WO2011105850A2 - Apparatus and method for producing metal nanoparticles using granule-type electrodes - Google Patents

Apparatus and method for producing metal nanoparticles using granule-type electrodes Download PDF

Info

Publication number
WO2011105850A2
WO2011105850A2 PCT/KR2011/001332 KR2011001332W WO2011105850A2 WO 2011105850 A2 WO2011105850 A2 WO 2011105850A2 KR 2011001332 W KR2011001332 W KR 2011001332W WO 2011105850 A2 WO2011105850 A2 WO 2011105850A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
metal nanoparticles
granules
electrolysis
Prior art date
Application number
PCT/KR2011/001332
Other languages
French (fr)
Korean (ko)
Other versions
WO2011105850A3 (en
Inventor
최민영
한병선
강윤재
김태균
송용설
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201180010573.7A priority Critical patent/CN102770368B/en
Publication of WO2011105850A2 publication Critical patent/WO2011105850A2/en
Publication of WO2011105850A3 publication Critical patent/WO2011105850A3/en
Priority to US13/592,684 priority patent/US20120318678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/007Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to an apparatus for manufacturing metal nanoparticles using an electrolysis method and a method thereof, and in particular, a pair of electrode housings having a predetermined interval between granules made of the same metal as the metal nanoparticles to be obtained as an electrode material using an alternating voltage.
  • the present invention relates to a metal nanoparticle production apparatus and method using a granule-type electrode capable of producing a large amount of metal nanoparticles having a uniform shape and uniform nano size continuously by filling in an electrolysis.
  • methods for obtaining fine metal powders include chemical methods such as coprecipitation, spraying, sol-gel, electrolysis, and reverse phase microemulsion, and grinding methods such as ball mills and stamp mills. Mechanical methods are used.
  • a chemical method for preparing silver powder is a method of reducing silver oxide nitrate or a silver hydroxide precipitated with a reducing agent such as hydrazine, hydrogen peroxide, or formalin by neutralization of an aqueous solution of silver nitrate with an alkaline solution. It is mainly used to inhale the reduced gas such as hydrogen and carbon monoxide to precipitate the produced silver hydroxide, and to reduce it by adding a reducing agent such as formalin and oxalate to the aqueous solution of alkaline amine complex to reduce it to silver powder. do.
  • a reducing agent such as hydrazine, hydrogen peroxide, or formalin
  • this conventional manufacturing method uses a metal salt as an electrolyte as a starting material, it is not environmentally friendly, takes a lot of cost and time to remove the harmful substances, there is a disadvantage that it is not easy to control the particle size.
  • particles are obtained by metallization on the electrode surface by electrolysis using electrodes and metal salts of metal materials to be synthesized, that is, nitrates, carbonates, sulfates, and the like as electrolytes.
  • the reason why the harmful metal salt is used as an electrolyte for obtaining the metal powder in the electrolysis method is that the metal is not dissolved in water, and when the metal combined with the strong acid salt is dissolved in water, it can be easily dissociated into ions and granulated by a reducing agent or the like.
  • harmful substances are generated as by-products, and harmful gases are generated when the temperature is increased, so that they are not environmentally friendly, and particle sizes are not uniform.
  • the starting material itself is not environmentally friendly, and wastewater treatment problems occur during the neutralization and washing process, and there is a lot of troublesome washing process. During the cleaning process, a lot of metal powder is lost.
  • Korean Patent Publication No. 10-2004-105914 in view of the fact that the starting material itself is not environmentally friendly and wastewater treatment problem occurs in the electrolysis method using the conventional metal salt, only the electrode, a small amount of additives and pure water ( In addition to the use of DI-water, by applying an external force to induce the formation and dispersion of metal particles, it has been proposed a method for producing metal nanoparticles using an electrolysis method that can produce metal nanoparticles in an environmentally friendly manner.
  • a solution (2) in which an environment-friendly metal ion reducing agent or an organic metal ion reducing agent is mixed as a pure water and an additive is introduced into a container (1), and the solution (2)
  • Two electrodes 3 are spaced apart in the chamber.
  • two direct current (DC) power supplies are provided in a state in which the ultrasonic generator 4 for emitting ultrasonic waves to the solution 2 and the agitator 5 for stirring the solution 2 are arranged above and below the vessel. It is applied to the electrode 3.
  • the conventional manufacturing method uses a direct current electrolysis method, in which both the positive electrode electrode and the negative electrode electrode are composed of the same components as the metal particles to be obtained, and thus a metal crystal (crystal) is generated on the electrode due to a potential difference. .
  • a direct current (DC) is applied to the metal cation generated in the anode (Anode) is moved to the cathode and around the cathode (Cathode)
  • a direct current (DC) is applied to the metal cation generated in the anode (Anode) is moved to the cathode and around the cathode (Cathode)
  • the amount is very small in the reaction solution compared to the amount of oxidized Ag 2 O and grown silver particles. It is not suitable for high efficiency mass production method.
  • the method for preparing copper nanoparticles according to the registered patent includes a metal ion reducing agent, which is a substance capable of reducing hydrazine or copper ions, and a metal ion generator, which is a substance capable of ionizing copper on the surface of trisodium citrate or a copper electrode, in water.
  • a metal ion reducing agent which is a substance capable of reducing hydrazine or copper ions
  • a metal ion generator which is a substance capable of ionizing copper on the surface of trisodium citrate or a copper electrode, in water.
  • Injecting and dissolving Placing a copper electrode in the solution spaced apart, the electrode is composed of the same components as the metal particles to be obtained, the electrical energy generated by the alternating voltage applied to the electrode and ionized in the solution by the metal ion generator Becoming a step; And reducing copper ions by the reducing agent in the solution to precipitate copper particles.
  • the metal electrode for producing copper nanoparticles of the prior art is used that consists of a plate-shaped rod electrode.
  • a plate-shaped bar electrode is disposed before the reaction, and as the electrolysis reaction proceeds, the electrode is gradually consumed, and after a certain time, the end of the bar electrode is deformed to be sharp.
  • the deformed portion in order to maintain a constant interval, the deformed portion must be cut and reset at regular intervals or replaced with a new electrode, so that efficient and effective use of the electrode cannot be achieved, and thus the life of the electrode is not long. Moreover, since the resetting process and the replacement process of these electrodes must be performed by hand periodically during mass production, there is a problem in that productivity is lowered.
  • an object of the present invention is to fill the granules or flakes made of the same metal material as the metal nanoparticles to be obtained in a pair of electrode housings installed at regular intervals in the electrolytic cell, so that the distance between the electrodes even when the electrolysis proceeds. It is to provide a metal nanoparticle manufacturing apparatus and method using a granule-type electrode that can be obtained a metal nanoparticles of a uniform size does not change.
  • Another object of the present invention is to continuously fill the metal granules or flakes as the metal granules or flakes are consumed in the electrolysis process, the metal nanoparticles can be easily produced in a large amount of metal nanoparticles continuously without production interruption due to electrode replacement It is to provide a manufacturing apparatus.
  • the present invention provides a metal nanoparticle manufacturing apparatus that can manufacture a large amount of metal nanoparticles with high efficiency by selecting an optimal frequency from an AC power source and applying it to an electrode.
  • Another object of the present invention is to provide an apparatus for producing metal nanoparticles and a method for producing the metal nanoparticles in an environmentally friendly manner using an alternating current electrolysis method.
  • the present invention is a reaction vessel containing an electrolytic solution; First and second electrodes formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings spaced in the reaction vessel, respectively; And a power supply for applying an alternating current power between the first and second electrodes for an electrolysis reaction, wherein the first and second electrode housings are connected from the first and second electrodes in accordance with an electrolysis reaction.
  • an apparatus for producing metal nanoparticles characterized in that it comprises a plurality of holes or slits on at least facing each other to discharge the eluted metal ions.
  • the present invention is a reaction vessel containing an electrolytic solution; A first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in an electrode housing installed inside the reaction vessel; A second electrode disposed in the reaction vessel at intervals from the first electrode; And a power supply device for applying AC power between the first and second electrodes for an electrolysis reaction, wherein the electrode housing includes a plurality of electrode housings to discharge metal ions eluted from the first electrode according to the electrolysis reaction. It provides a metal nanoparticle manufacturing apparatus characterized in that it comprises a hole or a slit.
  • the apparatus for manufacturing metal nanoparticles according to the present invention may further include a support holder for supporting the first electrode housing and the second electrode housing at a predetermined distance from each other in an insulated state.
  • the support holder is granules or flakes filled in the first and second power cables and the first and second electrode housings for supplying AC power applied between the first and second electrodes from the power supply device on both sides. It may further include a first and second electrode terminal for interconnecting the.
  • the first and second electrode housings may each have a cylindrical shape having a rectangular cross section or a polygon.
  • first and second electrode housings each include a plurality of protrusions having a serrated side facing each other and having first and second side plates having a plurality of holes or slits formed on both sides of the protrusions.
  • the first and second side plates may each consist of a mesh made of Ti.
  • first and second electrode housings may have a circular double cylinder structure concentrically arranged with different diameters.
  • the manufacturing apparatus may further include a stirrer having an impeller disposed at the distal end of the rotating shaft extending through the center of the second electrode housing and rotatably supported by a bearing supported by the support holder.
  • the manufacturing apparatus may further include a conductive plate inserted into the inner spaces of the first and second electrode housings to make mutual contact with the granules or the flakes.
  • the granules or flakes are composed of any one or two or more alloys selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd, and the size of the granules or flakes Is set in the range of 0.05 to 10 cm, preferably in the range of 0.5 to 5 mm.
  • the first and second electrode housings may be any one selected from the group consisting of polymer polymer, ceramic, glass, and titanium (Ti).
  • the electrode housing has a cross-shaped accommodating space therein, and has a plurality of holes or slits on the lower side thereof, and the second electrode is disposed to face the lower side of the electrode housing and has a plate shape.
  • the electrode housing has a cross-shaped accommodating space therein, a plurality of holes or slits on the side, the second electrode preferably accommodates the electrode housing therein and is made of a cylindrical or cylindrical mesh.
  • the electrode housing is rotationally driven to maintain a constant distance between the first and second electrodes, and the second electrode is made of Ti.
  • the present invention comprises the steps of preparing an electrolytic solution by dissolving the electrolyte and the dispersant in the pure water in the reaction vessel; First and second granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings disposed to face the inside of the reaction vessel and having a plurality of holes or slits on opposite surfaces thereof. And forming a second electrode; Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And reducing the metal ion with a reducing agent to form metal nanoparticles.
  • the present invention comprises the steps of preparing an electrolytic solution by dissolving the electrolyte and dispersant in the pure water in the reaction vessel;
  • the first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the electrode housing, and a second electrode made of a plate or cylindrical shape and facing at least one surface of the first electrode Installing in the reaction vessel;
  • Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And reducing the metal ion with a reducing agent to form metal nanoparticles.
  • the reducing agent may achieve high yield and uniform particle size distribution of the obtained nanoparticles so as to be introduced into the electrolytic solution so that the concentration of the reducing agent is at a constant level corresponding to the concentration of metal ions generated as the electrolysis proceeds.
  • the frequency f of the AC power supply in the range of 0 ⁇ f ⁇ 10Hz in terms of yield and particle size distribution.
  • the present invention preferably further includes the step of periodically detecting the consumption of granules or flakes filled in the first and second electrode housings to fill new granules or flakes.
  • the electrolysis proceeds. It does not change, it is possible to obtain a metal nanoparticles of uniform size.
  • the metal granules or flakes may be continuously filled, thereby easily producing a large amount of metal nanoparticles continuously and without interruption of production due to electrode replacement.
  • mass production of metal nanoparticles can be achieved by reducing metal ions to metal nanoparticles using a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals.
  • a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals.
  • the metal nanoparticles may be environmentally friendly while using an alternating current electrolysis method.
  • FIG. 1 is a schematic configuration diagram showing a conventional metal nanoparticle manufacturing apparatus
  • Figure 2 is a photograph showing the state before and after use of the electrode used in the conventional metal nanoparticle manufacturing apparatus
  • FIG. 3 is a schematic view of a metal nanoparticle manufacturing apparatus according to a first embodiment of the present invention
  • FIG. 4 is a perspective view showing a granule type electrode used in the apparatus of FIG. 3;
  • FIG. 5 is a vertical cross-sectional view of the granule type electrode of FIG. 4;
  • FIG. 6 is a perspective view showing a granule-type electrode for a metal nanoparticle manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a plan view showing a modification of the granule-type electrode used in the first and second embodiments
  • FIGS. 8 and 9 are schematic cross-sectional view and a bottom view of a metal nanoparticle manufacturing apparatus according to a third embodiment of the present invention.
  • FIGS. 10 and 11 are schematic perspective views of a metal nanoparticle manufacturing apparatus according to a fourth and a fifth embodiment of the present invention, respectively;
  • FIG. 12 is a schematic perspective view of a metal nanoparticle manufacturing apparatus according to a sixth embodiment of the present invention.
  • 13 and 14 are cross-sectional views showing granule-type electrodes of the metal nanoparticle manufacturing apparatus according to the sixth embodiment, respectively.
  • FIG. 3 is a schematic view of the metal nanoparticle manufacturing apparatus according to the first embodiment of the present invention
  • Figure 4 is a perspective view showing a granule-type electrode used in the apparatus of Figure 3
  • Figure 5 is a granule-type electrode of Figure 4 Vertical cross section.
  • an electrolytic solution 11 in which an additive is mixed with pure water is filled in the reaction vessel 10, and the electrolytic solution 11 )
  • the first electrode 30 and the second electrode 40 in which a plurality of metal particles, for example, granules or flakes 30a and 40a made of silver, are placed in the support holder 15. It has a structure arranged opposite to each other by the space
  • a stirrer 20 for stirring the electrolytic solution 11 is selectively disposed under each of the first electrode 30 and the second electrode 40, and an electrolytic solution 11 is disposed below the reaction vessel 10.
  • Heating device 25 is arranged to indirectly heat the heating.
  • the power supply device 50 for applying AC power to the first electrode 30 and the second electrode 40 is connected to the upper portion of the reaction vessel 10.
  • the stirrer 20 may employ a structure in which a magnet piece disposed in the reaction vessel 10 is rotated by a driving device (not shown) disposed outside the reaction vessel 10.
  • a plurality of silver granules or flakes 30a and 40a are used as the first electrode 30 and the second electrode 40, for example, to obtain silver nanoparticles as the metal nanoparticles to be obtained.
  • the present invention may also produce other types of metal nanoparticles in addition to the production of silver nanoparticles using silver granules or flakes 30a and 40a. That is, in the present invention, in addition to granules or flakes of silver (Ag) as the first electrode 30 and the second electrode 40, copper (Cu), nickel (Ni), gold (Au), palladium (Pd), and platinum Any material that can elute metal ions such as (Pt) can be used.
  • the first electrode 30 and the second electrode 40 may include a plurality of granules or flakes (hereinafter, simply abbreviated as “granules”) 30a and 40a, respectively.
  • granules granules or flakes
  • the second electrode housings 32 and 42 are filled in an example, the shape of the electrode housing may accommodate granules therein, and an electrolyte solution between the first electrode 30 and the second electrode 40. If the contact area with (11) is large, the shape of the first and second electrode housings 32 and 42 is not limited.
  • the granules 30a and 40a used for the second electrode 40 and the first electrode 30 may be made of the same material as the metal nanoparticles (or particles) to be manufactured, and the granules 30a and 40a of the granules 30a and 40a may be used.
  • the size is preferably 0.05 to 10 cm, more preferably 0.5 to 5 mm, if the first and second electrode housings 32 and 42 have a plurality of slits, holes or nets.
  • the first and second electrode housings 32 and 42 filled with the granules 30a and 40a used as the first electrode 30 and the second electrode 40, respectively, are spaced at regular intervals by the support holder 15.
  • the support holder 15 has a pair of rectangular through holes corresponding to the cross-sectional shapes of the first and second electrode housings 32 and 42, and supports the first and second electrode housings 32 and 42.
  • the support holder 15 maintains a constant distance while supporting the upper side of each electrode housing (32, 42) in an insulating state.
  • the remaining portions of the first and second electrode housings 32 and 42 are exposed to the lower side of the support holder 15 to face each other at regular intervals.
  • a plurality of slits or holes are formed on opposite surfaces and side surfaces of the first and second electrode housings 32 and 42, respectively.
  • 33 and 43 may be any shape as long as the electrolyte solution 11 is accommodated in the first and second electrode housings 32 and 42 and the electrolytic metal nanoparticles can be eluted. .
  • the first and second electrode housings 32 and 42 can be continuously filled, so there is no need to replace the electrodes.
  • the slits 33 and 43 on the outer surfaces of the housings 32 and 42 may be formed to be inclined upward toward the outside of the electrode housings 32 and 42 in a structure in which the granules 30a and 40a cannot escape.
  • the widths of the slits 33 and 43 are set smaller than the sizes of the granules 30a and 40a, and preferably 0.1-1 mm.
  • the materials used for the first and second electrode housings 32 and 42 are materials insoluble in the electrolytic solution 11, preferably insulating materials such as MC nylon, nylon, polyester, Polymer family such as polystyrene, polyvinyl chloride, carbon, ceramic or glass, for example, Pyrex glass, or insoluble in the electrolyte solution 11, the current flowing titanium ( Ti) can be used.
  • insulating materials such as MC nylon, nylon, polyester, Polymer family such as polystyrene, polyvinyl chloride, carbon, ceramic or glass, for example, Pyrex glass, or insoluble in the electrolyte solution 11, the current flowing titanium ( Ti) can be used.
  • first and second electrode housings 32 and 42 may have any number of slits, holes, gratings or nets through which metal, for example, silver (Ag) ions, can pass on opposite surfaces or sides. Forms or materials are also possible.
  • first and second electrode housings 32 and 42 may face each other, and the opposite surfaces may be formed of titanium (Ti), and separately form side plates having a plurality of slits, holes, gratings or meshes, and the remaining portions may be formed. It is also possible to fabricate one polymer family, ceramic or glass and then assemble it.
  • a bag made of a woven or nonwoven fabric made of a material insoluble in the electrolytic solution it is also possible to use a powder having a particle size of 0.5 ⁇ m to 1 cm for the first electrode 30 and the second electrode 40 instead of granules.
  • bolt-shaped first and second electrode terminals 34 and 44 are fixed to both side surfaces of the support holder 15, and are formed through the bolt-shaped first and second electrode terminals 34 and 44.
  • An alternating current (AC) voltage is applied to the granules 30a and 40a inside the first and second electrode housings 32 and 42.
  • the first and second electrode terminals 34 and 44 are connected to the power supply device 50 through a pair of power cables 55 connected by the first and second lugs 35 and 45 for protecting the terminal. (AC) voltage is applied.
  • the support holder 15, the first and second electrode terminals 34 and 44, and the pair of power cables 55 are exposed to the outside of the reaction vessel 10 so as not to contact the electrolyte solution 11. It is desirable to be.
  • a pair of power cables 55 exposed to the outside is connected to a power supply device 50 for supplying AC power required for electrolysis from the outside of the reaction vessel 10.
  • the power supply device 50 includes, for example, a function generator capable of selecting the waveform and frequency of the AC power required for electrolysis, and an amplifier for amplifying the current or voltage of the AC power generated from the function generator. The output of the amplifier is connected to the first electrode 30 and the second electrode 40.
  • the power supply device 50 has a predetermined waveform and frequency at the first and second electrodes 30 and 40, and can set a current or voltage having a desired size in advance. Any type of power supply can be used, including a dedicated power supply that can supply power.
  • a constant current source may be provided in the power supply device to supply a constant current intensity set between the first and second electrodes 30 and 40 during electrolysis.
  • the waveform of the AC power supply may be any waveform such as, for example, a sine wave, square wave, triangular wave, sawtooth wave, etc., and the waveform change of the AC power supply is merely There is only a slight difference in the yield of the resulting metal nanoparticles and the shape of the particles.
  • the yield and particle size distribution of the nanoparticles obtained by changing the frequency of the AC power source from 100Hz to 0.1Hz to see the effect of the frequency as a factor affecting the yield in the production of metal nanoparticles by the electrolysis method The growth of the particles was investigated.
  • the yield of the nanoparticles is preferably a frequency f of 0 ⁇ f ⁇ 10Hz as the frequency f of the AC power supply, more preferably 0.1 ⁇ f ⁇ 5Hz.
  • the most preferable interval is 0.1 ⁇ f ⁇ 1Hz considering both the yield, particle size distribution and growth of particles.
  • the frequency of the power supply is 0 Hz, that is, direct current (DC)
  • metal ions are oxidized at the anode, and electrons provided from the cathode are moved to the cathode by an electric field before the unoxidized metal ions are reduced by the reducing agent.
  • the metal nanoparticles are reduced to metal on the surface of the negative electrode and grow up to a micrometer size, the desired metal nanoparticles have a problem of low yield.
  • the distribution and particle size of the metal nanoparticles decreased as the frequency decreased from 100Hz to 10Hz.
  • the distribution and particle size of the metal nanoparticles decreased when the frequency decreased from 10Hz to 0.1Hz. The size is further reduced.
  • the amount of metal particles to be obtained is determined as in the chemical method, and the amount of metal ions suitable for the initial reaction conditions is not put in the reaction vessel and the reaction is continuously performed. Accordingly, the metal ions are generated in the metal electrode and the ions are reduced by the reducing agent. As a result, the metal nanoparticles generated due to the polarity of the electrode and the interaction of the nanoparticles in this reaction process may exhibit the characteristics of returning to the electrode. However, this phenomenon is the biggest problem in yield, that is, mass productivity.
  • the amount of generated metal ions is determined by the strength of the current of the alternating current power applied between the two electrodes, and the strength of the current can be controlled by the concentration of the electrolyte and the voltage applied to the electrode. According to the research results of the present inventors, it was found that the yield of the metal nanoparticles is high when the concentration of the reducing agent is maintained at a constant level in consideration of the concentration of the metal ions generated by the constant current intensity (current value). .
  • the amount of the reducing agent is relatively insufficient, so that the rate of reduction of the metal ions is relatively reduced, but it does not cause significant problems in yield.
  • the amount of the reducing agent is relatively insufficient, the side effect of increasing the size of the particle occurs.
  • the concentration of the reducing agent is too large than the concentration of the metal ions produced, the reduction rate is too fast to produce particles of several nanometers or less, and the yield is drastically reduced by returning back to the electrode even before capping with the dispersant.
  • the type and concentration of the electrolyte is directly related to the strength of the pH and current.
  • electrolytes are usually divided into acidic electrolytes, basic electrolytes and neutral electrolytes.
  • the pH is less than 7, for example, when a weak alkaline hydrazine is added as a reducing agent, hydrazines are acidic electrolytes and acids. It is a base reaction. Therefore, a sufficient amount of weak alkaline hydrazine should be put in order to control the size of the particles by controlling the reduction reaction rate.
  • the pH of the reaction solution becomes 7 or more, which increases the chance of electrons moving in the reaction solution, and the reaction rate of the hydrazine, a weak alkali used as a reducing agent, increases, thereby increasing the reaction rate of several nano-sized particles. Is generated and returned to the electrode before being protected by the dispersant.
  • an acid and basic electrolyte are mixed and used, and the pH is set to 7-9.
  • Method for producing metal nanoparticles using the electrolysis method according to the present invention can be implemented using the above metal nanoparticle manufacturing apparatus, the dispersant and the electrolyte in the reaction vessel 10 by dissolving in ultrapure water (DI-water) electrolysis Preparing a solution 11, disposing the first and second electrodes 30, 40 made of the same metal material as the nanoparticles to be synthesized in the electrolytic solution 11 at a distance, the first electrode Ionizing metals of the first and second electrodes 30 and 40 into the electrolytic solution according to an electrolysis method in which an AC power source having a predetermined frequency f is applied between the 30 and second electrodes 40. And reducing the metal ions with a reducing agent to form metal nanoparticles.
  • DI-water ultrapure water
  • the electrolytic solution 11 contains an electrolyte, a reducing agent and a dispersant as an additive in pure water, particularly preferably ultrapure water.
  • the electrolyte solution is used by mixing an acidic electrolyte and a basic electrolyte, it is preferably set to pH 7 to pH 9.
  • the electrolyte may be used by mixing citric acid (citric acid) and hydrazine (Hydrazine).
  • the electrolyte is nitric acid, formic acid (acetic acid), acetic acid (acetic acid), citric acid (citric acid), tartaric acid (tataric acid), glutaric acid (glutaric acid), acid consisting of hexanoic acid (hexanoic acid), the Any one or two or more selected from the group consisting of an alkali metal salt of an acid, ammonia (NH 3 ), triethyl amine (TEA), and an amine of pyridine can be used.
  • the electrolyte used in the present invention may use citric acid as an environmentally friendly electrolyte, and may use amino acids such as glycine as necessary.
  • hydrazine hydrazine: N 2 H 4
  • sodium hypophosphite NaH 2 PO 2
  • sodium borohydride NaBH 4
  • dimethylamine borane dimethylamine borane: ( Any one or two or more selected from the group consisting of CH 3 ) 2 NHBH 3 ), formaldehyde (HCHO), and ascorbic acid can be used.
  • the reducing agent is an environmentally friendly reducing agent, for example, it is preferable to use an organic ion reducing agent such as hydrazine (Hydrazine).
  • the organic ion reducing agent is not harmful after the completion of the reaction because it is consumed by generating both nitrogen gas and water during the reaction.
  • the reducing agent is introduced into the electrolytic solution so that the concentration of the reducing agent becomes a constant level corresponding to the concentration of the metal ions generated when the electrolysis reaction proceeds according to the application of an AC power supply through a reducing agent supply device (not shown).
  • metal nanoparticles can be obtained through an environmentally simple method by using an environmentally friendly electrolyte and an environmentally friendly organic ion reducing agent without using an electrolyte harmful to the environment based on pure water (DI-water). .
  • the dispersant is dissociated from the first and second electrodes 30 and 40 by electrolysis, and ionized metal ions are reduced by the reducing agent, and then the reduced metal nanoparticles are returned to the electrode and attached or the metal nanoparticles. It serves to cap the surface of the metal nanoparticles to prevent the phenomenon of precipitation by cohesion of the liver, it may be used a water-soluble polymer dispersant or a water dispersion polymer dispersant.
  • the water-soluble polymer dispersant may be a polyacryl, polyurethane, or polysiloxane-based aqueous polymer dispersant
  • the water-dispersible polymer dispersant may be a polyacryl, polyurethane, or polysiloxane-based aqueous polymer dispersant.
  • the ultra-pure water refers to tertiary distilled water having almost no anions and cations existing in tap water or bottled water, which is impurity in the desired metal nanoparticles when anions and cations are added in addition to the electrolyte and the reducing agent when preparing the metal nanoparticles. This may occur, and complex compounds may not be formed to obtain metal nanoparticles.
  • the silver metal nanoparticles to be synthesized in the reaction vessel 10 of the metal nanoparticle manufacturing apparatus as the same metal material each of the plurality of silver granules
  • the first electrode 30 and the second electrode 40 made of the 30a and 40a are disposed in the support holder 15 so that the first electrode 30 and the second electrode 40 are spaced apart from each other.
  • Heat was added to the aqueous solution in which all the additives were dissolved to raise the temperature of the aqueous solution to 90 ° C, and then coolant was flowed to the reaction vessel to maintain the set temperature.
  • the electrolysis was performed by setting the current value to 4.3 A while applying between the first and second electrodes. Further, the reaction was carried out while injecting 18.0 mmol of hydrazine as a reducing agent by constant speed injection using a pump while performing electrolysis for 1 hour and 30 minutes.
  • the preparation of the metal nanoparticles using the electrolysis method according to the first embodiment of the present invention was able to obtain silver nanoparticles having a small, uniform size and a uniform shape on the order of tens of nanometers.
  • a metal plate or a rod instead of a metal plate or a rod, it is changed into a granule to fill a pair of electrode housings so as to maintain a constant interval, and a pair of electrodes is formed. Since the distance does not occur in the liver, metal nanoparticles of uniform shape and uniform nano size can be manufactured in large quantities.
  • the new granules may be filled according to the consumption of the granules filled in the pair of electrode housings to continuously manufacture a large amount of metal nanoparticles without stopping the electrolysis process.
  • the present invention it is possible to prevent interruption of the electrolysis process by replenishing granule-shaped metal grains in the internal space of the electrode housing without having to replace the electrode consumed in the electrolysis process, thereby increasing productivity.
  • Figure 6 is a perspective view showing a granule type electrode for a metal nanoparticle manufacturing apparatus according to a second embodiment of the present invention.
  • the granule-type electrode for the metal nanoparticle manufacturing apparatus according to the second embodiment of the present invention is compared with the granule-type electrode of the first embodiment shown in FIG. 3, and the first and second electrode housings 32 There is a difference in that a plurality of holes 33a and 43a are formed instead of slits on opposite sides of 42, and the rest of the configuration is the same.
  • the holes 33a and 43a may be formed to be inclined upward toward the outside of the electrode housings 32 and 42 in a structure in which the granules 30a and 40a cannot escape.
  • FIG. 7 is a plan view showing a modification of the granule type electrode used in the first and second embodiments.
  • the granule-type first and second electrodes 30 and 40 have a first and second electrode housing 32 filled with a plurality of granules 30a and 40a to further improve electrical conductivity.
  • the conductive plate 37 is inserted into the inner space of 42 in the longitudinal direction, respectively.
  • the conductive plate 37 is made of the same material as the granules 30a and 40a.
  • the electrical conductivity can be further improved, and the electrolysis efficiency can be increased.
  • FIGS. 8 and 9 are schematic cross-sectional view and a bottom view of a metal nanoparticle manufacturing apparatus according to a third embodiment of the present invention.
  • the same components as those of the metal nanoparticle manufacturing apparatus of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal nanoparticle manufacturing apparatus has a cylindrical shape of a double cylinder structure in order to maximize the opposing area between the first electrode 60 and the second electrode 70.
  • An example employing an electrode housing is proposed.
  • the cylindrical first and second electrode housings 62 and 72 according to the third embodiment of the present invention have a double-cylinder structure whose bottom is closed so as to have an annular accommodating space for filling a plurality of granules 60a and 70a, respectively. Consists of
  • the first electrode 60 and the second electrode 70 filled with a plurality of granules 60a and 70a made of the same material are used.
  • the first electrode 60 and the second electrode 70 are spaced apart from each other as they are connected to each other by the plurality of connection parts 12 having the same length between the first electrode housing 62 and the second electrode housing 72. do.
  • the interval between the first electrode housing 62 and the second electrode housing 72 is set constant for all of the outer peripheral surfaces facing each other, so that the interval between the first electrode 60 and the second electrode 70 is also determined. It is set constant.
  • a plurality of slits or holes 63 are formed on the inner circumferential surface of the first electrode housing 62, and a plurality of slits or holes 73 are formed on the outer circumferential surface of the second electrode housing 73 facing the first electrode housing 62. have.
  • an impeller that is, an agitator 20
  • the rotating shaft 22 of the stirrer 20 is disposed to penetrate the center of the second electrode housing 72, and a bearing 14 supported by a plurality of connection parts 13 inside the lower side of the second electrode housing 72.
  • One end of the rotation shaft 20 is rotatably supported.
  • an electrolytic solution 11 containing an electrolyte, a dispersant, and a reducing agent as an additive is contained in ultrapure water, and a heating apparatus for indirectly heating the electrolytic solution 11 at the lower side of the reaction vessel 10. (Not shown), and a pair of power supplies are provided on top of the reaction vessel 10 for supplying AC power to the first electrode 60 and the second electrode 70. It is connected via a cable 55.
  • the metal nanoparticle manufacturing apparatus configured as described above has a cylindrical first and second cylindrical structure having a double cylinder structure in order to maximize the opposing area between the first electrode 60 and the second electrode 70. As the electrode housings 62 and 72 are employed, the opposing area increases, whereby the yield of the metal nanoparticles can be increased.
  • the first and second electrode housings 62 and 72 are filled to form the first and second electrodes 60 and 70 so as to maintain a predetermined interval by replacing the metal plate or rod with granules.
  • the electrolysis is performed using an AC power source, even though the electrolysis proceeds, the distance does not change between the first and second electrodes 60 and 70, so that a large amount of metal nano particles having a uniform shape and a uniform nano size can be obtained. It can manufacture.
  • the present invention does not stop the electrolysis process by filling the new granules 60a and 70a according to the consumption of the granules 60a and 70a filled in the first and second electrode housings 62 and 72 as the electrolysis proceeds. It is possible to produce a large amount of metal nanoparticles continuously without. As a result, in the present invention, it is possible to prevent the interruption of the electrolysis process by replenishing granule-shaped metal grains in the internal space of the electrode housing without having to replace the electrodes consumed in the electrolysis process and to increase productivity by the continuous process. have.
  • FIGS 10 and 11 are schematic perspective views of the metal nanoparticle manufacturing apparatus according to the fourth and fifth embodiments of the present invention, respectively.
  • the metal nanoparticle manufacturing apparatus may include the electrode housings 82 and 82a respectively accommodating granules (not shown). Unlike the first to third embodiments, there is a difference in that only one electrode housing is used.
  • the second electrodes 90 and 90a facing the first electrode 80 formed by granules accommodated in the electrode housings 82 and 82a may be a disk or a cylinder which may be energized only when an AC power source for electrolysis is applied. Consists of, the electrode housing (82, 82a) for accommodating the granule is made by the rotation drive (not shown).
  • the second electrodes 90 and 90a of the fourth and fifth embodiments are selected as metal materials which are not eluted from the electrolytic solution, such as Ti.
  • the electrode housing 82 accommodating the granules may have, for example, a cross-sectional accommodating space.
  • the shape of the electrode housing 82 may be any shape in addition to the cross shape described above as long as it is a tubular structure capable of accommodating granules, for example, a star-shaped cylinder, a cylinder, a polygonal cylinder, and the like. Therefore, the first electrode 80 is composed of a plurality of granules accommodated in the electrode housing 82.
  • the slit 83 of the electrode housing 82 through which the metal ions eluted during electrolysis are discharged has a lower side ( 84).
  • the electrode housing 82 As the electrode housing 82 is rotated, a constant interval is maintained between the first and second electrodes 80 and 90 during the electrolysis reaction, and at the same time, an effective reaction environment of the generated metal ions and the reducing agent is created. The efficiency of mixing can be maximized.
  • reference numeral 91 denotes a conduit 91 in which a power cable for applying AC power to the second electrode 90 disposed at the bottom of the reaction vessel 10 is accommodated.
  • the metal nanoparticle manufacturing apparatus according to the fifth embodiment of the present invention shown in FIG. 11 uses an electrode housing 82a accommodating granules having the same structure as the electrode housing 82 according to the fourth embodiment.
  • the difference between the fifth embodiment and the fourth embodiment of the present invention is that the second electrode 90a facing the first electrode 80a surrounds the electrode housing 82 of the first electrode 80a and has a cylindrical thickness. Or there is a difference in that it is made of a cylindrical net (net) structure.
  • the cylindrical second electrode 90a is disposed on the side of the first electrode 80a, the slit 83a of the electrode housing 82a through which the metal ions eluted at the time of electrolysis is discharged is formed in the electrode housing ( 82a).
  • the electrode housing 82a has a cross shape
  • the four side surfaces 84a and the cylindrical second electrodes 90a are disposed at regular intervals, so that a constant interval is also provided between the first and second electrodes 80a and 90a. Stays on.
  • the fourth and fifth embodiments described above use only one electrode housing 82, 82a, which makes it easy to manage the replenishment of the spent granules.
  • FIGS. 13 and 14 are cross-sectional views illustrating granule-type electrodes of the metal nanoparticle manufacturing apparatus according to the sixth embodiment, respectively.
  • the first electrode 300a and the second electrode 400a face each other (particularly, the first and second side plates 34a and 44a) are set at the same distance, but the structure of the opposite side is different. It is shown in a state opened at a constant angle for convenience of explanation.
  • the metal nanoparticle manufacturing apparatus maximizes the so-called "edge effect" in which the ion elution from the electrode is greater at the corners of the electrode than at other corners at the time of electrolysis.
  • An electrode structure can be proposed.
  • the apparatus for manufacturing metal nanoparticles includes, for example, first and second electrode housings 32a and 42a having a rectangular cylindrical shape to accommodate granules (not shown).
  • Each side has a structure consisting of first and second side plates 34a and 44a, each of which is made of an insoluble electrode material such as Ti, and a plurality of serrated protrusions (corresponding to threaded threads) 35a and 45a protrude to a constant height. .
  • the first and second electrode housings 32a and 42a are insulative materials insoluble in the electrolytic solution, for example, MC nylon, nylon, and polyester, as in the electrode housings of the first to third embodiments.
  • Polymer family such as polystyrene, polyvinyl chloride, ceramic or glass, for example Pyrex glass, may be used, and the first and second side plates 34a and 44a may be current carrying.
  • Insoluble material titanium (Ti) may be used.
  • the first and second side plates 34a and 44a may be formed of the first and second side plates 34a and 44a. And contact with a plurality of granules filled in the second electrode housings 32a and 42a, so that when the AC power is applied to the granules, the first and second side plates 34a and 44a are energized with the plurality of granules. .
  • the first and second side plates 34a and 44a have a plurality of jagged protrusions (corresponding to the threaded threads) 35a and 45a protruding at a constant height so as to face the opposite protrusions (corresponding to the threaded threads) (
  • the spacing between 35a and 45a is set equal, and a number of holes or slits 33a and 43a are formed on the side surfaces of each of the projections 35a and 45a.
  • the first and second side plates 34a and 44a may be used by bending a Ti sheet having a net structure so that a plurality of holes or slits 33a and 43a are regularly arranged.
  • first and second side plates 34a and 44a have a plurality of jagged protrusions (corresponding to threaded threads) 35a and 45a, so that the surface areas facing each other increase as compared with the flat plate structure. As a result, the efficiency of the metal nanoparticles obtained can be increased.
  • the first and second granules are energized according to the edge effect. And a plurality of granules filled on one side between the second electrode housings 32a and 42a to form the first electrode 300a and eluted with an electrolytic solution while giving electrons to the plurality of granules of the second electrode 400a on the other side.
  • the elution amount of the metal ions to be increased.
  • the metal nanoparticle manufacturing apparatus is a projection of the first and second side plates 34a and 44a in the first and second electrode housings 32a and 42a as shown in FIG. 14.
  • (35a, 45a) is set to the structure arrange
  • the projections 35a and 45a of the first and second side plates 34a and 44a are arranged in parallel to each other in the vertical direction.
  • the protrusions 35a and 45a of the first and second side plates 34a and 44a are arranged in parallel to each other in the horizontal direction.
  • the granules or flakes made of the same material as the metal nanoparticles to be obtained are filled in a pair of electrode housings installed at predetermined intervals in the electrolytic cell, so that the electrolysis proceeds between the two electrodes. Since the distance does not change, metal nanoparticles of uniform shape and uniform size can be obtained.
  • the present invention as the metal granules or flakes are consumed in the electrolysis process, new metal granules or flakes are continuously filled, thereby allowing a large amount of metal nanoparticles to be produced continuously and conveniently without interruption of production due to electrode replacement.
  • it is possible to prevent the interruption of the electrolysis process by replenishing the granules with the electrode housing without having to replace the electrodes consumed in the electrolysis process, thereby increasing productivity.
  • mass production of metal nanoparticles can be achieved by reducing metal ions to metal nanoparticles using a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals.
  • a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals.
  • silver (Ag) which is a metal having a low ionization tendency
  • a metal having a high ionization tendency for example, Mg, Al, Zn, Fe, Cu
  • Pt, Au, etc. Similar results can be obtained by applying Pt, Au, etc., which have a small tendency to ionize.
  • pure silver (Ag) is used as a material of granule or flake, but is selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd.
  • Two or more alloys for example, Ag-Cu, Ag-Mg, Ag-Al, Ag-Ni, Ag-Fe, Cu-Mg, Cu-Fe, Cu-Al, Cu-Zn, Cu-Ni, etc. When using the alloy nanoparticles can be obtained.
  • the alloy nanoparticles have a melting point lower than the melting point of each metal before the pure alloy, low sintering temperature can be expected in preparing the ink using the alloy nanoparticles.
  • the present invention manufactures metal nanoparticles that can mass-produce eco-friendly and uniformly the metal nanoparticles, especially silver nanoparticles used in applications such as metal ink, medical, clothing, cosmetics, catalysts, electrode materials, electronic materials, etc. in a simple process. Can be used extensively.

Abstract

The present invention relates to an apparatus and method for producing metal nanoparticles using granule-type electrodes, in which a pair of electrode housings spaced apart from each other is filled with metal granules, and electrolysis is performed on the metal granules using alternating current, to thereby mass produce metal nanoparticles having a uniform shape in a continuous and inexpensive manner. The apparatus of the present invention comprises: a reaction container in which an electrolytic solution is contained; a first electrode and a second electrode which are formed by filling a first electrode housing and a second electrode housing, which are spaced apart from each other in the reaction container, with a plurality of metal granules or flakes; and a power supply device for applying alternating current power between the first electrode and the second electrode so as to induce an electrolysis reaction. The first electrode housing and the second electrode housing have a plurality of holes or slits formed at the opposite surfaces thereof, respectively, so as to discharge metal ions eluted by the electrolysis reaction.

Description

그래뉼 타입 전극을 이용한 금속 나노 입자 제조장치 및 그 방법Apparatus and method for manufacturing metal nanoparticle using granule type electrode
본 발명은 전기분해법을 이용한 금속 나노 입자 제조장치 및 그 방법에 관한 것으로, 특히 교류전압을 이용하여 전극의 재료로서 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 그래뉼을 일정 간격을 갖는 한쌍의 전극하우징에 채워서 전기분해함에 의해 연속적으로 균일한 형상과 균일한 나노 크기의 금속 나노 입자를 저렴한 비용으로 대량으로 제조할 수 있는 그래뉼 타입 전극을 이용한 금속 나노 입자 제조장치 및 그 방법에 관한 것이다.The present invention relates to an apparatus for manufacturing metal nanoparticles using an electrolysis method and a method thereof, and in particular, a pair of electrode housings having a predetermined interval between granules made of the same metal as the metal nanoparticles to be obtained as an electrode material using an alternating voltage. The present invention relates to a metal nanoparticle production apparatus and method using a granule-type electrode capable of producing a large amount of metal nanoparticles having a uniform shape and uniform nano size continuously by filling in an electrolysis.
일반적으로 미세금속분말을 얻기 위한 방법으로는 공침법, 분무법, 졸-겔법, 전기분해법, 역상 마이크로 에멀전법 등의 화학적 방법과 볼밀(ball mill), 스탬프밀(stamp mill)을 이용한 분쇄법 등의 기계적 방법이 사용되고 있다.In general, methods for obtaining fine metal powders include chemical methods such as coprecipitation, spraying, sol-gel, electrolysis, and reverse phase microemulsion, and grinding methods such as ball mills and stamp mills. Mechanical methods are used.
예컨대 은분말을 제조하기 위한 화학적 방법은 질산은 수용액을 알칼리 용액으로 중화시키는 중화반응을 거쳐 생성된 산화은이나 수산화은의 침전물에 히드라진이나 과산화수소, 포르말린 등의 환원제를 사용하여 환원시키는 방법, 상기 중화반응에 의해 생성된 수산화은의 침전에 수소, 일산화탄소 등의 환원력이 강한 가스를 흡입시켜 환원시키는 방법, 알칼리성 아민착체 수용액에 포르말린, 수산 등의 환원제를 첨가하여 환원시키는 방법을 거쳐 은분말로 석출시키는 방법 등이 주로 사용된다.For example, a chemical method for preparing silver powder is a method of reducing silver oxide nitrate or a silver hydroxide precipitated with a reducing agent such as hydrazine, hydrogen peroxide, or formalin by neutralization of an aqueous solution of silver nitrate with an alkaline solution. It is mainly used to inhale the reduced gas such as hydrogen and carbon monoxide to precipitate the produced silver hydroxide, and to reduce it by adding a reducing agent such as formalin and oxalate to the aqueous solution of alkaline amine complex to reduce it to silver powder. do.
그러나 이러한 종래의 제조방법은 출발 물질로 금속염을 전해질로 사용하고 있기 때문에, 환경 친화적이지 못하고 유해물의 제거하기 위하여 많은 비용과 시간이 소요되며, 입자크기를 용이하게 제어하지 못한다는 단점이 있다.However, this conventional manufacturing method uses a metal salt as an electrolyte as a starting material, it is not environmentally friendly, takes a lot of cost and time to remove the harmful substances, there is a disadvantage that it is not easy to control the particle size.
또한, 종래에는 금속입자의 응집에 의한 입자성장을 막기 위해 사용되는 계면활성제 및 첨가제 또한 유해물을 사용하기 때문에, 환경 친화적이지 못하다는 단점이 있다.In addition, conventionally, since surfactants and additives used to prevent particle growth due to aggregation of metal particles also use harmful substances, they are disadvantageous in that they are not environmentally friendly.
종래의 일반적인 전기분해법의 경우, 합성하고자 하는 금속소재의 전극과 금속염 즉, 질산염, 탄산염, 황산염 등을 전해질로 사용하여 전기분해에 의해서 전극표면에서 금속화시켜 입자를 얻어낸다.In the conventional general electrolysis method, particles are obtained by metallization on the electrode surface by electrolysis using electrodes and metal salts of metal materials to be synthesized, that is, nitrates, carbonates, sulfates, and the like as electrolytes.
물론 전기분해법에서 금속분말을 얻기 위한 전해질로서 유해 금속염을 사용하는 이유는 금속이 물에 용해되지 않기 때문이며, 강산염과 결합한 금속을 물에 녹이면 이온으로 쉽게 해리되어 환원제 등에 의하여 입자화될 수 있다.Of course, the reason why the harmful metal salt is used as an electrolyte for obtaining the metal powder in the electrolysis method is that the metal is not dissolved in water, and when the metal combined with the strong acid salt is dissolved in water, it can be easily dissociated into ions and granulated by a reducing agent or the like.
이러한 경우에는 부산물로서 유해물이 발생하고, 온도를 높일 때에 유해가스가 발생하여 환경 친화적이지 못하며, 입자의 크기도 균일하지 못하다.In this case, harmful substances are generated as by-products, and harmful gases are generated when the temperature is increased, so that they are not environmentally friendly, and particle sizes are not uniform.
더욱이, 종래와 같이 질산염, 탄산염, 황산염 등과 같은 금속염을 사용한 전기분해법에서는 출발 물질 자체가 환경 친화적이지 못하고, 중화 및 세척과정에서 폐수처리 문제가 발생할 뿐만 아니라 많은 세척 과정을 거쳐야하는 번거로움이 있으며, 세척 과정에서 금속 분말을 많이 유실하게 된다.Furthermore, in the conventional electrolysis method using metal salts such as nitrate, carbonate, sulfate, etc., the starting material itself is not environmentally friendly, and wastewater treatment problems occur during the neutralization and washing process, and there is a lot of troublesome washing process. During the cleaning process, a lot of metal powder is lost.
한국공개특허 제10-2004-105914호에는 상기한 종래의 금속염을 사용한 전기분해법에서는 출발 물질 자체가 환경 친화적이지 못하고 폐수처리 문제가 발생하는 점을 고려하여, 단지 전극과 소량의 첨가제, 순수물(DI-water)을 사용함과 더불어 외부적인 힘을 가하여 금속 입자들의 형성 및 분산을 유도함으로써, 환경 친화적으로 금속의 나노입자를 제조할 수 있는 전기분해법을 이용한 금속나노입자 제조방법을 제안하고 있다. In Korean Patent Publication No. 10-2004-105914, in view of the fact that the starting material itself is not environmentally friendly and wastewater treatment problem occurs in the electrolysis method using the conventional metal salt, only the electrode, a small amount of additives and pure water ( In addition to the use of DI-water, by applying an external force to induce the formation and dispersion of metal particles, it has been proposed a method for producing metal nanoparticles using an electrolysis method that can produce metal nanoparticles in an environmentally friendly manner.
상기 한국공개특허 제10-2004-105914호에 개시된 종래의 전기분해법을 이용한 금속나노입자 제조방법을 도 1을 참고하여 보다 상세하게 설명한다. A method of preparing metal nanoparticles using the conventional electrolysis method disclosed in Korean Patent Publication No. 10-2004-105914 will be described in more detail with reference to FIG. 1.
도 1을 참고하면, 종래의 금속나노입자 제조에서는 용기(1)의 내부에 순수물과 첨가제로서 친환경적 금속이온환원제나 유기물금속이온환원제를 혼합한 용액(2)을 투입하고, 상기 용액(2) 내에 두 개의 전극봉(3)을 이격 배치한다. 또한, 상기 용액(2)에 초음파를 발산하는 초음파발생장치(4)와 용액(2)을 교반하는 교반기(5)를 상기 용기의 상하에 각각 배치하여 구성한 상태에서 직류(DC) 전원을 2개의 전극봉(3)에 인가하고 있다. Referring to FIG. 1, in the manufacture of conventional metal nanoparticles, a solution (2) in which an environment-friendly metal ion reducing agent or an organic metal ion reducing agent is mixed as a pure water and an additive is introduced into a container (1), and the solution (2) Two electrodes 3 are spaced apart in the chamber. In addition, two direct current (DC) power supplies are provided in a state in which the ultrasonic generator 4 for emitting ultrasonic waves to the solution 2 and the agitator 5 for stirring the solution 2 are arranged above and below the vessel. It is applied to the electrode 3.
그러나, 상기 종래의 제조방법은 직류 전기분해법을 이용하는 것으로 양극 전극봉과 음극 전극봉이 모두 얻고자 하는 금속입자와 동일한 성분으로 구성되어 있어 전위차에 의해 전극에 금속 크리스탈(결정)이 생성되는 현상이 발생한다.However, the conventional manufacturing method uses a direct current electrolysis method, in which both the positive electrode electrode and the negative electrode electrode are composed of the same components as the metal particles to be obtained, and thus a metal crystal (crystal) is generated on the electrode due to a potential difference. .
또한, 상기 종래의 제조방법으로 금속 나노입자, 예를 들어, 은 나노입자를 제조하는 경우 직류전류(DC)가 인가되어 양극(Anode)에서 생성된 금속 양이온이 음극으로 이동하여 음극(Cathode) 주변으로 성장하여 나노 크기 이상의 마이크로 크기의 은 입자 결정(Crystalline)이 생성되어 덩어리지는 현상이 발생하며, 더욱이 금속 입자가 균일하게 형성되지 못하고 불균일한 입자가 형성되는 문제점이 있다. In addition, when manufacturing the metal nanoparticles, for example, silver nanoparticles by the conventional manufacturing method, a direct current (DC) is applied to the metal cation generated in the anode (Anode) is moved to the cathode and around the cathode (Cathode) As a result of the growth of nano-size silver particles (Crystalline) is generated and agglomeration occurs, and there is a problem that the metal particles are not formed uniformly, non-uniform particles are formed.
또한, 상기 종래의 제조방법에 따라 직류전류를 인가하여 전기분해를 실시하는 경우 양극에서, Ag+이온이 생성될 때 발생하는 열에 의해 Ag+이온의 짝 이온인 OH-이온과 결합하여 산화되는 현상이 발생하는 문제점을 가지고 있으며, 산화되지 않은 Ag+이온이 환원제에 의해 환원되기 전에 전기장에 의해 음극으로 이동하고, 음극에서 제공되는 전자와 만나 음극 표면에서 다시 은으로 환원됨으로써 은 입자가 점차 성장하게 되고, 성장된 은 입자는 마이크로 크기로까지 성장됨으로써 은 나노 입자로 생성될 Ag+이온을 소모시키는 결과를 야기하게 된다. In addition, when electrolysis is performed by applying a direct current according to the conventional manufacturing method, a phenomenon in which the anode is combined with OH - ions, which are counter ions of Ag + ions, and oxidized by heat generated when Ag + ions are generated. This problem occurs, and the silver particles grow gradually as unoxidized Ag + ions move to the cathode by an electric field before being reduced by the reducing agent, and meet with electrons provided at the cathode to be reduced back to silver on the surface of the cathode. The grown silver particles are grown to micro size, resulting in the consumption of Ag + ions to be produced as silver nano particles.
따라서, Ag+이온이 환원제에 의해 환원되고 분산제에 의해 캡핑이 되어 원하는 은 나노 입자들이 생성되었다고 하더라도 그 양은 산화된 Ag2O의 생성량과 성장된 은 입자들에 비해 극히 적은 양이 반응용액에 존재하게 되어 고효율의 대량생산방법으로는 적합하지 않다.Therefore, even though Ag + ions are reduced by the reducing agent and capped by the dispersant to produce the desired silver nanoparticles, the amount is very small in the reaction solution compared to the amount of oxidized Ag 2 O and grown silver particles. It is not suitable for high efficiency mass production method.
한편, 상기한 종래의 직류 전기분해방법을 이용한 금속 나노 입자 제조방법에서 대량생산방법으로 부적합한 문제점을 해결할 수 있는 기술로서, 전기분해시 직류전압 대신에 교류전압을 사용하여 금속 나노 입자를 제조하는 기술이 한국등록특허 제10-0820038호에 제안되어 있다. On the other hand, as a technology that can solve the problem of inadequate in the mass production method in the conventional method of manufacturing the metal nanoparticles using the conventional direct current electrolysis method, a technique for manufacturing the metal nanoparticles using an alternating voltage instead of the direct current voltage during electrolysis This is proposed in Korean Patent Registration No. 10-0820038.
상기 등록특허에 따른 구리 나노 입자 제조방법은 히드라진 또는 구리이온을 환원시킬 수 있는 물질인 금속이온환원제와, 트리소듐 시트레이트 또는 구리전극 표면에서 구리를 이온화시킬 수 있는 물질인 금속이온발생제가 물에 투입되어 용해되는 단계와; 상기 용액 내에 구리전극을 이격 배치하되, 상기 전극이 얻고자 하는 금속입자와 동일한 성분으로 구성되어 전극에 인가된 교류전압으로 인하여 발생된 전기에너지와, 상기 금속이온발생제에 의해 상기 용액 내에서 이온화되는 단계와; 상기 용액 내에서 상기 환원제에 의해 구리이온이 환원되어 구리입자가 석출되는 단계를 포함하고 있다. The method for preparing copper nanoparticles according to the registered patent includes a metal ion reducing agent, which is a substance capable of reducing hydrazine or copper ions, and a metal ion generator, which is a substance capable of ionizing copper on the surface of trisodium citrate or a copper electrode, in water. Injecting and dissolving; Placing a copper electrode in the solution spaced apart, the electrode is composed of the same components as the metal particles to be obtained, the electrical energy generated by the alternating voltage applied to the electrode and ionized in the solution by the metal ion generator Becoming a step; And reducing copper ions by the reducing agent in the solution to precipitate copper particles.
그러나, 상기 등록특허에 따르면 순수한 구리 나노 입자를 얻을 수는 있으나, 110V~220V의 상용 교류전압(싸인파의 50~60Hz)을 사용하므로 전기분해효율이 매우 낮아진다. 그 이유는 교류 전류는 일정한 주기로 두 전극의 극성이 서로 바뀌게 되는데 일반적인 상용 교류전압에서는 전극의 극성이 1초에 50~60번 바뀌기 때문에 일측의 금속 전극에서 생성된 금속 이온들이 환원되기도 하지만 환원되기 전에 다시 일측의 금속 전극으로 되돌아가게 되어, 생산성이 크게 저하되는 문제점을 가지게 된다. However, according to the registered patent, although pure copper nanoparticles can be obtained, electrolytic efficiency is very low since a commercial AC voltage (50 to 60 Hz of a sine wave) of 110 V to 220 V is used. The reason is that the alternating current changes the polarity of the two electrodes at regular intervals. In general commercial alternating voltage, since the polarity of the electrode changes 50 to 60 times per second, the metal ions generated at one metal electrode are reduced, but before being reduced. Returning to the metal electrode on one side again, there is a problem that the productivity is greatly reduced.
따라서, 구리 입자의 평균 입도와 분포가 균일하지 않고 전극의 극성 변화에 의한 결정화로 인해 대량생산성이 떨어지는 문제점이 있다. Therefore, there is a problem that the average particle size and distribution of the copper particles are not uniform and the mass productivity is poor due to the crystallization caused by the polarity change of the electrode.
한편, 종래기술의 구리 나노 입자 제조용 금속 전극은 도 2에 도시된 바와 같이, 판상의 막대전극으로 이루어진 것을 사용하고 있다. 전해조 내에 이격 배치된 한쌍의 구리전극은 반응전에 판상의 막대전극이 배치되며, 전기 분해 반응이 진행됨에 따라 점차로 전극이 소모되어 일정시간 반응 후에는 막대전극의 단부가 뽀족해지는 형상으로 변형된다. On the other hand, the metal electrode for producing copper nanoparticles of the prior art, as shown in Figure 2, is used that consists of a plate-shaped rod electrode. In the pair of copper electrodes spaced apart in the electrolytic cell, a plate-shaped bar electrode is disposed before the reaction, and as the electrolysis reaction proceeds, the electrode is gradually consumed, and after a certain time, the end of the bar electrode is deformed to be sharp.
막대전극의 모양이 변형됨에 따라 두 전극간의 간격이 달라지면 전위차 변화가 발생하고 전류의 통전량이 감소하여 발열됨으로 인해 생성되는 금속 나노 입자의 사이즈가 증가하는 문제가 발생한다. As the shape of the bar electrode is changed, when the gap between the two electrodes is changed, a change in potential difference occurs and a problem occurs in that the size of the metal nanoparticles generated due to heat generation is reduced due to a decrease in the amount of current flowing.
따라서, 일정한 간격을 유지하기 위해서 일정한 주기마다 변형부분을 절단하여 재세팅하거나, 새로운 전극으로 교체하여야 하므로 능률적이고 효과적인 전극사용이 이루어지지 못하여 전극의 수명이 길지 못하다. 더욱이, 양산과정에서 이러한 전극의 재세팅 공정과 교체공정이 주기적으로 수작업으로 이루어져야 하므로, 이로 인해 생산성이 저하되는 문제점이 있었다.Therefore, in order to maintain a constant interval, the deformed portion must be cut and reset at regular intervals or replaced with a new electrode, so that efficient and effective use of the electrode cannot be achieved, and thus the life of the electrode is not long. Moreover, since the resetting process and the replacement process of these electrodes must be performed by hand periodically during mass production, there is a problem in that productivity is lowered.
따라서, 본 발명의 목적은 전해조 내에 일정 간격으로 설치된 한쌍의 전극하우징 내부에 얻고자 하는 금속 나노 입자와 동일한 금속 재료로 이루어진 그래뉼 또는 플레이크를 충전하여 전극을 구성함에 따라 전기분해가 진행될지라도 전극간의 거리가 변하지 않아 균일한 사이즈의 금속 나노 입자를 얻을 수 있는 그래뉼 타입 전극을 이용한 금속 나노 입자 제조장치 및 그 방법을 제공하는 데 있다. Accordingly, an object of the present invention is to fill the granules or flakes made of the same metal material as the metal nanoparticles to be obtained in a pair of electrode housings installed at regular intervals in the electrolytic cell, so that the distance between the electrodes even when the electrolysis proceeds. It is to provide a metal nanoparticle manufacturing apparatus and method using a granule-type electrode that can be obtained a metal nanoparticles of a uniform size does not change.
본 발명의 다른 목적은 전기 분해 과정에서 금속 그래뉼 또는 플레이크가 소모됨에 따라 금속 그래뉼 또는 플레이크를 연속적으로 채워줌으로써 전극 교체에 따른 생산중단 없이 연속적으로 간편하게 대량의 금속 나노 입자를 제조할 수 있는 금속 나노 입자 제조장치를 제공하는 데 있다. Another object of the present invention is to continuously fill the metal granules or flakes as the metal granules or flakes are consumed in the electrolysis process, the metal nanoparticles can be easily produced in a large amount of metal nanoparticles continuously without production interruption due to electrode replacement It is to provide a manufacturing apparatus.
본 발명의 또 다른 목적은 금속 이온이 결정으로 형성되기 전에 환원제를 이용하여 금속 나노입자로 환원시키고 아직 환원되지 않은 금속 이온이 나노 결정으로 성장되기 전에 극성을 변환시킴으로써 금속 나노 입자의 대량생산이 이루어질 수 있도록 교류전원에서 최적의 주파수를 선택하여 전극에 인가함에 따라 고효율로 대량의 금속 나노 입자를 제조할 수 있는 금속 나노 입자 제조장치를 제공하는 데 있다. It is still another object of the present invention to mass produce metal nanoparticles by reducing the metal nanoparticles with a reducing agent before the metal ions are formed into crystals and converting the polarity before the metal ions which have not been reduced are grown into nanocrystals. The present invention provides a metal nanoparticle manufacturing apparatus that can manufacture a large amount of metal nanoparticles with high efficiency by selecting an optimal frequency from an AC power source and applying it to an electrode.
본 발명의 다른 목적은 교류 전기분해방법을 이용하면서 친환경적으로 금속 나노 입자를 제조할 수 있는 금속 나노 입자 제조장치 및 그 방법을 제공하는 데 있다.Another object of the present invention is to provide an apparatus for producing metal nanoparticles and a method for producing the metal nanoparticles in an environmentally friendly manner using an alternating current electrolysis method.
이와 같은 목적을 달성하기 위한 본 발명의 일 양태에 따르면, 본 발명은 전해 용액이 수용된 반응용기; 각각 상기 반응용기의 내부에 간격을 두고 설치된 제1 및 제2 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크가 충진되어 형성되는 제1 및 제2 전극; 및 전기분해 반응을 위해 교류 전원을 상기 제1 및 제2 전극 사이에 인가하기 위한 전원공급장치를 포함하며, 상기 제1 및 제2 전극하우징은 전기분해 반응에 따라 상기 제1 및 제2 전극으로부터 용출된 금속 이온이 배출되도록 적어도 서로 마주보는 면에 다수의 홀 또는 슬릿을 구비하는 것을 특징으로 하는 금속 나노 입자의 제조장치를 제공한다. According to an aspect of the present invention for achieving the above object, the present invention is a reaction vessel containing an electrolytic solution; First and second electrodes formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings spaced in the reaction vessel, respectively; And a power supply for applying an alternating current power between the first and second electrodes for an electrolysis reaction, wherein the first and second electrode housings are connected from the first and second electrodes in accordance with an electrolysis reaction. Provided is an apparatus for producing metal nanoparticles, characterized in that it comprises a plurality of holes or slits on at least facing each other to discharge the eluted metal ions.
본 발명의 다른 양태에 따르면, 본 발명은 전해 용액이 수용된 반응용기; 상기 반응용기의 내부에 설치된 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크가 충진되어 형성되는 제1전극; 상기 반응용기의 내부에 상기 제1전극과 간격을 두고 설치되는 제2전극; 및 전기분해 반응을 위해 교류 전원을 상기 제1 및 제2 전극 사이에 인가하기 위한 전원공급장치를 포함하며, 상기 전극하우징은 전기분해 반응에 따라 상기 제1전극으로부터 용출된 금속 이온이 배출되도록 다수의 홀 또는 슬릿을 구비하는 것을 특징으로 하는 금속 나노 입자의 제조장치를 제공한다. According to another aspect of the invention, the present invention is a reaction vessel containing an electrolytic solution; A first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in an electrode housing installed inside the reaction vessel; A second electrode disposed in the reaction vessel at intervals from the first electrode; And a power supply device for applying AC power between the first and second electrodes for an electrolysis reaction, wherein the electrode housing includes a plurality of electrode housings to discharge metal ions eluted from the first electrode according to the electrolysis reaction. It provides a metal nanoparticle manufacturing apparatus characterized in that it comprises a hole or a slit.
본 발명에 따른 금속 나노 입자의 제조장치는 상기 제1전극하우징과 제2전극하우징을 절연상태로 상호 일정한 거리를 두고 지지하는 지지홀더를 더 포함할 수 있다.The apparatus for manufacturing metal nanoparticles according to the present invention may further include a support holder for supporting the first electrode housing and the second electrode housing at a predetermined distance from each other in an insulated state.
또한, 상기 지지홀더는 양측면에 전원공급장치로부터 상기 제1 및 제2 전극 사이에 인가되는 교류 전원을 공급하는 제1 및 제2 전원케이블과 제1 및 제2 전극하우징 내부에 충진된 그래뉼 또는 플레이크를 상호 연결하기 위한 제1 및 제2 전극단자를 더 포함할 수 있다.In addition, the support holder is granules or flakes filled in the first and second power cables and the first and second electrode housings for supplying AC power applied between the first and second electrodes from the power supply device on both sides. It may further include a first and second electrode terminal for interconnecting the.
상기 제1 및 제2 전극하우징은 각각 단면형상이 직사각형 또는 다각형인 통일 수 있다.The first and second electrode housings may each have a cylindrical shape having a rectangular cross section or a polygon.
또한, 상기 제1 및 제2 전극하우징은 각각 서로 대향하는 측면이 톱니 모양으로 이루어진 다수의 돌기가 구비되고 돌기의 양측면에 다수의 홀 또는 슬릿이 형성된 제1 및 제2 측판으로 이루어지며, 상기 제1 및 제2 측판은 각각 Ti으로 이루어진 그물망으로 이루어질 수 있다.In addition, the first and second electrode housings each include a plurality of protrusions having a serrated side facing each other and having first and second side plates having a plurality of holes or slits formed on both sides of the protrusions. The first and second side plates may each consist of a mesh made of Ti.
더욱이, 상기 제1 및 제2 전극하우징은 각각 직경이 서로 다르며 동심상으로 배치된 원형 이중통 구조일 수 있다. 이 경우, 상기 제조장치는 제2 전극하우징의 중앙을 관통하여 연장되고 지지홀더에 의해 지지된 베어링에 의해 회전 가능하게 지지되는 회전축의 선단부에 임펠러가 배치된 교반기를 더 포함할 수 있다.In addition, the first and second electrode housings may have a circular double cylinder structure concentrically arranged with different diameters. In this case, the manufacturing apparatus may further include a stirrer having an impeller disposed at the distal end of the rotating shaft extending through the center of the second electrode housing and rotatably supported by a bearing supported by the support holder.
상기 제조장치는 제1 및 제2 전극하우징의 내부 공간에 삽입되어 상기 그래뉼 또는 플레이크와 상호 접촉이 이루어지는 도전판을 더 포함할 수 있다.The manufacturing apparatus may further include a conductive plate inserted into the inner spaces of the first and second electrode housings to make mutual contact with the granules or the flakes.
상기 그래뉼 또는 플레이크는 Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, 및 Pd로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상의 합금으로 이루어지며, 상기 그래뉼 또는 플레이크의 사이즈는 0.05 내지 10cm 범위로 설정되고, 바람직하게는 0.5 내지 5mm 범위로 설정되는 것이 바람직하다.The granules or flakes are composed of any one or two or more alloys selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd, and the size of the granules or flakes Is set in the range of 0.05 to 10 cm, preferably in the range of 0.5 to 5 mm.
상기 제1 및 제2 전극하우징은 고분자 폴리머, 세라믹, 유리, 및 타이타늄(Ti)으로 구성되는 군에서 선택되는 어느 1종일 수 있다.The first and second electrode housings may be any one selected from the group consisting of polymer polymer, ceramic, glass, and titanium (Ti).
상기 전극하우징은 내부에 십자형상의 수용공간을 가지며, 하측면에 다수의 홀 또는 슬릿을 구비하고, 상기 제2전극은 상기 전극하우징의 하측면과 대향하여 배치되며 판형상으로 이루어지는 것이 바람직하다. The electrode housing has a cross-shaped accommodating space therein, and has a plurality of holes or slits on the lower side thereof, and the second electrode is disposed to face the lower side of the electrode housing and has a plate shape.
또한, 상기 전극하우징은 내부에 십자형상의 수용공간을 가지며, 측면에 다수의 홀 또는 슬릿을 구비하고, 상기 제2전극은 상기 전극하우징을 내부에 수용하며 원통 또는 원통형 그물망으로 이루어지는 것이 바람직하다.In addition, the electrode housing has a cross-shaped accommodating space therein, a plurality of holes or slits on the side, the second electrode preferably accommodates the electrode housing therein and is made of a cylindrical or cylindrical mesh.
상기 전극하우징은 제1 및 제2 전극 사이의 거리를 일정하게 유지하도록 회전 구동되고, 상기 제2전극은 Ti으로 이루어지는 것이 바람직하다.Preferably, the electrode housing is rotationally driven to maintain a constant distance between the first and second electrodes, and the second electrode is made of Ti.
본 발명의 또 다른 양태에 따르면, 본 발명은 반응용기 내에 전해질 및 분산제를 순수에 용해시켜 전해 용액을 준비하는 단계; 상기 반응용기의 내부에 대향하여 배치되며 대향면에 다수의 홀 또는 슬릿을 구비하는 제1 및 제2 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크를 충진하여 제1 및 제2 전극을 형성하는 단계; 상기 제1 및 제2 전극 사이에 교류 전원을 인가하여 전기분해시킴에 의해 상기 전해 용액 내로 금속 그래뉼 또는 플레이크를 이온화시켜 금속 이온을 발생시키는 단계; 및 상기 금속 이온을 환원제에 의해 환원시켜 금속 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는 금속 나노 입자의 제조방법을 제공한다.According to another aspect of the invention, the present invention comprises the steps of preparing an electrolytic solution by dissolving the electrolyte and the dispersant in the pure water in the reaction vessel; First and second granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings disposed to face the inside of the reaction vessel and having a plurality of holes or slits on opposite surfaces thereof. And forming a second electrode; Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And reducing the metal ion with a reducing agent to form metal nanoparticles.
본 발명의 다른 양태에 따르면, 본 발명은 반응용기 내에 전해질 및 분산제를 순수에 용해시켜 전해 용액을 준비하는 단계; 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크를 충진하여 형성된 제1전극과, 판 또는 원통 형상으로 이루어지며 상기 제1전극의 적어도 일면과 대향하는 제2전극을 상기 반응용기의 내부에 설치하는 단계; 상기 제1 및 제2 전극 사이에 교류 전원을 인가하여 전기분해시킴에 의해 상기 전해 용액 내로 금속 그래뉼 또는 플레이크를 이온화시켜 금속 이온을 발생시키는 단계; 및 상기 금속 이온을 환원제에 의해 환원시켜 금속 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는 금속 나노 입자의 제조방법을 제공한다.According to another aspect of the invention, the present invention comprises the steps of preparing an electrolytic solution by dissolving the electrolyte and dispersant in the pure water in the reaction vessel; The first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the electrode housing, and a second electrode made of a plate or cylindrical shape and facing at least one surface of the first electrode Installing in the reaction vessel; Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And reducing the metal ion with a reducing agent to form metal nanoparticles.
상기 환원제는 전기분해가 진행됨에 따라 생성되는 금속 이온의 농도에 대응하여 환원제의 농도가 일정한 수준이 되도록 전해 용액 내에 투입되는 것이 높은 수율과 얻어지는 나노 입자의 균일한 입도 분포를 도모할 수 있다.The reducing agent may achieve high yield and uniform particle size distribution of the obtained nanoparticles so as to be introduced into the electrolytic solution so that the concentration of the reducing agent is at a constant level corresponding to the concentration of metal ions generated as the electrolysis proceeds.
또한, 상기 교류 전원의 주파수(f)는 0<f<10Hz 범위로 설정하는 것이 수율과 입도 분포 측면에서 바람직하다.In addition, it is preferable to set the frequency f of the AC power supply in the range of 0 <f <10Hz in terms of yield and particle size distribution.
더욱이, 본 발명에서는 상기 제1 및 제2 전극하우징에 채워진 그래뉼 또는 플레이크의 소모량을 주기적으로 검출하여 새로운 그래뉼 또는 플레이크를 채우는 단계를 더 포함하는 것이 바람직하다.Furthermore, the present invention preferably further includes the step of periodically detecting the consumption of granules or flakes filled in the first and second electrode housings to fill new granules or flakes.
상기한 바와 같이, 본 발명에서는 전해조 내에 일정 간격으로 설치된 한쌍의 전극하우징 내부에 얻고자 하는 금속 나노 입자와 동일한 재료로 이루어진 그래뉼 또는 플레이크를 충전하여 전극을 구성함에 따라 전기분해가 진행될지라도 전극간의 거리가 변하지 않아 균일한 사이즈의 금속 나노 입자를 얻을 수 있다.As described above, in the present invention, even if electrolysis proceeds by filling granules or flakes made of the same material as the metal nanoparticles to be obtained in a pair of electrode housings installed at predetermined intervals in the electrolytic cell, the electrolysis proceeds. It does not change, it is possible to obtain a metal nanoparticles of uniform size.
또한, 본 발명에서는 전기 분해 과정에서 금속 그래뉼 또는 플레이크가 소모됨에 따라 금속 그래뉼 또는 플레이크를 연속적으로 채워줌으로써 전극 교체에 따른 생산중단 없이 연속적으로 간편하게 대량의 금속 나노 입자를 제조할 수 있다. In addition, in the present invention, as the metal granules or flakes are consumed in the electrolysis process, the metal granules or flakes may be continuously filled, thereby easily producing a large amount of metal nanoparticles continuously and without interruption of production due to electrode replacement.
더욱이, 본 발명에서는 금속 이온이 결정으로 형성되기 전에 환원제를 이용하여 금속 나노입자로 환원시키고 아직 환원되지 않은 금속 이온이 나노 결정으로 성장되기 전에 극성을 변환시킴으로써 금속 나노 입자의 대량생산이 이루어질 수 있도록 교류전원에서 최적의 주파수를 선택하여 전극에 인가함에 따라 고효율로 대량의 금속 나노 입자를 제조할 수 있다.Furthermore, in the present invention, mass production of metal nanoparticles can be achieved by reducing metal ions to metal nanoparticles using a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals. By selecting the optimum frequency from the AC power supply to the electrode can be produced a large amount of metal nanoparticles with high efficiency.
또한, 본 발명에서는 교류 전기분해방법을 이용하면서 친환경적으로 금속 나노 입자를 제조할 수 있다.In addition, in the present invention, the metal nanoparticles may be environmentally friendly while using an alternating current electrolysis method.
도 1은 종래의 금속 나노 입자 제조장치를 나타내는 개략적인 구성도, 1 is a schematic configuration diagram showing a conventional metal nanoparticle manufacturing apparatus,
도 2는 종래의 금속 나노 입자 제조장치에 사용되는 전극의 사용전과 사용후의 상태를 보여주는 사진,Figure 2 is a photograph showing the state before and after use of the electrode used in the conventional metal nanoparticle manufacturing apparatus,
도 3은 본 발명의 제1실시예에 따른 금속 나노 입자 제조장치의 개략도,3 is a schematic view of a metal nanoparticle manufacturing apparatus according to a first embodiment of the present invention,
도 4는 도 3의 장치에 사용되는 그래뉼 타입 전극을 보여주는 사시도,4 is a perspective view showing a granule type electrode used in the apparatus of FIG. 3;
도 5는 도 4의 그래뉼 타입 전극에 대한 수직방향 단면도,5 is a vertical cross-sectional view of the granule type electrode of FIG. 4;
도 6은 본 발명의 제2실시예에 따른 금속 나노 입자 제조장치용 그래뉼 타입 전극을 보여주는 사시도,6 is a perspective view showing a granule-type electrode for a metal nanoparticle manufacturing apparatus according to a second embodiment of the present invention;
도 7은 제1 및 제2 실시예에 사용된 그래뉼 타입 전극의 변형예를 보여주는 평면도,7 is a plan view showing a modification of the granule-type electrode used in the first and second embodiments,
도 8 및 도 9는 본 발명의 제3실시예에 따른 금속 나노 입자 제조장치의 개략 단면도 및 저면도,8 and 9 are schematic cross-sectional view and a bottom view of a metal nanoparticle manufacturing apparatus according to a third embodiment of the present invention,
도 10 및 도 11은 각각 본 발명의 제4 및 제5 실시예에 따른 금속 나노 입자 제조장치의 개략 사시도,10 and 11 are schematic perspective views of a metal nanoparticle manufacturing apparatus according to a fourth and a fifth embodiment of the present invention, respectively;
도 12는 본 발명의 제6실시예에 따른 금속 나노 입자 제조장치의 개략 사시도,12 is a schematic perspective view of a metal nanoparticle manufacturing apparatus according to a sixth embodiment of the present invention;
도 13 및 도 14는 각각 제6실시예에 따른 금속 나노 입자 제조장치의 그래뉼 타입 전극을 나타내는 단면도이다.13 and 14 are cross-sectional views showing granule-type electrodes of the metal nanoparticle manufacturing apparatus according to the sixth embodiment, respectively.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 금속 나노 입자 제조장치 및 그 방법을 상세히 기술하기로 한다. Hereinafter, with reference to the accompanying drawings it will be described in detail a metal nanoparticle manufacturing apparatus and method according to a preferred embodiment of the present invention.
첨부된 도 3은 본 발명의 제1실시예에 따른 금속 나노 입자 제조장치의 개략도, 도 4는 도 3의 장치에 사용되는 그래뉼 타입 전극을 보여주는 사시도, 도 5는 도 4의 그래뉼 타입 전극에 대한 수직방향 단면도이다.3 is a schematic view of the metal nanoparticle manufacturing apparatus according to the first embodiment of the present invention, Figure 4 is a perspective view showing a granule-type electrode used in the apparatus of Figure 3, Figure 5 is a granule-type electrode of Figure 4 Vertical cross section.
도 3 내지 도 5를 참고하면, 본 발명의 제1실시예에 따른 금속 나노 입자 제조장치는 반응용기(10) 내부에 순수에 첨가제를 혼합한 전해 용액(11)을 채우고, 상기 전해 용액(11) 내에 다수의 금속 입자, 예를 들어, 은으로 된 그래뉼(granule) 또는 플레이크(flake)(30a,40a)를 넣은 제1전극(30)과 제2전극(40)을 지지홀더(15)에 의해 서로 이격되게 대향 배치한 구조를 가진다. 3 to 5, in the metal nanoparticle manufacturing apparatus according to the first embodiment of the present invention, an electrolytic solution 11 in which an additive is mixed with pure water is filled in the reaction vessel 10, and the electrolytic solution 11 ) The first electrode 30 and the second electrode 40 in which a plurality of metal particles, for example, granules or flakes 30a and 40a made of silver, are placed in the support holder 15. It has a structure arranged opposite to each other by the space | interval.
각각의 제1전극(30)과 제2전극(40)의 하부로는 전해 용액(11)을 교반하기 위한 교반기(20)를 선택적으로 배치하고 상기 반응용기(10)의 하측에는 전해 용액(11)을 간접 가열하기 위해 히팅장치(25)가 배치되어 있다. 반응용기(10)의 상부에는 제1전극(30)과 제2전극(40)으로 교류(AC)전원을 인가하기 위한 전원공급장치(50)가 연결되어 있다. A stirrer 20 for stirring the electrolytic solution 11 is selectively disposed under each of the first electrode 30 and the second electrode 40, and an electrolytic solution 11 is disposed below the reaction vessel 10. Heating device 25 is arranged to indirectly heat the heating. The power supply device 50 for applying AC power to the first electrode 30 and the second electrode 40 is connected to the upper portion of the reaction vessel 10.
상기 교반기(20)는 예를 들어, 반응용기(10) 내부에 배치된 마그넷 조각을 반응용기(10)의 외부에 배치된 구동장치(도시되지 않음)에 의해 회전시키는 구조를 채용할 수 있다.For example, the stirrer 20 may employ a structure in which a magnet piece disposed in the reaction vessel 10 is rotated by a driving device (not shown) disposed outside the reaction vessel 10.
제1실시예에서는 얻고자 하는 금속 나노 입자로서 예를 들어, 은 나노 입자를 얻기 위하여 제1전극(30)과 제2전극(40)으로서 다수의 은(Ag) 그래뉼 또는 플레이크(30a,40a)를 사용한다. In the first embodiment, a plurality of silver granules or flakes 30a and 40a are used as the first electrode 30 and the second electrode 40, for example, to obtain silver nanoparticles as the metal nanoparticles to be obtained. Use
그러나, 본 발명은 은 그래뉼 또는 플레이크(30a,40a)를 사용한 은 나노 입자의 제조 이외에 다른 종류의 금속 나노 입자를 제조하는 것도 가능하다. 즉, 본 발명은 제1전극(30)과 제2전극(40)으로서 그래뉼 또는 플레이크 형태의 은(Ag) 이외에 구리(Cu), 니켈(Ni), 금(Au), 팔라듐(Pd), 백금(Pt) 등과 같이 금속 이온을 용출시킬 수 있는 소재라면 모두 사용 가능하다.However, the present invention may also produce other types of metal nanoparticles in addition to the production of silver nanoparticles using silver granules or flakes 30a and 40a. That is, in the present invention, in addition to granules or flakes of silver (Ag) as the first electrode 30 and the second electrode 40, copper (Cu), nickel (Ni), gold (Au), palladium (Pd), and platinum Any material that can elute metal ions such as (Pt) can be used.
이 경우, 상기 제1전극(30)과 제2전극(40)은 다수의 그래뉼 또는 플레이크(이하의 설명에서는 단순히 “그래뉼”로서 약칭한다)(30a,40a)를 각각 직사각형상을 이루는 제1 및 제2 전극하우징(32,42)에 채워 넣은 것을 예로 하였으나, 그 이외에 전극하우징의 형상은 그 내부에 그래뉼을 수용할 수 있으며, 제1전극(30)과 제2전극(40) 사이에 전해용액(11)과의 접촉 면적이 큰 것이라면 제1 및 제2 전극하우징(32,42)의 형상에 제한을 두지 않는다. In this case, the first electrode 30 and the second electrode 40 may include a plurality of granules or flakes (hereinafter, simply abbreviated as “granules”) 30a and 40a, respectively. Although the second electrode housings 32 and 42 are filled in an example, the shape of the electrode housing may accommodate granules therein, and an electrolyte solution between the first electrode 30 and the second electrode 40. If the contact area with (11) is large, the shape of the first and second electrode housings 32 and 42 is not limited.
상기 제2전극(40)과 제1전극(30)에 사용되는 그래뉼(30a,40a)은 모두 제조하고자 하는 금속 나노 입자(또는 파티클)와 동일한 재료를 사용할 수 있으며, 그래뉼(30a,40a)의 사이즈는 제1 및 제2 전극하우징(32,42)이 다수의 슬릿, 홀이나 망을 갖는 구조라면 0.05 내지 10cm가 바람직하며, 더욱 바람직하게는 0.5 내지 5mm이다.The granules 30a and 40a used for the second electrode 40 and the first electrode 30 may be made of the same material as the metal nanoparticles (or particles) to be manufactured, and the granules 30a and 40a of the granules 30a and 40a may be used. The size is preferably 0.05 to 10 cm, more preferably 0.5 to 5 mm, if the first and second electrode housings 32 and 42 have a plurality of slits, holes or nets.
또한, 제1전극(30)과 제2전극(40)으로 사용되는 그래뉼(30a,40a)을 각각 채워 넣은 제1 및 제2 전극하우징(32,42)은 지지홀더(15)에 의해 일정한 간격을 유지시킨다. 즉, 지지홀더(15)는 제1 및 제2 전극하우징(32,42)의 단면 형상과 대응하는 한쌍의 직사각형 관통구멍이 형성되어 있으며, 제1 및 제2 전극하우징(32,42)을 지지홀더(15)의 관통구멍에 결합시키는 경우 지지홀더(15)는 각 전극하우징(32,42)의 상측을 절연상태로 지지하면서 일정한 간격을 유지한다. 제1 및 제2 전극하우징(32,42)의 나머지 부분은 지지홀더(15)의 하측으로 노출되어 일정한 간격을 갖고 서로 대향하고 있다.In addition, the first and second electrode housings 32 and 42 filled with the granules 30a and 40a used as the first electrode 30 and the second electrode 40, respectively, are spaced at regular intervals by the support holder 15. Keep it. That is, the support holder 15 has a pair of rectangular through holes corresponding to the cross-sectional shapes of the first and second electrode housings 32 and 42, and supports the first and second electrode housings 32 and 42. When coupled to the through hole of the holder 15, the support holder 15 maintains a constant distance while supporting the upper side of each electrode housing (32, 42) in an insulating state. The remaining portions of the first and second electrode housings 32 and 42 are exposed to the lower side of the support holder 15 to face each other at regular intervals.
한편, 제1 및 제2 전극하우징(32,42)의 마주보는 면과 측면에는 각각 다수의 슬릿 또는 홀(이하에 단순히 “슬릿”이라 칭한다)(33,43)이 형성되어 있으며, 상기 슬릿(33,43)은 전해용액(11)이 제1 및 제2 전극하우징(32,42) 내부로 수용되도록 함과 동시에 전기분해된 금속 나노 입자가 용출될 수 있는 사이즈와 구조라면 어떤 형태도 가능하다. On the other hand, a plurality of slits or holes (hereinafter, simply referred to as “slits”) 33 and 43 are formed on opposite surfaces and side surfaces of the first and second electrode housings 32 and 42, respectively. 33 and 43 may be any shape as long as the electrolyte solution 11 is accommodated in the first and second electrode housings 32 and 42 and the electrolytic metal nanoparticles can be eluted. .
전기분해반응이 진행됨에 따라 그래뉼(30a,40a)이 소모되면 연속적으로 제1 및 제2 전극하우징(32,42) 내부로 충진이 가능하므로 전극을 교체할 필요가 없으며, 제1 및 제2 전극하우징(32,42) 외부면에 슬릿(33,43)은 그래뉼(30a,40a)이 빠져나갈 수 없는 구조로 전극하우징(32,42)의 외부로 갈수록 상향경사지게 형성할 수 있다. 여기서, 슬릿(33,43)의 폭은 그래뉼(30a,40a)의 사이즈 보다 작게 설정되며, 0.1-1mm가 바람직하다. As the electrolysis reaction proceeds, when the granules 30a and 40a are consumed, the first and second electrode housings 32 and 42 can be continuously filled, so there is no need to replace the electrodes. The slits 33 and 43 on the outer surfaces of the housings 32 and 42 may be formed to be inclined upward toward the outside of the electrode housings 32 and 42 in a structure in which the granules 30a and 40a cannot escape. Here, the widths of the slits 33 and 43 are set smaller than the sizes of the granules 30a and 40a, and preferably 0.1-1 mm.
여기서, 제1 및 제2 전극하우징(32,42)으로 사용되는 물질은 전해용액(11)에 불용성인 재료, 바람직하게는 절연성소재 예를 들면, 엠씨 나일론(MC nylon), 나일론, 폴리에스테르, 폴리스티렌, 폴리염화비닐과 같은 폴리머계(polymer family), 카본(carbon), 세라믹 또는 유리, 예를 들어, 파이렉스(Pyrex)유리를 사용하거나, 또는 전해용액(11)에 불용성이면서 전류가 흐르는 타이타늄(Ti)을 사용할 수 있다. Here, the materials used for the first and second electrode housings 32 and 42 are materials insoluble in the electrolytic solution 11, preferably insulating materials such as MC nylon, nylon, polyester, Polymer family such as polystyrene, polyvinyl chloride, carbon, ceramic or glass, for example, Pyrex glass, or insoluble in the electrolyte solution 11, the current flowing titanium ( Ti) can be used.
그러나, 상기 제1 및 제2 전극하우징(32,42)은 대향면 또는 측면에 금속, 예를 들어, 은(Ag) 이온이 통과할 수 있는 다수의 슬릿, 홀, 격자나 망을 갖는 것이라면 어떤 형태나 재료의 것도 가능하다. However, the first and second electrode housings 32 and 42 may have any number of slits, holes, gratings or nets through which metal, for example, silver (Ag) ions, can pass on opposite surfaces or sides. Forms or materials are also possible.
또한, 상기 제1 및 제2 전극하우징(32,42)은 서로 대향하는 대향면은 타이타늄(Ti)으로 이루어지고 다수의 슬릿, 홀, 격자나 망을 갖는 측판을 별도로 형성하고, 나머지 부분을 상기한 폴리머계(polymer family), 세라믹 또는 유리로 제작한 후 조립하여 구성하는 것도 가능하다.In addition, the first and second electrode housings 32 and 42 may face each other, and the opposite surfaces may be formed of titanium (Ti), and separately form side plates having a plurality of slits, holes, gratings or meshes, and the remaining portions may be formed. It is also possible to fabricate one polymer family, ceramic or glass and then assemble it.
더욱이, 금속 이온이 통과할 수 있는 재료나 형태라면 전해용액에 불용성인 재료로 이루어진 직포나 부직포로 형성된 자루를 사용하는 것도 가능하다. 전극하우징으로서 직포나 부직포를 사용하는 경우 제1전극(30)과 제2전극(40)은 그래뉼 대신에 0.5㎛ 내지 1cm의 입경을 갖는 분말을 사용하는 것도 가능하다.Moreover, as long as the material or form through which metal ions can pass, it is also possible to use a bag made of a woven or nonwoven fabric made of a material insoluble in the electrolytic solution. When using a woven or nonwoven fabric as the electrode housing, it is also possible to use a powder having a particle size of 0.5 μm to 1 cm for the first electrode 30 and the second electrode 40 instead of granules.
지지홀더(15)의 양측면에는 예를 들어, 볼트 형상의 제1 및 제2 전극단자(34,44)가 각각 고정되어 있으며, 볼트형 제1 및 제2 전극단자(34,44)를 통해 제1 및 제2 전극하우징(32,42) 내부의 그래뉼(30a,40a)에 교류(AC) 전압이 인가된다. 제1 및 제2 전극단자(34,44)는 단자보호용 제1 및 제2 러그(35,45)에 의해 접속된 한쌍의 전원케이블(55)을 통해 전원공급장치(50)에 연결되어, 교류(AC)전압이 인가된다. 이 경우, 상기 지지홀더(15), 제1 및 제2 전극단자(34,44) 및 한쌍의 전원케이블(55)은 전해액(11)과 접촉되지 않도록 반응용기(10)의 외부로 노출되어 설치되는 것이 바람직하다.For example, bolt-shaped first and second electrode terminals 34 and 44 are fixed to both side surfaces of the support holder 15, and are formed through the bolt-shaped first and second electrode terminals 34 and 44. An alternating current (AC) voltage is applied to the granules 30a and 40a inside the first and second electrode housings 32 and 42. The first and second electrode terminals 34 and 44 are connected to the power supply device 50 through a pair of power cables 55 connected by the first and second lugs 35 and 45 for protecting the terminal. (AC) voltage is applied. In this case, the support holder 15, the first and second electrode terminals 34 and 44, and the pair of power cables 55 are exposed to the outside of the reaction vessel 10 so as not to contact the electrolyte solution 11. It is desirable to be.
외부로 노출된 한쌍의 전원케이블(55)에는 반응용기(10)의 외부로부터 전기분해에 필요한 교류(AC) 전원을 공급하기 위한 전원공급장치(50)가 연결되어 있다. 전원공급장치(50)는 예를 들어, 전기분해에 필요한 교류 전원의 파형과 주파수를 선택할 수 있는 펑션 제너레이터(function generator)와, 펑션 제너레이터로부터 발생된 교류 전원의 전류 또는 전압을 증폭하기 위한 증폭기를 포함하고 있으며, 증폭기의 출력은 제1전극(30)과 제2전극(40)에 연결되어 있다. A pair of power cables 55 exposed to the outside is connected to a power supply device 50 for supplying AC power required for electrolysis from the outside of the reaction vessel 10. The power supply device 50 includes, for example, a function generator capable of selecting the waveform and frequency of the AC power required for electrolysis, and an amplifier for amplifying the current or voltage of the AC power generated from the function generator. The output of the amplifier is connected to the first electrode 30 and the second electrode 40.
그러나, 본 발명의 전원공급장치(50)는 대량 생산을 위한 제조라인에서는 제1 및 제2 전극(30,40)에 미리 설정된 파형과 주파수를 가지며 미리 원하는 크기의 전류 또는 전압을 설정할 수 있는 교류 전원을 공급할 수 있는 전용 전원공급장치를 포함하여 어떤 종류의 전원장치도 사용 가능하다. 또한, 본 발명에서는 전기분해시에 제1 및 제2 전극(30,40) 사이에 설정된 일정한 전류의 세기를 공급할 수 있도록 전원장치에 정전류원을 구비할 수 있다.However, in the production line for mass production, the power supply device 50 according to the present invention has a predetermined waveform and frequency at the first and second electrodes 30 and 40, and can set a current or voltage having a desired size in advance. Any type of power supply can be used, including a dedicated power supply that can supply power. In addition, in the present invention, a constant current source may be provided in the power supply device to supply a constant current intensity set between the first and second electrodes 30 and 40 during electrolysis.
상기 교류 전원의 파형은 예를 들어, 싸인파(sine wave), 구형파(square wave), 삼각파(triangle wave), 톱니파(sawtooth wave) 등의 모든 파형이 적용될 수 있으며, 교류 전원의 파형 변화는 단지 생성되는 금속 나노입자의 수율(yield)과 입자의 형상에 다소간의 차이가 있을 뿐이다.The waveform of the AC power supply may be any waveform such as, for example, a sine wave, square wave, triangular wave, sawtooth wave, etc., and the waveform change of the AC power supply is merely There is only a slight difference in the yield of the resulting metal nanoparticles and the shape of the particles.
한편, 본 발명에서는 전기분해방법에 의한 금속 나노입자 제조에서 수율에 영향을 미치는 인자로서 주파수의 영향을 살펴보기 위해 교류전원의 주파수를 100Hz부터 0.1Hz로 변화시키면서 얻어지는 나노입자의 수율과 입도 분포 및 입자의 성장 여부를 조사하였다. On the other hand, in the present invention, the yield and particle size distribution of the nanoparticles obtained by changing the frequency of the AC power source from 100Hz to 0.1Hz to see the effect of the frequency as a factor affecting the yield in the production of metal nanoparticles by the electrolysis method The growth of the particles was investigated.
그 결과, 나노입자의 수율은 교류 전원의 주파수(f)로서 주파수(f)가 0<f<10Hz 인 것이 바람직하며, 특히 0.1≤f≤5Hz 인 것이 더욱 바람직하다. 또한, 수율과 입도 분포 및 입자의 성장 여부를 모두 고려할 때 가장 바람직한 구간은 0.1≤f≤1Hz이다.As a result, the yield of the nanoparticles is preferably a frequency f of 0 <f <10Hz as the frequency f of the AC power supply, more preferably 0.1 ≦ f ≦ 5Hz. In addition, the most preferable interval is 0.1≤f≤1Hz considering both the yield, particle size distribution and growth of particles.
만약, 공급 전원의 주파수가 0Hz, 즉 직류(DC)인 경우 양극에서 금속 이온이 산화되는 문제와, 산화되지 않은 금속 이온이 환원제에 의해 환원되기 전에 전기장에 의해 음극으로 이동하여 음극에서 제공하는 전자와 만나 음극 표면에서 금속으로 환원되어 금속 입자가 마이크로미터 크기까지 성장하여, 원하는 금속 나노입자는 수율이 낮아지는 문제가 있다.If the frequency of the power supply is 0 Hz, that is, direct current (DC), metal ions are oxidized at the anode, and electrons provided from the cathode are moved to the cathode by an electric field before the unoxidized metal ions are reduced by the reducing agent. When the metal nanoparticles are reduced to metal on the surface of the negative electrode and grow up to a micrometer size, the desired metal nanoparticles have a problem of low yield.
또한, 교류 전원의 주파수(f)가 10Hz를 초과하는 경우, 수율이 급격하게 감소하는 경향과 함께 다소 성장된 입자들 또한 발견되는 문제가 있다.In addition, when the frequency f of the AC power supply exceeds 10 Hz, there is a problem that somewhat grown particles are also found, with a tendency that the yield sharply decreases.
교류 전원의 주파수를 100Hz부터 0.1Hz로 변화시킬 경우 100Hz부터 10Hz까지 주파수가 줄어들수록 금속 나노입자의 분포도와 입자 크기가 감소하였으며, 특히 10Hz에서 0.1Hz로 주파수가 줄어들 경우 금속 나노입자의 분포도와 입자 크기 또한 더욱 감소한다. When the frequency of AC power was changed from 100Hz to 0.1Hz, the distribution and particle size of the metal nanoparticles decreased as the frequency decreased from 100Hz to 10Hz. In particular, the distribution and particle size of the metal nanoparticles decreased when the frequency decreased from 10Hz to 0.1Hz. The size is further reduced.
이와 같은 현상이 일어나는 이유는, 저주파수에서 고주파수로 갈수록 양쪽 전극의 극성이 점점 빠르게 변경되어 생성된 이온들이 환원반응에 참여하기 전에 다시 (-)극성으로 변경된 전극으로 이끌려 도금되는 현상이 발생하게 된다. 즉, 순간적으로 (+)전극에서 생성된 금속이온이 환원제와 반응하여 금속 나노입자로 환원되기 전에 (+)전극에서 (-)전극으로 바뀌면서 금속이온이 되돌아가는 것을 의미한다. The reason for this phenomenon is that the polarity of both electrodes changes rapidly from low frequency to high frequency so that the generated ions are plated by being attracted to the electrode changed to negative polarity before participating in the reduction reaction. That is, instantaneously, the metal ions generated at the (+) electrode react with the reducing agent and are converted into the (-) electrode from the (+) electrode before being reduced to the metal nanoparticles.
반대로 고주파수에서 저주파수로 주파수가 낮아질수록 생성된 금속이온이 (-)전극으로 돌아가는 현상이 현저히 줄어들기 때문에 나노입자로 생성되는 수율이 증가하는 현상이 나타나게 된다. On the contrary, as the frequency decreases from the high frequency to the low frequency, the phenomenon in which the generated metal ions return to the negative electrode is significantly reduced, and thus the yield of nanoparticles increases.
이하에 본 발명에 따른 전기분해방법에 의한 금속 나노입자 제조에서 고 수율(yield)이면서도 균일한 형상과 원하는 크기(100nm 미만)의 좁은 입도 분포(균일한 입자)를 갖는 금속 나노입자를 생성하기 위한 요건을 살펴본다.In order to produce metal nanoparticles having a high yield and a uniform shape and a narrow particle size distribution (uniform particles) of a desired size (less than 100 nm) in the production of metal nanoparticles by the electrolysis method according to the present invention. Review the requirements.
일반적으로 전기분해방법에 의한 금속 나노입자 제조에서는 화학적 방법처럼 얻고자 하는 금속 입자의 양을 결정하여 초기반응 조건에 맞는 양의 금속 이온을 반응용기에 넣고 반응을 진행시키는 것이 아니라, 연속적으로 시간에 따라 금속 전극에서 금속 이온을 생성시켜 주고 생성된 이온을 환원제에 의해 환원시키는 반응을 통해 이루어진다. 그 결과, 이러한 반응과정에서 전극의 극성과 나노입자의 상호작용으로 인해 생성된 금속 나노입자가 다시 전극으로 돌아가는 특성을 나타낼 수 있다. 그러나, 이러한 현상은 수율, 즉 양산성에 가장 큰 문제가 되고 있다.In general, in the preparation of metal nanoparticles by the electrolysis method, the amount of metal particles to be obtained is determined as in the chemical method, and the amount of metal ions suitable for the initial reaction conditions is not put in the reaction vessel and the reaction is continuously performed. Accordingly, the metal ions are generated in the metal electrode and the ions are reduced by the reducing agent. As a result, the metal nanoparticles generated due to the polarity of the electrode and the interaction of the nanoparticles in this reaction process may exhibit the characteristics of returning to the electrode. However, this phenomenon is the biggest problem in yield, that is, mass productivity.
전기분해법을 이용한 금속 나노입자의 제조에 있어서, 이러한 양산성 문제를 해결하기 위해서는 전기에너지의 인가에 의해 생성되는 금속 이온의 농도에 따라 이러한 금속 이온을 환원시키기 위한 환원제의 농도를 적절하게 유지시키는 것이 필요하다.In the production of metal nanoparticles using the electrolysis method, in order to solve this mass production problem, maintaining a concentration of a reducing agent for reducing such metal ions according to the concentration of metal ions generated by the application of electrical energy is appropriate. need.
이 경우, 생성되는 금속이온 양은 두 전극 사이에 인가되는 교류 전원의 전류의 세기에 의해 결정되며, 이 전류의 세기는 전해질의 농도와 전극에 가해지는 전압에 의해 조절될 수 있다. 본 발명자들의 연구결과에 의하면, 일정한 전류의 세기(전류값)에 의해 생성되는 금속 이온의 농도를 고려하여 환원제의 농도를 일정한 수준으로 유지시켜 줄 때 금속 나노입자의 수율이 높게 나타난다는 것을 발견했다.In this case, the amount of generated metal ions is determined by the strength of the current of the alternating current power applied between the two electrodes, and the strength of the current can be controlled by the concentration of the electrolyte and the voltage applied to the electrode. According to the research results of the present inventors, it was found that the yield of the metal nanoparticles is high when the concentration of the reducing agent is maintained at a constant level in consideration of the concentration of the metal ions generated by the constant current intensity (current value). .
그 이유는 환원제의 농도에 비해 더 많은 금속 이온이 생성되면 환원제의 양이 상대적으로 부족하게 되어 금속 이온이 환원되는 속도가 상대적으로 감소하지만 수율에 크게 문제를 야기하지는 않는다. 그러나 환원제의 양이 상대적으로 부족할 경우 입자의 크기가 커지는 부작용이 일어나게 된다. 반면에 생성되는 금속이온의 농도보다 환원제의 농도가 지나치게 크게 되면 환원속도가 너무 빨라져서 수 나노 이하의 입자가 생성되고 분산제로 캡핑(capping)되기도 전에 다시 전극으로 되돌아감으로써 수율이 급격히 감소하게 된다.The reason is that when more metal ions are produced than the concentration of the reducing agent, the amount of the reducing agent is relatively insufficient, so that the rate of reduction of the metal ions is relatively reduced, but it does not cause significant problems in yield. However, when the amount of the reducing agent is relatively insufficient, the side effect of increasing the size of the particle occurs. On the other hand, if the concentration of the reducing agent is too large than the concentration of the metal ions produced, the reduction rate is too fast to produce particles of several nanometers or less, and the yield is drastically reduced by returning back to the electrode even before capping with the dispersant.
한편, 전해질의 종류 및 농도는 직접적으로 pH 및 전류의 세기와 관련이 있다. 일반적으로, 전해질은 보통 산성 전해질, 염기성 전해질 및 중성 전해질로 나누어지는데 산성 전해질만을 사용하게 되면, pH가 7보다 작기 때문에 예를 들어, 약 알카리인 하이드라진을 환원제로 투입할 경우 하이드라진은 산성 전해질과 산염기 반응을 하게 된다. 따라서 약 알카리인 하이드라진을 충분한 양으로 넣어주어야만 환원 반응속도를 조절하여 입자의 크기를 조절할 수 있게 된다. On the other hand, the type and concentration of the electrolyte is directly related to the strength of the pH and current. Generally, electrolytes are usually divided into acidic electrolytes, basic electrolytes and neutral electrolytes. When only acidic electrolytes are used, the pH is less than 7, for example, when a weak alkaline hydrazine is added as a reducing agent, hydrazines are acidic electrolytes and acids. It is a base reaction. Therefore, a sufficient amount of weak alkaline hydrazine should be put in order to control the size of the particles by controlling the reduction reaction rate.
반면에, 염기성 전해질만을 넣어주게 되면 반응용액의 pH가 7이상인 환경이 되어 반응 용액 속에 전자가 이동할 수 있는 기회가 늘어나게 되고 환원제로 사용되는 약 알카리인 하이드라진의 반응 속도가 증가하여 수 나노크기의 입자가 생성되어 분산제에 의해 보호받기 전에 전극으로 되돌아가는 현상이 일어나게 된다. On the other hand, when only the basic electrolyte is added, the pH of the reaction solution becomes 7 or more, which increases the chance of electrons moving in the reaction solution, and the reaction rate of the hydrazine, a weak alkali used as a reducing agent, increases, thereby increasing the reaction rate of several nano-sized particles. Is generated and returned to the electrode before being protected by the dispersant.
본 발명에서는, 이러한 점을 고려하여 산성과 염기성으로 이루어진 전해질을 혼합하여 사용하며, pH는 7 내지 9로 설정된다.In the present invention, in consideration of this point, an acid and basic electrolyte are mixed and used, and the pH is set to 7-9.
또한, 반응용액의 pH와 환원제의 농도와의 관계를 살펴보면, pH가 7 미만일 경우 환원제인 하이드라진의 반응속도가 감소하게 된다. 그 이유는 하이드라진은 약 알카리이므로 전해질인 구연산(citric acid)과 반응하여 pH가 중성이 될 때까지는 환원반응보다 산염기 반응에 참여하게 된다. 이는 하이드라진의 환원능력을 저하시키는 원인이 된다. 따라서, 산염기 반응이 진행된 후 환원반응이 일어나게 되므로 금속 이온과의 환원반응에 참여하는 하이드라진의 양은 실제로 반응용기에 첨가된 하이드라진의 양보다 적은 양으로 되며, 환원반응이 지연되는 결과를 초래하여 금속 입자의 크기는 커지게 된다. 즉, 환원제의 투입량이 바람직한 범위 미만으로 되어, 수율에는 큰 문제가 없으나 입자의 크기가 수백 나노 이상으로 커지는 현상이 나타나게 된다.In addition, looking at the relationship between the pH of the reaction solution and the concentration of the reducing agent, when the pH is less than 7, the reaction rate of the reducing agent hydrazine is reduced. The reason is that hydrazine is weakly alkaline, so it reacts with citric acid, an electrolyte, and participates in acidic reactions rather than reductions until the pH is neutral. This causes the reduction ability of hydrazine. Therefore, since the reduction reaction occurs after the acid group reaction, the amount of hydrazine participating in the reduction reaction with the metal ions is actually less than the amount of hydrazine added to the reaction vessel, resulting in a delay of the reduction reaction. The particle size becomes large. That is, the amount of the reducing agent is less than the preferred range, there is no big problem in the yield, but the phenomenon that the size of the particles becomes larger than several hundred nanometers will appear.
필수적으로 분산 능력을 가지고 있는 분산제를 사용하고 pH 7~9 사이에서 생성된 금속 이온의 농도에 비례하여 환원제의 농도를 일정한 수준으로 유지시키면 환원반응 속도가 비교적 일정하게 유지되어 수율(즉, 양산성)이 크게 증가한다. Essentially, using a dispersant with dispersant ability and maintaining a constant level of reducing agent in proportion to the concentration of metal ions produced between pH 7-9, the rate of reduction is relatively constant, yielding ) Is greatly increased.
본 발명에 따른 전기분해법을 이용한 금속 나노입자의 제조방법은 상기한 금속 나노 입자 제조장치를 이용하여 구현될 수 있으며, 반응용기(10) 내에 분산제 및 전해질을 초순수(DI-water)에 용해시켜 전해 용액(11)을 준비하는 단계, 상기 전해 용액(11) 내에 합성하고자 하는 나노입자와 동일한 금속재료로 이루어진 제1 및 제2 전극(30,40)을 거리를 두고 배치하는 단계, 상기 제1 전극(30)과 제2 전극(40) 사이에 소정의 주파수(f)를 갖는 교류 전원을 인가하는 전기분해방법에 따라 상기 전해 용액 내로 제1 및 제2 전극(30,40)의 금속을 이온화시키는 단계, 및 상기 금속 이온을 환원제에 의해 환원시켜 금속 나노입자를 형성하는 단계를 포함한다. Method for producing metal nanoparticles using the electrolysis method according to the present invention can be implemented using the above metal nanoparticle manufacturing apparatus, the dispersant and the electrolyte in the reaction vessel 10 by dissolving in ultrapure water (DI-water) electrolysis Preparing a solution 11, disposing the first and second electrodes 30, 40 made of the same metal material as the nanoparticles to be synthesized in the electrolytic solution 11 at a distance, the first electrode Ionizing metals of the first and second electrodes 30 and 40 into the electrolytic solution according to an electrolysis method in which an AC power source having a predetermined frequency f is applied between the 30 and second electrodes 40. And reducing the metal ions with a reducing agent to form metal nanoparticles.
우선, 본 발명에서 전해 용액(11)은 순수, 특히 바람직하기로는 초순수에 첨가제로 전해질, 환원제 및 분산제를 포함하고 있다. First, in the present invention, the electrolytic solution 11 contains an electrolyte, a reducing agent and a dispersant as an additive in pure water, particularly preferably ultrapure water.
상기 전해 용액은 산성의 전해질과 염기성의 전해질을 혼합하여 사용하며, pH 7 내지 pH 9로 설정되는 것이 바람직하다. 이 경우, 상기 전해질은 구연산(citric acid)과 히드라진(Hydrazine)을 혼합하여 사용할 수 있다.The electrolyte solution is used by mixing an acidic electrolyte and a basic electrolyte, it is preferably set to pH 7 to pH 9. In this case, the electrolyte may be used by mixing citric acid (citric acid) and hydrazine (Hydrazine).
상기 전해질은 질산, 포름산(formic acid), 아세트산(acetic acid), 구연산(citric acid), 타타르산(tataric acid), 글루타르산(glutaric acid), 헥산산(hexanoic acid)으로 구성되는 산, 상기 산의 알칼리 금속염, 암모니아(NH3), 트리에틸아민(TEA: triethyl amine), 및 피리딘(pyridine)의 아민으로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상을 사용할 수 있다.The electrolyte is nitric acid, formic acid (acetic acid), acetic acid (acetic acid), citric acid (citric acid), tartaric acid (tataric acid), glutaric acid (glutaric acid), acid consisting of hexanoic acid (hexanoic acid), the Any one or two or more selected from the group consisting of an alkali metal salt of an acid, ammonia (NH 3 ), triethyl amine (TEA), and an amine of pyridine can be used.
특히, 본 발명에서 사용하는 전해질은 친환경적 전해질로서 구연산(citric acid)을 사용할 수 있고, 필요에 따라 글라이신(glycine) 등의 아미노산을 사용할 수 도 있다.In particular, the electrolyte used in the present invention may use citric acid as an environmentally friendly electrolyte, and may use amino acids such as glycine as necessary.
또한, 환원제로는 히드라진(hydrazine: N2H4), 차아인산 나트륨(sodium hypophosphite: NaH2PO2), 소듐 보로하이드라이드(sodium borohydride: NaBH4), 디메틸아민 보란(DMAB: dimethylamine borane: (CH3)2NHBH3), 포름알데히드(formaldehyde: HCHO), 및 아스코르빈산(ascorbic acid)으로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상을 사용할 수 있다.In addition, as a reducing agent, hydrazine (hydrazine: N 2 H 4 ), sodium hypophosphite (NaH 2 PO 2 ), sodium borohydride (NaBH 4 ), dimethylamine borane (DMAB: dimethylamine borane: ( Any one or two or more selected from the group consisting of CH 3 ) 2 NHBH 3 ), formaldehyde (HCHO), and ascorbic acid can be used.
상기 환원제는 친환경 환원제로서 예를 들어, 히드라진(Hydrazine)과 같은 유기물 이온 환원제를 사용하는 것이 바람직하다. 이러한 유기물 이온 환원제는 반응 중 질소 가스와 물을 생성하여 모두 소모됨으로 반응 종결 후에는 유해하지 않다.The reducing agent is an environmentally friendly reducing agent, for example, it is preferable to use an organic ion reducing agent such as hydrazine (Hydrazine). The organic ion reducing agent is not harmful after the completion of the reaction because it is consumed by generating both nitrogen gas and water during the reaction.
상기 환원제는 환원제 공급장치(도시되지 않음)를 통하여 교류 전원의 인가에 따라 전기분해 반응이 진행될 때 생성되는 금속 이온의 농도에 대응하여 환원제의 농도가 일정한 수준이 되도록 환원제를 전해 용액 내에 투입한다.The reducing agent is introduced into the electrolytic solution so that the concentration of the reducing agent becomes a constant level corresponding to the concentration of the metal ions generated when the electrolysis reaction proceeds according to the application of an AC power supply through a reducing agent supply device (not shown).
상기한 바와 같이, 본 발명에서는 순수(DI-water)를 기반으로 하여 환경에 유해한 전해질을 사용하지 않고 친환경적 전해질과 친환경 유기물 이온 환원제를 이용하는 것에 의해 친환경적인 간단한 방법을 통하여 금속 나노입자를 얻을 수 있다. As described above, in the present invention, metal nanoparticles can be obtained through an environmentally simple method by using an environmentally friendly electrolyte and an environmentally friendly organic ion reducing agent without using an electrolyte harmful to the environment based on pure water (DI-water). .
한편, 상기 분산제는 전기분해에 따라 제1 및 제2 전극(30,40)으로부터 해리되어 이온화된 금속 이온이 환원제에 의해 환원된 후, 환원된 금속 나노입자가 전극으로 되돌아가서 부착되거나 금속 나노입자 간의 응집 작용으로 침전되는 현상을 방지하도록 금속 나노입자의 표면을 캡핑하는 역할을 하며, 수용성 고분자 분산제 또는 수분산 고분자 분산제를 사용할 수 있다.Meanwhile, the dispersant is dissociated from the first and second electrodes 30 and 40 by electrolysis, and ionized metal ions are reduced by the reducing agent, and then the reduced metal nanoparticles are returned to the electrode and attached or the metal nanoparticles. It serves to cap the surface of the metal nanoparticles to prevent the phenomenon of precipitation by cohesion of the liver, it may be used a water-soluble polymer dispersant or a water dispersion polymer dispersant.
상기 수용성 고분자 분산제는 폴리아크릴, 폴리우레탄 또는 폴리실록산 계통의 수계 고분자 분산제를 사용할 수 있고, 수분산 고분자 분산제는 폴리아크릴, 폴리우레탄 또는 폴리실록산 계통의 수계 고분자 분산제를 사용할 수 있다. The water-soluble polymer dispersant may be a polyacryl, polyurethane, or polysiloxane-based aqueous polymer dispersant, and the water-dispersible polymer dispersant may be a polyacryl, polyurethane, or polysiloxane-based aqueous polymer dispersant.
상기 분산제로서 상용 분산제로는 BYK Chemie사의 Disperbyk™-111, Byk™-154, Disperbyk™-180, Disperbyk™-182, Disperbyk™-190, Disperbyk™-192, Disperbyk™-193, Disperbyk™-2012, Disperbyk™-2015, Disperbyk™-2090, Disperbyk™-2091; Evonik사의 Tego™715w, Tego™735w, Tego™740w™, Tego™745w™, Tego™750w, Tego™755w, Tego™775w; Lubrizol사의 Solsperse™ 20000, Solsperse™ 43000, Solsperse™ 44000; Ciba사의 EFKA™ 4585; Dow사의 Orotan™ 731A, Orotan™ 1124; 알드리치사의 Tween 20, Tween 80; 폴리에틸렌 글리콜(PEG: Polyethylene Glycol) 200, 폴리비닐피롤리돈(PVP: polyvinylpyrrolidone) 10,000, PVP 55,000, 폴록사머(poloxamer) 407, 및 폴록사머 188로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상을 사용할 수 있다.Commercially available dispersants as the dispersants include Disperbyk ™ -111, Byk ™ -154, Disperbyk ™ -180, Disperbyk ™ -182, Disperbyk ™ -190, Disperbyk ™ -192, Disperbyk ™ -193, Disperbyk ™ -2012, Disperbyk ™ -2015, Disperbyk ™ -2090, Disperbyk ™ -2091; Tevo ™ 715w, Tego ™ 735w, Tego ™ 740w ™, Tego ™ 745w ™, Tego ™ 750w, Tego ™ 755w, Tego ™ 775w from Evonik; Solbrise ™ 20000, Solsperse ™ 43000, Solsperse ™ 44000 from Lubrizol; Ciba's EFKA ™ 4585; Dow's Orotan ™ 731A, Orotan ™ 1124; Tween 20, Tween 80 from Aldrich; Any one or two or more selected from the group consisting of polyethylene glycol (PEG) 200, polyvinylpyrrolidone (PVP) 10,000, PVP 55,000, poloxamer 407, and poloxamer 188 Can be used.
상기 초순수(DI-water)는 수돗물이나 생수에 상존하는 음이온 및 양이온이 거의 없는 3차 증류수를 말하며, 이는 금속 나노입자를 제조할 때 전해질과 환원제 이외에 음이온 및 양이온이 들어갈 경우 원하는 금속 나노입자에 불순물이 생길 수 있고, 또한 착화합물을 생성시켜 금속 나노입자를 얻을 수 없다.The ultra-pure water (DI-water) refers to tertiary distilled water having almost no anions and cations existing in tap water or bottled water, which is impurity in the desired metal nanoparticles when anions and cations are added in addition to the electrolyte and the reducing agent when preparing the metal nanoparticles. This may occur, and complex compounds may not be formed to obtain metal nanoparticles.
본 발명에 따른 전기분해법을 이용한 금속 나노입자의 제조는 도 3에 도시된 바와 같이, 금속 나노 입자 제조장치의 반응용기(10) 내에 합성하고자 하는 은 나노입자와 동일한 금속재료로서 각각 다수의 은 그래뉼(30a,40a)로 이루어진 제1전극(30)과 제2전극(40)을 지지홀더(15)에 설치함에 의해 제1전극(30)과 제2전극(40)을 간격을 두고 배치한다.Production of metal nanoparticles using the electrolysis method according to the present invention, as shown in Figure 3, the silver metal nanoparticles to be synthesized in the reaction vessel 10 of the metal nanoparticle manufacturing apparatus as the same metal material each of the plurality of silver granules The first electrode 30 and the second electrode 40 made of the 30a and 40a are disposed in the support holder 15 so that the first electrode 30 and the second electrode 40 are spaced apart from each other.
그 후, 초순수(DI-water) 1L에, 전해질로서 구연산(Citric acid) 2.0mmol, 전해질로서 하이드라진을 6.0mmol을 주입하고, 분산제인 BYK Chemie사의 Disperbyk™-190 8.0g을 각각 반응용기에 넣고 완전히 용해될 때까지 교반기(20)를 이용하여 저어 주었다.Then, 1 mmol of ultra-pure water (DI-water) was injected with 2.0 mmol of citric acid as the electrolyte and 6.0 mmol of hydrazine as the electrolyte, and 8.0 g of Disperbyk ™ -190, dispersant BYK Chemie, was added to the reaction vessel. Stir it using the stirrer 20 until it melt | dissolved.
첨가제들이 모두 용해된 수용액에 열을 가하여 수용액 온도를 90℃까지 상승시킨 후 반응용기에 냉각수를 일정하게 흘려주어 설정한 온도를 유지하도록 한 상태에서, 주파수가 1 Hz, 정현파로 이루어진 교류 전원을 제1 및 제2 전극 사이에 인가하면서 전류값을 4.3A로 설정하여 전기분해를 실시하였다. 또한, 1시간 30분 동안 전기분해를 실시하면서 펌프를 이용한 정속 주입에 의해 환원제로 하이드라진 18.0mmol을 주입하면서 반응시켰다.Heat was added to the aqueous solution in which all the additives were dissolved to raise the temperature of the aqueous solution to 90 ° C, and then coolant was flowed to the reaction vessel to maintain the set temperature. The electrolysis was performed by setting the current value to 4.3 A while applying between the first and second electrodes. Further, the reaction was carried out while injecting 18.0 mmol of hydrazine as a reducing agent by constant speed injection using a pump while performing electrolysis for 1 hour and 30 minutes.
전기분해 반응 후에 은 전극의 소모량을 측정하였으며, 반응 수용액 속에 존재하는 은 나노입자를 FE-SEM으로 분석한 결과 얻어진 은 나노입자는 대부분 12nm에서 20nm 크기의 나노입자가 존재함을 알 수 있으며 매우 좁은 입자 분포도를 나타냄을 확인할 수 있었다.After the electrolysis reaction, the consumption of the silver electrode was measured. As a result of analyzing the silver nanoparticles present in the reaction solution by FE-SEM, it was found that most of the silver nanoparticles were present in the range of 12 nm to 20 nm. It was confirmed that the particle distribution is shown.
상기한 바와 같이, 본 발명의 제1실시예에 따른 전기분해법을 이용한 금속 나노입자의 제조는 수십 나노미터 수준으로 작고 균일한 크기와 균일한 형상을 갖는 은 나노 입자를 얻을 수 있었다. As described above, the preparation of the metal nanoparticles using the electrolysis method according to the first embodiment of the present invention was able to obtain silver nanoparticles having a small, uniform size and a uniform shape on the order of tens of nanometers.
또한, 본 발명에서는 금속판 또는 봉 대신에 이를 그래뉼 형태로 바꾸어 일정 간격을 유지하도록 한쌍의 전극하우징에 채워서 한쌍의 전극을 구성하고, 교류전원을 이용하여 전기분해를 실시하면 전기분해가 진행될지라도 2 전극 간에 거리의 변화가 발생하지 않아 균일한 형상과 균일한 나노 크기의 금속 나노 입자를 대량으로 제조할 수 있다. In addition, in the present invention, instead of a metal plate or a rod, it is changed into a granule to fill a pair of electrode housings so as to maintain a constant interval, and a pair of electrodes is formed. Since the distance does not occur in the liver, metal nanoparticles of uniform shape and uniform nano size can be manufactured in large quantities.
또한, 본 발명에서는 전기분해가 진행되면서 한쌍의 전극하우징에 채워진 그래뉼의 소모에 따라 새로운 그래뉼을 채워줌으로써 전기분해공정을 중단하지 않고 연속적으로 대량의 금속 나노 입자를 제조할 수 있다. 그 결과, 본 발명에서는 전기분해 공정에서 소모되는 전극을 교체할 필요 없이 그래뉼 형상의 금속 알갱이를 전극하우징의 내부 공간에 보충함에 의해 전기분해 공정의 중단을 막을 수 있어 생산성을 높일 수 있다.In addition, in the present invention, as the electrolysis proceeds, the new granules may be filled according to the consumption of the granules filled in the pair of electrode housings to continuously manufacture a large amount of metal nanoparticles without stopping the electrolysis process. As a result, in the present invention, it is possible to prevent interruption of the electrolysis process by replenishing granule-shaped metal grains in the internal space of the electrode housing without having to replace the electrode consumed in the electrolysis process, thereby increasing productivity.
도 6은 본 발명의 제2실시예에 따른 금속 나노 입자 제조장치용 그래뉼 타입 전극을 보여주는 사시도이다.Figure 6 is a perspective view showing a granule type electrode for a metal nanoparticle manufacturing apparatus according to a second embodiment of the present invention.
도 6을 참고하면, 본 발명의 제2실시예에 따른 금속 나노 입자 제조장치용 그래뉼 타입 전극은 도 3에 도시된 제1실시예의 그래뉼 타입 전극과 비교하면, 제1 및 제2 전극하우징(32,42)의 마주보는 면에 슬릿 대신에 다수의 홀(33a,43a)을 형성한 것에 차이가 있고, 나머지 구성은 동일하다.Referring to FIG. 6, the granule-type electrode for the metal nanoparticle manufacturing apparatus according to the second embodiment of the present invention is compared with the granule-type electrode of the first embodiment shown in FIG. 3, and the first and second electrode housings 32 There is a difference in that a plurality of holes 33a and 43a are formed instead of slits on opposite sides of 42, and the rest of the configuration is the same.
따라서, 제1실시예와 동일한 구성요소에 대하여는 동일한 참조부호를 부여하고 이에 대해서는 상세한 설명을 생략한다.Therefore, the same reference numerals are assigned to the same components as those in the first embodiment, and detailed description thereof will be omitted.
제2실시예에서 홀(33a,43a)은 그래뉼(30a,40a)이 빠져나갈 수 없는 구조로 전극하우징(32,42)의 외부로 갈수록 상향경사지게 형성할 수 있다.In the second embodiment, the holes 33a and 43a may be formed to be inclined upward toward the outside of the electrode housings 32 and 42 in a structure in which the granules 30a and 40a cannot escape.
도 7은 제1 및 제2 실시예에 사용된 그래뉼 타입 전극의 변형예를 보여주는 평면도이다.7 is a plan view showing a modification of the granule type electrode used in the first and second embodiments.
도 7을 참고하면, 도시된 그래뉼 타입의 제1 및 제2 전극(30,40)은 전기 전도도를 더욱 향상시키기 위해 다수의 그래뉼(30a,40a)이 채워져 있는 제1 및 제2 전극하우징(32,42)의 내부 공간에 각각 길이방향으로 도전판(37)을 삽입시킨 예이다. 이 경우, 도전판(37)은 그래뉼(30a,40a)과 동일한 재료로 이루어진다.Referring to FIG. 7, the granule-type first and second electrodes 30 and 40 have a first and second electrode housing 32 filled with a plurality of granules 30a and 40a to further improve electrical conductivity. The conductive plate 37 is inserted into the inner space of 42 in the longitudinal direction, respectively. In this case, the conductive plate 37 is made of the same material as the granules 30a and 40a.
상기와 같이, 제1 및 제2 전극하우징(32,42) 내부에 도전판(37)이 삽입되어 있는 경우, 전기 전도도를 더욱 향상시킬 수 있어 전기분해 효율의 증대를 도모할 수 있다. As described above, when the conductive plates 37 are inserted into the first and second electrode housings 32 and 42, the electrical conductivity can be further improved, and the electrolysis efficiency can be increased.
상기 제1실시예와 동일한 구성요소에 대하여는 동일한 참조부호를 부여하고 이에 대해서는 상세한 설명을 생략한다.The same reference numerals are assigned to the same components as those in the first embodiment, and detailed description thereof will be omitted.
도 8 및 도 9는 본 발명의 제3실시예에 따른 금속 나노 입자 제조장치의 개략 단면도 및 저면도이다.8 and 9 are schematic cross-sectional view and a bottom view of a metal nanoparticle manufacturing apparatus according to a third embodiment of the present invention.
제3실시예의 금속 나노 입자 제조장치에서 제1실시예의 금속 나노 입자 제조장치와 동일한 구성요소에 대하여는 동일한 참조부호를 부여하고 이에 대해서는 상세한 설명을 생략한다.In the metal nanoparticle manufacturing apparatus of the third embodiment, the same components as those of the metal nanoparticle manufacturing apparatus of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
도 8 및 도 9를 참고하면, 본 발명의 제3실시예에 따른 금속 나노 입자 제조장치는 제1전극(60)과 제2전극(70) 사이의 대향 면적을 극대화하기 위해 이중통 구조의 원통형 전극하우징을 채용한 예를 제안한다.8 and 9, the metal nanoparticle manufacturing apparatus according to the third embodiment of the present invention has a cylindrical shape of a double cylinder structure in order to maximize the opposing area between the first electrode 60 and the second electrode 70. An example employing an electrode housing is proposed.
본 발명의 제3실시예에 따른 원통형 제1 및 제2 전극하우징(62,72)은 각각 다수의 그래뉼(60a,70a)을 채워 넣을 수 있는 환형의 수용공간을 구비하도록 하단이 막힌 이중통 구조로 이루어져 있다.The cylindrical first and second electrode housings 62 and 72 according to the third embodiment of the present invention have a double-cylinder structure whose bottom is closed so as to have an annular accommodating space for filling a plurality of granules 60a and 70a, respectively. Consists of
본 발명의 제3실시예는 반응용기(10) 내부에 직경이 서로 다르며 동심상으로 배치된 이중통 구조의 제1 및 제2 전극하우징(62,72) 내부에, 각각 얻고자 하는 금속 나노 입자와 동일한 재료로 이루어진 다수의 그래뉼(60a,70a)을 채워 넣은 제1전극(60)과 제2전극(70)을 사용한다.According to the third embodiment of the present invention, the metal nanoparticles to be obtained in the first and second electrode housings 62 and 72 having a concentrically arranged double-cylinder structure with different diameters in the reaction vessel 10, respectively. The first electrode 60 and the second electrode 70 filled with a plurality of granules 60a and 70a made of the same material are used.
제1전극(60)과 제2전극(70)은 제1 전극하우징(62)과 제2 전극하우징(72) 사이에 동일한 길이의 다수의 연결부(12)에 의해 서로 연결됨에 따라 서로 이격되게 배치된다. 그 결과, 제1 전극하우징(62)과 제2 전극하우징(72) 사이의 간격이 서로 대향한 모든 외주면에 대해 일정하게 설정되어 제1전극(60)과 제2전극(70) 사이의 간격도 일정하게 설정된다.The first electrode 60 and the second electrode 70 are spaced apart from each other as they are connected to each other by the plurality of connection parts 12 having the same length between the first electrode housing 62 and the second electrode housing 72. do. As a result, the interval between the first electrode housing 62 and the second electrode housing 72 is set constant for all of the outer peripheral surfaces facing each other, so that the interval between the first electrode 60 and the second electrode 70 is also determined. It is set constant.
또한, 제1 전극하우징(62)의 내주면에는 다수의 슬릿 또는 홀(63)이 형성되어 있고, 그와 마주보는 제2 전극하우징(73)의 외주면에 다수의 슬릿 또는 홀(73)이 형성되어 있다. In addition, a plurality of slits or holes 63 are formed on the inner circumferential surface of the first electrode housing 62, and a plurality of slits or holes 73 are formed on the outer circumferential surface of the second electrode housing 73 facing the first electrode housing 62. have.
한편, 제3실시예에서는 반응용기(10) 내부에 수용된 전해 용액(11)을 교반하기 위해 제1전극(60)과 제2전극(70)의 하부에 임펠러, 즉 교반기(20)를 배치하고, 교반기(20)의 회전축(22)은 제2 전극하우징(72)의 중앙을 관통하도록 배치하며, 제2 전극하우징(72)의 하측 내부에 다수의 연결부(13)에 의해 지지된 베어링(14)에 의해 회전축(20)의 일단을 회전 가능하게 지지한다.Meanwhile, in the third embodiment, an impeller, that is, an agitator 20, is disposed below the first electrode 60 and the second electrode 70 to stir the electrolytic solution 11 accommodated in the reaction vessel 10. The rotating shaft 22 of the stirrer 20 is disposed to penetrate the center of the second electrode housing 72, and a bearing 14 supported by a plurality of connection parts 13 inside the lower side of the second electrode housing 72. One end of the rotation shaft 20 is rotatably supported.
반응용기(10) 내부에는 초순수에 첨가제로서 전해질, 분산제 및 환원제가 혼합된 전해 용액(11)이 수용되어 있고, 상기 반응용기(10)의 하측에는 전해 용액(11)을 간접 가열하기 위해 히팅장치(미도시)가 배치되어 있으며, 반응용기(10)의 상부에는 제1전극(60)과 제2전극(70)으로 교류(AC) 전원을 인가하기 위한 전원공급장치(50)가 한쌍의 전원케이블(55)을 통하여 연결되어 있다. In the reaction vessel 10, an electrolytic solution 11 containing an electrolyte, a dispersant, and a reducing agent as an additive is contained in ultrapure water, and a heating apparatus for indirectly heating the electrolytic solution 11 at the lower side of the reaction vessel 10. (Not shown), and a pair of power supplies are provided on top of the reaction vessel 10 for supplying AC power to the first electrode 60 and the second electrode 70. It is connected via a cable 55.
상기와 같이 구성된 본 발명의 제3실시예에 따른 금속 나노 입자 제조장치는 제1전극(60)과 제2전극(70) 사이의 대향 면적을 극대화하기 위해 이중통 구조의 원통형 제1 및 제2 전극하우징(62,72)을 채용함에 따라 대향 면적이 증가하여, 금속 나노 입자의 수율 증대를 도모할 수 있다.The metal nanoparticle manufacturing apparatus according to the third embodiment of the present invention configured as described above has a cylindrical first and second cylindrical structure having a double cylinder structure in order to maximize the opposing area between the first electrode 60 and the second electrode 70. As the electrode housings 62 and 72 are employed, the opposing area increases, whereby the yield of the metal nanoparticles can be increased.
또한, 제3실시예에서는 금속판 또는 봉 대신에 이를 그래뉼 형태로 바꾸어 일정 간격을 유지하도록 제1 및 제2 전극하우징(62,72)에 채워서 제1 및 제2 전극(60,70)을 구성하고, 교류전원을 이용하여 전기분해를 실시하면 전기분해가 진행될지라도 제1 및 제2 전극(60,70) 간에 거리의 변화가 발생하지 않아 균일한 형상과 균일한 나노 크기의 금속 나노 입자를 대량으로 제조할 수 있다. In addition, in the third embodiment, the first and second electrode housings 62 and 72 are filled to form the first and second electrodes 60 and 70 so as to maintain a predetermined interval by replacing the metal plate or rod with granules. When the electrolysis is performed using an AC power source, even though the electrolysis proceeds, the distance does not change between the first and second electrodes 60 and 70, so that a large amount of metal nano particles having a uniform shape and a uniform nano size can be obtained. It can manufacture.
또한, 본 발명에서는 전기분해가 진행되면서 제1 및 제2 전극하우징(62,72)에 채워진 그래뉼(60a,70a)의 소모에 따라 새로운 그래뉼(60a,70a)을 채워줌으로써 전기분해공정을 중단하지 않고 연속적으로 대량의 금속 나노 입자를 제조할 수 있다. 그 결과, 본 발명에서는 전기분해 공정에서 소모되는 전극을 교체할 필요 없이 그래뉼 형상의 금속 알갱이를 전극하우징의 내부 공간에 보충함에 의해 전기분해 공정의 중단을 막을 수 있고 연속공정에 의해 생산성을 높일 수 있다.In addition, the present invention does not stop the electrolysis process by filling the new granules 60a and 70a according to the consumption of the granules 60a and 70a filled in the first and second electrode housings 62 and 72 as the electrolysis proceeds. It is possible to produce a large amount of metal nanoparticles continuously without. As a result, in the present invention, it is possible to prevent the interruption of the electrolysis process by replenishing granule-shaped metal grains in the internal space of the electrode housing without having to replace the electrodes consumed in the electrolysis process and to increase productivity by the continuous process. have.
도 10 및 도 11은 각각 본 발명의 제4 및 제5 실시예에 따른 금속 나노 입자 제조장치의 개략 사시도이다.10 and 11 are schematic perspective views of the metal nanoparticle manufacturing apparatus according to the fourth and fifth embodiments of the present invention, respectively.
도 10 및 도 11에 도시된 바와 같이, 본 발명의 제4 및 제5 실시예에 따른 금속 나노 입자 제조장치는 각각 그래뉼(도시되지 않음)을 수용하는 전극하우징(82,82a)을 상기한 제1 내지 제3 실시예와 다르게 하나의 전극하우징만을 사용한다는 점에서 차이가 있다. As shown in FIGS. 10 and 11, the metal nanoparticle manufacturing apparatus according to the fourth and fifth embodiments of the present invention may include the electrode housings 82 and 82a respectively accommodating granules (not shown). Unlike the first to third embodiments, there is a difference in that only one electrode housing is used.
전극하우징(82,82a)에 수용된 그래뉼로 형성되는 제1전극(80)과 대향하는 제2 전극(90,90a)은 단지 전기분해를 위한 교류 전원이 인가될 때 통전이 이루어질 수 있는 원판이나 원통으로 이루어져 있으며, 그래뉼을 수용하는 전극하우징(82,82a)은 회전 구동장치(도시되지 않음)에 의해 회전이 이루어진다.The second electrodes 90 and 90a facing the first electrode 80 formed by granules accommodated in the electrode housings 82 and 82a may be a disk or a cylinder which may be energized only when an AC power source for electrolysis is applied. Consists of, the electrode housing (82, 82a) for accommodating the granule is made by the rotation drive (not shown).
제4 및 제5 실시예의 제2 전극(90,90a)은 Ti 등과 같이 전해 용액에서 용출이 이루어지지 않는 금속 재료로 선정된다.The second electrodes 90 and 90a of the fourth and fifth embodiments are selected as metal materials which are not eluted from the electrolytic solution, such as Ti.
도 10에 도시된 본 발명의 제4 실시예에 따른 금속 나노 입자 제조장치는 그래뉼을 수용하는 전극하우징(82)이 예를 들어, 단면이 십자 형상의 수용공간을 갖는 구조로 이루어질 수 있다. 전극하우징(82)의 형상은 상기한 십자 형상 이외에도 예를 들어, 별모양 통, 원통, 다각형 통 등과 같이 그래뉼을 수용할 수 있는 통 구조라면 어떠한 형상도 가능하다. 따라서, 제1전극(80)은 전극하우징(82)에 수용된 다수의 그래뉼로 이루어진다. In the apparatus for manufacturing metal nanoparticles according to the fourth embodiment of the present invention shown in FIG. 10, the electrode housing 82 accommodating the granules may have, for example, a cross-sectional accommodating space. The shape of the electrode housing 82 may be any shape in addition to the cross shape described above as long as it is a tubular structure capable of accommodating granules, for example, a star-shaped cylinder, a cylinder, a polygonal cylinder, and the like. Therefore, the first electrode 80 is composed of a plurality of granules accommodated in the electrode housing 82.
이 경우, 원판 형상의 제2전극(90)이 제1전극(80)의 하측에 배치되어 있으므로 전기분해시에 용출된 금속 이온이 배출되는 전극하우징(82)의 슬릿(83)은 하측면(84)에 배치된다. In this case, since the disk-shaped second electrode 90 is disposed below the first electrode 80, the slit 83 of the electrode housing 82 through which the metal ions eluted during electrolysis are discharged has a lower side ( 84).
상기 전극하우징(82)의 하부판(84)과 원판 형상의 제2전극(90)은 일정한 간격을 두고 배치되므로 제1 및 제2 전극(80,90) 사이에도 일정한 간격이 계속 유지된다.Since the lower plate 84 of the electrode housing 82 and the disc-shaped second electrode 90 are arranged at regular intervals, a constant gap is maintained between the first and second electrodes 80 and 90.
또한, 상기 전극하우징(82)의 회전이 이루어지면 별도의 교반기 사용이 불필요하게 되며, 제1전극(80)으로부터 배출되는 금속 이온의 용출을 촉진하는 역할을 기대할 수 있다.In addition, when the electrode housing 82 is rotated, a separate stirrer may be unnecessary and a role of promoting the dissolution of metal ions discharged from the first electrode 80 may be expected.
상기 전극하우징(82)의 회전이 이루어지면 전기분해 반응시 제1 및 제2 전극(80,90) 사이에 일정한 간격이 계속 유지됨과 동시에 생성되는 금속 이온과 환원제의 효과적인 반응 환경을 만들어 줌에 따라 혼합의 효율을 극대화할 수 있다.As the electrode housing 82 is rotated, a constant interval is maintained between the first and second electrodes 80 and 90 during the electrolysis reaction, and at the same time, an effective reaction environment of the generated metal ions and the reducing agent is created. The efficiency of mixing can be maximized.
도 10에서 미설명 부재번호 91은 반응용기(10)의 바닥에 배치된 제2전극(90)에 대한 교류 전원을 인가하기 위한 전원케이블이 수용된 전선관(91)을 나타낸다.In FIG. 10, reference numeral 91 denotes a conduit 91 in which a power cable for applying AC power to the second electrode 90 disposed at the bottom of the reaction vessel 10 is accommodated.
도 11에 도시된 본 발명의 제5 실시예에 따른 금속 나노 입자 제조장치는 그래뉼을 수용하는 전극하우징(82a)이 제4 실시예에 따른 전극하우징(82)과 동일한 구조로 이루어진 것을 사용한다.The metal nanoparticle manufacturing apparatus according to the fifth embodiment of the present invention shown in FIG. 11 uses an electrode housing 82a accommodating granules having the same structure as the electrode housing 82 according to the fourth embodiment.
본 발명의 제5 실시예와 제4 실시예의 차이점은 제1전극(80a)과 대향하는 제2전극(90a)이 제1전극(80a)의 전극하우징(82)을 둘러싸면서 일정한 두께를 갖는 원통 또는 그물망(net) 구조의 원통으로 이루어진 점에서 차이가 있다. The difference between the fifth embodiment and the fourth embodiment of the present invention is that the second electrode 90a facing the first electrode 80a surrounds the electrode housing 82 of the first electrode 80a and has a cylindrical thickness. Or there is a difference in that it is made of a cylindrical net (net) structure.
이 경우, 원통 형상의 제2전극(90a)이 제1전극(80a)의 측면에 배치되어 있으므로 전기분해시에 용출된 금속 이온이 배출되는 전극하우징(82a)의 슬릿(83a)은 전극하우징(82a)의 측면에 배치된다. In this case, since the cylindrical second electrode 90a is disposed on the side of the first electrode 80a, the slit 83a of the electrode housing 82a through which the metal ions eluted at the time of electrolysis is discharged is formed in the electrode housing ( 82a).
상기 전극하우징(82a)이 십자 형상인 경우 4개의 측면(84a)과 원통 형상의 제2전극(90a)은 일정한 간격을 두고 배치되므로 제1 및 제2 전극(80a,90a) 사이에도 일정한 간격이 계속 유지된다.When the electrode housing 82a has a cross shape, the four side surfaces 84a and the cylindrical second electrodes 90a are disposed at regular intervals, so that a constant interval is also provided between the first and second electrodes 80a and 90a. Stays on.
또한, 상기 전극하우징(82a)의 회전이 이루어지면 별도의 교반기 사용이 불필요하게 되며, 제1전극(80a)으로부터 배출되는 금속 이온의 용출을 촉진하는 역할을 기대할 수 있다.In addition, when the electrode housing 82a is rotated, a separate stirrer may be unnecessary and a role of promoting the dissolution of metal ions discharged from the first electrode 80a may be expected.
상기한 제4 및 제5 실시예는 단지 하나의 전극하우징(82,82a)만을 사용하므로, 소모되는 그래뉼의 보충을 관리하기 쉬운 이점이 있다.The fourth and fifth embodiments described above use only one electrode housing 82, 82a, which makes it easy to manage the replenishment of the spent granules.
도 12는 본 발명의 제6실시예에 따른 금속 나노 입자 제조장치의 개략 사시도, 도 13 및 도 14는 각각 제6실시예에 따른 금속 나노 입자 제조장치의 그래뉼 타입 전극을 나타내는 단면도이다.12 is a schematic perspective view of a metal nanoparticle manufacturing apparatus according to a sixth embodiment of the present invention, FIGS. 13 and 14 are cross-sectional views illustrating granule-type electrodes of the metal nanoparticle manufacturing apparatus according to the sixth embodiment, respectively.
도 12에서 제1전극(300a)과 제2전극(400a)은 서로 대향한 측면(특히, 제1 및 제2 측판(34a,44a))이 동일한 거리로 설정되어 사용되나, 대향한 측면의 구조를 설명하기 위해 편의상 일정한 각도로 벌려진 상태로 도시되어 있다.In FIG. 12, the first electrode 300a and the second electrode 400a face each other (particularly, the first and second side plates 34a and 44a) are set at the same distance, but the structure of the opposite side is different. It is shown in a state opened at a constant angle for convenience of explanation.
본 발명의 제6실시예에 따른 금속 나노 입자 제조장치는 전기분해시에 전극의 모서리 부분에서 모서리 이외의 다른 부분 보다 전극으로부터의 이온 용출이 더 크게 일어나는 소위 “에지 효과(Edge Effect)”를 극대화할 수 있는 전극 구조를 제안한다.The metal nanoparticle manufacturing apparatus according to the sixth embodiment of the present invention maximizes the so-called "edge effect" in which the ion elution from the electrode is greater at the corners of the electrode than at other corners at the time of electrolysis. An electrode structure can be proposed.
이를 위해 제6실시예에 따른 금속 나노 입자 제조장치는 그래뉼(도시되지 않음)을 수용하도록 예를 들어, 사각통 형상으로 이루어진 제1 및 제2 전극하우징(32a,42a)은 서로 대향한 하나의 측면이 각각 Ti와 같은 불용성 전극 재료로 이루어지고 톱니 모양의 다수의 돌기(나사산에 대응)(35a,45a)가 일정한 높이로 돌출된 제1 및 제2 측판(34a,44a)으로 이루어진 구조를 가진다. To this end, the apparatus for manufacturing metal nanoparticles according to the sixth embodiment includes, for example, first and second electrode housings 32a and 42a having a rectangular cylindrical shape to accommodate granules (not shown). Each side has a structure consisting of first and second side plates 34a and 44a, each of which is made of an insoluble electrode material such as Ti, and a plurality of serrated protrusions (corresponding to threaded threads) 35a and 45a protrude to a constant height. .
이 경우, 상기 제1 및 제2 전극하우징(32a,42a)은 제1 내지 제3 실시예의 전극하우징과 같이 전해용액에 불용성인 절연성소재 예를 들면, 엠씨 나일론(MC nylon), 나일론, 폴리에스테르, 폴리스티렌, 폴리염화비닐과 같은 폴리머계(polymer family), 세라믹 또는 유리, 예를 들어, 파이렉스(Pyrex)유리를 사용할 수 있고, 제1 및 제2 측판(34a,44a)은 전류가 통할 수 있는 불용성인 소재인 타이타늄(Ti)을 사용할 수 있다. In this case, the first and second electrode housings 32a and 42a are insulative materials insoluble in the electrolytic solution, for example, MC nylon, nylon, and polyester, as in the electrode housings of the first to third embodiments. , Polymer family such as polystyrene, polyvinyl chloride, ceramic or glass, for example Pyrex glass, may be used, and the first and second side plates 34a and 44a may be current carrying. Insoluble material titanium (Ti) may be used.
그 결과, 제1 및 제2 전극하우징(32a,42a)의 제1 및 제2 측판(34a,44a)으로 타이타늄(Ti)을 사용한 경우, 제1 및 제2 측판(34a,44a)은 제1 및 제2 전극하우징(32a,42a)에 충진된 다수의 그래뉼과 접촉상태이므로, 그래뉼에 교류 전원이 인가되는 경우 제1 및 제2 측판(34a,44a)은 다수의 그래뉼과 통전이 이루어지게 된다. As a result, when titanium (Ti) is used as the first and second side plates 34a and 44a of the first and second electrode housings 32a and 42a, the first and second side plates 34a and 44a may be formed of the first and second side plates 34a and 44a. And contact with a plurality of granules filled in the second electrode housings 32a and 42a, so that when the AC power is applied to the granules, the first and second side plates 34a and 44a are energized with the plurality of granules. .
제1 및 제2 측판(34a,44a)은 도 13에 도시된 바와 같이 톱니 모양의 다수의 돌기(나사산에 대응)(35a,45a)가 일정한 높이로 돌출되어 대향한 돌기(나사산에 대응)(35a,45a) 사이의 간격이 동일하게 설정되어 있으며, 각 돌기(35a,45a)의 측면에는 다수의 구멍 또는 슬릿(33a,43a)이 형성되어 있다. 상기한 제1 및 제2 측판(34a,44a)은 다수의 구멍 또는 슬릿(33a,43a)이 규칙적으로 배열되도록 그물망(net) 구조의 Ti 판재를 절곡 성형하여 사용할 수 있다. As shown in Fig. 13, the first and second side plates 34a and 44a have a plurality of jagged protrusions (corresponding to the threaded threads) 35a and 45a protruding at a constant height so as to face the opposite protrusions (corresponding to the threaded threads) ( The spacing between 35a and 45a is set equal, and a number of holes or slits 33a and 43a are formed on the side surfaces of each of the projections 35a and 45a. The first and second side plates 34a and 44a may be used by bending a Ti sheet having a net structure so that a plurality of holes or slits 33a and 43a are regularly arranged.
또한, 상기 제1 및 제2 측판(34a,44a)은 톱니 모양의 다수의 돌기(나사산에 대응)(35a,45a)가 돌출된 구조이므로 평판 구조와 비교할 때 대향한 표면적이 증가하여 전기분해에 따라 얻어지는 금속 나노입자의 효율 상승을 도모할 수 있다.In addition, the first and second side plates 34a and 44a have a plurality of jagged protrusions (corresponding to threaded threads) 35a and 45a, so that the surface areas facing each other increase as compared with the flat plate structure. As a result, the efficiency of the metal nanoparticles obtained can be increased.
따라서, 그래뉼에 교류 전원이 인가되어, 제1 및 제2 측판(34a,44a)의 서로 대향한 돌기(35a,45a)가 다수의 그래뉼과 통전이 이루어지면 에지 효과(Edge Effect)에 따라 제1 및 제2 전극하우징(32a,42a) 사이에 일측에 충진되어 제1전극(300a)을 형성하는 다수의 그래뉼이 타측의 제2전극(400a)의 다수의 그래뉼로 전자를 내어 주면서 전해 용액으로 용출되는 금속 이온의 용출량이 증가하게 된다.Therefore, when the AC power is applied to the granules, when the protrusions 35a and 45a facing each other of the first and second side plates 34a and 44a are energized with a plurality of granules, the first and second granules are energized according to the edge effect. And a plurality of granules filled on one side between the second electrode housings 32a and 42a to form the first electrode 300a and eluted with an electrolytic solution while giving electrons to the plurality of granules of the second electrode 400a on the other side. The elution amount of the metal ions to be increased.
또한, 본 발명의 제6실시예에 따른 금속 나노 입자 제조장치는 도 14에 도시된 바와 같이 제1 및 제2 전극하우징(32a,42a)에서 제1 및 제2 측판(34a,44a)의 돌기(35a,45a)가 상대편의 돌기와 돌기 사이에 배치되는 구조로 설정되는 경우, 평판 구조와 비교할 때 대향한 표면적이 증가하여 전기분해에 따라 얻어지는 금속 나노입자의 효율 상승을 도모할 수 있다.In addition, the metal nanoparticle manufacturing apparatus according to the sixth embodiment of the present invention is a projection of the first and second side plates 34a and 44a in the first and second electrode housings 32a and 42a as shown in FIG. 14. When (35a, 45a) is set to the structure arrange | positioned between an opposing processus | protrusion and a processus | protrusion, compared with a flat plate structure, the opposing surface area increases and the efficiency of the metal nanoparticles obtained by electrolysis can be aimed at.
더욱이, 본 발명의 제6실시예에 따른 제1 및 제2 전극하우징(32a,42a)에서 제1 및 제2 측판(34a,44a)의 돌기(35a,45a)가 상하방향으로 서로 평행하게 배열된 구조를 제시하고 있으나, 제1 및 제2 측판(34a,44a)의 돌기(35a,45a)가 수평방향으로 서로 평행하게 배열된 구조로 이루어지는 것도 물론 가능하다.Further, in the first and second electrode housings 32a and 42a according to the sixth embodiment of the present invention, the projections 35a and 45a of the first and second side plates 34a and 44a are arranged in parallel to each other in the vertical direction. Although the structure is shown, it is also possible that the protrusions 35a and 45a of the first and second side plates 34a and 44a are arranged in parallel to each other in the horizontal direction.
상기한 바와 같이, 본 발명에서는 전해조 내에 일정 간격으로 설치된 한쌍의 전극하우징 내부에 얻고자 하는 금속 나노 입자와 동일한 재료로 이루어진 그래뉼 또는 플레이크를 충전하여 전극을 구성함에 따라 전기분해가 진행될지라도 2 전극간의 거리가 변하지 않아 균일한 형상과 균일한 사이즈의 금속 나노 입자를 얻을 수 있다.As described above, in the present invention, the granules or flakes made of the same material as the metal nanoparticles to be obtained are filled in a pair of electrode housings installed at predetermined intervals in the electrolytic cell, so that the electrolysis proceeds between the two electrodes. Since the distance does not change, metal nanoparticles of uniform shape and uniform size can be obtained.
또한, 본 발명에서는 전기분해 공정에서 금속 그래뉼 또는 플레이크가 소모됨에 따라 새로운 금속 그래뉼 또는 플레이크를 연속적으로 채워줌으로써 전극 교체에 따른 생산중단 없이 연속적으로 간편하게 대량의 금속 나노 입자를 제조할 수 있다. 그 결과, 본 발명에서는 전기분해 공정에서 소모되는 전극을 교체할 필요 없이 그래뉼을 전극하우징으로 보충함에 의해 전기분해 공정의 중단을 막을 수 있어 생산성을 높일 수 있다.In addition, in the present invention, as the metal granules or flakes are consumed in the electrolysis process, new metal granules or flakes are continuously filled, thereby allowing a large amount of metal nanoparticles to be produced continuously and conveniently without interruption of production due to electrode replacement. As a result, in the present invention, it is possible to prevent the interruption of the electrolysis process by replenishing the granules with the electrode housing without having to replace the electrodes consumed in the electrolysis process, thereby increasing productivity.
더욱이, 본 발명에서는 금속 이온이 결정으로 형성되기 전에 환원제를 이용하여 금속 나노입자로 환원시키고 아직 환원되지 않은 금속 이온이 나노 결정으로 성장되기 전에 극성을 변환시킴으로써 금속 나노 입자의 대량생산이 이루어질 수 있도록 교류전원에서 최적의 주파수를 선택하여 전극에 인가함에 따라 고효율로 대량의 금속 나노 입자를 제조할 수 있다.Furthermore, in the present invention, mass production of metal nanoparticles can be achieved by reducing metal ions to metal nanoparticles using a reducing agent before metal ions are formed into crystals and converting polarities before metal ions that have not been reduced are grown into nanocrystals. By selecting the optimum frequency from the AC power supply to the electrode can be produced a large amount of metal nanoparticles with high efficiency.
상기 실시예 설명에서는 그래뉼 또는 플레이크의 재료로서 이온화 경향이 작은 금속인 은(Ag)을 예를 들어, 설명하였으나, 이온화 경향이 큰 금속, 예를 들어, Mg, Al, Zn, Fe, Cu는 물론, 이온화 경향이 작은 Pt, Au 등에 적용하여도 유사한 결과가 얻어질 수 있다. In the above description of the embodiment, silver (Ag), which is a metal having a low ionization tendency, has been described as a material of granule or flake, for example, but a metal having a high ionization tendency, for example, Mg, Al, Zn, Fe, Cu, Similar results can be obtained by applying Pt, Au, etc., which have a small tendency to ionize.
또한, 상기 실시예 설명에서는 그래뉼 또는 플레이크의 재료로서 순수한 은(Ag)을 사용하고 있으나, Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, 및 Pd로 구성되는 군에서 선택되는 2종 이상의 합금, 예를 들어 Ag-Cu, Ag-Mg, Ag-Al, Ag-Ni, Ag-Fe, Cu-Mg, Cu-Fe, Cu-Al, Cu-Zn, Cu-Ni 등의 합금을 사용하는 경우 합금 나노입자를 얻을 수 있다. In addition, in the above embodiment, pure silver (Ag) is used as a material of granule or flake, but is selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd. Two or more alloys, for example, Ag-Cu, Ag-Mg, Ag-Al, Ag-Ni, Ag-Fe, Cu-Mg, Cu-Fe, Cu-Al, Cu-Zn, Cu-Ni, etc. When using the alloy nanoparticles can be obtained.
더욱이, 합금 나노입자는 순수한 합금전의 각 금속의 용융점보다 낮은 용융점을 가지므로 합금 나노입자를 사용한 잉크 제조시 낮은 소결 온도를 기대할 수 있다.Moreover, since the alloy nanoparticles have a melting point lower than the melting point of each metal before the pure alloy, low sintering temperature can be expected in preparing the ink using the alloy nanoparticles.
본 발명은 금속잉크, 의료, 의류, 화장품, 촉매, 전극재료, 전자재료 등의 응용분야에 사용되는 금속 나노 입자, 특히 은 나노 입자를 간단한 공정으로 친환경적으로 균일하게 대량생산할 수 있는 금속 나노 입자 제조에 광범위하게 이용될 수 있다.The present invention manufactures metal nanoparticles that can mass-produce eco-friendly and uniformly the metal nanoparticles, especially silver nanoparticles used in applications such as metal ink, medical, clothing, cosmetics, catalysts, electrode materials, electronic materials, etc. in a simple process. Can be used extensively.

Claims (20)

  1. 전해 용액이 수용된 반응용기;A reaction vessel containing an electrolytic solution;
    각각 상기 반응용기의 내부에 간격을 두고 설치된 제1 및 제2 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크가 충진되어 형성되는 제1 및 제2 전극; 및First and second electrodes formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings spaced in the reaction vessel, respectively; And
    전기분해 반응을 위해 교류 전원을 상기 제1 및 제2 전극 사이에 인가하기 위한 전원공급장치를 포함하며,A power supply for applying an alternating current power between the first and second electrodes for an electrolysis reaction,
    상기 제1 및 제2 전극하우징은 전기분해 반응에 따라 상기 제1 및 제2 전극으로부터 용출된 금속 이온이 배출되도록 적어도 서로 마주보는 면에 다수의 홀 또는 슬릿을 구비하는 것을 특징으로 하는 금속 나노 입자의 제조장치. The first and second electrode housings are provided with a plurality of holes or slits on at least facing each other to discharge metal ions eluted from the first and second electrodes according to an electrolysis reaction. Manufacturing equipment.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 전극하우징과 제2 전극하우징을 절연상태로 상호 일정한 거리를 두고 지지하는 지지홀더를 더 포함하는 것을 특징으로 하는 금속 나노 입자의 제조장치.And a support holder for supporting the first electrode housing and the second electrode housing at a predetermined distance from each other in an insulated state.
  3. 제2항에 있어서, The method of claim 2,
    상기 지지홀더는 양측면에 전원공급장치로부터 상기 제1 및 제2 전극 사이에 인가되는 교류 전원을 공급하는 제1 및 제2 전원케이블과 제1 및 제2 전극하우징 내부에 충진된 그래뉼 또는 플레이크를 상호 연결하기 위한 제1 및 제2 전극단자를 더 포함하는 것을 특징으로 하는 금속 나노 입자의 제조장치.The support holder mutually connects granules or flakes filled in the first and second electrode housings with the first and second power cables for supplying AC power applied between the first and second electrodes from the power supply device on both sides thereof. The apparatus for manufacturing metal nanoparticles further comprising first and second electrode terminals for connection.
  4. 제1항에 있어서, The method of claim 1,
    상기 제1 및 제2 전극하우징은 각각 단면형상이 직사각형 또는 다각형인 통인 것을 특징으로 하는 금속 나노 입자의 제조장치.The first and second electrode housings are metal nanoparticle manufacturing apparatus, characterized in that each of the cross-sectional shape of the rectangular or polygonal cylinder.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 제1 및 제2 전극하우징은 각각 서로 대향하는 측면이 톱니 모양으로 이루어진 다수의 돌기가 구비되고 상기 돌기의 양측면에 다수의 홀 또는 슬릿이 형성된 제1 및 제2 측판으로 이루어진 것을 특징으로 하는 금속 나노 입자의 제조장치.The first and second electrode housings are provided with a plurality of protrusions each having a tooth-shaped side surface facing each other, and the first and second side plates formed with a plurality of holes or slits on both sides of the protrusions. Device for producing nanoparticles.
  6. 제5항에 있어서, The method of claim 5,
    상기 제1 및 제2 측판은 각각 Ti으로 이루어진 그물망으로 이루어진 것을 특징으로 하는 금속 나노 입자의 제조장치.The first and the second side plate is a device for producing metal nanoparticles, characterized in that each consisting of a mesh made of Ti.
  7. 제1항에 있어서, The method of claim 1,
    상기 제1 및 제2 전극하우징은 각각 직경이 서로 다르며 동심상으로 배치된 원형 이중통 구조인 것을 특징으로 하는 금속 나노 입자의 제조장치.The first and second electrode housings each having a diameter different from each other, the apparatus for producing metal nanoparticles, characterized in that the concentric circular double cylinder structure.
  8. 제1항에 있어서, 상기 그래뉼 또는 플레이크는 Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, 및 Pd로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상의 합금으로 이루어진 것을 특징으로 하는 금속 나노 입자의 제조장치.According to claim 1, wherein the granules or flakes are made of any one or two or more alloys selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd. An apparatus for producing metal nanoparticles.
  9. 제1항에 있어서, 상기 그래뉼 또는 플레이크의 사이즈는 0.05 내지 10cm 범위로 설정되고, 바람직하게는 0.5 내지 5mm 범위로 설정되는 것을 특징으로 하는 금속 나노 입자의 제조장치.The apparatus of claim 1, wherein the granules or flakes are set in a range of 0.05 to 10 cm, and preferably in a range of 0.5 to 5 mm.
  10. 전해 용액이 수용된 반응용기;A reaction vessel containing an electrolytic solution;
    상기 반응용기의 내부에 설치된 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크가 충진되어 형성되는 제1전극; A first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in an electrode housing installed inside the reaction vessel;
    상기 반응용기의 내부에 상기 제1전극과 간격을 두고 설치되는 제2전극; 및A second electrode disposed in the reaction vessel at intervals from the first electrode; And
    전기분해 반응을 위해 교류 전원을 상기 제1 및 제2 전극 사이에 인가하기 위한 전원공급장치를 포함하며,A power supply for applying an alternating current power between the first and second electrodes for an electrolysis reaction,
    상기 전극하우징은 전기분해 반응에 따라 상기 제1전극으로부터 용출된 금속 이온이 배출되도록 다수의 홀 또는 슬릿을 구비하는 것을 특징으로 하는 금속 나노 입자의 제조장치. The electrode housing is a device for manufacturing metal nanoparticles, characterized in that it comprises a plurality of holes or slits to discharge the metal ions eluted from the first electrode in accordance with the electrolysis reaction.
  11. 제10항에 있어서, The method of claim 10,
    상기 전극하우징은 적어도 상기 제2전극과 대향하는 측면에 다수의 홀 또는 슬릿이 형성되는 것을 특징으로 하는 금속 나노 입자의 제조장치. The electrode housing is an apparatus for manufacturing metal nanoparticles, characterized in that a plurality of holes or slits are formed on at least the side facing the second electrode.
  12. 제10항에 있어서, 상기 전극하우징은 내부에 십자형상의 수용공간을 가지며, 측면에 다수의 홀 또는 슬릿을 구비하고,The method of claim 10, wherein the electrode housing has a cross-shaped accommodating space therein, a plurality of holes or slits on the side,
    상기 제2전극은 상기 전극하우징을 내부에 수용하며 원통 또는 원통형 그물망으로 이루어지는 것을 특징으로 하는 금속 나노 입자의 제조장치. The second electrode accommodates the electrode housing therein, the apparatus for producing metal nanoparticles, characterized in that consisting of a cylindrical or cylindrical mesh.
  13. 제10항 또는 제12항에 있어서, 상기 전극하우징은 회전 구동되고,The method of claim 10 or 12, wherein the electrode housing is rotationally driven,
    상기 제2전극은 Ti으로 이루어지는 것을 특징으로 하는 금속 나노 입자의 제조장치. The second electrode is an apparatus for producing metal nanoparticles, characterized in that made of Ti.
  14. 반응용기 내에 전해질 및 분산제를 순수에 용해시켜 전해 용액을 준비하는 단계;Preparing an electrolytic solution by dissolving an electrolyte and a dispersant in pure water in a reaction vessel;
    상기 반응용기의 내부에 대향하여 배치되며 대향면에 다수의 홀 또는 슬릿을 구비하는 제1 및 제2 전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크를 충진하여 제1 및 제2 전극을 형성하는 단계; First and second granules or flakes made of the same metal as the metal nanoparticles to be obtained in the first and second electrode housings disposed to face the inside of the reaction vessel and having a plurality of holes or slits on opposite surfaces thereof. And forming a second electrode;
    상기 제1 및 제2 전극 사이에 교류 전원을 인가하여 전기분해시킴에 의해 상기 전해 용액 내로 금속 그래뉼 또는 플레이크를 이온화시켜 금속 이온을 발생시키는 단계; 및Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And
    상기 금속 이온을 환원제에 의해 환원시켜 금속 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는 금속 나노 입자의 제조방법.Reducing the metal ion with a reducing agent to form a metal nanoparticles comprising the step of forming a metal nanoparticles.
  15. 제14항에 있어서, 상기 환원제는 전기분해가 진행됨에 따라 생성되는 금속 이온의 농도에 대응하여 환원제의 농도가 일정한 수준이 되도록 전해 용액 내에 투입되는 것을 특징으로 하는 금속 나노 입자의 제조방법.15. The method of claim 14, wherein the reducing agent is added to the electrolytic solution so that the concentration of the reducing agent becomes a constant level corresponding to the concentration of the metal ions generated as the electrolysis proceeds.
  16. 제14항에 있어서, 상기 교류 전원의 주파수(f)가 0<f<10Hz 인 것을 특징으로 하는 금속 나노 입자의 제조방법.The method of claim 14, wherein the frequency f of the AC power supply is 0 <f <10 Hz.
  17. 제14항에 있어서, 상기 그래뉼 또는 플레이크는 Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, 및 Pd로 구성되는 군에서 선택되는 어느 1종 또는 2종 이상의 합금으로 이루어진 것을 특징으로 하는 금속 나노 입자의 제조방법.The method according to claim 14, wherein the granule or flake is made of any one or two or more alloys selected from the group consisting of Ag, Pt, Au, Mg, Al, Zn, Fe, Cu, Ni, and Pd. Method for producing metal nanoparticles.
  18. 제13항에 있어서, 상기 그래뉼 또는 플레이크의 사이즈는 0.05 내지 10cm 범위로 설정되고, 바람직하게는 0.5 내지 5mm 범위로 설정되는 것을 특징으로 하는 금속 나노 입자의 제조방법.The method of claim 13, wherein the size of the granules or flakes is set in the range of 0.05 to 10 cm, preferably in the range of 0.5 to 5 mm.
  19. 반응용기 내에 전해질 및 분산제를 순수에 용해시켜 전해 용액을 준비하는 단계;Preparing an electrolytic solution by dissolving an electrolyte and a dispersant in pure water in a reaction vessel;
    전극하우징에 얻고자 하는 금속 나노 입자와 동일한 금속으로 이루어진 다수의 그래뉼 또는 플레이크를 충진하여 형성된 제1전극과, 판 또는 원통 형상으로 이루어지며 상기 제1전극의 적어도 일면과 대향하는 제2전극을 상기 반응용기의 내부에 설치하는 단계; The first electrode formed by filling a plurality of granules or flakes made of the same metal as the metal nanoparticles to be obtained in the electrode housing, and a second electrode made of a plate or cylindrical shape and facing at least one surface of the first electrode Installing in the reaction vessel;
    상기 제1 및 제2 전극 사이에 교류 전원을 인가하여 전기분해시킴에 의해 상기 전해 용액 내로 금속 그래뉼 또는 플레이크를 이온화시켜 금속 이온을 발생시키는 단계; 및Generating metal ions by ionizing the metal granules or flakes into the electrolytic solution by applying an AC power source between the first and second electrodes and performing electrolysis; And
    상기 금속 이온을 환원제에 의해 환원시켜 금속 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는 금속 나노 입자의 제조방법.Reducing the metal ion with a reducing agent to form a metal nanoparticles comprising the step of forming a metal nanoparticles.
  20. 제19항에 있어서, 상기 전극하우징은 회전 구동되고,The method of claim 19, wherein the electrode housing is rotationally driven,
    상기 제2전극은 Ti으로 이루어지는 것을 특징으로 하는 금속 나노 입자의 제조방법.The second electrode is a manufacturing method of metal nanoparticles, characterized in that made of Ti.
PCT/KR2011/001332 2010-02-26 2011-02-25 Apparatus and method for producing metal nanoparticles using granule-type electrodes WO2011105850A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180010573.7A CN102770368B (en) 2010-02-26 2011-02-25 Apparatus and method for producing metal nanoparticles using granule-type electrodes
US13/592,684 US20120318678A1 (en) 2010-02-26 2012-08-23 Apparatus and method for producing metal nanoparticles using granule-type electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0017692 2010-02-26
KR20100017692 2010-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/592,684 Continuation-In-Part US20120318678A1 (en) 2010-02-26 2012-08-23 Apparatus and method for producing metal nanoparticles using granule-type electrodes

Publications (2)

Publication Number Publication Date
WO2011105850A2 true WO2011105850A2 (en) 2011-09-01
WO2011105850A3 WO2011105850A3 (en) 2012-02-02

Family

ID=44507457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001332 WO2011105850A2 (en) 2010-02-26 2011-02-25 Apparatus and method for producing metal nanoparticles using granule-type electrodes

Country Status (4)

Country Link
US (1) US20120318678A1 (en)
KR (1) KR101293277B1 (en)
CN (1) CN102770368B (en)
WO (1) WO2011105850A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415148B1 (en) * 2012-09-25 2014-08-06 한국항공대학교산학협력단 THE SYNTHESIZING TECHNIQUE OF GELATIN/Ag NANOPARTICLE ANTIMICROBIAL BIOCOMPOSITE AND DEVICE FOR MANUFACTURING AND METHOD FOR PREPARATION THEREOF
WO2014166494A1 (en) * 2013-04-11 2014-10-16 Syddansk Universitet Method for recovering platinum group metals from catalytic structures
CN111542138A (en) * 2020-05-08 2020-08-14 香港中文大学(深圳) Electroheating method and application of ion conductor
CN111850613A (en) * 2020-07-29 2020-10-30 湖南化工职业技术学院(湖南工业高级技工学校) Preparation method of PtIr nanosol
KR102228796B1 (en) * 2020-09-21 2021-03-17 주식회사 윤퓨처스 Method and apparatus for manufacturing metal nanoparticles
RU2755222C1 (en) * 2020-12-26 2021-09-14 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Plasma-ultrasonic method for producing metal powder (options)
CN114400333A (en) * 2022-01-18 2022-04-26 江苏擎动新能源科技有限公司 Catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040105914A (en) * 2003-06-10 2004-12-17 좌용호 The Fabrication of Metal Nanoparticles by Application of Electro-Decomposition Method
KR20060120716A (en) * 2005-05-23 2006-11-28 주식회사 엔씨메탈 The manufacturing method of metal-micro particles used of pulse-type energy
KR100820038B1 (en) * 2007-01-08 2008-04-07 한양대학교 산학협력단 Fabrication of copper nano particle for metal ink on ink-jet technology
KR20080084137A (en) * 2007-03-15 2008-09-19 윤의식 Method for producing coloidal solution of metal nano-particle and metal nano-particle thereby

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1476055A (en) * 1975-03-05 1977-06-10 Imp Metal Ind Kynoch Ltd Eletro-winning metals
US4684448A (en) * 1984-10-03 1987-08-04 Sumitomo Light Metal Industries, Ltd. Process of producing neodymium-iron alloy
US4707239A (en) * 1986-03-11 1987-11-17 The United States Of America As Represented By The Secretary Of The Interior Electrode assembly for molten metal production from molten electrolytes
JPH04157193A (en) * 1990-10-19 1992-05-29 Tome Sangyo Kk Production of superfine metal grain
US5820653A (en) * 1993-04-19 1998-10-13 Electrocopper Products Limited Process for making shaped copper articles
CN2508222Y (en) * 2001-10-25 2002-08-28 武汉大学 Solid polymer electrolyte carbon monooxide sensor
JP2005103723A (en) * 2003-10-01 2005-04-21 National Institute Of Advanced Industrial & Technology Single crystallization method and device of metal nanowire
US20060243595A1 (en) * 2004-09-16 2006-11-02 Global Ionix Inc. Electrolytic cell for removal of material from a solution
JP4297133B2 (en) * 2006-05-15 2009-07-15 ソニー株式会社 Lithium ion battery
KR20080074264A (en) * 2007-02-08 2008-08-13 김종배 A manufacturing equipment of nano-silver
JP2009215146A (en) * 2008-03-13 2009-09-24 Panasonic Corp Metal-containing nanoparticle, carbon nanotube structure grown by using the same, electronic device using the carbon nanotube structure, and method for manufacturing the device
KR20090006031A (en) * 2008-11-27 2009-01-14 영남대학교 산학협력단 Provided apparatus of 3-axis alternating current magnetic field for locational control of the magnetic material in body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040105914A (en) * 2003-06-10 2004-12-17 좌용호 The Fabrication of Metal Nanoparticles by Application of Electro-Decomposition Method
KR20060120716A (en) * 2005-05-23 2006-11-28 주식회사 엔씨메탈 The manufacturing method of metal-micro particles used of pulse-type energy
KR100820038B1 (en) * 2007-01-08 2008-04-07 한양대학교 산학협력단 Fabrication of copper nano particle for metal ink on ink-jet technology
KR20080084137A (en) * 2007-03-15 2008-09-19 윤의식 Method for producing coloidal solution of metal nano-particle and metal nano-particle thereby

Also Published As

Publication number Publication date
WO2011105850A3 (en) 2012-02-02
US20120318678A1 (en) 2012-12-20
CN102770368A (en) 2012-11-07
CN102770368B (en) 2014-06-11
KR20110098667A (en) 2011-09-01
KR101293277B1 (en) 2013-08-09

Similar Documents

Publication Publication Date Title
WO2011105850A2 (en) Apparatus and method for producing metal nanoparticles using granule-type electrodes
WO2011034365A2 (en) Method and apparatus for producing metal nanoparticles using alternating current electrolysis
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
CN102764898B (en) Method for preparing ultrafine copper powder for electronic paste
KR101495755B1 (en) Catalyst for generating hydrogen, hydrogen generating device, and method of manufactuing the catalyst
KR101001631B1 (en) Method and apparatus for manufacturing silver nano-particles by electro-decomposition method
CN102723142A (en) Preparation method of nickel-based silver conductive slurry
KR100555584B1 (en) The Fabrication of Metal Nanoparticles by Application of Electro-Decomposition Method
CN110526237B (en) Device and method for preparing noble metal/graphene composite nano material
US20190022750A1 (en) Method for preparing copper metal nanopowder having uniform oxygen passivation layer by using thermal plasma, and apparatus for preparing same
KR20060120716A (en) The manufacturing method of metal-micro particles used of pulse-type energy
JP5702649B2 (en) Carbon-metal composite and method for producing the same
WO2010147343A2 (en) Method and apparatus for producing nano-sized silver particles using electrolysis
Qiu et al. Facile preparation of Cu2O microcrystals with morphologies of octahedron, half circular and rectangular plates by anodic dissolution of bulk Cu in alkaline aqueous solutions
Wei et al. Electrocatalytic dechlorination of p-chlorophenol using a 3D cathode with magnetic separable Fe3O4@ PPy@ Pd catalyst
WO2022092987A1 (en) Method for manufacturing water-electrolysis catalyst electrode including cobalt boride nanoparticles synthesized with thermal plasma, and water-electrolysis catalyst electrode according to same
WO2015097808A1 (en) Method for producing copper nanowire, copper nanowire and use thereof
JP2008095146A (en) Spherical nickel microparticle, production method therefor, and electroconductive particle for anisotropic electroconductive film
CN115259218B (en) Preparation method of tetragonal phase zirconium oxide nano powder
KR101551235B1 (en) Method of fabricating metal nano colloid
Shengnan Synthesis, Formulation and Application of Nickel-Based Conductive Pastes
JP2012124206A (en) Polycrystalline silicon solar cell panel and manufacturing method thereof
US6465603B2 (en) Electrically conductive inorganic polymer
JP2009009924A (en) Manufacturing method for mixed electrode-catalyst material of solid electrolyte fuel cell
KR20120021582A (en) Apparatus and method for manufacturing metal nano-particles using the control function of electrode gap

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010573.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747740

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747740

Country of ref document: EP

Kind code of ref document: A2