WO2011105033A1 - 導電性ベルト及び電子写真装置 - Google Patents

導電性ベルト及び電子写真装置 Download PDF

Info

Publication number
WO2011105033A1
WO2011105033A1 PCT/JP2011/000890 JP2011000890W WO2011105033A1 WO 2011105033 A1 WO2011105033 A1 WO 2011105033A1 JP 2011000890 W JP2011000890 W JP 2011000890W WO 2011105033 A1 WO2011105033 A1 WO 2011105033A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
conductive belt
electrophotographic
conductive
preform
Prior art date
Application number
PCT/JP2011/000890
Other languages
English (en)
French (fr)
Inventor
内田 光一
弘臣 小島
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020127024334A priority Critical patent/KR101454095B1/ko
Priority to EP11747006.2A priority patent/EP2541337B1/en
Priority to CN201180009827.3A priority patent/CN102763043B/zh
Priority to US13/165,695 priority patent/US9034476B2/en
Publication of WO2011105033A1 publication Critical patent/WO2011105033A1/ja
Priority to US14/676,685 priority patent/US9753411B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/14Transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/20Fixing, e.g. by using heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/18Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a charge pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/0053Intermediate layers for image-receiving members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a cylindrical conductive belt for electrophotography and an electrophotographic apparatus used for an intermediate transfer belt of an electrophotographic apparatus.
  • Patent Document 1 discloses a conductive endless belt used for an intermediate transfer belt of an electrophotographic image forming apparatus in which polyether ester amide is added as a polymer ion conductive agent to a polyester elastomer and / or thermoplastic polyester resin. Disclosure. Such a belt has a gentle change in conductivity with respect to the amount of addition, and the electrical resistance can be easily controlled, as compared with a case where the conductive agent is made conductive with an electronic conductive agent such as carbon black.
  • the polyester elastomer or thermoplastic polyester resin and the polyether ester amide or polyether amide are basically incompatible. Therefore, the conductive endless belt according to Patent Literature 1 has a structure having a continuous phase composed of a polyester-based thermoplastic elastomer and a discontinuous phase composed of a polyether ester amide copolymer. This is as disclosed in Patent Documents 2 and 3.
  • the present inventors have a continuous phase containing a crystalline thermoplastic polyester resin and a discontinuous phase containing polyetheresteramide or polyetheramide as a conductive agent, and the discontinuous phase extends in the circumferential direction.
  • a cylindrical electrophotographic conductive belt generally has the following problems. That is, a cylindrical conductive belt for electrophotography is placed in a state of being stretched between a plurality of rollers with a constant tension in the electrophotographic apparatus. Therefore, when the conductive belt is kept stationary for a long period of time, a curl (hereinafter referred to as “permanent curl”) that does not easily recover to the portion of the conductive belt that contacts the roller and has the largest curvature. ) May occur.
  • the part of the electrophotographic belt where the permanent curl is generated is kept deformed by the permanent curl even when the part moves to a position away from the roller. Therefore, the transfer of the toner image from the electrophotographic photosensitive member to the deformed portion becomes insufficient, and streaks or the like may be generated in the electrophotographic image.
  • the present inventors have a configuration in which the above-described continuous phase including a crystalline thermoplastic polyester resin and a discontinuous phase including a polyether ester amide are present extending in the circumferential direction.
  • an object of the present invention is to provide a cylindrical conductive belt for electrophotography having the above-described configuration, excellent in mechanical strength, and hardly causing permanent curl.
  • Another object of the present invention is to provide an electrophotographic apparatus capable of stably forming a high-quality electrophotographic image.
  • the conductive belt according to the present invention has a continuous phase containing a thermoplastic polyester resin, and a discontinuous phase containing one or both selected from polyetheresteramide and polyetheramide, and the discontinuous A cylindrical electrophotographic conductive belt having phases extending in the circumferential direction, wherein the crystallinity is lower on the outer peripheral surface side than on the inner peripheral surface side.
  • the electrophotographic apparatus according to the present invention is characterized in that the above-described conductive belt is provided as an intermediate transfer belt.
  • an electrophotographic cylindrical conductive belt which is less likely to cause permanent curl and has excellent mechanical strength.
  • an electrophotographic apparatus that can stably form a high-quality electrophotographic image can be obtained.
  • the present inventors have a cylindrical shape having a continuous phase containing a crystalline thermoplastic polyester resin and a discontinuous phase containing a polyetheresteramide, the discontinuous phase extending in the circumferential direction.
  • the generation mechanism of the permanent curl on the conductive belt was analyzed as follows.
  • the permanent curl is a state where the part wound around the roller on which the conductive belt is stretched loses its restoring force to the original shape like rubber, and the shape kept around the roller is maintained. I thought.
  • FIGS. 1A and 1B have a continuous phase containing a thermoplastic polyester resin and a discontinuous phase containing either or both selected from polyetheresteramide and polyetheramide, and It is a perspective view of the cylindrical electroconductive belt in which the phase is extended in the circumferential direction.
  • FIG. 1B is a partially enlarged view of the circumferential cross section of FIG. 1A.
  • 101 represents a continuous phase containing a thermoplastic polyester resin (hereinafter also simply referred to as “PE”)
  • 103 represents a non-polymer containing either one or both selected from polyether ester amide and polyether amide. Indicates a continuous layer.
  • the discontinuous layer 103 extends in the circumferential direction of the conductive belt.
  • the present inventors observed a circumferential cross section of a portion where a permanent curl was generated by stretching a conductive belt having such a configuration between two rolls and keeping it stationary for a long period of time.
  • a minute gap 102 was present at the interface between the discontinuous layer and the continuous phase existing on the outer peripheral side of the conductive belt.
  • This gap is considered to be caused by a difference in behavior between the continuous phase and the discontinuous phase due to a tensile force acting on the outer peripheral side of the conductive belt.
  • it was speculated that such a gap weakened the physical coupling between the continuous phase and the discontinuous phase, resulting in a decrease in the shape restoring force of the conductive belt and a permanent curl.
  • the present inventors have repeatedly studied to suppress the generation of a gap at the interface between the continuous phase and the discontinuous phase, which is considered to cause permanent curl.
  • the above-described interface is obtained by adopting a configuration in which the crystallinity is relatively higher on the inner peripheral surface side to which the compressive force is applied than on the outer peripheral surface side to which the tensile force is applied. It has been found that it is possible to suppress the generation of gaps in the surface and contribute to the reduction of permanent curl.
  • the reason why the relative degree of crystallinity between the inner peripheral surface and the outer peripheral surface as described above reduces the permanent curl is not clear, but is estimated as follows.
  • the inner peripheral surface on which the compressive force acts is compressed when the roller comes into contact with the roller, and is released from the compressive force when the contact with the roller is released.
  • the restoring force to the original shape after the inner peripheral surface side of the conductive belt is released from the compressive force Is considered to be stronger.
  • the portion of the conductive belt that has been unwound from contact with the roller for a long time can be easily restored to the original shape, and the permanent curl can be made difficult to occur.
  • the cross section in the circumferential direction of the conductive belt 100 according to the present invention has a continuous phase 101 containing a thermoplastic polyester resin, and one or both selected from polyether ester amide and polyether amide. And a discontinuous phase 103 containing.
  • the discontinuous phase 103 extends in the circumferential direction.
  • the crystallinity of the conductive belt 100 is lower on the outer peripheral surface side than on the inner peripheral surface.
  • the distance between the plurality of discontinuous layers can be relatively shortened by allowing the discontinuous layer 103 containing polyether ester amide or polyether amide as a conductive agent to extend in the circumferential direction.
  • a leak current easily flows between the plurality of discontinuous phases, which has the technical significance that the conductivity of the conductive belt can be improved.
  • the technical significance of making the crystallinity relatively lower on the outer peripheral surface side than on the inner peripheral surface side is as described above.
  • the specific crystallinity on the outer peripheral surface side and the inner peripheral surface side may be appropriately adjusted according to the diameter and tension of the roller on which the conductive belt is stretched.
  • the method for producing a conductive belt according to the present invention will be described in detail later.
  • thermoplastic polyester resin constituting the continuous phase 101 is a polycondensation of a dicarboxylic acid component and a dihydroxy component, a polycondensation of an oxycarboxylic acid component or a lactone component, or a plurality of these components. It can be obtained by the polycondensation used.
  • PE may be a homopolyester or a copolyester. Specific examples of the dicarboxylic acid component are shown below.
  • Aromatic dicarboxylic acids having 8 to 16 carbon atoms in the molecule (terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid (2,6-naphthalenedicarboxylic acid, etc.), diphenyldicarboxylic acid, diphenylether dicarboxylic acid, diphenylmethane Dicarboxylic acid, diphenylethanedicarboxylic acid, etc.); -Alicyclic dicarboxylic acid (cycloalkane dicarboxylic acid having 4 to 10 carbon atoms, such as cyclohexanedicarboxylic acid); Aliphatic dicarboxylic acids (aliphatic dicarboxylic acids containing 4 to 12 carbon atoms such as succinic acid, adipic acid, azelaic acid, sebacic acid).
  • derivatives of the above dicarboxylic acids can be used. Specific examples include derivatives capable of forming an ester (for example, lower alkyl esters such as dimethyl ester, acid anhydrides such as acid anhydride and acid chloride). These dicarboxylic acid components can be used alone or in combination of two or more. Preferred dicarboxylic acid components are aromatic dicarboxylic acids from the viewpoints of crystallinity and heat resistance, and more preferred are terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
  • An alkylene diol having 2 to 10 carbon atoms (ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, hexanediol); -Alicyclic diols containing 4 to 12 carbon atoms (cyclohexanediol, cyclohexanedimethanol); An aromatic diol having 6 to 20 carbon atoms (hydroquinone, resorcin, dihydroxybiphenyl, naphthalenediol, dihydroxydiphenyl ether, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A)); An alkylene oxide adduct of the aromatic diol (for example, an alkylene oxide adduct of bisphenol A having 2 to 4 carbon atoms), -Polyoxyalkylene glycols (polyoxyalkylene glycols such as
  • dihydroxy components may be derivatives capable of forming an ester (for example, an alkyl group, an alkoxy group, or a halogen-substituted product). These dihydroxy components can be used alone or in combination of two or more. Of these dihydroxy components, alkylene diols (particularly alkylene diols having 2 to 4 carbon atoms) and alicyclic diols are preferably used from the viewpoints of crystallinity, heat resistance and the like.
  • examples of the oxycarboxylic acid component include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, diphenyleneoxycarboxylic acid, 2-hydroxypropanoic acid, and derivatives of these oxycarboxylic acids. These oxycarboxylic acid components can be used alone or in combination of two or more.
  • the lactone component includes C3 to C12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ⁇ -caprolactone, etc.), and the like. These lactone components can also be used alone or in combination.
  • a polyfunctional monomer may be used in combination as long as crystallinity and heat resistance are maintained.
  • the polyfunctional monomer include polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid, and polyhydric alcohols such as glycerin, trimethylolpropane, trimethylolethane, and pentaerythritol. Polyester having a branched or crosslinked structure formed by using such a polyfunctional monomer can also be used.
  • PE can be produced by polycondensation using the above components (dicarboxylic acid component and dihydroxy component, oxycarboxylic acid component, lactone component, or a plurality of these components). From the standpoints of crystallinity and heat resistance, PE is at least one selected from polyalkylene terephthalate, polyalkylene naphthalate, and a copolymer of polyalkylene terephthalate and polyalkylene isophthalate. Examples of the copolymer include a block copolymer and a random copolymer.
  • the number of carbon atoms of alkylene in the polyalkylene terephthalate, polyalkylene isophthalate and polyalkylene naphthalate is preferably 2 or more and 16 or less from the viewpoint of crystallinity and heat resistance. More preferably, it is at least one selected from polyethylene terephthalate, a copolymer of polyethylene terephthalate and polyethylene isophthalate, and polyethylene naphthalate. As long as it is a thermoplastic polyester resin, two or more kinds of blends or alloys may be used.
  • polyethylene naphthalate examples include commercially available TN-8050SC (trade name, manufactured by Teijin Chemicals Ltd.) and TN-8065S (trade name, manufactured by Teijin Chemicals Ltd.).
  • polyethylene terephthalate commercially available TR-8550 (trade name, manufactured by Teijin Chemicals Ltd.) and as a copolymer of polyethylene terephthalate and polyethylene isophthalate, commercially available PIFG30 (trade name, manufactured by Bell Polyester Products) are listed. It is done.
  • the intrinsic viscosity of PE is preferably 1.4 dl / g or less, more preferably 0.3 dl / g or more and 1.2 dl / g or less, and further preferably 0.4 dl / g or more and 1.1 dl / g or less. If intrinsic viscosity is 1.4 dl / g or less, the fall of the fluidity
  • the intrinsic viscosity of the thermoplastic polyester resin is such that the concentration of the o-chlorophenol solution of the thermoplastic polyester resin is 0.5% by mass and the temperature is 25 ° C. using o-chlorophenol as the diluent solvent for the thermoplastic polyester resin. It is the value measured in this way.
  • PE may be 50% by mass or more, particularly 60% by mass or more, and more preferably 70% by mass or more based on the total mass of PE and polyether ester amide (PEEA) and polyether amide (PEA) described later. preferable. If it is 50 mass% or more, it can suppress more effectively that durability of the electrophotographic belt falls.
  • PEEA Polyetheresteramide
  • PEA Polyetheramide
  • examples of PEEA include compounds having as a main component a copolymer composed of a polyamide block unit such as nylon 6, nylon 66, nylon 11 and nylon 12 and a polyether ester unit.
  • a copolymer derived from a lactam (for example, caprolactam, lauryl lactam) or an aminocarboxylic acid salt, polyethylene glycol, and a dicarboxylic acid can be used.
  • the dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, azelaic acid, sebacic acid, undecane diacid, dodecane diacid and the like.
  • PEEA can be produced by a known polymerization method such as melt polymerization. Needless to say, the PEEA may be a blend or alloy of two or more.
  • commercially available PEEA (trade name: Irgastat P20, manufactured by Ciba Specialty Chemicals Co., Ltd.), (trade name: TPAE H151, manufactured by Fuji Kasei Kogyo Co., Ltd.) and (trade names: Pelestat NC6321, Sanyo Chemical Industries ( Co., Ltd.) can also be used.
  • PEA examples include compounds having a main component of a copolymer composed of polyamide block units such as nylon 6, nylon 66, nylon 11 and nylon 12, polyether diamine units, and dicarboxylic acid units.
  • Specific examples of PEA include lactam (for example, caprolactam, lauryl lactam) or a copolymer derived from a salt of aminocarboxylic acid, polytetramethylenediamine, and dicarboxylic acid.
  • the dicarboxylic acid the same ones as described above can be used.
  • PEA can be produced by a known polymerization method such as melt polymerization. Moreover, it is not limited to these, What blended 2 or more types of the said polyetheramide, and those alloys can also be used. Commercially available (trade name: Pebax 5533, manufactured by Arkema Co., Ltd.) can also be used.
  • the total amount of PEEA and PEA is preferably 3% by mass to 30% by mass, and particularly preferably 5% by mass to 20% by mass with respect to the total mass of PE, PEEA, and PEA.
  • PEEA and PEA function as a conductive agent. Therefore, the electrical resistance of the thermoplastic resin composition, and thus the electrophotographic belt, can be appropriately reduced by setting the content to 3% by mass or more. Moreover, by setting it as 30 mass% or less, the viscosity reduction by decomposition
  • One or both of the discontinuous phase and the continuous phase may contain other components such as an insulating filler as long as the effects of the present invention are not impaired.
  • an insulating filler is shown below. Zinc oxide, barium sulfate, calcium sulfate, barium titanate, potassium titanate, strontium titanate, titanium oxide, magnesium oxide, magnesium hydroxide, aluminum hydroxide and the like.
  • the conductive belt according to the present invention has three structural features. First, having a continuous phase containing PE and a discontinuous phase containing one or both selected from PEEA and PEA, and secondly, the discontinuous phase exists in the circumferential direction, Third, the crystallinity in the thickness direction is lower on the outer peripheral surface side than on the inner peripheral surface side. In order to achieve the configuration of the first feature, it is necessary to adjust the composition of the thermoplastic resin composition used for the production of the conductive belt.
  • the mass ratio of the total mass of PEEA and PEA to the total mass of the thermoplastic resin composition used for the production of the conductive belt is defined as the mass ratio of PE to the total mass of the thermoplastic resin composition used for the production of the electroconductive belt.
  • the ratio is B, it is necessary that A> B. More preferably, A / B> 2.
  • a method of manufacturing a seamless belt by biaxially stretching a test tube-shaped preform made of the thermoplastic resin composition having the specific composition is employed.
  • Such a method itself is known as described in JP-A-2006-76154 and JP-A-2001-18284.
  • One specific method for obtaining a seamless conductive belt by biaxial stretching is described below. First, a test tube-shaped preform made of the thermoplastic resin composition is manufactured. Next, the heated preform is mounted in a seamless belt molding die. Thereafter, the preform in the shape of a test tube is stretched in the axial direction from the inside with a stretching rod, and the preform is stretched in the radial direction by flowing a gas into the preform. obtain.
  • drum of the said bottle-shaped molded object is cut
  • a discontinuous phase is stretched in the circumferential direction, and a seamless conductive belt extending in the circumferential direction can be obtained.
  • the aspect ratio refers to the ratio of the length (l) in the circumferential direction to the maximum value (t) of the thickness of the discontinuous phase that appears in the cross section when the cylindrical conductive belt is cut into rings.
  • the configuration of the third feature is that the control of the crystal state of a preform having a test tube shape made of a thermoplastic resin composition and the surfaces of the inner wall and the outer wall of the preform when the preform is biaxially stretched This can be achieved by controlling the temperature.
  • a test tube-shaped preform made of a thermoplastic resin composition needs to have an amorphous state that allows biaxial stretching described later.
  • a preform can be obtained by adjusting the mold temperature when the thermoplastic resin composition is produced by injection molding in a mold having a preform shape.
  • the mold temperature is set to a temperature sufficiently lower than the melting point of the thermoplastic resin composition, and the thermoplastic resin composition is rapidly cooled in the mold.
  • the melting point of the thermoplastic resin composition shown in Table 1 below is 260 ° C.
  • this amorphous preform is heated and biaxially oriented in the mold, and the inner wall heating temperature and outer wall heating temperature of the preform when molding a bottle-shaped molded product are set to the thermoplastic resin composition.
  • the temperature is controlled within the temperature range from the glass transition temperature to the melting point. Specifically, the preform is heated so that the surface temperature of the inner wall of the preform is about ⁇ 5 ° C. of the preform crystallization temperature.
  • the outer wall is heated so that the surface temperature is not lower than the glass transition temperature of the preform and not higher than the crystallization temperature ⁇ 10 ° C.
  • the crystallization temperature of the preform made of the thermoplastic resin composition shown in Table 1 is 170 ° C.
  • the preform it is preferable to heat the preform so that the inner wall temperature is in the range of 165 to 175 ° C. and the outer wall temperature is in the range of 100 to 160 ° C.
  • the crystallinity degree of the inner peripheral surface of an electroconductive belt and an outer peripheral surface can be adjusted by adjusting each of inner wall temperature and outer wall temperature within said temperature range. Then, the preform heated in such a state is stretched in the axial direction by using a stretching rod, and at the same time, the preform is stretched in the radial direction by blowing a gas into the preform. Get. At this time, the temperature of the gas blown into the preform is preferably adjusted so that the inner wall of the preform does not deviate from the above temperature range during the preform stretching step.
  • a cylindrical conductive belt according to the present invention is obtained by cutting the body portion of the bottle-shaped molded product thus obtained into a predetermined width.
  • the thickness of the electrophotographic conductive belt is generally 10 ⁇ m or more and 500 ⁇ m or less, particularly 30 ⁇ m or more and 150 ⁇ m or less.
  • the volume specific resistance of the conductive belt may be appropriately adjusted by adjusting the amount of PE and PEEA or PEA according to the use of the conductive belt.
  • As a specific standard for the volume resistivity when a conductive belt is used as an intermediate transfer belt, it is 1 ⁇ 10 2 ⁇ cm or more and 1 ⁇ 10 14 ⁇ cm or less.
  • FIG. 3 is a sectional view of the full-color electrophotographic apparatus.
  • a cylindrical conductive belt according to the present invention is used as the intermediate transfer belt 5.
  • the electrophotographic photosensitive member 1 is a rotating drum type electrophotographic photosensitive member (hereinafter referred to as “photosensitive drum”) that is repeatedly used as a first image bearing member, and has a predetermined peripheral speed (process speed) in the direction of an arrow. Driven by rotation. The photosensitive drum 1 is uniformly charged to a predetermined polarity and potential by the primary charger 2 during the rotation process.
  • an electrostatic latent image corresponding to a first color component image (for example, a yellow color component image) of the target color image is formed by receiving image exposure 3 by the exposure means.
  • the exposure means includes a color separation / imaging exposure optical system for a color original image, a scanning exposure system using a laser scanner that outputs a laser beam modulated in accordance with a time-series electric digital pixel signal of image information, and the like. Can be mentioned.
  • the electrostatic latent image is developed with yellow toner Y as the first color by the first developing device (yellow color developing device 41).
  • the developing units of the second to fourth developing units (magenta color developing unit 42, cyan color developing unit 43, black color developing unit 44) are turned off and do not act on the photosensitive drum 1.
  • the yellow toner image of the first color is not affected by the second to fourth developing devices.
  • the electrophotographic belt 5 is rotationally driven in the direction of the arrow at the same peripheral speed as the photosensitive drum 1.
  • an electric field formed by the primary transfer bias applied from the opposing roller 6 to the electrophotographic belt 5 Transfer is performed on the outer peripheral surface of the intermediate transfer belt 5 (primary transfer).
  • the surface of the photosensitive drum 1 after the transfer of the first color yellow toner image to the electrophotographic belt 5 is cleaned by the cleaning device 13.
  • the second color magenta toner image, the third color cyan toner image, and the fourth color black toner image are successively superimposed and transferred onto the electrophotographic (intermediate transfer) belt 5 to obtain a target color image.
  • a composite color toner image corresponding to is formed.
  • the secondary transfer roller 7 is supported in parallel with the drive roller 8 and is arranged in a state in which it can be separated from the lower surface of the electrophotographic belt 5.
  • the secondary transfer roller 7 can be separated from the electrophotographic belt 5.
  • the transfer of the composite color toner image transferred onto the electrophotographic belt 5 to the transfer material P, which is the second image carrier, is performed as follows. First, the secondary transfer roller 7 is brought into contact with the electrophotographic belt 5, and from the paper feed roller 11 through the transfer material guide 10 to the contact nip between the electrophotographic belt 5 and the secondary transfer roller 7. The transfer material P is fed at a predetermined timing. A secondary transfer bias is applied from the power source 31 to the secondary transfer roller 7.
  • the composite color toner image is transferred (secondary transfer) from the electrophotographic (intermediate transfer) belt 5 to the transfer material P as the second image carrier.
  • the transfer material P that has received the transfer of the toner image is introduced into the fixing device 15 and fixed by heating.
  • an intermediate transfer belt cleaning roller 9 of a cleaning device is brought into contact with the electrophotographic belt 5 and a bias having a polarity opposite to that of the photosensitive drum 1 is applied.
  • a charge having a polarity opposite to that of the photosensitive drum 1 is imparted to the toner (transfer residual toner) that is not transferred to the transfer material P and remains on the electrophotographic belt 5.
  • Reference numeral 33 denotes a bias power source.
  • the transfer residual toner is electrostatically transferred to the photosensitive drum 1 at and near the nip portion with the photosensitive drum 1 to clean the electrophotographic belt 5.
  • the measuring device uses an ultrahigh resistance meter (trade name: R8340A, manufactured by Advantest Co., Ltd.) as the resistance meter, and an ultrahigh resistance measurement sample box (trade name: TR42, manufactured by Advantest Co., Ltd.) as the sample box. To do.
  • the main electrode has a diameter of 25 mm
  • the guard ring electrode has an inner diameter of 41 mm
  • an outer diameter of 49 mm accordinging to ASTM D257-78).
  • Examples for volumetric resistivity measurements of seamless belts for electrophotography are prepared as follows. First, the electrophotographic seamless belt is cut into a circular shape having a diameter of 56 mm using a punching machine or a sharp blade. An electrode is provided by a Pt—Pd vapor deposition film on the entire surface of one side of the cut-out circular piece, and a main electrode having a diameter of 25 mm and a guard electrode having an inner diameter of 38 mm and an outer diameter of 50 mm are provided on the other surface by a Pt—Pd vapor deposition film.
  • the deposited Pt—Pd film is a sputtering apparatus (trade name: Mild Sputter E1030, manufactured by Hitachi, Ltd.), with a current of 15 mA, between the target (Pt—Pd) and the sample (circular piece of electrophotographic seamless belt).
  • the vapor deposition operation was performed for 2 minutes at a distance of 15 mm.
  • the circular piece for which the vapor deposition operation was completed was used as the measurement sample.
  • the measurement atmosphere is a temperature of 23 ° C. and a relative humidity of 52%, and the measurement sample is previously left in the same atmosphere for 12 hours or more.
  • the measurement mode for the volume resistivity is 10 seconds for discharge, 30 seconds for charge, and 30 seconds for major, and is performed at an applied voltage of 100V.
  • the volume resistivity was measured 10 times in this measurement mode, and the average value of the 10 measurements was adopted as the volume resistivity of the electrophotographic seamless belt.
  • the circumferential cross section of the electrophotographic belt is cut with a microtome or the like, and the cross section is field emission scanning electron microscope (FE-SEM) XL30 (trade name: FEI Technology Co., Ltd.) )).
  • FE-SEM field emission scanning electron microscope
  • the aspect ratio of the portion corresponding to each island within the range of 100 ⁇ m ⁇ 100 ⁇ m is calculated by binarization processing, The average value was adopted.
  • Permanent curl conductive belt was mounted as an intermediate transfer belt on an intermediate transfer unit of a laser beam printer (trade name: LBP-5200, manufactured by Canon Inc.) having an apparatus structure as shown in FIG. .
  • the intermediate transfer belt of this laser beam printer is stretched between a driving roller having a diameter of 18 mm and a tension roller having a diameter of 15 mm with a tension stress of 6 kgf.
  • This laser beam printer was allowed to stand for 1 month in an environment of a temperature of 35 ° C. and 95% RH.
  • the conductive belt is rotated by a small amount to separate the portion that was in contact with the driving roller at the time of standing away from the driving roller, and in that state, left for one day in an environment of a temperature of 35 ° C.
  • the surface roughness meter (trade name: SE-3500, manufactured by Kosaka Laboratory Co., Ltd.) was used to measure the height of the contact trace of the drive roller where the drive roller was in contact with the conductive belt. And measured. This height is defined as the permanent curl height. The higher the height, the more likely the primary transfer failure of the toner image to that portion will occur.
  • Tables 2 to 4 show the materials of the thermoplastic resin compositions used in Examples and Comparative Examples described later.
  • thermoplastic resin composition was prepared by hot melt kneading with the composition shown in Table 5.
  • the hot melt kneading temperature was adjusted to be in the range of 260 ° C. or higher and 280 ° C. or lower, and the hot melt kneading time was about 3 to 5 minutes.
  • the obtained thermoplastic resin composition was pelletized and dried at a temperature of 140 ° C. for 6 hours. Next, the dried pellet-shaped thermoplastic resin composition was put into an injection molding apparatus (trade name: SE180D, manufactured by Sumitomo Heavy Industries, Ltd.).
  • a cylinder set temperature was 295 ° C., and a preform was formed by injection molding into a mold whose temperature was adjusted to 30 ° C.
  • the obtained preform has a test tube shape having an outer diameter of 20 mm, an inner diameter of 18 mm, and a length of 150 mm. And it confirmed that this preform contained an amorphous state with the following method.
  • ⁇ Amorphous confirmation method for preform> A sample measuring 1 mm in length and 1 mm in width was cut out from the preform, and the sample was measured with a differential scanning calorimeter (DSC). Measurement conditions were 25 ° C. to 300 ° C. at a heating rate of 10 ° C./min. When an amorphous component remains, a crystallization exothermic peak seen at around 170 ° C. appears. And the calorific value of the crystallization exothermic peak in the sample was 38 J / g. On the other hand, the endothermic amount of the melting endothermic peak near 260 ° C. was 62 J / g. Since the calorific value of the crystallization exothermic peak was 1/2 or more of the endothermic amount of the melting endothermic peak, it was confirmed that the preform sufficiently retained the amorphous component.
  • DSC differential scanning calorimeter
  • the preform was biaxially stretched using the biaxial stretching apparatus shown in FIG.
  • the preform 104 Prior to biaxial stretching, the preform 104 is placed in a heating device 107 equipped with a non-contact type heater (not shown) for heating the outer wall and inner wall of the preform 104, and the outside of the temperature shown in Table 5 is outside.
  • the outer wall and inner wall of the preform were heated to the surface temperature shown in Table 5 with the heater and the internal heater.
  • the heated preform 104 was placed in a blow mold 108 whose mold temperature was maintained at 110 ° C., and stretched in the axial direction using a stretching rod 109. At the same time, air adjusted to a temperature of 23 ° C.
  • Examples 2 to 9 The electrophotographic seamless as in Example 1, except that the composition of the thermoplastic resin composition, the external heater temperature, the internal heater temperature, the outer wall surface temperature, and the inner wall surface temperature were as described in Table 5. I got a belt. Table 6 shows the evaluation results of these conductive belts.
  • the glass transition temperature, the crystallization temperature, and the melting point are each a temperature at an inflection point (glass transition temperature) obtained by measurement using a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min. ) And peak top temperature (crystallization temperature and melting point).
  • DSC differential scanning calorimeter
  • the cross sections in the circumferential direction of the conductive belts according to Examples 1 to 9 and Comparative Examples 1 to 9 were magnified 5000 times with a field emission scanning electron microscope (FE-SEM) XL30 (trade name: manufactured by FEI Technology Co., Ltd.). And observed.
  • FE-SEM field emission scanning electron microscope
  • the occurrence of cracks at the interface between the continuous phase and the discontinuous phase in the vicinity of the outer peripheral surface is significantly larger than that of the conductive belts according to Comparative Examples 1 to 9. It was alleviated.
  • the average permanent curl height of the conductive belt according to the example was reduced by at least 45 ⁇ m as compared with those of the conductive belt according to the comparative example.
  • the difference in the permanent curl height of 45 ⁇ m in the intermediate transfer belt has a great influence on the transfer accuracy of the toner image during the primary transfer of the electrophotographic image formation, and hence the quality of the electrophotographic image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

 パーマネントカールを低減した電子写真用の円筒状の導電性ベルトに関する。 該導電性ベルトは、熱可塑性ポリエステル樹脂を含む連続相と、ポリエーテルエステルアミドおよびポリエーテルアミドから選ばれるどちらか一方または両方を含む不連続相とを有し、かつ、該不連続相が周方向に延びて存在している円筒状の電子写真用の導電性ベルトであって、結晶化度が内周面側よりも外周面側が低い。

Description

導電性ベルト及び電子写真装置
 本発明は、電子写真装置の中間転写ベルトなどに用いられる電子写真用の円筒状の導電性ベルト及び電子写真装置に関する。
 特許文献1は、ポリエステル系エラストマー及び/または熱可塑性ポリエステル樹脂に対して、高分子イオン導電剤としてポリエーテルエステルアミドが添加されてなる電子写真画像形成装置の中間転写ベルトに用いる導電性エンドレスベルトを開示している。かかるベルトは、導電剤としてカーボンブラック等の電子導電性の導電剤で導電化した場合と比較して、添加量に対する導電性の変化が緩やかであり、電気抵抗の制御が容易である。
 ここで、ポリエステル系エラストマーや熱可塑性ポリエステル樹脂とポリエーテルエステルアミドやポリエーテルアミドとは基本的に非相溶である。そのため、特許文献1に係る導電性エンドレスベルトは、ポリエステル系熱可塑性エラストマーで構成された連続相と、ポリエーテルエステルアミド共重合体で構成された非連続相とを有する構造となる。このことは特許文献2及び3に開示されている通りである。
特開2008-89961号公報 特開2008-274286号公報 特開2005-164674号公報
 本発明者等は、結晶性の熱可塑性ポリエステル樹脂を含む連続相と、導電剤としてのポリエーテルエステルアミドまたはポリエーテルアミドを含む不連続相とを有し、該不連続相が周方向に延びて存在する円筒状の導電性ベルトについて検討を重ねてきた。
 ここで、円筒状の電子写真用の導電性ベルトは一般に以下のような課題を有している。すなわち、電子写真用の円筒状の導電性ベルトは、電子写真装置内において、複数のローラ間に一定の張力で架け渡された状態に置かれる。そのため、長期にわたって導電性ベルトが静止した状態が継続すると、当該導電性ベルトの、ローラに当接して最も曲率が大きくなっている部分に、容易には回復しないカール(以降「パーマネントカール」と称する)が生じることがあった。電子写真用ベルトのパーマネントカールの発生した部位は、当該部位がローラから離れた位置に移動したときにも当該パーマネントカールによる変形が維持されている。そのため、当該変形部位への電子写真感光体からのトナー像の転写が不十分となり、電子写真画像にスジ等を生じさせることがある。
 本発明者等は、前記した、結晶性の熱可塑性ポリエステル樹脂を含む連続相と、ポリエーテルエステルアミドを含む不連続相とを有し、該不連続相が周方向に延びて存在する構成を有する円筒状導電性ベルトへのパーマネントカールの発生メカニズムについて検討してきた。その結果、この導電性ベルトに生じるパーマネントカールには、当該構成に特有の原因があることを新たに見出した。
 そこで、本発明の目的は、上記の構成を有し、かつ、機械的強度に優れ、また、パーマネントカールが生じにくい電子写真用の円筒状の導電性ベルトを提供することにある。また、その他の本発明の目的は高品位な電子写真画像を安定して形成できる電子写真装置を提供することにある。
 本発明に係る導電性ベルトは、熱可塑性ポリエステル樹脂を含む連続相と、ポリエーテルエステルアミドおよびポリエーテルアミドから選ばれるどちらか一方または両方を含む不連続相とを有し、かつ、該不連続相が周方向に延びて存在している円筒状の電子写真用の導電性ベルトであって、結晶化度が内周面側よりも外周面側が低いことを特徴とする。
 また、本発明に係る電子写真装置は、上記の導電性ベルトを中間転写ベルトとして具備していることを特徴とする。
 本発明によれば、パーマネントカールが生じにくく、かつ、機械的強度に優れた電子写真用の円筒状導電性ベルトを得ることが出来る。また、本発明によれば、高品位な電子写真画像を安定して形成できる電子写真装置を得ることができる。
本発明に係る導電性ベルトの説明図である。 本発明に係る導電性ベルトの説明図である パーマネントカールの発生メカニズムの説明図である。 本発明に係る電子写真装置の説明図である。 本発明に係る導電性ベルトの製造に用いる延伸ブロー成形機の概略図である。
 本発明者らは、結晶性の熱可塑性ポリエステル樹脂を含む連続相と、ポリエーテルエステルアミドを含む不連続相とを有し、該不連続相が周方向に延びて存在する構成を有する円筒状の導電性ベルトへのパーマネントカールの発生メカニズムを以下の如く解析した。
 まず、パーマネントカールとは、導電性ベルトが張架されたローラに巻きつけられた部分が、ゴムの如き元の形状への復元力を失い、ローラに巻きついたままの形状が維持された状態であると捉えた。
 ここで、図1A及び1Bは、熱可塑性ポリエステル樹脂を含む連続相と、ポリエーテルエステルアミドおよびポリエーテルアミドから選ばれるどちらか一方または両方を含む不連続相とを有し、かつ、該不連続相が周方向に延在している円筒状の導電性ベルトの斜視図である。図1Bは、図1Aの周方向断面の部分拡大図である。図1A及び1B中、101は熱可塑性ポリエステル樹脂(以降、単に「PE」ともいう)を含む連続相を示し、103はポリエーテルエステルアミドおよびポリエーテルアミドから選ばれる何れか一方または両方を含む不連続層を示す。そして、不連続層103は、導電性ベルトの周方向に延びて存在している。
 本発明者らは、かかる構成を有する導電性ベルトを2本のロール間に張架し、長期に亘り静止状態におくことによりパーマネントカールが発生した部分の周方向の断面について観察した。その結果、図2に示した様に、導電性ベルトの外周側に存在している不連続層と連続相との界面に微小な間隙102が存在していた。この間隙は、導電性ベルトの外周側に引っ張りの力が作用し、連続相と不連続相の挙動の差異により生じたものと考えられる。そして、かかる間隙は、連続相と不連続相との物理的な結合を弱めることとなる結果、導電性ベルトの形状復元力が低下し、パーマネントカールを生じさせているものと推測した。
 そこで、本発明者等は、パ-マネントカールの発生原因と考えられる連続相と不連続相との界面への間隙の発生を抑制すべく検討を重ねた。その結果、導電性ベルトの厚さ方向で、引張力が加わる外周面側よりも圧縮力が加わる内周面側で、結晶化度が相対的に高くなるような構成とすることで上記の界面への間隙発生を抑制でき、かつ、パーマネントカールの軽減に資することを見出した。上記のような内周面と外周面での結晶化度の相対的関係が、パーマネントカールを軽減させる理由は明らかでないが、以下のように推定している。円筒状の導電性ベルトが複数のローラ間に張架されたとき、導電性ベルトのローラに接している部分の外周面側には引張力が、内周面側に圧縮力が作用することは先に述べた。このとき、外周面側の結晶化度を相対的に低くすることで、外周面側の引張力の作用により伸びやすくすることで、連続相と不連続相との界面への応力集中を緩和し、連続相と不連続相との界面への間隙発生を抑制できているものと考えられる。一方、圧縮力が作用する内周面側は、ローラとの当接したときには圧縮力が作用し、ローラとの当接が解かれると当該圧縮力から開放される。このとき、内周面側の結晶化度を相対的に高くして、緻密な構成とすることで、導電性ベルトの内周面側が圧縮力から開放された後の元の形状への復元力を、より強くできるものと考えられる。その結果、導電性ベルト全体として、長期のローラとの接触から解かれた部分が、元の形状に復元し易くなり、パーマネントカールを生じにくくすることができるものと考えられる。
 次に、本発明に係る電子写真用の円筒状の導電性ベルトの構成を説明する。
本発明に係る導電性ベルト100の周方向の断面は、図1Bに示したように、熱可塑性ポリエステル樹脂を含む連続相101と、ポリエーテルエステルアミドおよびポリエーテルアミドから選ばれるどちらか一方または両方を含む不連続相103とを有する。また、該不連続相103は周方向に延在している。そして、導電性ベルト100の結晶化度が、内周面よりも外周面側が低くなっている。
 まず、導電剤としてのポリエーテルエステルアミドやポリエーテルアミドを含む不連続層103を周方向に延びて存在させることにより、複数の不連続層の間の距離を相対的に短くすることができる。その結果、複数の不連続相の間でリーク電流が流れやすくなり、導電性ベルトの導電性の向上を図ることができるという技術的意義を有する。
 結晶化度を内周面側よりも外周面側で相対的に低くすることの技術的な意義は、上記した通りである。外周面側および内周面側の具体的な結晶化度は、導電性ベルトが張架されるローラの径や張力に応じて適宜調整すればよい、結晶化度の具体的な調整方法は、本発明に係る導電性ベルトの製造方法として後に詳述する。
 次に、本発明に係る導電性ベルトの材料について詳述する。
<熱可塑性ポリエステル樹脂>
連続相101を構成する熱可塑性ポリエステル樹脂(以降「PE」と略記する)は、ジカルボン酸成分とジヒドロキシ成分との重縮合、オキシカルボン酸成分もしくはラクトン成分の重縮合、または、これらの成分を複数用いた重縮合などにより得ることができる。PEはホモポリエステルであってもコポリエステルであってもよい。ジカルボン酸成分の具体例を以下に示す。
・分子内の炭素原子数が8以上16以下の芳香族ジカルボン酸(テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸(2,6-ナフタレンジカルボン酸など)、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルメタンジカルボン酸、ジフェニルエタンジカルボン酸など);
・脂環族ジカルボン酸(シクロヘキサンジカルボン酸などの含有炭素原子数が4~10個のシクロアルカンジカルボン酸);
・脂肪族ジカルボン酸(コハク酸、アジピン酸、アゼライン酸、セバシン酸などの含有炭素原子数が4~12個の脂肪族ジカルボン酸)。
 また、上記のジカルボン酸の誘導体も用い得る。具体的には、エステル形成可能な誘導体(例えば、ジメチルエステルなどの低級アルキルエステル、酸無水物、酸クロライドなどの酸ハライド)が例示できる。これらのジカルボン酸成分は、単独でまたは二種以上組合せて使用できる。好ましいジカルボン酸成分は、結晶性、耐熱性の観点から、芳香族ジカルボン酸であり、より好ましくは、テレフタル酸、イソフタル酸およびナフタレンジカルボン酸である。
 前記ジヒドロキシ成分の例を以下に示す。
・含有炭素原子数が2~10個のアルキレンジオール(エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール);
・含有炭素原子数が4~12個の脂環族ジオール(シクロヘキサンジオール、シクロヘキサンジメタノール);
・含有炭素原子数が6~20個の芳香族ジオール(ハイドロキノン、レゾルシン、ジヒドロキシビフェニル、ナフタレンジオール、ジヒドロキシジフェニルエーテル、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA));
・前記芳香族ジオールのアルキレンオキサイド付加体(例えば、ビスフェノールAの炭素原子数が2~4個のアルキレンオキサイド付加体)、
・ポリオキシアルキレングリコール(ジエチレングリコール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコールなどのポリオキシアルキレングリコール)。
 これらのジヒドロキシ成分は、エステル形成可能な誘導体(例えば、アルキ基、アルコキシ基またはハロゲン置換体など)であってもよい。これらのジヒドロキシ成分は、単独でまたは二種以上組合せて使用できる。これらのジヒドロキシ成分のうち、結晶性、耐熱性等の観点から、アルキレンジオール(特に炭素原子数2~4個のアルキレンジオール)および脂環族ジオールを用いることが好ましい。
 また、前記オキシカルボン酸成分としては、オキシ安息香酸、オキシナフトエ酸、ジフェニレンオキシカルボン酸、2-ヒドロキシプロパン酸などのオキシカルボン酸、およびこれらオキシカルボン酸の誘導体が例示できる。これらのオキシカルボン酸成分は、単独でまたは二種以上組み合わせて使用できる。
 前記ラクトン成分には、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(例えば、ε-カプロラクトンなど)などのC3~C12ラクトンなどが含まれる。これらのラクトン成分も一種または二種以上組合せて使用できる。
 さらに、結晶性、耐熱性が維持される範囲内で、多官能性モノマーを併用してもよい。多官能モノマーの例としては、トリメリット酸、トリメシン酸、ピロメリト酸などの多価カルボン酸、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールなどの多価アルコールが挙げられる。このような多官能性モノマーの使用により生成する分岐または架橋構造を有するポリエステルも使用できる。
 PEは、上記成分(ジカルボン酸成分およびジヒドロキシ成分、オキシカルボン酸成分、ラクトン成分、またはこれら成分のうちの複数)を用いて重縮合により製造することができる。そして、結晶性、耐熱性等の点から、PEとしては、ポリアルキレンテレフタレート、ポリアルキレンナフタレートおよびポリアルキレンテレフタレートとポリアルキレンイソフタレートとの共重合体から選ばれる少なくとも一つである。共重合体としては、例えばブロック共重合体およびランダム共重合体が挙げられる。ポリアルキレンテレフタレート、ポリアルキレンイソフタレートおよびポリアルキレンナフタレート中のアルキレンの炭素数は結晶性、耐熱性の観点から2以上16以下が好ましい。更に好ましくはポリエチレンテレフタレート、ポリエチレンテレフタレートとポリエチレンイソフタレートとの共重合体およびポリエチレンナフタレートから選ばれる少なくとも一つである。熱可塑性ポリエステル樹脂であれば2種類以上のブレンドもしくはアロイであってもよい。なお、ポリエチレンナフタレートの具体例としては、市販のTN-8050SC(商品名、帝人化成(株)製)およびTN-8065S(商品名、帝人化成(株)製)を挙げることができる。ポリエチレンテレフタレートとして、市販のTR-8550(商品名、帝人化成(株)製)、ポリエチレンテレフタレートとポリエチレンイソフタレートの共重合体として、市販のPIFG30(商品名、(株)ベルポリエステルプロダクツ製)を挙げられる。
 PEの固有粘度は、好ましくは1.4dl/g以下、より好ましくは0.3dl/g以上1.2dl/g以下、さらに好ましくは0.4dl/g以上1.1dl/g以下である。固有粘度が1.4dl/g以下であれば、成形時の流動性の低下を抑制できる。0.3dl/g以上であれば、本発明に係る導電性ベルトの、強度や耐久性のより一層の向上を図ることができる。なお、熱可塑性ポリエステル樹脂の固有粘度は、熱可塑性ポリエステル樹脂の希釈溶媒にo-クロロフェノールを用いて、熱可塑性ポリエステル樹脂のo-クロロフェノール溶液の濃度を0.5質量%、温度を25℃にして測定した値である。
 PEは、PEと後述するポリエーテルエステルアミド(PEEA)およびポリエーテルアミド(PEA)の総質量に対して、50質量%以上、特には60質量%以上、さらには70質量%以上とすることが好ましい。50質量%以上であれば、電子写真用ベルトの耐久性が低下することをより有効に抑制できる。
 <ポリエーテルエステルアミド(PEEA)、ポリエーテルアミド(PEA)>
PEEAとしては、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミドブロック単位と、ポリエーテルエステル単位とからなる共重合体を主たる成分とする化合物を挙げることができる。例えば、ラクタム(例えばカプロラクタム、ラウリルラクタム)またはアミノカルボン酸の塩と、ポリエチレングリコールと、ジカルボン酸とから誘導される共重合体などが挙げられる。前記ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン2酸、ドデカン2酸等が挙げられる。PEEAは溶融重合などの公知の重合方法で製造することができる。勿論、これらに限定されるものではなく、前記PEEAは2種以上のブレンドまたはアロイであってもよい。また、市販のPEEA(商品名:イルガスタットP20、チバスペシャリティーケミカルズ(株)製)、(商品名:TPAE H151、富士化成工業(株)製)および(商品名:ペレスタットNC6321、三洋化成工業(株)製)を用いることもできる。
 PEAとしては、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミドブロック単位と、ポリエーテルジアミン単位と、ジカルボン酸単位とからなる共重合体を主たる成分とする化合物を挙げられる。PEAの具体例としては、ラクタム(例えばカプロラクタム、ラウリルラクタム)またはアミノカルボン酸の塩と、ポリテトラメチレンジアミンと、ジカルボン酸とから誘導される共重合体などが挙げられる。前記ジカルボン酸としては、上記したものと同様のものを用いることができる。PEAは溶融重合などの公知の重合方法で製造することができる。また、これらに限定されず、前記ポリエーテルアミドを2種以上ブレンドしたものや、それらのアロイを用いることもできる。また、市販の(商品名:ペバックス5533、アルケマ(株)社製)を用いることもできる。
 ・配合量:
PEEAおよびPEAの合計量は、PEとPEEAとPEAの総質量に対して、3質量%以上30質量%以下、特には5質量%以上20質量%以下とすることが好ましい。PEEA及びPEAは、導電剤として機能する。そのため、3質量%以上とすることで熱可塑性樹脂組成物、ひいては電子写真用ベルトの電気抵抗を適度に低下させることができる。また、30質量%以下とすることで、樹脂の分解による低粘度化をより良好に抑制でき、その結果として成形された電子写真用ベルトの耐久性を更に向上させられる。
 <添加剤>
不連続相および連続相のいずれか一方または両方には、本発明の効果を損なわない範囲で、他の成分、例えば絶縁性フィラー等を含有させてもよい。絶縁性フィラーの具体例を以下に示す。酸化亜鉛、硫酸バリウム、硫酸カルシウム、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、酸化チタン、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム等。
 <製造方法>
本発明に係る導電性ベルトは3つの構成上の特徴を有する。第1には、PEを含む連続相とPEEA及びPEAから選ばれるいずれか一方または両方とを含む不連続相を有すること、第2に不連続相が周方向に延びて存在していること、第3に厚み方向の結晶化度が外周面側が内周面側よりも低いことである。
そして、上記第1の特徴の構成の達成には、導電性ベルトの製造に用いる熱可塑性樹脂組成物の組成の調整が必要である。すなわち、PEの導電性ベルトの製造に用いる熱可塑性樹脂組成物の総質量に対する質量比をAとし、PEEAおよびPEAの総質量の導電性ベルトの製造に用いる熱可塑性樹脂組成物の総質量に対する質量比をBとしたとき、A>Bとすることが必要である。より好ましくはA/B>2である。
 上記第2の特徴の構成の達成には、上記特定組成の熱可塑性樹脂組成物からなる試験管形状のプリフォームを二軸延伸成形してシームレス形状のベルトを製造する方法が採用される。かかる方法自体は、特開2006-76154号公報および特開2001-18284号公報に記載されているように公知である。二軸延伸成形してシームレス形状の導電性ベルトを得る具体的な1つの方法を以下に述べる。まず、前記熱可塑性樹脂組成物からなる試験管形状のプリフォームを製造する。次いで、加熱した当該プリフォームをシームレスベルト成形用金型内に装着する。その後、試験管形状のプリフォームを内部から延伸棒で該プリフォームを軸方向に延伸させると共に、該プリフォーム内に気体を流入させて該プリフォームを径方向に延伸させ、ボトル形成形物を得る。そして、当該ボトル状成形物の胴部を切断してシームレスベルトを得る。このような2軸延伸成形法を採用することで、不連続相が周方向に延伸され、周方向に延びたシームレス形状の導電性ベルトを得ることができる。ここで不連続相のアスペクト比の目安としては平均値で10~30、特には15~25である。ここでアスペクト比とは、円筒状の導電性ベルトを輪切りにしたときの断面に現れる不連続相の厚さの最大値(t)に対する周方向の長さ(l)の比率をいう。
 最後に、上記第3の特徴の構成は、熱可塑性樹脂組成物からなる試験管形状を有するプリフォームの結晶状態の制御および当該プリフォームを二軸延伸させる際のプリフォームの内壁および外壁の表面温度の制御により達成できる。
 まず、熱可塑性樹脂組成物からなる試験管形状のプリフォームは後述する二軸延伸が可能な程度に非晶質な状態を有していることが必要である。かかるプリフォームは熱可塑性樹脂組成物をプリフォームの形状の金型内に射出成形により製造する際の金型温度の調整により得ることができる。具体的には、金型温度を熱可塑性樹脂組成物の融点よりも十分に低い温度に設定して金型内で熱可塑性樹脂組成物を急冷させる。例えば、下記表1に示す熱可塑性樹脂組成物の融点は260℃である。かかる熱可塑性樹脂組成物を、金型温度30~40℃に温調した金型に射出成形することにより二軸延伸可能な程度に非晶質な状態のプリフォームを得られる。
Figure JPOXMLDOC01-appb-T000001
 次にこの非晶質なプリフォームを加熱して金型内にて二軸配向延伸させ、ボトル形状の成形物を成形する際のプリフォームの内壁加熱温度および外壁加熱温度を熱可塑性樹脂組成物のガラス転移温度以上、融点以下の温度範囲内で制御する。具体的には、プリフォームの内壁の表面温度が、プリフォ-ムの結晶化温度±5℃程度となるように加熱する。一方、外壁については、表面温度がプリフォームのガラス転移温度以上、結晶化温度-10℃以下となるように加熱する。上記表1の熱可塑性樹脂組成物からなるプリフォームの結晶化温度は170℃である。そのため、プリフォームを、その内壁温度が、165~175℃の範囲内となるように加熱し、外壁温度が100~160℃の範囲内となるように加熱することが好ましい。そして、内壁温度及び外壁温度の各々を上記の温度範囲内で調整することで、導電性ベルトの内周面および外周面の結晶化度を調整できる。そして、かかる状態に加熱したプリフォームに対して、延伸棒を用いてプリフォームを、その軸方向に延伸させると共に、該プリフォームの内部に気体を吹き込んで径方向に延伸させ、ボトル状成形物を得る。このときプリフォームに吹き込む気体の温度は、プリフォ-ムの延伸工程中、プリフォームの内壁が、上記した温度範囲を逸脱することのないように温度調整されていることが好ましい。なお、プリフォームの二軸延伸により得られるボトル状成形物の表面が接する金型の温度は、当該ボトル状成形物の外壁の結晶化度に与える影響は無視し得る。
このようにして得られたボトル状成形物の胴部分を所定の幅に切断せいて本発明に係る円筒形状の導電性ベルトが得られる。
 電子写真用の導電性ベルトの厚さとしては、10μm以上500μm以下、特には、30μm以上150μm以下が一般的である。また、導電性ベルトの体積固有抵抗は、導電性ベルトの用途に応じて、PEとPEEAまたはPEAとの量を調整して適宜調整すればよい。具体的な体積固有抵抗率の目安としては、導電性ベルトを中間転写ベルトとして用いる場合には、1×10Ωcm以上1×1014Ωcm以下である。 
 <電子写真装置>
本発明に係る電子写真装置について説明する。図3はフルカラー電子写真装置の断面図である。図3中、中間転写ベルト5として本発明に係る円筒状の導電性ベルトを使用している。電子写真感光体1は第1の画像担持体として繰り返し使用される回転ドラム型の電子写真感光体(以下、「感光ドラム」と記す)であり、矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。感光ドラム1は回転過程で、一次帯電器2により所定の極性・電位に一様に帯電処理される。次いで露光手段による画像露光3を受けることにより目的のカラー画像の第1色成分像(例えば、イエロー色成分像)に対応した静電潜像が形成される。なお、前記露光手段としては、カラー原稿画像の色分解・結像露光光学系、画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームを出力するレーザースキャナによる走査露光系等が挙げられる。次いで、その静電潜像が第1の現像器(イエロー色現像器41)により第1色であるイエロートナーYにより現像される。この時第2~第4の現像器(マゼンタ色現像器42、シアン色現像器43、ブラック色現像器44)の各現像器は作動がオフになっていて感光ドラム1には作用せず、上記第1色のイエロートナー画像は上記第2~第4の現像器により影響を受けない。電子写真用ベルト5は矢印方向に感光ドラム1と同じ周速度をもって回転駆動されている。感光ドラム1上のイエロートナー画像は、感光ドラム1と中間転写ベルト5とのニップ部を通過時に、対向ローラ6から電子写真用ベルト5に印加される1次転写バイアスにより形成される電界により、中間転写ベルト5の外周面に転写される(1次転写)。電子写真用ベルト5に第1色のイエロートナー画像の転写を終えた感光ドラム1の表面は、クリーニング装置13により清掃される。以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のブラックトナー画像が順次電子写真用(中間転写)ベルト5上に重ね合わせて転写され、目的のカラー画像に対応した合成カラートナー画像が形成される。二次転写ローラ7は、駆動ローラ8に対応し平行に軸受させて電子写真用ベルト5の下面部に離間可能な状態に配設されている。
 感光ドラム1から電子写真用ベルト5への第1~第3色のトナー画像の1次転写工程の際に、二次転写ローラ7は電子写真用ベルト5から離間することも可能である。電子写真用ベルト5上に転写された合成カラートナー画像の第2の画像担持体である転写材Pへの転写は、次のように行われる。まず、二次転写ローラ7が電子写真用ベルト5に当接されると共に、給紙ローラ11から転写材ガイド10を通って、電子写真用ベルト5と二次転写ローラ7との当接ニップに所定のタイミングで転写材Pが給送される。そして、2次転写バイアスが電源31から二次転写ローラ7に印加される。この2次転写バイアスにより電子写真用(中間転写)ベルト5から第2の画像担持体である転写材Pへ合成カラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着器15へ導入され加熱定着される。転写材Pへの画像転写終了後、電子写真用ベルト5にはクリーニング装置の中間転写ベルトクリーニングローラ9が当接され、感光ドラム1とは逆極性のバイアスを印加される。これにより、転写材Pに転写されずに電子写真用ベルト5上に残留しているトナー(転写残トナー)に感光ドラム1と逆極性の電荷が付与される。33はバイアス電源である。前記転写残トナーは、感光ドラム1とのニップ部およびその近傍において感光ドラム1に静電的に転写されることにより、電子写真用ベルト5がクリーニングされる。
 以下に実施例および比較例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例では電子写真用ベルトのうちの電子写真用シームレスベルトを作製し、実施例および比較例に用いた分析および物性の測定は次のように行った。
 (特性値の測定法、評価法)
実施例および比較例で作製した電子写真用シームレスベルトの特性値の測定方法および評価方法は次のとおりである。
 (1)体積固有抵抗率(ρv)
測定装置は、抵抗計として超高抵抗計(商品名:R8340A、アドバンテスト(株)製)を、そして試料箱として超高抵抗測定用試料箱(商品名:TR42、アドバンテスト(株)製)を使用する。主電極の直径を25mmとし、ガード・リング電極の内径を41mm、外径を49mmとする(ASTMD257-78に準拠)。
 電子写真用シームレスベルトの体積固有低抗率測定用サンプルは次のように作製する。まず、電子写真用シームレスベルトを直径56mmの円形に、打ち抜き機または鋭利な刃物を使用して切り抜く。切り抜いた円形片の片面の全面にPt-Pd蒸着膜により電極を設け、もう一方の面にPt-Pd蒸着膜により直径25mmの主電極と内径38mm、外径50mmのガード電極を設ける。Pt-Pd蒸着膜はスパッタリング装置(商品名:マイルドスパッタE1030、日立製作所(株)製)を用いて、電流15mA、ターゲット(Pt-Pd)と試料(電子写真用シームレスベルトの円形片)間の距離15mmで蒸着操作を2分間行うことにより得た。蒸着操作の終了した円形片を前記測定用サンプルとした。また、測定雰囲気は温度23℃、相対湿度52%とし、前記測定用サンプルは予め同雰囲気下に12時間以上放置しておく。体積固有低抗率の測定モードはディスチャージ10秒、チャージ30秒、メジャー30秒とし、印加電圧100Vで行う。この測定モードにて10回体積固有低抗率を測定し、その10回の測定値の平均値を電子写真用シームレスベルトの体積固有抵抗率として採用した。
 (2)結晶化度
結晶化度は、得られた電子写真用ベルトを30mm×30mmに切断し、下記の装置、条件にて電子写真用ベルトの内周面、外周面を測定した。
装置:X線回折装置 リガク(株)製  RINT-2200
出力:30kV-50mA
ターゲット:Cu(CuKα)
光学系:第1ピンホールコリメータ 1.0mmφ
レシービングスリット(縦幅スリット1゜ 横幅スリット1゜)
測定条件:平行ビーム法
測定速度:10°/min
測角範囲:2θ=5~40゜
樹脂の非晶質部分と結晶質部分の両方の回折ピークが現れる、2θ=5~40°の回折角度におけるピークの積分強度から、下記式(1)にて結晶化度(%)を算出した。
結晶化度=(結晶質部分(2θ=26°の付近のピーク)の積分強度/非晶質と結晶質を含む部分(2θ=5~40°)の積分強度)×100(%) ・・・式(1)
 (3)不連続相の平均アスペクト比
電子写真用ベルトの円周方向の厚み断面をミクロトーム等で切削し、断面を電界放射走査型電子顕微鏡(FE-SEM)XL30(商品名:FEIテクノロジー(株)製)で観察した。断面から観察される海島構造(海成分がポリエステル、島構造成分はポリエーテルエステルアミド)のうち、100μm×100μmの範囲内で各島に相当する部分のアスペクト比を二値化処理により算出し、その平均値を採用した。
 (4)パーマネントカール高さ
導電性ベルトを図3で示されるような装置構造を有するレーザビームプリンタ(商品名:LBP-5200、キヤノン(株)製)の中間転写ユニットに中間転写ベルトとして装着した。このレーザビームプリンタの中間転写ベルトは直径が18mmの駆動ローラと、直径が15mmのテンションローラとの間に、張架応力6kgfにて架け渡されている。このレーザビームプリンタを、温度35℃、95%RHの環境下に1ヶ月静置した。次いで、導電性ベルトを若干量回転駆動させて、静置時に駆動ローラと接していた部分を駆動ローラから離間させ、その状態で温度35℃、相対湿度95%RHの環境下で1日静置した。その後、導電性ベルトの、静置時に駆動ローラが当接していた部分の駆動ローラの当接跡の高さを表面粗さ計(商品名:SE-3500、小坂研究所(株)製)を用いて測定した。この高さをパ-マネントカール高さと定義する。この高さが高いほど、当該部分へのトナー像の一次転写不良が生じ易い。
 (5)画像評価
上記の評価(4)の後、温度23℃、50%RHの環境下で、155g/mのA4サイズのグロス紙にイエローとマゼンタの2色を使用してオレンジのベタ画像をプリントした。この画像を目視で観察して、パーマネントカールに起因するスジの有無を確認し、以下の基準で評価した。
A:スジが確認できない。
B:スジが確認できる。
 (実施例および比較例に用いた熱可塑性樹脂組成物の材料)
後述の実施例および比較例に用いた熱可塑性樹脂組成物の材料を表2~4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 〔実施例1〕
二軸押出し機(商品名:TEX30α、日本製鋼所(株)社製)を用いて、表5に記載の配合にて熱熔融混練して熱可塑性樹脂組成物を調製した。熱熔融混練温度は260℃以上、280℃以下の範囲内となるように調整し、熱熔融混練時間はおよそ3~5分とした。得られた熱可塑性樹脂組成物をペレット化し、温度140℃で6時間乾燥させた。次いで、射出成形装置(商品名:SE180D、住友重機械工業(株)製)に、乾燥させたペレット状の熱可塑性樹脂組成物を投入した。そして、シリンダ設定温度を295℃として、温度が30℃に温調された金型内に射出成形してプリフォームを作成した。得られたプリフォームは、外径が20mm、内径が18mm、長さが150mmの試験管形状を有する。そして、このプリフォームが非晶質な状態を含むものであることを以下の方法によって確認した。
 <プリフォームの非晶質性確認方法>
プリフォームから縦1mm×横1mmのサンプルを切り出し、該サンプルを示差走査型熱量計(DSC)にて測定した。測定条件は25℃から300℃まで昇温速度10℃/minにて行った。非晶質成分が残っている場合、170℃付近に見られる結晶化発熱ピークが現れる。そして、当該サンプルにおける、結晶化発熱ピークの発熱量が38J/gであった。一方、260℃付近に見られる融解吸熱ピークの吸熱量は62J/gであった。結晶化発熱ピークの発熱量が融解吸熱ピークの吸熱量の1/2以上であることから、該プリフォームは非晶質成分を十分に保持していることを確認した。
 次に、上記のプリフォームを図4に示した二軸延伸装置を用いて二軸延伸した。二軸延伸前に、プリフォーム104の外壁および内壁を加熱するための非接触型のヒータ(不図示)を備えた加熱装置107内にプリフォーム104を配置し、表5に示した温度の外部加熱ヒータ及び内部加熱ヒータで、プリフォームの外壁及び内壁を表5に示す表面温度となるように加熱した。次いで、加熱したプリフォーム104を、金型温度を110℃に保ったブロー金型108内に配置し、延伸棒109を用いて軸方向に延伸した。同時に、温度23℃に温調されたエアーをブローエアー注入部分110からプリフォーム内に導入してプリフォーム104を径方向に延伸した。こうして、ボトル状成形物112を得た。次いで、得られたボトル状成形物112の胴部を切断してシームレスな導電性ベルトを得た。この導電性ベルトの厚さは70μmであった。この導電性ベルトの評価結果を表6に示す。
 〔実施例2~9〕
熱可塑性樹脂組成物の配合ならびに外部加熱ヒータ温度、内部加熱ヒータ温度、外壁の表面温度、内壁の表面温度を表5に記載した通りとした以外は、実施例1と同様にして電子写真用シームレスベルトを得た。これらの導電性ベルトの評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
 なお、ガラス転移温度、結晶化温度および融点の各々は、示差走査型熱量計(DSC)を用いて、昇温速度10℃/分にて測定して得られる変局点の温度(ガラス転移温度)およびピークトップの温度(結晶化温度および融点)である。
Figure JPOXMLDOC01-appb-T000006
 〔比較例1~9〕
熱可塑性樹脂組成物の配合ならびに外部加熱ヒータ、内部加熱ヒータ、外部表面温度、内部表面温度を表7に記載した通りとした以外は、実施例1と同様にしてシームレスの導電性ベルトを得た。これらの導電性ベルトを実施例1と同様にして評価した。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記実施例1~9及び比較例1~9に係る導電性ベルトの周方向断面を電界放射走査型電子顕微鏡(FE-SEM)XL30(商品名:FEIテクノロジー(株)製)で倍率5000倍にて観察した。その結果、実施例1~9に係る導電性ベルトは、比較例1~9に係る導電性ベルトと比較して、外周面近傍の連続相と不連続相との界面における亀裂の発生が大幅に軽減していた。また、実施例に係る導電性ベルトの平均パーマネントカール高さは、比較例に係る導電性ベルトのそれらと比較して最低でも45μmの軽減が達成された。中間転写ベルトにおけるパーマネントカール高さの45μmの差異は、電子写真画像形成の一次転写の際のトナー像の転写精度、ひいては電子写真画像の品位に大きな影響を与えるものである。
1  感光ドラム
2  一次帯電器
3  画像露光
5  中間転写ベルト
6  一次転写対向ローラ
7  二次転写ローラ
8  駆動ローラ
9  中間転写ベルトクリーニングローラ
10  転写材ガイド
11  給紙ローラ
13  クリーニング装置
15  定着器
30、31、33  電源
 この出願は2010年2月26日に出願された日本国特許出願第2010-042730からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

Claims (4)

  1.  熱可塑性ポリエステル樹脂を含む連続相と、
    ポリエーテルエステルアミドおよびポリエーテルアミドから選ばれるどちらか一方または両方を含む不連続相とを有し、かつ、該不連続相が周方向に延びて存在している円筒状の電子写真用の導電性ベルトであって、
    結晶化度が内周面側よりも外周面側が低いことを特徴とする導電性ベルト。
  2.  前記熱可塑性ポリエステル樹脂が、ポリアルキレンテレフタレートおよびポリアルキレンナフタレートから選ばれる何れか一方または両方を含む請求項1に記載の導電性ベルト。
  3.  前記ポリアルキレンテレフタレートおよびポリアルキレンナフタレートが各々、ポリエチレンテレフタレートおよびポリエチレンナフタレートである請求項2に記載の導電性ベルト。
  4.  請求項1乃至3のいずれか1項に記載の導電性ベルトを中間転写ベルトとして具備していることを特徴とする電子写真装置。
PCT/JP2011/000890 2010-02-26 2011-02-17 導電性ベルト及び電子写真装置 WO2011105033A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127024334A KR101454095B1 (ko) 2010-02-26 2011-02-17 도전성 벨트 및 전자 사진 장치
EP11747006.2A EP2541337B1 (en) 2010-02-26 2011-02-17 Conductive belt and electrophotographic device
CN201180009827.3A CN102763043B (zh) 2010-02-26 2011-02-17 导电性带和电子照相设备
US13/165,695 US9034476B2 (en) 2010-02-26 2011-06-21 Conductive belt and electrophotographic apparatus
US14/676,685 US9753411B2 (en) 2010-02-26 2015-04-01 Conductive belt and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042730A JP5538954B2 (ja) 2010-02-26 2010-02-26 導電性ベルト及び電子写真装置
JP2010-042730 2010-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/165,695 Continuation US9034476B2 (en) 2010-02-26 2011-06-21 Conductive belt and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2011105033A1 true WO2011105033A1 (ja) 2011-09-01

Family

ID=44506468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000890 WO2011105033A1 (ja) 2010-02-26 2011-02-17 導電性ベルト及び電子写真装置

Country Status (6)

Country Link
US (2) US9034476B2 (ja)
EP (1) EP2541337B1 (ja)
JP (1) JP5538954B2 (ja)
KR (1) KR101454095B1 (ja)
CN (1) CN102763043B (ja)
WO (1) WO2011105033A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538954B2 (ja) * 2010-02-26 2014-07-02 キヤノン株式会社 導電性ベルト及び電子写真装置
WO2012147963A1 (ja) 2011-04-28 2012-11-01 株式会社神戸製鋼所 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5883351B2 (ja) 2011-06-10 2016-03-15 株式会社神戸製鋼所 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP6033037B2 (ja) 2012-10-26 2016-11-30 キヤノン株式会社 電子写真用エンドレスベルトの製造方法
JP6238692B2 (ja) * 2012-12-07 2017-11-29 キヤノン株式会社 導電性ベルトおよび電子写真装置
JP2014126576A (ja) * 2012-12-25 2014-07-07 Ricoh Co Ltd シームレスベルト、画像形成装置、シームレスベルトの製造方法
JP6041695B2 (ja) 2013-02-05 2016-12-14 キヤノン株式会社 電子写真用ベルト及び電子写真画像形成装置
US9158251B2 (en) * 2013-08-30 2015-10-13 Canon Kabushiki Kaisha Film and image heating device using film
JP2015055863A (ja) * 2013-09-13 2015-03-23 株式会社リコー 中間転写体、画像形成装置
US10466627B2 (en) 2016-02-10 2019-11-05 Ricoh Company, Ltd. Member for an image forming appratus
JP6625111B2 (ja) * 2016-12-19 2019-12-25 キヤノン株式会社 電子写真用ベルトおよび電子写真画像形成装置
US10551771B2 (en) 2018-04-19 2020-02-04 Canon Kabuskiki Kaisha Electrophotographic belt and electrophotographic image forming apparatus
US10698347B2 (en) 2018-12-04 2020-06-30 Canon Kabushiki Kaisha Electrophotographic belt and image forming apparatus
JP7434029B2 (ja) 2019-04-26 2024-02-20 キヤノン株式会社 電子写真用ベルト及び電子写真画像形成装置
JP7458912B2 (ja) 2019-07-02 2024-04-01 キヤノン株式会社 電子写真用ベルト及び電子写真画像形成装置
JP2023070081A (ja) 2021-11-05 2023-05-18 キヤノン株式会社 電子写真用ベルト及び電子写真画像形成装置
JP2023070080A (ja) 2021-11-05 2023-05-18 キヤノン株式会社 電子写真用ベルト及び電子写真画像形成装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207250A (ja) * 1997-01-23 1998-08-07 Tokai Rubber Ind Ltd 半導電性プラスチック無端ベルト
JP2001018284A (ja) 1999-07-06 2001-01-23 Suzuka Fuji Xerox Co Ltd シームレスベルト及びその製造方法
JP2002202668A (ja) * 2000-12-28 2002-07-19 Yuka Denshi Co Ltd エンドレスベルト、画像形成装置用ベルト及び画像形成装置
JP2003316174A (ja) * 2002-04-26 2003-11-06 Canon Inc 中間転写体及び転写部材、中間転写体及び転写部材の製造方法、並びに中間転写体及び転写部材を用いた画像形成装置
JP2005164674A (ja) 2003-11-28 2005-06-23 Canon Inc シームレスベルト
JP2006076154A (ja) 2004-09-10 2006-03-23 Canon Inc 電子写真用シームレスベルトの製造方法
JP2007233176A (ja) * 2006-03-02 2007-09-13 Canon Inc シームレスベルトおよびそれを用いた画像形成装置
JP2008089961A (ja) 2006-10-02 2008-04-17 Fuji Xerox Co Ltd 画像形成装置
JP2008191225A (ja) * 2007-02-01 2008-08-21 Canon Inc 電子写真用シームレスベルト
JP2008274286A (ja) 2008-05-26 2008-11-13 Sumitomo Rubber Ind Ltd 導電性ポリマー組成物
JP2009063902A (ja) * 2007-09-07 2009-03-26 Canon Inc 画像形成装置および中間転写ベルト
JP2010042730A (ja) 2008-08-11 2010-02-25 Kobelco Contstruction Machinery Ltd キャブ及びこれを備えた移動式建設機械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250335A (en) * 1989-06-23 1993-10-05 Toyo Seikan Kaisha, Ltd. Polyester vessel for drink and process for preparation thereof
JP3047732B2 (ja) * 1994-05-16 2000-06-05 東洋製罐株式会社 二軸延伸ブロー容器の製造方法
US5867316A (en) * 1996-02-29 1999-02-02 Minnesota Mining And Manufacturing Company Multilayer film having a continuous and disperse phase
US6737133B2 (en) 2000-09-19 2004-05-18 Canon Kabushiki Kaisha Electrophotographic seamless belt, and electrophotographic apparatus having the electrophotographic seamless belt
US6600893B2 (en) * 2000-09-19 2003-07-29 Canon Kabushiki Kaisha Transfer member, process for producing transfer member, and image forming apparatus having transfer member
US7208211B2 (en) 2000-09-19 2007-04-24 Canon Kabushiki Kaisha Electrophotographic belt member, process for producing electrophotographic belt member, and electrophotographic apparatus
US6463248B1 (en) * 2000-12-04 2002-10-08 Xerox Corporation Intermediate transfer belt providing high transfer efficiency of toner images to a transfuse member
JP2004094178A (ja) * 2002-04-26 2004-03-25 Canon Inc 電子写真エンドレスベルト、プロセスカートリッジおよび電子写真装置
US7641973B2 (en) * 2002-11-27 2010-01-05 Sumitomo Rubber Industries, Ltd. Conductive member for image-forming apparatus
EP1650609B1 (en) * 2003-07-25 2013-09-18 Mitsubishi Chemical Corporation Endless belt for image forming devices and image forming device
EP1784456A4 (en) * 2004-08-31 2012-09-05 Showa Denko Kk ELECTRICALLY CONDUCTIVE COMPOSITES WITH RESIN AND VGCF, METHOD OF MANUFACTURE AND USE THEREOF
JP5538954B2 (ja) * 2010-02-26 2014-07-02 キヤノン株式会社 導電性ベルト及び電子写真装置
JP6238692B2 (ja) * 2012-12-07 2017-11-29 キヤノン株式会社 導電性ベルトおよび電子写真装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207250A (ja) * 1997-01-23 1998-08-07 Tokai Rubber Ind Ltd 半導電性プラスチック無端ベルト
JP2001018284A (ja) 1999-07-06 2001-01-23 Suzuka Fuji Xerox Co Ltd シームレスベルト及びその製造方法
JP2002202668A (ja) * 2000-12-28 2002-07-19 Yuka Denshi Co Ltd エンドレスベルト、画像形成装置用ベルト及び画像形成装置
JP2003316174A (ja) * 2002-04-26 2003-11-06 Canon Inc 中間転写体及び転写部材、中間転写体及び転写部材の製造方法、並びに中間転写体及び転写部材を用いた画像形成装置
JP2005164674A (ja) 2003-11-28 2005-06-23 Canon Inc シームレスベルト
JP2006076154A (ja) 2004-09-10 2006-03-23 Canon Inc 電子写真用シームレスベルトの製造方法
JP2007233176A (ja) * 2006-03-02 2007-09-13 Canon Inc シームレスベルトおよびそれを用いた画像形成装置
JP2008089961A (ja) 2006-10-02 2008-04-17 Fuji Xerox Co Ltd 画像形成装置
JP2008191225A (ja) * 2007-02-01 2008-08-21 Canon Inc 電子写真用シームレスベルト
JP2009063902A (ja) * 2007-09-07 2009-03-26 Canon Inc 画像形成装置および中間転写ベルト
JP2008274286A (ja) 2008-05-26 2008-11-13 Sumitomo Rubber Ind Ltd 導電性ポリマー組成物
JP2010042730A (ja) 2008-08-11 2010-02-25 Kobelco Contstruction Machinery Ltd キャブ及びこれを備えた移動式建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541337A4 *

Also Published As

Publication number Publication date
US9034476B2 (en) 2015-05-19
US20150205230A1 (en) 2015-07-23
JP2011180275A (ja) 2011-09-15
US9753411B2 (en) 2017-09-05
US20110249995A1 (en) 2011-10-13
EP2541337A4 (en) 2015-05-20
EP2541337A1 (en) 2013-01-02
CN102763043A (zh) 2012-10-31
KR101454095B1 (ko) 2014-10-22
EP2541337B1 (en) 2016-01-27
KR20120121407A (ko) 2012-11-05
CN102763043B (zh) 2016-01-20
JP5538954B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5538954B2 (ja) 導電性ベルト及び電子写真装置
JP6625111B2 (ja) 電子写真用ベルトおよび電子写真画像形成装置
JP5517427B2 (ja) 電子写真用シームレスベルト
JP4701311B2 (ja) 電子写真用ベルト及び電子写真装置
JP6238692B2 (ja) 導電性ベルトおよび電子写真装置
JP7508261B2 (ja) 電子写真用ベルト及び電子写真画像形成装置
US11971669B2 (en) Electrophotographic belt and electrophotographic image forming apparatus
WO2021075296A1 (ja) 電子写真用ベルト及び電子写真画像形成装置
JP2021067942A5 (ja)
JP2006133472A (ja) 電子写真用シームレスベルト、電子写真用シームレスベルトの製造方法、及び電子写真用シームレスベルトを有する画像形成装置
JP2007025135A (ja) 電子写真用シームレスベルトの製造方法
JP2007199206A (ja) 電子写真用シームレスベルトおよびその製造方法
JP2006078848A (ja) 電子写真用シームレスベルト及び画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009827.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011747006

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127024334

Country of ref document: KR

Kind code of ref document: A