WO2011105660A1 - 저온 저가형 투명전극 - Google Patents

저온 저가형 투명전극 Download PDF

Info

Publication number
WO2011105660A1
WO2011105660A1 PCT/KR2010/002824 KR2010002824W WO2011105660A1 WO 2011105660 A1 WO2011105660 A1 WO 2011105660A1 KR 2010002824 W KR2010002824 W KR 2010002824W WO 2011105660 A1 WO2011105660 A1 WO 2011105660A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
transparent electrode
metal layer
titanium nitride
tion
Prior art date
Application number
PCT/KR2010/002824
Other languages
English (en)
French (fr)
Inventor
김대일
최종인
채주현
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100017496A external-priority patent/KR101064679B1/ko
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Publication of WO2011105660A1 publication Critical patent/WO2011105660A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers

Definitions

  • the present invention relates to a low temperature low cost transparent electrode, and more particularly, to a low temperature low cost transparent electrode having improved materials for transparent electrodes used in displays and solar cells such as LCDs, PDPs, and OLEDs.
  • OLEDs are used to arrange one or more organic layers 30 between the metal electrode 10 of the cathode and the transparent electrode 20 of the anode, as shown in FIG. 1, wherein the organic layer 30 is usually vacuum deposited ( It is formed through evaporation, spin-coating, chemical self-assembly, and consists of an electron injection layer 31, an organic light emitting layer 32, and an ion injection layer 33.
  • ITO Tin-added In 2 O 3
  • HTL hole transfer layer
  • EML emission material layer
  • This massive surface energy mismatch at the ITO / HTL or ITO / EML interface creates intrinsic microstructual instability and degrades device stability, thus allowing holes to cross the energy barrier or tunnel in the ITO / HTL or ITO / EML interface.
  • the transparent electrode 20 of the anode needs to be improved.
  • oxygen plasma pretreatment is performed prior to depositing HTL or EML material on the ITO substrate, thereby increasing the work function of the ITO to 4.8 eV.
  • ITO is economically expensive and has a disadvantage in that the electrical resistance is somewhat high to be applied as the transparent electrode material of the improved flexible display color filter.
  • the electrical resistance is somewhat high to be applied as the transparent electrode material of the improved flexible display color filter.
  • an object of the present invention is to provide a low-temperature low-cost transparent electrode that can implement a better work function, electrical conductivity and visible light transmittance than ITO by depositing a transition metal titanium nitrate thin film on both sides of the metal layer.
  • the present invention is a metal layer; And it provides a low-temperature low-cost transparent electrode including a titanium nitride (TiON) layer deposited on both sides of the metal layer.
  • TiON titanium nitride
  • the metal layer and titanium nitride layer is any one selected from the group consisting of vacuum deposition, electron beam deposition, sputtering, reactive magnetron sputtering, ion plating, pulsed laser deposition and chemical vapor deposition method Can be deposited.
  • the metal layer may be any one selected from the group consisting of silver (Ag), gold (Au) and copper (Cu).
  • the thickness of the metal layer may be 40 ⁇ 60 ⁇ .
  • the thickness of the titanium nitride layer deposited on one surface of the metal layer is 400 ⁇ 500 ⁇ , the thickness of the titanium nitride layer deposited on the other surface may be 450 ⁇ 550 ⁇ .
  • the thickness of the titanium nitride layer deposited on one surface of the metal layer is 40 ⁇ 60 ⁇ , the thickness of the titanium nitride layer deposited on the other surface may be 850 ⁇ 950 ⁇ .
  • the visible light transmittance of the transparent electrode may be 70 ⁇ 80%.
  • the work function of the transparent electrode may be 4.5 ⁇ 5.0 eV.
  • the present invention comprises the steps of forming a first titanium nitride (TiON) thin film; Forming any one metal layer selected from the group consisting of silver (Ag), gold (Au), and copper (Cu) on the first titanium nitride film; And it provides a low-temperature low-cost transparent electrode comprising the step of depositing a second titanium nitride (TiON) thin film on the metal layer.
  • TiON titanium nitride
  • the metal layer and titanium nitride layer is any one selected from the group consisting of vacuum deposition, electron beam deposition, sputtering, reactive magnetron sputtering, ion plating, pulsed laser deposition and chemical vapor deposition method Can be deposited.
  • the low-temperature low-cost transparent electrode according to the present invention can reduce the manufacturing cost by using a transition metal titanium nitrate (TiON) thin film cheaper than ITO to reduce the manufacturing cost, it can omit the oxygen plasma pretreatment process using the conventional ITO It is possible to realize a low-temperature low-cost transparent electrode without heat treatment, it is possible to implement a work function, electrical conductivity and visible light transmittance superior to conventional ITO.
  • TiON transition metal titanium nitrate
  • FIG. 1 is a view showing a display structure used in a commonly used OLED.
  • FIG. 2 is a view showing the structure of a low temperature low-cost transparent electrode according to the present invention.
  • FIG. 3 is a reference diagram showing the structure of a deposition apparatus used in the present invention.
  • FIG. 4 is a graph showing the transmittances of thin films on which TiON having a thickness of 450 kPa and 500 kPa, respectively, are deposited on both surfaces of the metal layer (gold, silver, copper) according to the present invention.
  • FIG. 5 is a graph showing a change in transmittance of a thin film (total thickness 1000 ⁇ ) deposited by changing a thickness of gold (Au) according to the present invention.
  • FIG. 6 is a graph showing a work function of a thin film on which TiON having a thickness of 50 mW and 900 mW is deposited on both surfaces of gold (Au) having a thickness of 50 mV according to the present invention.
  • the present invention relates to a low temperature low-cost transparent electrode, a metal layer; And a low temperature low cost transparent electrode including a titanium nitride (TiON) layer deposited on one or both surfaces of the metal layer.
  • TiON titanium nitride
  • the inventors of the present invention developed a low-temperature low-cost transparent electrode to replace the expensive transparent electrode, which is similar to ITO widely used as a transparent electrode by depositing a titanium nitride (TiON) thin film on both sides of the metal.
  • TiON titanium nitride
  • FIG. 1 illustrates a display structure of a commonly used OLED, wherein an electron injection layer 31, an organic light emitting layer 32, and an ion injection layer 33 are disposed between a metal electrode 10 of a cathode and a transparent electrode 20 of an anode.
  • An organic material layer 30 composed of) is formed.
  • FIG. 2 shows the structure of a low temperature low-cost transparent electrode according to an embodiment of the present invention.
  • the transparent electrode 20 of the present invention includes a metal layer 22 and titanium nitride layers 21 and 23, and has a structure in which a titanium nitride layer (TiON) layer is deposited on both surfaces of the metal layer 22.
  • TiON titanium nitride layer
  • the metal layer and the titanium nitrate layer are deposited using a general deposition method, specifically It can be deposited by any one method selected from the group consisting of vacuum deposition method, electron beam deposition method, sputtering method, reactive magnetron sputtering method, ion plating method, pulsed laser deposition method and chemical vapor deposition method.
  • the metal layer 22 is made of any one material selected from the group consisting of silver (Ag), gold (Au), and copper (Cu), and the metal layer has a thickness of 40 to 60 GPa, preferably 45 to 55 GPa. If the thickness of the metal layer is less than the above range, the electrical conductivity does not meet the expectations. If the thickness is above the above range, as the thickness increases, the absolute amount of free electrons increases, the electrical conductivity is improved, but the amount of light absorption increases, and thus the visible light transmittance is not good. This is not suitable as a transparent electrode.
  • the titanium nitride layers 21 and 23 may be deposited on both sides of the metal layer, and are formed amorphous.
  • the thickness of the titanium nitride layer deposited on both sides of the metal layer is deposited differently. If the thickness of the titanium nitride layer 21 deposited on one surface of the metal layer is 400 ⁇ 500 ⁇ , the thickness of the titanium nitride layer 23 deposited on the other side may be comprised of 450 ⁇ 550 ⁇ , and the titanium nitride deposited on one side of the metal layer When the thickness of the layer 21 is 40 to 60 mm 3, the thickness of the titanium nitride layer 23 deposited on the other surface may be configured to be 850 to 950 mm 3.
  • the titanium nitride layer is 450 ⁇ / metal layer (gold, silver or copper) 50 ⁇ / titanium nitrate layer 500 ⁇ , titanium nitrate layer 50 ⁇ / metal layer (gold, silver or copper) 50 ⁇ / titanium nitrate layer 900 ⁇ . .
  • the present invention comprises the steps of forming a first titanium nitride (TiON) thin film; Forming any one metal layer selected from the group consisting of silver (Ag), gold (Au), and copper (Cu) on the first titanium nitride film; And it provides a low-temperature low-cost transparent electrode comprising the step of depositing a second titanium nitride (TiON) thin film on the metal layer.
  • TiON titanium nitride
  • the metal layer when the first titanium nitride thin film 23 is deposited to a thickness of 450 to 550 kPa, the metal layer may be deposited to a thickness of 40 to 60 kPa, and the second titanium nitride film 21 may be deposited to a thickness of 400 to 500 kPa.
  • the metal layer when the first titanium nitride thin film 23 is deposited to a thickness of 850 to 950 kPa, the metal layer may be deposited to a thickness of 40 to 60 kPa, and the second titanium nitride film 21 may be deposited to a thickness of 40 to 60 kPa.
  • the metal layer and the titanium nitride layer may be deposited using a general deposition method, and may be deposited by any one method selected from the group consisting of a vacuum deposition method, an electron beam deposition method, a sputtering method, a reactive magnetron sputtering method, and an ion plating method.
  • the ultra-high vacuum state is formed by a pump, and then argon, oxygen, and nitrogen gas are injected.
  • argon, oxygen, and nitrogen gas are injected.
  • a substrate of TiN target particles is deposited by target collision of argon ions and continuous sputtering, and TiN thin films are deposited by mixing and growing nitrogen and oxygen gas and sputtered TiN thin films.
  • the interlayer metals such as gold (Au), silver (Ag), copper (Cu), and the like are deposited to a specific thickness by a target collision of argon ions, and a substrate of TiON target particles is deposited again on top of each other.
  • the sputtered TiON thin film is mixed and grown to deposit a titanium nitride (TiON) thin film.
  • the above method is merely an embodiment of the present invention, and the method of depositing the metal layer and the titanium nitrate layer in the present invention is not limited thereto, and any vacuum deposition method may be used.
  • the transparent electrode according to the present invention can obtain a 70 to 80% visible light transmittance and a work function of 4.5 to 5.0 eV by depositing a titanium nitride thin film as a transition metal nitrate on both sides of the metal layer. These characteristics indicate that the electrical conductivity and visible light transmittance similar to the work function superior to the conventional ITO can be realized at a low price.
  • the low-temperature low-cost transparent electrode according to the present invention can reduce the manufacturing cost by using a transition metal titanium nitrate (TION) thin film cheaper than ITO, and can implement a work function, electrical conductivity and visible light transmittance superior to conventional ITO.
  • TION transition metal titanium nitrate
  • the present inventors fabricated a transparent electrode by depositing a titanium nitride layer having a thickness of 500 ms on one side of the metal layer and a titanium nitride layer having a thickness of 450 ms on the other side using a metal layer having a thickness of 50 ms.
  • the visible light transmittance, electrical conductivity, and work function of the thin film deposited with a thickness of 500 ⁇ titanium nitride layer (TiON), 50 ⁇ metal layer, and 450 ⁇ titanium nitride layer (TiON) were measured.
  • the present inventors used a reactive magnetron sputtering method to deposit a titanium nitride layer (TiON) / metal layer / titanium nitride layer thin film.
  • TiON titanium nitride layer
  • an ultrahigh vacuum state was formed by a pump, and then argon, oxygen, and nitrogen gas were injected.
  • a substrate of TiN target particles is deposited by target collision of argon ions and continuous sputtering, and the TiON thin film is 500 ⁇ thick by mixing and growing nitrogen and oxygen gas and the sputtered TiN thin film.
  • the TiON thin film is 500 ⁇ thick by mixing and growing nitrogen and oxygen gas and the sputtered TiN thin film.
  • gold (Au), silver (Ag), and copper (Cu) were used as interlayer metals, respectively, so as to have a thickness of 50 kPa by a target collision of argon ions.
  • a TiN target particle was deposited on the metal layer by the target impingement of argon ions and continuous sputtering, and the TiON thin film was deposited by mixing and growing nitrogen and oxygen gas and the sputtered TiN thin film by 450 ⁇ thickness.
  • the total thickness of the thin film composed of a titanium nitride layer (TiON) / metal layer / titanium oxide layer was 1000 kPa.
  • FIG. 3 shows the structure of the reactive magnetron sputter deposition equipment used in one embodiment of the present invention.
  • the deposition apparatus includes a vacuum system for forming and maintaining a vacuum, a plasma generator for generating nitrogen ions, and an RF magnetron sputter gun.
  • the deposition system is made of stainless steel and has a cylindrical structure.
  • the vacuum system exhausts by using a rotary pump and a turbo-molecular pump in order to secure the initial vacuum conditions, the degree of vacuum measurement using a Pirani gauge and an ionization gauge, the mass flow is mass Mass flow controller is used to control the amount of gas.
  • a UV-Vis spectrophotometer was used to measure the visible light transmittance of the TiON / metal layer / TiON (hereinafter referred to as TMT) thin film deposited as described above, and the wavelength range of the UV-Vis spectrophotometer was 100 to At 1000 nm, the light absorption of molecules in this region is related to the electronic structure of the molecules, ie the absorption of ultraviolet and visible light molecules leads to the transition of electrons, especially valence electrons, in the molecule.
  • the transmittance was measured only in the visible light region, and the resistance and electrical conductivity of the deposited thin film were measured using a Hall-Effect measuring apparatus.
  • TMT thin film was deposited by varying the type of inner metal layer to gold (Au), silver (Ag), and copper (Cu) under the deposition conditions of the bottom and upper electrode materials, and the transmittance and conductivity analysis results showed gain index. was quantified by (figure of Merit ( ⁇ TC) ), wherein the gain factor is one of the key indicator for evaluating the performance of the transparent conductive oxide (TCO) film, it can be expressed as shown in equation 1 below.
  • T represents visible light transmittance (550 nm in the present invention)
  • Rs represents sheet resistance
  • the transmittance of the TMT thin film according to the present invention is shown in Table 1 and FIG. 4.
  • the electrical resistance of titanium nitride (TiON) deposited on both surfaces of gold (Au) is 30 to 36 ⁇
  • the electrical resistance of titanium nitride deposited on both surfaces of silver (Ag) is 80 to 100 ⁇ .
  • the electrical resistance of titanium nitride deposited on both sides of copper (Cu) was found to be 320 ⁇ 380 ⁇ , and the highest electrical resistance when using copper as the metal layer was measured, and the highest when using gold. It was measured low.
  • UPS Ultraviolet Photoelectron Spectroscopy
  • the UPS conditions used in this example were measured at an initial vacuum of 8.0 x 10 -8 Torr, a resolution of 5 eV, a scan step of 0.025 eV / step, and a sample bias of -20V.
  • the work function of titanium nitride deposited on both sides of the gold, titanium nitride deposited on both sides of the silver, and titanium nitride deposited on both sides of the copper was measured to be 4.6 eV to 4.8 eV.
  • the present inventors select gold having the best electrical and optical properties among the three types of metal layers described in ⁇ Example 1> and use it as an internal metal layer to fabricate specimens having a thickness of 50, 100, 150, and 200 ⁇ , respectively. After that, the transmittance and electrical properties were analyzed, and the results are shown in Tables 3 and 5, and the gain index (Figure of Merit) was calculated and shown in Table 4 below.
  • TMT Thin Films with Inner Gold Layer Thickness Sample (TMT, total thickness 1000 ⁇ ) Conductivity ( ⁇ , ⁇ 10 -3 ) Resistivity ( ⁇ , ⁇ 10 -4 cm) Concentration (N b , ⁇ 10 21 / cm 3) Mobility ( ⁇ , ⁇ 10 1 / Vs) Au 50 ⁇ 2.97 3.36 -1.20 2.73 Au 100 ⁇ 5.17 1.93 -1.03 3.13 Au 150 ⁇ 10.2 0.98 -1.71 3.72 Au 200 ⁇ 51.1 0.20 -12.1 2.63
  • the thickness of Au As a result, as the thickness of Au increased, the absolute amount of free electrons increased and the amount of light absorbed increased, so that the overall transmittance steadily decreased, while the electrical conductivity steadily improved. From these results, it can be seen that when the thickness of Au is 50 ⁇ s, the TMT thin film exhibits the best permeable conductivity.
  • the present inventors fabricated a transparent electrode by depositing titanium nitride having a thickness of 50 GPa on one surface of gold having a thickness of 50 GPa and titanium nitride having a thickness of 900 GPa on the other surface.
  • the process of depositing the titanium nitride layer / metal layer / titanium nitride layer thin film was performed in the same manner as in ⁇ Production Example 1>, and only the thickness of each layer was different.
  • the present invention used gold (Au), silver (Ag), and copper (Cu) thin films having a thickness of 50 ⁇ s as the internal metal layer in the TMT thin film, among which the gold 50 Au thin film was the most excellent. It can be seen that the characteristics of the transparent conductive thin film, the titanium nitride layer (TiON) is formed amorphous, regardless of the presence or absence of the metal layer.
  • the transparent conductive thin film according to the present invention can omit the oxygen plasma pretreatment process using the conventional ITO, so that low-temperature low-cost transparent electrodes can be realized without heat treatment, and exhibit excellent electrical conductivity and visible light transmittance, and at the same time, similar to ITO. It is excellent in that it can implement the function 4.8eV value.

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 저온 저가형 투명전극에 관한 것으로서, 보다 상세하게는 금속층; 및 상기 금속층의 일면 또는 양면에 증착된 질산화티타늄(TiON)층을 포함하는 저온 저가형 투명전극에 관한 것이다. 본 발명에 따른 저온 저가형 투명전극은 ITO보다 저렴한 전이금속 질산화티타늄(TiON) 박막을 사용하여 원가를 절감해 제조단가를 낮출 수 있고, 기존의 ITO를 사용함에 따른 산소 플라즈마 전처리 공정을 생략할 수 있어 열처리 없이 저온 저가형의 투명전극을 구현할 수 있으며, 기존의 ITO보다 우수한 일함수, 전기전도도 및 가시광 투과율을 구현할 수 있는 효과가 있다.

Description

저온 저가형 투명전극
본 발명은 저온 저가형 투명전극에 관한 것으로서, 보다 상세하게는 LCD와 PDP, OLED 등의 디스플레이 및 태양전지에 사용되는 투명전극의 재료를 개선시킨 저온 저가형 투명전극에 관한 것이다.
일반적으로 사용되는 OLED는 도 1과 같이, 하나 또는 그 이상의 유기물층(30)을 음극의 금속전극(10)과 양극의 투명전극(20) 사이에 배치하는데, 상기 유기물층(30)은 보통 진공증착(Evaporation), 스핀코팅(Spin-coating), 자가화학반응(Chemical self-assembly)을 통해 형성하며, 전자주입층(31)과 유기발광층(32) 및 이온주입층(33)으로 구성된다.
현재까지 상기 투명전극(20)의 재료로는 ITO(Sn 첨가 In2O3)가 가장 일반적으로 사용되고 있는데, 아무런 처리를 거치지 않은 순수한 ITO 약 4.5 eV의 페르미 준위(Fermi level, EF)를 가지지만 정공수송층(Hole Transfer Layer, 이하 HTL이라 함)이나 발광물질층(Emission Material Layer, 이하 EML이라 함) 물질의 가장높이 점유된 분자궤도함수(Highest Occupied Molecular Orbital, HOMO) 준위는 일반적으로 5.0 eV 이하이기 때문에 양극의 투명전극(20)과 유기물층(30) 사이에 더 큰 에너지 장벽이 생기게 되며, 게다가 상기 ITO(In2O3)는 접촉각 0 ~ 30°의 친수성 표면을 가지는 반면에 많은 HTL이나 EML 물질들은 접촉각 90°에 가까운 소수성을 나타낸다.
ITO/HTL계면이나 ITO/EML계면에서 생기는 이 방대한 표면에너지의 불일치는 Intrinsic microstructual instability를 발생시키고, 소자의 안정성을 쇠퇴시키므로, ITO/HTL계면이나 ITO/EML계면에서 정공이 에너지 장벽을 넘게 하거나 터널링시키고 접촉을 향상시키기 위해서는 양극의 투명전극(20) 개선이 필요하다.
상기와 같은 에너지 장벽과 계면 접촉의 문제 때문에 ITO 기판 위에 HTL이나 EML 물질을 증착하기에 앞서 산소 플라즈마 전처리를 실시하여, 상기 ITO의 일함수를 4.8 eV까지 증가시키게 된다.
그러나, 상기와 같은 ITO 양극의 개선에 관한 노력에도 불구하고, ITO가 경제적으로 고가(高價)이고, 보다 향상된 플렉서블 디스플레이 컬러필터의 투명전극재료로 적용하기에는 전기저항이 다소 높은 단점이 있고 대면적인 디스플레이 제품 생산 공정에서 넓은 전극 면에 일정세기의 산소 플라즈마 처리를 시행하기에는 많은 제약이 따른다.
따라서 본 발명의 목적은 전이금속 질산화티타늄 박막을 금속층 양면에 증착함으로써 ITO보다 우수한 일함수, 전기전도도 및 가시광 투과율을 구현할 수 있으며, 제조단가를 낮출 수 있는 저온 저가형 투명전극을 제공하는 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 금속층; 및 상기 금속층의 양면에 증착된 질산화티타늄(TiON)층을 포함하는 저온 저가형 투명전극을 제공한다.
본 발명의 일실시예에 있어서, 상기 금속층 및 질산화티타늄층은 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 ,이온플레이팅법, 펄스레이저증착법 및 화학기상증착법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착될 수 있다.
본 발명의 일실시예에 있어서, 상기 금속층은 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 일실시예에 있어서, 상기 금속층의 두께는 40 ~ 60Å일 수 있다.
본 발명의 일실시예에 있어서, 상기 금속층의 일면에 증착되는 질산화티타늄층의 두께는 400 ~ 500Å이고, 타면에 증착되는 질산화티타늄층의 두께는 450 ~ 550Å일 수 있다.
본 발명의 일실시예에 있어서, 상기 금속층의 일면에 증착되는 질산화티타늄층의 두께는 40 ~ 60Å이고, 타면에 증착되는 질산화티타늄층의 두께는 850 ~ 950Å일 수 있다.
본 발명의 일실시예에 있어서, 상기 투명전극의 가시광 투과율은 70 ~ 80%일 수 있다.
본 발명의 일실시예에 있어서, 상기 투명전극의 일함수는 4.5 ~ 5.0 eV일 수 있다.
또한, 본 발명은 제1 질산화티타늄(TiON) 박막을 형성하는 단계; 상기 제1 질산화티타늄 박막 상에 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나의 금속층을 형성하는 단계; 및 상기 금속층 상에 제2 질산화티타늄(TiON) 박막을 증착하는 단계를 포함하는 저온 저가형 투명전극의 제조방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 금속층 및 질산화티타늄층은 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 ,이온플레이팅법, 펄스레이저증착법 및 화학기상증착법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착될 수 있다.
본 발명에 따른 저온 저가형 투명전극은 ITO보다 저렴한 전이금속 질산화티타늄(TiON) 박막을 사용하여 원가를 절감해 제조단가를 낮출 수 있고, 기존의 ITO를 사용함에 따른 산소 플라즈마 전처리 공정을 생략할 수 있어 열처리 없이 저온 저가형의 투명전극을 구현할 수 있으며, 기존의 ITO보다 우수한 일함수, 전기전도도 및 가시광 투과율을 구현할 수 있는 효과가 있다.
도 1은 일반적으로 사용되는 OLED에 사용되는 디스플레이 구조를 나타낸 도면이다.
도 2는 본 발명에 따른 저온 저가형 투명전극의 구조를 나타낸 도면이다.
도 3은 본 발명에 사용되는 증착 장비의 구조를 나타낸 참고도이다.
도 4는 본 발명에 따른 금속층(금, 은, 구리) 양면에 각각 450Å와 500Å의 두께를 갖는 TiON이 각각 증착된 박막의 투과율을 나타낸 그래프이다.
도 5는 본 발명에 따른 금(Au)의 두께를 달리하여 증착한 박막(총두께 1000Å)의 투과율 변화를 나타낸 그래프이다.
도 6은 본 발명에 따른 50Å 두께를 갖는 금(Au) 양면에 각각 50Å와 900Å의 두께를 갖는 TiON이 각각 증착된 박막의 일함수를 나타낸 그래프이다.
본 발명은 저온 저가형 투명전극에 관한 것으로, 금속층; 및 상기 금속층의 일면 또는 양면에 증착된 질산화티타늄(TiON)층을 포함하는 저온 저가형 투명전극을 제공함에 특징이 있다.
본 발명자들은 기존에 사용되던 고가의 투명전극을 대체하기 위해 저온 저가형의 투명전극을 개발하던 중, 금속의 양면에 질산화티타늄(TiON) 박막을 증착함으로써 종래에 투명전극으로 널리 사용되는 ITO와 유사한 일함수와 가시광 투과율을 구현할 수 있음을 규명함으로써 본 발명을 완성하였다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 저온 저가형 투명전극에 대해 보다 구체적으로 설명하면 다음과 같다.
도 1은 일반적으로 사용되는 OLED의 디스플레이 구조를 나타낸 것으로, 음극의 금속전극(10)과 양극의 투명전극(20) 사이에 전자주입층(31), 유기발광층(32), 이온주입층(33)으로 구성되는 유기물층(30)이 형성된다.
도 2는 본원발명의 일실시예에 따른 저온 저가형 투명전극의 구조를 나타낸 것이다. 본 발명의 투명전극(20)은 금속층(22)과 질산화티타늄층(21, 23)을 포함하며, 금속층(22)의 양면에 질산화티타늄(TiON)층이 증착된 구조로 이루어진다.
본 발명에서 금속층 및 질산화티타늄층은 일반적인 증착방법을 사용하여 증착되며, 구체적으로는 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 ,이온플레이팅법, 펄스레이저증착법 및 화학기상증착법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착될 수 있다.
금속층(22)은 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나의 물질로 이루어지며, 금속층의 두께는 40 ~ 60Å, 바람직하게는 45 ~ 55Å이다. 금속층의 두께가 상기 범위 미만이면 전기전도도가 기대에 미치지 못하며, 상기 범위 이상이면 두께가 두꺼워짐에 따라 자유전자의 절대량이 증가하면서 전기전도도는 향상되나 빛의 흡수량이 많아져 가시광 투과율이 좋지 않은 문제점이 있어 투명전극으로 적합하지 못하다.
또한, 질산화티타늄층(21, 23)은 금속층의 양면에 증착될 수 있는데, 비정질로 형성된다. 본 발명에서 금속층의 양면에 증착되는 질산화티타늄층의 두께는 각각 다르게 증착된다. 금속층의 일면에 증착되는 질산화티타늄층(21)의 두께가 400 ~ 500Å인 경우 타면에 증착되는 질산화티타늄층(23)의 두께는 450 ~ 550Å로 구성할 수 있고, 금속층의 일면에 증착되는 질산화티타늄층(21)의 두께가 40 ~ 60Å인 경우 타면에 증착되는 질산화티타늄층(23)의 두께를 850 ~ 950Å로 구성할 수 있다. 본 발명의 일실시예에서는, 질산화티타늄층 450Å/금속층(금, 은 또는 구리) 50Å/ 질산화티타늄층 500Å, 질산화티타늄층 50Å/금속층(금, 은 또는 구리) 50Å/ 질산화티타늄층 900Å으로 구성하였다.
한편, 본 발명은 제1 질산화티타늄(TiON) 박막을 형성하는 단계; 상기 제1 질산화티타늄 박막 상에 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나의 금속층을 형성하는 단계; 및 상기 금속층 상에 제2 질산화티타늄(TiON) 박막을 증착하는 단계를 포함하는 저온 저가형 투명전극의 제조방법을 제공한다.
여기서, 제1 질산화 티타늄 박막(23)을 450 ~ 550Å 두께까지 증착시킬 경우, 금속층은 40 ~ 60Å 두께까지 증착되고, 제2 질산화 티타늄 박막(21)은 400 ~ 500Å 두께까지 증착될 수 있다. 또한, 제1 질산화 티타늄 박막(23)을 850 ~ 950Å 두께까지 증착시킬 경우, 금속층은 40 ~ 60Å 두께까지 증착되고, 제2 질산화 티타늄 박막(21)은 40 ~ 60Å 두께까지 증착될 수 있다.
본 발명에서 금속층 및 질산화티타늄층은 일반적인 증착방법을 사용하여 증착되며, 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 및 이온플레이팅법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착될 수 있다.
본 발명의 일실시예에 따른 반응성 마그네트론 스퍼터링 방법을 사용한 질산화티타늄층/금속층/질산화티타늄층 박막의 증착방법을 살펴보면 다음과 같다. 먼저, 펌프로 초고진공 상태를 형성한 후, 아르곤, 산소 및 질소가스를 주입시킨다. 다음으로, TiN 타겟 표면의 플라즈마 방전을 개시한 후 아르곤 이온의 타겟 충돌과 연속 스퍼터링에 의한 TiN 타겟입자의 기판을 증착시키고, 질소 및 산소 가스와 스퍼터된 TiN 박막을 혼합 성장시켜 TiON 박막을 증착한다.
그리고, 층간 금속인 금(Au), 은(Ag), 구리(Cu) 등을 아르곤 이온의 타겟 충돌로 특정 두께까지 증착하고, 상부에 다시 TiON 타겟입자의 기판을 증착시키고, 질소 및 산소 가스와 스퍼터된 TiON 박막을 혼합 성장시켜 질산화티타늄(TiON) 박막을 증착한다.
상기와 같은 방법은 단지 본 발명의 일실시예일 뿐이고, 본 발명에서 금속층 및 질산화티타늄층을 증착하는 방법이 이에 한정되는 것이 아니며, 모든 진공증착 방법을 사용할 수 있다.
본 발명에 따른 투명전극은 금속층의 양면에 전이금속 질산화물인 질산화티타늄 박막을 증착함으로써, 70 ~ 80%의 가시광 투과율, 4.5 ~ 5.0 eV의 일함수를 얻을 수 있다. 이러한 특성은 기존의 ITO보다 우수한 일함수와 유사한 전기전도도, 가시광 투과율을 저렴한 가격으로 구현할 수 있음을 나타낸다.
따라서, 본 발명에 따른 저온 저가형 투명전극은 ITO보다 저렴한 전이금속 질산화티타늄(TION) 박막을 사용하여 제조단가를 낮출 수 있으며, 기존의 ITO보다 우수한 일함수, 전기전도도 및 가시광 투과율을 구현할 수 있다.
이하, 본 발명을 실시예 및 도면을 참조하여 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1>
본 발명자들은 50Å 두께를 갖는 금속층을 이용하여, 금속층의 일면에 500Å 두께를 갖는 질산화티타늄층과 타면에 450Å의 두께를 갖는 질산화티타늄층을 각각 증착하여 투명전극을 제조하였다. 이렇게 제조된 질산화티타늄층(TiON) 500Å/금속층 50Å/질산화티타늄층(TiON) 450Å의 두께로 증착된 박막의 가시광 투과율과 전기전도도 및 일함수를 각각 측정하였다.
<1-1> 질산화티타늄층/금속층/질산화티타늄층 박막의 증착
본 발명자들은 질산화티타늄층(TiON)/금속층/질산화티타늄층 박막을 증착하기 위하여, 반응성 마그네트론 스퍼터링법을 사용하였다. 먼저, 펌프로 초고진공 상태를 형성한 후, 아르곤, 산소 및 질소가스를 주입시켰다. 다음으로, TiN 타겟 표면의 플라즈마 방전을 개시한 후 아르곤 이온의 타겟 충돌과 연속 스퍼터링에 의한 TiN 타겟입자의 기판을 증착시키고, 질소 및 산소 가스와 스퍼터된 TiN 박막을 혼합 성장시켜 TiON 박막을 500Å 두께로 증착시켰다.
다음으로, 층간 금속으로 금(Au), 은(Ag), 구리(Cu)를 사용하여 각각 아르곤 이온의 타겟 충돌로 두께가 50Å가 되도록 증착하였다. 다음으로, 금속층 상부에 다시 아르곤 이온의 타겟 충돌과 연속 스퍼터링에 의한 TiN 타겟입자의 기판을 증착시키고, 질소 및 산소 가스와 스퍼터된 TiN 박막을 혼합 성장시켜 TiON 박막을 450Å 두께로 증착시켰다. 질산화티타늄층(TiON)/금속층/질산화티타늄층으로 구성된 박막의 총 두께는 1000Å으로 하였다.
도 3은 본 발명의 일실시예에서 사용되는 반응성 마그네트론 스퍼터링 증착 장비의 구조를 나타낸 것이다. 증착 장비는 진공을 형성, 유지시키는 진공시스템과 질소이온을 발생시키는 플라즈마 발생장치 및 RF 마그네트론 스퍼터건으로 구성되며, 상기 증착 장비의 진공시스템 재질은 스테인레스 스틸이고 원통형 구조로 이루어진다.
상기 진공시스템은 초기진공 조건을 확보하기 위하여 로터리 펌프와 터보-분자 펌프를 이용하여 배기를 하며, 진공도 측정은 피라니 게이지(Pirani Gauge)와 이온 게이지(Ionization Gauge)를 이용하고, 질량유동은 질량유량계(Mass Flow Controller)를 이용하여 가스의 양을 제어한다.
<1-2> 가시광 투과율 및 전기전도도 측정
먼저, 상기와 같이 증착된 TiON/금속층/TiON(이하,TMT라 함)박막의 가시광 투과율을 측정하기 위하여 UV-Vis 분광광도계(Spectrophotometer)를 이용하였으며, UV-Vis 분광광도계의 파장 범위는 100 ~ 1000㎚로 이 영역에서 분자의 광흡수는 분자의 전자구조와 관련이 있는데, 즉 자외선과 가시광선 분자의 광흡수는 분자내의 전자, 특히 원자가 전자의 전이를 일으킨다. 본 발명에서는 가시광 영역에서만 투과율을 측정하였으며, 홀 효과(Hall-Effect) 측정 장치를 사용하여 증착된 박막의 저항 및 전기전도도를 측정하였다.
바닥 및 상부전극재료의 증착조건을 확보한 상태에서 내부 금속층의 종류를 금(Au), 은(Ag), 구리(Cu)로 달리하여 TMT 박막을 증착하고, 투과율과 전기전도도 분석결과는 이득지수(Figure of Merit(φTC))로 수치화하였으며, 상기 이득지수는 투과성 전도 산화물(TCO) 박막의 성능을 평가하기 위한 중요한 지표 중 하나로서, 하기의 식 1과 같이 나타낼 수 있다.
수학식 1
Figure PCTKR2010002824-appb-M000001
상기 식 1에서, T는 가시광 투과율(본 발명에서는 550㎚), Rs는 면저항을 나타낸다.
본 발명에 따른 TMT 박막의 투과율을 하기의 표 1 및 도 4에 나타내었다.
표 1 TiON/금속층/TiON 박막의 가시광 투과 특성
샘플(TMT, 총두께 1000Å) 가시광 투과율(%)
TiON 500Å / Au 50Å / TiON 450Å 77%
TiON 500Å / Ag 50Å / TiON 450Å 77%
TiON 500Å / Cu 50Å / TiON 450Å 71%
그 결과, 상기 표 1 및 도 4에 나타낸 바와 같이, 은을 사용한 박막이 전체적으로 고른 투과율을 나타내었지만, 파장 550㎚ 일 때는 금과 은의 투과율이 동일하게 나타났으며, 파장 550㎚ 이상의 장파장 영역에서는 금의 투과율이 더 우수함을 알 수 있었다.
또한, TMT 박막의 전기적 특성은 하기의 표 2에 나타내었다.
표 2 TiON/금속층/TiON 박막의 전기적 특성
샘플(TMT, 총두께 1000Å) 전기저항[Resistivity](ρ, ×10-3㎝)
TiON 500Å / Au 50Å / TiON 450Å 30 ~ 36 Ω
TiON 500Å / Ag 50Å / TiON 450Å 80 ~ 100 Ω
TiON 500Å / Cu 50Å / TiON 450Å 320 ~ 380 Ω
그 결과, 상기 표 2에 나타낸 바와 같이, 금(Au) 양면에 증착되는 질산화티타늄(TiON)의 전기저항은 30 ~ 36Ω이며, 은(Ag) 양면에 증착되는 질산화티타늄의 전기저항은 80 ~ 100Ω이며, 구리(Cu) 양면에 증착되는 질산화티타늄의 전기저항은 320 ~ 380Ω로 나타났으며, 금속층으로 구리를 사용하였을 때의 전기저항이 가장 높게 측정되었고, 금을 사용하였을 때의 전기저항이 가장 낮게 측정되었다.
<1-3> 일함수 측정
본 발명자들은 UPS(Ultraviolet Photoelectron Spectroscopy)를 이용하여 TMT 박막의 일함수를 측정하였다. UPS는 분석하고자 하는 시료에 자외선을 조사하여 튀어나오는 광전자를 검출기를 통하여 검출하여 시료의 구성성분을 비파괴적으로 분석할 수 있는 장비이다. 또한, 광전자의 방출 시에 주위 환경에 따른 전자의 결합에너지의 움직임이 존재하며, 이를 통하여 성분의 화학적 결합 형태 및 가전자띠(Valence band)에 대한 정보를 얻을 수 있다.
본 실시예에서 사용되는 UPS 조건은 초기진공 8.0×10-8 Torr, 해상도 5 eV, 스캔스텝 0.025 eV/step, 샘플바이어스 -20V로 측정하였다.
그 결과, 금 양면에 증착되는 질산화티타늄과, 은 양면에 증착되는 질산화티타늄 및 상기 구리 양면에 증착되는 질산화티타늄의 일함수는 4.6eV ~ 4.8eV로 측정되었다.
<실시예 2>
본 발명자들은 상기 <실시예 1>에서 살펴본 세 종류의 금속층 중에서 가장 우수한 전기·광학적 특성을 나타내는 금을 선별하여 내부 금속층으로 사용하여, 금의 두께가 각각 50, 100, 150, 200Å인 시편을 제작한 후 투과율과 전기적 특성을 분석하였으며, 그 결과를 하기 표 3 및 도 5에 나타내었으며, 이득지수(Figure of Merit) 값을 계산하여 하기 표 4에 나타내었다.
표 3 내부 금층 두께에 따른 TMT 박막의 전기적 특성
샘플(TMT, 총두께 1000Å) Conductivity(σ, ×10-3) Resistivity(ρ, ×10-4㎝) Concentration(Nb, ×1021/㎤) Mobility(μ, ×101/Vs)
Au 50Å 2.97 3.36 -1.20 2.73
Au 100Å 5.17 1.93 -1.03 3.13
Au 150Å 10.2 0.98 -1.71 3.72
Au 200Å 51.1 0.20 -12.1 2.63
표 4 TMT 박막의 Figure of merit(φTC)
샘플(TMT 총두께 1000Å,하부 TiON 두께 500Å) Å투과율(전체=1, 기판포함) Figure of merit(φTC, 10-4 -1)
Au 50Å 0.69 7.27
Au 100Å 0.65 6.96
Au 150Å 0.58 4.40
Au 200Å 0.49 4.07
그 결과, 금(Au)의 두께가 두꺼워짐에 따라 자유전자의 절대량이 증가하면서 빛의 흡수량이 많아져 전체적인 투과율은 꾸준히 감소하는 한편, 전기전도도의 경우는 꾸준히 향상됨을 알 수 있었다. 이러한 결과를 통해, 금(Au)의 두께가 50Å인 경우 TMT 박막이 가장 좋은 투과성 전도 특성을 나타내는 것을 알 수 있었다.
<실시예 3>
본 발명자들은 50Å 두께를 갖는 금 일면에 50Å 두께를 갖는 질산화티타늄과, 타면에 900Å의 두께를 갖는 질산화티타늄을 각각 증착하여 투명전극을 제조하였다. 본 실시예에서 질산화티타늄층/금속층/질산화티타늄층 박막을 증착하는 과정은 상기 <제조예 1>과 동일하게 진행하였으며, 단지 각 층의 두께만 차이가 있다.
한편, UPS를 사용하여 질산화티타늄 900Å/금 50Å/질산화티타늄 50Å으로 구성된 TMT 박막의 일함수를 측정하였으며, 그 결과는 도 6에 나타내었다.
그 결과, 표면일함수가 약 4.4 eV에서 약 4.8 eV로 향상됨을 알 수 있었다(도 6 참조).
이상의 결과들을 종합해보면, 본 발명은 TMT 박막에서 내부금속층으로 50Å 두께의 금(Au), 은(Ag), 구리(Cu) 박막을 사용하였으며, 이 중에서 금(Au) 50Å 박막의 경우가 가장 우수한 투과성 전도박막 특성을 나타냄을 알 수 있었고, 금속층의 유무에 상관없이 질산화티타늄층(TiON)은 비정질로 형성됨을 알 수 있었다.
또한, 내부 금(Au) 박막의 두께가 증가할수록 TiON/Au/TiON 박막의 투과율은 감소하고, 전기전도도는 증가하였으며, 50 ~ 200Å 두께 범위에서 가장 우수한 투과성 전도박막 특성을 나타낸 박막은 50Å 두께의 금(Au) 박막임을 알 수 있었다.
본 발명에 따른 투과성 전도박막은 기존의 ITO를 사용함에 따른 산소 플라즈마 전처리 공정을 생략할 수 있어 열처리 없이 저온 저가형의 투명전극을 구현할 수 있으며, 우수한 전기전도도 및 가시광 투과율을 나타내고, 동시에 ITO와 유사한 일함수 4.8eV 값을 구현할 수 있다는 점에서 우수하다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 금속층; 및
    상기 금속층의 양면에 증착된 질산화티타늄(TiON)층
    을 포함하는 저온 저가형 투명전극.
  2. 제1항에 있어서,
    상기 금속층 및 질산화티타늄층은 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 ,이온플레이팅법, 펄스레이저증착법 및 화학기상증착법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착되는 것을 특징으로 하는 저온 저가형 투명전극.
  3. 제1항에 있어서,
    상기 금속층은 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 저온 저가형 투명전극.
  4. 제1항에 있어서,
    상기 금속층의 두께는 40 ~ 60Å인 것을 특징으로 하는 저온 저가형 투명전극.
  5. 제1항에 있어서,
    상기 금속층의 일면에 증착되는 질산화티타늄층의 두께는 400 ~ 500Å이고, 타면에 증착되는 질산화티타늄층의 두께는 450 ~ 550Å인 것을 특징으로 하는 저온 저가형 투명전극.
  6. 제1항에 있어서,
    상기 금속층의 일면에 증착되는 질산화티타늄층의 두께는 40 ~ 60Å이고, 타면에 증착되는 질산화티타늄층의 두께는 850 ~ 950Å인 것을 특징으로 하는 저온 저가형 투명전극.
  7. 제1항에 있어서,
    상기 투명전극의 가시광 투과율은 70 ~ 80%인 것을 특징으로 하는 저온 저가형 투명전극.
  8. 제1항에 있어서,
    상기 투명전극의 일함수는 4.5 ~ 5.0 eV인 것을 특징으로 하는 저온 저가형 투명전극.
  9. 제1 질산화티타늄(TiON) 박막을 형성하는 단계;
    상기 질산화티타늄 박막 상에 은(Ag), 금(Au) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나의 금속층을 형성하는 단계; 및
    상기 금속층 상에 제2 질산화티타늄(TiON) 박막을 증착하는 단계
    를 포함하는 저온 저가형 투명전극의 제조방법.
  10. 제9항에 있어서,
    상기 금속층 및 질산화티타늄층은 진공증착법, 전자빔 증착법, 스퍼터링법, 반응성 마그네트론 스퍼터링법 ,이온플레이팅법, 펄스레이저증착법 및 화학기상증착법으로 이루어진 군에서 선택된 어느 하나의 방법으로 증착되는 것을 특징으로 하는 저온 저가형 투명전극의 제조방법.
PCT/KR2010/002824 2010-02-26 2010-05-04 저온 저가형 투명전극 WO2011105660A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0017496 2010-02-26
KR1020100017496A KR101064679B1 (ko) 2009-03-09 2010-02-26 투명전극

Publications (1)

Publication Number Publication Date
WO2011105660A1 true WO2011105660A1 (ko) 2011-09-01

Family

ID=44507836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002824 WO2011105660A1 (ko) 2010-02-26 2010-05-04 저온 저가형 투명전극

Country Status (1)

Country Link
WO (1) WO2011105660A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111123A (ja) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd 透明導電膜とその製造方法およびスパッタリングターゲット
JPH09123337A (ja) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd 多層導電膜、並びにこれを用いた透明電極板および液晶表示装置
US5736267A (en) * 1994-08-17 1998-04-07 Asahi Glass Company Ltd. Transparent conductive film and method for its production, and sputtering target
US5750267A (en) * 1993-01-27 1998-05-12 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate
KR20050035618A (ko) * 2003-10-14 2005-04-19 전자부품연구원 전자장치용 투명전극

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750267A (en) * 1993-01-27 1998-05-12 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate
JPH08111123A (ja) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd 透明導電膜とその製造方法およびスパッタリングターゲット
US5736267A (en) * 1994-08-17 1998-04-07 Asahi Glass Company Ltd. Transparent conductive film and method for its production, and sputtering target
JPH09123337A (ja) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd 多層導電膜、並びにこれを用いた透明電極板および液晶表示装置
KR20050035618A (ko) * 2003-10-14 2005-04-19 전자부품연구원 전자장치용 투명전극

Similar Documents

Publication Publication Date Title
EP1597408B1 (en) Method for forming dielectric barrier layers
US20090309492A1 (en) Organic Light Emitting Component, and Production Method
Zheng et al. Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS)
Ndione et al. Highly‐Tunable Nickel Cobalt Oxide as a Low‐Temperature P‐Type Contact in Organic Photovoltaic Devices
Wang et al. Highly efficient blue organic light emitting device using indium-free transparent anode Ga: ZnO with scalability for large area coating
US8035299B2 (en) Organic electroluminescent display and method of making the same
Gallardo et al. Cathodic and anodic material diffusion in polymer/semiconductor-nanocrystal composite devices
Sun et al. Fabrication of opaque aluminum electrode-based perovskite solar cells enabled by the interface optimization
KR101884643B1 (ko) 아연이 도핑된 주석산화물계 투명 전도성 산화물, 이를 이용한 다층 투명 전도막 및 그 제조 방법
US11510292B2 (en) Transparent conductor and organic device
Ji et al. Novel Ag‐Mesh Transparent Hybrid Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Solar Cells
KR101064679B1 (ko) 투명전극
WO2000069625A1 (en) Titanium nitride anode for use in organic light emitting devices
Seok et al. Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells
Kim et al. Doping mechanism and electronic structure of alkali metal doped tris (8-hydroxyquinoline) aluminum
WO2011105660A1 (ko) 저온 저가형 투명전극
US20210135056A1 (en) Inorganic-organic film for conductive, flexible, and transparent electrodes
JPH04230906A (ja) 透明導電積層体
Mäkinen et al. Photoemission study of frontier orbital alignment at a metal–organic interface as a function of conjugation length of oligothiophene derivatives
Zheng et al. Surface and interface analysis of tris-(8-hydroxyquinoline) aluminum and indium–tin-oxide using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)
Seok et al. Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs
KR101437808B1 (ko) 유기 el용 투명 도전막 및 이 투명 도전막을 사용한 유기 el 소자
Petraki et al. The electronic properties of the interface between nickel phthalocyanine and a PEDOT: PSS film
Lägel et al. Investigation of the poly [2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene]∕ indium tin oxide interface using photoemission spectroscopy
KOBAYASHI et al. Cracking of Aluminum and Silver Alloy Thin Films on Polymer Thin Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846687

Country of ref document: EP

Kind code of ref document: A1