WO2011104941A1 - 表示パネルおよび表示装置 - Google Patents

表示パネルおよび表示装置 Download PDF

Info

Publication number
WO2011104941A1
WO2011104941A1 PCT/JP2010/069722 JP2010069722W WO2011104941A1 WO 2011104941 A1 WO2011104941 A1 WO 2011104941A1 JP 2010069722 W JP2010069722 W JP 2010069722W WO 2011104941 A1 WO2011104941 A1 WO 2011104941A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display panel
electrode
electrode pad
display device
Prior art date
Application number
PCT/JP2010/069722
Other languages
English (en)
French (fr)
Inventor
陽介 藤川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/579,156 priority Critical patent/US20120319144A1/en
Publication of WO2011104941A1 publication Critical patent/WO2011104941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Definitions

  • the present invention relates to a display panel and a display device, and more particularly to an active matrix display panel and a display device having a resin black matrix.
  • liquid crystal display devices and organic EL display devices have been widely used in various electronic devices such as TVs, monitors, and mobile phones, taking advantage of their high image quality, energy-saving, thin, and lightweight features. Has been.
  • an active matrix type display device in which a thin film transistor (hereinafter referred to as “TFT”) is used as a switching element of a pixel has a high response speed and easy multi-gradation display. Widely used.
  • TFT thin film transistor
  • a TFT substrate and a counter substrate are usually arranged to face each other, and a display element (liquid crystal, organic EL, etc.) is sealed between these substrates by a sealing material.
  • FIG. 8 is a configuration diagram showing a schematic configuration of an active matrix display device.
  • a TFT substrate 102 and a counter substrate 101 are arranged to face each other.
  • the counter substrate 101 is provided with a counter electrode and a color filter layer, while the TFT substrate 102 is provided with a pixel electrode and a TFT element.
  • the TFT substrate 102 has a scanning signal line driving circuit and a data signal line driving circuit formed monolithically.
  • the TFT substrate 102 is formed with a terminal patterned with a metal thin film in the terminal region 103, and the terminal and the external circuit substrate are connected via an FPC (Flexible Printed Circuit) 104 that is crimped to the terminal region 103. Are electrically connected.
  • FPC Flexible Printed Circuit
  • terminals are provided on a substrate located on the display surface side of the display panel, that is, a substrate corresponding to the counter substrate of the active matrix display device.
  • a zebra connector zebra rubber, anisotropic conductive rubber
  • an active matrix display device a configuration is known in which circuits and wirings formed in a frame region of a display panel are shielded by a black matrix formed of a black photosensitive resin or the like.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-222202 (published on August 17, 2001) Japanese Patent Publication “JP 2007-264447 A (published on October 11, 2007)”
  • the FPC is expensive and requires precise alignment with respect to the terminals, so that there is a problem that the production unit price increases and the productivity decreases.
  • the black matrix when a black matrix made of resin is provided, the black matrix has a thickness of about 1 ⁇ m, so that there is a problem that the thin wiring formed on the surface of the black matrix is likely to be disconnected. is there.
  • the present invention has been made in view of the above problems, and even if a black matrix is provided, disconnection is unlikely to occur, display quality is high, and an increase in production unit price can be suppressed, resulting in high productivity.
  • An object is to provide a display panel and a display device.
  • a display panel is a display panel in which a first substrate and a second substrate are arranged to face each other, on a surface of the first substrate facing the second substrate, One electrode pad is provided, a second electrode pad is provided on a surface of the second substrate facing the first substrate, and the first electrode pad and the second electrode pad are planar. At least a part of the second substrate overlaps in a view, and a black matrix is provided on a surface of the second substrate facing the first substrate, and the second electrode pad overlaps the black matrix in a plan view.
  • the first electrode pad is provided on a convex portion formed on the first substrate.
  • the separation distance between the second electrode pad and the first electrode pad is not uniform. Generation of unevenness can be suppressed, and display quality can be improved.
  • a first electrode pad is provided on a surface of the first substrate facing the second substrate, A second electrode pad is provided on a surface of the second substrate facing the first substrate, and at least a part of the first electrode pad and the second electrode pad overlap in plan view.
  • a black matrix is provided on a surface of the second substrate facing the first substrate, and the second electrode pad is provided at a position that does not overlap the black matrix in a plan view.
  • the first electrode pad is provided on a convex portion formed on the first substrate.
  • the separation distance between the second electrode pad and the first electrode pad is made substantially equal to the separation distance between the first substrate and the second substrate at other positions, thereby suppressing the occurrence of unevenness due to non-uniform separation distance. Display quality can be improved.
  • FIG. 5 is a plan view illustrating a configuration in the vicinity of an input terminal of a display panel including the protection circuit of FIG. 4.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure taken along line A-A ′ of the display panel of FIG. 5.
  • FIG. 4 is a cross-sectional view showing a cross-sectional structure taken along line B-B ′ of the display panel of FIG. 3. It is a block diagram which shows schematic structure of the conventional active matrix type display apparatus.
  • the display device is a display device that is less likely to cause disconnection even when a black matrix is provided, can suppress an increase in production unit price, and has high productivity.
  • Embodiment hereinafter, the configuration of the liquid crystal display device 1 according to an embodiment of the present invention will be described with reference to FIGS.
  • the description will be made on the assumption that the reflective liquid crystal display device 1 is an example of the display device, but the present invention is not limited to this, and a self-luminous display device, a transflective display device, a transmissive display device, The present invention can also be applied to a type display device.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a liquid crystal display device 1 according to an embodiment of the present invention.
  • the liquid crystal display device 1 of the present embodiment includes a display panel 10 and an external circuit board (circuit board) 5.
  • the display panel 10 includes a TFT substrate 2 (first substrate), a counter substrate 3 (second substrate), and a liquid crystal layer (not shown) sealed between the substrates 2 and 3. Note that a plurality of TFT elements and pixel electrodes connected to the TFT elements are formed on the TFT substrate 2, and a scanning signal line driving circuit and a data signal line driving circuit are monolithically formed. A counter electrode and a color filter are formed on the counter substrate 3. In the display panel 10, the display surface DS is on the counter substrate 3 side.
  • the display panel 10 includes a plurality of input terminals 4, 4 a, and 17 (second substrate terminals) for inputting data signals, control signals, and power signals, and the TFT substrate 2 of the counter substrate 3. It is provided along one side edge part of the opposing surface.
  • the second electrode pads 15 and 15a are provided for all the input terminals 4 and 4a and 17, respectively.
  • a data signal and a control signal are applied to the input terminal 4, and a voltage signal applied to the opposing electrode of the opposing substrate 3 is applied to the other input terminals 4 and 17 to the input terminal 17.
  • a power signal is input to each of the input terminals 4a formed wider, and is output to a scanning signal line drive circuit and a data signal line drive circuit (drive circuit) on the TFT substrate 2.
  • the counter substrate 3 projects in a bowl shape with respect to the TFT substrate 2 so that the input terminals 4, 4 a, and 17 are exposed.
  • the external circuit board 5 includes a control circuit that outputs a signal for controlling the display panel 10.
  • the external circuit board 5 is provided with a plurality of output terminals 6 and is arranged so as to face the corresponding input terminals 4, 4 a, and 17 in a plan view.
  • the input terminals 4, 4 a, 17 and the output terminal 6 are electrically connected by a zebra connector 9 as an anisotropic conductive material having a conductive band 7 and an insulating band 8 provided in stripes. . More specifically, the pair of input terminals 4, 4 a, and 17 and the output terminal 6 are electrically connected by sandwiching the conductive band 7 of the zebra connector 9.
  • the zebra connector 9 Since the zebra connector 9 has a large pitch size, it does not require precise alignment adjustment.
  • FIG. 2 is a plan view showing a schematic configuration of the counter substrate 3 provided in the liquid crystal display device 1 of the present embodiment.
  • the counter substrate 3 is formed with a counter electrode 16 made of a transparent electrode film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc oxide
  • a predetermined color filter is arranged in the display area 11 of the counter substrate 3, and a black matrix 40 made of black resin is arranged in the frame area.
  • a plurality of input terminals 4, 4 a, 17 that are electrically separated from the counter substrate 3 are arranged along one side edge of the counter substrate 3, and all the input terminals 4, 4 a are arranged.
  • Second electrode pads 15 and 15a are provided for 17 respectively.
  • the black matrix 40 is patterned so as not to overlap the input terminals 4, 4 a, 17 and the second electrode pads 15, 15 a in plan view.
  • the input terminals 4, 4 a, and 17 are preferably formed of the same material as the counter electrode 16. With the above configuration, these can be formed by patterning the same transparent electrode film.
  • the pitch of the input terminals 4, 4 a, and 17 is set to the conductive band of the zebra connector 9. It is most preferable that they are arranged at a pitch corresponding to the distance between 7 and the insulating band 8.
  • the input terminal 4a for inputting the power signal is preferably widened.
  • the input terminals 4 and 17 are arranged with a pitch P, and the power input terminals 4a are arranged with a pitch 2P.
  • the terminal width W of the power supply input terminals 4a is widened by the pitch P. However, it may be further widened if necessary.
  • two widened input terminals 4a are provided, but the present invention is not limited to this, and the number of these may be adjusted as necessary.
  • the pitch P and the terminal width W of the input terminals 4, 4 a, and 17 are set according to the input signal content.
  • the present invention is not limited to this, and for example, on the counter substrate 3 side as in the IPS mode.
  • the present invention can also be applied to a horizontal electric field mode liquid crystal mode that does not include a counter electrode.
  • FIG. 3 is a configuration diagram showing a schematic configuration of the display panel 10 provided in the liquid crystal display device 1 of the present embodiment.
  • the TFT substrate 2 includes a display area 11 in which a pixel circuit 51 is formed on a surface facing the counter substrate 3, a scanning signal line driving circuit 12, and a data signal line driving circuit 13. And a frame region formed monolithically based on polycrystalline silicon.
  • a pixel circuit 51 a plurality of pixel electrodes 20 and a plurality of TFT elements 21 are formed in a matrix.
  • polycrystalline silicon is used as the polycrystalline semiconductor film.
  • the present invention is not limited to this, and amorphous silicon, amorphous germanium, polycrystalline germanium, amorphous silicon / germanium is used.
  • a semiconductor film obtained by polycrystallizing polycrystalline silicon / germanium, amorphous silicon / carbide, polycrystalline silicon / carbide, or the like by laser annealing can be used.
  • the pixel electrode 20 preferably has light reflectivity. According to the above configuration, even in a reflective or transflective display device including the pixel electrode 20 having light reflectivity, light use efficiency is good, an increase in production unit price can be suppressed, and productivity can be suppressed. High liquid crystal display device can be realized.
  • the TFT substrate 2 is provided with a plurality of data signal lines SL and a plurality of scanning signal lines GL so as to intersect the data signal lines SL.
  • the TFT element 21 is provided corresponding to a location where each data signal line SL and each scanning signal line GL intersect, and is controlled by the data signal line SL and the scanning signal line GL.
  • a data signal of an image to be displayed on the display panel 10 is output from a part of the output terminal 6 provided in the external circuit board 5 shown in FIG.
  • the data signal is video data indicating the display state of each pixel, and is generated based on video data transferred in a time division manner.
  • a source clock signal and a source start pulse signal are output to the data signal line driving circuit 13 as timing signals for correctly displaying the data signal on the display panel 10, and gates A clock signal and a gate start pulse signal are output to the scanning signal line driving circuit 12.
  • the scanning signal line drive circuit 12 sequentially selects a plurality of scanning signal lines GL in synchronization with a timing signal such as the gate clock signal.
  • the data signal line driving circuit 13 operates in synchronization with a timing signal such as the source clock signal, specifies the timing according to each data signal line SL, samples the data signal at each timing, A signal corresponding to the sampling result is written to each data signal line SL.
  • Each pixel of the display panel 10 displays an image according to data output from the corresponding data signal line SL while the corresponding scanning signal line GL is selected.
  • the TFT substrate 2 is provided with common transition electrodes 41 at both corners of one side (short side), and is formed along end portions of both sides (long side) facing each other. 42, respectively.
  • the counter electrode 16 and the common transition electrode 41 are electrically connected by a conductive member such as gold particles contained in the sealing material 19.
  • a wiring (signal line, power supply line) 14 is drawn from the scanning signal line driving circuit 12 and the data signal line driving circuit 13 to the outside of the TFT substrate 2, and the driving circuits 12 and 13, which will be described later.
  • the protective circuit 38 and the first electrode pads 18 and 18a provided on the TFT substrate 2 are electrically connected in this order.
  • the common transfer wiring 42 is also electrically connected to the first electrode pad 18 provided on the TFT substrate 2.
  • the first electrode pads 18 and 18a are provided for all the wirings 14 and the common transfer wirings 42 taken out of the TFT substrate 2, and the first electrode pads 18 and 18a are provided on the TFT substrate 2 respectively. It is arrange
  • the input terminals 4, 4 a, 17 that are electrically separated from the counter electrode 16 are formed along one side edge of the counter substrate 3, and the individual input terminals 4,
  • the second electrode pads 15 and 15a are associated with 4a and 17, respectively.
  • the number of the second electrode pads 15 and 15a and the number of the first electrode pads 18 and 18a are the same.
  • the second electrode pads 15 and 15a and the first electrode pads 15 and 15a are the same.
  • the one electrode pads 18 and 18a are formed so as to overlap one-to-one.
  • the second electrode pad 15 a provided above the widened input terminal 4 a described above is formed wider than the other second electrode pads 15, and the first electrode is opposed to the first electrode pad 15 a.
  • the electrode pad 18 a is also formed wider than the other first electrode pads 18.
  • the sealing material 19 including a conductive member that conducts the second electrode pads 15 and 15a and the first electrode pads 18 and 18a will be described later.
  • the numbers of the input terminals 4, 4 a, 17, the second electrode pads 15, 15 a, and the first electrode pads 18, 18 a shown in FIG. 1 to FIG. 3 are exemplarily shown. What is necessary is just to adjust suitably.
  • the scanning signal line drive circuit 12 and the data signal line drive circuit 13 are monolithically formed on the TFT substrate 2, the number of input terminals 4 and 4a can be reduced.
  • the pitch of the input terminals 4 and 4a can be increased.
  • the pitches of the second electrode pads 15 and 15a and the first electrode pads 18 and 18a corresponding to the input terminals 4 and 4a can be increased, the second electrode pads 15 and 15a and the first electrodes can be increased.
  • the area that can be allocated to each of the pads 18 and 18a can be increased.
  • the liquid crystal display device 1 that can sufficiently reduce the conduction resistance between the second electrode pads 15 and 15a and the first electrode pads 18 and 18a.
  • a connector 9 can be used.
  • the pixel electrode 20 provided on the TFT substrate 2 is formed of a material having high reflectivity and low electrical resistance, such as aluminum or silver, but is not limited thereto. None happen.
  • a memory element may be built under the light-reflective pixel electrode 20 provided in each pixel, and a display device with low power consumption may be used.
  • An SRAM is an example of the memory element.
  • the SRAM may be one bit per pixel, and can be realized by arranging a plurality of SRAMs in each pixel for gradation display.
  • the power source capacity and the current value are small, so that it is suitable for the terminal connection by the zebra connector 9.
  • the common transition electrodes 41 are disposed at both corners of one side, but the present invention is not limited to this, and the arrangement location and number may be arbitrarily set. For example, it may be arranged in a total of four places at the four corners of the TFT substrate 2, or may be one place if it is a small display panel.
  • the sealing material 19 serves to seal the display device by joining the TFT substrate 2 and the counter substrate 3 at a predetermined interval, and is formed in a frame shape so as to follow the outer periphery of the TFT substrate 2. Is done.
  • the liquid crystal material is filled in a gap in the inner region surrounded by the seal material 19.
  • sealing material 19 for example, an ultraviolet curable resin, a thermosetting resin, or a combination resin thereof can be used.
  • a conductive member such as gold particles is contained in the sealing material 19.
  • the second electrode pad 15 / 15a and the first electrode pad 18 / 18a are electrically connected, and the second electrode pad 15 and the first electrode pad 18 / 18a are It is provided at the peripheral edge of the display panel 10 where the sealing material 19 is formed.
  • the counter electrode 16 and the common transition electrode 41 are electrically connected by the conductive member.
  • the counter electrode 16 is connected to the common transfer wiring 42 on the TFT substrate 2 through the common transfer electrode 41. Further, the common transfer wiring 42 has a wiring path that reaches the input terminal 17 on the counter substrate 3 after passing through the first electrode pad 18.
  • the formation process of the conductive member for conducting the electrical connection with 18a can be made one process, and the liquid crystal display device 1 with high productivity can be realized.
  • connection path crosses the black matrix 40.
  • the resistance can be set to such an extent that there is no problem on the circuit.
  • FIG. 4 is a circuit diagram showing an example of the protection circuit 38 provided in the liquid crystal display device 1 of the present embodiment.
  • the driving circuits 12, 13, the protection circuit 38, and the first electrode pad 18 are electrically connected in this order on the surface of the TFT substrate 2 facing the counter substrate 3. So that it is monolithically formed.
  • the protection circuit 38 is provided with two TFT elements (TFT1 and TFT2) formed by the same manufacturing process as the TFT element 21 provided in the display region 11 described above.
  • the drain electrode of one TFT element is connected to a high power source (H power source), and the source electrode is connected to the wiring from the input terminal 4 to be protected to the drive circuits 12 and 13. Further, the TFT element (TFT1) has a configuration in which the drain electrode and the gate electrode are connected, and exhibits a diode-like characteristic.
  • TFT1 when a voltage higher than the H power supply is applied to the wiring due to static electricity or the like, the TFT element (TFT1) is turned on and an abnormal current is released.
  • the drain electrode of the other TFT element is connected to the wiring from the input terminal 4 to be protected to the drive circuits 12 and 13, and the source electrode is connected to a low power source (L power source).
  • the TFT element has a configuration in which the drain electrode and the gate electrode are connected in the same manner as the TFT1, and exhibits a diode-like characteristic.
  • the TFT element (TFT2) is turned on, and a current flows from the L power supply.
  • the voltage applied to the wiring can always be kept below the H power source and above the L power source, and the TFT elements and the like provided in the drive circuits 12 and 13 can be damaged. Can be prevented.
  • resistors R1 and R2 as examples of resistors are provided on the wiring, and capacitors C1 and C2 are provided between the wiring, the H power source, and the L power source, respectively. ing.
  • TFT elements TFT1 and TFT2 themselves can be prevented from being damaged.
  • the protection circuit 38 having the structure as shown in FIG. 4 is provided, but the configuration is not limited to this, and the configuration may be changed as appropriate.
  • a protection circuit including a resistor and a transistor can be used as appropriate.
  • the protection circuit 38 may be provided at a plurality of locations on the surface of the TFT substrate 2 facing the counter substrate 3 such as the inside of the drive circuits 12 and 13.
  • FIG. 5 is a plan view showing a configuration in the vicinity of the input terminal 4 of the display panel 10 including the protection circuit 38 of FIG.
  • connection relationship of the components from the drive circuits 12 and 13 to the input terminal 4 is “drive circuit 12 and 13” ⁇ “protection circuit 38” ⁇ “first electrode pad 18” ⁇ “ The conductive member 19 a in the sealing material 19 ”—“ second electrode pad 15 ”—“ input terminal 4 ”is formed.
  • the protection circuit 38 since the protection circuit 38 is formed inside the sealing material 19, the protection circuit 38 can be protected from external scratches and corrosion.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure taken along line A-A ′ of the display panel 10 of FIG.
  • a base film 22 is formed on the TFT substrate 2, and a semiconductor film 24 is provided on the base film 22 corresponding to the formation position of the TFT portion shown in FIG.
  • a gate insulating film 25 is formed on the base film 22, and the semiconductor film 24 is covered with the gate insulating film 25.
  • the gate electrode 26 On the gate insulating film 25, the gate electrode 26, the L power supply line, and the H power supply line are formed by patterning the same metal layer.
  • the gate electrode 26, the L power supply line, and the H power supply line are covered with an interlayer insulating film 28 (insulating layer).
  • the metal films 33 and 34, the source electrode 30a, and the drain electrode 30b are formed by patterning the same metal layer.
  • the metal film 33 is connected to the resistor R1 through the contact hole 35 formed in the interlayer insulating film 28.
  • the resistor R1 is formed to have a desired resistance value by patterning a metal layer for forming the gate electrode 26 into a meandering shape.
  • the capacitor C1 is formed by the metal film 34 and the H power supply line
  • the capacitor C2 is formed by the metal film 33 and the L power supply line.
  • the resistor R 1 is electrically connected through an intermediate metal film 36 electrically connected to the first electrode pad 18 and a contact hole 35 formed in the interlayer insulating film 28.
  • the intermediate metal film 36 is also formed by patterning a metal layer for forming the metal films 33 and 34.
  • the metal films 33 and 34 and the intermediate metal film 36 are covered with a protective insulating film 31 (insulating layer).
  • the first electrode pads 18 and 18a are formed above the intermediate metal film 36 and on the protective insulating film 31.
  • a convex portion 45 is formed in a region where the first electrode pads 18 and 18a are formed, and the surfaces of the first electrode pads 18 and 18a are higher than the surroundings.
  • the convex portion 45 is formed by locally creating a difference in film thickness in the protective insulating film 31.
  • the convex portion 45 is completely shielded from light, and the other portions are half-exposed using a transmissive photomask with a short exposure time. good.
  • the convex portion 45 may be completely shielded from light, and the other portions may be exposed using a halftone or gray tone mask.
  • the formation of the protective film is divided into two times, the first time is formed on the entire surface of the TFT substrate 2 and the second time is formed only on the region where the first electrode pad 18 is formed.
  • the convex portion 45 can also be formed.
  • the intermediate metal film 36 and the first electrode pads 18 and 18a are electrically connected through a through hole 32 (contact hole) formed in the protective insulating film 31.
  • a sealing material 19 is provided so as to cover the first electrode pad 18, and the second electrode pads 15 and 15a described later and the first electrode are interposed via a conductive member 19a (resistance R2) contained in the sealing material 19.
  • the electrode pads 18 and 18a are electrically connected.
  • input terminals 4, 4 a, 17 are formed on the surface of the counter substrate 3 facing the TFT substrate 2, and the second electrode pads 15, 15 a are attached to the individual input terminals 4 a, 17. .
  • a black matrix 40 is formed on the surface of the counter substrate 3 facing the TFT substrate 2 so as not to overlap the input terminals 4, 4 a, 17 and the second electrode pads 15, 15 a.
  • the region where the convex portion 45 is formed and the region where the black matrix 40 is not formed face each other.
  • the thickness of the convex portion 45 (that is, the difference in height between the uppermost surface of the convex portion 45 and the surrounding surface) is the same as the thickness of the black matrix 40.
  • the separation distance between the second electrode pads 15 and 15a and the first electrode pads 18 and 18a is substantially equal to the separation distance between the TFT substrate 2 and the counter substrate 3 at other positions. be able to.
  • the separation distance between the TFT substrate 2 and the counter substrate 3 can be similarly maintained over the entire periphery of the display panel 10.
  • the thickness of the convex portion 45 is the same as the thickness of the black matrix 40” may be a difference in a range where the occurrence of unevenness does not become obvious, for example, the frame of the display panel 10 It may be considered depending on the dimensions. For example, when the frame is large, a sudden change in the separation distance can be mitigated. Therefore, the relationship of the thickness of the convex portion 45> the thickness of the black matrix 40 or the thickness of the convex portion 45 ⁇ the thickness of the black matrix 40 is satisfied. There may be.
  • the frame on the terminal side of the display panel 10 inevitably increases. Therefore, the distance between the display area 11 and the convex portion 45 is increased.
  • the combination of the built-in display panel 10 and the convex portion 45 is convenient.
  • connection to the input terminals 4, 4 a, 17 or the second electrode pads 15, 15 a is free from disconnection at the end of the black matrix 40, and the liquid crystal display device 1 having excellent reliability can be realized. it can.
  • the second electrode pads 15 and 15a and the resistor R1 are connected via the contact hole 35 and the through hole 32 provided in the interlayer insulating film 28 and the protective insulating film 31. . That is, the second electrode pads 15 and 15a are arranged on the upper layer of the resistor R1 so as to overlap with the interlayer insulating film 28 and / or the protective insulating film 31. As a result, the area occupied by the protection circuit 38 and the second electrode pads 15 and 15a can be reduced.
  • the frame of the display panel 10 provided in the liquid crystal display device 1 can be reduced.
  • the protective insulating film 31, the through hole 32, and the intermediate metal film 36 may be omitted, and the first electrode pads 18 and 18a may be formed on the interlayer insulating film 28.
  • the two layers of the interlayer insulating film 28 and the protective insulating film 31 are formed. It is preferable to provide it.
  • the above effect can also be obtained when a sufficiently thick insulating layer is provided. In this case, however, it takes a long time to form a film, and a minute number of through holes are formed in the insulating layer. There is a problem that patterning becomes difficult.
  • the second electrode pads 15 and 15a and the pixel electrode 20 are preferably made of the same material and formed by patterning the same layer.
  • the first electrode pads 18 and 18a and the counter electrode 16 are made of the same material and are formed by patterning the same layer.
  • the second electrode pads 15 and 15a and the pixel electrode 20 provided on the TFT substrate 2 or the first electrode pads 18 and 18a provided on the counter substrate 3 and the The counter electrode 16 can be formed of the same material and simultaneously patterned into a predetermined shape.
  • the highly productive liquid crystal display device 1 in which the manufacturing process is shortened can be realized.
  • FIG. 7 is a cross-sectional view showing a cross-sectional structure taken along line B-B ′ of the display panel 10 of FIG.
  • a black matrix 40 is disposed in the frame region, and a color filter 44 is disposed in the display region 11.
  • the counter electrode 16 made of a transparent electrode film such as ITO is formed on the surface of the black matrix 40 and the color filter 44 facing the TFT substrate 2.
  • the color filter 44 does not have to be composed of three general RGB colors.
  • the color filter 44 may be a color filter lightly colored for the purpose of adjusting the color of white display.
  • the liquid crystal alignment mode used in the reflection type often requires a narrow gap of about 2 ⁇ m as the distance (cell gap) between the first substrate (TFT substrate) and the second substrate (counter substrate).
  • the distance (cell gap) between the first substrate (TFT substrate) and the second substrate (counter substrate) For convenience of the process, it may be difficult to bond the first substrate and the second substrate at a narrow interval. In that case, the white of the display tends to be yellowish and is often disliked by consumers.
  • a color filter that is lightly colored as described above and has a film thickness comparable to that of the black matrix is disposed as a color adjustment.
  • a base film 22, a gate insulating film 23, and an interlayer insulating film 28 are laminated in this order on the TFT substrate 2, and a common transfer wiring 42 is formed on the interlayer insulating film 28. .
  • the common transfer wiring 42 is covered with a protective insulating film 31, and a common transfer electrode 41 is formed on the protective insulating film 31.
  • the common transfer wiring 42 and the common transfer electrode 41 are electrically connected through the through hole 32.
  • the common transition electrode 41 and the counter electrode 16 are electrically connected via the conductive member 19a.
  • the protective insulating film 31 is made of a photosensitive resin, and the uneven portion 50 is formed in the display region 11.
  • a pixel electrode 20 made of a material having a high reflectance such as aluminum or silver is formed on the uneven portion 50. According to the said structure, the reflective liquid crystal display device 1 provided with the light reflectivity excellent by the scattering reflection by the surface unevenness
  • the pixel electrode 20 is formed from a material having high reflectivity such as aluminum or silver.
  • a reflective film is separately provided on the pixel electrode 20. May be.
  • the liquid crystal display device 1 of the present invention can be realized without increasing the production unit price.
  • the convex portion 45 even in the case of a configuration in which the uneven portion 50 does not exist, it is possible to make the convex portion 45, and it goes without saying that the presence or absence of the uneven portion 50 does not hinder the formation of the convex portion 45. .
  • an insulating layer is provided on the first substrate, and the convex portion has a high surface by increasing the thickness of the insulating layer.
  • the convex portion can be easily provided, an increase in the production unit price can be suppressed, and a display panel with high productivity can be realized.
  • the thickness of the convex portion is the same as the thickness of the black matrix.
  • the separation distance between the second electrode pad and the first electrode pad can be made substantially equal to the separation distance between the first substrate and the second substrate at other positions. Therefore, the occurrence of unevenness due to the non-uniform separation distance can be suppressed, and the display quality can be improved.
  • the first substrate and the second substrate are bonded to each other via a sealing material, and the sealing material includes a conductive member, and the conductive material is interposed through the conductive member.
  • the first electrode pad and the second electrode pad are connected.
  • a conductor such as gold particles is contained in the sealing material that plays a role of joining the first substrate and the second substrate at a predetermined interval. Therefore, the process for forming the sealing material and the process for conducting the first electrode pad and the second electrode pad can be combined into one process, so that a display panel with high productivity can be realized.
  • a pixel circuit and a drive circuit for driving the pixel circuit are provided on the first substrate, and the drive circuit is connected to the first electrode pad.
  • the circuit is preferably connected to the second electrode pad via the first electrode pad and the conductive member.
  • the drive circuit is preferably provided monolithically.
  • the drive circuit since the drive circuit is monolithically formed, the size of the drive circuit can be suppressed. Therefore, the area of the first electrode pad can be increased.
  • the resistance generated when the first electrode pad and the second electrode pad are electrically connected can be set to a resistance that does not cause inconvenience in the circuit.
  • the drive circuit and the first electrode pad are connected via a protection circuit.
  • the protection circuit includes a resistor, and the first electrode pad and the resistor overlap with each other in plan view through an insulating layer.
  • the area occupied by the protection circuit and the first electrode pad can be reduced, and the frame of the display panel can be reduced.
  • the protection circuit preferably includes a resistor, a transistor, and a capacitor.
  • the transistor provided in the protection circuit can be prevented from being damaged, and the driving circuit is caused by static electricity or noise current that enters from the outside. It is possible to prevent the active element provided therein from being damaged.
  • the second substrate is provided with a counter electrode
  • the first substrate is provided with a common transfer electrode
  • the common transfer electrode is provided on the first electrode pad. It is preferable that the counter electrode and the common transition electrode are connected via the conductive member.
  • connection path crosses the black matrix, and disconnection is likely to occur.
  • disconnection hardly occurs.
  • the second electrode pad and the counter electrode are formed by patterning the same layer.
  • the first substrate is provided with a pixel electrode having reflectivity, and an uneven portion is provided between the first substrate and the pixel electrode. It is preferable that the convex part and the concave-convex part are formed of the same material.
  • the display panel of the present invention is characterized in that the material is a photosensitive resin.
  • the convex portion and the concave and convex portion can be easily formed by an optical process.
  • the second substrate in the display device further including a circuit board on the display panel, is provided with a second substrate terminal connected to the second electrode pad.
  • the second substrate terminal has a portion that does not overlap the first substrate in plan view.
  • the signal from the circuit board can be easily input to the display panel by electrically connecting the display panel and the circuit board via the second substrate terminal.
  • the display device of the present invention is characterized in that the second substrate terminal and the circuit board terminal provided on the circuit board are connected via an anisotropic conductive material.
  • the second board and the circuit board can be easily electrically connected.
  • the display device of the present invention is characterized in that the anisotropic conductive material is a connector in which a conductive band and an insulating band are formed in stripes.
  • the connector (zebra connector) with the above configuration is inexpensive and does not require precise alignment, the electrical connection between the terminals can be completed by simply stacking the second board terminal, the connector, and the circuit board terminal in this order. Can do. Therefore, an increase in the production unit price can be suppressed, and a display device with high productivity can be realized.
  • the display device of the present invention is characterized in that the second substrate terminal is provided along one side of the periphery of the second substrate.
  • the second board terminals are collectively provided along one side of the second board, a plurality of second board terminals and circuit board terminals can be easily connected by one connector. can do. Therefore, an increase in the production unit price can be suppressed, and a display device with high productivity can be realized.
  • the present invention can be applied to display devices such as liquid crystal display devices and organic EL display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 TFT基板(2)と対向基板(3)とが対向配置された表示パネル(10)において、TFT基板(2)の対向基板(3)と対向する面には、第1電極パッド(18)・(18a)が設けられており、対向基板(3)のTFT基板(2)と対向する面には、第2電極パッド(15)・(15a)が設けられており、第1電極パッド(18)・(18a)と第2電極パッド(15)・(15a)とは、平面視において少なくともその一部が重なっており、対向基板(3)には、ブラックマトリクス(40)が設けられており、第2電極パッド(15)・(15a)は、平面視においてブラックマトリクス(40)と重ならない位置に設けられており、第1電極パッド(18)・(18a)は、TFT基板(2)上に形成されている凸部(45)上に設けられている。

Description

表示パネルおよび表示装置
 本発明は、表示パネルおよび表示装置、特に樹脂製のブラックマトリクスを備えたアクティブマトリクス型表示パネルおよび表示装置に関するものである。
 近年、ブラウン管(CRT)に代わり、液晶表示装置や有機EL表示装置が、高画質、省エネ型、薄型、軽量型等の特徴を生かし、テレビ、モニター、携帯電話等のさまざまな電子機器に幅広く利用されている。
 これらの表示装置の中でも、薄膜トランジスタ(Thin Film Transistor、以下「TFT」と称す)が画素のスイッチング素子として用いられているアクティブマトリクス型表示装置は、応答速度が速く、多階調表示が容易で、幅広く使用されている。
 アクティブマトリクス型の表示装置は、通常TFT基板と対向基板とが互いに対向して配置され、これらの基板の間に表示素子(液晶、有機EL等)がシール材によって封入されている。
 以下、図8に基づいてアクティブマトリクス型の表示装置の構成について詳しく説明する。
 図8は、アクティブマトリクス型の表示装置の概略構成を示す構成図である。
 図8に示すように、表示装置100には、TFT基板102と対向基板101とが互いに対向して配置されている。
 上記対向基板101には、対向電極やカラーフィルタ層が備えられており、一方、上記TFT基板102には、画素電極やTFT素子が備えられている。
 また、額縁領域の減少や信頼性向上のため、上記TFT基板102には、走査信号線駆動回路やデータ信号線駆動回路がモノリシックに形成されている。
 さらに、上記TFT基板102には、端子領域103に金属薄膜でパターニングされた端子が形成され、この端子領域103に圧着されたFPC(Flexible Printed Circuit)104を介して、上記端子と外部回路基板とが電気的に接続されている。
 一方、セグメント駆動型表示装置のような比較的構造が単純な表示装置においては、表示パネルの表示面側に位置する基板、すなわち、アクティブマトリクス型表示装置の対向基板に相当する基板上に端子が形成され、ゼブラコネクタ(ゼブラゴム、異方導電性ゴム)を介して、上記端子と外部回路基板とが電気的に接続される構成が知られている。
 また、アクティブマトリクス型表示装置において、表示パネルの額縁領域に形成された回路や配線を、黒色の感光性樹脂等で形成されたブラックマトリクスで遮光する構成が知られている。
日本国特許公報「特開2001-222022号公報(2001年8月17日公開)」 日本国特許公報「特開2007-264447号公報(2007年10月11日公開)」
 しかしながら、図8に示す表示装置100において、FPCは高価であり、また、端子に対する精密なアライメントが必要になるため、生産単価が上昇し、生産性が低下する問題がある。
 また、樹脂製のブラックマトリクスを備えている場合、ブラックマトリクスは1μm程度の厚みを有するため、ブラックマトリクスの表面に形成され、ブラックマトリクスの端部を横切る細い配線は断線が発生しやすいという問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、ブラックマトリクスを備えていても、断線が発生しにくく、表示品位が高く、且つ、生産単価の上昇を抑制でき、生産性の高い表示パネルおよび表示装置を提供することを目的とする。
 上記の課題を解決するために、本発明の表示パネルは、第1基板と第2基板とが対向配置された表示パネルにおいて、上記第1基板の上記第2基板と対向する面には、第1電極パッドが設けられており、上記第2基板の上記第1基板と対向する面には、第2電極パッドが設けられており、上記第1電極パッドと上記第2電極パッドとは、平面視において少なくともその一部が重なっており、上記第2基板の上記第1基板と対向する面には、ブラックマトリクスが設けられており、上記第2電極パッドは、平面視において上記ブラックマトリクスと重ならない位置に設けられており、上記第1電極パッドは、上記第1基板上に形成されている凸部上に設けられていることを特徴とする。
 上記構成によれば、第1電極パッド及び第2電極パッドの接続において、それを構成する導体に、ブラックマトリクスの端部での断線が生じない。そのため、信頼性に優れた表示パネルを実現することができる。
 また、第2電極パッドと上記第1電極パッドとの離間距離を、他の位置における第1基板と第2基板との離間距離と同等にすることが容易になるので、離間距離の不均一によるムラの発生を抑制することができ、表示品位を向上させることができる。
 本発明の表示パネルは、第1基板と第2基板とが対向配置された表示パネルにおいて、上記第1基板の上記第2基板と対向する面には、第1電極パッドが設けられており、上記第2基板の上記第1基板と対向する面には、第2電極パッドが設けられており、上記第1電極パッドと上記第2電極パッドとは、平面視において少なくともその一部が重なっており、上記第2基板の上記第1基板と対向する面には、ブラックマトリクスが設けられており、上記第2電極パッドは、平面視において上記ブラックマトリクスと重ならない位置に設けられており、上記第1電極パッドは、上記第1基板上に形成されている凸部上に設けられていることを特徴とする。
 それゆえ、第1電極パッドへの接続等において、ブラックマトリクスの端部にて断線がなく、信頼性に優れた表示パネルを実現することができる。
 また、第2電極パッドと上記第1電極パッドとの離間距離を、他の位置における第1基板と第2基板との離間距離と略等しくして、離間距離の不均一によるムラの発生を抑制することができるので、表示品位を向上させることができる。
本発明の実施の形態に係る液晶表示装置の概略構成を示す構成図である。 本発明の実施の形態に係る液晶表示装置に備えられた対向基板の概略構成を示す平面図である。 本発明の実施の形態に係る液晶表示装置に備えられた表示パネルの概略構成を示す構成図である。 本発明の実施の形態に係る液晶表示装置に備えられた保護回路の構成を示す回路図である。 図4の保護回路を備えた表示パネルの入力端子近傍の構成を示す平面図である。 図5の表示パネルのA-A’線における断面構造を示す断面図である。 図3の表示パネルのB-B’線における断面構造を示す断面図である。 従来のアクティブマトリクス型の表示装置の概略構成を示す構成図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるものではない。
 本発明の一実施の形態の表示装置は、ブラックマトリクスを備えても、断線が発生しにくく、且つ、生産単価の上昇を抑制でき、生産性が高い表示装置である。
〔実施の形態〕
 以下、図1~図7に基づいて、本発明の一実施の形態の液晶表示装置1の構成について説明する。
 本実施の形態においては、表示装置の一例として、反射型の液晶表示装置1を前提に説明を行うが、これに限定されることはなく、自発光型表示装置、半透過型表示装置や透過型表示装置などにも適用することが可能である。
 図1は、本発明の一実施の形態の液晶表示装置1の概略構成を示す構成図である。
 図1に示すように、本実施の形態の液晶表示装置1は、表示パネル10と、外部回路基板(回路基板)5とを備えている。
 上記表示パネル10は、TFT基板2(第1基板)と、対向基板3(第2基板)と、上記基板2・3間に封止された液晶層(図示せず)とを備えている。なお、上記TFT基板2には、複数のTFT素子と該TFT素子に接続された画素電極とが形成され、さらに走査信号線駆動回路とデータ信号線駆動回路とがモノリシックに形成されている。上記対向基板3には、対向電極やカラーフィルタが形成されている。この表示パネル10において、表示面DSは、上記対向基板3側にある。
 また、上記表示パネル10には、データ信号や制御信号、電源信号を入力するための、複数の入力端子4・4a・17(第2基板端子)が、上記対向基板3の上記TFT基板2と対向する面の一辺端部に沿って設けられている。また、全ての入力端子4・4a・17それぞれに対して第2電極パッド15・15aが設けられている。
 なお、後述するように、上記入力端子4には、データ信号や制御信号が、上記入力端子17には、上記対向基板3の対向電極に印加される電圧信号が、他の入力端子4・17より幅広く形成された上記入力端子4aには、電源信号が、それぞれ入力され、上記TFT基板2上の走査信号線駆動回路やデータ信号線駆動回路(駆動回路)に出力される。
 また、上記対向基板3は、上記入力端子4・4a・17が露出するように、上記TFT基板2に対して、庇状に張り出している。
 一方、上記外部回路基板5は、上記表示パネル10を制御するための信号を出力する制御回路を備えている。
 また、上記外部回路基板5には、複数の出力端子6が設けられ、対応する上記入力端子4・4a・17と、平面視において重なるように対向配置されている。
 なお、上記入力端子4・4a・17と上記出力端子6とは、縞状に設けられた導電帯7と絶縁帯8とを有する、異方性導電材料としてのゼブラコネクタ9によって導通されている。より具体的には、一対をなす入力端子4・4a・17と出力端子6とは、上記ゼブラコネクタ9の導電帯7を間に挟むことによって電気的に接続されている。
 上記ゼブラコネクタ9は、大きいピッチサイズを有するため、精密なアライメント調整を必要としない特徴があり、上記表示パネル10の入力端子4・4a・17、上記ゼブラコネクタ9、上記外部回路基板5の出力端子6を順に重ねるだけで接続を完了させることができるので、生産単価の上昇を抑制でき、かつ、生産性の高い液晶表示装置1を実現することができる。
 以下、図2に基づいて、上記対向基板3の構成をさらに詳しく説明する。
 図2は、本実施の形態の液晶表示装置1に備えられた上記対向基板3の概略構成を示す平面図である。
 図2に示すように、対向基板3には、ITO(Indium Tin Oxide)やIZO(Indium Zinc oxide)等の透明電極膜からなる対向電極16が形成されている。
 また、上記対向基板3の表示領域11には、所定のカラーフィルタが配置されており、額縁領域には、黒色樹脂からなるブラックマトリクス40が配置されている。
 また、上記対向基板3の一辺端部に沿って、上記対向基板3とは電気的に分離されている、複数の入力端子4・4a・17が配置されており、全ての入力端子4・4a・17それぞれに対して第2電極パッド15・15aが設けられている。
 ここで、上記ブラックマトリクス40は、後述するように、上記入力端子4・4a・17および上記第2電極パッド15・15aと平面視において重ならないようにパターニングされている。
 なお、上記入力端子4・4a・17は、上記対向電極16と同じ材料で形成されていることが好ましい。上記構成により、これらを同一の透明電極膜をパターニングすることによって形成することができる。
 一般的に、ゼブラコネクタ9に備えられている導電帯7と絶縁帯8とは比較的広い間隔で設けられているため、上記入力端子4・4a・17のピッチは、ゼブラコネクタ9の導電帯7と絶縁帯8との間隔に見合ったピッチで配置されているのが最も好適である。
 なお、上記TFT基板2上にモノリシックに形成された走査信号線駆動回路やデータ信号線駆動回路を駆動するためには、データ信号や制御信号だけではなく、電源信号の入力も必要であるが、該電源信号を入力する入力端子4aは、拡幅されていることが好ましい。
 図2に示すように、上記対向基板3には、端子幅Wが他の入力端子4・17より拡幅されたHigh電源用とLow電源用の上記入力端子4aが2つ配置されている。上記構成により、電圧降下等の不具合の発生を防止することができる。
 また、各上記入力端子4・17間はピッチPで、電源用の上記入力端子4a間はピッチ2Pで配置されており、電源用の上記入力端子4aの端子幅Wは、ピッチP分が拡幅されているが、必要であればさらに拡幅しても良い。
 本実施の形態においては、拡幅された入力端子4aを2つ設けているが、これに限定されることなく、これらの数は、必要に応じて、適宜調整すれば良い。
 以上のように、上記液晶表示装置1においては、入力される信号内容に応じて、上記入力端子4・4a・17のピッチPや端子幅Wを設定している。
 本実施の形態においては、上記対向基板3に対向電極16が設けられている構成について説明しているが、これに限定されることはなく、例えば、IPSモードのように、対向基板3側に対向電極を備えていない横電界方式の液晶モードの場合においても、適用することが可能である。
 以下、図3基づいて、上記表示パネル10の構成をさらに詳しく説明する。
 図3は、本実施の形態の液晶表示装置1に備えられた上記表示パネル10の概略構成を示す構成図である。
 図3に示すように、TFT基板2には、対向基板3と対向する面に、画素回路51が形成されている表示領域11と、走査信号線駆動回路12とデータ信号線駆動回路13とが多結晶シリコンをベースとしてモノリシックに形成されている額縁領域とが備えられている。なお、上記画素回路51には、マトリックス状に複数の画素電極20と複数のTFT素子21とが形成されている。
 本実施の形態においては、多結晶半導体膜として、多結晶シリコンを用いているが、これに限定されることなく、非晶質シリコン、非晶質ゲルマニウム、多結晶ゲルマニウム、非晶質シリコン・ゲルマニウム、多結晶シリコン・ゲルマニウム、非晶質シリコン・カーバイド、多結晶シリコン・カーバイドなどをレーザアニールにより多結晶化した半導体膜を用いることができる。
 なお、上記画素電極20は、光反射性を有していることが好ましい。上記構成によれば、光反射性を有する画素電極20を備えた反射型または、半透過型の表示装置であっても、光利用効率が良く、生産単価の上昇を抑制でき、かつ、生産性の高い液晶表示装置を実現することができる。
 また、上記TFT基板2には、複数のデータ信号線SLと、これらデータ信号線SLに交差するように複数の走査信号線GLとが設けられている。上記TFT素子21は、上記各データ信号線SLと上記各走査信号線GLとが交差する箇所に対応して設けられ、上記データ信号線SLと上記走査信号線GLによって制御される。
 ここで、図1に示す外部回路基板5に備えられた出力端子6の一部からは、上記表示パネル10に表示する画像のデータ信号が出力される。上記データ信号は、各画素の表示状態を示す映像データであって、時分割で転送される映像データに基づいて生成されている。他の複数個の出力端子6からは、上記データ信号を上記表示パネル10に正しく表示するためのタイミング信号として、ソースクロック信号およびソーススタートパルス信号が上記データ信号線駆動回路13に出力され、ゲートクロック信号およびゲートスタートパルス信号が上記走査信号線駆動回路12に出力される。
 上記走査信号線駆動回路12は、上記ゲートクロック信号などのタイミング信号に同期して複数の走査信号線GLを順次選択する。一方、上記データ信号線駆動回路13は、上記ソースクロック信号などのタイミング信号に同期して動作し、各データ信号線SLに応じたタイミングを特定し、上記各タイミングで上記データ信号をサンプリングし、サンプリング結果に応じた信号を、上記各データ信号線SLに書き込む。
 上記表示パネル10の各画素は、それぞれに対応する走査信号線GLが選択されている間、それぞれに対応するデータ信号線SLから出力されるデータに応じて、画像を表示する。
 また、上記TFT基板2には、コモン転移電極41が一辺(短辺)の両隅にそれぞれ設けられ、互いに対向する両辺(長辺)の端部に沿ってそれぞれ形成されているコモン転移用配線42と、それぞれ電気的に接続されている。
 なお、後述するように、上記対向電極16と上記コモン転移電極41とは、シール材19に含有されている金粒子などの導電部材によって電気的に接続されている。
 また、上記走査信号線駆動回路12と上記データ信号線駆動回路13からは、上記TFT基板2の外部に向かって配線(信号線、電源線)14が引き出され、上記駆動回路12・13、後述する保護回路38、上記TFT基板2上に設けられた第1電極パッド18・18aはこの順で電気的に接続されている。
 また、上記コモン転移用配線42も、上記TFT基板2上に設けられた第1電極パッド18と電気的に接続されている。
 すなわち、上記TFT基板2の外部に取り出す全ての配線14およびコモン転移用配線42それぞれに対して上記第1電極パッド18・18aが設けられ、上記第1電極パッド18・18aは、上記TFT基板2の一辺端部に沿って配置されている。
 一方、既に上述したように、上記対向基板3の一辺端部に沿って、上記対向電極16と電気的に分離されている入力端子4・4a・17が形成され、上記個々の入力端子4・4a・17には、上記第2電極パッド15・15aが付随している。
 なお、上記第2電極パッド15・15aの数と上記第1電極パッド18・18aの数は同一であり、上記表示パネル10を平面視したときに、上記第2電極パッド15・15aと上記第1電極パッド18・18aとが1対1に重なるように形成されている。
 また、上記対向基板3においては、既に上述した拡幅された上記入力端子4aの上部に設けられた第2電極パッド15aは、他の第2電極パッド15より幅広く形成され、これに対向する第1電極パッド18aも、他の第1電極パッド18より幅広く形成されている。
 なお、上記第2電極パッド15・15aと上記第1電極パッド18・18aとを導通させる導電部材が含まれたシール材19については後述する。
 ここで、図1~図3に示す入力端子4・4a・17、第2電極パッド15・15a、第1電極パッド18・18aの数は、例示的に示すものであり、必要に応じて、適宜調整すれば良い。
 上記構成によれば、上記TFT基板2においては、走査信号線駆動回路12とデータ信号線駆動回路13とが、モノリシックに形成されているため、入力端子4・4aの数を減らすことができ、入力端子4・4aのピッチを大きくすることができる。この結果、入力端子4・4aに対応させた上記第2電極パッド15・15aおよび第1電極パッド18・18aの各ピッチも大きくすることができるため、第2電極パッド15・15aおよび第1電極パッド18・18aにそれぞれ割りあてることができる面積を大きくすることができる。
 よって、上記第2電極パッド15・15aと上記第1電極パッド18・18aとの導通抵抗を十分に低くすることができる液晶表示装置1を実現することができる。
 また、高価なFPCなどを用いて上記表示パネル10と上記外部回路基板5の出力端子6とを接続する必要性はなく、対応端子数が少なく、該端子のピッチサイズも比較的大きい安価なゼブラコネクタ9を用いることができる。
 また、本実施の形態においては、上記TFT基板2に備えられた画素電極20は、アルミニウムや銀などのように反射率が高く、電気抵抗が低い物質で形成されているが、これに限定されることはない。
 また、各画素に備えられた光反射性を有する画素電極20の下にメモリー素子を内蔵し、消費電力の小さな表示装置としてもよい。メモリー素子としてはSRAMが挙げられる。SRAMは、1画素に1ビットでもよいし、階調表示させるのであれば複数のSRAMを各画素に配置すれば実現できる。このようにSRAMを各画素に内蔵した表示装置の場合は、電源容量や電流値が小さくて済むため、ゼブラコネクタ9による端子接続に適している。
 また、本実施の形態においては、コモン転移電極41は、一辺の両隅に配置されているが、これに限定されることなく、配置箇所や数は任意に設定して良い。例えばTFT基板2の4隅に計4箇所に配置しても良いし、小型の表示パネルであれば1箇所であっても良い。
 以下、上記シール材19について詳しく説明する。
 上記シール材19は、上記TFT基板2と上記対向基板3とを所定の間隔で接合し、表示装置を封止する役割を担っており、枠状に上記TFT基板2の外周に沿うように形成される。なお、液晶材はこのシール材19に囲まれた内側領域の間隙に充填される。
 上記シール材19としては、例えば、紫外線硬化樹脂、熱硬化樹脂、またはこれらの併用型樹脂を用いることができる。
 上記シール材19中には、金粒子のような導電部材が含有されている。この導電部材によって、上記第2電極パッド15・15aと上記第1電極パッド18・18aとが電気的に接続されており、上記第2電極パッド15と上記第1電極パッド18・18aとは、シール材19が形成される上記表示パネル10の周縁部に設けられている。
 また、上記導電部材によって、上記対向電極16と上記コモン転移電極41とが導通されている。
 具体的には、上記対向電極16は、上記コモン転移電極41を介して、上記TFT基板2上の上記コモン転移用配線42に接続されている。さらに、上記コモン転移用配線42は、上記第1電極パッド18を経由した後に、上記対向基板3上の上記入力端子17に至る配線経路を有する。
 上記構成によれば、上記TFT基板2と上記対向基板3とを所定の間隔で接合するための上記シール材19の形成工程と、上記第2電極パッド15・15aと上記第1電極パッド18・18aとを導通させるための導電部材の形成工程を一つの工程とすることができ、生産性の高い液晶表示装置1を実現することができる。
 また、上記対向電極16と、これに電圧を印加させるための上記入力端子17とを、上記対向基板3上で直接に電気的に接続させると、その接続経路がブラックマトリクス40を横切る構成になって、断線が発生し易くなるが、上記構成によれば、断線が発生しにくい。
 ここで、上記導電部材により抵抗が生じるが、上記第2電極パッド15・15aと上記第1電極パッド18・18aの面積が大きいため、回路上不都合が無い程度の抵抗とすることができる。
 以下、図4に基づいて、保護回路38について詳しく説明する。
 図4は、本実施の形態の液晶表示装置1に備えられた保護回路38の一例を示す回路図である。
 上述したように、上記TFT基板2の上記対向基板3と対向する面には、駆動回路12・13と、保護回路38と、第1電極パッド18とが、この順で電気的に接続されるようにモノリシックに形成されている。
 上記構成によれば、複数の上記入力端子4から侵入する静電気やノイズ電流によって、上記駆動回路12・13内に備えられたTFT素子などが破損することを防ぐことができる。
 図4に示すように、上記保護回路38には、上述した表示領域11に設けられたTFT素子21と同じ製造プロセスによって形成されたTFT素子(TFT1・TFT2)が2つ設けられている。
 一方のTFT素子(TFT1)のドレイン電極は、High電源(H電源)に接続され、ソース電極は、保護の対象となる入力端子4から駆動回路12・13に至る配線に接続されている。さらに、上記TFT素子(TFT1)は、上記ドレイン電極とゲート電極とが接続された構成となっており、ダイオードのような特性を示す。
 すなわち、静電気などにより、上記配線にH電源以上の電圧が印加された場合に、上記TFT素子(TFT1)がオンとなり、異常電流を逃がす構造となっている。
 また、他方のTFT素子(TFT2)のドレイン電極は、保護の対象となる入力端子4から駆動回路12・13に至る配線に接続され、ソース電極はLow電源(L電源)に接続されている。さらに、上記TFT素子(TFT2)は、上記TFT1と同様に、上記ドレイン電極とゲート電極とが接続された構成となっており、ダイオードのような特性を示す。
 よって、上記配線にL電源以下の電圧が印加された場合に、上記TFT素子(TFT2)がオンとなり、L電源から電流が流れる構成となっている。
 したがって、上記構成によれば、上記配線に印加される電圧を常にH電源以下、L電源以上に維持することができ、上記駆動回路12・13内に備えられたTFT素子などが破損するのを防ぐことができる。
 また、上記保護回路38には、上記配線に抵抗体の一例としての抵抗R1・R2が設けられており、上記配線と上記H電源および上記L電源間には、容量C1・C2がそれぞれ設けられている。
 よって、上記配線に強い電圧が瞬間的に印加されたとしても、上記TFT素子(TFT1・TFT2)自体の破損を防止することができる。
 本実施の形態においては、図4に示すような構造の保護回路38を設けているが、これに限定することなく、適宜構成を変えても良い。例えば、抵抗とトランジスタとから構成される保護回路なども適宜用いることができる。
 なお、上記保護回路38は、例えば、上記駆動回路12・13の内部など、上記TFT基板2の対向基板3と対向する面の複数個所に設けることもできる。
 以下、図5、図6に基づいて、表示パネル10の入力端子4近傍の構成をさらに詳しく説明する。
 図5は、図4の保護回路38を備えた表示パネル10の入力端子4近傍の構成を示す平面図である。
 図5に示すように、駆動回路12・13から入力端子4に至るまでの構成物の接続関係は、「駆動回路12・13」-「保護回路38」-「第1電極パッド18」-「シール材19中の導電部材19a」-「第2電極パッド15」-「入力端子4」となっている。
 上記構成によれば、シール材19の内側に上記保護回路38が形成されることとなるので、上記保護回路38を外部からの傷や腐食から守ることができる。
 また、図6は、図5の表示パネル10のA-A’線における断面構造を示す断面図である。
 図6に示すように、TFT基板2上には、下地膜22が形成され、下地膜22上に、半導体膜24が図5に示すTFT部の形成位置に対応して設けられている。
 上記下地膜22上には、ゲート絶縁膜25が形成され、上記半導体膜24は該ゲート絶縁膜25で覆われている。
 上記ゲート絶縁膜25上には、ゲート電極26、L電源線、およびH電源線が、同一のメタル層のパターニングによって形成されている。
 さらに、上記ゲート電極26、上記L電源線、上記H電源線は、層間絶縁膜28(絶縁層)で覆われている。
 上記層間絶縁膜28の上に、メタル膜33・34、ソース電極30a、およびドレイン電極30bが同一のメタル層のパターニングによって形成されている。
 なお、上記メタル膜33は、上記層間絶縁膜28に形成されたコンタクトホール35を介して、抵抗R1と接続されている。
 上記抵抗R1は、上記ゲート電極26を形成するためのメタル層を蛇行する形状にパターニングすることによって、所望の抵抗値となるように、形成されている。
 また、上記メタル膜34と上記H電源線とによって、上記容量C1が形成され、上記メタル膜33と上記L電源線とによって、上記容量C2が形成されている。
 また、上記抵抗R1は、第1電極パッド18と電気的に接続された中間メタル膜36と、上記層間絶縁膜28に形成されたコンタクトホール35を介して、電気的に接続されている。
 なお、上記中間メタル膜36も、上記メタル膜33・34を形成するためのメタル層のパターニングによって形成されている。
 上記メタル膜33・34および上記中間メタル膜36は、保護絶縁膜31(絶縁層)によって覆われている。
 上記中間メタル膜36の上方であって、上記保護絶縁膜31の上には、第1電極パッド18・18aが形成されている。
 なお、上記保護絶縁膜31において、上記第1電極パッド18・18aが形成される領域に凸部45が形成され、上記第1電極パッド18・18aは、その周囲より表面が高くなっている。
 なお、上記凸部45は、上記保護絶縁膜31に膜厚の違いを局所的に作りこむことにより形成される。
 例えば、保護絶縁膜31がポジ型の感光性樹脂から形成された場合、上記凸部45は完全に遮光し、他の部分は透過性フォトマスクを用いて露光時間を短くしてハーフ露光すれば良い。または、上記凸部45は完全に遮光し、他の部分はハーフトーンやグレートーンとしたマスクを用いて露光しても良い。
 また、生産単価は高くなるが、保護膜の形成を2度に分け、1度目は上記TFT基板2の全面に、2度目は上記第1電極パッド18が形成される領域のみに形成して、上記凸部45を形成することも可能である。
 上記中間メタル膜36と上記第1電極パッド18・18aとは、上記保護絶縁膜31に形成されたスルーホール32(コンタクトホール)を介して、電気的に接続されている。
 上記第1電極パッド18を覆うように、シール材19が設けられ、シール材19中に含有された導電部材19a(抵抗R2)を介して、後述する第2電極パッド15・15aと上記第1電極パッド18・18aとが電気的に接続される。
 一方、対向基板3の上記TFT基板2と対向する面に、入力端子4・4a・17が形成され、個々の入力端子・4a・17には、第2電極パッド15・15aが付随されている。また、対向基板3の上記TFT基板2と対向する面に、上記入力端子4・4a・17および上記第2電極パッド15・15aと重ならないように、ブラックマトリクス40が形成されている。
 すなわち、上記第1電極パッド18・18aが形成されている領域において、上記凸部45が形成されている領域と、上記ブラックマトリクス40が形成されていない領域とが対向している。
 また、上記凸部45の厚さ(すなわち凸部45の最上面とその周囲の表面との高さの差)が、上記ブラックマトリクス40の厚さと同じである。
 上記構成によれば、上記第2電極パッド15・15aと上記第1電極パッド18・18aとの離間距離を、他の位置における上記TFT基板2と上記対向基板3との離間距離と略等しくすることができる。
 よって、上記TFT基板2と上記対向基板3との離間距離を、表示パネル10の全周において、同様に保つことができる。
 したがって、離間距離の不均一によるムラの発生を抑制することができ、表示品位を向上させることができる。
 なお、『上記凸部45の厚さが、上記ブラックマトリクス40の厚さと同じである』とは、ムラの発生が顕在化しない範囲の差であれば良く、それは例えば、表示パネル10の額縁の寸法によって考慮して良い。例えば、額縁が大きい場合、離間距離の急激な変化を緩和できるので、凸部45の厚さ>ブラックマトリクス40の厚さ、或いは、凸部45の厚さ<ブラックマトリクス40の厚さの関係であっても良い。
 本実施の形態においては、駆動回路12・13がモノリシックに表示パネル10内に形成されているため、表示パネル10の端子側の額縁が必然的に大きくなる。そのため、表示領域11と凸部45との距離が離れる。
 この場合、仮に上記凸部45の厚さが上記ブラックマトリクス40の厚さと多少異なっていたとしても、その影響が表示領域11までに及んでムラとして表示品位を悪化させることが少なく、駆動回路を内臓した表示パネル10と上記凸部45の組み合わせは都合が良いと言える。
 また、上記入力端子4・4a・17又は上記第2電極パッド15・15aへの接続が上記ブラックマトリクス40の端部にて断線がなく、信頼性に優れた液晶表示装置1を実現することができる。
 また、上記のように、上記第2電極パッド15・15aと上記抵抗R1とは、上記層間絶縁膜28および保護絶縁膜31に設けられたコンタクトホール35およびスルーホール32を介して接続されている。つまり、上記第2電極パッド15・15aを上記抵抗R1の上層に、上記層間絶縁膜28または/および保護絶縁膜31を介して重ねて配置している。この結果、上記保護回路38と上記第2電極パッド15・15aの占める面積を小さくすることができる。
 よって、上記液晶表示装置1に備えられた表示パネル10の額縁を小さくすることができる。
 また、上記構成によれば、上記層間絶縁膜28および保護絶縁膜31の内部に、コンタクトホール35およびスルーホール32の形成に伴って、異物が混入し、上記第2電極パッド15・15aと上記抵抗R1とが短絡しても、同じ配線上における短絡であるため、上記抵抗R1の値が変わるのみの影響に留まり、上記駆動回路12・13の動作には殆ど影響がない。
 なお、上記保護絶縁膜31、スルーホール32および中間メタル膜36を省略し、上記第1電極パッド18・18aを上記層間絶縁膜28上に形成する構成としても良い。ただし、上記第1電極パッド18・18aと上記抵抗R1とをより確実に離間し、抵抗R1の値を適正値に確保する観点では、上記層間絶縁膜28および上記保護絶縁膜31の2層を設けることが好ましい。上記層間絶縁膜28および上記保護絶縁膜31の2層を設けることにより、上記第1電極パッド18・18aと上記抵抗R1とが上記2層構造の絶縁層越しに短絡する確率を確実に低くすることができる。
 上記の効果は、一層構造の絶縁層を十分に厚く設けた場合にも得ることはできるが、この場合には、成膜に時間がかかるとともに、多数のスルーホールを絶縁層に形成するといった微細パターニングが困難になるという問題がある。
 また、上記液晶表示装置1において、上記第2電極パッド15・15aと画素電極20とは、同一材料であり、同一層のパターニングによって形成されていることが好ましい。
 また、上記液晶表示装置1において、上記第1電極パッド18・18aと対向電極16とは、同一材料であり、同一層のパターニングによって形成されていることが好ましい。
 上記構成によれば、上記TFT基板2に備えられた上記第2電極パッド15・15aと上記画素電極20とを、または、上記対向基板3に備えられた上記第1電極パッド18・18aと上記対向電極16とを、同一材料で形成し、同時に所定の形状にパターニングすることができる。
 よって、製造工程が短縮化された生産性の高い液晶表示装置1を実現することができる。
 図7は、図3の表示パネル10のB-B’線における断面構造を示す断面図である。
 図7に示すように、対向基板3のTFT基板2と対向する面には、額縁領域にブラックマトリクス40が配置されており、表示領域11にカラーフィルタ44が配置されている。
 また、上記ブラックマトリクス40および上記カラーフィルタ44のTFT基板2と対向する面に、ITO等の透明電極膜からなる対向電極16が形成されている。
 なお、カラーフィルタ44は一般的なRGBの3種類で構成されていなくても良い。例えば、白黒表示の場合に、白表示の色味調整を目的としてカラーフィルター44が薄く着色されたカラーフィルターであっても良い。
 ここで、反射型で使われる液晶配向モードは、第1基板(TFT基板)と第2基板(対向基板)の距離(セルギャップ)として2μm程度の狭ギャップを必要とすることが多いが、製造工程の都合上、第1基板と第2基板を狭い間隔で貼り合せることが困難な場合があり、その場合は表示の白が黄色味を帯び易く、消費者から嫌われることが多い。このような場合に、色味調整として上記のような薄く着色され、ブラックマトリクスと同程度の膜厚のカラーフィルターが配置されていることが好ましい。
 一方、上記TFT基板2上には、下地膜22、ゲート絶縁膜23、層間絶縁膜28が、この順で積層され、上記層間絶縁膜28上には、コモン転移用配線42が形成されている。
 上記コモン転移用配線42は、保護絶縁膜31で覆われており、該保護絶縁膜31上には、コモン転移電極41が形成されている。
 なお、上記コモン転移用配線42と上記コモン転移電極41とは、スルーホール32を介して電気的に接続されている。
 また、既に上述したように、上記コモン転移電極41と上記対向電極16とは、導電部材19aを介して電気的に接続されている。
 なお、上記保護絶縁膜31は、感光性樹脂からなり、表示領域11に、凹凸部50が形成されている。そして、上記凹凸部50の上層に、アルミニウムや銀などのように反射率が高い物質からなる画素電極20が形成されている。上記構成によれば、表面の凹凸による散乱反射によって優れた光反射性を備えた反射型の液晶表示装置1を実現することができる。
 本実施の形態においては、アルミニウムや銀などのように反射率が高い物質から画素電極20を形成しているが、これに限定されることなく、例えば画素電極20上に反射膜を別途に設けても良い。
 ここで、上記第1電極パッド18・18aの下地の凸部45と上記凹凸部50とを同時に形成することが好ましい。これによって、生産単価の増加なしで、本発明の液晶表示装置1を実現することができる。なお、凹凸部50が存在しない構成の場合であっても、凸部45を作り込むことは可能であり、凹凸部50の有無が凸部45の形成を妨げるものではないことはいうまでもない。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の表示パネルは、上記第1基板には絶縁層が設けられており、上記凸部は、上記絶縁層の厚さを厚くすることで表面が高く形成されていることが好ましい。
 上記構成によれば、容易に凸部を設けることができるので、生産単価の上昇を抑制でき、生産性の高い表示パネルを実現することができる。
 本発明の表示パネルは、上記凸部の厚さが、上記ブラックマトリクスの厚さと同じであることが好ましい。
 上記構成によれば、第2電極パッドと第1電極パッドとの離間距離を、他の位置における第1基板と第2基板との離間距離と略等しくすることができる。そのため、離間距離の不均一によるムラの発生を抑制することができ、表示品位を向上させることができる。
 本発明の表示パネルは、上記第1基板と、上記第2基板とが、シール材を介して貼り合わされており、上記シール材には、導電部材が含まれており、上記導電部材を介して、上記第1電極パッドと上記第2電極パッドとが接続されていることが好ましい。
 上記構成によれば、第1基板と第2基板とを所定の間隔で接合する役割を担っているシール材中に、例えば、金粒子等の導電体(導電部材)が含有されている。そのため、シール材の形成工程と、第1電極パッドと第2電極パッドとを導通させる工程とを一つの工程とすることができるので、生産性の高い表示パネルを実現することができる。
 本発明の表示パネルは、上記第1基板には、画素回路と、上記画素回路を駆動する駆動回路とが設けられており、上記駆動回路は上記第1電極パッドに接続されており、上記駆動回路は、上記第1電極パッド及び上記導電部材を介して、上記第2電極パッドに接続されていることが好ましい。
 上記構成によれば、第1基板の駆動回路を、第2基板と電気的に接続することが容易になる。
 本発明の表示パネルは、上記駆動回路がモノリシックに設けられていることが好ましい。
 上記構成によれば、駆動回路が、モノリシックに形成されているため、駆動回路を大きさを抑制することができる。そのため、第1電極パッドの面積を大きくすることができる。
 したがって、上記第1電極パッドと上記第2電極パッドとを電気的に接続する場合に生じる抵抗を、回路上不都合が無い程度の抵抗とすることができる。
 また、高価なFPCなどを用いて第1電極パッドと第2電極パッドとを接続する必要性がない。
 本発明の表示パネルは、上記駆動回路と上記第1電極パッドとは、保護回路を介して接続されていることが好ましい。
 上記構成によれば、外部から侵入する静電気やノイズ電流によって、駆動回路内に備えられたアクティブ素子が破損することを防ぐことができる。
 本発明の表示パネルは、上記保護回路は、抵抗体を備えており、上記第1電極パッドと上記抵抗体とは、絶縁層を介して、平面視において重なっていることが好ましい。
 上記構成によれば、保護回路と第1電極パッドとが占める面積を小さくすることができ、表示パネルの額縁を小さくすることができる。
 また、上記構成では、上記絶縁層の内部に異物が混入して、上記第1電極パッドと上記抵抗体とが短絡しても、同じ配線上における短絡であるため、上記抵抗体の値が変わるのみの影響に留めることができ、上記駆動回路の動作には殆ど影響がないものとすることができる。
 本発明の表示パネルは、上記保護回路は、抵抗体、トランジスタ、及び容量体を備えていることが好ましい。
 上記構成によれば、強い電圧が瞬間的に液晶パネルに印加されたとしても、保護回路に備えられたトランジスタの破損を防止することができるとともに、外部から侵入する静電気やノイズ電流によって、駆動回路内に備えられたアクティブ素子が破損するのを防ぐことができる。
 本発明の表示パネルは、上記第2基板には、対向電極が設けられており、上記第1基板には、コモン転移電極が設けられており、上記コモン転移電極は、上記第1電極パッドに接続されており、上記対向電極と上記コモン転移電極とは、上記導電部材を介して接続されていることが好ましい。
 対向電極と、これに電圧を印加させるための第2電極パッドとを、対向基板上で直接に電気的に接続させると、その接続経路がブラックマトリクスを横切る構成になって、断線が発生し易くなるが、上記構成によれば、断線が発生しにくい。
 本発明の表示パネルは、上記第2電極パッドと、上記対向電極とが同一層のパターニングによって形成されていることが好ましい。
 上記構成によれば、製造工程が短縮化された生産性の高い表示装置を実現することができる。
 本発明の表示パネルは、上記第1基板には、反射性を備えた画素電極が設けられており、上記第1基板と、上記画素電極との間には、凹凸部が設けられており、上記凸部と上記凹凸部とが同じ材料で形成されていることが好ましい。
 上記構成によれば、製造工程が短縮化された生産性の高い表示パネルを実現することができる。
 本発明の表示パネルは、上記材料が感光性樹脂であることを特徴とする。
 上記構成によれば、凸部及び凹凸部を、光プロセスにより、容易に形成することができる。
 本発明の表示装置は、上記表示パネルに、さらに回路基板が備えられた表示装置において、上記第2基板には、上記第2電極パッドに接続された第2基板端子が設けられており、上記第2基板端子は、平面視において、上記第1基板と重ならない部分を有していることを特徴とする。
 上記構成によれば、第2基板端子を介して、表示パネルと回路基板とを電気的に接続させることで、表示パネルに上記回路基板からの信号を容易に入力させることができる。
 本発明の表示装置は、上記第2基板端子と、上記回路基板に設けられている回路基板端子とが、異方性導電材料を介して接続されていることを特徴とする。
 上記構成によれば、第2基板と回路基板とを、容易に電気的に接続することができる。
 本発明の表示装置は、上記異方性導電材料が、導電帯及び絶縁帯が縞状に形成されたコネクタであることを特徴とする。
 上記構成のコネクタ(ゼブラコネクタ)は、安価であり、精密なアライメントも必要としないため、第2基板端子、上記コネクタ、回路基板端子を順に重ねるだけで、端子同士の電気的接続を完了させることができる。そのため、生産単価の上昇を抑制でき、生産性の高い表示装置を実現することができる。
 本発明の表示装置は、上記第2基板端子が、上記第2基板の周縁の一辺に沿って設けられていることを特徴とする。
 上記構成によれば、第2基板端子が、第2基板の一辺に沿って集約的に設けられているため、1個のコネクタにより、複数個の第2基板端子と回路基板端子を容易に接続することができる。そのため、生産単価の上昇を抑制でき、かつ、生産性の高い表示装置を実現することができる。
 本発明は、液晶表示装置、有機EL表示装置などの表示装置に適用することができる。
  1       液晶表示装置(表示装置)
  2       TFT基板(第1基板)
  3       対向基板(第2基板)
  4、4a、17 入力端子
  5       外部回路基板(回路基板)
  6       出力端子(回路基板端子)
  7       導電帯
  8       絶縁帯
  9       ゼブラコネクタ(コネクタ)
  10      表示パネル
  11      表示領域
  12      走査信号線駆動回路(駆動回路)
  13      データ信号線駆動回路(駆動回路)
  14      配線
  15、15a  第2電極パッド
  16      対向電極
  18、18a  第1電極パッド
  19      シール材
  19a     導電部材
  20      画素電極
  21      TFT素子
  28      層間絶縁膜(絶縁層)
  29、35   コンタクトホール
  31      保護絶縁膜(絶縁層)
  32      スルーホール(コンタクトホール)
  36      中間メタル膜
  38      保護回路
  40      ブラックマトリクス
  41      コモン転移電極
  42      コモン転移用配線
  44      カラーフィルタ
  45      凸部
  50      凹凸部
  51      画素回路
  GL      走査信号線
  SL      データ信号線

Claims (17)

  1.  第1基板と第2基板とが対向配置された表示パネルにおいて、
     上記第1基板の上記第2基板と対向する面には、第1電極パッドが設けられており、
     上記第2基板の上記第1基板と対向する面には、第2電極パッドが設けられており、
     上記第1電極パッドと上記第2電極パッドとは、平面視において少なくともその一部が重なっており、
     上記第2基板の上記第1基板と対向する面には、ブラックマトリクスが設けられており、
     上記第2電極パッドは、平面視において上記ブラックマトリクスと重ならない位置に設けられており、
     上記第1電極パッドは、上記第1基板上に形成されている凸部上に設けられていることを特徴とする表示パネル。
  2.  上記第1基板には絶縁層が設けられており、
     上記凸部は、上記絶縁層の厚さを厚くすることで表面が高く形成されていることを特徴とする請求項1に記載の表示パネル。
  3.  上記凸部の厚さが、上記ブラックマトリクスの厚さと同じであることを特徴とする請求項1又は2に記載の表示パネル。
  4.  上記第1基板と、上記第2基板とが、シール材を介して貼り合わされており、
     上記シール材には、導電部材が含まれており、
     上記導電部材を介して、上記第1電極パッドと上記第2電極パッドとが接続されていることを特徴とする請求項1から3のいずれか1項に記載の表示パネル。
  5.  上記第1基板には、画素回路と、上記画素回路を駆動する駆動回路とが設けられており、
     上記駆動回路は、上記第1電極パッドに接続されており、
     上記駆動回路は、上記第1電極パッド及び上記導電部材を介して、上記第2電極パッドに接続されていることを特徴とする請求項4に記載の表示パネル。
  6.  上記駆動回路がモノリシックに設けられていることを特徴とする請求項5に記載の表示パネル。
  7.  上記駆動回路と上記第1電極パッドとは、保護回路を介して接続されていることを特徴とする請求項5又は6に記載の表示パネル。
  8.  上記保護回路は、抵抗体を備えており、
     上記第1電極パッドと上記抵抗体とは、絶縁層を介して、平面視において重なっていることを特徴とする請求項7に記載の表示パネル。
  9.  上記保護回路は、抵抗体、トランジスタ、及び容量体を備えていることを特徴とする請求項7又は8に記載の表示パネル。
  10.  上記第2基板には、対向電極が設けられており、
     上記第1基板には、コモン転移電極が設けられており、
     上記コモン転移電極は、上記第1電極パッドに接続されており、
     上記対向電極と上記コモン転移電極とは、上記導電部材を介して接続されていることを特徴とする請求項4~9の何れか1項に記載の表示パネル。
  11.  上記第2電極パッドと、上記対向電極とが同一層のパターニングによって形成されていることを特徴とする請求項10に記載の表示パネル。
  12.  上記第1基板には、反射性を備えた画素電極が設けられており、
     上記第1基板と、上記画素電極との間には、凹凸部が設けられており、
     上記凸部と上記凹凸部とが同じ材料で形成されていることを特徴とする請求項1から11のいずれか1項に記載の表示パネル。
  13.  上記材料が感光性樹脂であることを特徴とする請求項12に記載の表示パネル。
  14.  請求項1から13のいずれか1項に記載の表示パネルに、さらに回路基板が備えられた表示装置において、
     上記第2基板には、上記第2電極パッドに接続された第2基板端子が設けられており、
     上記第2基板端子は、平面視において、上記第1基板と重ならない部分を有していることを特徴とする表示装置。
  15.  上記第2基板端子と、上記回路基板に設けられている回路基板端子とが、異方性導電材料を介して接続されていることを特徴とする請求項14に記載の表示装置。
  16.  上記異方性導電材料が、導電帯及び絶縁帯が縞状に形成されたコネクタであることを特徴とする請求項15に記載の表示装置。
  17.  上記第2基板端子が、上記第2基板の周縁の一辺に沿って設けられていることを特徴とする請求項14から16のいずれか1項に記載の表示装置。
PCT/JP2010/069722 2010-02-23 2010-11-05 表示パネルおよび表示装置 WO2011104941A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/579,156 US20120319144A1 (en) 2010-02-23 2010-11-05 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010037686 2010-02-23
JP2010-037686 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011104941A1 true WO2011104941A1 (ja) 2011-09-01

Family

ID=44506378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069722 WO2011104941A1 (ja) 2010-02-23 2010-11-05 表示パネルおよび表示装置

Country Status (2)

Country Link
US (1) US20120319144A1 (ja)
WO (1) WO2011104941A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033840A1 (ja) * 2013-09-09 2015-03-12 シャープ株式会社 アクティブマトリクス基板及び表示装置
US10831046B2 (en) * 2017-07-04 2020-11-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Frameless liquid crystal display panel and liquid crystal display module
US11026330B2 (en) * 2018-08-30 2021-06-01 Samsung Display Co., Ltd. Display device
CN110707100B (zh) * 2019-10-16 2021-12-31 友达光电(昆山)有限公司 显示面板
CN111123575B (zh) * 2020-01-17 2022-12-02 京东方科技集团股份有限公司 显示面板和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023662A (ja) * 2000-07-11 2002-01-23 Seiko Epson Corp 電気光学装置及び電子機器
JP2003255853A (ja) * 2002-03-06 2003-09-10 Seiko Epson Corp 電気光学装置、および電子機器
JP2004318074A (ja) * 2003-04-01 2004-11-11 Seiko Epson Corp 電気光学装置及びこの電気光学装置を備えた電子機器、並びにこの電気光学装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883641B2 (ja) * 1997-03-27 2007-02-21 株式会社半導体エネルギー研究所 コンタクト構造およびアクティブマトリクス型表示装置
JP3504576B2 (ja) * 2000-03-30 2004-03-08 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶表示装置及びその検査方法
JP3697173B2 (ja) * 2000-05-25 2005-09-21 セイコーエプソン株式会社 液晶装置および電子機器
US7332742B2 (en) * 2004-06-29 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
WO2008062591A1 (fr) * 2006-11-20 2008-05-29 Sharp Kabushiki Kaisha Procédé de commande d'appareil d'affichage, circuit d'amplification, appareil d'affichage à cristaux liquides et récepteur de télévision

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023662A (ja) * 2000-07-11 2002-01-23 Seiko Epson Corp 電気光学装置及び電子機器
JP2003255853A (ja) * 2002-03-06 2003-09-10 Seiko Epson Corp 電気光学装置、および電子機器
JP2004318074A (ja) * 2003-04-01 2004-11-11 Seiko Epson Corp 電気光学装置及びこの電気光学装置を備えた電子機器、並びにこの電気光学装置の製造方法

Also Published As

Publication number Publication date
US20120319144A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
KR102091109B1 (ko) 액정표시장치
US8582070B2 (en) Array substrate for multi-vision and liquid crystal display device including the same
US9240149B2 (en) Liquid crystal display device and method of fabricating the same
JP5220918B2 (ja) 表示装置
JP2009186737A (ja) アレイ基板および表示装置
KR20020081105A (ko) 전기 광학 장치, 그 제조 방법 및 전자 기기
JP2005091962A (ja) 電極配線基板および表示装置
TWI397756B (zh) 主動陣列基板、液晶顯示面板及製造主動陣列基板之方法
JP2010009002A (ja) 最小面積の液晶表示素子
WO2011104941A1 (ja) 表示パネルおよび表示装置
JP2011100011A (ja) 表示装置
JP2008076702A (ja) 表示装置の製造方法
KR20130131692A (ko) 액정표시장치
US7215401B2 (en) Liquid crystal display device
US7456916B2 (en) Liquid crystal device with overcoat layer that gradually reduces in thickness towards an edge portion corresponding to a boundary between reflective and transmissive regions
JP4306779B2 (ja) 表示装置
JP2007199341A (ja) 電気光学装置及び電子機器
US20220392990A1 (en) Display device
JP2019113656A (ja) 液晶パネル
JP2007094030A (ja) 液晶装置および電子機器
JP2006350168A (ja) 液晶装置及びその製造方法、並びに電子機器
JP2006234871A (ja) 液晶装置、及び電子機器
CN116594215A (zh) 显示面板及其制备方法、显示装置
JP2003098543A (ja) 電気光学パネル、その製造方法および電子機器
JP4029907B2 (ja) 液晶装置、およびそれを用いた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP