) the period of appearance of the high protrusions is long, the number of high protrusions (1 to 2), and the number of low protrusions (4 1 to 5) is different in that there is variation.
  • the difference between FIG. 1-15 (b) and FIG. 1-15 (c) is due to the internal structure of the rope 1, and details will be described later.
  • FIGS. 1-15 (b) and 1-15 (c) when uneven components having a period different from the strand period are generated in the longitudinal direction, it is effective to extract them by a spatial filter.
  • a spatial filter that passes a waveform of period T / 2 or t / 2 is prepared and an outer diameter value signal (solid line) is processed, a broken line (extraction graph ext) in FIGS. 1-15 (a) to (c) Is obtained.
  • the broken line (extraction graph ext) in FIG. 1-15 (b) is a waveform with a period T / 2
  • the broken line (extraction graph ext) in FIG. 1-15 (c) is a waveform with a period t / 2 (hereinafter referred to as “specific”).
  • Anomaly detection is possible by calculating the maximum value, amplitude, difference between the maximum value and minimum value of this waveform, and determining the threshold value.
  • a method of setting the threshold value a method of setting an absolute value in advance is conceivable.
  • ii) is divided into a plurality of sections, and these values do not protrude compared to other sections?
  • a method of determining abnormality by whether or not ii) a method of calculating an increase / decrease amount or a rate of increase / decrease for each section, and determining a threshold for these, or a method of determining by whether or not it protrudes compared with other sections Is also possible.
  • an outer diameter abnormality having periodicity can be detected by spatially filtering the position-outer diameter value graph. And with this detection means, it is possible to detect the slackness of the strand that is difficult to detect visually.
  • the calculation function for performing frequency extraction may be provided in the calculation device 50 (FIG. 1-1), or may be provided in a separately prepared calculation device. .
  • Fig. 1-16 illustrates the amplitude of multiple sections. From FIG. 1-16, it can be seen that the intervals 11 to 13 have a larger amplitude than the other intervals. Therefore, it can be seen that the outer diameter abnormality occurs in the sections 11 to 13.
  • the amplitude is used as a comparison between the sections. However, if the numerical value reflects the outer diameter abnormality (maximum value, difference between the maximum value and the minimum value, etc.), it should be used instead of the amplitude. Can do.
  • the arithmetic function for dividing the virtual section may be provided in the arithmetic device 50 (FIG. 1-1), or a separately prepared arithmetic device may be provided. You may prepare.
  • the calculation function may further have a function of comparing a total outer diameter value of each section and specifying a section having an outer diameter abnormality.
  • the specific band extraction waveform is virtually divided into a plurality of sections. Then, the amplitude ⁇ 1 of each section obtained at a certain time (for example, immediately after installation) and the amplitude ⁇ 2 of each section obtained at another time (for example, at the time of periodic inspection of the rope 1) are obtained.
  • the change with time in the amplitude of the same section (for example, section 1) can be obtained by “ ⁇ 2 ⁇ 1”.
  • An example of the change over time of the amplitude thus obtained is shown in FIG. 1-17.
  • the sections 11 to 13 are larger than the amplitude value nor in the normal state. Further, even when the amplitude value nor in the normal state is unknown, it can be seen that the change over time in the amplitude is larger than in other sections. Therefore, it can be seen that the outer diameter change is larger in the sections 11 to 13 than the other sections (that is, the outer diameter abnormality has occurred).
  • the amplitude is used as a comparison at different time points, but any numerical value that reflects the outer diameter abnormality can be used instead of the amplitude.
  • the change over time of the amplitude is displayed as the difference in amplitude ( ⁇ 2- ⁇ 1), but instead of the difference, the change in amplitude (( ⁇ 2- ⁇ 1) / ⁇ 1) is displayed. Also good.
  • the initial variation can be canceled by dividing into a plurality of sections, measuring the amplitude of a section at two time points, and comparing the difference. Therefore, it is possible to detect only the outer diameter abnormality. In addition, when this detection method is used, the tendency of the outer diameter value to change with time can be monitored, which is useful when making an exchange plan for the rope 1.
  • the calculation function for the comparison (the calculation function of the second calculation means) is a calculation device. 50 (FIG. 1-1) may be provided, or an arithmetic device prepared separately may be provided.
  • the rope position calculation means 30 of the rope inspection apparatus A is composed of only the encoder 31 (not including the rope position calculation apparatus 32). Instead, the pulse signals P and -P output from the encoder 31 are used. This is different from the first embodiment in that it is input to the AD converter 22 of the conversion means 20 (FIG. 2-1).
  • the AD converter 22 used in the present embodiment one having a “sampling function” for outputting digital data when a sampling signal is received is used.
  • the pulse signals P and -P from the encoder 31 are used as sampling signals input to the AD converter 22. That is, in the present embodiment, the outer diameter value 1d of the rope 1 is sampled at the timing when the rope 1 is transported by a certain transport distance f.
  • Step 2 Conversion to rope outer diameter value
  • the output timing of the digital signal output from the AD converter 22 is different from that in the first embodiment.
  • the digital signal from the AD converter 22 is continuously output.
  • a digital signal is output from the AD converter 22 only when the pulse signals P and ⁇ P are input from the encoder 31. Therefore, “a digital signal has been output” means that the rope 1 has been conveyed by a predetermined distance f since the previous digital signal was output.
  • the outer diameter value data D of the rope 1 converted from the digital signal is also the outer diameter value 1d of the rope 1 for each predetermined distance f.
  • Step 3 Acquisition of rope position data
  • the rope position calculation means 30 is composed only of the encoder 31 and that the pulse signal P output from the encoder 31 is input to the AD converter 22 (FIG. 2). -1). Therefore, in step 3, the position data DL cannot be obtained.
  • Step 4 Data storage
  • the data stored in the storage device 40 is only the outer diameter value data D of the rope 1 and is different from the first embodiment (position data DL is not stored). Further, since the outer diameter value data D is output only when a sampling signal is input, the number of outer diameter value data D stored in the storage device 40 is smaller than that in the first embodiment. Less.
  • Step 5 Data analysis
  • the present embodiment is different from the first embodiment in that there is no position data DL to serve as a reference for the horizontal axis of the position-outer diameter value graph.
  • the outer diameter value data D of the rope 1 is obtained at a timing when the rope 1 is conveyed by a predetermined distance f. Therefore, if the outer diameter value data D are arranged at equal intervals so that the distance in the horizontal axis direction of the outer diameter value data D is the predetermined distance f, a graph reflecting the actual appearance of the rope 1 can be plotted. Yes ( Figure 2-2).
  • the digital signal is sampled at the timing when the pulse signal of the encoder 31 is output, the number of data of the outer diameter value data D can be reduced and the storage device 40 can be used efficiently. Further, since the rope position calculation device 32 is not required, the rope inspection device A can be simplified and the cost can be reduced.
  • the rope inspection apparatus A does not include the encoder 31 and the rope position calculation device 32, but instead the calculation means 51 of the calculation device 50 also functions as the rope position calculation means 30. 2 (FIG. 3-1).
  • Step 3 Acquisition of rope position data
  • This embodiment does not include the rope position calculation means 30 (FIG. 3-1). Therefore, step 3 is not included and position data DL cannot be obtained.
  • Step 4 Data storage
  • the data stored in the storage device 40 is only the outer diameter value data D of the rope 1 and is different from the first embodiment (position data DL is not stored).
  • Step 5 Data analysis
  • the data analysis method is significantly different from those in the first and second embodiments.
  • the number (n) of outer layer strands of the rope 1 measured and the twist pitch T of the outer layer strands are examined in advance.
  • a time-outer diameter graph is plotted by the computing means 51 of the computing device 50 (FIG. 3-2). Since the rope 1 was run under the conditions shown in FIG. 1-10 at the time of measurement, the irregularities in the time-outer diameter value graph of FIG. 3-2 are not evenly spaced.
  • the tops (peaks and valleys) of the irregularities are extracted (FIG. 3-3).
  • the obtained graph of FIG. 3-3 is characterized by the characteristics of the graph obtained from the first embodiment (1)
  • the peaks and valleys are arranged at equal intervals, and (2) the twist pitch T of the outer layer strand is within the range.
  • replotting is performed so as to realize both of n that there are n peaks and valleys.
  • this replot is to make the unevenness of the graph of FIG. 3-3 correspond to the unevenness of the surface of the rope 1.
  • a position-outer diameter value graph as shown in FIG. 3-4 can be obtained.
  • the time-outer diameter value graph is replotted to the position-outer diameter value graph using the knowledge obtained in the first embodiment, so that the encoder 31 and the rope position calculating device 32 are It becomes unnecessary. Therefore, simplification and cost reduction of the rope inspection apparatus A can be achieved. Further, since it is not necessary to store the position data DL in the storage device 40, the storage device 40 can be used efficiently. Further, even when a deviation occurs between the pulse signal P from the encoder 31 and the actual rope transport distance due to the elongation or slip of the rope, the present embodiment does not use the pulse signal P. Unaffected by such misalignment. Therefore, an accurate rope position can always be confirmed.
  • the rope position calculation means in the present embodiment determines the position of the outer diameter value 1d by associating the unevenness of the graph of FIG. 51 ".
  • Step 1 Measurement of light intensity
  • the non-uniform light emitted from the light source 4 passes through the homogenizing optical system 5 to become uniform light 2 having a substantially uniform intensity, and is shaped into a horizontally long shape or a rectangle through the slit 15.
  • the shaped measurement beam 2M of the uniform light 2 is irradiated onto the rope 1. A part of the measurement beam 2M is shielded by the rope 1. The measurement beam 2M that is not shielded travels through both sides of the rope 1 (FIG. 4-1).
  • the measurement beam 2M of the uniform light 2 that is not shielded is split into two by the rope 1 (split light 2L, 2R).
  • the divided lights 2L and 2R are condensed by the two condenser lenses 8L and 8R and enter the two light receiving elements 7L and 7R.
  • the two light receiving elements 7L and 7R output signals corresponding to the light amounts of the received split lights 2L and 2R. Signals output from the two light receiving elements (left light receiving element 7L and right light receiving element 7R) are added and input to one light receiving unit output processing circuit 21 (FIG. 4-2).
  • one condenser lens 8 having a large diameter as shown in FIG. 1-2 can be replaced with two condenser lenses having a small diameter as shown in FIG. 4-2. Therefore, the rope inspection apparatus A can be reduced in size.
  • step 5 ′: data analysis 2” and “step 5 ′′: data analysis 3”) are performed. It differs in that it includes.
  • Step 5 ' Data analysis 2
  • the two data strings (L, R) input from the light receiving elements 7L, 7R to the light receiving unit output processing circuit 21 are separately converted into digital data by the AD converter 22.
  • the two digital data (L, R) are converted into outputs from the light receiving elements 7L, 7R and the converted values are plotted with respect to the time axis, graphs as shown in FIGS. 5-2 (a) to (b) are obtained. It is done.
  • the left split light 2L passing through the left side of the rope 1 is more than the right split light 2R passing through the right side of the rope 1 It means that it is increasing.
  • the light receiving amount of the left light receiving element 7L is small, and the light receiving amount of the right light receiving element 7R is large. This means that the rope 1 is shifted to the left side from the center of the uniform light 2, and the left split light 2L passing through the left side of the rope 1 is less than the right split light 2R passing through the right side of the rope 1. is doing.
  • Fig. 5-2 (c) is obtained when the horizontal position of the rope 1 is obtained from the results of Figs. 5-2 (a) and 5-2 (b) and plotted against time. From FIG. 5-2 (c), it can be seen that the rope 1 periodically rolls.
  • the rolling frequency of the rope 1 obtained from FIG. 5-2 (c) is closely related to the tension of the rope 1. Therefore, the tension abnormality of the rope 1 can be detected by comparing the rolling frequency of the rope 1 at a certain point of time with the rolling frequency of the rope 1 in a normal tension state.
  • the frequency (this is referred to as “fundamental frequency”) when ropes 1 of various lengths are attached with normal tension is calculated in advance. Then, the rolling vibration frequency is obtained from the graph of FIG. 5-2 (c), and the length of the rope 1 at that time is calculated from the position data DL of the rope 1. The basic frequency in the length of the rope 1 is compared with the vibration frequency of the roll, and if they are different, it is determined that the tension is abnormal.
  • the amplitude of the rope 1 can be obtained from FIG. 5-2 (c). If the obtained amplitude exceeds the allowable range in design, it is determined that the amplitude is abnormal.
  • the rope position fluctuates left and right (horizontal) as shown in FIG. 5-2 (c). You can know that it is shaking. Further, it is possible to know the degree of roll of the rope 1 from the amount of change in the light quantity of the left and right divided lights 2L and 2R. Furthermore, the tension abnormality applied to the rope 1 can be detected from the rolling frequency of the rope 1.
  • Step 5 ′′ Data analysis 3
  • the two digital data (L, R) obtained in step 5 ′ are input to the arithmetic unit 50 (FIG. 5-1).
  • the computing means 51 of the computing device 50 averages each digital data (L, R) to calculate two average values (L, R).
  • the two average values (L, R) obtained are converted into outputs from the light receiving elements 7L, 7R and stored in the storage device 40.
  • the average value of the amount of light received by the left light receiving element 7L is ave (L) in FIG.
  • the average value of the amount of light received by the right light receiving element 7R is ave (R) in FIG.
  • the average values ave (L) and ave (R) serve as an index for knowing whether the positional relationship between the rope 1 and the rope inspection apparatus A is appropriate. Further, in order to examine the change in the positional relationship between the rope 1 and the rope inspection apparatus A with time, the average values ave (L) and ave (R) of the light amount calculated in the past and the average value of the light amount at different time points are used. What is necessary is just to compare ave (L) and ave (R).
  • the arithmetic function (the arithmetic function of the fourth arithmetic means) for obtaining the average values ave (L) and ave (R) of the light amount and comparing them with past data is provided in the arithmetic device.
  • FIG. 50 FIG. 5-1
  • an arithmetic device prepared separately may have the arithmetic function.
  • the uniform light 2 shaped by the slit 15 is used.
  • the uniform light 2 that is not shaped can also be used.
  • the total area of the measurement beam 2M that is not shielded by the rope 1 is as shown in FIG. larger than a).
  • the total area of the measurement beam 2M not shielded by the rope 1 is larger in FIG. 6-2 (b) than in FIG. 6-2 (a). Therefore, when the rope 1 rolls and the position of the rope 1 in the measurement beam 2M changes, the amount of light received by the light receiving unit 6 varies. Therefore, the outer diameter value 1d of the rope 1 cannot be obtained by a simple conversion process as in the first to fifth embodiments.
  • the outer diameter value 1d of the rope 1 can be obtained by using a data table for obtaining the outer diameter value 1d of the rope 1.
  • the rope inspection apparatus A for inspecting one rope 1 has been described in detail. If inspection of a plurality of ropes 1 is necessary, the same number of uniform light irradiation means 3, light receiving units 6, and light receiving unit output processing circuits 21 are prepared as the number of ropes 1 and installed on each rope 1. Then, the voltage signals from the plurality of light receiving unit output processing circuits 21 may be connected to one AD converter 22.
  • the uniform light 2 is shown as parallel uniform light from the homogenizing optical system 5 to the condensing lens 8. It is also possible to use non-parallel uniform light 2 in which the measurement beam 2M expands toward 8. In the case of the non-parallel uniform light 2, the uniformizing optical system 5 is adjusted so that the intensity of the measurement beam 2M is uniform in a plane perpendicular to the optical axis of the measurement beam 2M and passing through the center line C of the rope 1. . Therefore, in an application where the rope 1 does not deviate from the plane, the non-parallel uniform light 2 can be used.
  • the intensity of the measurement beam 2 ⁇ / b> M in the plane perpendicular to the optical axis of the measurement beam 2 ⁇ / b> M is substantially uniform between the uniformizing optical system 5 and the condenser lens 8. Therefore, even if the rope 1 rolls in the optical axis direction of the measurement beam 2M (ray traveling direction DirL) (left-right direction in FIG. 1-2), the uniformity of the measurement beam 2M irradiated on the rope 1 does not change. There is an advantage that.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided is a rope inspection device capable of suppressing the fluctuation in the amount of light received on an optical receiver due to the rolling of a rope. A rope inspection device (A) is provided with a light irradiation means (3) which emits a light beam (2) in order to irradiate the light beam (2) onto a traveling rope (1) such that the width of the light beam (2) in a first direction (Dir 1) which is orthogonal to the light axis of the light beam (2) and orthogonal to the traveling direction of the rope (1) is larger than the sum of the maximum outer diameter of the rope (1) and the width by which the rope (1), when traveling, moves in the first direction (Dir 1); an optical receiving means (6) which is disposed opposite the light irradiation means (3) sandwiching the rope (1) therebetween and which detects the amount of light of the light beam (2); and a converting means (20) which converts the amount of light detected by the optical receiving means (6) to the outer diameter value (1d) of the rope (1); wherein the intensity of the light beam (2) is substantially uniform in the plane orthogonal to the traveling direction (Dir L) of the light beam (2) and within the range where the rope (1) is irradiated.

Description

ロープ検査装置Rope inspection equipment
 本発明は、走行中のロープに光線を照射し、ロープを挟んで対向する受光手段で検出した受光量から外径値を求めて、外径異常を検出するためのロープ検査装置に関するものである。 The present invention relates to a rope inspection device for detecting an outer diameter abnormality by irradiating a running rope with a light beam, obtaining an outer diameter value from the amount of received light detected by a light receiving means opposed across the rope. .
 ロープ(例えばワイヤロープ)の外径異常を検出するために、ロープを挟んで対向する位置に配置した投光器と受光器を用いた診断装置が知られている(例えば、特許文献1)。特許文献1の診断装置では、投光部から発した光ビームをワイヤロープによって部分的に遮光し、遮光されなかった光ビームを受光部で受光して、その受光量を周波数分析して求めた周波数スペクトルからワイヤロープの外径異常(素線切れ、摩耗・形くずれ、伸び)を診断している。
特開平11-325841号公報
In order to detect an abnormality in the outer diameter of a rope (for example, a wire rope), a diagnostic apparatus using a projector and a light receiver disposed at positions facing each other across the rope is known (for example, Patent Document 1). In the diagnostic apparatus of Patent Document 1, the light beam emitted from the light projecting unit is partially shielded by the wire rope, the light beam not shielded is received by the light receiving unit, and the amount of received light is obtained by frequency analysis. Diagnose wire rope outer diameter abnormalities (wire breakage, wear / deformation, elongation) from the frequency spectrum.
JP-A-11-325841
 通常、走行中のロープは走行方向に対して垂直な方向に振動する(いわゆる「横揺れ」)。またLED光源などにより照射される光の強度は不均一である。よって、(1)ロープ外径に対して出力を線形に換算できない、(2)ロープ揺れによって出力が変化する、という問題があった。
 特許文献1のような技術を、ロープが横揺れするエレベータなどに適用しようとすると、上記のような問題があるため、適用は困難であった。
Normally, a traveling rope vibrates in a direction perpendicular to the traveling direction (so-called “rolling”). In addition, the intensity of light emitted from an LED light source or the like is not uniform. Therefore, there are problems that (1) the output cannot be converted linearly with respect to the outer diameter of the rope, and (2) the output changes due to the rope swing.
When the technique such as Patent Document 1 is applied to an elevator or the like in which the rope rolls, it is difficult to apply the technique because of the problems described above.
 そこで、本発明は、受光器の受光量をロープ外径に換算する際に線形の換算式によって換算でき、また、ロープの横揺れによる受光器の受光量の変動を抑制できるロープ検査装置を提供することを目的とする。 Therefore, the present invention provides a rope inspection device that can convert the amount of light received by the light receiver into a rope outer diameter using a linear conversion formula and can suppress fluctuations in the amount of light received by the light receiver due to the roll of the rope. The purpose is to do.
 本発明は、走行するロープに光線を照射するために、前記光線の光軸と直交し且つ前記ロープの走行方向と直交する第1の方向における前記光線の幅が、前記ロープの最大外径値と前記ロープが走行中に第1の方向に移動する幅とを加算した値より大きい前記光線を出射する光照射手段と、前記ロープを挟んで前記光照射手段と対向して配置され、前記光線の光量を検出する受光手段と、前記受光手段で検出された前記光量を前記ロープの外径値に変換する変換手段と、を含むロープ検査装置であって、前記光線の強度は、前記光線の進行方向に対して垂直な面内で、且つ前記ロープに照射される範囲内では略均一であることを特徴とする。 In the present invention, in order to irradiate a traveling rope with a light beam, the width of the light beam in a first direction orthogonal to the optical axis of the light beam and orthogonal to the traveling direction of the rope is a maximum outer diameter value of the rope. And a light irradiating means for emitting the light beam larger than a value obtained by adding the width of the rope moving in the first direction while traveling, and the light irradiating means arranged opposite to the light irradiating means across the rope. A light-inspecting device that detects the amount of light, and a conversion unit that converts the light amount detected by the light-receiving unit into an outer diameter value of the rope. It is characterized by being substantially uniform within a plane perpendicular to the traveling direction and within a range irradiated on the rope.
 ここで、ロープに照射される範囲(以下「測定ビーム範囲」と称する)とは、ロープの外径値を測定する際に用いられるビームの範囲である。測定ビーム範囲の寸法のうち、第1の方向(前記光線の光軸と、前記ロープの走行方向とのいずれとも直交する方向)における寸法(これを「光線の幅」と称する)は、前記ロープの最大外径値と前記ロープが走行中に第1の方向に移動する幅(ロープの横揺れによる移動量)とを加算した値より大きくされている。つまり、光線の幅は、ロープの最大外径値より大きいだけでなく、ロープが横揺れした場合でもロープが測定ビーム範囲から外れないように設定されている。
 また、「ロープの最大外径値」とは、光線(ビーム)を遮光するロープの外径値のうち、最大の値のことである。
Here, the range irradiated on the rope (hereinafter referred to as “measurement beam range”) is a beam range used when measuring the outer diameter value of the rope. Of the dimensions of the measurement beam range, the dimension in the first direction (the direction orthogonal to both the optical axis of the light beam and the traveling direction of the rope) (referred to as the “light beam width”) is the rope And the width of the rope moving in the first direction during travel (the amount of movement due to the roll of the rope) is made larger than the value obtained by adding the maximum outer diameter value. That is, the width of the light beam is set not only to be larger than the maximum outer diameter value of the rope, but also to prevent the rope from falling out of the measurement beam range even when the rope rolls.
Further, the “maximum outer diameter value of the rope” is the maximum value among the outer diameter values of the rope that blocks the light beam.
 本発明では、測定ビーム範囲内の光線の強度分布が略均一であるので、受光手段での受光量とロープの外径との関係が略線形の関係になる。よって、受光器の受光量をロープの外径に換算する際に、比較的簡単な線形の換算式で換算することができる。
 また、本発明では、測定ビーム範囲内の光線の強度分布が略均一であるので、光線内におけるロープの位置が変化した場合でも、同じ外径を有するロープであれば、受光手段での受光量の変動が少ない。
In the present invention, since the intensity distribution of the light beam within the measurement beam range is substantially uniform, the relationship between the amount of light received by the light receiving means and the outer diameter of the rope is a substantially linear relationship. Therefore, when converting the amount of light received by the light receiver to the outer diameter of the rope, it can be converted by a relatively simple linear conversion formula.
In the present invention, since the intensity distribution of the light beam within the measurement beam range is substantially uniform, the amount of light received by the light receiving means is not limited as long as the rope has the same outer diameter even when the position of the rope within the light beam changes. There are few fluctuations.
 本発明によれば、受光器の受光量をロープ外径に換算する際に線形の換算式によって換算できると共に、ロープの横揺れによって受光手段での受光量の変動を抑制できるロープ検査装置を提供することができる。 According to the present invention, there is provided a rope inspection apparatus that can convert the amount of light received by a light receiver into a rope outer diameter by a linear conversion formula and can suppress fluctuations in the amount of light received by a light receiving means due to the roll of the rope. can do.
本発明の実施の形態1におけるロープ検査装置による検出手順を説明する模式図である。It is a schematic diagram explaining the detection procedure by the rope inspection apparatus in Embodiment 1 of this invention. 本発明の実施の形態1におけるロープ検査装置の光源から受光部までを、ロープの走行方向(長手方向)と垂直な面で切断したときの概略断面図である。It is a schematic sectional drawing when cut | disconnecting from the light source of the rope inspection apparatus in Embodiment 1 of this invention to the light-receiving part by the surface perpendicular | vertical to the traveling direction (longitudinal direction) of a rope. 図1-2の矢印Bの方向から観察したときの、均一光と測定ビーム範囲とを示す概略図である。FIG. 3 is a schematic diagram showing uniform light and a measurement beam range when observed from the direction of arrow B in FIG. 1-2. (a)は、図1-2のX-X線(均一化光学系より上流側)における光線の強度分布であり、(b)は、図1-2及び図1-3のY-Y線(均一化光学系より下流側で、スリットより上流側)における光線の強度分布であり、(c)は、図1-2及び図1-7のZ-Z線(スリットより下流側)における光線の強度分布である。(A) is an intensity distribution of light rays in the XX line (upstream side of the homogenizing optical system) in FIG. 1-2, and (b) is a YY line in FIGS. 1-2 and 1-3. (C) is a ray distribution at the ZZ line (downstream side of the slit) in FIGS. 1-2 and 1-7. Intensity distribution. 本実施の形態で使用されるスリットの正面図である(a、b)。It is a front view of the slit used by this Embodiment (a, b). 図1-2の矢印Bの方向から観察したときの、横長形状に整形したビームとロープとの位置関係を示す概略図である(a、b)。FIG. 3 is a schematic diagram showing a positional relationship between a beam shaped into a horizontally long shape and a rope when observed from the direction of arrow B in FIG. 1-2 (a, b). 図1-2の矢印Bの方向から観察したときの、長方形に整形したビームとロープとの位置関係を示す概略図である(a、b)。FIG. 3 is a schematic diagram showing a positional relationship between a beam shaped into a rectangle and a rope when observed from the direction of arrow B in FIG. 1-2 (a, b). ロープの概略断面図である。It is a schematic sectional drawing of a rope. ロープの外観を示す概略正面図である。It is a schematic front view which shows the external appearance of a rope. ロープが加速しながら走行し(0~α)、その後一定速度となり(α~β)、最後に減速しながら停止した(β~γ)場合のロープの計測位置を表すグラフである。It is a graph showing the measured position of the rope when the rope travels while accelerating (0 to α), then reaches a constant speed (α to β), and finally stops while decelerating (β to γ). 本発明の実施の形態1において、図1-10のように走行したロープをロープ検査装置で検査して得られた外径値データを、時間軸に対してプロットしたグラフ(時間-外径値グラフ)である。In Embodiment 1 of the present invention, a graph (time-outer diameter value) plotting the outer diameter value data obtained by inspecting a rope traveling as shown in FIG. Graph). 図1-11で用いた外径値データを、位置データに対してプロットしたグラフ(位置-外径値グラフ)である。12 is a graph (position-outer diameter value graph) in which the outer diameter value data used in FIG. 1-11 is plotted against position data. 外径異常が生じたロープの外観を示す概略正面図である。It is a schematic front view which shows the external appearance of the rope which the outer diameter abnormality produced. 図1-13のロープの検査結果から得られた位置-外径値グラフである。It is a position-outer diameter value graph obtained from the inspection result of the rope of FIG. 1-13. 図1-8のような内部構造を有するロープの検査結果から得られた位置-外径値グラフである。(a)は外径異常のないロープの位置-外径値グラフであり、(b)は外層ストランドが緩んだロープの位置-外径値グラフであり、(c)は内層ストランドが緩んだロープの位置-外径値グラフである。FIG. 9 is a position-outer diameter value graph obtained from a test result of a rope having an internal structure as shown in FIG. 1-8. (A) is a rope position-outer diameter value graph with no abnormal outer diameter, (b) is a rope position-outer diameter value graph with loose outer layer strands, and (c) is a rope with inner layer strands loosened. Is a position-outer diameter value graph. 本発明の実施形態1において、各区間における総外径値を表したグラフである。In Embodiment 1 of this invention, it is the graph showing the total outer diameter value in each area. 本発明の実施形態1において、同一区間における総外径値の経時変化を表したグラフである。In Embodiment 1 of this invention, it is a graph showing the time-dependent change of the total outer diameter value in the same area. 本発明の実施の形態2におけるロープ検査装置による検出手順を説明する模式図である。It is a schematic diagram explaining the detection procedure by the rope inspection apparatus in Embodiment 2 of this invention. 本発明の実施の形態2において、外径値データを、位置データに対してプロットしたグラフ(位置-外径値グラフ)である。In Embodiment 2 of this invention, it is the graph (position-outer diameter value graph) which plotted the outer diameter value data with respect to position data. 本発明の実施の形態3におけるロープ検査装置による検出手順を説明する模式図である。It is a schematic diagram explaining the detection procedure by the rope inspection apparatus in Embodiment 3 of this invention. 本発明の実施の形態3において、図1-8のように走行したロープをロープ検査装置で検査して得られた外径値データを、時間軸に対してプロットしたグラフ(時間-外径値グラフ)である。In Embodiment 3 of the present invention, a graph (time-outer diameter value) in which outer diameter value data obtained by inspecting a rope traveling as shown in FIG. Graph). 図3-2の時間-外径値グラフからの凹凸の頂部(山と谷)の抽出を説明するための図である。It is a figure for demonstrating extraction of the peak part (mountain and valley) of the unevenness | corrugation from the time-outer diameter value graph of FIG. 3-2. 図3-2で用いた外径値データを、凹凸の頂部(山と谷)の位置に基づいて再プロットしたグラフ(位置-外径値グラフ)である。FIG. 3 is a graph (position-outer diameter value graph) in which the outer diameter value data used in FIG. 3B is replotted based on the positions of the tops and valleys of the unevenness. 本発明の実施の形態4におけるロープ検査装置の光源から受光部までを、ロープの走行方向(長手方向)と垂直な面で切断したときの概略断面図である。It is a schematic sectional drawing when the light source of the rope inspection apparatus in Embodiment 4 of this invention to a light-receiving part is cut | disconnected by the surface perpendicular | vertical to the running direction (longitudinal direction) of a rope. 本発明の実施の形態4におけるロープ検査装置による検出手順を説明する模式図の一部である。It is a part of schematic diagram explaining the detection procedure by the rope inspection apparatus in Embodiment 4 of this invention. 本発明の実施の形態5におけるロープ検査装置による検出手順を説明する模式図である。It is a schematic diagram explaining the detection procedure by the rope inspection apparatus in Embodiment 5 of this invention. (a)は、左側受光素子からの出力を時間に対してプロットしたグラフであり、(b)は、右側受光素子からの出力を時間に対してプロットしたグラフであり、(c)は、ロープの基準位置からのずれを時間に対してプロットしたグラフである。(A) is a graph in which the output from the left light receiving element is plotted against time, (b) is a graph in which the output from the right light receiving element is plotted against time, and (c) is a rope. It is the graph which plotted the shift | offset | difference from reference | standard position with respect to time. 本発明の実施の形態5におけるロープ検査装置の光源から受光部までを、ロープの走行方向(長手方向)と垂直な面で切断したときの概略断面図である。It is a schematic sectional drawing when cut | disconnecting from the light source of the rope inspection apparatus in Embodiment 5 of this invention to the light-receiving part by the surface perpendicular | vertical to the running direction (longitudinal direction) of a rope. 本発明の実施の形態6におけるロープ検査装置について、図1-2の矢印Bの方向から観察したときの、円形のビームとロープとの位置関係を示す概略図である(a、b)。FIG. 17 is a schematic diagram showing a positional relationship between a circular beam and a rope when observed from the direction of arrow B in FIG. 1-2 for the rope inspection apparatus according to Embodiment 6 of the present invention (a, b). 本発明の実施の形態6におけるロープ検査装置について、図1-2の矢印Bの方向から観察したときの、楕円形のビームとロープとの位置関係を示す概略図である(a、b)。FIG. 17 is a schematic diagram showing the positional relationship between an elliptical beam and a rope when observed from the direction of arrow B in FIG. 1-2 for the rope inspection apparatus according to Embodiment 6 of the present invention (a, b).
 A ロープ検査装置、1 ロープ、2 均一光、2M 測定ビーム、3 光照射手段(均一光照射手段)、4 光源、5 均一化光学系、6 受光手段(受光部)、6L 左側受光部、6R 右側受光部、7 受光素子、7L 左側受光素子、7R 右側受光素子、8 集光レンズ、8L 左側集光レンズ、8R 右側集光レンズ、15 スリット、S 開口部、20 変換手段、21 受光部出力処理回路、22 AD変換器、23 換算手段、30 ロープ位置算出手段、31 エンコーダ、32 ロープ位置算出装置、40 記憶手段(記憶装置)、50 演算装置、51 演算手段、60 測定ビーム範囲、90 ロープ搬送手段、C ロープの中心線、DL 位置データ、P パルス信号、Dir1 第1の方向、Dir2 長手方向、DirL 光線の進行方向、DirR ロープ1の走行方向、ext 抽出グラフ、nor 正常時の振幅の値。 A rope inspection device, 1 rope, 2 uniform light, 2M measurement beam, 3 light irradiation means (uniform light irradiation means), 4 light sources, 5 uniformizing optical system, 6 light receiving means (light receiving part), 6L left light receiving part, 6R Right light receiving part, 7 light receiving element, 7L left light receiving element, 7R right light receiving element, 8 condensing lens, 8L left condensing lens, 8R right condensing lens, 15 slit, S opening, 20 conversion means, 21 light receiving part output Processing circuit, 22 AD converter, 23 conversion means, 30 rope position calculation means, 31 encoder, 32 rope position calculation device, 40 storage means (storage device), 50 calculation device, 51 calculation means, 60 measurement beam range, 90 rope Conveyance means, C rope center line, DL position data, P pulse signal, Dir1 first direction, Dir2 length Direction, the traveling direction of DirL light, the traveling direction of DirR rope 1, ext extracted graph, the amplitude value at nor normal.
 以下、図面に基づいて本発明の実施の形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」及び、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating specific directions and positions (for example, “up”, “down”, “right”, “left” and other terms including those terms) are used as necessary. . The use of these terms is to facilitate understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of these terms. Moreover, the part of the same code | symbol which appears in several drawing shows the same part or member.
<実施の形態1>
 図1-1に、実施の形態1におけるロープ検査装置Aによる検出手順を説明する模式図を示す。また、図1-2に、本発明の実施の形態1におけるロープ検査装置Aの光源4から受光手段(受光部)6までを、ロープ1の走行方向に対して垂直な面で切断したときの概略断面を示す。図1-2では、ロープ1は紙面と垂直な方向に伸びており、そしてロープ1の長手方向に走行する。
 ロープ検査装置Aは、光照射手段(均一光照射手段)3、スリット15、受光手段(受光部)6、変換手段20、ロープ位置算出手段30、記憶手段40を含んでいる。
<Embodiment 1>
FIG. 1-1 shows a schematic diagram for explaining a detection procedure by the rope inspection apparatus A in the first embodiment. Also, FIG. 1-2 illustrates a case where the light source 4 to the light receiving means (light receiving unit) 6 of the rope inspection apparatus A in Embodiment 1 of the present invention are cut along a plane perpendicular to the traveling direction of the rope 1. A schematic cross section is shown. In FIG. 1-2, the rope 1 extends in a direction perpendicular to the paper surface and travels in the longitudinal direction of the rope 1.
The rope inspection apparatus A includes a light irradiation unit (uniform light irradiation unit) 3, a slit 15, a light receiving unit (light receiving unit) 6, a conversion unit 20, a rope position calculation unit 30, and a storage unit 40.
 均一光照射手段3は、光線(ビーム)を、走行するロープ1に照射するためのものである。ビームは、その光軸と直交し、且つロープの走行方向に対して直交する方向(第1の方向Dir1)における幅が、前記ロープの最大外径値より大きい。均一光照射手段3は、第1の方向Dir1における幅が少なくともロープ1の最大外径値より大きい測定ビーム範囲60(図1-3参照)の範囲内で、略均一な強度を有するビーム(均一光2)を射出する。 The uniform light irradiation means 3 is for irradiating the traveling rope 1 with a light beam. The width of the beam in a direction (first direction Dir1) orthogonal to the optical axis and orthogonal to the traveling direction of the rope is larger than the maximum outer diameter value of the rope. The uniform light irradiation means 3 is a beam having a substantially uniform intensity within a measurement beam range 60 (see FIG. 1-3) whose width in the first direction Dir1 is at least larger than the maximum outer diameter value of the rope 1 (uniform 1). Light 2) is emitted.
 均一光照射手段3は、例えば、光軸から離れるにしたがって強度が低くなるような不均一な強度分布を有する不均一光(図1-4(a))を射出する光源4と、その不均一光を、少なくとも測定ビーム範囲60にわたって強度を略均一にするための均一化光学系5と、から構成される(図1-2)。図1-4(b)に示すように、均一光2は、測定ビーム範囲60の範囲内の強度が略均一である。 The uniform light irradiating means 3 includes, for example, a light source 4 that emits non-uniform light (FIG. 1-4 (a)) having non-uniform intensity distribution such that the intensity decreases as the distance from the optical axis increases. The light is composed of a homogenizing optical system 5 for making the intensity substantially uniform over at least the measurement beam range 60 (FIG. 1-2). As shown in FIG. 1-4B, the uniform light 2 has a substantially uniform intensity within the measurement beam range 60.
 測定ビーム範囲60は、均一光2のうちでロープ1の外径測定に利用される均一光(「測定ビーム2M」と称する)の範囲のことである。測定ビーム範囲60の第1の方向Dir1における幅(横幅61:図1-3)は、ロープ1の最大外径値、ロープ1の横揺れの振幅及び測定精度を考慮して、前記ロープ全体に照射されるように設定される。横幅61は、例えばロープ1の外径1dの10倍以上(例えば10~20倍程度)に設定される。 The measurement beam range 60 is a range of uniform light (referred to as “measurement beam 2M”) used for measuring the outer diameter of the rope 1 in the uniform light 2. The width of the measurement beam range 60 in the first direction Dir1 (lateral width 61: FIG. 1-3) is determined by considering the maximum outer diameter value of the rope 1, the amplitude of the roll of the rope 1, and the measurement accuracy. It is set to be irradiated. The lateral width 61 is set to, for example, 10 times or more (for example, about 10 to 20 times) the outer diameter 1d of the rope 1.
 なお、強度分布が均一な均一光2を射出する光源4を使用すれば、均一化光学系5を使用せずに、光源4のみから均一光照射手段3を構成することもできる。本明細書では、主に、光源4と均一化光学系5とを含む均一光照射手段3について説明するが、いずれの例示でも、光源4のみから成る均一光照射手段3と交換可能である。 If the light source 4 that emits the uniform light 2 having a uniform intensity distribution is used, the uniform light irradiating means 3 can be configured only from the light source 4 without using the uniformizing optical system 5. In the present specification, the uniform light irradiation means 3 including the light source 4 and the uniformizing optical system 5 will be mainly described. However, in any example, the uniform light irradiation means 3 including only the light source 4 can be replaced.
 光源4としては、様々な周知の光源が利用でき、例えば発光ダイオードや半導体レーザなどが好適である。
 均一化光学系5としては、例えば、ケーラー照明系の光学系が挙げられる。ケーラー照明系は、光源4からの不均一光を、複数枚のレンズによって均一光とするものである。なお、均一光2を照射できる光源4(例えば、平行光発光ダイオード)を使用する場合には、均一化光学系5を省略することができる。
As the light source 4, various known light sources can be used. For example, a light emitting diode or a semiconductor laser is preferable.
Examples of the homogenizing optical system 5 include a Koehler illumination optical system. In the Kohler illumination system, non-uniform light from the light source 4 is converted into uniform light by a plurality of lenses. In addition, when using the light source 4 (for example, parallel light emitting diode) which can irradiate the uniform light 2, the uniformization optical system 5 can be abbreviate | omitted.
 スリット15は、ロープ1の走行方向DirR(「上下方向」とする)における均一光2の縦方向幅が一定になるように、均一光2の一部を遮光する。均一光2(特に、測定ビーム2M)の上下部分をスリット15によって遮光して、測定ビーム2Mを、上下方向の幅が一定な横長ビーム形状に整形する。
 この横長の測定ビーム2Mがロープ1に照射されて、ロープ1がその一部を遮光するとき、ロープ1によって遮光される面積は、「ロープ1の外径×測定ビーム2Mの幅」で求めることができる。測定ビーム2Mの幅が一定なので、この遮光面積も一定になる。よって、ロープ1が横揺れしたとしても、遮光面積は変動しない。
The slit 15 blocks a part of the uniform light 2 so that the vertical width of the uniform light 2 in the traveling direction DirR (referred to as “vertical direction”) of the rope 1 is constant. The upper and lower portions of the uniform light 2 (especially the measurement beam 2M) are shielded by the slits 15, and the measurement beam 2M is shaped into a horizontally long beam shape having a constant vertical width.
When the horizontally long measuring beam 2M is irradiated onto the rope 1 and the rope 1 shields a part of the rope 1, the area shielded by the rope 1 is obtained by “the outer diameter of the rope 1 × the width of the measuring beam 2M”. Can do. Since the width of the measurement beam 2M is constant, this light shielding area is also constant. Therefore, even if the rope 1 rolls, the light shielding area does not change.
 受光部6は、ロープ1を挟んで均一光照射手段3と対向して配置されている。受光部6には、測定ビーム範囲60内の均一光2(測定ビーム2M)を受光するための受光素子7が含まれており、ロープ1の両側を通過した測定ビーム2Mの光量を検出する。また、受光部6は、ロープ1と受光素子7との間に配置される集光レンズ8を含んでもよく、受光素子7に対して測定ビーム2Mのスポットが大きい場合に、測定ビーム2Mを集光して、測定ビーム2Mのスポットを受光素子7の受光面に収まる幅に縮小することができる(図1-2)。
 受光素子7としては、様々な周知の受光素子が利用でき、例えば半導体素子などが好適である。集光レンズ8は、一般的な凸レンズ(両凸レンズ、片凸レンズ)が利用できる。
The light receiving unit 6 is disposed to face the uniform light irradiation unit 3 with the rope 1 interposed therebetween. The light receiving unit 6 includes a light receiving element 7 for receiving the uniform light 2 (measurement beam 2M) within the measurement beam range 60, and detects the light amount of the measurement beam 2M that has passed through both sides of the rope 1. The light receiving unit 6 may include a condenser lens 8 disposed between the rope 1 and the light receiving element 7. When the spot of the measurement beam 2M is larger than the light receiving element 7, the light receiving part 6 collects the measurement beam 2M. The spot of the measurement beam 2M can be reduced to a width that fits on the light receiving surface of the light receiving element 7 (FIG. 1-2).
As the light receiving element 7, various known light receiving elements can be used. For example, a semiconductor element or the like is preferable. As the condenser lens 8, a general convex lens (biconvex lens, single convex lens) can be used.
 演算装置50は、換算手段23と、演算手段51とを含んでいる。換算手段23は、受光素子7の受光量からロープ1の外径値1dへの換算の際の換算処理を行うものであり、後述の変換手段20の一部を構成している。
 演算手段51は、外径値1dのデータ(外径値データD)と同期して得られたロープ1の位置データDLをあわせて記憶装置に記憶する。また、演算手段51は、ロープ1の外径値1dのデータ(外径値データD)と、位置データDLとから、ロープ位置に対するロープ外径値1dのグラフを描く処理も行う。
The calculation device 50 includes a conversion unit 23 and a calculation unit 51. The conversion means 23 performs conversion processing when converting the amount of light received by the light receiving element 7 to the outer diameter value 1d of the rope 1 and constitutes a part of the conversion means 20 described later.
The calculation means 51 stores the position data DL of the rope 1 obtained in synchronization with the data of the outer diameter value 1d (outer diameter value data D) together in the storage device. The computing means 51 also performs a process of drawing a graph of the rope outer diameter value 1d with respect to the rope position from the data of the outer diameter value 1d of the rope 1 (outer diameter value data D) and the position data DL.
 変換手段20は、例えば、ロープに照射した測定範囲における全光量と、受光素子7が受光した光量との比率に基づいて、ロープ1の外径値1dに変換するものであり、受光部出力処理回路21、AD変換器22及び換算手段23から構成されている。 The converting means 20 converts, for example, the outer diameter value 1d of the rope 1 based on the ratio between the total light amount in the measurement range irradiated on the rope and the light amount received by the light receiving element 7, and the light receiving unit output process The circuit 21 is composed of an AD converter 22 and a conversion means 23.
 ロープ位置算出手段30は、ロープ搬送手段90に内蔵されているエンコーダ31と、エンコーダ31からのパルス信号Pを受信して位置データDLを出力する。 The rope position calculation means 30 receives the encoder 31 built in the rope conveyance means 90 and the pulse signal P from the encoder 31, and outputs position data DL.
 記憶手段(例えばメモリ等の記憶装置)40とは、外径値データDと位置データDLとを記憶するものである。また、それらのデータを処理した後の処理データ(例えば、後述の演算装置50の演算手段51から得られたグラフ等)も記憶する。 The storage means (for example, a storage device such as a memory) 40 stores the outer diameter value data D and the position data DL. Moreover, the processing data (For example, the graph etc. which were obtained from the calculating means 51 of the calculating device 50 mentioned later) after processing those data are also memorize | stored.
 このように構成されたロープ検査装置Aでは、均一化照射手段3からの均一光2をスリット15で整形した後に走行するロープ1に照射し、ロープ1に遮光されなかった均一光2を集光レンズ8で受光部6に集光し、その光量を測定する。変換手段20では、光量を外径値1dに換算し、記憶装置40に記憶させる。一方、ロープ位置算出手段30は、走行するロープ1のうちで測定されている位置を特定し、記憶装置40に記憶させる。外径値1dのデータ(外径値データD)と位置データDLとは、同期させながら記憶装置40に記憶させるのが重要である。演算装置50の演算手段51は、記憶装置40から外径値データDと位置データDLとを読み出し、位置データDLに対する外径値データDをプロットする。得られたグラフは、走行するロープ1の外径値1dの特徴を反映しているので、外径異常があればその異常がグラフに反映されて、異常を見つけることができる。 In the rope inspection apparatus A configured as described above, the uniform light 2 from the uniformizing irradiation means 3 is irradiated to the traveling rope 1 after being shaped by the slit 15 and the uniform light 2 not shielded by the rope 1 is collected. The light is condensed on the light receiving unit 6 by the lens 8 and the amount of light is measured. In the conversion means 20, the light amount is converted into the outer diameter value 1 d and stored in the storage device 40. On the other hand, the rope position calculation means 30 specifies the position measured in the traveling rope 1 and stores it in the storage device 40. It is important that the data of the outer diameter value 1d (outer diameter value data D) and the position data DL are stored in the storage device 40 while being synchronized. The calculation means 51 of the calculation device 50 reads the outer diameter value data D and the position data DL from the storage device 40, and plots the outer diameter value data D against the position data DL. Since the obtained graph reflects the characteristics of the outer diameter value 1d of the traveling rope 1, if there is an abnormality in the outer diameter, the abnormality is reflected in the graph and the abnormality can be found.
 次に、スリット15を用いたビーム整形について詳細に説明する。
 図1-5のように、スリット15(151、152)には細長い開口部S1、S2が形成されている。ロープ検査装置Aにスリット15(151、152)を組み込む時には、開口部S1、S2の長手方向が、ロープ1の走行方向DirRと直交するように配置される。
 図1-5(a)のスリット151は、開口部S1の幅S11(図中の上下方向の寸法)が均一光2の測定ビーム範囲60の直径61より小さく、開口部S1の長さS12(図中の左右方向の寸法)が測定ビーム範囲60の直径61より大きい。そして、図1-5(b)のスリット152は、開口部S2の幅S21も、開口部S2の長さS22も測定ビーム範囲60の直径61より小さい。
Next, beam shaping using the slit 15 will be described in detail.
As shown in FIG. 1-5, elongated openings S1 and S2 are formed in the slits 15 (151 and 152). When the slit 15 (151, 152) is incorporated into the rope inspection apparatus A, the openings S1, S2 are arranged so that the longitudinal direction thereof is orthogonal to the traveling direction DirR of the rope 1.
1-5 (a), the width S11 of the opening S1 (the vertical dimension in the figure) is smaller than the diameter 61 of the measurement beam range 60 of the uniform light 2, and the length S12 of the opening S1 ( The dimension in the horizontal direction in the drawing is larger than the diameter 61 of the measurement beam range 60. In the slit 152 of FIG. 1B, the width S21 of the opening S2 and the length S22 of the opening S2 are smaller than the diameter 61 of the measurement beam range 60.
 図1-6~図1-7は、図1-2(a)の矢印Bの方向から観察したときの均一光2と、均一光2の一部を遮光するロープ1とを図示している。 1-6 to 1-7 illustrate the uniform light 2 observed from the direction of the arrow B in FIG. 1-2A and the rope 1 that blocks a part of the uniform light 2. .
 図1-5(a)のスリット151で整形した横長形状の均一光2の場合、整形後の均一光2(特に、測定ビーム範囲60内にある測定ビーム2M)の幅63は一定になる(図1-6(a))。よって、図1-6(a)と図1-6(b)とを比較してわかるように、ロープ1が測定ビーム範囲60内で左右方向に移動しても、ロープ1の外径値1dが変化しない限り、ロープ1に遮光されなかった均一光2の総面積は変化しない。つまり、ロープ1が横揺れして、測定ビーム範囲60内におけるロープ1の位置が変化しても、受光部6での受光量はロープ1の外径値1dの変化によってのみ変動する。
 また、測定ビーム範囲60の外側にある均一光2(均一光2の周縁部に存在)は、不均一な強度を含むことがあるが、スリット151は、均一光2の上下方向にある強度不均一な部分を遮光する。
In the case of the horizontally long uniform light 2 shaped by the slit 151 in FIG. 1-5 (a), the width 63 of the shaped uniform light 2 (in particular, the measurement beam 2M within the measurement beam range 60) is constant ( Fig. 1-6 (a)). Therefore, as can be seen by comparing FIG. 1-6 (a) and FIG. 1-6 (b), even if the rope 1 moves in the left-right direction within the measurement beam range 60, the outer diameter value 1d of the rope 1 As long as does not change, the total area of the uniform light 2 not shielded by the rope 1 does not change. That is, even if the rope 1 rolls and the position of the rope 1 in the measurement beam range 60 changes, the amount of light received by the light receiving unit 6 varies only by the change in the outer diameter value 1d of the rope 1.
In addition, the uniform light 2 outside the measurement beam range 60 (existing at the peripheral edge of the uniform light 2) may include non-uniform intensity, but the slit 151 does not have the intensity in the vertical direction of the uniform light 2. Shade uniform areas.
 また、図1-5(b)スリット152で整形した長方形の均一光2の場合も同様に、整形後の測定ビーム範囲60内にある均一光2の幅63は一定になる(図1-7(a))。よって、図1-7(a)と図1-7(b)とを比較してわかるように、ロープ1が測定ビーム範囲60内で左右方向に移動しても、ロープ1に遮光されなかった均一光2の総面積は変化しない。つまり、ロープ1が横揺れして、測定ビーム範囲60内におけるロープ1の位置が変化しても、受光部6での受光量が変動しない。
 なお、スリット151と同様に、スリット152も均一光2の上下方向にある強度不均一な部分を遮光する。
Similarly, in the case of the rectangular uniform light 2 shaped by the slit 152 in FIG. 1-5 (b), the width 63 of the uniform light 2 within the measurement beam range 60 after shaping is constant (FIG. 1-7). (A)). Therefore, as can be seen by comparing FIG. 1-7 (a) and FIG. 1-7 (b), even if the rope 1 moves in the left-right direction within the measurement beam range 60, the rope 1 was not shielded from light. The total area of the uniform light 2 does not change. That is, even if the rope 1 rolls and the position of the rope 1 in the measurement beam range 60 changes, the amount of light received by the light receiving unit 6 does not change.
Note that, similarly to the slit 151, the slit 152 also shields a non-uniform intensity portion in the vertical direction of the uniform light 2.
 なお、スリット151では、スリットの開口部S1の長さS12が測定ビーム範囲60の直径61より大きいので、整形後の横長形状ビームは、左右端の少なくとも一方に、測定ビーム領域60よりも外側にある均一光2(強度が不均一な光も含んでいる)が含まれる。
 それに対して、スリット152では、開口部S2の長さS22が測定ビーム範囲60の直径61より小さいので、測定ビーム領域60よりも外側にある均一光2を全て遮断することができる。よって、スリット152を通過させることにより、全体にわたって略均一な強度を有する長方形ビームを得ることができる(図1-7)。得られた長方形ビームの強度分布を図1-4(c)に示す。スリット152で整形した長方形ビームは均一光2の不均一部分を含まないので、ロープ検査装置Aの測定精度が高くなる。また、ロープ検査装置Aに含まれる光学系等からの散乱光を効果的に遮光できるので、受光部6で得られる受光量のデータのノイズを減少することができる。
In the slit 151, since the length S12 of the slit opening S1 is larger than the diameter 61 of the measurement beam range 60, the horizontally elongated beam after shaping is located outside at least one of the left and right ends and outside the measurement beam region 60. Some uniform light 2 (including light with non-uniform intensity) is included.
On the other hand, in the slit 152, since the length S22 of the opening S2 is smaller than the diameter 61 of the measurement beam range 60, all of the uniform light 2 outside the measurement beam region 60 can be blocked. Therefore, by passing through the slit 152, a rectangular beam having substantially uniform intensity can be obtained (FIG. 1-7). The intensity distribution of the obtained rectangular beam is shown in FIG. Since the rectangular beam shaped by the slit 152 does not include the non-uniform portion of the uniform light 2, the measurement accuracy of the rope inspection apparatus A is increased. Further, since scattered light from the optical system or the like included in the rope inspection apparatus A can be effectively blocked, the noise of the received light amount data obtained by the light receiving unit 6 can be reduced.
 本発明の均一光2は、ロープ1の中心線C(図1-2)を通り且つビームの光軸(光線の進行方向DirL)と直交する面の面内にて強度を測定したときに、測定ビーム範囲60内にある光(測定ビーム2M)の強度分布が略均一である。本明細書で「略均一」とは、測定ビーム2Mの強度分布が0~±10%の均一性を有していることを指す。 The uniform light 2 of the present invention is measured when the intensity is measured in a plane passing through the center line C (FIG. 1-2) of the rope 1 and perpendicular to the optical axis of the beam (the light traveling direction DirL). The intensity distribution of the light within the measurement beam range 60 (measurement beam 2M) is substantially uniform. In the present specification, “substantially uniform” means that the intensity distribution of the measurement beam 2M has a uniformity of 0 to ± 10%.
 光源4から射出される不均一光は、図1-3(a)のようなガウス分布の強度分布を有している。そのため、不均一光をロープ1に照射すると、ロープ1が横揺れした場合、ロープ1で遮光される面積が同じでも、遮光されるビーム強度が大きく変化する。スリット15でビームを整形しても、このビーム強度変化を抑えることはできない。
 一方、図1-3(b)のように測定ビーム範囲60内において略均一な強度分布を有するビーム(均一光)2であれば、ロープ1が横揺れしても、遮光面積が等しければ遮光されるビーム強度もほぼ等しくなる。よって、均一光2をスリット15で整形すれば、ロープ1が横揺れしても外径値1dの測定精度を高くすることができる。
The non-uniform light emitted from the light source 4 has a Gaussian intensity distribution as shown in FIG. For this reason, when the rope 1 is irradiated with non-uniform light, when the rope 1 rolls, even if the area shielded by the rope 1 is the same, the light intensity of the shielded light changes greatly. Even if the beam is shaped by the slit 15, this change in beam intensity cannot be suppressed.
On the other hand, if the beam (uniform light) 2 has a substantially uniform intensity distribution within the measurement beam range 60 as shown in FIG. The beam intensities applied are also approximately equal. Therefore, if the uniform light 2 is shaped by the slit 15, the measurement accuracy of the outer diameter value 1d can be increased even if the rope 1 rolls.
 なお、ビームの強度分布が0~±10%であれば、最終的に算出されるロープ1の外径値1dに対する影響(測定誤差)が、受光素子7の測定精度や、光量をロープ1の外径値1dに変換する際の誤差よりも小さくなる。よって、本発明では、測定ビーム範囲60の強度分布0~±10%の均一光2が好適である。 If the intensity distribution of the beam is 0 to ± 10%, the influence (measurement error) on the outer diameter value 1d of the rope 1 that is finally calculated may cause the measurement accuracy of the light receiving element 7 and the light amount to It becomes smaller than the error in converting to the outer diameter value 1d. Therefore, in the present invention, uniform light 2 having an intensity distribution of 0 to ± 10% in the measurement beam range 60 is preferable.
 以下に、本実施の形態のロープ検査装置Aを用いたロープ外径値1dの測定方法について詳細に説明する。
 測定方法は、ステップ1~6に分かれており、ロープ1に照射後の均一光2の光量測定(ステップ1)、光量をロープ1の外径値1dに変換(ステップ2)、均一光2が照射されているロープ1の位置データDLの取得(ステップ3)、外径値1dと位置データDLの記憶(ステップ4)、外径値1d及び位置データDLのデータ解析(ステップ5)、及び解析データからロープ1の外径異常の検出(ステップ6)から構成されている。
Below, the measuring method of the rope outer-diameter value 1d using the rope inspection apparatus A of this Embodiment is demonstrated in detail.
The measuring method is divided into steps 1 to 6, and the light amount measurement of the uniform light 2 after irradiating the rope 1 (step 1), the light amount is converted into the outer diameter value 1d of the rope 1 (step 2), and the uniform light 2 is Acquisition of position data DL of the irradiated rope 1 (step 3), storage of outer diameter value 1d and position data DL (step 4), data analysis of outer diameter value 1d and position data DL (step 5), and analysis It consists of detecting the outer diameter abnormality of the rope 1 from the data (step 6).
(ステップ1:光量の測定)
 図1-2に示すように、測定対象のロープ1に対してロープ検査装置Aを設置する。ロープ検査装置Aは、建築物等に固定されている。ロープ1は、固定されたロープ検査装置Aの中を、図1-2の紙面と垂直方向に、任意の速度で走行する。
 光源4から射出された不均一光は、均一化光学系5を通って均一光2にされ、スリット15を通って横長形状又は長方形に整形される(図1-6、図1-7)。整形された均一光2の測定ビーム2Mはロープ1に照射されて、その一部はロープ1によって遮光される。遮光されなかった測定ビーム2Mは、ロープ1の両側を通って進行する(図1-2)。遮光されなかった測定ビーム2Mは、集光レンズ8によって集光され、受光素子7に入射する。受光素子7は、受光した光量に応じた信号を出力する。
(Step 1: Measurement of light intensity)
As shown in FIG. 1-2, a rope inspection apparatus A is installed for the rope 1 to be measured. The rope inspection apparatus A is fixed to a building or the like. The rope 1 travels through the fixed rope inspection apparatus A at an arbitrary speed in a direction perpendicular to the paper surface of FIG.
The non-uniform light emitted from the light source 4 is made into uniform light 2 through the uniformizing optical system 5, and shaped into a horizontally long shape or a rectangle through the slit 15 (FIGS. 1-6 and 1-7). The shaped measurement beam 2M of the uniform light 2 is irradiated onto the rope 1 and a part thereof is shielded by the rope 1. The measurement beam 2M that is not shielded travels through both sides of the rope 1 (FIG. 1-2). The measurement beam 2M that is not shielded is condensed by the condenser lens 8 and enters the light receiving element 7. The light receiving element 7 outputs a signal corresponding to the amount of light received.
 測定対象となるロープ1の外径値1dが大きくなると、遮光面積が増えるので、受光素子7が受光する光量が低下し、一方、ロープ1の外径が小さくなると、遮光面積が減るので、受光素子7が受光する光量が増加する。この結果、受光素子7が受光する光量には走行するロープのシルエットが反映される。このとき、本実施の形態では、均一化光学系5とスリット15とを用いているので、受光素子7の受光量と、ロープ1のシルエットの幅(ロープの外径値1d)とは、線形の関係になる。 When the outer diameter value 1d of the rope 1 to be measured increases, the light shielding area increases, so the amount of light received by the light receiving element 7 decreases. On the other hand, when the outer diameter of the rope 1 decreases, the light shielding area decreases. The amount of light received by the element 7 increases. As a result, the silhouette of the running rope is reflected in the amount of light received by the light receiving element 7. At this time, in the present embodiment, since the uniformizing optical system 5 and the slit 15 are used, the amount of light received by the light receiving element 7 and the silhouette width of the rope 1 (the outer diameter value of the rope 1d) are linear. It becomes a relationship.
(ステップ2:ロープ外径値1dへの変換)
 受光素子7(受光素子6)からの信号は、変換手段20に入力される(図1-1)。本実施の形態では、変換手段20は、受光部出力処理回路21と、AD変換器22と、換算手段23とから構成されている。
 まず、受光素子7からの信号(電流値)は、受光部出力処理回路21に入力されて、電圧信号に変換される(I-V変換)。また、受光素子7からの信号からノイズ除去のためのフィルタ処理を行ってもよい。
 受光部出力処理回路21から出力された電圧信号は、AD変換器22に入力されて、デジタル信号に変換される。
(Step 2: Conversion to rope outer diameter value 1d)
A signal from the light receiving element 7 (light receiving element 6) is input to the conversion means 20 (FIG. 1-1). In the present embodiment, the conversion unit 20 includes a light receiving unit output processing circuit 21, an AD converter 22, and a conversion unit 23.
First, a signal (current value) from the light receiving element 7 is input to the light receiving unit output processing circuit 21 and converted into a voltage signal (IV conversion). Further, filter processing for removing noise from the signal from the light receiving element 7 may be performed.
The voltage signal output from the light receiving unit output processing circuit 21 is input to the AD converter 22 and converted into a digital signal.
 AD変換器22から出力されたデジタル信号は、換算手段23に入力される。換算手段23は、デジタル信号を線形の換算式(変換関数)で計算して、ロープ1の外径値1dのデータ(外径値データD)を出力する。変換関数は、予め、様々な外径値1dのロープ1と、そのロープ1をロープ検査装置Aで測定したときにAD変換器22から出力されるデジタル信号との関係を調べて、それらの関連性に基づいて決定される。また、変換関数に代えて、多数の換算データ(デジタル信号に対する外径値1dの対応を示す複数のデータの組)を保有することもできる。換算手段23は、換算データを参照して、入力されたデジタル信号を対応する外径値データDに変換する。 The digital signal output from the AD converter 22 is input to the conversion means 23. The conversion means 23 calculates a digital signal by a linear conversion formula (conversion function), and outputs data of the outer diameter value 1d of the rope 1 (outer diameter value data D). The conversion function is obtained by examining the relationship between the rope 1 having various outer diameter values 1d and the digital signal output from the AD converter 22 when the rope 1 is measured by the rope inspection device A in advance. Determined based on gender. Further, instead of the conversion function, a large number of conversion data (a plurality of sets of data indicating the correspondence of the outer diameter value 1d to the digital signal) can be held. The conversion unit 23 refers to the conversion data and converts the input digital signal into corresponding outer diameter value data D.
(ステップ3:ロープの位置データDLの取得)
 ロープ1の位置データDLは、ロープ位置算出手段30により生成される(図1-1)。本実施の形態では、ロープ位置算出手段30は、ロープ搬送装置90に内蔵されているエンコーダ31と、ロープ位置算出装置32とから構成されている。
 エンコーダ31は、ロープ搬送装置90がロープ1を所定方向に所定距離f(例えば1m)だけ搬送するごとに、正のパルス信号Pを出力する。例えばロータリーエンコーダは、ロープ搬送装置90が順方向(例えば時計回り)に1回転するごとにパルス信号Pを出力する。また、ロープ搬送装置90が逆方向(例えば反時計回り)に1回転するごとに、エンコーダ31は負のパルス信号-Pを出力する。
(Step 3: Acquisition of rope position data DL)
The position data DL of the rope 1 is generated by the rope position calculation means 30 (FIG. 1-1). In the present embodiment, the rope position calculation means 30 includes an encoder 31 built in the rope transport device 90 and a rope position calculation device 32.
The encoder 31 outputs a positive pulse signal P every time the rope conveyance device 90 conveys the rope 1 by a predetermined distance f (for example, 1 m) in a predetermined direction. For example, the rotary encoder outputs a pulse signal P every time the rope conveyance device 90 makes one rotation in the forward direction (for example, clockwise). Further, every time the rope transport device 90 makes one rotation in the reverse direction (for example, counterclockwise), the encoder 31 outputs a negative pulse signal -P.
 エンコーダ31から出力された正又は負のパルス信号P、-Pは、ロープ位置算出装置32に入力される。ロープ位置算出装置32は、ロープ検査装置A設置時のロープ1の位置データDL(初期値)を0として、正のパルス信号Pを受けるごとに位置データDLに所定距離fを加算し、負のパルス信号-Pを受けるごとに所定距離fを減算して、パルス信号P、-Pを受けた時の位置データDLを算出する。得られた位置データDLは、ロープ位置算出装置32から出力され、演算装置50の演算手段51に入力される。
 なお、位置データDLはロープ1が所定距離fごとにサンプリングされるので、ロープ1の搬送速度が変化する場合には、サンプリングの時間間隔も変化する。つまり、位置データDLのサンプリング間隔は、時間に依存しない。
The positive or negative pulse signals P and −P output from the encoder 31 are input to the rope position calculation device 32. The rope position calculation device 32 sets the position data DL (initial value) of the rope 1 at the time of installation of the rope inspection device A to 0, and adds a predetermined distance f to the position data DL every time a positive pulse signal P is received. Every time the pulse signal -P is received, the predetermined distance f is subtracted to calculate the position data DL when the pulse signals P and -P are received. The obtained position data DL is output from the rope position calculation device 32 and input to the calculation means 51 of the calculation device 50.
Since the position data DL is sampled at every predetermined distance f, the sampling time interval also changes when the transport speed of the rope 1 changes. That is, the sampling interval of the position data DL does not depend on time.
(ステップ4:データの記憶)
 演算装置50の換算手段23から出力されたロープ1の外径値データD(ステップ2)と、演算装置50の演算手段51から出力された位置データDL(ステップ3)とを、記憶装置40に記憶させる。なお、同じタイミングで記憶された外径値データDと位置データDLとは、関連づけながら(同期させながら)記憶させる。これにより、後述の「ステップ5」で、記憶装置40に記憶されたデータ列を解析することにより、ある時点におけるロープ1の測定位置と、その測定位置のロープ1の外径値1dとを知ることができる。
 なお、外径値データDのデータ数のほうが、位置データDLのデータ数より多いので、外径値データDの一部のみが位置データDLと対応付けられる。
(Step 4: Data storage)
The outer diameter value data D (step 2) of the rope 1 output from the conversion means 23 of the calculation device 50 and the position data DL (step 3) output from the calculation means 51 of the calculation device 50 are stored in the storage device 40. Remember. The outer diameter value data D and the position data DL stored at the same timing are stored while being associated (synchronized). Thereby, in “Step 5” described later, by analyzing the data string stored in the storage device 40, the measurement position of the rope 1 at a certain time point and the outer diameter value 1d of the rope 1 at the measurement position are known. be able to.
Since the number of data of the outer diameter value data D is larger than the number of data of the position data DL, only a part of the outer diameter value data D is associated with the position data DL.
(ステップ5:データ解析)
 記憶装置40に記憶された2つのデータ列(外径値データDと位置データDL)を、演算装置50の演算手段51によってデータ解析して、最終的にはロープ1の測定位置に対して外径値1dをプロットする。プロットで得られたグラフには、ロープ走行範囲の外観が再現される。
 実際のロープ1は表面に凹凸があるため、得られるグラフにも凹凸が現れる。グラフの意味を十分に把握するために、まず、ロープ1と、測定時のロープ1の速度について説明する。
(Step 5: Data analysis)
Two data strings (outer diameter value data D and position data DL) stored in the storage device 40 are subjected to data analysis by the calculation means 51 of the calculation device 50, and finally the outside of the measurement position of the rope 1. The diameter value 1d is plotted. The appearance of the rope travel range is reproduced in the graph obtained by plotting.
Since the actual rope 1 has irregularities on the surface, the irregularities also appear in the obtained graph. In order to fully understand the meaning of the graph, first, the rope 1 and the speed of the rope 1 during measurement will be described.
 測定対象のロープ1は、図1-8のような複層構造を有している。図1-8に例示したロープは、心鋼300の周りに、内層を形成する6本の内層ストランド200が螺旋状に巻き付けられる。内層の外側に、外層を形成する10本の外層ストランド101~110が螺旋状に巻き付けられる。内層ストランド200及び外層ストランド101~110の本数は変更可能である。また、内層ストランド200及び外層ストランド101~110の巻方向(S撚り、Z撚り)の組合せも任意に選択できる。 Measured rope 1 has a multilayer structure as shown in Fig. 1-8. In the rope illustrated in FIGS. 1-8, around the core steel 300, six inner layer strands 200 forming an inner layer are spirally wound. On the outside of the inner layer, ten outer layer strands 101 to 110 forming the outer layer are wound spirally. The number of the inner layer strand 200 and the outer layer strands 101 to 110 can be changed. Further, a combination of winding directions (S twist, Z twist) of the inner layer strand 200 and the outer layer strands 101 to 110 can be arbitrarily selected.
 図1-9は、6本の外層ストランド101~106を撚ったロープ1を示しており、長手方向Dir2(走行方向DirR)方向に沿って、同じ外層ストランドが6本おきに、繰り返し現れることがわかる。なお、同じストランドが現れるまでの距離を「撚りピッチT」と称する。
 図1-9からわかるように、外層ストランド101~106を螺旋状に巻いているので、ロープ1の外面には微細な凹凸が形成される。この微細な凹凸によって、ロープ1の外径も周期的に変化する。
FIG. 1-9 shows a rope 1 in which six outer layer strands 101 to 106 are twisted, and the same outer layer strand repeatedly appears every six in the longitudinal direction Dir2 (traveling direction DirR). I understand. The distance until the same strand appears is called “twist pitch T”.
As can be seen from FIG. 1-9, since the outer layer strands 101 to 106 are spirally wound, fine irregularities are formed on the outer surface of the rope 1. Due to this fine unevenness, the outer diameter of the rope 1 also changes periodically.
 微細な凹凸の数と、撚りピッチTと、使用している外層ストランドの本数との間には次のような関連性がある。
 撚りピッチTの範囲内には、使用されている外層ストランドの本数と同数の凹部が含まれる(図1-9では、6本の外層ストランドと、6つの凹部)。また、撚りピッチTの両端に位置する凸部をそれぞれ0.5個と数えれば、撚りピッチTの範囲内には、外層ストランドの本数と同数の凸部が含まれている(図1-9では、6本の外層ストランドと、6つの凸部が含まれている)。
There is the following relationship between the number of fine irregularities, the twist pitch T, and the number of outer layer strands used.
Within the range of the twist pitch T, the same number of recesses as the number of outer layer strands used are included (in FIG. 1-9, six outer layer strands and six recesses). Further, if the number of convex portions located at both ends of the twist pitch T is counted as 0.5, the same number of convex portions as the number of outer layer strands are included in the range of the twist pitch T (FIG. 1-9). Then, six outer layer strands and six convex portions are included).
 測定中のロープ1の走行速度は一定ではなく、図1-10に示すように、まず、加速しながら走行し(0~α)、その後一定速度となり(α~β)、最後に減速しながら停止した(β~γ)。 The traveling speed of the rope 1 being measured is not constant. As shown in FIG. 1-10, the traveling speed is first accelerated (0 to α), then becomes a constant speed (α to β), and finally decelerated. Stopped (β-γ).
 図1-8~図1-9に示すようなロープ1を、図1-10の条件で走行させた場合、得られる位置データDLのデータ列を時間に対してプロットすると、図1-11のようなグラフになる(「時間-外径値グラフ」と称する)。図1-11のα~γは、図1-10に対応している。 When the rope 1 as shown in FIG. 1-8 to FIG. 1-9 is run under the conditions of FIG. 1-10, when the data sequence of the obtained position data DL is plotted against time, the rope shown in FIG. The graph is as follows (referred to as “time-outer diameter value graph”). Α to γ in FIG. 1-11 correspond to FIG. 1-10.
 図1-11の「時間-外径値グラフ」は、ロープ1の外面にある微細な凹凸を反映した凹凸が確認される。しかしながら、実際のロープ1とは異なり、時間-外径値グラフの凹凸は等間隔になっていない。具体的には、時間-外径値グラフでは、0~αの間では、速度が上昇するに従って凹凸の間隔が徐々に狭くなり、α~βの間では、速度が一定なので凹凸の間隔も均一で、そしてβ~γの間では、速度が低下するに従って凹凸の間隔が徐々に広くなっている。 In the “time-outer diameter graph” shown in FIG. 1-11, irregularities reflecting fine irregularities on the outer surface of the rope 1 are confirmed. However, unlike the actual rope 1, the unevenness of the time-outer diameter graph is not evenly spaced. Specifically, in the time-outer diameter graph, between 0 and α, the unevenness interval gradually narrows as the speed increases, and between α and β, the unevenness interval is uniform because the speed is constant. In the range between β and γ, the interval between the irregularities gradually increases as the speed decreases.
 次に、「ステップ4」で外径値データと同期させて記憶していた位置データDLを用いて、図1-11の時間-外径値グラフの横軸を、位置データDLに置換する。置換後のグラフを、図1-12に示す(「位置-外径値グラフ」と称する)。
 図1-12から明らかなように、位置-外径値グラフでは、凹凸は等間隔になっている。すなわち、位置データDLに対して外径値データをプロットすることにより、グラフの凹凸の間隔は、測定時のロープ1の速度に依存せず、常に一定になる。
Next, the position data DL stored in synchronization with the outer diameter value data in “Step 4” is used to replace the horizontal axis of the time-outer diameter value graph of FIG. 1-11 with the position data DL. The graph after replacement is shown in FIG. 1-12 (referred to as “position-outer diameter value graph”).
As is apparent from FIG. 1-12, the unevenness is equally spaced in the position-outer diameter value graph. That is, by plotting the outer diameter value data with respect to the position data DL, the interval between the irregularities of the graph does not depend on the speed of the rope 1 at the time of measurement and is always constant.
 また、この図1-12の位置-外径値グラフは、図1-9に図示したロープ1を測定した測定データを解析したものであるが、グラフ上で求められる撚りピッチT、及び撚りピッチT内に含まれる凹凸の数が、図1-9のロープ1の外観と一致した。
 なお、図1-12はロープ1の外径値データをプロットしているので、外層ストランド102の突出する向きは反映されない。よって、図1-6のように両側面に凹凸を有するロープ1では、ロープ右側の突出に対応する外径値増加も、左側の突出に対応する外径値増加も、同じ「外径値の増加」として図1-12のグラフに反映される。
Further, the position-outer diameter graph of FIG. 1-12 is obtained by analyzing the measurement data obtained by measuring the rope 1 illustrated in FIG. 1-9. The twist pitch T and the twist pitch required on the graph are analyzed. The number of irregularities contained in T coincided with the appearance of the rope 1 in FIG. 1-9.
Note that since the outer diameter value data of the rope 1 is plotted in FIG. 1-12, the protruding direction of the outer layer strand 102 is not reflected. Therefore, in the rope 1 having unevenness on both sides as shown in FIG. 1-6, the outer diameter value increase corresponding to the protrusion on the right side of the rope and the outer diameter value increase corresponding to the protrusion on the left side are the same. The increase is reflected in the graph of FIG. 1-12.
 本実施の形態のように、ステップ3で位置データDLを取得することにより、ロープ1の走行速度に影響を受けずに、一定間隔の位置における外径値データを検出することができる。 As in the present embodiment, by acquiring the position data DL in step 3, it is possible to detect the outer diameter value data at the positions at regular intervals without being affected by the traveling speed of the rope 1.
(ステップ6:外径異常の検出)
 本実施の形態では、ロープ1に外径異常が生じた場合、その検出の手法が複数ある。以下に、それぞれの検出手法を説明する。
(Step 6: Detection of abnormal outer diameter)
In the present embodiment, when an abnormality in the outer diameter of the rope 1 occurs, there are a plurality of detection methods. Below, each detection method is demonstrated.
 (a)位置-外径値グラフからの直接検出手法
 図1-13は、ロープ1の外層ストランド102が切断等によって弛みを生じた様子を示している。図1-13からわかるように、弛んだ外層ストランド102が右側に飛び出し、撚りピッチTの半分(=T/2)だけ下がって左側に飛び出し、さらにT/2だけ下がって再び右側に飛び出す。外層ストランド102が飛び出した部分は外径値1dが大きくなるので、ロープ1がT/2進むごとに外径値1dの大きい部分が現れる。
(A) Direct Detection Method from Position-Outer Diameter Value Graph FIG. 1-13 shows a state in which the outer layer strand 102 of the rope 1 is loosened by cutting or the like. As can be seen from FIG. 1-13, the loose outer layer strand 102 jumps out to the right side, falls by half (= T / 2) of the twist pitch T, jumps out to the left side, and further falls by T / 2 and jumps out to the right side again. The portion where the outer layer strand 102 protrudes has a larger outer diameter value 1d, so that a portion having a larger outer diameter value 1d appears each time the rope 1 advances T / 2.
 このような外径異常を生じたロープ1を上述の「ステップ1~5」に従って測定すると、図1-14のような位置-外径値グラフが得られる。図1-14のグラフでは、3つおき(撚りピッチTの半分=T/2に相当)に大きく突出する凸部が、左右に飛び出した外層ストランド102に対応する。
 このように、位置-外径値グラフの形状に、撚りピッチTと相関性のある周期的な異変が現れた場合には、外層ストランドが弛んでいると判断することができる。
When the rope 1 having such an outer diameter abnormality is measured according to the above-mentioned “Steps 1 to 5”, a position-outer diameter value graph as shown in FIG. 1-14 is obtained. In the graph of FIG. 1-14, convex portions that protrude greatly every third (corresponding to half of the twist pitch T = corresponding to T / 2) correspond to the outer layer strands 102 that protrude to the left and right.
Thus, when a periodic change having a correlation with the twist pitch T appears in the shape of the position-outer diameter value graph, it can be determined that the outer layer strand is loose.
 (b)空間フィルタによる異常抽出
 図1-15は、図1-8のロープ1(外層ストランド10本、内層ストランド6本)から得られた位置-外径値グラフである。外層ストランドの撚りピッチTと、内層ストランドの撚りピッチtとは異なっている。
 図1-15(a)は、外径異常のないロープ1から得られたグラフである。図1-15(b)は、外層ストランド101~110のうちの1本が弛みを生じたロープ1から得られた位置-外径値グラフである。図1-15(c)は、内層ストランド200のうちの1本が弛みを生じたロープ1から得られた位置-外径値グラフである。なお、内層ストランド200は外層ストランドによって完全に覆われているので、簡単な視認だけでは、内層ストランド200の弛みを検出するのは困難な場合がある。
(B) Abnormal Extraction by Spatial Filter FIG. 1-15 is a position-outer diameter graph obtained from the rope 1 (10 outer layer strands, 6 inner layer strands) of FIG. 1-8. The twist pitch T of the outer layer strand is different from the twist pitch t of the inner layer strand.
FIG. 1-15 (a) is a graph obtained from the rope 1 having no abnormal outer diameter. FIG. 1-15 (b) is a position-outer diameter value graph obtained from the rope 1 in which one of the outer layer strands 101 to 110 has slackened. FIG. 1-15 (c) is a position-outer diameter value graph obtained from the rope 1 in which one of the inner layer strands 200 has slackened. In addition, since the inner layer strand 200 is completely covered with the outer layer strand, it may be difficult to detect the slack of the inner layer strand 200 only by simple visual recognition.
 各グラフを比較すると、図1-15(a)のグラフでは、同じ高さの凸部が並んでおり、図1-15(b)では、5つおきに他より高い凸部が現れ、そして図1-15(c)では、7~8つおきに他より高い凸部が現れる。
 図1-15(b)には、低い凸部が4つ続いた後に、高い凸部が1つ現れる、という周期性が見られる。この高い凸部の現れる周期(5つおき)は、外層ストランドの撚りピッチT(凸部10個分に相当)の半分と一致する。
 一方、図1-15(c)では、低い凸部が4つ~5つ続いた後に、高い凸部が2つ~1つ現れている。図1-15(b)と比べると、図1-15(c)では高い凸部の現れる周期が長い点と、高い凸部の個数(1つ~2つ)及び低い凸部の個数(4つ~5つ)にばらつきが見られる点で異なる。図1-15(b)と図1-15(c)との相違は、ロープ1の内部構造に起因するものであり、詳細については後述する。
Comparing the graphs, in the graph of FIG. 1-15 (a), convex portions having the same height are arranged, and in FIG. 1-15 (b), every five convex portions appear higher than the others, and In FIG. 1-15 (c), higher convex portions appear than every other portion.
In FIG. 1-15 (b), there is a periodicity that four high convex portions appear after four low convex portions. The period (every 5th) in which this high convex part appears coincides with half the twist pitch T (corresponding to ten convex parts) of the outer layer strand.
On the other hand, in FIG. 1-15 (c), after four to five low convex portions continue, two to one high convex portions appear. Compared to FIG. 1-15 (b), in FIG. 1-15 (c), the period of appearance of the high protrusions is long, the number of high protrusions (1 to 2), and the number of low protrusions (4 1 to 5) is different in that there is variation. The difference between FIG. 1-15 (b) and FIG. 1-15 (c) is due to the internal structure of the rope 1, and details will be described later.
 図1-15(b)及び図1-15(c)のように、長手方向にストランド周期とは異なる周期の凹凸成分が生じる場合、これらを空間フィルタにより抽出することが有効である。周期T/2またはt/2の波形を通過させる空間フィルタを用意しておき、外径値信号(実線)を処理すると、図1-15(a)~(c)の破線(抽出グラフext)が得られる。図1-15(b)における破線(抽出グラフext)は周期T/2の波形、図1-15(c)における破線(抽出グラフext)は周期t/2の波形である(以下、「特定帯域抽出波形」と称する)。この波形の最大値、振幅、最大値と最小値の差などを算出し、これを閾値判定することにより異常検出が可能である。
 この閾値設定の方法として、予め絶対的な値を設定する方法が考えられるが、後に述べるように、i)複数区間に分割して、その他の区間と比較してこれらの値が突出していないか否かにより異常判定する方法、ii)区間毎の増減量、または増減率を算出し、これらに対して閾値判定する方法、または他の区間と比較して突出していないか否かにより判定する方法も考えられる。
As shown in FIGS. 1-15 (b) and 1-15 (c), when uneven components having a period different from the strand period are generated in the longitudinal direction, it is effective to extract them by a spatial filter. When a spatial filter that passes a waveform of period T / 2 or t / 2 is prepared and an outer diameter value signal (solid line) is processed, a broken line (extraction graph ext) in FIGS. 1-15 (a) to (c) Is obtained. The broken line (extraction graph ext) in FIG. 1-15 (b) is a waveform with a period T / 2, and the broken line (extraction graph ext) in FIG. 1-15 (c) is a waveform with a period t / 2 (hereinafter referred to as “specific”). This is referred to as a “band extraction waveform”). Anomaly detection is possible by calculating the maximum value, amplitude, difference between the maximum value and minimum value of this waveform, and determining the threshold value.
As a method of setting the threshold value, a method of setting an absolute value in advance is conceivable. As will be described later, i) is divided into a plurality of sections, and these values do not protrude compared to other sections? A method of determining abnormality by whether or not, ii) a method of calculating an increase / decrease amount or a rate of increase / decrease for each section, and determining a threshold for these, or a method of determining by whether or not it protrudes compared with other sections Is also possible.
 これらの結果を踏まえて、図1-15(c)の特定帯域抽出波形を検討すると、内層ストランド200の撚りピッチtの半分(=t/2)の周波数が現れていることがわかる。この結果から、図1-15(c)の位置-外径値グラフには、内層ストランド200の弛みが現れていると考えることができる。 Based on these results, when examining the specific band extraction waveform of FIG. 1-15 (c), it can be seen that a frequency that is half (= t / 2) the twist pitch t of the inner layer strand 200 appears. From this result, it can be considered that the slack of the inner layer strand 200 appears in the position-outer diameter value graph of FIG. 1-15 (c).
 この検出手法では、位置-外径値グラフを空間フィルタ処理することにより、周期性を有する外径異常を検出することができる。そして、この検出手段では、視認で検出しにくかったストランドの弛みを検出することができる。 In this detection method, an outer diameter abnormality having periodicity can be detected by spatially filtering the position-outer diameter value graph. And with this detection means, it is possible to detect the slackness of the strand that is difficult to detect visually.
 なお、周波数抽出を行うための演算機能(第3の演算手段の演算機能)は、演算装置50(図1-1)が備えていてもよく、また、別に準備した演算装置が備えてもよい。 The calculation function for performing frequency extraction (the calculation function of the third calculation means) may be provided in the calculation device 50 (FIG. 1-1), or may be provided in a separately prepared calculation device. .
 (c)分割区間の相対的対比による検出手法
 異常であるか否かの判定を行う方法として、複数区間に分割して、その他の区間と比較してこれらの値が突出していないか否かにより異常判定する方法を述べる。
(C) Detection method based on relative comparison of divided sections As a method for determining whether or not there is an abnormality, it is divided into a plurality of sections, and whether these values do not protrude compared to other sections A method for judging abnormality is described.
 図1-15(a)~(c)の特定帯域抽出波形をロープの長手方向の複数区間に分割する。この分割は、位置データDLを用いて、所定長さ(例えば1m)ごとに1区間とする方法が適している。これらの区間ごとに最大値、振幅、最大値と最小値の差などの特徴量を算出する。 1) Divide the specific band extraction waveform of FIGS. 1-15 (a) to (c) into a plurality of sections in the longitudinal direction of the rope. For this division, a method of using the position data DL and setting one section for every predetermined length (for example, 1 m) is suitable. A feature value such as a maximum value, an amplitude, and a difference between the maximum value and the minimum value is calculated for each section.
 図1-16は、複数の区間の振幅を図示している。図1-16から、区間11~区間13が、他の区間よりも振幅が大きいことがわかる。よって、区間11~区間13に外径異常が発生していることがわかる。 Fig. 1-16 illustrates the amplitude of multiple sections. From FIG. 1-16, it can be seen that the intervals 11 to 13 have a larger amplitude than the other intervals. Therefore, it can be seen that the outer diameter abnormality occurs in the sections 11 to 13.
 なお、図1-16では、区間の間の比較として振幅を使用したが、外径異常を反映する数値で(最大値、最大値と最小値の差など)あれば、振幅に代えて用いることができる。 In FIG. 1-16, the amplitude is used as a comparison between the sections. However, if the numerical value reflects the outer diameter abnormality (maximum value, difference between the maximum value and the minimum value, etc.), it should be used instead of the amplitude. Can do.
 この検出手法によれば、経時的な光学系の劣化及び/又は汚れ等によって、初期設置時に比べて受光素子7の受光量が低下した場合でも、その受光量低下が相殺される。よって、外径異常を見つける際の精度を、長期的に高く維持することができる。 According to this detection method, even when the amount of light received by the light receiving element 7 is lower than that at the time of initial installation due to deterioration of the optical system and / or contamination over time, the decrease in the amount of received light is offset. Therefore, the accuracy in finding the outer diameter abnormality can be maintained high in the long term.
 なお、仮想的な区間の分割を行うための演算機能(第1の演算手段の演算機能)は、演算装置50(図1-1)が備えていてもよく、また、別に準備した演算装置が備えてもよい。さらに、演算機能は、さらに、各区分の総外径値を比較して、外径異常のある区間を特定する機能を有していてもよい。 Note that the arithmetic function for dividing the virtual section (the arithmetic function of the first arithmetic means) may be provided in the arithmetic device 50 (FIG. 1-1), or a separately prepared arithmetic device may be provided. You may prepare. Furthermore, the calculation function may further have a function of comparing a total outer diameter value of each section and specifying a section having an outer diameter abnormality.
 (d)同一区間の経時対比による検出手法
 実際に使用されるロープ製品では、ロープ1の外径寸法は完全に均質ではなく、初期ばらつき(誤差)があるのが通常である。そして、使用前から存在する「初期ばらつき」が、使用後に生じた「外径異常」と誤認されるおそれがある。そのような誤認のおそれがあれば、初期ばらつきと外径異常とを明確に識別することが必要になる。
(D) Detection method based on time-dependent comparison of the same section In the rope product actually used, the outer diameter of the rope 1 is not completely uniform and usually has an initial variation (error). In addition, “initial variation” existing before use may be mistaken for “abnormal outer diameter” generated after use. If there is a possibility of such misidentification, it is necessary to clearly identify the initial variation and the outer diameter abnormality.
 初期ばらつきと外径異常とを識別するには、ロープ1の同じ位置における外径変化を経時的に観察するのが有効である。例えば、検出手法(c)と同様に、特定帯域抽出波形を仮想的に複数の区間に分割する。そして、ある時点(例えば、設置直後)に求めた各区間の振幅δ1と、別の時点(例えば、ロープ1の定期検査の時)に求めた各区間の振幅δ2とを求める。同じ区間(例えば区間1)の振幅の経時変化は「δ2-δ1」で求めることができる。このようにして求めた振幅の経時変化の例を図1-17に示す。 ¡To distinguish between initial variations and outer diameter abnormalities, it is effective to observe changes in the outer diameter at the same position of the rope 1 over time. For example, as in the detection method (c), the specific band extraction waveform is virtually divided into a plurality of sections. Then, the amplitude δ1 of each section obtained at a certain time (for example, immediately after installation) and the amplitude δ2 of each section obtained at another time (for example, at the time of periodic inspection of the rope 1) are obtained. The change with time in the amplitude of the same section (for example, section 1) can be obtained by “δ2−δ1”. An example of the change over time of the amplitude thus obtained is shown in FIG. 1-17.
 図1-17から、区間11~区間13が、正常時の振幅の値norよりも大きいことがわかる。また正常時の振幅の値norが不明であっても、他の区間よりも振幅の経時変化が大きいことがわかる。よって、区間11~区間13は、他の区間よりも大きな外径変化が現れた(すなわち、外径異常が発生した)ことがわかる。 1-17, it can be seen that the sections 11 to 13 are larger than the amplitude value nor in the normal state. Further, even when the amplitude value nor in the normal state is unknown, it can be seen that the change over time in the amplitude is larger than in other sections. Therefore, it can be seen that the outer diameter change is larger in the sections 11 to 13 than the other sections (that is, the outer diameter abnormality has occurred).
 なお、図1-17では、異なる時点での比較として振幅を使用したが、外径異常を反映する数値であれば、振幅に代えて用いることができる。 In FIG. 1-17, the amplitude is used as a comparison at different time points, but any numerical value that reflects the outer diameter abnormality can be used instead of the amplitude.
 さらに、図1-17では、振幅の経時的変化を、振幅の差分(δ2-δ1)で表示したが、差分に代えて、振幅の変化率((δ2-δ1)/δ1)で表示してもよい。 Further, in FIG. 1-17, the change over time of the amplitude is displayed as the difference in amplitude (δ2-δ1), but instead of the difference, the change in amplitude ((δ2-δ1) / δ1) is displayed. Also good.
 この検出手法では、複数の区間に分割して、ある区間の振幅を2つの時点で測定して、その差を比較することにより、初期ばらつきが相殺することができる。よって、外径異常のみを検出することができる。
 また、この検出手法を利用すると、外径値の経時変化の傾向(トレンド)を監視することができるので、ロープ1の交換計画を立てる際に有用である。
In this detection method, the initial variation can be canceled by dividing into a plurality of sections, measuring the amplitude of a section at two time points, and comparing the difference. Therefore, it is possible to detect only the outer diameter abnormality.
In addition, when this detection method is used, the tendency of the outer diameter value to change with time can be monitored, which is useful when making an exchange plan for the rope 1.
 なお、同一区間の経時的変化を求めるには、異なる時点での総外径値を比較する必要があるが、その比較するための演算機能(第2の演算手段の演算機能)は、演算装置50(図1-1)が備えていてもよく、また、別に準備した演算装置が備えてもよい。 In order to obtain the change over time in the same section, it is necessary to compare the total outer diameter values at different points in time. The calculation function for the comparison (the calculation function of the second calculation means) is a calculation device. 50 (FIG. 1-1) may be provided, or an arithmetic device prepared separately may be provided.
<実施の形態2>
 本実施の形態では、ロープ検査装置Aのロープ位置算出手段30はエンコーダ31のみ(ロープ位置算出装置32を含まない)から構成され、代わりに、エンコーダ31から出力されたパルス信号P、-Pを変換手段20のAD変換器22に入力する点で、実施の形態1と異なる(図2-1)。
<Embodiment 2>
In the present embodiment, the rope position calculation means 30 of the rope inspection apparatus A is composed of only the encoder 31 (not including the rope position calculation apparatus 32). Instead, the pulse signals P and -P output from the encoder 31 are used. This is different from the first embodiment in that it is input to the AD converter 22 of the conversion means 20 (FIG. 2-1).
 本実施の形態で用いられるAD変換器22としては、サンプリング信号を受信したらデジタルデータを出力する「サンプリング機能」を有しているものが利用される。そして、AD変換器22に入力されるサンプリング信号として、エンコーダ31からのパルス信号P、-Pを利用する。すなわち、本実施の形態は、ロープ1の外径値1dは、ロープ1が一定の搬送距離fだけ搬送されたタイミングでサンプリングされる。 As the AD converter 22 used in the present embodiment, one having a “sampling function” for outputting digital data when a sampling signal is received is used. The pulse signals P and -P from the encoder 31 are used as sampling signals input to the AD converter 22. That is, in the present embodiment, the outer diameter value 1d of the rope 1 is sampled at the timing when the rope 1 is transported by a certain transport distance f.
 本実施の形態と実施の形態1との相違点を、ロープ外径値の測定方法に沿って説明する。特に、実施の形態1と異なる「ステップ2~5」について詳細に説明する。 The difference between the present embodiment and the first embodiment will be described along the measuring method of the rope outer diameter value. In particular, “steps 2 to 5” different from the first embodiment will be described in detail.
(ステップ2:ロープの外径値への変換)
 本実施の形態では、AD変換器22から出力されるデジタル信号の出力のタイミングが実施の形態1と異なる。
 実施の形態1では、AD変換器22からのデジタル信号は、連続的に出力される。
しなしながら、本実施の形態では、エンコーダ31からのパルス信号P、-Pの入力があった時にのみ、AD変換器22からデジタル信号が出力される。よって、「デジタル信号が出力された」ということは、前のデジタル信号が出力されてから、ロープ1が所定距離fだけ搬送されたことを意味している。そして、デジタル信号から換算されたロープ1の外径値データDも、ロープ1を所定距離fごとの外径値1dであることがわかる。
(Step 2: Conversion to rope outer diameter value)
In the present embodiment, the output timing of the digital signal output from the AD converter 22 is different from that in the first embodiment.
In the first embodiment, the digital signal from the AD converter 22 is continuously output.
However, in the present embodiment, a digital signal is output from the AD converter 22 only when the pulse signals P and −P are input from the encoder 31. Therefore, “a digital signal has been output” means that the rope 1 has been conveyed by a predetermined distance f since the previous digital signal was output. And it turns out that the outer diameter value data D of the rope 1 converted from the digital signal is also the outer diameter value 1d of the rope 1 for each predetermined distance f.
(ステップ3:ロープの位置データの取得)
 本実施の形態では、ロープ位置算出手段30がエンコーダ31のみからなる点と、エンコーダ31から出力されたパルス信号PがAD変換器22に入力される点で、実施の形態1と異なる(図2-1)。よって、ステップ3では、位置データDLは得られない。
(Step 3: Acquisition of rope position data)
This embodiment is different from the first embodiment in that the rope position calculation means 30 is composed only of the encoder 31 and that the pulse signal P output from the encoder 31 is input to the AD converter 22 (FIG. 2). -1). Therefore, in step 3, the position data DL cannot be obtained.
(ステップ4:データの記憶)
 本実施の形態では、ステップ3で位置データDLが得られないので、記憶装置40に記憶されるデータがロープ1の外径値データDのみになる点で、実施の形態1と異なる(位置データDLは記憶されない)。また、外径値データDが出力されるのは、サンプリング信号が入力された時だけに制限されるので、記憶装置40に記憶される外径値データDの個数が実施の形態1に比べて少なくなる。
(Step 4: Data storage)
In this embodiment, since the position data DL is not obtained in step 3, the data stored in the storage device 40 is only the outer diameter value data D of the rope 1 and is different from the first embodiment (position data DL is not stored). Further, since the outer diameter value data D is output only when a sampling signal is input, the number of outer diameter value data D stored in the storage device 40 is smaller than that in the first embodiment. Less.
(ステップ5:データ解析)
 本実施の形態では、位置-外径値グラフの横軸の基準となるための位置データDLがない点で、実施の形態1と異なる。
 本実施の形態では、ロープ1の外径値データDは、ロープ1を所定距離fだけ搬送したタイミングで得られる。よって、外径値データDの横軸方向の間隔が所定距離fになるように、外径値データDを等間隔で配置すれば、実際のロープ1の外観を反映したグラフをプロットすることができる(図2-2)。
(Step 5: Data analysis)
The present embodiment is different from the first embodiment in that there is no position data DL to serve as a reference for the horizontal axis of the position-outer diameter value graph.
In the present embodiment, the outer diameter value data D of the rope 1 is obtained at a timing when the rope 1 is conveyed by a predetermined distance f. Therefore, if the outer diameter value data D are arranged at equal intervals so that the distance in the horizontal axis direction of the outer diameter value data D is the predetermined distance f, a graph reflecting the actual appearance of the rope 1 can be plotted. Yes (Figure 2-2).
 本実施の形態では、エンコーダ31のパルス信号が出力されるタイミングでデジタル信号がサンプリングされるので、外径値データDのデータ数を減らして、記憶装置40の効率的な利用ができる。また、ロープ位置算出装置32が不要になるのでロープ検査装置Aの簡略化とコストダウンを図ることができる。 In the present embodiment, since the digital signal is sampled at the timing when the pulse signal of the encoder 31 is output, the number of data of the outer diameter value data D can be reduced and the storage device 40 can be used efficiently. Further, since the rope position calculation device 32 is not required, the rope inspection device A can be simplified and the cost can be reduced.
 <実施の形態3>
 本実施の形態では、ロープ検査装置Aが、エンコーダ31及びロープ位置算出装置32を含まず、代わりに演算装置50の演算手段51がロープ位置算出手段30としても機能する点で実施の形態1及び2と異なる(図3-1)。
<Embodiment 3>
In the present embodiment, the rope inspection apparatus A does not include the encoder 31 and the rope position calculation device 32, but instead the calculation means 51 of the calculation device 50 also functions as the rope position calculation means 30. 2 (FIG. 3-1).
 本実施の形態では、正しくプロットされた時間-外径値グラフでは、(1)グラフの凹凸(山と谷)が等間隔に現れる(図1-12参照)、(2)グラフの凹凸の個数と、ロープ1の外層に用いられた外層ストランドの本数と、撚りピッチTとの間に所定の相関関係があること(図1-9及び図1-12参照)、を利用するものである。 In the present embodiment, in the correctly plotted time-outer diameter value graph, (1) irregularities (peaks and valleys) of the graph appear at equal intervals (see FIG. 1-12), (2) the number of irregularities in the graph And the fact that there is a predetermined correlation between the number of outer layer strands used for the outer layer of the rope 1 and the twist pitch T (see FIGS. 1-9 and 1-12).
 本実施の形態と実施の形態1~2との相違点を、ロープ外径値1dの測定方法に沿って説明する。特に、実施の形態1~2と異なる「ステップ3~5」について詳細に説明する The difference between the present embodiment and the first and second embodiments will be described along the measuring method of the rope outer diameter value 1d. In particular, “Steps 3 to 5” different from Embodiments 1 and 2 will be described in detail.
(ステップ3:ロープの位置データの取得)
 本実施の形態は、ロープ位置算出手段30を備えていない(図3-1)。よってステップ3も含まれず、位置データDLは得られない。
(Step 3: Acquisition of rope position data)
This embodiment does not include the rope position calculation means 30 (FIG. 3-1). Therefore, step 3 is not included and position data DL cannot be obtained.
(ステップ4:データの記憶)
 本実施の形態では、ステップ3で位置データDLが得られないので、記憶装置40に記憶されるデータがロープ1の外径値データDのみになる点で、実施の形態1と異なる(位置データDLは記憶されない)。
(Step 4: Data storage)
In this embodiment, since the position data DL is not obtained in step 3, the data stored in the storage device 40 is only the outer diameter value data D of the rope 1 and is different from the first embodiment (position data DL is not stored).
(ステップ5:データ解析)
 本実施の形態では、データ解析の手法が実施の形態1及び2と大きく異なる。
 第1に、測定したロープ1の外層ストランドの本数(n本)と、外層ストランドの撚りピッチTとを予め調べておく。
 第2に、演算装置50の演算手段51によって、時間-外径値グラフをプロットする(図3-2)。なお、測定時にはロープ1を図1-10の条件で走行させたので、図3-2の時間-外径値グラフの凹凸は等間隔になっていない。
 第3に、図3-2の時間-外径値グラフから、凹凸の頂部(山と谷)を抽出する(図3-3)。
(Step 5: Data analysis)
In the present embodiment, the data analysis method is significantly different from those in the first and second embodiments.
First, the number (n) of outer layer strands of the rope 1 measured and the twist pitch T of the outer layer strands are examined in advance.
Secondly, a time-outer diameter graph is plotted by the computing means 51 of the computing device 50 (FIG. 3-2). Since the rope 1 was run under the conditions shown in FIG. 1-10 at the time of measurement, the irregularities in the time-outer diameter value graph of FIG. 3-2 are not evenly spaced.
Third, from the time-outer diameter graph of FIG. 3-2, the tops (peaks and valleys) of the irregularities are extracted (FIG. 3-3).
 得られた図3-3のグラフを、実施の形態1から得られたグラフの特徴である(1)山と谷とは等間隔に並ぶこと、(2)外層ストランドの撚りピッチTの範囲内に、山と谷とが、それぞれn個ずつ配置されること、の2つを共に実現するように再プロットする。この再プロットは、言い換えれば、図3-3のグラフの凹凸と、ロープ1の表面の凹凸とを対応させることである。この再プロットにより、図3-4のような位置-外径値グラフを得ることができる。 The obtained graph of FIG. 3-3 is characterized by the characteristics of the graph obtained from the first embodiment (1) The peaks and valleys are arranged at equal intervals, and (2) the twist pitch T of the outer layer strand is within the range. Then, replotting is performed so as to realize both of n that there are n peaks and valleys. In other words, this replot is to make the unevenness of the graph of FIG. 3-3 correspond to the unevenness of the surface of the rope 1. By this replotting, a position-outer diameter value graph as shown in FIG. 3-4 can be obtained.
 本実施の形態では、実施の形態1で得られた知見を利用して、時間-外径値グラフを位置-外径値グラフに再プロットしているので、エンコーダ31及びロープ位置算出装置32が不要になる。よって、ロープ検査装置Aの簡略化とコストダウンを図ることができる。
 また、位置データDLを記憶装置40に記憶する必要がないので、記憶装置40の効率的な利用ができる。
 さらに、ロープの伸びやすべりによって、エンコーダ31からのパルス信号Pと、実際のロープの搬送距離との間にズレが生じた場合でも、本実施の形態はパルス信号Pを利用していないので、そのようなズレの影響を受けない。よって、常に正確なロープ位置を確認することができる。
In the present embodiment, the time-outer diameter value graph is replotted to the position-outer diameter value graph using the knowledge obtained in the first embodiment, so that the encoder 31 and the rope position calculating device 32 are It becomes unnecessary. Therefore, simplification and cost reduction of the rope inspection apparatus A can be achieved.
Further, since it is not necessary to store the position data DL in the storage device 40, the storage device 40 can be used efficiently.
Further, even when a deviation occurs between the pulse signal P from the encoder 31 and the actual rope transport distance due to the elongation or slip of the rope, the present embodiment does not use the pulse signal P. Unaffected by such misalignment. Therefore, an accurate rope position can always be confirmed.
 本実施の形態におけるロープ位置算出手段は、図3-3のグラフの凹凸とロープ1の表面の凹凸とを対応させて、外径値1dの位置を確定している「演算装置50の演算手段51」である、と見なすことができる。なお、凹凸を対応させるための演算機能を有する演算装置を別に準備してもよい。 The rope position calculation means in the present embodiment determines the position of the outer diameter value 1d by associating the unevenness of the graph of FIG. 51 ". In addition, you may prepare separately the arithmetic device which has a calculation function for making an unevenness | corrugation respond | correspond.
<実施の形態4>
 本実施の形態では、受光部6の代わりに、2つの受光部6L、6Rを設けた点で実施の形態1~3と異なる。本実施の形態は、ロープ1の後方に位置する受光部6は不要であるとして、ロープ1の両側に限定して受光部6L、6Rを設けたものである(図4-1)。
<Embodiment 4>
This embodiment is different from the first to third embodiments in that two light receiving parts 6L and 6R are provided instead of the light receiving part 6. In this embodiment, it is assumed that the light receiving unit 6 located behind the rope 1 is unnecessary, and the light receiving units 6L and 6R are provided only on both sides of the rope 1 (FIG. 4-1).
 本実施の形態と実施の形態1~3との相違点を、ロープ外径値の測定方法に沿って説明する。特に、実施の形態1~3と異なる「ステップ1」について詳細に説明する。 The difference between the present embodiment and the first to third embodiments will be described along the measuring method of the rope outer diameter value. In particular, “Step 1” different from Embodiments 1 to 3 will be described in detail.
(ステップ1:光量の測定)
 図4-1に示すように、光源4から射出された不均一光は、均一化光学系5を通って略均一強度の均一光2にされ、スリット15を通って横長形状又は長方形に整形される(図1-6、図1-7)。整形された均一光2の測定ビーム2Mは、ロープ1に照射される。測定ビーム2Mの一部はロープ1によって遮光される。遮光されなかった測定ビーム2Mは、ロープ1の両側を通って進行する(図4-1)。
(Step 1: Measurement of light intensity)
As shown in FIG. 4A, the non-uniform light emitted from the light source 4 passes through the homogenizing optical system 5 to become uniform light 2 having a substantially uniform intensity, and is shaped into a horizontally long shape or a rectangle through the slit 15. (FIGS. 1-6 and 1-7). The shaped measurement beam 2M of the uniform light 2 is irradiated onto the rope 1. A part of the measurement beam 2M is shielded by the rope 1. The measurement beam 2M that is not shielded travels through both sides of the rope 1 (FIG. 4-1).
 遮光されなかった均一光2の測定ビーム2Mは、ロープ1によって2つに分割される(分割光2L、2R)。分割光2L、2Rは、2つの集光レンズ8L、8Rによって集光され、2つの受光素子7L、7Rに入射する。2つの受光素子7L、7Rは、受光した分割光2L、2Rの光量に応じた信号を出力する。この2つの受光素子(左側受光素子7L、右側受光素子7R)からそれぞれ出力された信号を加算して、1つの受光部出力処理回路21に入力される(図4-2)。 The measurement beam 2M of the uniform light 2 that is not shielded is split into two by the rope 1 (split light 2L, 2R). The divided lights 2L and 2R are condensed by the two condenser lenses 8L and 8R and enter the two light receiving elements 7L and 7R. The two light receiving elements 7L and 7R output signals corresponding to the light amounts of the received split lights 2L and 2R. Signals output from the two light receiving elements (left light receiving element 7L and right light receiving element 7R) are added and input to one light receiving unit output processing circuit 21 (FIG. 4-2).
 本実施の形態によれば、図1-2のような直径の大きい1枚の集光レンズ8を、図4-2のように直径の小さい2枚の集光レンズに置き換えることができる。よって、ロープ検査装置Aの小型化が図れる。 According to the present embodiment, one condenser lens 8 having a large diameter as shown in FIG. 1-2 can be replaced with two condenser lenses having a small diameter as shown in FIG. 4-2. Therefore, the rope inspection apparatus A can be reduced in size.
<実施の形態5>
 本実施の形態では、実施の形態4で説明した「ステップ1」で、左側受光素子7Lと右側受光素子7Rとからそれぞれ出力された信号を加算して受光部出力処理回路21に入力する代わりに、ぞれぞれの信号を別々に受光部出力処理回路21する点で、実施の形態4と異なる(図5-1)。
 また、本実施の形態では、実施の形態1~4に開示されていない2つのデータ解析(これを「ステップ5’:データ解析2」と「ステップ5’’:データ解析3」と称する)を含んでいる点で異なる。
<Embodiment 5>
In the present embodiment, instead of adding the signals respectively output from the left light receiving element 7L and the right light receiving element 7R and inputting them to the light receiving unit output processing circuit 21 in “Step 1” described in the fourth embodiment. This is different from the fourth embodiment in that each signal is separately received by the light receiving unit output processing circuit 21 (FIG. 5A).
In the present embodiment, two data analyzes not disclosed in the first to fourth embodiments (referred to as “step 5 ′: data analysis 2” and “step 5 ″: data analysis 3”) are performed. It differs in that it includes.
(ステップ5’:データ解析2)
 各受光素子7L、7Rから受光部出力処理回路21に入力された2つのデータ列(L、R)は、AD変換器22で別々にデジタルデータに変換する。
 2つのデジタルデータ(L、R)を受光素子7L、7Rからの出力に換算し、換算値を時間軸に対してプロットすると、図5-2(a)~(b)のようなグラフが得られる。
(Step 5 ': Data analysis 2)
The two data strings (L, R) input from the light receiving elements 7L, 7R to the light receiving unit output processing circuit 21 are separately converted into digital data by the AD converter 22.
When the two digital data (L, R) are converted into outputs from the light receiving elements 7L, 7R and the converted values are plotted with respect to the time axis, graphs as shown in FIGS. 5-2 (a) to (b) are obtained. It is done.
 図5-2(a)、図5-2(b)のグラフから、測定対象のロープ1が、測定時間の間に周期的な横揺れが生じていることがわかる。
 グラフ中の(i)の時点では、左右の受光素子7L、7Rで受光した光量は同じである。これは、図4-1のようにロープ1が均一光2の中心にあり、ロープ1の両側を抜ける分割光2L、2Rが同じ光量になっていることを意味している。
 (ii)の時点では、左側受光素子7Lの受光量が多く、右側受光素子7Rの受光量が少ない。これは、図5-3のようにロープ1が均一光2の中心よりも右側にずれており、ロープ1の左側を抜ける左側分割光2Lが、ロープ1の右側を抜ける右側分割光2Rよりも多くなっていることを意味している。
 (iii)の時点では、左側受光素子7Lの受光量が少なく、右側受光素子7Rの受光量が多い。これは、ロープ1が均一光2の中心よりも左側にずれており、ロープ1の左側を抜ける左側分割光2Lが、ロープ1の右側を抜ける右側分割光2Rよりも少なくなっていることを意味している。
From the graphs of FIGS. 5-2 (a) and 5-2 (b), it can be seen that the rope 1 to be measured is periodically rolled during the measurement time.
At the time point (i) in the graph, the amounts of light received by the left and right light receiving elements 7L and 7R are the same. This means that the rope 1 is at the center of the uniform light 2 as shown in FIG. 4A and the divided lights 2L and 2R passing through both sides of the rope 1 have the same light quantity.
At the time of (ii), the light receiving amount of the left light receiving element 7L is large and the light receiving amount of the right light receiving element 7R is small. This is because the rope 1 is shifted to the right side from the center of the uniform light 2 as shown in FIG. 5-3, and the left split light 2L passing through the left side of the rope 1 is more than the right split light 2R passing through the right side of the rope 1 It means that it is increasing.
At the time of (iii), the light receiving amount of the left light receiving element 7L is small, and the light receiving amount of the right light receiving element 7R is large. This means that the rope 1 is shifted to the left side from the center of the uniform light 2, and the left split light 2L passing through the left side of the rope 1 is less than the right split light 2R passing through the right side of the rope 1. is doing.
 図5-2(a)、図5-2(b)の結果からロープ1の左右方向の位置を求めて、時間に対してプロットすると、図5-2(c)が得られる。図5-2(c)から、ロープ1が周期的に横揺れしていることがわかる。 Fig. 5-2 (c) is obtained when the horizontal position of the rope 1 is obtained from the results of Figs. 5-2 (a) and 5-2 (b) and plotted against time. From FIG. 5-2 (c), it can be seen that the rope 1 periodically rolls.
 さらに、図5-2(c)から求められるロープ1の横揺れの周波数は、ロープ1のテンション(張力)と密接な関係がある。そこで、ある時点におけるロープ1の横揺れの周波数を、正常なテンションがかかった状態のロープ1の横揺れの周波数と比較することにより、ロープ1のテンション異常を検出することができる。 Furthermore, the rolling frequency of the rope 1 obtained from FIG. 5-2 (c) is closely related to the tension of the rope 1. Therefore, the tension abnormality of the rope 1 can be detected by comparing the rolling frequency of the rope 1 at a certain point of time with the rolling frequency of the rope 1 in a normal tension state.
 様々な長さのロープ1が正常なテンションで装着されている場合の周波数(これを「基本振動数」と称する)を予め算出しておく。
 そして、図5-2(c)のグラフから横揺れの振動数を求め、その時点におけるロープ1の長さをロープ1の位置データDLから算出する。
 そのロープ1の長さにおける基本振動数と、横揺れの振動数とを比較して、相違する場合にはテンション異常と判定する。
The frequency (this is referred to as “fundamental frequency”) when ropes 1 of various lengths are attached with normal tension is calculated in advance.
Then, the rolling vibration frequency is obtained from the graph of FIG. 5-2 (c), and the length of the rope 1 at that time is calculated from the position data DL of the rope 1.
The basic frequency in the length of the rope 1 is compared with the vibration frequency of the roll, and if they are different, it is determined that the tension is abnormal.
 また、図5-2(c)からは、ロープ1の振幅を求めることもできる。求めた振幅が、設計上許される範囲を超えている場合には振幅異常と判定する。 Also, the amplitude of the rope 1 can be obtained from FIG. 5-2 (c). If the obtained amplitude exceeds the allowable range in design, it is determined that the amplitude is abnormal.
 このように、左右の受光素子7L、7Rの光量を別々にグラフ化して、そのグラフを相対的に検討することにより、ロープ位置は、図5-2(c)のように左右に変動(横揺れ)していることを知ることができる。また、左右の分割光2L、2Rの光量変化の量から、ロープ1の横揺れの程度を知ることもできる。さらに、ロープ1の横揺れの周波数から、ロープ1にかかっているテンションの異常を検出することもできる。 In this way, by separately graphing the light amounts of the left and right light receiving elements 7L and 7R and relatively examining the graphs, the rope position fluctuates left and right (horizontal) as shown in FIG. 5-2 (c). You can know that it is shaking. Further, it is possible to know the degree of roll of the rope 1 from the amount of change in the light quantity of the left and right divided lights 2L and 2R. Furthermore, the tension abnormality applied to the rope 1 can be detected from the rolling frequency of the rope 1.
(ステップ5’’:データ解析3)
 ステップ5’で得られた2つのデジタルデータ(L、R)を、演算装置50に入力する(図5-1)。演算装置50の演算手段51では、デジタルデータ(L、R)の各々を平均化して、2つの平均値(L、R)を算出する。得られた2つの平均値(L、R)を受光素子7L、7Rからの出力に換算し、記憶装置40に記憶する。
(Step 5 ″: Data analysis 3)
The two digital data (L, R) obtained in step 5 ′ are input to the arithmetic unit 50 (FIG. 5-1). The computing means 51 of the computing device 50 averages each digital data (L, R) to calculate two average values (L, R). The two average values (L, R) obtained are converted into outputs from the light receiving elements 7L, 7R and stored in the storage device 40.
 左側受光素子7Lで受光した光量の平均値は、図5-2(a)のave(L)である。そして、右側受光素子7Rで受光した光量の平均値は、図5-2(b)のave(R)である。これらの平均値ave(L)、ave(R)は、停止したロープ1を測定した際の受光素子7L、7Rの受光量と一致する。
 ave(L)=ave(R)であるならば、停止時のロープ1は均一光2の中心にあることがわかる。ロープ検査装置Aを設置する際には、ロープ1が均一光2の中心になるように位置決めするので、設置直後の測定では、ave(L)=ave(R)となる。
The average value of the amount of light received by the left light receiving element 7L is ave (L) in FIG. The average value of the amount of light received by the right light receiving element 7R is ave (R) in FIG. These average values ave (L) and ave (R) coincide with the amounts of light received by the light receiving elements 7L and 7R when the stopped rope 1 is measured.
If ave (L) = ave (R), it can be seen that the rope 1 when stopped is at the center of the uniform light 2. When the rope inspection apparatus A is installed, the rope 1 is positioned so as to be the center of the uniform light 2, so that ave (L) = ave (R) is obtained in the measurement immediately after the installation.
 もし、ave(L)≠ave(R)となった場合、ロープ1が均一光2の中心からずれたことがわかる。ave(L)>ave(R)ならばロープ1は右にずれており、ave(L)<ave(R)ならばロープ1は左にずれている。このように、平均値ave(L)、ave(R)は、ロープ1とロープ検査装置Aとの位置関係が適正かどうかを知る指標になる。
 また、ロープ1とロープ検査装置Aとの経時的な位置関係の変化を調べるには、過去に算出した光量の平均値ave(L)、ave(R)と、別の時点における光量の平均値ave(L)、ave(R)とを比較すればよい。
If ave (L) ≠ ave (R), it can be seen that the rope 1 is displaced from the center of the uniform light 2. If ave (L)> ave (R), the rope 1 is shifted to the right, and if ave (L) <ave (R), the rope 1 is shifted to the left. Thus, the average values ave (L) and ave (R) serve as an index for knowing whether the positional relationship between the rope 1 and the rope inspection apparatus A is appropriate.
Further, in order to examine the change in the positional relationship between the rope 1 and the rope inspection apparatus A with time, the average values ave (L) and ave (R) of the light amount calculated in the past and the average value of the light amount at different time points are used. What is necessary is just to compare ave (L) and ave (R).
 過去の光量の平均値ave(L)、ave(R)と、現時点での光量の平均値ave(L)、ave(R)とを比較することにより、ロープ検査装置Aを設置したときから現時点までの間に、ロープ1が移動したかどうか、そしてどれくらい移動したか、を知ることができる。 By comparing the average value ave (L), ave (R) of the past light quantity with the average value ave (L), ave (R) of the current light quantity, the present time from when the rope inspection apparatus A is installed In the meantime, it is possible to know whether and how much the rope 1 has moved.
 なお、本実施の形態では、光量の平均値ave(L)、ave(R)を求め、それらを過去のデータと比較するための演算機能(第4の演算手段の演算機能)を、演算装置50(図5-1)が備えている例を説明したが、別に準備した演算装置がその演算機能を備えてもよい。 In the present embodiment, the arithmetic function (the arithmetic function of the fourth arithmetic means) for obtaining the average values ave (L) and ave (R) of the light amount and comparing them with past data is provided in the arithmetic device. Although the example provided in FIG. 50 (FIG. 5-1) has been described, an arithmetic device prepared separately may have the arithmetic function.
 <変形例1>
 実施の形態1~5では、スリット15により整形した均一光2を使用していたが、整形しない均一光2を使用することもできる。
<Modification 1>
In the first to fifth embodiments, the uniform light 2 shaped by the slit 15 is used. However, the uniform light 2 that is not shaped can also be used.
 図6-1のような円形の測定ビーム2M、または図6-2のような楕円形の測定ビーム2Mでは、ロープ1が横揺れしたときに、ロープ1と測定ビーム2Mとの位置関係によって、受光部6で受ける受光量が変動する。すなわち、図6-1(a)、図6-2(a)のように、ロープ1の長軸方向の中心線Cが、測定ビーム2Mの中心を通る場合と、図6-1(b)、図6-2(b)のように、ロープ1の長軸方向の中心線Cが、測定ビーム2Mの中心からずれた場合とを比較する。円形の測定ビーム2Mの場合、ロープ1に遮光されなかった測定ビーム2Mの総面積(受光部6で受光する受光量に比例)は、図6-1(b)のほうが、図6-1(a)よりも大きくなる。楕円形の測定ビーム2Mの場合も同様に、ロープ1に遮光されなかった測定ビーム2Mの総面積は、図6-2(b)のほうが、図6-2(a)よりも大きくなる。よって、ロープ1が横揺れして、測定ビーム2M内におけるロープ1の位置が変化すると、受光部6での受光量が変動する。そのため、実施の形態1~5のような簡単な変換処理では、ロープ1の外径値1dを求めることができない。 In the circular measurement beam 2M as shown in FIG. 6-1 or the elliptical measurement beam 2M as shown in FIG. 6-2, when the rope 1 rolls, depending on the positional relationship between the rope 1 and the measurement beam 2M, The amount of light received by the light receiving unit 6 varies. That is, as shown in FIGS. 6-1 (a) and 6-2 (a), the center line C in the major axis direction of the rope 1 passes through the center of the measurement beam 2M, and FIG. 6-1 (b) Compared with the case where the center line C in the long axis direction of the rope 1 is deviated from the center of the measurement beam 2M as shown in FIG. In the case of the circular measurement beam 2M, the total area of the measurement beam 2M that is not shielded by the rope 1 (proportional to the amount of light received by the light-receiving unit 6) is as shown in FIG. larger than a). Similarly, in the case of the elliptical measurement beam 2M, the total area of the measurement beam 2M not shielded by the rope 1 is larger in FIG. 6-2 (b) than in FIG. 6-2 (a). Therefore, when the rope 1 rolls and the position of the rope 1 in the measurement beam 2M changes, the amount of light received by the light receiving unit 6 varies. Therefore, the outer diameter value 1d of the rope 1 cannot be obtained by a simple conversion process as in the first to fifth embodiments.
 しかしながら、円形又は楕円形の測定ビーム2Mを用いた場合であっても、測定ビーム2M中のロープ1の位置ごとに、照射される測定ビーム2Mの光量と受光素子7で受光する受光量とに基づいたロープ1の外径値1dを求めるためのデータテーブルを用いることにより、ロープ1の外径値1dを求めることができる。 However, even when a circular or elliptical measurement beam 2M is used, the amount of the measurement beam 2M to be irradiated and the amount of light received by the light receiving element 7 are different for each position of the rope 1 in the measurement beam 2M. The outer diameter value 1d of the rope 1 can be obtained by using a data table for obtaining the outer diameter value 1d of the rope 1.
 <変形例2>
 実施の形態1~5では、1本のロープ1の検査をするためのロープ検査装置Aについて詳述した。もし、複数のロープ1の検査が必要な場合には、均一光照射手段3、受光部6及び受光部出力処理回路21をロープ1と同数準備して、各ロープ1に対して設置する。そして、複数の受光部出力処理回路21からの電圧信号を、1つのAD変換器22に接続すればよい。
<Modification 2>
In the first to fifth embodiments, the rope inspection apparatus A for inspecting one rope 1 has been described in detail. If inspection of a plurality of ropes 1 is necessary, the same number of uniform light irradiation means 3, light receiving units 6, and light receiving unit output processing circuits 21 are prepared as the number of ropes 1 and installed on each rope 1. Then, the voltage signals from the plurality of light receiving unit output processing circuits 21 may be connected to one AD converter 22.
 <変形例3>
 実施の形態1~5で参照した図面では、均一光2は、均一化光学系5から集光レンズ8まで平行な平行均一光として図示されているが、例えば均一化光学系5から集光レンズ8に向かって測定ビーム2Mが拡大するような非平行の均一光2を用いることもできる。
 非平行な均一光2の場合、測定ビーム2Mの光軸に垂直で、且つロープ1の中心線Cを通る平面において、測定ビーム2Mの強度が均一になるように均一化光学系5を調節する。従って、その平面からロープ1がずれないような用途では、非平行な均一光2を利用できる。
<Modification 3>
In the drawings referred to in the first to fifth embodiments, the uniform light 2 is shown as parallel uniform light from the homogenizing optical system 5 to the condensing lens 8. It is also possible to use non-parallel uniform light 2 in which the measurement beam 2M expands toward 8.
In the case of the non-parallel uniform light 2, the uniformizing optical system 5 is adjusted so that the intensity of the measurement beam 2M is uniform in a plane perpendicular to the optical axis of the measurement beam 2M and passing through the center line C of the rope 1. . Therefore, in an application where the rope 1 does not deviate from the plane, the non-parallel uniform light 2 can be used.
 一方、平行な均一光2の場合、均一化光学系5から集光レンズ8までの間であれば、測定ビーム2Mの光軸に垂直な面内の測定ビーム2Mの強度は略均一である。よって、ロープ1が測定ビーム2Mの光軸方向(光線の進行方向DirL)(図1-2の左右方向)に横揺れしても、ロープ1に照射される測定ビーム2Mの均一性が変化しない、という利点がある。 On the other hand, in the case of the parallel uniform light 2, the intensity of the measurement beam 2 </ b> M in the plane perpendicular to the optical axis of the measurement beam 2 </ b> M is substantially uniform between the uniformizing optical system 5 and the condenser lens 8. Therefore, even if the rope 1 rolls in the optical axis direction of the measurement beam 2M (ray traveling direction DirL) (left-right direction in FIG. 1-2), the uniformity of the measurement beam 2M irradiated on the rope 1 does not change. There is an advantage that.

Claims (11)

  1.  走行するロープに光線を照射するために、前記光線の光軸と直交し且つ前記ロープの走行方向と直交する第1の方向における前記光線の幅が、前記ロープの最大外径値と前記ロープが走行中に第1の方向に移動する幅とを加算した値より大きい前記光線を出射する光照射手段と、
     前記ロープを挟んで前記光照射手段と対向して配置され、前記光線の光量を検出する受光手段と、
     前記受光手段で検出された前記光量を前記ロープの外径値に変換する変換手段と、
    を含むロープ検査装置であって、
     前記光線の強度は、前記光線の進行方向に対して垂直な面内で、且つ前記ロープに照射される範囲内では略均一であることを特徴とするロープ検査装置。
    In order to irradiate the traveling rope with a light beam, the width of the light beam in a first direction orthogonal to the optical axis of the light beam and orthogonal to the traveling direction of the rope is the maximum outer diameter value of the rope and the rope A light irradiating means for emitting the light beam larger than a value obtained by adding a width of movement in the first direction during traveling;
    A light receiving means that is disposed opposite the light irradiating means across the rope, and detects the amount of the light beam;
    Conversion means for converting the light quantity detected by the light receiving means into an outer diameter value of the rope;
    A rope inspection device comprising:
    The rope inspection apparatus characterized in that the intensity of the light beam is substantially uniform within a plane perpendicular to the traveling direction of the light beam and within a range irradiated on the rope.
  2.  前記ロープ検査装置が、前記測定ビーム範囲内の前記光線を整形するためのスリットをさらに含み、
     前記スリットには、前記ロープの走行方向と直交する方向に伸びる開口部が形成されていることを特徴とする請求項1に記載のロープ検査装置。
    The rope inspection apparatus further includes a slit for shaping the light beam within the measurement beam range,
    The rope inspection device according to claim 1, wherein an opening that extends in a direction orthogonal to the traveling direction of the rope is formed in the slit.
  3.  前記ロープ検査装置は、
      前記ロープの位置データを出力するロープ位置算出手段と、
      前記ロープの前記位置データと前記変換手段から出力される前記外径値とを同期して記録可能な記憶手段と、
    をさらに含むことを特徴とする請求項1又は2に記載のロープ検査装置。
    The rope inspection device
    Rope position calculating means for outputting position data of the rope;
    Storage means capable of recording the position data of the rope and the outer diameter value output from the conversion means in synchronization;
    The rope inspection device according to claim 1, further comprising:
  4.  前記ロープ位置算出手段が、ロープ搬送手段に設置されて、一定の搬送距離毎にパルス信号を出力するエンコーダを含むことを特徴とする請求項3に記載のロープ検査装置。 4. The rope inspection apparatus according to claim 3, wherein the rope position calculation means includes an encoder that is installed in the rope conveyance means and outputs a pulse signal at every constant conveyance distance.
  5.  前記ロープ検査装置は、前記エンコーダからの前記パルス信号を受信したタイミングで、前記受光手段で検出された前記光量のデータをサンプリングするためのサンプリング手段をさらに含むことを特徴とする請求項4に記載のロープ検査装置。 The rope inspection device further includes sampling means for sampling the light quantity data detected by the light receiving means at the timing of receiving the pulse signal from the encoder. Rope inspection equipment.
  6.  前記ロープ位置算出手段が、前記外径値と、前記ロープの長手方向における前記ロープのストランドの位置とを対応させる機能を有することを特徴とする請求項3に記載のロープ検査装置。 4. The rope inspection apparatus according to claim 3, wherein the rope position calculation means has a function of making the outer diameter value correspond to the position of the rope strand in the longitudinal direction of the rope.
  7.  前記ロープ検査装置が、第1の演算手段を含み、
     前記第1の演算手段が、
      前記ロープの前記位置データに基づいて求めた前記ロープの長さを基準として、前記外径値またはこれに基づく算出値を複数の区間に分割する機能と、
      各区間に含まれる前記外径値またはこれに基づく算出値と、他の区間に含まれる外径値またはこれに基づく算出値とを比較する機能と、
    を備えていることを特徴とする請求項3乃至6のいずれか1項に記載のロープ検査装置。
    The rope inspection apparatus includes a first calculation means,
    The first computing means comprises:
    A function of dividing the outer diameter value or a calculated value based on the outer diameter value into a plurality of sections on the basis of the length of the rope obtained based on the position data of the rope;
    A function of comparing the outer diameter value included in each section or a calculated value based thereon with an outer diameter value included in another section or a calculated value based thereon;
    The rope inspection device according to any one of claims 3 to 6, wherein the rope inspection device is provided.
  8.  前記ロープ検査装置が、第2の演算手段を含み、
     前記第2の演算手段が、前記区間の各々に含まれる前記外径値またはこれに基づく算出値と、別の時点に測定された同一区間に含まれる前記外径値またはこれに基づく算出値とを比較する機能を備えていることを特徴とする請求項7に記載のロープ検査装置。
    The rope inspection apparatus includes a second calculation means,
    The second computing means includes the outer diameter value included in each of the sections or a calculated value based thereon, and the outer diameter value included in the same section measured at another time point or a calculated value based thereon. The rope inspection device according to claim 7, comprising a function of comparing the two.
  9.  前記ロープ検査装置が、第3の演算手段を含み、
     前記第3の演算手段が、前記ロープの前記外径値データから、前記ロープの外径異常に対応した凹凸周期成分を抽出する機能を備えていることを特徴とする請求項3乃至8のいずれか1項に記載のロープ検査装置。
    The rope inspection apparatus includes a third calculation unit,
    The said 3rd calculating means has a function which extracts the uneven | corrugated period component corresponding to the outer diameter abnormality of the said rope from the said outer diameter value data of the said rope, The any one of Claim 3 thru | or 8 characterized by the above-mentioned. The rope inspection device according to claim 1.
  10.  前記受光手段が2つの受光部を備え、
     前記2つの受光部の各々は、前記ロープの両側を通過する2つの光線の各々を受光するように配置されていることをする請求項1乃至9のいずれか1項に記載のロープ検査装置。
    The light receiving means comprises two light receiving portions;
    10. The rope inspection apparatus according to claim 1, wherein each of the two light receiving units is arranged to receive each of two light beams passing through both sides of the rope.
  11.  前記ロープ検査装置が、第4の演算手段を含み、
     前記第4の演算手段が、
      前記2つの受光部の各々で検出した光量の個々の平均値を求める機能と、
      前記光量の個々の平均値と、別の時点に検出された前記光量の個々の平均値とを比較する機能と、
    を備えていることを特徴とする請求項10に記載のロープ検査装置。
    The rope inspection apparatus includes a fourth calculation means,
    The fourth computing means is
    A function for obtaining an individual average value of the amount of light detected by each of the two light receiving units;
    A function of comparing the individual average values of the light amounts with the individual average values of the light amounts detected at different time points;
    The rope inspection apparatus according to claim 10, comprising:
PCT/JP2010/073545 2010-03-03 2010-12-27 Rope inspection device WO2011108173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012502972A JP5436659B2 (en) 2010-03-03 2010-12-27 Rope inspection equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010046220 2010-03-03
JP2010-046220 2010-03-03

Publications (1)

Publication Number Publication Date
WO2011108173A1 true WO2011108173A1 (en) 2011-09-09

Family

ID=44541845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073545 WO2011108173A1 (en) 2010-03-03 2010-12-27 Rope inspection device

Country Status (2)

Country Link
JP (1) JP5436659B2 (en)
WO (1) WO2011108173A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114454A (en) * 2014-12-15 2016-06-23 中国電力株式会社 External diameter measuring device
JP2016114453A (en) * 2014-12-15 2016-06-23 中国電力株式会社 External diameter measuring device
CN107250715A (en) * 2015-03-27 2017-10-13 三菱电机株式会社 Detection means
JP2018179632A (en) * 2017-04-07 2018-11-15 三菱電機株式会社 Method for detecting surface unevenness of rope and rope surface unevenness detector
JP2018189399A (en) * 2017-04-28 2018-11-29 新日本非破壊検査株式会社 Deformed reinforcing bar surface inspection apparatus and surface inspection method
KR20190104184A (en) 2017-02-06 2019-09-06 미쓰비시덴키 가부시키가이샤 Detection device
CN110441328A (en) * 2019-09-04 2019-11-12 广东奥普特科技股份有限公司 A kind of hawser vision-based detection mould group
CN114072346A (en) * 2019-08-16 2022-02-18 通力股份公司 Elevator rope monitoring device, method and computer program product and elevator system
CN114604712A (en) * 2020-12-03 2022-06-10 株式会社日立大厦*** Position detection device of hard steel wire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133464A (en) * 1977-04-25 1978-11-21 Sopelem Method and apparatus for optical dimension inspection
JPS6082803A (en) * 1983-10-04 1985-05-11 ツエルヴエ−ゲル・ウステル・アクチエンゲゼルシヤフト Optical measuring device for measuring size of section of thread and use thereof
JPH01167604A (en) * 1987-12-23 1989-07-03 Fuji Electric Co Ltd Optical external diameter measuring instrument
JPH05172533A (en) * 1991-12-25 1993-07-09 Ono Sokki Co Ltd Dimension measuring apparatus
JPH07208939A (en) * 1994-01-20 1995-08-11 S K S Kk Measuring equipment using laser
JPH09115361A (en) * 1995-10-23 1997-05-02 Fujikura Ltd Pitch measurement method for stranded wire under inline travel and device therefor
JPH09510008A (en) * 1993-11-10 1997-10-07 ローソン−ヘムフィル インコーポレイテッド System and method for electronically displaying yarn quality
JPH1019549A (en) * 1996-07-03 1998-01-23 Taisei Corp Continuous measurement device for wire rope diameter
JPH11325841A (en) * 1998-05-12 1999-11-26 Nkk Corp Diagnosing apparatus for wire rope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311110A (en) * 1987-06-13 1988-12-19 Sumitomo Electric Ind Ltd Method and apparatus for detecting abnormality of twisted wire
JP4370471B2 (en) * 2005-01-12 2009-11-25 株式会社日立ビルシステム Wire rope diameter measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133464A (en) * 1977-04-25 1978-11-21 Sopelem Method and apparatus for optical dimension inspection
JPS6082803A (en) * 1983-10-04 1985-05-11 ツエルヴエ−ゲル・ウステル・アクチエンゲゼルシヤフト Optical measuring device for measuring size of section of thread and use thereof
JPH01167604A (en) * 1987-12-23 1989-07-03 Fuji Electric Co Ltd Optical external diameter measuring instrument
JPH05172533A (en) * 1991-12-25 1993-07-09 Ono Sokki Co Ltd Dimension measuring apparatus
JPH09510008A (en) * 1993-11-10 1997-10-07 ローソン−ヘムフィル インコーポレイテッド System and method for electronically displaying yarn quality
JPH07208939A (en) * 1994-01-20 1995-08-11 S K S Kk Measuring equipment using laser
JPH09115361A (en) * 1995-10-23 1997-05-02 Fujikura Ltd Pitch measurement method for stranded wire under inline travel and device therefor
JPH1019549A (en) * 1996-07-03 1998-01-23 Taisei Corp Continuous measurement device for wire rope diameter
JPH11325841A (en) * 1998-05-12 1999-11-26 Nkk Corp Diagnosing apparatus for wire rope

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114453A (en) * 2014-12-15 2016-06-23 中国電力株式会社 External diameter measuring device
JP2016114454A (en) * 2014-12-15 2016-06-23 中国電力株式会社 External diameter measuring device
CN107250715B (en) * 2015-03-27 2019-09-17 三菱电机株式会社 Detection device
CN107250715A (en) * 2015-03-27 2017-10-13 三菱电机株式会社 Detection means
US11099138B2 (en) 2017-02-06 2021-08-24 Mitsubishi Electric Corporation Detection device
KR20190104184A (en) 2017-02-06 2019-09-06 미쓰비시덴키 가부시키가이샤 Detection device
DE112017006997T5 (en) 2017-02-06 2019-10-17 Mitsubishi Electric Corporation DETECTION DEVICE
JP2018179632A (en) * 2017-04-07 2018-11-15 三菱電機株式会社 Method for detecting surface unevenness of rope and rope surface unevenness detector
JP2018189399A (en) * 2017-04-28 2018-11-29 新日本非破壊検査株式会社 Deformed reinforcing bar surface inspection apparatus and surface inspection method
CN114072346A (en) * 2019-08-16 2022-02-18 通力股份公司 Elevator rope monitoring device, method and computer program product and elevator system
JP2022544003A (en) * 2019-08-16 2022-10-17 コネ コーポレイション Elevator rope monitor device, method and computer program product therefor, and elevator system
JP7422213B2 (en) 2019-08-16 2024-01-25 コネ コーポレイション Elevator rope monitoring device, method and computer program product therefor, and elevator system
CN110441328A (en) * 2019-09-04 2019-11-12 广东奥普特科技股份有限公司 A kind of hawser vision-based detection mould group
CN114604712A (en) * 2020-12-03 2022-06-10 株式会社日立大厦*** Position detection device of hard steel wire
CN114604712B (en) * 2020-12-03 2024-03-08 株式会社日立大厦*** Position detection device for hard steel wire

Also Published As

Publication number Publication date
JP5436659B2 (en) 2014-03-05
JPWO2011108173A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5436659B2 (en) Rope inspection equipment
US9989439B2 (en) Method and data processing device for severity assessment of bearing defects using vibration energy
DE69831405T2 (en) DISTRIBUTED SENSOR SYSTEM
JP2012058068A5 (en)
KR20110032514A (en) High-speed demodulation system for fbg sensors using multi-window fabry-perot filter
CN104374781A (en) CMOS Optical Detector Comprising Plurality of Optical Elements for Device for Monitoring Parameters of Moving Yarn on Textile Machines
JP2019148481A (en) Inspection method of twisted cable
KR101936009B1 (en) Detection device
US7227641B2 (en) Method and apparatus for measuring a pitch of stranded cable
EP3839455A1 (en) Device for high resolution detection of the concentration of substances in fluid media
JP7112883B2 (en) Worm gear inspection method
EP4206661A1 (en) Tablet spectroscopic measurement method, tablet spectroscopic measurement device, tablet inspection method, and tablet inspection device
US20240110866A1 (en) Optical measurement device and optical measurement method
PL188682B1 (en) Method of and apparatus for deetcting yarn defects during production of predetermined types of chineal yarn
JP4669360B2 (en) Apparatus and method for measuring crimp characteristics in tow band
US20190128916A1 (en) Measurement apparatus and driving apparatus
KR20170003445A (en) Velocimeter and method of manufacturing article
JP6327041B2 (en) Spectrometer
DE102018122510A1 (en) Optical sensor
JP6093509B2 (en) Scale meander detection device and track error detection device
JPS61112903A (en) Outside-diameter measuring device
DE102013105961B4 (en) Apparatus and method for surface inspection of web products
Kiang et al. Application of WPT and FBG techniques for prognostic of escalator abnormality: a case study of degraded step wheel
ITTO20001218A1 (en) APPARATUS FOR DETECTING DEFECTS ON THE SURFACE OF A WIRE.
JP5405044B2 (en) Detection of defects in yarn or yarn precursor according to frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502972

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847069

Country of ref document: EP

Kind code of ref document: A1