WO2011102401A1 - 弾性画像の画質評価方法及び超音波診断装置 - Google Patents

弾性画像の画質評価方法及び超音波診断装置 Download PDF

Info

Publication number
WO2011102401A1
WO2011102401A1 PCT/JP2011/053319 JP2011053319W WO2011102401A1 WO 2011102401 A1 WO2011102401 A1 WO 2011102401A1 JP 2011053319 W JP2011053319 W JP 2011053319W WO 2011102401 A1 WO2011102401 A1 WO 2011102401A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
elastic
elasticity
section
image quality
Prior art date
Application number
PCT/JP2011/053319
Other languages
English (en)
French (fr)
Inventor
昌弘 須田
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US13/579,331 priority Critical patent/US9310473B2/en
Priority to JP2012500634A priority patent/JP5789593B2/ja
Publication of WO2011102401A1 publication Critical patent/WO2011102401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the present invention relates to an image quality evaluation method for elastic images and an ultrasonic diagnostic apparatus for performing the method.
  • elasticity information for example, strain of a biological tissue, elastic modulus, etc.
  • elasticity information indicating the hardness and softness of a biological tissue such as a tumor is important information become.
  • To acquire an elasticity image first, the tomographic plane including the region of interest is periodically scanned with an ultrasonic beam while periodically changing the pressure applied to the region of interest from the body surface of the subject by the probe.
  • a plurality of RF signal frame data is generated by receiving and processing ultrasonic waves reflected from the living tissue.
  • two RF signal frame data having different compressive forces are selected from a plurality of RF signal frame data, and a displacement (displacement vector) of the living tissue between the two RF signal frame data is obtained.
  • a displacement vector displacement vector
  • the distribution of elasticity information representing the hardness and softness of the living tissue in each part of the tomographic plane including the region of interest is obtained, and the elasticity image obtained by imaging the elasticity information distribution is displayed on a monitor or the like. To be displayed.
  • the elastic image displayed on a monitor or the like mainly attaches a hard part such as red or blue, depending on the strain or elastic modulus of the living tissue. It is displayed easily. Thereby, the spread and size of malignant tumors such as cancer can be easily diagnosed.
  • the probe when the subject is compressed with the probe by the procedure of the examiner, the probe is pressed against the region of interest from the initial state in which a certain initial pressure (including zero) is applied to the region of interest from the body surface of the subject by the probe. And the operation of moving in a direction to move away from the region of interest. That is, the increase / decrease of the compression force is repeated based on the initial state in which the compression force is applied to the region of interest.
  • RF signal frame data is continuously acquired in the process of increasing / decreasing the compression force, and the displacement of each part of the biological tissue between two RF signal frame data having different acquisition times, that is, different compression forces, is obtained.
  • the acquired elastic image is temporarily stored in a memory such as a cine memory or an external storage medium, and then the elastic image is reproduced and diagnosed.
  • a memory such as a cine memory or an external storage medium
  • the elastic image is reproduced and diagnosed.
  • a plurality of acquired elasticity images are stored in the memory, and the elasticity images in the memory are reproduced and displayed in a list on the monitor, or scrolled, so that the examiner is suitable for diagnosis while observing the reproduced images.
  • the elastic image is selected.
  • an elastic image suitable for diagnosis involves the subjectivity of the examiner, and there is no guarantee that an elastic image having an image quality suitable for diagnosis is objectively selected.
  • the rewinding operation of the reproduced image is repeatedly performed due to the selection of the elastic image suitable for diagnosis, and there is a problem that it takes time to select the elastic image for diagnosis.
  • Patent Documents 2 and 3 select the image to be displayed by obtaining the degree of noise contained in the elastic image based on various data obtained in the process of acquiring the elastic information. It has been proposed.
  • the problem to be solved by the present invention is to evaluate the image quality of an elastic image appropriately and with high reliability and certainty.
  • the elastic image quality evaluation method of the present invention takes in a plurality of RF signal frame data from a probe, and a plurality of displacement frame data representing a distribution of displacement based on the plurality of RF signal frame data. And calculating a plurality of elasticity frame data representing a distribution of elasticity information based on the plurality of displacement frame data, and evaluating the image quality of a plurality of elasticity images on the scan plane generated based on each elasticity frame data In doing so, a variation cycle of either the displacement of the plurality of displacement frame data or the elasticity information of the plurality of elastic frame data is detected, and the displacement or the variation pattern of the elasticity information for each predetermined section of the variation cycle is detected. A feature amount is obtained and generated from the elastic frame data corresponding to each section based on the change in the feature amount. The image quality of the elastic image is evaluated.
  • the compression force applied to the region of interest of the subject is determined by the size of the stroke of the probe push-pull operation, the push-pull speed, the push-pull Variations in the compression operation, such as the direction of, cannot be avoided. For this reason, among a plurality of continuously acquired elastic images, a noisy elastic image acquired by an inappropriate compression operation is mixed. Even in the case where mechanical pressure is applied, there is a similar problem if the operation is not appropriate.
  • the fluctuation cycle of either one of the displacement of the plurality of displacement frame data or the elasticity information of the plurality of elasticity frame data is detected.
  • This fluctuation cycle can be understood as corresponding to the compression operation. Accordingly, when the detected patterns of the plurality of fluctuation cycles are equal and continuous, the repeated compression operation is stable.
  • the elastic frame data obtained as a result of the compression operation directly affects the image quality of the elastic image, it is possible to stabilize the compression operation based on the displacement of the displacement frame data or the variation pattern of the elasticity information of the elastic frame data. It is characterized by evaluating the sex. Furthermore, in addition to the stability of the compression operation, image quality evaluation as described in JP-A-2005-118152 (Patent Document 2) is performed to evaluate the image quality of the elastic image. Thereby, the image quality of the elastic image can be stably evaluated, and an elastic image suitable for diagnosis can be selected with high reliability and certainty.
  • a variation cycle of either the displacement of the plurality of displacement frame data or the elasticity information of the plurality of elasticity frame data is detected, and the displacement for each predetermined section (for example, a half cycle) of the variation cycle.
  • the feature amount of the variation pattern of the elasticity information is obtained, the difference between the feature amount of one section and the feature amount of one or more sections detected before the one section is obtained, and the feature amount is obtained.
  • the stability of the compression operation that affects the image quality of the elastic image is evaluated. That is, the image quality of the elastic image generated from the elastic frame data corresponding to the one section is evaluated.
  • the half cycle refers to the period from the inflection point to the inflection point of the fluctuation cycle, or, in the case of the distortion fluctuation cycle, from the time when the distortion becomes 0 level to the next 0 level.
  • the fluctuation cycle is a change in the average value of the displacement of the living tissue in the same setting region or region of interest set in a plurality of displacement frame data, or the same setting region or interest set in the plurality of elastic frame data.
  • the fluctuation cycle of the average value of any one of the strain and elastic modulus of the living tissue in the region can be applied.
  • the feature amount of the variation of displacement or the variation pattern of elasticity information in each section is one of the average value, standard deviation, variance, and area (for example, integrated strain) of the displacement variation or elasticity information variation in each section. Can be used.
  • the fluctuation cycle of the average strain value is a series of half cycles in which the strain varies positively and negatively with respect to 0% strain. Therefore, the difference between the feature amounts of the distortion variation in each section is the difference between the absolute values of the feature amounts, or a statistical value regardless of whether the feature amount is positive or negative is used.
  • the present invention is not limited to the average strain value as the elastic value, and an average value of the elastic modulus (for example, Young's modulus) of the living tissue in the region of interest can be used. Instead of these statistical physical quantities, a statistical physical quantity indicating that the fluctuation pattern of the half cycle is stable can be used.
  • one section in which the difference in the variation pattern feature amount is smaller than a preset threshold is extracted, and it is evaluated that the image quality of the elastic image generated based on the elastic frame data in the extracted one section is high. can do.
  • the ratio of the noise area included in the elastic image is obtained based on the extracted plurality of elastic frame data in one section, and the elastic frame data having the smallest ratio of the noise area in the one section is selected,
  • the elasticity image corresponding to the selected elasticity frame data can be displayed on the display together with the basis of the evaluation.
  • the basis of the evaluation can include, for example, a distortion graph, a pressure operation instability graph, and an evaluation result. Thereby, the elastic image of the stable compression force can be selected.
  • An ultrasonic diagnostic apparatus that performs the image quality evaluation method of an elastic image according to the present invention is based on a probe that transmits and receives ultrasonic waves to and from a subject, and a plurality of RF signal frame data acquired by driving the probe.
  • a displacement measurement unit that calculates a plurality of displacement frame data representing a distribution of displacement of a living tissue
  • an elasticity information calculation unit that calculates a plurality of elasticity frame data representing a distribution of elasticity information based on the displacement frame data
  • the elasticity including an elastic image forming unit that generates an elastic image on the scan surface based on frame data and a display that displays the elastic image is an object.
  • the variation cycle of either one of the displacement of the plurality of displacement frame data or the elasticity information of the plurality of elastic frame data is detected, and the characteristics of the displacement or the variation pattern of the elasticity information for each predetermined section of the variation cycle
  • An elastic image evaluation unit that obtains an amount and evaluates an image quality of the elastic image based on a change in the characteristic amount is provided.
  • a variation cycle of either one of the displacement frame data or the elasticity information of the plurality of elastic frame data is detected, and the displacement or the elasticity information for each predetermined section of the variation cycle.
  • the feature amount of the fluctuation pattern of the first section is obtained, the difference between the feature amount of one section and the feature quantity of one or more sections detected before the one section is obtained, and based on the difference of the feature quantities
  • an elastic image evaluation unit for evaluating the image quality of the elastic image.
  • the ultrasonic diagnostic apparatus of the present invention it is possible to evaluate that the compression operation is stable and to stably evaluate the image quality of the elastic image, and is suitable for diagnosis with high reliability and certainty.
  • Elastic images can be selected.
  • all the features according to the above-described elastic image quality evaluation method of the present invention can be applied.
  • the image quality of an elastic image can be evaluated appropriately with high reliability and certainty.
  • FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • the graph which shows an example of the compression operation for demonstrating Example 1 of this invention, and an example of the fluctuation
  • the figure explaining the image quality evaluation method of the elastic image of one Example of this invention The flowchart which shows the procedure of the image quality evaluation method of the elastic image of one Example of this invention.
  • require the standard deviation which is an example of the feature-value of the fluctuation pattern of one Example of this invention.
  • An embodiment of an ultrasonic diagnostic apparatus that performs the image quality evaluation method for elastic images of the present invention is configured as shown in the block diagram of FIG.
  • the ultrasonic diagnostic apparatus includes a probe 12 that is an ultrasonic probe used in contact with a subject 10.
  • the probe 12 is formed by arranging a plurality of transducers, and transmits and receives ultrasonic waves to and from the subject 10.
  • the probe 12 is driven by ultrasonic waves periodically output from the transmission unit 14.
  • the transmission unit 14 has a function of generating a transmission pulse for generating an ultrasonic wave by driving the probe 12 and setting a convergence point of the transmitted ultrasonic wave to a certain depth.
  • the ultrasonic beam is periodically scanned from the probe 12 to the scan surface of the subject 10.
  • the RF signal reflected from the living tissue on the scan surface of the subject 10 and received by the probe 12 is amplified and processed by the receiving unit 16 with a predetermined gain, and is phased and added by the phasing adder 18 to be the RF signal.
  • Frame data is generated.
  • the RF signal frame data output from the phasing addition unit 18 is input to the tomographic image construction unit 20 and the RF signal frame data selection unit 28.
  • the tomographic image constructing unit 20 performs signal processing such as gain correction, log compression, detection, contour emphasis, and filter processing on the input RF signal frame data to construct a tomographic image of the scan plane, such as a black and white tomographic image.
  • the monochrome scan converter 22 includes an A / D converter that converts input tomographic image data into a digital signal, a frame memory that stores a plurality of converted tomographic image data in time series, and a control controller. ing.
  • the monochrome scan converter 22 acquires the frame data of the tomographic image stored in the frame memory as one image, reads out the acquired frame data of the tomographic image in synchronization with the television, and displays the display method of the image display 26 which is a display Convert to fit.
  • the RF signal frame data selection unit 28 sequentially stores a plurality of RF signal frame data continuously output from the phasing addition unit 18, and according to a command input from a control unit of an ultrasonic diagnostic apparatus (not shown). Two RF signal frame data having different acquisition times, that is, different compression forces, are selected and output to the displacement measuring unit 30. Specifically, the RF signal frame data selection unit 28 selects the RF signal frame data (N) as the first data from the stored RF signal frame data group, and at the same time, the RF signal frame data stored in the past in time. One RF signal frame data (X) is selected from the data group (N-1, N-2, N-3... NM).
  • N, M, and X are index numbers assigned to the RF signal frame data, and are natural numbers.
  • the displacement measuring unit 30 performs one-dimensional or two-dimensional correlation processing from the selected set of data, that is, the RF signal frame data (N) and the RF signal frame data (X), and thereby performs various parts of the living tissue of the subject 10.
  • 1-dimensional or 2-dimensional displacement distribution related to the displacement and movement vector that is, the direction and magnitude of the displacement, due to the difference in the compression force.
  • displacement frame data representing the distribution of displacement of each part is generated and output to the elasticity information calculation unit 32.
  • a block matching method is used to detect the movement vector.
  • the block matching method divides an image into blocks consisting of N ⁇ N pixels, for example, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this
  • predictive coding that is, processing for determining the sample value by the difference is performed.
  • the elasticity information calculation unit 32 is based on the displacement frame data output from the displacement measurement unit 30, and includes a plurality of distributions of elasticity information (strain or elastic modulus) representing the hardness and softness of each part of the living tissue on the scan surface.
  • Elastic frame data is generated by calculation and output to the elastic image construction unit.
  • the elasticity information calculation unit 32 calculates the distortion of the biological tissue corresponding to each point on the tomographic image based on the displacement vector data output from the displacement measurement unit 30, for example, based on the movement vector,
  • the elastic frame data representing the distribution of is generated.
  • the strain data is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement.
  • the elastic information calculation unit 32 can generate elastic frame data representing the distribution of elastic modulus based on the strain data.
  • the pressure measuring unit 46 shown in FIG. 1 is necessary.
  • the pressure measurement unit 46 measures the pressure of each part of the scan surface using, for example, a pressure detection value detected by a pressure sensor interposed between the probe 12 and the subject 10. Then, the elasticity information calculation unit 32 is calculated by dividing the change in pressure output from the pressure measurement unit 46 by the change in strain.
  • the Young's modulus is the ratio of the simple tensile stress applied to the object and the strain generated in parallel to the tension. In this way, the elastic information calculation unit 32 can continuously obtain elastic frame data that is a two-dimensional distribution of strain or elastic modulus that is elastic information.
  • the elastic image configuration unit 34 includes a frame memory and an image processing unit, and secures elastic frame data output in time series from the elastic information calculation unit 32 in the frame memory. Is subjected to image processing to generate elastic image data on the scan plane and output it to the color scan converter 36.
  • the color scan converter 36 constitutes a color elastic image with a hue corresponding to the value of the elasticity information of the input elasticity image data.
  • the light is converted into three primary colors, that is, red (R), green (G), and blue (B), and the color elastic image is converted so as to match the display method of the image display 26.
  • red (R), green (G), and blue (B) For example, elasticity information with a large strain is converted into a red code, and elasticity data with a small strain is converted into a blue code.
  • the switching addition unit 24 includes a frame memory, an image processing unit, and an image selection unit.
  • the frame memory stores tomographic image data from the monochrome scan converter 22 and color elastic image data from the color scan converter 36.
  • the image processing unit superimposes the images based on the tomographic image data and the color elastic image data secured in the frame memory in response to a command from the control unit of the ultrasonic diagnostic apparatus (not shown).
  • the composite image, the composite image to be displayed in parallel, or the composite ratio of the superimposed composite image is changed and combined.
  • the luminance information and hue information of each pixel of the composite image is obtained by adding the information of the black and white tomographic image and the color elastic image at the composite ratio.
  • the image selection unit selects an image to be displayed on the image display 26 from the tomographic image data and elasticity image data in the frame memory and the composite image data of the image processing unit, and the composite image is displayed on the image display 26. It is supposed to be displayed.
  • the feature of the present embodiment is that an elastic image evaluation unit 40, an interface unit 42, and an elastic image control unit 44 are provided.
  • the elasticity image evaluation unit 40 evaluates the image quality of the elasticity image based on the displacement frame data output from the displacement measurement unit 30 or the elasticity frame data output from the elasticity information calculation unit 32.
  • the elastic image control unit 44 controls the elastic image evaluation unit 40, the elastic image construction unit 34, and the color scan converter 36 based on a command input from the interface unit 42.
  • the elasticity image evaluation unit 40 continuously captures either the displacement frame data output from the displacement measurement unit 30 or the elasticity frame data output from the elasticity information calculation unit 32, and detects the change cycle of displacement or elasticity information. To do. Then, with each half cycle of the fluctuation cycle as a section, the feature amount of the variation pattern of displacement or elasticity information in each section is obtained. Next, the difference between the feature quantity of one section and the feature quantity of one or more other sections detected before the one section is obtained, and the difference between the feature quantities is disclosed in JP 2005-118152 A Based on the image quality evaluation, whether or not the image quality of the elastic image generated from the elastic frame data in one section is high is evaluated.
  • the elastic image evaluation unit 40 detects the fluctuation cycle of either the displacement or the elasticity information, obtains the displacement or the characteristic information of the fluctuation pattern of the elasticity information for each section of the half cycle of the fluctuation cycle, Whether or not the image quality of the elastic image generated from the elastic frame data corresponding to each section is high is evaluated based on the change of the feature amount, that is, based on the stability of the change of the feature amount. .
  • the probe 12 when acquiring an elastic image, the probe 12 is moved from the initial state in which the probe 12 applies a certain initial pressure (including zero) to the region of interest from the body surface of the subject 10 in the direction in which the probe 12 is pressed against the region of interest. Then, the operation of moving in the direction away from the region of interest is repeated. That is, the increase in the compression force and the decrease in the compression force are repeated based on the initial state in which the compression force is applied to the region of interest.
  • the operation of applying a compressive force to the region of interest of the subject 10 by the probe 12 varies depending on the size of the stroke of the push-pull operation of the probe 12, the speed of push-pull, the direction of push-pull, and the like. Therefore, in a plurality of continuously acquired elastic images, a noisy elastic image acquired by an inappropriate compression operation is mixed.
  • the elasticity image evaluation unit 40 evaluates the stability of the compression operation, that is, the stability of the elasticity image in a predetermined section, and appropriately diagnoses the image quality of the elasticity image with high reliability and certainty. An elastic image suitable for the case is evaluated.
  • the elastic image quality evaluation method performed by the elastic image evaluation unit 40 will be described in each embodiment.
  • FIG. 2 shows a graph of an example of a compression operation for explaining the first embodiment and an example of a variation cycle of distortion corresponding to the compression operation.
  • FIG. 3A shows a change in movement over time, which is a change in position during the pressing operation by the probe 12.
  • the probe 12 is repeatedly pressed and separated from the subject 10 by, for example, a technique. This is an example of a relatively ideal sinusoidal compression operation with the same stroke shown in the figure.
  • the time when the upper maximum point pulls the probe 12 and the time when the lower minimum point presses the probe 12 is shown. It is.
  • a position where initial compression is applied (for example, a position distorted by 2 to 10%) can be set as an initial state.
  • distortion (%) is generated in the biological tissue of the region of interest of the subject 10 to which a compressive force is applied as shown in FIG.
  • the distortion phase is delayed with respect to the movement of the probe 12, but the distortion fluctuation cycle is stable corresponding to an ideal sinusoidal compression operation.
  • FIG. 3 shows a comparison between a case where the fluctuation cycle of distortion is stable due to the movement of the probe 12 and a case where the fluctuation cycle of distortion is unstable.
  • the left side of FIG. 3A is a case where the fluctuation cycle of distortion is stable, and the right side is a case where the fluctuation cycle of distortion is unstable.
  • the horizontal axis is the time axis, but the black dots on the graph indicate the frame No. of the elastic frame data. It corresponds to. That is, it shows that a plurality of pieces of elastic frame data are acquired during each push-pull cycle of the probe 12 in FIG.
  • FIG. 3 (b) is an instability graph obtained according to the instability calculation formula described later, corresponding to the stability and instability of the strain fluctuation cycle.
  • the degree of instability is low when the fluctuation cycle of the distortion is sinusoidally stable and continuous, and the degree of instability when the fluctuation pattern of the distortion largely deviates from the sinusoidal wave and the unstable pattern is continuous. It can be seen that the stability is high.
  • FIG. 3 (c) a high-quality elastic image with less noise can be obtained from the elastic image obtained when the strain fluctuation pattern is sine wave-like and continuously continuous.
  • an elastic image obtained when the strain variation pattern is unstable is a poor-quality elastic image in which the ratio of noise is large as shown in FIG. 3 (d).
  • the region uniformly appearing at the center is a region where the elasticity information is cut by the processing of the elasticity information calculation unit 32 because there is a lot of noise.
  • the probe 12 that transmits and receives ultrasonic waves to and from the subject
  • the elastic information calculation unit 32 that calculates elastic information based on the ultrasonic waves received by the probe 12, and the elasticity based on the elastic information
  • An ultrasonic diagnostic apparatus comprising an elastic image forming unit 34 for generating an image and an image display (display) 26 for displaying an elastic image, detecting a fluctuation cycle of elasticity information and detecting a predetermined section of the fluctuation cycle
  • An elasticity image evaluation unit 40 that obtains a variation pattern of the elasticity information for each and evaluates the stability of the elasticity image based on the variation pattern is provided.
  • the elastic image evaluation unit 40 causes the image display (display) 26 to display an elastic image evaluated as having high image quality in a predetermined section where the stability of the fluctuation cycle is high.
  • the elastic image evaluation unit 40 further obtains the ratio of the noise area included in the elastic image in a predetermined section with high stability, and causes the image display (display) 26 to display the elastic image having the smallest ratio of the noise area.
  • the elastic image evaluation unit 40 follows the above-described principle, based on the variation pattern of the elastic frame data of the strain output from the elastic information calculation unit 32.
  • the first stage includes steps S1 and S2.
  • the strain fluctuation cycle which is the elasticity information of a plurality of pieces of continuously input elastic frame data
  • the image quality of the elastic image is determined by whether or not the fluctuation pattern of the continuous fluctuation cycle is stable. Whether or not it is above a certain value is evaluated.
  • Step S1 the instability of the strain fluctuation cycle is obtained.
  • a region of interest (ROI) is set for each elastic frame data, and the average value of the strain in the ROI is used as a representative value of the strain of the elastic frame data.
  • the stability or instability of distortion is obtained based on whether or not the fluctuation pattern of distortion in a plurality of consecutive half cycles is stably changed. That is, in the strain graph of FIG. 3A, each half cycle of the fluctuation cycle is defined as a section Si with a strain of 0%.
  • i is one section considered as an evaluation target, and one or a plurality of other sections detected prior to this one section are set as S (i ⁇ m).
  • i is a natural number
  • m is a natural number of 1, 2,.
  • the standard deviation of the half cycle of distortion shown in FIG. 5 is used as the characteristic amount of the fluctuation or variation pattern of the half cycle.
  • the number of elastic frames in the section Si is k.
  • the strain average value ⁇ mean in the section Si can be expressed by the following formula (1)
  • the standard deviation ⁇ i of the strain in the section Si can be expressed by the following formula (2).
  • N is preferably about 3 to 5, for example.
  • the instability of the obtained section Si is compared with a predetermined constant value, and if it is less than the predetermined value, the elasticity image generated by the strain distribution of the elastic frame data corresponding to the same section Si The image quality is evaluated as high. Then, sections in which the degree of instability is a certain value or less are sequentially extracted.
  • Step S2 a section having the lowest degree of instability in the compression operation by the technique is selected from the plurality of sections in which the degree of instability extracted is a certain value or less.
  • Step S3 is a second-stage image quality evaluation.
  • the elastic image evaluation unit 40 applies the elastic image quality evaluation method described in Japanese Patent Application Laid-Open No. 2005-118152 based on the elastic frame data of the section Si evaluated as having high image quality.
  • one having good image quality is selected from the elastic frame data of the section Si.
  • M) of the entire elastic frame data or the region of interest Evaluate the image quality as follows. Centering on the pixel position to be evaluated, for example, a kernel with a size of 3 ⁇ 5 pixels is set, and a total of 15 pixel data groups distributed in this kernel is used as a population, and as statistical characteristics of the population, For example, the average or standard deviation of the elasticity value is obtained as the image quality evaluation value. Then, image quality evaluation values are obtained for pixel data Xi, j of the entire elastic frame data or the region of interest, and image quality frame data is created.
  • the image quality frame data is data indicating the variation in the elasticity value of the pixel to be evaluated with respect to the population of the kernel size.
  • step S3 the distortion of each measurement point (pixel) in the entire region of the elastic frame data or the region of interest (ROI) is compared with the distortion of the average or standard deviation in the kernel from the first threshold value. Find smaller pixels. Then, the ratio of pixels smaller than the first threshold to the entire area or ROI is obtained. If this ratio is large, it is determined that the image quality of the elastic image is poor, and the elastic image is excluded from the selection. Furthermore, even if the elastic frame data is not excluded from the selection, if there is an area that is distorted in the direction opposite to the compression direction when the entire area or ROI is viewed, that area is included in the entire area or ROI.
  • the proportion is larger than the second threshold, it is determined that the image quality of the elastic image is poor and the elastic image is excluded from the selection.
  • the elastic frame data of the section Si evaluated with high stability of the compression operation and high image quality of the elastic image is further evaluated against other image quality evaluation criteria, and the elastic frame having the highest evaluation is evaluated.
  • An elastic image corresponding to the data is selected. Then, by automatically displaying the selected elasticity image on the image display 26, the examiner can easily and quickly obtain an elasticity image suitable for diagnosis.
  • FIG. 6 shows a display example of an elastic image obtained by the elastic image quality evaluation method of the first embodiment.
  • an elastic image with good image quality and its evaluation are displayed, and a distortion graph showing a variation cycle of distortion similar to that in FIG. 3 which is the basis for the evaluation, and an instability graph corresponding thereto are shown. They are displayed side by side. In particular, by moving the time phase bar displayed in these graphs in the time axis direction, the elasticity image and its evaluation in that time phase are displayed.
  • the stability of the compression operation is evaluated based on the change in the feature amount of the variation pattern of the elasticity information of the elastic frame data obtained from the result of the compression operation. Therefore, the image quality of the elastic image suitable for diagnosis can be stably evaluated, and the elastic image suitable for diagnosis can be selected with high reliability and certainty.
  • the elastic image evaluation unit 40 may be configured by a computer, and the computer may be operated by a program to perform the elastic image quality evaluation method.
  • the standard deviation is used as the feature amount of the distortion variation pattern in each section, but the present invention is not limited to this, and the average value of the distortion variation pattern in each section, or the area of the variation pattern, or Dispersion can be used.
  • the example which uses distortion as elastic information of elastic frame data was demonstrated, it replaced with this and can use an elasticity modulus and can acquire the same effect.
  • the method for evaluating the image quality of an elastic image based on whether or not the compression operation is stable using the pattern of the elastic information fluctuation cycle of the elastic frame data has been described.
  • evaluation is performed based on a variation pattern of elasticity information that is directly related to the image quality of the elasticity image. Therefore, the accuracy and reliability of evaluation are high.
  • step S3 of Example 1 the ratio of the total area or ROI in which the distortion ⁇ of each measurement point (pixel) in the entire area of elastic frame data or the region of interest (ROI) is smaller than the first threshold value
  • the present invention can evaluate the image quality of an elastic image by performing the same processing using the elastic modulus of each measurement point (pixel).
  • the ratio of the entire area of the displacement frame data or the area where the displacement of each measurement point in the area of interest is smaller than a certain threshold to the total area or ROI is determined, and the image quality of the elastic image is evaluated according to the ratio.
  • the elastic image evaluation unit 40 is able to take in two pieces of RF signal frame data, which are outputs from the RF signal frame data selection unit 28, and to evaluate the image quality of the elastic image.
  • the elastic image having high image quality obtained in each of Examples 1 to 3 described above can be stored in a memory such as a cine memory. Thereby, it is possible to reproduce an elastic image with high image quality stored in the memory and perform an appropriate diagnosis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 弾性画像の画質を適切に、かつ高い信頼性及び確実性で弾性画像の画質を評価するために、被検体との間で超音波を送受するプローブ12と、プローブ12で受信した超音波に基づいて弾性情報を演算する弾性情報演算部32と、弾性情報に基づいて弾性画像を生成する弾性画像構成部34と、弾性画像を表示する画像表示器(ディスプレイ)26とを備えてなる超音波診断装置であって、弾性情報の変動サイクルを検出し、変動サイクルの所定区間ごとの前記弾性情報の変動パターンを求め、前記変動パターンに基づいて弾性画像の安定度を評価する弾性画像評価部40を備える。

Description

弾性画像の画質評価方法及び超音波診断装置
 本発明は、弾性画像の画質評価方法及びその方法を実施する超音波診断装置に関する。
 超音波診断においては、診断対象である関心部位の腫瘍等を診断するにあたって、腫瘍等の生体組織の硬さ軟らかさを表す弾性情報(例えば、生体組織の歪み、弾性率等)が重要な情報になる。弾性画像を取得するには、まず、プローブにより被検体の体表から関心部位に加える圧迫を周期的に変化させながら、関心部位を含む断層面を超音波ビームで周期的にスキャンし、スキャン面の生体組織から反射される超音波を受信処理して複数のRF信号フレームデータを生成する。
 次いで、複数のRF信号フレームデータの中から圧迫力が異なる2つのRF信号フレームデータを選択し、それらの2つのRF信号フレームデータ間における生体組織の変位(変位ベクトル)を求める。そして、求めた変位の値に基づいて関心部位を含む断層面の各部の生体組織の硬さ軟らかさを表す弾性情報の分布を求め、弾性情報の分布を画像化した弾性画像をモニタ等のディスプレイに表示することが行われている。
 モニタ等に表示される弾性画像は、特許文献1に記載されているように、生体組織の歪みや弾性率に応じて、例えば、赤や青などの色相を付して、主に硬い部位を認識し易く表示される。これにより、癌などの悪性腫瘍の広がりや大きさを容易に診断できる。
 ところで、検査者の手技によりプローブにより被検体を圧迫する場合、プローブにより被検体の体表から関心部位に一定の初期圧迫(ゼロを含む)を加えた初期状態から、プローブを関心部位に押し付ける方向に移動させる操作と、関心部位から引き離す方向に移動させる操作を繰り返す。つまり、関心部位に圧迫力を加えた初期状態を基準にして、圧迫力の増減を繰り返す。この圧迫力の増減操作の過程でRF信号フレームデータを連続的に取得し、取得時間が異なる、つまり圧迫力が異なる2つのRF信号フレームデータ間における生体組織の各部の変位を求めている。
 しかし、手技による圧迫力の増減操作においては、プローブの押し引き操作のストロークの大きさ、押し引きの速度、押し引きの方向などの圧迫操作が変動するのを避けることができない。そのため、連続的に取得される複数枚の弾性画像の中には、適切でない圧迫操作で取得された画像が混在することになる。
 そこで、弾性画像を観察して診断を行う場合、取得された弾性画像をシネメモリや外部記憶媒体などのメモリに一旦記憶した後、弾性画像を再生して診断することが一般に行われている。つまり、取得した複数枚の弾性画像をメモリに記憶し、メモリの中の弾性画像を再生してモニタに一覧表示し、あるいはスクロール表示して、検査者が再生画像を観察しながら診断に適した弾性画像を選択している。
 しかし、診断に適した弾性画像の選択は、検査者の主観が入ることから、必ずしも客観的に診断に適した画質の弾性画像が選択される保証はない。また、診断に適した弾性画像の選択に迷って、再生画像の巻き戻し操作を繰り返し行う場合があり、診断用の弾性画像の選択に時間がかかってしまう問題がある。
 このような問題に対応するため、特許文献2,3には、弾性情報を取得する過程で得られる種々のデータに基づいて、弾性画像に含まれるノイズの度合い求めて、表示する画像を選択することが提案されている。
特開2000-60853号公報 特開2005-118152号公報 米国特許第6558324号公報
 しかし、特許文献2,3に記載された弾性画像の画質評価法によれば、弾性画像の画質を評価することができるが、弾性画像の画質評価の信頼性及び確実性を向上させる余地がある。
 本発明が解決しようとする課題は、弾性画像の画質を適切に、かつ高い信頼性及び確実性で弾性画像の画質を評価することにある。
 上記の課題を解決するため、本発明の弾性画像の画質評価方法は、プローブから複数のRF信号フレームデータを取り込み、該複数のRF信号フレームデータに基づいて変位の分布を表す複数の変位フレームデータを演算し、該複数の変位フレームデータに基づいて弾性情報の分布を表す複数の弾性フレームデータを演算し、各弾性フレームデータに基づいて生成される前記スキャン面における複数の弾性画像の画質を評価するにあたり、前記複数の変位フレームデータの変位又は前記複数の弾性フレームデータの弾性情報のいずれか一方の変動サイクルを検出し、該変動サイクルの所定区間ごとの前記変位又は前記弾性情報の変動パターンの特徴量を求め、前記特徴量の変化に基づいて各区間に対応する前記弾性フレームデータから生成される前記弾性画像の画質を評価することを特徴とする。
 すなわち、プローブにより加えられた圧迫力を手技により周期的に変化させる操作において、被検体の関心部位に加えられる圧迫力は、プローブの押し引き操作のストロークの大きさ、押し引きの速度、押し引きの方向などの圧迫操作の変動を避けることができない。そのため、連続的に取得される複数枚の弾性画像の中には、適切でない圧迫操作で取得されたノイズの多い弾性画像が混在してしまう。機械的に圧迫力を加える場合においても、その操作が適切でない場合、同様の問題がある。
 本発明の発明者らの知見によれば、安定して同じような圧迫操作が繰り返し行われている過程で得られる弾性画像は、ノイズが少ない安定した画質を有する傾向にあることがわかった。
 そこで、本発明では、複数の変位フレームデータの変位又は複数の弾性フレームデータの弾性情報のいずれか一方の変動サイクルを検出する。この変動サイクルは、圧迫操作に対応したものと解することができる。したがって、検出した複数の変動サイクルのパターンが同等で、かつ連続している場合は、繰り返される圧迫操作が安定していることになる。
 特に、圧迫操作の結果により得られた弾性フレームデータは、直接的に弾性画像の画質に影響するから、変位フレームデータの変位又は弾性フレームデータの弾性情報の変動パターンに基づいて、圧迫操作の安定性を評価するようにしたことを特徴とする。さらに、圧迫操作の安定性に加えて、特開2005-118152号公報(特許文献2)に記載のような画質評価を行って、弾性画像の画質を評価するようにしている。これにより、弾性画像の画質を安定的に評価することができ、高い信頼性及び確実性で診断に適した弾性画像を選択することができる。
 具体的には、前記複数の変位フレームデータの変位又は前記複数の弾性フレームデータの弾性情報のいずれか一方の変動サイクルを検出し、該変動サイクルの所定区間(例えば、半サイクル)ごとの前記変位又は前記弾性情報の変動パターンの特徴量を求め、一の区間の特徴量と該一の区間よりも先に検出された他の一又は複数の区間の特徴量との差を求め、該特徴量の差に基づいて弾性画像の画質に影響する圧迫操作の安定性を評価する。つまり、前記一の区間に対応する前記弾性フレームデータから生成される前記弾性画像の画質を評価する。さらに、特開2005-118152号公報(特許文献2)に記載のような画質評価を行って、弾性画像の画質を評価するようにしている。ここで、半サイクルは、変動サイクルの変極点から変極点までの間、あるいは、歪みの変動サイクルの場合は、歪みが0レベルになってから次の0レベルまでの間をいう。
 また、変動サイクルは、複数の変位フレームデータに設定された同一の設定領域又は関心領域における生体組織の変位の平均値の変動、又は前記複数の弾性フレームデータに設定された同一の設定領域又は関心領域における生体組織の歪みと弾性率のいずれか1つ平均値の変動サイクルを適用できる。また、各区間における変位の変動又は弾性情報の変動パターンの特徴量は、各区間における変位の変動又は弾性情報の変動の平均値、標準偏差、分散、面積(例えば、積算歪み)のいずれかを用いることができる。
 弾性フレームデータの弾性情報として関心領域における生体組織の歪みの平均値を用いた場合、歪みの平均値の変動サイクルは、歪み0%を基準として正負に変動する半サイクルが連続したものになる。したがって、各区間の歪みの変動の特徴量の差は、特徴量の絶対値の差とするか、あるいは、特徴量として正負に関わらない統計学的な値を用いる。また、本発明は、弾性値として歪みの平均値に限られるものではなく、関心領域における生体組織の弾性率(例えば、ヤング率など)の平均値を用いることができる。なお、これらの統計学的な物理量に代えて、半サイクルの変動パターンが安定していることを表す統計学的な物理量を用いることができる。
 さらに、変動パターン特徴量の差が予め設定された閾値よりも小さい一の区間を抽出し、該抽出された一の区間の前記弾性フレームデータに基づいて生成される弾性画像の画質が高いと評価することができる。この場合、抽出された一の区間の複数の弾性フレームデータに基づいて弾性画像に含まれるノイズ領域の割合を求め、該一の区間における最もノイズ領域の割合が小さい前記弾性フレームデータを選択し、該選択した弾性フレームデータに対応する弾性画像を評価の根拠となるものとともにディスプレイに表示させることができる。ここで、評価の根拠となるものには、例えば、歪みグラフと、圧迫操作の不安定度グラフ及び評価結果を含めることができる。これにより、安定した圧迫力の弾性画像を選択することができる。
 さらに、特徴量の差が予め設定された閾値よりも小さい一の区間を抽出し、該抽出された一の区間の弾性フレームデータに基づいて生成される弾性画像の画質が高いと評価することが好ましい。これにより、圧迫操作が適切な状態における弾性画像が画質の高い画像として評価される。
 本発明の弾性画像の画質評価方法を実施する超音波診断装置は、被検体との間で超音波を送受するプローブと、該プローブを駆動して取得された複数のRF信号フレームデータに基づいて生体組織の変位の分布を表す複数の変位フレームデータを演算する変位計測部と、前記変位フレームデータに基づいて弾性情報の分布を表す複数の弾性フレームデータを演算する弾性情報演算部と、前記弾性フレームデータに基づいて前記スキャン面における弾性画像を生成する弾性画像構成部と、該弾性画像を表示するディスプレイとを備えてなる超音波診断装置を対象とする。
 特に、前記複数の変位フレームデータの変位又は前記複数の弾性フレームデータの弾性情報のいずれか一方の変動サイクルを検出し、該変動サイクルの所定区間ごとの前記変位又は前記弾性情報の変動パターンの特徴量を求め、前記特徴量の変化に基づいて前記弾性画像の画質を評価する弾性画像評価部を備えることを特徴とする。
 又は、これに代えて、前記複数の変位フレームデータの変位又は前記複数の弾性フレームデータの弾性情報のいずれか一方の変動サイクルを検出し、該変動サイクルの所定区間ごとの前記変位又は前記弾性情報の変動パターンの特徴量を求め、一の区間の特徴量と該一の区間よりも先に検出された他の一又は複数の区間の特徴量との差を求め、該特徴量の差に基づいて前記弾性画像の画質を評価する弾性画像評価部を備えることができる。
 これにより、本発明の超音波診断装置によれば、圧迫操作が安定していることを評価し、弾性画像の画質を安定して評価することができ、高い信頼性及び確実性で診断に適した弾性画像を選択することができる。また、上述した本発明の弾性画像の画質評価方法に係る特徴を、全て適用することができる。
 本発明によれば、弾性画像の画質を適切に、かつ高い信頼性及び確実性で弾性画像の画質を評価することができる。
本発明の一実施例の超音波診断装置のブロック構成図 本発明の実施例1を説明するための圧迫操作の一例及びその圧迫操作に対応する歪みの変動サイクルの一例を示すグラフ 本発明の一実施例の弾性画像の画質評価方法を説明する図 本発明の一実施例の弾性画像の画質評価方法の手順を示すフローチャート 本発明の一実施例の変動パターンの特徴量の一例である標準偏差の求め方を説明する図 本発明の一実施例の弾性画像の画質評価方法を適用して得られる弾性画像の例と、弾性画像の画質評価に関する情報の表示例を示す図
 本発明の弾性画像の画質評価方法を実施する超音波診断装置の一実施の形態は、図1のブロック図に示すように構成されている。
 図示のように、超音波診断装置は、被検体10に当接させて用いられる超音波探触子であるプローブ12を備えている。プローブ12は、複数の振動子を配列して形成されており、被検体10との間で超音波を送受するものである。プローブ12は、送信部14から周期的に出力される超音波により駆動される。
 送信部14は、プローブ12を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。これにより、プローブ12から被検体10のスキャン面に周期的に超音波ビームをスキャンするようになっている。被検体10のスキャン面の生体組織から反射してプローブ12で受信されるRF信号は、受信部16により所定のゲインで増幅して処理され、整相加算部18において整相加算されてRF信号フレームデータが生成される。整相加算部18から出力されるRF信号フレームデータは、断層画像構成部20とRF信号フレームデータ選択部28に入力される。
 断層画像構成部20は、入力されるRF信号フレームデータにゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行って、スキャン面の濃淡断層画像例えば白黒断層画像を構成して白黒スキャンコンバータ22に出力する。白黒スキャンコンバータ22は、入力される断層画像データをデジタル信号に変換するA/D変換器と、変換された複数の断層画像データを時系列に記憶するフレームメモリと、制御コントローラを含んで構成されている。
 また、白黒スキャンコンバータ22は、フレームメモリに格納された断層画像のフレームデータを1画像として取得し、取得された断層画像のフレームデータをテレビ同期で読み出し、ディスプレイである画像表示器26の表示方式に合うように変換する。
 RF信号フレームデータ選択部28は、整相加算部18から連続的に出力される複数のRF信号フレームデータを順次記憶し、図示していない超音波診断装置の制御部から入力される指令に従って、取得時間が異なる、つまり圧迫力が異なる2つのRF信号フレームデータを選択して変位計測部30に出力する。具体的には、RF信号フレームデータ選択部28は、記憶したRF信号フレームデータ群から第1のデータとしてRF信号フレームデータ(N)を選択すると同時に、時間的に過去に記憶されたRF信号フレームデータ群(N-1、N-2、N-3…N―M)の中から1つのRF信号フレームデータ(X)を選択する。なお、ここでN、M、XはRF信号フレームデータに付されたインデックス番号であり、自然数とする。
 変位計測部30は、選択された1組のデータすなわちRF信号フレームデータ(N)及びRF信号フレームデータ(X)から、1次元或いは2次元相関処理を行って、被検体10の生体組織の各部の圧迫力の違いによる変位や移動ベクトルすなわち変位の方向と大きさに関する1次元又は2次元変位分布を求める。そして、各部の変位の分布を表す変位フレームデータを生成して弾性情報演算部32に出力する。ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング法とは、画像を例えばN×N画素からなるブロックに分け、関心領域内のブロックに着目し、着目しているブロックに最も近似しているブロックを前のフレームから探し、これを参照して予測符号化すなわち差分により標本値を決定する処理を行うものである。
 弾性情報演算部32は、変位計測部30から出力される変位フレームデータに基づいて、スキャン面の生体組織の各部の硬さ軟らかさを表す弾性情報(歪み又は弾性率)の分布を表す複数の弾性フレームデータを演算により生成し、弾性画像構成部34に出力する。
 つまり、弾性情報演算部32は、変位計測部30から出力される変位フレームデータに基づいて、例えば移動ベクトルに基づいて断層画像上の各点に対応する生体組織の歪みを演算し、求めた歪みの分布を表す弾性フレームデータを生成する。歪みのデータは、生体組織の移動量例えば変位を空間微分することによって算出される。
 また、弾性情報演算部32は、歪みのデータに基づいて弾性率の分布を表す弾性フレームデータを生成することができるようになっている。この場合は、図1に示す圧力計測部46が必要になる。圧力計測部46は、例えば、プローブ12と被検体10との間に介在させた圧力センサにより検出される圧力検出値を用いて、スキャン面の各部の圧力を計測するようになっている。そして、弾性情報演算部32は、圧力計測部46から出力される圧力の変化を、歪みの変化で除することによって計算される。
 例えば、変位計測部30により計測された変位をL(X)、圧力計測部46により計測された圧力をP(X)とすると、歪みΔS(X)は、L(X)を空間微分することによって算出することができる。つまり、ΔS(X)=ΔL(X)/ΔXという式を用いて求められる。また、弾性率データのヤング率Ym(X)は、Ym=(ΔP(X))/ΔS(X)という式によって算出される。このヤング率Ymから断層画像の各点に対応する生体組織の弾性率が求められる。
 なお、ヤング率とは、物体に加えられた単純引張り応力と、引張りに平行に生じるひずみに対する比である。このようにして、弾性情報演算部32は、弾性情報である歪み又は弾性率の2次元分布である弾性フレームデータを連続的に得ることができる。
 弾性画像構成部34は、フレームメモリと画像処理部とを含んで構成されており、弾性情報演算部32から時系列に出力される弾性フレームデータをフレームメモリに確保し、確保された弾性フレームデータに対し画像処理を行って、スキャン面における弾性画像データを生成してカラースキャンコンバータ36に出力する。カラースキャンコンバータ36は、入力される弾性画像データの弾性情報の値に応じた色相を付したカラー弾性画像を構成する。
 つまり、弾性フレームデータに基づいて光の3原色すなわち赤(R)、緑(G)、青(B)に変換するとともに、カラー弾性画像を画像表示器26の表示方式に合うように変換する。例えば、歪みが大きい弾性情報を赤色コードに変換すると同時に、歪みが小さい弾性データを青色コードに変換する。
 切替加算部24は、フレームメモリと、画像処理部と、画像選択部とを備えて構成されている。フレームメモリは、白黒スキャンコンバータ22からの断層画像データとカラースキャンコンバータ36からのカラー弾性画像データとを格納するものである。また、画像処理部は、図示されていない超音波診断装置の制御部からの指令に応じて、フレームメモリに確保された断層画像データとカラー弾性画像データに基づいて、それらの画像を重ね合わせた合成画像、あるいは並列に表示させる合成画像、または重ね合わせた合成画像の合成割合を変更して合成する。合成画像の各画素の輝度情報及び色相情報は、白黒断層画像とカラー弾性画像の各情報を合成割合で加算したものとなる。
 また、画像選択部は、フレームメモリ内の断層画像データと弾性画像データ及び画像処理部の合成画像データのうちから画像表示器26に表示する画像を選択して、合成画像を画像表示器26に表示させるようになっている。
 ここで、本実施の形態の超音波診断装置の特徴部に係る構成について説明する。本実施の形態の特徴は、弾性画像評価部40と、インターフェイス部42と、弾性画像制御部44を備えていることにある。弾性画像評価部40は、変位計測部30から出力される変位フレームデータ又は弾性情報演算部32から出力される弾性フレームデータに基づいて、弾性画像の画質を評価するようになっている。弾性画像制御部44は、インターフェイス部42から入力される指令に基づいて、弾性画像評価部40と弾性画像構成部34とカラースキャンコンバータ36を制御するようになっている。
 弾性画像評価部40は、変位計測部30から出力される変位フレームデータ又は弾性情報演算部32から出力される弾性フレームデータのいずれか一方を連続して取り込み、変位又は弾性情報の変動サイクルを検出する。そして、変動サイクルの各半サイクルを区間として、各区間における変位又は弾性情報の変動パターンの特徴量を求める。次いで、一の区間の特徴量と該一の区間よりも先に検出された他の一又は複数の区間の特徴量との差を求め、その特徴量の差と、特開2005-118152号公報の画質評価とに基づいて一の区間の弾性フレームデータから生成される弾性画像の画質が高いか否かを評価するようになっている。要するに、弾性画像評価部40は、変位又は弾性情報のいずれか一方の変動サイクルを検出し、変動サイクルの半サイクルの区間ごとの変位又は弾性情報の変動パターンの特徴量を求め、複数の区間の特徴量の変化に基づいて、つまり特徴量の変化の安定度に基づいて、各区間に対応する弾性フレームデータから生成される前記弾性画像の画質が高いか否かを評価するようになっている。
 すなわち、弾性画像を取得する場合、プローブ12により被検体10の体表から関心部位に一定の初期圧迫(ゼロを含む)を加えた初期状態から、プローブ12を関心部位に押し付ける方向に移動させる操作と、関心部位から引き離す方向に移動させる操作が繰り返えされる。つまり、関心部位に圧迫力を加えた初期状態を基準にして、圧迫力の増加と圧迫力の減少が繰り返えされる。プローブ12により被検体10の関心部位に圧迫力を加える操作は、プローブ12の押し引き操作のストロークの大きさ、押し引きの速度、押し引きの方向などに依存して変動する。したがって、連続的に取得される複数枚の弾性画像の中には、適切でない圧迫操作で取得されたノイズの多い弾性画像が混在してしまうことになる。
 本実施の形態は、弾性画像評価部40において、圧迫操作の安定性、すなわち所定区間における弾性画像の安定度を評価するとともに、弾性画像の画質を適切に、かつ高い信頼性及び確実性で診断に適した弾性画像を評価するようにしている。以下、弾性画像評価部40における弾性画像の画質評価方法について、実施例に分けて説明する。
 図2に、実施例1を説明するための圧迫操作の一例及びその圧迫操作に対応する歪みの変動サイクルの一例のグラフを示す。同図(a)はプローブ12による圧迫操作時の位置の変化である動きの時間変化を示している。同図に示すように、プローブ12は、例えば手技により被検体10に対して押し付けと、引き離しの操作を繰り返し行われる。図示の同一のストロークで、比較的理想的な正弦波状の圧迫操作の例であり、上部の極大点がプローブ12を引ききった時相で、下部の極小点がプローブ12を押しきった時相である。
 この例では、プローブ12を引ききった位置は、被検体10の体表位置を初期状態(圧迫力=0)としているが、本発明はこれに限らず、プローブ12により被検体10に一定の初期圧迫を加えた位置(例えば、2~10%歪ませた位置)を初期状態とすることができる。このようなプローブ12の動きに対応して、圧迫力が加えられる被検体10の関心部位の生体組織には、同図(b)に示すように歪み(%)が発生する。図からわかるように、プローブ12の動きに対して、歪みの位相は遅れるが、理想的な正弦波状の圧迫操作に対応して、歪みの変動サイクルは安定している。
 図3に、プローブ12の動きに起因して、歪みの変動サイクルが安定している場合と、歪みの変動サイクルが不安定な場合を対比して示す。同図(a)の左側が歪みの変動サイクルが安定の場合であり、右側が歪みの変動サイクルが不安定の場合である。なお、図において、横軸は時間軸であるが、グラフ上の黒点は、弾性フレームデータのフレームNo.に対応している。つまり、図2のプローブ12の押し引きの各周期の間に、複数枚の弾性フレームデータを取得していることを示している。図3(b)は、歪みの変動サイクルの安定と不安定に対応させて、後述する不安定度の計算式に従って求めた不安定度グラフである。
同図から、歪みの変動サイクルが正弦波状で安定して連続しているときの不安定度は低く、歪みの変動サイクルが正弦波状から大きく外れて不安定なパターンが連続しているときの不安定度は高いことがわかる。
 また、歪みの変動パターンが正弦波状で安定して連続しているときに得られる弾性画像は、図3(c)に示すように、ノイズの少ない良質の弾性画像が得られる。一方、歪みの変動パターンが不安定なときに得られる弾性画像は、図3(d)に示すように、ノイズの占める割合が大きい質の悪い弾性画像になる。同図(d)において、中央部に均一に表れている領域は、ノイズが多いために弾性情報演算部32の処理で弾性情報がカットされた領域である。
 本実施例1においては、被検体との間で超音波を送受するプローブ12と、プローブ12で受信した超音波に基づいて弾性情報を演算する弾性情報演算部32と、弾性情報に基づいて弾性画像を生成する弾性画像構成部34と、弾性画像を表示する画像表示器(ディスプレイ)26とを備えてなる超音波診断装置であって、弾性情報の変動サイクルを検出し、変動サイクルの所定区間ごとの前記弾性情報の変動パターンを求め、前記変動パターンに基づいて弾性画像の安定度を評価する弾性画像評価部40を備える。弾性画像評価部40は、変動サイクルの安定度が高い所定区間において画質が高いと評価された弾性画像を画像表示器(ディスプレイ)26に表示させる。弾性画像評価部40は、さらに、安定度が高い所定区間において弾性画像に含まれるノイズ領域の割合を求め、最もノイズ領域の割合が小さい前記弾性画像を画像表示器(ディスプレイ)26に表示させる。
 具体的には、図4のフローチャートに示すように、弾性画像評価部40は、上述の原理に従い、弾性情報演算部32から出力される歪みの弾性フレームデータの変動パターンに基づいて、弾性画像の画質に影響する圧迫操作の安定性を評価する第1段階と、さらに従来の特開2005-118152号公報等に記載された弾性画像の画質を評価する第2段階とを備えて構成されている。
 図4に示すように、第1段階は、ステップS1、S2を有してなる。第1段階では、連続的に入力される複数の弾性フレームデータの弾性情報である歪みの変動サイクルを検出し、連続する変動サイクルの変動パターンが安定しているか否かにより、弾性画像の画質が一定値以上か否かを評価するようになっている。
 (ステップS1)
 ここでは、まず、歪みの変動サイクルの不安定度を求める。このとき、各弾性フレームデータに関心領域(ROI)を設定し、ROI内の歪みの平均値を、その弾性フレームデータの歪みの代表値とする。これにより、図3(a)のような歪みの変動サイクルのグラフが得られる。本実施例1では、連続する複数の半サイクルの歪みの変動パターンが安定的に変化しているか否かで、歪みの安定度もしくは不安定度を求めるようにしている。つまり、図3(a)の歪みグラフにおいて、歪み0(%)を基準に、変動サイクルの各半サイクルを区間Siとする。ここで、iは評価対象と考えている一の区間とし、この一の区間よりも先に検出された他の一又は複数の区間はS(i-m)と設定する。ここで、iは自然数、mは1,2,・・・,Nの自然数である。
 次に、半サイクルの歪みの変動又は変動パターンの特徴量として、本実施例では、図5に示す歪みの半サイクルの標準偏差を用いる。図5において、区間Siの弾性フレーム数がkであったとする。それぞれの弾性フレームデータの歪みがεjとすると、区間Siの歪みの平均値εmeanは、次式(1)で表せるから、区間Si内の歪みの標準偏差σiは、次式(2)で表せる。
  εmean=1/k・Σεj        (1)
  σi=√{1/k・Σ(εj-εmean)2} (2)
 このようにして、区間Siよりも先に検出された他の一又は複数の区間S(i-m)の歪みの標準偏差σ(i-m)を求める。そして、区間Siの歪みの標準偏差σiと、他の一又は複数の区間S(i-m)の歪みの標準偏差σ(i-m)との差を求める。さらに、区間Siを基準に遡って標準偏差σ(i-m)の差を求める区間数をNとしたとき、区間Siの圧迫の不安定度を、次式(3)で表す。
  区間Siの不安定度=1/N・Σ(σi-σ(i-m))   (3)
 式(3)において、遡る区間数Nを多くすると、評価対象の区間Siと他の区間S(i-m)との不安定度の差が小さくなるので好ましくない。そこで、Nは例えば3~5程度が好ましい。
 次に、求めた区間Siの不安定度と、予め定めた一定値とを比較して、一定値以下の場合は、同区間Siに対応する弾性フレームデータの歪みの分布により生成される弾性画像の画質は高いと評価する。そして、不安定度が一定値以下の区間を順次抽出する。
 (ステップS2)
 ステップS2では、抽出された不安定度が一定値以下の複数の区間の中で、手技による圧迫操作の不安定度が最も低い区間を選択する。
 (ステップS3)
 ステップS3は、第2段階の画質の評価である。つまり、手技による圧迫操作の不安定度が最も低い区間であっても、図3(a)に示したように、歪みεが0%に近い場合等の弾性フレームデータでは、必ずしも画質の良い弾性画像とはならない。そこで、弾性画像評価部40は、弾性画像の画質が高いと評価された区間Siの弾性フレームデータに基づいて、特開2005-118152号公報に記載されている弾性画像の画質評価方法を適用して、区間Siの弾性フレームデータの中から、例えば画質の良いものを選択するようにしている。一例を説明すると、弾性フレームデータの全領域又は関心領域の画素データXi,j (i=1,2,3,・・・,N、j=1,2,3,・・・M)について次のように画質を評価する。評価対象の画素位置を中心にして、例えば3×5画素のサイズのカーネルを設定し、このカーネル内に分布する計15個の画素データ群を母集団とし、母集団の統計的特徴量として、弾性値の例えば平均又は標準偏差を画質評価値として求める。そして、弾性フレームデータの全領域又は関心領域の画素データXi,jについて、それぞれ画質評価値を求めて画質フレームデータを作成する。この画質フレームデータは、カーネルサイズの母集団に対する評価対象の画素の弾性値のバラツキを示したデータとなる。
 したがって、画質評価値がある閾値よりも小さい評価対象の画素があっても、全領域又は関心領域に占める割合が小さいときは、弾性画像の画質が良いと評価することができる。
 そこで、ステップS3では、例えば、弾性フレームデータの全領域又は関心領域(ROI)内の各計測点(画素)の歪みが、カーネル内の平均又は標準偏差の歪みと比較して第1の閾値よりも小さい画素を求める。そして、第1の閾値よりも小さい画素が全領域又はROIに占める割合を求める。この割合が大きいときは、弾性画像の画質が悪いと判断して、その弾性画像を選択から排除する。さらに、選択から排除されなかった弾性フレームデータであっても、全領域又はROIをみて、圧迫の方向と逆の方向に歪みを生じている領域がある場合は、その領域が全領域又はROIに占める割合が第2の閾値より大きいときは、弾性画像の画質が悪いと判断して、その弾性画像を選択から排除する。このようにして、圧迫操作の安定度が高く、弾性画像の画質が高いと評価された区間Siの弾性フレームデータを、さらに他の画質評価基準に照らして評価し、その評価が最も高い弾性フレームデータに対応する弾性画像を選択するようにしている。そして、選択された弾性画像を画像表示器26に自動的に表示させることにより、検査者は診断に適した弾性画像を容易に、かつ速やかに得ることができる。
 本実施例1の弾性画像の画質評価方法により得られる弾性画像の表示例を図6に示す。
 図示のように、画質の良い弾性画像と、その評価が表示されるとともに、その評価の根拠である図3と同様の歪みの変動サイクルを示す歪みグラフと、これに対応する不安定度グラフが並べて表示される。特に、それらのグラフに表示される時相バーを時間軸方向に移動させることにより、その時相における弾性画像とその評価が表示されるようになっている。
 以上説明したように、本実施例1によれば、圧迫操作の結果により得られた弾性フレームデータの弾性情報の変動パターンの特徴量の変化に基づいて、圧迫操作の安定性を評価するようにしているから、診断に適した弾性画像の画質を安定して評価することができ、高い信頼性及び確実性で診断に適した弾性画像を選択することができる。なお、弾性画像評価部40をコンピュータにより構成し、コンピュータをプログラムにより作動させて、弾性画像の画質評価方法を実施させるようにすることができる。
 実施例1では、各区間における歪みの変動パターンの特徴量として、標準偏差を用いたが、本発明はこれに限らず、各区間における歪みの変動パターンの平均値、又は変動パターンの面積、又は分散を用いることができる。また、弾性フレームデータの弾性情報として歪みを用いる例を説明したが、これに代えて、弾性率を用いることができ、同一の効果を得ることができる。
 実施例1では、弾性フレームデータの弾性情報の変動サイクルのパターンを用いて、圧迫操作が安定しているか否かにより、弾性画像の画質を評価する方法を説明した。実施例1では弾性画像の画質に直接関係する弾性情報の変動パターンにより評価しているから、評価の精度及び信頼性は高い。しかし、本発明はこれに代えて、圧迫操作の動きを変位計測部30で計測される変位フレームデータの変動パターンを用い手圧迫操作が安定しているか否かを評価することができる。
 また、実施例1のステップS3では、弾性フレームデータの全領域又は関心領域(ROI)内の各計測点(ピクセル)の歪みεが第1の閾値よりも小さい領域が全領域又はROIに占める割合を求め、その割合に応じて弾性画像の画質を評価することを説明した。しかし、本発明はこれに代えて、各計測点(ピクセル)の弾性率を用いて同様の処理をして、弾性画像の画質を評価することができる。また、変位フレームデータの全領域又は関心領域内の各計測点の変位が、ある閾値よりも小さい領域が全領域又はROIに占める割合を求め、その割合に応じて弾性画像の画質を評価することができる。さらに、弾性画像評価部40は、RF信号フレームデータ選択部28の出力である2つのRF信号フレームデータを取り込み、弾性画像の画質を評価できるようになっている。
 上述した各実施例1~3で得られた評価の高い画質を有する弾性画像を、シネメモリなどのメモリに記憶させることができる。これにより、メモリ内に記憶された画質の高い弾性画像を再生して、適切な診断を行うことができる。
 10 被検体、12 超音波探触子、14 送信部、16 受信部、17 超音波送受信制御部、18 整相加算部、20 断層画像構成部、22 白黒スキャンコンバータ、24 切替加算部、26 画像表示器、28 RF信号フレームデータ選択部、30 変位計測部、32 弾性情報演算部、34 弾性画像構成部、36 カラースキャンコンバータ、40 弾性画像評価部、42 インターフェイス、44 弾性画像制御部、46 圧力計測部

Claims (10)

  1.  被検体との間で超音波を送受するプローブと、該プローブで受信した超音波に基づいて弾性情報を演算する弾性情報演算部と、前記弾性情報に基づいて弾性画像を生成する弾性画像構成部と、前記弾性画像を表示するディスプレイとを備えてなる超音波診断装置であって、
     前記弾性情報の変動サイクルを検出し、該変動サイクルの所定区間ごとの前記弾性情報の変動パターンを求め、前記変動パターンに基づいて前記弾性画像の安定度を評価する弾性画像評価部を備えることを特徴とする超音波診断装置。
  2.  請求項1に記載の超音波診断装置において、
    前記弾性画像評価部は、前記変動サイクルの前記安定度が高い所定区間において画質が高いと評価された前記弾性画像をディスプレイに表示させることを特徴とする超音波診断装置。
  3.  請求項1に記載の超音波診断装置において、
     前記弾性画像評価部は、さらに、前記安定度が高い所定区間において前記弾性画像に含まれるノイズ領域の割合を求め、最もノイズ領域の割合が小さい前記弾性画像をディスプレイに表示させることを特徴とする超音波診断装置。
  4.  請求項1に記載の超音波診断装置において、
     前記弾性画像評価部は、前記変動サイクルの所定区間ごとの前記弾性情報の変動パターンを求め、一の区間の特徴量と該一の区間よりも先に検出された他の一又は複数の区間の特徴量との差を求め、該特徴量の差に基づいて前記弾性画像の画質を評価することを特徴とする超音波診断装置。
  5.  請求項1に記載の超音波診断装置において、
     前記変動サイクルは、前記弾性画像に設定された関心領域における変位と歪みと弾性率のいずれか1つ平均値の変動であることを特徴とする超音波診断装置。
  6.  請求項1に記載の超音波診断装置において、
     前記各区間における前記弾性情報の変動パターンは、各区間における前記弾性情報の変動の平均値と標準偏差のいずれか一方であることを特徴とする超音波診断装置。
  7.  請求項4に記載の超音波診断装置において、
     前記弾性画像評価部は、前記特徴量の差が予め設定された閾値よりも小さい一の区間を抽出し、該抽出された一の区間の前記弾性画像の画質が高いと評価することを特徴とする超音波診断装置。
  8.  超音波に基づいて演算された弾性情報の変動サイクルを検出し、該変動サイクルの所定区間ごとの前記弾性情報の変動パターンを求め、前記変動パターンに基づいて前記弾性画像の安定度を評価することを特徴とする弾性画像の画質評価方法。
  9.  請求項8に記載の画質評価方法において、
    前記変動サイクルの前記安定度が高い所定区間において画質が高いと評価された前記弾性画像をディスプレイに表示させることを特徴とする弾性画像の画質評価方法。
  10.  請求項8に記載の画質評価方法において、
     前記安定度が高い所定区間において前記弾性画像に含まれるノイズ領域の割合を求め、最もノイズ領域の割合が小さい前記弾性画像をディスプレイに表示させることを特徴とする弾性画像の画質評価方法。
PCT/JP2011/053319 2010-02-17 2011-02-17 弾性画像の画質評価方法及び超音波診断装置 WO2011102401A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/579,331 US9310473B2 (en) 2010-02-17 2011-02-17 Method for evaluating image quality of elastic image, and ultrasonic diagnostic apparatus
JP2012500634A JP5789593B2 (ja) 2010-02-17 2011-02-17 弾性画像の画質評価方法及び超音波診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-032991 2010-02-17
JP2010032991 2010-02-17

Publications (1)

Publication Number Publication Date
WO2011102401A1 true WO2011102401A1 (ja) 2011-08-25

Family

ID=44482987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053319 WO2011102401A1 (ja) 2010-02-17 2011-02-17 弾性画像の画質評価方法及び超音波診断装置

Country Status (3)

Country Link
US (1) US9310473B2 (ja)
JP (1) JP5789593B2 (ja)
WO (1) WO2011102401A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038702A1 (ja) * 2012-09-10 2014-03-13 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
WO2014061370A1 (ja) * 2012-10-18 2014-04-24 日立アロカメディカル株式会社 超音波診断装置及び画像表示方法
WO2014082483A1 (zh) * 2012-11-28 2014-06-05 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像***和方法、实时动态帧间处理方法
WO2014103511A1 (ja) * 2012-12-25 2014-07-03 日立アロカメディカル株式会社 超音波診断装置及び弾性解析方法
JP2015159883A (ja) * 2014-02-26 2015-09-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP2016067399A (ja) * 2014-09-26 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP2019050961A (ja) * 2017-09-14 2019-04-04 株式会社日立製作所 超音波診断装置
JP2020010726A (ja) * 2018-06-25 2020-01-23 ベイ ラブズ インク. ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
US11497451B2 (en) 2018-06-25 2022-11-15 Caption Health, Inc. Video clip selector for medical imaging and diagnosis
JP7225345B1 (ja) 2021-10-18 2023-02-20 ジーイー・プレシジョン・ヘルスケア・エルエルシー 超音波診断装置および表示方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155272A1 (en) * 2013-03-28 2014-10-02 Koninklijke Philips N.V. Real-time quality control for acquisition of 3d ultrasound images
US10368850B2 (en) * 2014-06-18 2019-08-06 Siemens Medical Solutions Usa, Inc. System and method for real-time ultrasound guided prostate needle biopsies using a compliant robotic arm
KR101649725B1 (ko) * 2015-05-14 2016-08-19 삼성전자주식회사 탄성 영상을 표시하는 방법 및 초음파 진단 장치
US10034653B2 (en) * 2016-01-11 2018-07-31 Biosense Webster (Israel) Ltd. Tissue depth estimation using gated ultrasound and force measurements
US11464495B2 (en) * 2018-03-13 2022-10-11 Siemens Medical Solutions Usa, Inc. Adaptive clutter filtering in acoustic radiation force-based ultrasound imaging
CN114469175B (zh) * 2021-12-21 2024-04-05 上海深至信息科技有限公司 一种甲状腺扫查完整性的判断方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置
JP2005118152A (ja) * 2003-10-14 2005-05-12 Hitachi Medical Corp 超音波診断装置
WO2006040967A1 (ja) * 2004-10-08 2006-04-20 Hitachi Medical Corporation 超音波診断装置
JP2007090003A (ja) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd 超音波診断装置及びその制御方法
WO2007138881A1 (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corporation 超音波診断装置
JP2008073144A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置
JP2008126079A (ja) * 2006-11-22 2008-06-05 General Electric Co <Ge> 組織の弾力特性を計測するための直接式歪み推定器
JP2010017585A (ja) * 2004-06-09 2010-01-28 Hitachi Medical Corp 超音波診断装置の作動方法及び超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558324B1 (en) * 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
JP4202697B2 (ja) * 2002-08-12 2008-12-24 株式会社東芝 超音波診断装置、超音波画像表示装置および超音波画像表示方法
US7914456B2 (en) * 2003-05-30 2011-03-29 Hitachi Medical Corporation Ultrasonic probe and ultrasonic elasticity imaging device
US9380994B2 (en) * 2004-12-24 2016-07-05 Konica Minolta, Inc. Ultrasonic diagnostic apparatus
JP4966578B2 (ja) 2006-04-19 2012-07-04 株式会社日立メディコ 弾性画像生成方法及び超音波診断装置
KR100908248B1 (ko) * 2006-09-13 2009-07-20 주식회사 메디슨 탄성 영상 디스플레이 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置
JP2005118152A (ja) * 2003-10-14 2005-05-12 Hitachi Medical Corp 超音波診断装置
JP2010017585A (ja) * 2004-06-09 2010-01-28 Hitachi Medical Corp 超音波診断装置の作動方法及び超音波診断装置
WO2006040967A1 (ja) * 2004-10-08 2006-04-20 Hitachi Medical Corporation 超音波診断装置
JP2007090003A (ja) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd 超音波診断装置及びその制御方法
WO2007138881A1 (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corporation 超音波診断装置
JP2008073144A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置
JP2008126079A (ja) * 2006-11-22 2008-06-05 General Electric Co <Ge> 組織の弾力特性を計測するための直接式歪み推定器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695031B2 (en) 2012-09-10 2020-06-30 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus, image processing apparatus, and image processing method
CN103813755A (zh) * 2012-09-10 2014-05-21 株式会社东芝 超声波诊断装置、图像处理装置以及图像处理方法
WO2014038702A1 (ja) * 2012-09-10 2014-03-13 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
WO2014061370A1 (ja) * 2012-10-18 2014-04-24 日立アロカメディカル株式会社 超音波診断装置及び画像表示方法
US9311704B2 (en) 2012-10-18 2016-04-12 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus and image display method
JPWO2014061370A1 (ja) * 2012-10-18 2016-09-05 株式会社日立製作所 超音波診断装置及び画像表示方法
WO2014082483A1 (zh) * 2012-11-28 2014-06-05 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像***和方法、实时动态帧间处理方法
CN103845081A (zh) * 2012-11-28 2014-06-11 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像***和方法、实时动态帧间处理方法
WO2014103511A1 (ja) * 2012-12-25 2014-07-03 日立アロカメディカル株式会社 超音波診断装置及び弾性解析方法
JPWO2014103511A1 (ja) * 2012-12-25 2017-01-12 株式会社日立製作所 超音波診断装置及び弾性解析方法
JP2015159883A (ja) * 2014-02-26 2015-09-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP2016067399A (ja) * 2014-09-26 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP2019050961A (ja) * 2017-09-14 2019-04-04 株式会社日立製作所 超音波診断装置
JP2020010726A (ja) * 2018-06-25 2020-01-23 ベイ ラブズ インク. ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
JP7100884B2 (ja) 2018-06-25 2022-07-14 キャプション ヘルス インコーポレイテッド ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
US11497451B2 (en) 2018-06-25 2022-11-15 Caption Health, Inc. Video clip selector for medical imaging and diagnosis
JP7225345B1 (ja) 2021-10-18 2023-02-20 ジーイー・プレシジョン・ヘルスケア・エルエルシー 超音波診断装置および表示方法
JP2023060768A (ja) * 2021-10-18 2023-04-28 ジーイー・プレシジョン・ヘルスケア・エルエルシー 超音波診断装置および表示方法

Also Published As

Publication number Publication date
US20120321165A1 (en) 2012-12-20
US9310473B2 (en) 2016-04-12
JP5789593B2 (ja) 2015-10-07
JPWO2011102401A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5789593B2 (ja) 弾性画像の画質評価方法及び超音波診断装置
JP5437820B2 (ja) 超音波診断装置、超音波画像処理方法
EP2263545B1 (en) Ultrasonograph
US8734353B2 (en) Ultrasonic diagnostic apparatus and elastic image display method
JP5028416B2 (ja) 超音波診断装置
US20090292205A1 (en) Ultrasonic diagnostic apparatus
US9389203B2 (en) Automated ultrasonic elasticity image formation with quality measure
EP1665987B1 (en) Ultrasonograph
US20070112270A1 (en) Ultrasonic imaging apparatus
WO2010024168A1 (ja) 超音波診断装置
JP5726081B2 (ja) 超音波診断装置及び弾性画像の分類プログラム
US9311704B2 (en) Ultrasonic diagnosis apparatus and image display method
JP5016911B2 (ja) 超音波診断装置
WO2009104525A1 (ja) 超音波診断装置、超音波弾性情報処理方法及び超音波弾性情報処理プログラム
KR101629541B1 (ko) 초음파 진단 장치 및 그 제어 프로그램
JP2016112285A (ja) 超音波診断装置
JP5455592B2 (ja) 超音波診断装置、及び超音波画像表示方法
JP4732086B2 (ja) 超音波診断装置
JP5623609B2 (ja) 超音波診断装置
JP4754838B2 (ja) 超音波診断装置
JP2016112033A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744687

Country of ref document: EP

Kind code of ref document: A1