WO2011102380A1 - Production method for organopolygermane compound - Google Patents

Production method for organopolygermane compound Download PDF

Info

Publication number
WO2011102380A1
WO2011102380A1 PCT/JP2011/053272 JP2011053272W WO2011102380A1 WO 2011102380 A1 WO2011102380 A1 WO 2011102380A1 JP 2011053272 W JP2011053272 W JP 2011053272W WO 2011102380 A1 WO2011102380 A1 WO 2011102380A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polygermane compound
polygermane
substituted
organic
Prior art date
Application number
PCT/JP2011/053272
Other languages
French (fr)
Japanese (ja)
Inventor
偉大 長澤
明 広岡
明 渡辺
徳治 宮下
Original Assignee
日産化学工業株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 国立大学法人東北大学 filed Critical 日産化学工業株式会社
Priority to JP2012500621A priority Critical patent/JP5762392B2/en
Publication of WO2011102380A1 publication Critical patent/WO2011102380A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/14Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing two or more elements other than carbon, oxygen, nitrogen, sulfur and silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a polygermane compound substituted with an organic group (hereinafter referred to as an organic substituted polygermane compound), and more specifically, an organic substitution capable of producing a thin film having a high refractive index.
  • the present invention relates to a production method capable of producing a polygermane compound with significantly improved yield.
  • Polygerman compounds are attracting attention as optical and electronic materials such as photoresists, organic photoreceptors, and optical memories.
  • optical and electronic materials such as photoresists, organic photoreceptors, and optical memories.
  • polygerman compounds exhibiting a refractive index of 1.7 or higher which is difficult to achieve with organic polymers alone, are expected to be applied to high refractive index materials.
  • a method for producing a polygermane compound a method of reductively coupling dihalogenogermanium or trihalogenogermanium with an alkali metal or an alkaline earth metal is known.
  • the present invention has been made in view of such circumstances, and has a wide application range of organic groups that can be introduced into the polygermane compound, and compared with a polygermane compound substituted with an organic group obtained by a conventional method.
  • Another object of the present invention is to provide a production method capable of obtaining an organic substituted polygermane compound capable of producing a thin film having a higher refractive index in a good yield.
  • the present inventors have made an organic substituted polyhydride by reacting an organic halide, a germanium tetrahalide, and an alkali metal or an alkaline earth metal in the coexistence.
  • the inventors have found that the yield of the germane compound and the refractive index of the thin film produced from the organic substituted polygermane compound can be remarkably improved, thereby completing the present invention.
  • the present invention is characterized in that an organic halide represented by the following formula [1], germanium tetrahalide, and an alkali metal or an alkaline earth metal are reacted in the coexistence.
  • a method for producing a polygermane compound substituted with an organic group R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a substituted group. Represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms, and X represents a halogen atom.
  • the germanium tetrahalide and the organic halide represented by the formula [1] are simultaneously added to the alkali metal or the alkaline earth metal, according to the first aspect.
  • the present invention relates to a method for producing a polygermane compound.
  • the present invention relates to a method for producing a polygermane compound.
  • the organic halide represented by the formula [1] in a part of the stoichiometric amount with respect to the germanium tetrahalide and the germanium tetrahalide is added to the alkali metal or the alkaline earth metal.
  • a further stoichiometric amount of the organic halide represented by the formula [1] is further added to the method for producing a polygermane compound according to the first aspect, .
  • a 5th viewpoint it is related with the manufacturing method of the polygermane compound as described in any one of the 1st viewpoint thru
  • the present invention relates to the method for producing a polygermane compound according to any one of the first aspect to the fifth aspect, wherein X represents a chlorine atom, a bromine atom or an iodine atom.
  • R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms.
  • R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms.
  • R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms.
  • R is synonymous with the definition as described in a 1st viewpoint.
  • As a 9th viewpoint it is related with the polygermane compound as described in an 8th viewpoint whose weight average molecular weights by polystyrene conversion of gel permeation chromatography (GPC) are 500 thru
  • GPC gel permeation chromatography
  • a 10th viewpoint it is related with the varnish containing the polygermane compound as described in an 8th viewpoint or a 9th viewpoint.
  • an 11th viewpoint it is related with the thin film which consists of a polygermane compound as described in an 8th viewpoint or a 9th viewpoint.
  • a 12th viewpoint it is related with the resin composition containing the polygermane compound as described in an 8th viewpoint or a 9th viewpoint, and a thermoplastic resin and / or a curable resin.
  • a 13th viewpoint it is related with the resin molding made from the resin composition as described in a 12th viewpoint.
  • an organic substituted polygermane compound having high solubility can be produced in a high yield by a simple operation. Furthermore, since the thin film produced from the obtained organic substituted polygermane compound shows a high refractive index, the organic substituted polygermane compound is suitable as an optical material.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 1.
  • FIG. FIG. 2 is a diagram showing the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 2.
  • FIG. 3 is a diagram showing the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 3.
  • 4 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 4.
  • FIG. FIG. 5 shows the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 5.
  • 6 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 6.
  • FIG. 7 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 7.
  • FIG. 8 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 1.
  • FIG. 9 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 2.
  • FIG. 10 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 3.
  • FIG. 11 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 4.
  • 12 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Comparative Example 5.
  • 13 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 6.
  • 14 is a diagram showing light transmission spectra of the organic substituted polygermane compound-containing acrylic resin film and the organic substituted polygermane compound-free acrylic resin film obtained in Example 10.
  • the organic halide used in the production method of the present invention is represented by the following formula [1].
  • R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a substituted group.
  • X represents a halogen atom.
  • the optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms may be either a linear or branched aliphatic hydrocarbon group, and may contain a hetero atom.
  • Examples of such an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl group, tert-butyl group, n-pentyl group, 2-methylbutyl group, isopentyl group, neopentyl group, sec-isoamyl group, tert-pentyl group, n-hexyl group, 1-methylpentyl group, isohexyl group, neohexyl group 2,3-dimethylbutyl group, 1,1,2-trimethylpropyl group, heptyl group, octyl group, nonyl
  • the alicyclic hydrocarbon group having 1 to 20 carbon atoms which may be substituted may contain a hetero atom, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl.
  • thiylyl group dithiylyl group, thietanyl group, 1,2-dithietanyl group, 1,3-dithietanyl group, trithietanyl group, 2-thiolanyl group, 3-thiolanyl group, 1,2-dithiolanyl group, 1,3-dithiolanyl group Group, 1,2,3-trithiolanyl group, 1,2,4-trithiolanyl group, tetrathiolanyl group, thianyl group, 1,2-dithianyl group, 1,3-dithianyl group, 1,4-dithianyl group, 1,2 , 3-trithianyl group, 1,2,4-trithianyl group, 1,3,5-trithianyl group, 1,2,3,4-tetrathia Group, 1,2,4,5-tetrathianyl group, pentathianyl group, thiepanyl group, 1,2-dithiepanyl group, 1,3-dithiepan, tri
  • the optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms may be a heterocycle, such as a phenyl group, a biphenylyl group, an o-terphenylyl group, an m-terphenylyl group, p-terphenylyl group, fluorenyl group, naphthalenyl group, 1-phenylnaphthalenyl group, 2-phenylnaphthalenyl group, anthracenyl group, pyrenyl group, furanyl group, benzofuranyl group, thienyl group, benzothienyl group, dibenzothienyl group, etc. Is mentioned.
  • halogen atom examples include a chlorine atom, a bromine atom and an iodine atom, and a bromine atom is preferable from the viewpoint of reaction control.
  • the amount of the organic halide used is preferably 0.1 to 4 molar equivalents, more preferably 0.5 to 3 molar equivalents, based on germanium tetrahalide.
  • the amount is less than 0.1 molar equivalent, the yield decreases due to an increase in the amount of insoluble matter as a by-product, and when it exceeds 4 molar equivalent, the growth of the germanium skeleton does not proceed smoothly.
  • Germanium tetrahalide examples include germanium tetrafluoride, germanium tetrachloride, germanium tetrabromide, and germanium tetraiodide. Germanium tetrachloride is preferred from the viewpoint of reaction control and cost.
  • alkali metal or alkaline earth metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium and calcium, and magnesium is preferred from the viewpoint of handling properties.
  • the amount of alkali metal and alkaline earth metal used is preferably 2 to 8 molar equivalents, more preferably 3 to 6 molar equivalents, based on germanium tetrahalide.
  • reaction solvent As the solvent used in the production method of the present invention, various solvents can be used as long as they do not affect the reaction. Specifically, n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, etc. Aliphatic hydrocarbon solvents such as: diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, 1,4-dioxane and other ether solvents; benzene, toluene, xylene, mesitylene and other aromatic hydrocarbon solvents Is mentioned.
  • the amount of the solvent used is preferably 1 to 30 times, more preferably 5 to 20 times the amount of germanium tetrahalide. If the amount is less than 1-fold, the reaction system is solidified by the by-product inorganic salt and the reaction is difficult to proceed. If the amount exceeds 30-fold, the reactivity is significantly lowered due to excessive dilution.
  • the reaction temperature is preferably 10 ° C. or higher and the boiling point of the solvent or lower. At a lower temperature, the reaction rate is significantly reduced. Further, the reaction time varies depending on the organic halide used, but is preferably about 3 to 24 hours.
  • the activator which activates reaction may be added as needed.
  • an activator include halogen molecules such as bromine and iodine; alkyl halides such as dibromoethane and diiodoethane.
  • the quantity of an activator is 0.5 molar equivalent or less with respect to an alkali metal and an alkaline-earth metal.
  • an organic substituted polygermane compound in the production method of the present invention, can be obtained by reacting an organic halide, a germanium tetrahalide, and an alkali metal or an alkaline earth metal in the coexistence.
  • the charging method of each compound is not particularly limited.
  • a method of adding a mixture of germanium tetrahalide and organic halide to a reaction solution containing an alkali metal or an alkaline earth metal; alkali metal or alkali A method of simultaneously adding germanium tetrahalide and an organic halide to a reaction solution containing an earth metal; a method of adding an alkali metal or an alkaline earth metal to a reaction solution containing a germanium tetrahalide and an organic halide; Examples thereof include a method of preparing a reaction solution containing a halide, an organic halide, and an alkali metal or alkaline earth metal, and then raising the temperature to the reaction start temperature.
  • germanium tetrahalide and a portion of the stoichiometric amount of organic halide to germanium tetrahalide are simultaneously added to the alkali metal or alkaline earth metal, and then the remaining amount of the stoichiometric amount is added.
  • the organic halide may be further added. Thereby, an unreacted germanium active site decreases and the yield can be further improved.
  • purification of the product is not particularly limited, but may be performed by a purification method usually used for organic synthesis. Preference is given to purification by reprecipitation.
  • the organic substituted polygermane compound produced by the production method of the present invention is a polymer compound having a polystyrene-equivalent weight average molecular weight of 500 to 100,000, preferably a polymer compound of 500 to 50,000, more A high molecular compound of 500 to 30,000 is preferred.
  • the molecular weight is less than 500, it is difficult to obtain a sufficient refractive index value, and when it exceeds 100,000, the solubility decreases.
  • the organic substituted polygermane compound obtained by the production method of the present invention can be dissolved in a solvent to form a varnish. Moreover, the organic substituted polygermane compound which shows a liquid state at normal temperature can be made into a varnish form without being dissolved in a solvent.
  • solvent used in the varnish form examples include diethyl oxalate, ethyl acetoacetate, ethyl acetate, isobutyl acetate, ethyl butyrate, ethyl lactate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, 4- Ester solvents such as butyrolactone; ketone solvents such as ethyl methyl ketone, isobutyl methyl ketone, 2-hexanone and cyclohexanone; propylene glycol solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; methyl cellosolve and methyl cellosolve acetate Cellosolve solvents such as tart; ether solvents such as dibutyl ether, tetrahydrofuran, and 1,4-dioxane; alcohols such as ethanol, isopropanol, and isopentyl
  • solvents may be used alone or as a mixed solvent of two or more as required.
  • the solution after completion of the reaction may be used as a varnish as it is (without isolating the organic substituted polygermane compound). In that case, it is also possible to add the said solvent.
  • concentration dissolved in the said solvent is arbitrary, the density
  • the substrate examples include plastics such as polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, acrylic, melamine, triacetyl cellulose, ABS, AS, norbornene resin; metal; glass; silicon and the like.
  • the coating method is not particularly limited, and an optimal coating method can be determined from the above methods in consideration of the balance of productivity, film thickness controllability, yield, and the like.
  • the drying temperature is preferably 40 to 150 ° C. From these temperatures, the optimum drying temperature can be determined in consideration of the solvent species, the amount of solvent, productivity, and the like.
  • the thin film made of the organic substituted polygermane compound obtained in this way has a feature that it has a higher refractive index than the thin film made of the organic substituted polygermane compound obtained by the conventional method.
  • the present invention also relates to a resin composition
  • a resin composition comprising the organic substituted polygermane compound and a resin (thermoplastic resin and / or curable resin).
  • the thermoplastic resin refers to a resin or a mixture of the resins that can be softened by heating to the glass transition temperature or the melting point and can be molded into the desired shape, and may contain any additive as appropriate.
  • the curable resin is a thermosetting resin that forms a polymer network structure by heating, and a photocurable resin that forms a polymer network structure by light irradiation. And a mixture of these resins, and may contain additives such as a crosslinking agent and an initiator. Specific examples of the resin are not particularly limited.
  • thermoplastic resin examples include PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-acrylic).
  • Polyolefin resins such as ethyl acid copolymer); PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methacrylic acid) Polystyrene resin such as methyl-styrene copolymer); polycarbonate resin; vinyl chloride resin; polyamide resin; polyimide resin; (meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate Polyester resins such as polyethylene naphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxybutyric acid
  • the resin is preferably used in the range of 1 to 10,000 parts by mass, more preferably in the range of 1 to 1,000 parts by mass with respect to 100 parts by mass of the organic substituted polygermane compound.
  • the resin composition is a composition containing an organic substituted polygermane compound and a (meth) acrylic resin
  • the (meth) acrylate compound and the organic substituted polygermane compound are mixed and the (meth) acrylate compound is polymerized. Can be obtained.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol Di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane Trioxyethyl (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, tricyclodecanyl di (meth) acrylate, trimethylolpropane trioxypropyl (meth) ) Acrylate, tris-2-hydroxyethyl isocyanurate tri
  • Polymerization of these (meth) acrylate compounds can be carried out by light irradiation or heating in the presence of a photo radical initiator or a heat radical initiator as necessary.
  • a photo radical initiator examples include acetophenones, benzophenones, Michler's ketones, amyloxime esters, tetramethylthiuram monosulfide, thioxanthones, and the like.
  • photocleavable photoradical polymerization initiators are preferred.
  • the photocleavable photoradical polymerization initiator is described in the latest UV curing technology (p. 159, publisher: Kazuhiro Takahisa, publisher: Technical Information Association, Inc., published in 1991).
  • photo radical polymerization initiators include, for example, BASF Corporation trade names: Irgacure (registered trademark) 184, 369, 651, 500, 819, 907, 784, 2959, CGI 1700, CGI 1750, CGI 1850, CG 24-61, Darocur 1116, 1173, Lucyrin TPO; manufactured by UCB, trade name: Ubekrill P36; manufactured by Fratteri Lamberti, trade name: Ezacure KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46, KIP75 / B It is preferable to use a photoinitiator in 15 mass parts or less with respect to 100 mass parts of (meth) acrylate compounds, More preferably, it is the range of 10 mass parts or less.
  • the thermal radical polymerization initiator is not particularly limited, and examples thereof include acetyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide.
  • the present invention also relates to a resin molded body made from the above resin composition.
  • the resin molded body of the present invention can be obtained by molding a resin composition containing the organic substituted polygermane compound according to a conventional general resin molding method. Specifically, in the case of a resin composition containing a thermoplastic resin as a resin, it is melted or softened by heating, or in the case of a resin composition containing a curable resin, the molded body is heated by heat or light irradiation. It is obtained by curing or photocuring.
  • the resin composition of the present invention has high thermal stability due to the inclusion of the organic substituted polygermane compound, high refractive index and transparency were maintained even when the above heating or curing treatment was performed. A resin molded body is obtained. Furthermore, the resin molded body of the present invention maintains a high refractive index and transparency even when used under high temperature conditions due to the inclusion of the organic substituted polygermane compound.
  • Measuring solvent CDCl 3 Reference substance: Tetramethylsilane (0.00ppm) [GPC (gel permeation chromatography)] Equipment: HLC-8200 GPC manufactured by Tosoh Corporation Column: Shodex (registered trademark) KF-804L + KF-805L Reference column: Shodex (registered trademark) GPC KF-800RH x 2 Column temperature: 40 ° C Detector: RI Eluent: Tetrahydrofuran Column flow rate: 1.0 mL / min Reference column flow rate: 1.0 mL / min [spin coater] Model: Mikasa Co., Ltd. 1H-D7 [Ellipsometer] Model: JA Woollam Japan Co., Ltd.
  • Example 1 ⁇ Synthesis of phenyl group-substituted polygermane compound> Under a nitrogen atmosphere, 1.8 g (75 mmol) of powdered magnesium (manufactured by Kanto Chemical Co., Inc.) and 40 g of tetrahydrofuran (hereinafter abbreviated as THF) were added to a 100 mL four-necked flask, and then dibromoethane (Tokyo Chemical Industry Co., Ltd.). 3.5 g (19 mmol) was added dropwise and stirred at room temperature (approximately 25 ° C.) for 10 minutes.
  • THF tetrahydrofuran
  • Example 2 ⁇ Synthesis of 4-toluyl group-substituted polygermane compound>
  • Example 1 the same operation was performed except that bromobenzene was changed to 3.2 g (19 mmol) and 1.6 g (9 mmol) of 4-bromotoluene (manufactured by Tokyo Chemical Industry Co., Ltd.) having the same mole number.
  • -Toluyl group-substituted polygermane compound hereinafter abbreviated as PGe-To
  • PGe-To 1.0 g was obtained.
  • the measurement result of the 1 H NMR spectrum of the obtained PGe-To is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.23.
  • Example 3 ⁇ Synthesis of 4-anisyl group-substituted polygermane compound>
  • Example 1 the same operation was performed except that bromobenzene was changed to 3.6 g (19 mmol) and 1.8 g (9 mmol) of 4-bromoanisole (manufactured by Tokyo Chemical Industry Co., Ltd.) with the same mole number.
  • PGe-A an anisyl group-substituted polygermane compound
  • the measurement result of the 1 H NMR spectrum of the obtained PGe-A is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 2,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.25.
  • Example 4 ⁇ Synthesis of tert-butyl group-substituted polygermane compound> The same operation as in Example 1 except that bromobenzene was changed to 2.6 g (19 mmol) and 1.3 g (9 mmol) of 2-bromo-2-methylpropane (Tokyo Kasei Kogyo Co., Ltd.) with the same number of moles. As a result, 0.9 g of a tert-butyl group-substituted polygermane compound (hereinafter abbreviated as PGe-tB) was obtained.
  • PGe-tB a tert-butyl group-substituted polygermane compound
  • the measurement result of 1 H NMR spectrum of the obtained PGe-Th is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.39.
  • Example 6 ⁇ Synthesis of 5-methylthiophen-2-yl group-substituted polygermane compound> The same operation as in Example 1, except that bromobenzene was changed to 3.3 g (19 mmol) and 1.7 g (9 mmol) of 2-bromo-5-methylthiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) with the same mole number. As a result, 1.1 g of 5-methylthiophen-2-yl group-substituted polygermane compound (hereinafter abbreviated as PGe-ThM) was obtained.
  • PGe-ThM 5-methylthiophen-2-yl group-substituted polygermane compound
  • the reaction solution was added to 200 g of methanol for reprecipitation, and the precipitated solid was collected by filtration.
  • the obtained solid was dissolved in 80 g of toluene, and insoluble matters were removed by filtration. After the solvent of the filtrate was distilled off, the obtained residue was redissolved in 4 g of chloroform, added to 100 g of methanol and reprecipitated again.
  • the precipitated solid was collected by filtration to obtain 1.5 g of the target product, PGe-P.
  • the measurement result of 1 H NMR spectrum of the obtained PGe—P is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.28.
  • FIG. 8 shows the measurement result of the 1 H NMR spectrum of the obtained PGe—P * .
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.10.
  • the measurement result of the 1 H NMR spectrum of the obtained PGe-A * is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,300, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.12.
  • the measurement result of the 1 H NMR spectrum of the obtained PGe-tB * is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 4,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 2.27.
  • the measurement result of the 1 H NMR spectrum of the obtained PGe-Th * is shown in FIG.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.14.
  • FIG. 13 shows the measurement results of the 1 H NMR spectrum of the obtained PGe-ThM * .
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 900, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.23.
  • Example 8 ⁇ Preparation of thin film composed of organic substituted polygermane compound>
  • the organic substituted polygermane compounds synthesized in Examples 1 to 7 and Comparative Examples 1 to 6 were dissolved in toluene ( ⁇ -butyrolactone for PGe-Th (*) and PGe-ThM (*) , respectively )
  • a varnish having a germane compound concentration of 3% by mass was prepared.
  • This varnish is spin coated on a glass substrate (rotation speed 1,500 rpm ⁇ 30 seconds (for PGe-Th (*) and PGe-ThM (*) , rotation speed 300 rpm ⁇ 5 seconds + rotation speed 1,500 rpm ⁇ 30 seconds) )).
  • This coating film was heat-treated for 10 minutes on a hot plate at 100 ° C. to remove the solvent in the thin film and obtain each thin film.
  • the refractive index at a wavelength of 633 nm of each obtained thin film was measured by an ellipsometer. The results are shown in Table 2.
  • Example 9 ⁇ Production of organic substituted polygermane compound-containing acrylic resin film>
  • Table 1 shows the polygermane compound PGe-P synthesized in Example 1, A-DCP (trade name) which is a polymerizable acrylate compound (manufactured by Shin-Nakamura Chemical Co., Ltd., tricyclodecane dimethanol diacrylate), and 2 mL of toluene. Mix in the amount shown in 3. After toluene in the obtained mixed solution was distilled off with an evaporator, peroxide-based thermal radical polymerization initiator Kayaester O-50E (trade name) (manufactured by Kayaku Azo Co., Ltd.) was added to 100 parts by mass of A-DCP.
  • A-DCP trade name
  • Kayaester O-50E trade name
  • a resin composition of PGe-P and A-DCP was prepared by adding 2 parts by mass and stirring.
  • the prepared resin compositions were respectively dropped onto the center of the slide glass and covered with the slide glass from above, and then heated on a hot plate at 120 ° C. for 10 minutes to thermally cure (thermopolymerize) the resin composition.
  • thermosetting film a resin composition containing no polygerman compound prepared by mixing 0.50 g of A-DCP and 0.010 g of Kayaester O-50E was prepared, and an acrylic resin film (thermosetting film) containing no polygerman compound was prepared in the same manner.
  • the refractive index at a wavelength of 633 nm of each thermosetting film was measured with a prism coupler.
  • the transparency of each thermosetting film was visually evaluated. The evaluation was performed in two stages: ⁇ : transparent, x: cloudy. Each result is shown in Table 3 together.
  • the organic substituted polygermane compound obtained by the present invention has high compatibility with the acrylic resin and increases the refractive index of the acrylic resin film by containing the organic substituted polygermane compound. It was confirmed that it could be
  • Example 10 ⁇ Production of organic substituted polygermane compound-containing acrylic resin film> Polygerman compound PGe-P 0.10 g synthesized in Example 1, A-BPEF (trade name) which is a polymerizable acrylate compound (manufactured by Shin-Nakamura Chemical Co., Ltd., 9,9-bis (4- (2-acryloyl) Oxyethoxy) phenyl) fluorene) 0.20 g, benzyl methacrylate (hereinafter abbreviated as BzMA) (manufactured by Aldrich) 0.20 g, and toluene 2 mL were mixed.
  • A-BPEF trade name
  • BzMA benzyl methacrylate
  • Toluene in the obtained mixed solution is distilled off by an evaporator, and then 0.008 g of a peroxide-based thermal radical polymerization initiator Kayaester O-50E (trade name) (manufactured by Kayaku Aguso Co., Ltd.) is added and stirred.
  • a resin composition of PGe-P, A-BPEF and BzMA was prepared (PGe-P concentration 20 mass%).
  • the prepared resin composition was dropped on the center of the slide glass, covered with a slide glass through a 500 ⁇ m spacer, and then heated on a 120 ° C. hot plate for 30 minutes to thermally cure (thermopolymerize) the resin composition. .
  • thermosetting film After cooling to room temperature (approximately 25 ° C.), the upper and lower slide glasses were peeled off to produce a polygermane compound-containing acrylic resin film (thermosetting film) having a film thickness of about 500 ⁇ m. Also, a resin composition containing no polygerman compound prepared by mixing 0.25 g of A-BPEF, 0.25 g of BzMA, and 0.01 g of Kaya ester O-50E was prepared, and an acrylic resin film containing no polygerman compound was prepared in the same manner. (Thermosetting film) was produced. The transmittance of each thermosetting film was measured with an ultraviolet-visible near-infrared spectrophotometer. The obtained spectrum is shown in FIG. As a result, it was confirmed that the polygermane compound-containing acrylic resin film exhibits high transparency in the near infrared region.
  • the organic substituted polygermane compound obtained by the production method of the present invention is expected to be used as a high refractive index material for optical lenses, optical waveguides, antireflection films and the like. Therefore, the production method of the present invention is very advantageous industrially.

Abstract

Disclosed is a production method for polygermane compounds having organic substituents (hereinafter referred to as organopolygermane compounds). Specifically disclosed is a production method such that organopolygermane compounds capable of forming a thin film that has a high refractive index can be produced with an improved yield. The method for producing polygermane compound having an organic substituent (R) is characterized by the reaction of an organohalogen represented by formula (1), a germanium tetrahalide and an alkali metal or alkaline rare earth metal. (1) R-X (In Formula (1), R represents an optionally substituted aliphatic hydrocarbon group with 1-20 carbon atoms, an optionally substituted alicyclic hydrocarbon group with 1-20 carbon atoms or an optionally substituted aromatic hydrocarbon group with 4-20 carbon atoms, and X represents a halogen atom.)

Description

有機置換ポリゲルマン化合物の製造方法Method for producing organic substituted polygermane compound
 本発明は、有機基で置換されたポリゲルマン化合物(以下、有機置換ポリゲルマン化合物という)の製造方法に関するものであり、より詳しくは、高屈折率を有する薄膜を作製することが可能な有機置換ポリゲルマン化合物をその収率を著しく改善して製造することができる製造方法に関する。 The present invention relates to a method for producing a polygermane compound substituted with an organic group (hereinafter referred to as an organic substituted polygermane compound), and more specifically, an organic substitution capable of producing a thin film having a high refractive index. The present invention relates to a production method capable of producing a polygermane compound with significantly improved yield.
 ポリゲルマン化合物は、フォトレジスト、有機感光体、光メモリなどの光・電子材料などとして注目されている。特に、近年、光学分野において高屈折率材料の必要性が高まっており、有機ポリマー単独では実現困難な1.7以上の屈折率を示すポリゲルマン化合物の高屈折率材料への応用が期待されている。
 従来、ポリゲルマン化合物の製造方法としては、ジハロゲノゲルマニウムやトリハロゲノゲルマニウムを、アルカリ金属又はアルカリ土類金属により還元カップリングする方法が知られている。しかし、これらの出発物質は製造が困難であり、市販品の種類も限られていることから、ポリゲルマン化合物に導入できる有機置換基の構造に制限を受ける。
 また、ゲルマニウム四ハロゲン化物とキャッピング剤との反応を利用した製造方法も開示されている(特許文献1参照)。この方法は、ゲルマニウム四ハロゲン化物に対しアルカリ金属又はアルカリ土類金属を縮合剤として反応させた後、有機ハロゲン化物によって末端をキャッピングしてポリゲルマン化合物を得るため、多彩な有機基を有するポリゲルマン化合物の製造が可能である。しかし、ゲルマニウム四ハロゲン化物が反応選択性の無い4官能化合物であるため、その縮合に際して架橋反応が過度に進行し不溶物が生じる。このため、概してこの反応の収率は低い。
Polygerman compounds are attracting attention as optical and electronic materials such as photoresists, organic photoreceptors, and optical memories. In particular, in recent years, there has been an increasing need for high refractive index materials in the optical field, and polygerman compounds exhibiting a refractive index of 1.7 or higher, which is difficult to achieve with organic polymers alone, are expected to be applied to high refractive index materials. Yes.
Conventionally, as a method for producing a polygermane compound, a method of reductively coupling dihalogenogermanium or trihalogenogermanium with an alkali metal or an alkaline earth metal is known. However, since these starting materials are difficult to produce and the types of commercial products are limited, the structure of the organic substituent that can be introduced into the polygermane compound is limited.
In addition, a production method using a reaction between germanium tetrahalide and a capping agent is also disclosed (see Patent Document 1). In this method, germanium tetrahalide is reacted with an alkali metal or alkaline earth metal as a condensing agent, and then a terminal is capped with an organic halide to obtain a polygermane compound. Thus, a polygermane having various organic groups is obtained. A compound can be produced. However, since germanium tetrahalide is a tetrafunctional compound having no reaction selectivity, the crosslinking reaction proceeds excessively during the condensation, resulting in insoluble matter. For this reason, the yield of this reaction is generally low.
特開2009-145872号公報JP 2009-145872 A
 本発明は、このような事情に鑑みてなされたものであり、ポリゲルマン化合物に導入可能な有機基の適応範囲が広く、かつ従来の方法で得られる有機基で置換されたポリゲルマン化合物に比べ、より高屈折率な薄膜を作製できる有機置換ポリゲルマン化合物を良好な収率で得ることが可能な製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a wide application range of organic groups that can be introduced into the polygermane compound, and compared with a polygermane compound substituted with an organic group obtained by a conventional method. Another object of the present invention is to provide a production method capable of obtaining an organic substituted polygermane compound capable of producing a thin film having a higher refractive index in a good yield.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、有機ハロゲン化物と、ゲルマニウム四ハロゲン化物と、アルカリ金属又はアルカリ土類金属とを共存下反応させることにより、有機置換ポリゲルマン化合物の収率及び該有機置換ポリゲルマン化合物から作製される薄膜の屈折率を著しく改善することができることを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、下記式[1]で表される有機ハロゲン化物と、ゲルマニウム四ハロゲン化物と、アルカリ金属又はアルカリ土類金属とを共存下反応させることを特徴とする、有機基Rで置換されたポリゲルマン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000002
(式[1]中、Rは置換されていてもよい炭素原子数1乃至20の脂肪族炭化水素基、置換されていてもよい炭素原子数1乃至20の脂環式炭化水素基、又は置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基を表し、Xはハロゲン原子を表す。)
 第2観点として、前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物と前記式[1]で表される有機ハロゲン化物とを同時に加えることを特徴とする、第1観点に記載のポリゲルマン化合物の製造方法に関する。
 第3観点として、前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物及び前記式[1]で表される有機ハロゲン化物の混合物を加えることを特徴とする、第2観点に記載のポリゲルマン化合物の製造方法に関する。
 第4観点として、前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物と前記ゲルマニウム四ハロゲン化物に対する化学量論量の一部の量の前記式[1]で表される有機ハロゲン化物とを同時に加え、その後化学量論量となる残りの量の前記式[1]で表される有機ハロゲン化物を更に加えることを特徴とする、第1観点に記載のポリゲルマン化合物の製造方法に関する。
 第5観点として、前記アルカリ金属又は前記アルカリ土類金属がマグネシウムである、第1観点乃至第4観点の何れか一つに記載のポリゲルマン化合物の製造方法に関する。
 第6観点として、前記Xが塩素原子、臭素原子又はヨウ素原子を表す、第1観点乃至第5観点の何れか一つに記載のポリゲルマン化合物の製造方法に関する。
 第7観点として、前記Rが置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基を表す、第1観点乃至第6観点の何れか一つに記載のポリゲルマン化合物の製造方法に関する。
 第8観点として、第1観点乃至第7観点に記載の方法に従い製造される、有機基R(Rは第1観点に記載の定義と同義である。)で置換されたポリゲルマン化合物に関する。
 第9観点として、ゲル浸透クロマトグラフィー(GPC)のポリスチレン換算による重量平均分子量が500乃至100,000である、第8観点に記載のポリゲルマン化合物に関する。
 第10観点として、第8観点又は第9観点に記載のポリゲルマン化合物を含むワニスに関する。
 第11観点として、第8観点又は第9観点に記載のポリゲルマン化合物からなる薄膜に関する。
 第12観点として、第8観点又は第9観点に記載のポリゲルマン化合物、並びに熱可塑性樹脂及び/又は硬化性樹脂を含む、樹脂組成物に関する。
 第13観点として、第12観点に記載の樹脂組成物から作られる、樹脂成形体に関する。
As a result of intensive studies in order to achieve the above object, the present inventors have made an organic substituted polyhydride by reacting an organic halide, a germanium tetrahalide, and an alkali metal or an alkaline earth metal in the coexistence. The inventors have found that the yield of the germane compound and the refractive index of the thin film produced from the organic substituted polygermane compound can be remarkably improved, thereby completing the present invention.
That is, as a first aspect, the present invention is characterized in that an organic halide represented by the following formula [1], germanium tetrahalide, and an alkali metal or an alkaline earth metal are reacted in the coexistence. A method for producing a polygermane compound substituted with an organic group R.
Figure JPOXMLDOC01-appb-C000002
(In the formula [1], R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a substituted group. Represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms, and X represents a halogen atom.)
As a second aspect, the germanium tetrahalide and the organic halide represented by the formula [1] are simultaneously added to the alkali metal or the alkaline earth metal, according to the first aspect. The present invention relates to a method for producing a polygermane compound.
As a third aspect, according to the second aspect, characterized in that a mixture of the germanium tetrahalide and the organic halide represented by the formula [1] is added to the alkali metal or the alkaline earth metal. The present invention relates to a method for producing a polygermane compound.
As a fourth aspect, the organic halide represented by the formula [1] in a part of the stoichiometric amount with respect to the germanium tetrahalide and the germanium tetrahalide is added to the alkali metal or the alkaline earth metal. And a further stoichiometric amount of the organic halide represented by the formula [1] is further added to the method for producing a polygermane compound according to the first aspect, .
As a 5th viewpoint, it is related with the manufacturing method of the polygermane compound as described in any one of the 1st viewpoint thru | or 4th viewpoint whose said alkali metal or said alkaline-earth metal is magnesium.
As a sixth aspect, the present invention relates to the method for producing a polygermane compound according to any one of the first aspect to the fifth aspect, wherein X represents a chlorine atom, a bromine atom or an iodine atom.
As a seventh aspect, the method for producing a polygermane compound according to any one of the first aspect to the sixth aspect, wherein R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms. About.
As an 8th viewpoint, it is related with the polygermane compound substituted by the organic group R (R is synonymous with the definition as described in a 1st viewpoint.) Manufactured according to the method as described in a 1st viewpoint thru | or a 7th viewpoint.
As a 9th viewpoint, it is related with the polygermane compound as described in an 8th viewpoint whose weight average molecular weights by polystyrene conversion of gel permeation chromatography (GPC) are 500 thru | or 100,000.
As a 10th viewpoint, it is related with the varnish containing the polygermane compound as described in an 8th viewpoint or a 9th viewpoint.
As an 11th viewpoint, it is related with the thin film which consists of a polygermane compound as described in an 8th viewpoint or a 9th viewpoint.
As a 12th viewpoint, it is related with the resin composition containing the polygermane compound as described in an 8th viewpoint or a 9th viewpoint, and a thermoplastic resin and / or a curable resin.
As a 13th viewpoint, it is related with the resin molding made from the resin composition as described in a 12th viewpoint.
 本発明の有機置換ポリゲルマン化合物の製造方法によれば、高溶解性を有する有機置換ポリゲルマン化合物を簡便な操作で収率良く製造することが出来る。さらに得られた有機置換ポリゲルマン化合物から作製される薄膜は高い屈折率を示すため、該有機置換ポリゲルマン化合物は光学材料として好適である。 According to the method for producing an organic substituted polygermane compound of the present invention, an organic substituted polygermane compound having high solubility can be produced in a high yield by a simple operation. Furthermore, since the thin film produced from the obtained organic substituted polygermane compound shows a high refractive index, the organic substituted polygermane compound is suitable as an optical material.
図1は実施例1で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。1 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 1. FIG. 図2は実施例2で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 2 is a diagram showing the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 2. 図3は実施例3で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 3 is a diagram showing the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 3. 図4は実施例4で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。4 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 4. FIG. 図5は実施例5で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 5 shows the 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 5. 図6は実施例6で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。6 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Example 6. FIG. 図7は実施例7で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 7 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Example 7. 図8は比較例1で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 8 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 1. 図9は比較例2で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 9 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 2. 図10は比較例3で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 10 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 3. 図11は比較例4で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 11 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 4. 図12は比較例5で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。12 is a diagram showing a 1 H NMR spectrum of an organic substituted polygermane compound obtained in Comparative Example 5. FIG. 図13は比較例6で得られた有機置換ポリゲルマン化合物の1H NMRスペクトルを表す図である。FIG. 13 is a diagram showing a 1 H NMR spectrum of the organic substituted polygermane compound obtained in Comparative Example 6. 図14は実施例10で得られた有機置換ポリゲルマン化合物含有アクリル樹脂膜及び有機置換ポリゲルマン化合物非含有アクリル樹脂膜の光透過スペクトルを表す図である。14 is a diagram showing light transmission spectra of the organic substituted polygermane compound-containing acrylic resin film and the organic substituted polygermane compound-free acrylic resin film obtained in Example 10. FIG.
 以下、本発明についてさらに詳しく説明する。
[有機ハロゲン化物]
 本発明の製造方法で用いる有機ハロゲン化物は下記式[1]で表わされる。
Figure JPOXMLDOC01-appb-C000003
(式[1]中、Rは置換されていてもよい炭素原子数1乃至20の脂肪族炭化水素基、置換されていてもよい炭素原子数1乃至20の脂環式炭化水素基、又は置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基を表し、Xはハロゲン原子を表す。)
Hereinafter, the present invention will be described in more detail.
[Organic halides]
The organic halide used in the production method of the present invention is represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000003
(In the formula [1], R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a substituted group. Represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms, and X represents a halogen atom.)
 上記置換されていてもよい炭素原子数1乃至20の脂肪族炭化水素基としては、直鎖状又は分岐状の脂肪族炭化水素基の何れでも良く、またヘテロ原子を含んでいても良い。
 そのような置換されていてもよい炭素原子数1乃至20の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチルブチル基、イソペンチル基、ネオペンチル基、sec-イソアミル基、tert-ペンチル基、n-ヘキシル基、1-メチルペンチル基、イソヘキシル基、ネオヘキシル基、2,3-ジメチルブチル基、1,1,2-トリメチルプロピル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イコシル基、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、2-チエニルメチル基、3-チエニルメチル基、メチルチオメチル基、エチルチオメチル基、n-プロピルチオメチル基、イソプロピルチオメチル基、シクロプロピルチオメチル基、n-ブチルチオメチル基、イソブチルチオメチル基、sec-ブチルチオメチル基、tert-ブチルチオメチル基、シクロブチルチオメチル基、n-ペンチルチオメチル基、2-メチルブチルチオメチル基、イソペンチルチオメチル基、ネオペンチルチオメチル基、sec-イソアミルチオメチル基、tert-ペンチルチオメチル基、シクロペンチルチオメチル基、n-ヘキシルチオメチル基、1-メチルペンチルチオメチル基、イソヘキシルチオメチル基、ネオヘキシルチオメチル基、2,3-ジメチルブチルチオメチル基、1,1,2-トリメチルプロピルチオメチル基、シクロヘキシルチオメチル基、アダマンチルチオメチル基、(メチルチオメチルチオ)メチル基、(エチルチオメチルチオ)メチル基、((メチルチオメチルチオ)メチルチオ)メチル基、((エチルチオメチルチオ)メチルチオ)メチル基、2-(エチルチオ)エチル基、2-(2-(メチルチオ)エチルチオ)エチル基、2-(2-(エチルチオ)エチルチオ)エチル基、2-(2-(プロピルチオ)エチルチオ)エチル基、2-(2-(2-(エチルチオ)エチルチオ)エチルチオ)エチル基、フェニルチオメチル基、1-ナフチルチオメチル基、2-ナフチルチオメチル基、2-チエニルチオメチル基、3-チエニルチオメチル基、ベンジルチオメチル基、フェネチルチオメチル基、1-ナフチルメチルチオメチル基、2-ナフチルメチルチオメチル基、2-チエニルメチルチオメチル基、3-チエニルメチルチオメチル基等が挙げられる。
The optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms may be either a linear or branched aliphatic hydrocarbon group, and may contain a hetero atom.
Examples of such an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl group, tert-butyl group, n-pentyl group, 2-methylbutyl group, isopentyl group, neopentyl group, sec-isoamyl group, tert-pentyl group, n-hexyl group, 1-methylpentyl group, isohexyl group, neohexyl group 2,3-dimethylbutyl group, 1,1,2-trimethylpropyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, icosyl group, benzyl group, phenethyl group, 1-naphthylmethyl Group, 2-naphthylmethyl group, 2-thienylmethyl group, 3-thienylmethyl group, methylthiomethyl group, ethyl Thiomethyl group, n-propylthiomethyl group, isopropylthiomethyl group, cyclopropylthiomethyl group, n-butylthiomethyl group, isobutylthiomethyl group, sec-butylthiomethyl group, tert-butylthiomethyl group, cyclobutylthio Methyl group, n-pentylthiomethyl group, 2-methylbutylthiomethyl group, isopentylthiomethyl group, neopentylthiomethyl group, sec-isoamylthiomethyl group, tert-pentylthiomethyl group, cyclopentylthiomethyl group, n -Hexylthiomethyl group, 1-methylpentylthiomethyl group, isohexylthiomethyl group, neohexylthiomethyl group, 2,3-dimethylbutylthiomethyl group, 1,1,2-trimethylpropylthiomethyl group, cyclohexylthio Methyl group, adamantylthiomethy Group, (methylthiomethylthio) methyl group, (ethylthiomethylthio) methyl group, ((methylthiomethylthio) methylthio) methyl group, ((ethylthiomethylthio) methylthio) methyl group, 2- (ethylthio) ethyl group, 2- (2 -(Methylthio) ethylthio) ethyl group, 2- (2- (ethylthio) ethylthio) ethyl group, 2- (2- (propylthio) ethylthio) ethyl group, 2- (2- (2- (ethylthio) ethylthio) ethylthio) Ethyl group, phenylthiomethyl group, 1-naphthylthiomethyl group, 2-naphthylthiomethyl group, 2-thienylthiomethyl group, 3-thienylthiomethyl group, benzylthiomethyl group, phenethylthiomethyl group, 1-naphthylmethylthio Methyl group, 2-naphthylmethylthiomethyl group, 2-thienylmethylthiomethyl group And 3-thienylmethylthiomethyl group.
 また、上記置換されていてもよい炭素原子数1乃至20の脂環式炭化水素基としては、ヘテロ原子を含んでいても良く、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、チイラニル基、ジチイラニル基、チエタニル基、1,2-ジチエタニル基、1,3-ジチエタニル基、トリチエタニル基、2-チオラニル基、3-チオラニル基、1,2-ジチオラニル基、1,3-ジチオラニル基、1,2,3-トリチオラニル基、1,2,4-トリチオラニル基、テトラチオラニル基、チアニル基、1,2-ジチアニル基、1,3-ジチアニル基、1,4-ジチアニル基、1,2,3-トリチアニル基、1,2,4-トリチアニル基、1,3,5-トリチアニル基、1,2,3,4-テトラチアニル基、1,2,4,5-テトラチアニル基、ペンタチアニル基、チエパニル基、1,2-ジチエパニル基、1,3-ジチエパニル基、1,4-ジチエパニル基、1,2,3-トリチエパニル基、1,2,4-トリチエパニル基、1,2,5-トリチエパニル基、1,3,5-トリチエパニル基、1,2,3,4-テトラチエパニル基、1,2,3,5-テトラチエパニル基、1,2,4,5-テトラチエパニル基、1,2,4,6-テトラチエパニル基、1,2,3,4,5-ペンタチエパニル基、1,2,3,4,6-ペンタチエパニル基、1,2,3,5,6-ペンタチエパニル基、ヘキサチエパニル基等が挙げられる。 In addition, the alicyclic hydrocarbon group having 1 to 20 carbon atoms which may be substituted may contain a hetero atom, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl. Group, thiylyl group, dithiylyl group, thietanyl group, 1,2-dithietanyl group, 1,3-dithietanyl group, trithietanyl group, 2-thiolanyl group, 3-thiolanyl group, 1,2-dithiolanyl group, 1,3-dithiolanyl group Group, 1,2,3-trithiolanyl group, 1,2,4-trithiolanyl group, tetrathiolanyl group, thianyl group, 1,2-dithianyl group, 1,3-dithianyl group, 1,4-dithianyl group, 1,2 , 3-trithianyl group, 1,2,4-trithianyl group, 1,3,5-trithianyl group, 1,2,3,4-tetrathia Group, 1,2,4,5-tetrathianyl group, pentathianyl group, thiepanyl group, 1,2-dithiepanyl group, 1,3-dithiepanyl group, 1,4-dithiepanyl group, 1,2,3-trithiepanyl group, 1,2,4-trithiepanyl group, 1,2,5-trithiepanyl group, 1,3,5-trithiepanyl group, 1,2,3,4-tetrathiepanyl group, 1,2,3,5-tetrathiepanyl group, 1 , 2,4,5-tetrathiepanyl group, 1,2,4,6-tetrathiepanyl group, 1,2,3,4,5-pentathiepanyl group, 1,2,3,4,6-pentathiepanyl group, 1,2 , 3,5,6-pentathiepanyl group, hexathiepanyl group and the like.
 さらに、上記置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基としては、ヘテロ環であっても良く、例えば、フェニル基、ビフェニリル基、o-テルフェニリル基、m-テルフェニリル基、p-テルフェニリル基、フルオレニル基、ナフタレニル基、1-フェニルナフタレニル基、2-フェニルナフタレニル基、アントラセニル基、ピレニル基、フラニル基、ベンゾフラニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基等が挙げられる。 Further, the optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms may be a heterocycle, such as a phenyl group, a biphenylyl group, an o-terphenylyl group, an m-terphenylyl group, p-terphenylyl group, fluorenyl group, naphthalenyl group, 1-phenylnaphthalenyl group, 2-phenylnaphthalenyl group, anthracenyl group, pyrenyl group, furanyl group, benzofuranyl group, thienyl group, benzothienyl group, dibenzothienyl group, etc. Is mentioned.
 上記ハロゲン原子としては、塩素原子、臭素原子及びヨウ素原子が挙げられ、反応制御の観点から臭素原子が好ましい。 Examples of the halogen atom include a chlorine atom, a bromine atom and an iodine atom, and a bromine atom is preferable from the viewpoint of reaction control.
 有機ハロゲン化物の使用量は、ゲルマニウム四ハロゲン化物に対し、0.1乃至4モル当量であることが好ましく、0.5乃至3モル当量であることがより好ましい。0.1モル当量より少ない場合には副生物である不溶物の量の増大により収率が低下し、また4モル当量より多い場合にはゲルマニウム骨格の成長が円滑に進行しない。
 また、有機ハロゲン化物は、必要に応じて二種類以上用いても良い。
The amount of the organic halide used is preferably 0.1 to 4 molar equivalents, more preferably 0.5 to 3 molar equivalents, based on germanium tetrahalide. When the amount is less than 0.1 molar equivalent, the yield decreases due to an increase in the amount of insoluble matter as a by-product, and when it exceeds 4 molar equivalent, the growth of the germanium skeleton does not proceed smoothly.
Moreover, you may use 2 or more types of organic halides as needed.
[ゲルマニウム四ハロゲン化物]
 本発明の製造方法で用いるゲルマニウム四ハロゲン化物としては、ゲルマニウム四フッ化物、ゲルマニウム四塩化物、ゲルマニウム四臭化物及びゲルマニウム四ヨウ化物が挙げられ、反応制御とコストの観点からゲルマニウム四塩化物が好ましい。
[Germanium tetrahalide]
Examples of the germanium tetrahalide used in the production method of the present invention include germanium tetrafluoride, germanium tetrachloride, germanium tetrabromide, and germanium tetraiodide. Germanium tetrachloride is preferred from the viewpoint of reaction control and cost.
[アルカリ金属又はアルカリ土類金属]
 本発明の製造方法で用いるアルカリ金属又はアルカリ土類金属としては、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム等のアルカリ土類金属が挙げられ、ハンドリング性の観点からマグネシウムが好ましい。
 また、アルカリ金属及びアルカリ土類金属の使用量は、ゲルマニウム四ハロゲン化物に対して、2乃至8モル当量であることが好ましく、3乃至6モル当量であることがより好ましい。
[Alkali metal or alkaline earth metal]
Examples of the alkali metal or alkaline earth metal used in the production method of the present invention include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium and calcium, and magnesium is preferred from the viewpoint of handling properties. .
The amount of alkali metal and alkaline earth metal used is preferably 2 to 8 molar equivalents, more preferably 3 to 6 molar equivalents, based on germanium tetrahalide.
[反応溶媒]
 本発明の製造方法に用いる溶媒としては、反応に影響を及ぼさない限りにおいて各種の溶媒類が使用でき、具体的には、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒などが挙げられる。これらの溶媒は単独で用いても良いし、必要に応じて2種以上の混合溶媒として用いても良い。
 溶媒の使用量は、ゲルマニウム四ハロゲン化物の質量に対して、1乃至30倍量であることが好ましく、5乃至20倍量であることがより好ましい。1倍量より少ないと、副生する無機塩により反応系が固体化し反応が進行しにくくなり、30倍量を超えると過度の希釈により反応性が著しく低下する。
 また、反応温度としては、10℃以上溶媒の沸点以下であることが好ましい。これより低温では反応速度が著しく低下する。
 さらに、反応時間は、使用する有機ハロゲン化物によって異なるが、概ね3乃至24時間であることが好ましい。
[Reaction solvent]
As the solvent used in the production method of the present invention, various solvents can be used as long as they do not affect the reaction. Specifically, n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, etc. Aliphatic hydrocarbon solvents such as: diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, 1,4-dioxane and other ether solvents; benzene, toluene, xylene, mesitylene and other aromatic hydrocarbon solvents Is mentioned. These solvents may be used alone or as a mixed solvent of two or more as required.
The amount of the solvent used is preferably 1 to 30 times, more preferably 5 to 20 times the amount of germanium tetrahalide. If the amount is less than 1-fold, the reaction system is solidified by the by-product inorganic salt and the reaction is difficult to proceed. If the amount exceeds 30-fold, the reactivity is significantly lowered due to excessive dilution.
The reaction temperature is preferably 10 ° C. or higher and the boiling point of the solvent or lower. At a lower temperature, the reaction rate is significantly reduced.
Further, the reaction time varies depending on the organic halide used, but is preferably about 3 to 24 hours.
[添加剤]
 本発明では、必要に応じて反応を活性化する活性化剤を添加しても良い。そのような活性化剤としては、例えば、臭素、ヨウ素等のハロゲン分子;ジブロモエタン、ジヨードエタン等のハロゲン化アルキルなどが挙げられる。
 また、活性化剤の量は、アルカリ金属及びアルカリ土類金属に対し0.5モル当量以下であることが好ましい。
[Additive]
In this invention, you may add the activator which activates reaction as needed. Examples of such an activator include halogen molecules such as bromine and iodine; alkyl halides such as dibromoethane and diiodoethane.
Moreover, it is preferable that the quantity of an activator is 0.5 molar equivalent or less with respect to an alkali metal and an alkaline-earth metal.
[反応方法]
 本発明の製造方法は、有機ハロゲン化物と、ゲルマニウム四ハロゲン化物と、アルカリ金属又はアルカリ土類金属とを共存下反応させることで、有機置換ポリゲルマン化合物を得ることができる。
 ここで、各化合物の仕込方法については、特に限定されないが、例えば、アルカリ金属又はアルカリ土類金属を含む反応液へ、ゲルマニウム四ハロゲン化物と有機ハロゲン化物との混合物を加える方法;アルカリ金属又はアルカリ土類金属を含む反応液へ、ゲルマニウム四ハロゲン化物及び有機ハロゲン化物をそれぞれ同時に加える方法;ゲルマニウム四ハロゲン化物及び有機ハロゲン化物を含む反応液へ、アルカリ金属又はアルカリ土類金属を加える方法;ゲルマニウム四ハロゲン化物、有機ハロゲン化物及びアルカリ金属又はアルカリ土類金属を含む反応液を調製した後、反応開始温度まで昇温する方法等が挙げられる。
 また、アルカリ金属又はアルカリ土類金属に、ゲルマニウム四ハロゲン化物とゲルマニウム四ハロゲン化物に対する化学量論量の一部の量の有機ハロゲン化物とを同時に加え、その後化学量論量となる残りの量の該有機ハロゲン化物を更に加えてもよい。これにより、未反応のゲルマニウム活性部位が減少し、収率をさらに向上させることができる。
[Reaction method]
In the production method of the present invention, an organic substituted polygermane compound can be obtained by reacting an organic halide, a germanium tetrahalide, and an alkali metal or an alkaline earth metal in the coexistence.
Here, the charging method of each compound is not particularly limited. For example, a method of adding a mixture of germanium tetrahalide and organic halide to a reaction solution containing an alkali metal or an alkaline earth metal; alkali metal or alkali A method of simultaneously adding germanium tetrahalide and an organic halide to a reaction solution containing an earth metal; a method of adding an alkali metal or an alkaline earth metal to a reaction solution containing a germanium tetrahalide and an organic halide; Examples thereof include a method of preparing a reaction solution containing a halide, an organic halide, and an alkali metal or alkaline earth metal, and then raising the temperature to the reaction start temperature.
In addition, germanium tetrahalide and a portion of the stoichiometric amount of organic halide to germanium tetrahalide are simultaneously added to the alkali metal or alkaline earth metal, and then the remaining amount of the stoichiometric amount is added. The organic halide may be further added. Thereby, an unreacted germanium active site decreases and the yield can be further improved.
[精製方法]
 本発明において生成物の精製は、特に限定されないが、通常有機合成に使用される精製方法により行えばよい。好ましくは、再沈殿による精製である。
[Purification method]
In the present invention, purification of the product is not particularly limited, but may be performed by a purification method usually used for organic synthesis. Preference is given to purification by reprecipitation.
 本発明の製造方法によって製造される有機置換ポリゲルマン化合物は、ポリスチレン換算の重量平均分子量が500乃至100,000の高分子化合物であり、好ましくは500乃至50,000の高分子化合物であり、より好ましくは500乃至30,000の高分子化合物である。分子量が500未満の場合には、十分な屈折率の値が得られにくく、100,000を超えると溶解性が低下する。 The organic substituted polygermane compound produced by the production method of the present invention is a polymer compound having a polystyrene-equivalent weight average molecular weight of 500 to 100,000, preferably a polymer compound of 500 to 50,000, more A high molecular compound of 500 to 30,000 is preferred. When the molecular weight is less than 500, it is difficult to obtain a sufficient refractive index value, and when it exceeds 100,000, the solubility decreases.
[有機置換ポリゲルマン化合物を含むワニス]
 本発明の製造方法で得られた有機置換ポリゲルマン化合物は、溶媒に溶解させてワニスの形態と為すことができる。また、常温において液状を示す有機置換ポリゲルマン化合物は、溶媒に溶解させることなくワニスの形態と為すこともできる。
 上記ワニスの形態において使用する溶媒としては、例えば、ジエチルオキサラート、エチルアセトアセタート、酢酸エチル、酢酸イソブチル、酪酸エチル、乳酸エチル、3-メトキシプロピオン酸エチル、2-ヒドロキシイソ酪酸メチル、4-ブチロラクトン等のエステル系溶媒;エチルメチルケトン、イソブチルメチルケトン、2-ヘキサノン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセタート等のプロピレングリコール系溶媒;メチルセロソルブ、メチルセロソルブアセタート等のセロソルブ系溶媒;ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;エタノール、イソプロパノール、イソペンチルアルコール等のアルコール系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トリクロロエチレン等のハロゲン化炭化水素系溶媒などが挙げられる。これらの溶媒は単独で用いても良いし、必要に応じて2種以上の混合溶媒として用いても良い。
 また、反応終了後の溶液をそのまま(有機置換ポリゲルマン化合物を単離することなく)ワニスとしても良い。その際、上記溶媒を添加することも可能である。
 さらに、上記溶媒に溶解させる濃度は任意であるが、有機置換ポリゲルマン化合物と溶媒の総質量(合計質量)に対して、有機置換ポリゲルマン化合物の濃度は、好ましくは1乃至30質量%である。
[Varnish containing organic substituted polygermane compound]
The organic substituted polygermane compound obtained by the production method of the present invention can be dissolved in a solvent to form a varnish. Moreover, the organic substituted polygermane compound which shows a liquid state at normal temperature can be made into a varnish form without being dissolved in a solvent.
Examples of the solvent used in the varnish form include diethyl oxalate, ethyl acetoacetate, ethyl acetate, isobutyl acetate, ethyl butyrate, ethyl lactate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, 4- Ester solvents such as butyrolactone; ketone solvents such as ethyl methyl ketone, isobutyl methyl ketone, 2-hexanone and cyclohexanone; propylene glycol solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; methyl cellosolve and methyl cellosolve acetate Cellosolve solvents such as tart; ether solvents such as dibutyl ether, tetrahydrofuran, and 1,4-dioxane; alcohols such as ethanol, isopropanol, and isopentyl alcohol Call solvents: toluene, aromatic hydrocarbon solvents such as xylene; dichloromethane, chloroform, 1,2-dichloroethane, and halogenated hydrocarbon solvents trichlorethylene, and the like. These solvents may be used alone or as a mixed solvent of two or more as required.
The solution after completion of the reaction may be used as a varnish as it is (without isolating the organic substituted polygermane compound). In that case, it is also possible to add the said solvent.
Furthermore, although the density | concentration dissolved in the said solvent is arbitrary, the density | concentration of an organic substituted polygermane compound with respect to the total mass (total mass) of an organic substituted polygermane compound and a solvent becomes like this. Preferably it is 1 thru | or 30 mass%. .
[有機置換ポリゲルマン化合物からなる薄膜]
 本発明のワニスを用いて薄膜を形成する具体的な方法としては、まず、本発明の製造方法によって得られた有機置換ポリゲルマン化合物を上記溶媒に溶解させてワニスの形態(膜形成材料)とし、該ワニスを基材上にロールコート法、マイクログラビアコート法、グラビアコート法、フローコート法、バーコート法、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ドクターブレード法、ラングミュア-ブロジェット法等によって塗布し、その後必要に応じて乾燥することで得ることができる。
 上記基材としては、例えば、ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、アクリル、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等のプラスチック;金属;ガラス;シリコン等が挙げられる。
 また、塗布方法としては、特に限定されるものではなく、上記方法の中から、生産性、膜厚コントロール性、歩留まり等のバランスを考慮して、最適な塗布法を決定することができる。
 さらに、乾燥温度は、40乃至150℃であることが好ましい。これらの温度の中から、溶媒種、溶媒量、生産性等を考慮して、最適な乾燥温度を決定することができる。
 このようにして得られた有機置換ポリゲルマン化合物からなる薄膜は、従来の方法で得られる有機置換ポリゲルマン化合物からなる薄膜に比べ、より高い屈折率になるという特徴を有する。
[Thin films made of organic substituted polygermane compounds]
As a specific method of forming a thin film using the varnish of the present invention, first, an organic substituted polygermane compound obtained by the production method of the present invention is dissolved in the above solvent to form a varnish (film forming material). The varnish is coated on a substrate by a roll coating method, micro gravure coating method, gravure coating method, flow coating method, bar coating method, spray coating method, die coating method, spin coating method, dip coating method, doctor blade method, Langmuir It can be obtained by applying by a blow jet method or the like and then drying if necessary.
Examples of the substrate include plastics such as polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, acrylic, melamine, triacetyl cellulose, ABS, AS, norbornene resin; metal; glass; silicon and the like.
Further, the coating method is not particularly limited, and an optimal coating method can be determined from the above methods in consideration of the balance of productivity, film thickness controllability, yield, and the like.
Furthermore, the drying temperature is preferably 40 to 150 ° C. From these temperatures, the optimum drying temperature can be determined in consideration of the solvent species, the amount of solvent, productivity, and the like.
The thin film made of the organic substituted polygermane compound obtained in this way has a feature that it has a higher refractive index than the thin film made of the organic substituted polygermane compound obtained by the conventional method.
[樹脂組成物]
 本発明はまた、上記有機置換ポリゲルマン化合物と樹脂(熱可塑性樹脂及び/又は硬化性樹脂)を含む、樹脂組成物にも関する。
 本発明において、熱可塑性樹脂とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂又は該樹脂の混合物をいい、任意の添加剤を適宜含有しうる。
 また、本発明において、硬化性樹脂とは、加熱により重合を起こして高分子の網目構造を形成する熱硬化性樹脂、光照射により重合を起こして高分子の網目構造を形成する光硬化性樹脂、及びこれら樹脂の混合物を指し、架橋剤、開始剤等の添加剤を含みうる。
 上記樹脂の具体例としては、特に限定されるものではなく、熱可塑性樹脂としては、例えば、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)等のポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメチルメタクリレート)等の(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニンなどが挙げられる。
 また硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂等の熱硬化性樹脂;アクリル樹脂、エポキシアクリル樹脂、シリコン樹脂などの光硬化性樹脂などが挙げられる。
[Resin composition]
The present invention also relates to a resin composition comprising the organic substituted polygermane compound and a resin (thermoplastic resin and / or curable resin).
In the present invention, the thermoplastic resin refers to a resin or a mixture of the resins that can be softened by heating to the glass transition temperature or the melting point and can be molded into the desired shape, and may contain any additive as appropriate.
In the present invention, the curable resin is a thermosetting resin that forms a polymer network structure by heating, and a photocurable resin that forms a polymer network structure by light irradiation. And a mixture of these resins, and may contain additives such as a crosslinking agent and an initiator.
Specific examples of the resin are not particularly limited. Examples of the thermoplastic resin include PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-acrylic). Polyolefin resins such as ethyl acid copolymer); PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methacrylic acid) Polystyrene resin such as methyl-styrene copolymer); polycarbonate resin; vinyl chloride resin; polyamide resin; polyimide resin; (meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate Polyester resins such as polyethylene naphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / adipate; polyphenylene ether resin; modified polyphenylene ether resin; Polyacetal resin; polysulfone resin; polyphenylene sulfide resin; polyvinyl alcohol resin; polyglycolic acid; modified starch; cellulose acetate, cellulose triacetate; chitin, chitosan;
Examples of the curable resin include thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, and silicon resin; light such as acrylic resin, epoxy acrylic resin, and silicon resin. Examples thereof include curable resins.
 該樹脂は、有機置換ポリゲルマン化合物100質量部に対して、1乃至10,000質量部の範囲で使用することが好ましく、より好ましくは1乃至1,000質量部の範囲である。 The resin is preferably used in the range of 1 to 10,000 parts by mass, more preferably in the range of 1 to 1,000 parts by mass with respect to 100 parts by mass of the organic substituted polygermane compound.
 例えば、樹脂組成物が有機置換ポリゲルマン化合物と(メタ)アクリル樹脂を含む組成物の場合、(メタ)アクリレート化合物と前記有機置換ポリゲルマン化合物を混合し、該(メタ)アクリレート化合物を重合させることにより得ることができる。
 上記(メタ)アクリレート化合物の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリシクロデカニルジ(メタ)アクリレート、トリメチロールプロパントリオキシプロピル(メタ)アクリレート、トリス-2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、トリス-2-ヒドロキシエチルイソシアヌレートジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ベンジルメタクリレート、9,9-ビス(4-(2-アクリロイルオキシエトキシ)フェニル)フルオレン、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。
For example, when the resin composition is a composition containing an organic substituted polygermane compound and a (meth) acrylic resin, the (meth) acrylate compound and the organic substituted polygermane compound are mixed and the (meth) acrylate compound is polymerized. Can be obtained.
Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol Di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane Trioxyethyl (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, tricyclodecanyl di (meth) acrylate, trimethylolpropane trioxypropyl (meth) ) Acrylate, tris-2-hydroxyethyl isocyanurate tri (meth) acrylate, tris-2-hydroxyethyl isocyanurate di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, pentaerythritol di (meth) acrylate Glycerin methacrylate acrylate, pentaerythritol tri (meth) acrylate, benzyl methacrylate, 9,9-bis (4- (2-acryloyloxyethoxy) phenyl) fluorene, trimethylolpropane trimethacrylate, allyl (meth) acrylate, (meth ) Vinyl acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate and the like.
 これらの(メタ)アクリレート化合物の重合は、必要に応じて光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、光照射又は加熱により行うことができる。
 光ラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーズケトン類、アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類等が挙げられる。
 特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されている。
Polymerization of these (meth) acrylate compounds can be carried out by light irradiation or heating in the presence of a photo radical initiator or a heat radical initiator as necessary.
Examples of the photo radical polymerization initiator include acetophenones, benzophenones, Michler's ketones, amyloxime esters, tetramethylthiuram monosulfide, thioxanthones, and the like.
In particular, photocleavable photoradical polymerization initiators are preferred. The photocleavable photoradical polymerization initiator is described in the latest UV curing technology (p. 159, publisher: Kazuhiro Takahisa, publisher: Technical Information Association, Inc., published in 1991).
 市販の光ラジカル重合開始剤としては、例えば、BASF社製 商品名:イルガキュア(登録商標)184、369、651、500、819、907、784、2959、CGI1700、CGI1750、CGI1850、CG24-61、ダロキュア 1116、1173、ルシリン TPO;UCB社製 商品名:ユベクリル P36;フラテツリ・ランベルティ社製 商品名:エザキュアー KIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等を挙げることができる。
 光重合開始剤は、(メタ)アクリレート化合物100質量部に対して、15質量部以下の範囲で使用することが好ましく、より好ましくは10質量部以下の範囲である。
Commercially available photo radical polymerization initiators include, for example, BASF Corporation trade names: Irgacure (registered trademark) 184, 369, 651, 500, 819, 907, 784, 2959, CGI 1700, CGI 1750, CGI 1850, CG 24-61, Darocur 1116, 1173, Lucyrin TPO; manufactured by UCB, trade name: Ubekrill P36; manufactured by Fratteri Lamberti, trade name: Ezacure KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46, KIP75 / B
It is preferable to use a photoinitiator in 15 mass parts or less with respect to 100 mass parts of (meth) acrylate compounds, More preferably, it is the range of 10 mass parts or less.
 熱ラジカル重合開始剤としては、特に限定されるものではないが、例えば、アセチルペルオキシド、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、過酸化水素、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジtert-ブチルペルオキシド、ジクミルペルオキシド、ジラウロイルペルオキシド、tert-ブチルペルオキシアセテート、tert-ブチルペルオキシピバラート、tert-ブチルぺルオキシ-2-エチルヘキサノアート等の過酸化物類;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、(1-フェニルエチル)アゾジフェニルメタン、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチラート、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2,2’-アゾビス(2-メチルプロパン)等のアゾ系化合物類;過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩類などが挙げられる。
 熱重合開始剤は、(メタ)アクリレート化合物100質量部に対して、15質量部以下の範囲で使用することが好ましく、より好ましくは10質量部以下の範囲である。
The thermal radical polymerization initiator is not particularly limited, and examples thereof include acetyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide. , Dicumyl peroxide, dilauroyl peroxide, tert-butylperoxyacetate, tert-butylperoxypivalate, tert-butylperoxy-2-ethylhexanoate, etc .; 2,2′-azobisisobuty Ronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), (1-phenylethyl) azodiphenylmethane, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronite) ), Dimethyl 2,2′-azobisisobutyrate, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) Isobutyronitrile, 2,2'-azobis (2,4,4-trimethylpentane), 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2,2'-azobis (2-methylpropane) And azo compounds such as ammonium persulfate, persulfates such as sodium persulfate and potassium persulfate.
It is preferable to use a thermal polymerization initiator in 15 mass parts or less with respect to 100 mass parts of (meth) acrylate compounds, More preferably, it is the range of 10 mass parts or less.
[樹脂成形体]
 本発明はまた、上記樹脂組成物から作られる樹脂成形体にも関する。
 本発明の樹脂成形体は、上記有機置換ポリゲルマン化合物を含む樹脂組成物を、従来からの一般的な樹脂成形法に従い、成形することで得られる。
 具体的には、樹脂として熱可塑性樹脂を含む樹脂組成物の場合、それを加熱により溶融若しくは軟化させ、又は硬化性樹脂を含む樹脂組成物の場合、その成形体を、熱又は光照射により熱硬化又は光硬化することにより得られる。
 とりわけ、本発明の樹脂組成物は、上記有機置換ポリゲルマン化合物の含有により、高い熱安定性を有するため、上述の加熱又は硬化処理を行ったとしても、高い屈折率及び透明性が維持された樹脂成形体が得られる。
 さらに、本発明の樹脂成形体は、有機置換ポリゲルマン化合物の含有により、高温条件下で使用したとしても高い屈折率及び透明性が維持される。
[Resin molding]
The present invention also relates to a resin molded body made from the above resin composition.
The resin molded body of the present invention can be obtained by molding a resin composition containing the organic substituted polygermane compound according to a conventional general resin molding method.
Specifically, in the case of a resin composition containing a thermoplastic resin as a resin, it is melted or softened by heating, or in the case of a resin composition containing a curable resin, the molded body is heated by heat or light irradiation. It is obtained by curing or photocuring.
In particular, since the resin composition of the present invention has high thermal stability due to the inclusion of the organic substituted polygermane compound, high refractive index and transparency were maintained even when the above heating or curing treatment was performed. A resin molded body is obtained.
Furthermore, the resin molded body of the present invention maintains a high refractive index and transparency even when used under high temperature conditions due to the inclusion of the organic substituted polygermane compound.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置は以下のとおりである。
1H NMR]
 機種:日本電子(株)製 JNM-ECX300(300MHz)
 測定溶媒:CDCl3
 基準物質:テトラメチルシラン(0.00ppm)
[GPC(ゲル浸透クロマトグラフィー)]
 装置:東ソー(株)製 HLC-8200 GPC
 カラム:Shodex(登録商標) KF-804L+KF-805L
 リファレンスカラム:Shodex(登録商標) GPC KF-800RH×2本
 カラム温度:40℃
 検出器:RI
 溶離液:テトラヒドロフラン
 カラム流速:1.0mL/分
 リファレンスカラム流速:1.0mL/分
[スピンコーター]
 機種:ミカサ(株)製 1H-D7
[エリプソメーター]
 機種:ジェー・エー・ウーラム・ジャパン(株)製 高速分光エリプソメトリー M2000-VI
[プリズムカプラ]
 機種:メトリコン社製 MODEL 2010
[紫外可視近赤外分光光度計]
 機種:(株)島津製作所製 UV-3600
 測定波長:700nm~1600nm
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, each measuring apparatus used in the Example is as follows.
[ 1 H NMR]
Model: JNM-ECX300 (300 MHz) manufactured by JEOL Ltd.
Measuring solvent: CDCl 3
Reference substance: Tetramethylsilane (0.00ppm)
[GPC (gel permeation chromatography)]
Equipment: HLC-8200 GPC manufactured by Tosoh Corporation
Column: Shodex (registered trademark) KF-804L + KF-805L
Reference column: Shodex (registered trademark) GPC KF-800RH x 2 Column temperature: 40 ° C
Detector: RI
Eluent: Tetrahydrofuran Column flow rate: 1.0 mL / min Reference column flow rate: 1.0 mL / min [spin coater]
Model: Mikasa Co., Ltd. 1H-D7
[Ellipsometer]
Model: JA Woollam Japan Co., Ltd. High-speed spectroscopic ellipsometry M2000-VI
[Prism coupler]
Model: Metricon 2010 MODEL 2010
[Ultraviolet visible near infrared spectrophotometer]
Model: UV-3600 manufactured by Shimadzu Corporation
Measurement wavelength: 700nm to 1600nm
[実施例1]<フェニル基置換ポリゲルマン化合物の合成>
 窒素雰囲気下、100mLの四口フラスコに粉末マグネシウム(関東化学(株)製)1.8g(75mmol)及びテトラヒドロフラン(以下、THFと略す)40gを加えた後、ジブロモエタン(東京化成工業(株)製)3.5g(19mmol)を滴下し、室温(およそ25℃)で10分間撹拌した。次いでこの反応液へ、四塩化ゲルマニウム(ヤマナカヒューテック(株)製)4.0g(19mmol)、ブロモベンゼン(東京化成工業(株)製)3.0g(19mmol)及びTHF12gの混合物を滴下し、室温(およそ25℃)で30分間撹拌した。その後、この反応液へ、ブロモベンゼン1.5g(9mmol)及びTHF2gの混合物をさらに滴下した。そして、室温(およそ25℃)で18時間撹拌後、この反応液をメタノール200gに加え再沈殿させ、析出した固体を濾取した。得られた固体を80gのトルエンに溶解させ、濾過により不溶物を除去した。濾液の溶媒を留去した後、得られた残渣を4gのクロロホルムに再溶解させ、メタノール100gに加え再度再沈殿させた。析出した固体を濾取することで、目的物であるフェニル基置換ポリゲルマン化合物(以下、PGe-Pと略す)1.9gを得た。ポリゲルマン化合物中のゲルマニウム原子:フェニル基=1:1(mol比)と仮定すると、収率は65%であった。
 得られたPGe-Pの1H NMRスペクトルの測定結果を図1に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,200、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.20であった。
[Example 1] <Synthesis of phenyl group-substituted polygermane compound>
Under a nitrogen atmosphere, 1.8 g (75 mmol) of powdered magnesium (manufactured by Kanto Chemical Co., Inc.) and 40 g of tetrahydrofuran (hereinafter abbreviated as THF) were added to a 100 mL four-necked flask, and then dibromoethane (Tokyo Chemical Industry Co., Ltd.). 3.5 g (19 mmol) was added dropwise and stirred at room temperature (approximately 25 ° C.) for 10 minutes. Next, a mixture of 4.0 g (19 mmol) of germanium tetrachloride (manufactured by Yamanaka Futec Co., Ltd.), 3.0 g (19 mmol) of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12 g of THF was added dropwise to the reaction solution, and room temperature. Stir at (approximately 25 ° C.) for 30 minutes. Thereafter, a mixture of 1.5 g (9 mmol) of bromobenzene and 2 g of THF was further added dropwise to the reaction solution. Then, after stirring at room temperature (approximately 25 ° C.) for 18 hours, this reaction solution was added to 200 g of methanol for reprecipitation, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 80 g of toluene, and insoluble matters were removed by filtration. After the solvent of the filtrate was distilled off, the obtained residue was redissolved in 4 g of chloroform, added to 100 g of methanol and reprecipitated again. The precipitated solid was collected by filtration to obtain 1.9 g of a phenyl group-substituted polygermane compound (hereinafter abbreviated as PGe-P) as a target product. Assuming germanium atoms: phenyl groups in the polygermane compound = 1: 1 (molar ratio), the yield was 65%.
The measurement result of the 1 H NMR spectrum of the obtained PGe—P is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,200, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.20.
[実施例2]<4―トルイル基置換ポリゲルマン化合物の合成>
 実施例1において、ブロモベンゼンを同モル数の4-ブロモトルエン(東京化成工業(株)製)3.2g(19mmol)及び1.6g(9mmol)に変更した以外は同様の操作を行い、4-トルイル基置換ポリゲルマン化合物(以下、PGe-Toと略す)1.0gを得た。ポリゲルマン化合物中のゲルマニウム原子:4-トルイル基=1:1(mol比)と仮定すると、収率は32%であった。
 得られたPGe-Toの1H NMRスペクトルの測定結果を図2に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,800、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.23であった。
[Example 2] <Synthesis of 4-toluyl group-substituted polygermane compound>
In Example 1, the same operation was performed except that bromobenzene was changed to 3.2 g (19 mmol) and 1.6 g (9 mmol) of 4-bromotoluene (manufactured by Tokyo Chemical Industry Co., Ltd.) having the same mole number. -Toluyl group-substituted polygermane compound (hereinafter abbreviated as PGe-To) 1.0 g was obtained. Assuming that the germanium atom in the polygermane compound: 4-toluyl group = 1: 1 (mol ratio), the yield was 32%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-To is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.23.
[実施例3]<4-アニシル基置換ポリゲルマン化合物の合成>
 実施例1において、ブロモベンゼンを同モル数の4-ブロモアニソール(東京化成工業(株)製)3.6g(19mmol)及び1.8g(9mmol)に変更した以外は同様の操作を行い、4-アニシル基置換ポリゲルマン化合物(以下、PGe-Aと略す)1.4gを得た。ポリゲルマン化合物中のゲルマニウム原子:4-アニシル基=1:1(mol比)と仮定すると、収率は43%であった。
 得られたPGe-Aの1H NMRスペクトルの測定結果を図3に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは2,100、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.25であった。
[Example 3] <Synthesis of 4-anisyl group-substituted polygermane compound>
In Example 1, the same operation was performed except that bromobenzene was changed to 3.6 g (19 mmol) and 1.8 g (9 mmol) of 4-bromoanisole (manufactured by Tokyo Chemical Industry Co., Ltd.) with the same mole number. -1.4 g of an anisyl group-substituted polygermane compound (hereinafter abbreviated as PGe-A) was obtained. Assuming that germanium atoms in the polygermane compound: 4-anisyl group = 1: 1 (mol ratio), the yield was 43%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-A is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 2,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.25.
[実施例4]<tert-ブチル基置換ポリゲルマン化合物の合成>
 実施例1において、ブロモベンゼンを同モル数の2-ブロモ-2-メチルプロパン(東京化成工業(株)製)2.6g(19mmol)及び1.3g(9mmol)に変更した以外は同様の操作を行い、tert-ブチル基置換ポリゲルマン化合物(以下、PGe-tBと略す)0.9gを得た。ポリゲルマン化合物中のゲルマニウム原子:tert-ブチル基=1:1(mol比)と仮定すると、収率は33%であった。
 得られたPGe-tBの1H NMRスペクトルの測定結果を図4に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,800、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.46であった。
[Example 4] <Synthesis of tert-butyl group-substituted polygermane compound>
The same operation as in Example 1 except that bromobenzene was changed to 2.6 g (19 mmol) and 1.3 g (9 mmol) of 2-bromo-2-methylpropane (Tokyo Kasei Kogyo Co., Ltd.) with the same number of moles. As a result, 0.9 g of a tert-butyl group-substituted polygermane compound (hereinafter abbreviated as PGe-tB) was obtained. Assuming germanium atoms: tert-butyl groups in the polygermane compound = 1: 1 (molar ratio), the yield was 33%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-tB is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.46.
[実施例5]<2-チエニル基置換ポリゲルマン化合物の合成>
 実施例1において、ブロモベンゼンを同モル数の2-ブロモチオフェン(東京化成工業(株)製)3.1g(19mmol)及び1.6g(9mmol)に変更した以外は同様の操作を行い、2-チエニル基置換ポリゲルマン化合物(以下、PGe-Thと略す)1.2gを得た。ポリゲルマン化合物中のゲルマニウム原子:2-チエニル基=1:1(mol比)と仮定すると、収率は41%であった。
 得られたPGe-Thの1H NMRスペクトルの測定結果を図5に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,100、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.39であった。
[Example 5] <Synthesis of 2-thienyl group-substituted polygermane compound>
The same operation as in Example 1 was carried out except that bromobenzene was changed to 3.1 g (19 mmol) and 1.6 g (9 mmol) of 2-bromothiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) with the same number of moles. -1.2 g of a thienyl group-substituted polygermane compound (hereinafter abbreviated as PGe-Th) was obtained. Assuming that germanium atoms: 2-thienyl groups in the polygermane compound = 1: 1 (mol ratio), the yield was 41%.
The measurement result of 1 H NMR spectrum of the obtained PGe-Th is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.39.
[実施例6]<5-メチルチオフェン-2-イル基置換ポリゲルマン化合物の合成>
 実施例1において、ブロモベンゼンを同モル数の2-ブロモ-5-メチルチオフェン(東京化成工業(株)製)3.3g(19mmol)及び1.7g(9mmol)に変更した以外は同様の操作を行い、5-メチルチオフェン-2-イル基置換ポリゲルマン化合物(以下、PGe-ThMと略す)1.1gを得た。ポリゲルマン化合物中のゲルマニウム原子:5-メチルチオフェン-2-イル基=1:1(mol比)と仮定すると、収率は35%であった。
 得られたPGe-ThMの1H NMRスペクトルの測定結果を図6に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,300、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.34であった。
[Example 6] <Synthesis of 5-methylthiophen-2-yl group-substituted polygermane compound>
The same operation as in Example 1, except that bromobenzene was changed to 3.3 g (19 mmol) and 1.7 g (9 mmol) of 2-bromo-5-methylthiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) with the same mole number. As a result, 1.1 g of 5-methylthiophen-2-yl group-substituted polygermane compound (hereinafter abbreviated as PGe-ThM) was obtained. Assuming that the germanium atom in the polygermane compound: 5-methylthiophen-2-yl group = 1: 1 (mol ratio), the yield was 35%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-ThM is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,300, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.34.
[実施例7]<フェニル基置換ポリゲルマン化合物の合成2>
 窒素雰囲気下、100mLの四口フラスコに粉末マグネシウム(関東化学(株)製)1.4g(56mmol)及びテトラヒドロフラン40gを加えた後、ヨウ素(純正化学(株)製)0.02gを加え、室温(およそ25℃)で10分間撹拌した。次いで還流状態まで加熱させたこの反応液に、四塩化ゲルマニウム(ヤマナカヒューテック(株)製)4.0g(19mmol)、ブロモベンゼン(東京化成工業(株)製)3.0g(19mmol)及びTHF12gの混合物を滴下し、加熱還流下で30分間撹拌した。その後、この反応液へ、ブロモベンゼン1.5g(9mmol)及びTHF2gの混合物をさらに滴下した。そして、加熱還流下で30分間、続けて室温(およそ25℃)で18時間撹拌後、この反応液をメタノール200gに加え再沈殿させ、析出した固体を濾取した。得られた固体を80gのトルエンに溶解させ、濾過により不溶物を除去した。濾液の溶媒を留去した後、得られた残渣を4gのクロロホルムに再溶解させ、メタノール100gに加え再度再沈殿させた。析出した固体を濾取することで、目的物であるPGe-P1.5gを得た。ポリゲルマン化合物中のゲルマニウム原子:フェニル基=1:1(mol比)と仮定すると、収率は53%であった。
 得られたPGe-Pの1H NMRスペクトルの測定結果を図7に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,100、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.28であった。
[Example 7] <Synthesis 2 of phenyl group-substituted polygermane compound>
Under a nitrogen atmosphere, 1.4 g (56 mmol) of powdered magnesium (manufactured by Kanto Chemical Co., Inc.) and 40 g of tetrahydrofuran were added to a 100 mL four-necked flask, and then 0.02 g of iodine (manufactured by Junsei Chemical Co., Ltd.) was added. Stir at (approximately 25 ° C.) for 10 minutes. Next, to this reaction liquid heated to the reflux state, 4.0 g (19 mmol) of germanium tetrachloride (manufactured by Yamanaka Futec Co., Ltd.), 3.0 g (19 mmol) of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12 g of THF were added. The mixture was added dropwise and stirred for 30 minutes under heating to reflux. Thereafter, a mixture of 1.5 g (9 mmol) of bromobenzene and 2 g of THF was further added dropwise to the reaction solution. Then, the mixture was stirred for 30 minutes under heating and refluxing, and then at room temperature (approximately 25 ° C.) for 18 hours. The reaction solution was added to 200 g of methanol for reprecipitation, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 80 g of toluene, and insoluble matters were removed by filtration. After the solvent of the filtrate was distilled off, the obtained residue was redissolved in 4 g of chloroform, added to 100 g of methanol and reprecipitated again. The precipitated solid was collected by filtration to obtain 1.5 g of the target product, PGe-P. Assuming that germanium atoms: phenyl groups in the polygermane compound = 1: 1 (mol ratio), the yield was 53%.
The measurement result of 1 H NMR spectrum of the obtained PGe—P is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,100, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.28.
[比較例1]<従来法によるフェニル基置換ポリゲルマン化合物の合成>
 窒素雰囲気下、100mLの四口フラスコに粉末マグネシウム(関東化学(株)製)1.8g(75mmol)及びテトラヒドロフラン(以下、THFと略す)40gを加えた後、ジブロモエタン(東京化成工業(株)製)3.5g(19mmol)を滴下し、室温(およそ25℃)で10分間撹拌した。次いでこの反応液へ、四塩化ゲルマニウム(ヤマナカヒューテック(株)製)4.0g(19mmol)及びTHF12gの混合物を滴下し、室温(およそ25℃)で30分間撹拌した。その後、この反応液へ、ブロモベンゼン(東京化成工業(株)製)4.5g(28mmol)及びTHF2gの混合物をさらに滴下した。そして、室温(およそ25℃)で18時間撹拌後、この反応液をメタノール200gに加え再沈殿させ、析出した固体を濾取した。得られた固体を80gのトルエンに溶解させ、濾過により不溶物を除去した。濾液の溶媒を留去した後、得られた残渣を4gのクロロホルムに再溶解させ、メタノール100gに加え再度再沈殿させた。析出した固体を濾取することで、目的物であるフェニル基置換ポリゲルマン化合物(以下、PGe-P*と略す)1.1gを得た。ポリゲルマン化合物中のゲルマニウム原子:フェニル基=1:1(mol比)と仮定すると、収率は38%であった。
 得られたPGe-P*1H NMRスペクトルの測定結果を図8に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.10であった。
[Comparative Example 1] <Synthesis of phenyl group-substituted polygermane compound by conventional method>
Under a nitrogen atmosphere, 1.8 g (75 mmol) of powdered magnesium (manufactured by Kanto Chemical Co., Inc.) and 40 g of tetrahydrofuran (hereinafter abbreviated as THF) were added to a 100 mL four-necked flask, and then dibromoethane (Tokyo Chemical Industry Co., Ltd.). 3.5 g (19 mmol) was added dropwise and stirred at room temperature (approximately 25 ° C.) for 10 minutes. Subsequently, a mixture of 4.0 g (19 mmol) of germanium tetrachloride (manufactured by Yamanaka Futec Co., Ltd.) and 12 g of THF was added dropwise to the reaction solution, and the mixture was stirred at room temperature (approximately 25 ° C.) for 30 minutes. Thereafter, a mixture of 4.5 g (28 mmol) of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2 g of THF was further added dropwise to the reaction solution. Then, after stirring at room temperature (approximately 25 ° C.) for 18 hours, this reaction solution was added to 200 g of methanol for reprecipitation, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 80 g of toluene, and insoluble matters were removed by filtration. After the solvent of the filtrate was distilled off, the obtained residue was redissolved in 4 g of chloroform, added to 100 g of methanol and reprecipitated again. The precipitated solid was collected by filtration to obtain 1.1 g of a target phenyl group-substituted polygermane compound (hereinafter abbreviated as PGe-P * ). Assuming germanium atoms: phenyl groups in the polygermane compound = 1: 1 (molar ratio), the yield was 38%.
FIG. 8 shows the measurement result of the 1 H NMR spectrum of the obtained PGe—P * . The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.10.
[比較例2]<従来法による4-トルイル基置換ポリゲルマン化合物の合成>
 比較例1において、ブロモベンゼンを、4-ブロモトルエン(東京化成工業(株)製)4.8g(28mmol)に変更した以外は同様の操作を行い、4-トルイル基置換ポリゲルマン化合物(以下、PGe-To*と略す)0.5gを得た。ポリゲルマン化合物中のゲルマニウム原子:4-トルイル基=1:1(mol比)と仮定すると、収率は16%であった。
 得られたPGe-To*1H NMRスペクトルの測定結果を図9に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,500、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.15であった。
[Comparative Example 2] <Synthesis of 4-toluyl group-substituted polygermane compound by a conventional method>
In Comparative Example 1, the same operation was performed except that bromobenzene was changed to 4.8 g (28 mmol) of 4-bromotoluene (manufactured by Tokyo Chemical Industry Co., Ltd.). 0.5g ( abbreviated as PGe-To * ). Assuming that germanium atoms in the polygermane compound: 4-toluyl group = 1: 1 (mol ratio), the yield was 16%.
The measurement result of 1 H NMR spectrum of the obtained PGe-To * is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,500, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.15.
[比較例3]<従来法による4-アニシル基置換ポリゲルマン化合物の合成>
 比較例1において、ブロモベンゼンを4-ブロモアニソール(東京化成工業(株)製)5.4g(28mmol)に変更した以外は同様の操作を行い、4-アニシル基置換ポリゲルマン化合物(以下、PGe-A*と略す)0.8gを得た。ポリゲルマン化合物中のゲルマニウム原子:4-アニシル基=1:1(mol比)と仮定すると、収率は25%であった。
 得られたPGe-A*1H NMRスペクトルの測定結果を図10に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,300、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.12であった。
[Comparative Example 3] <Synthesis of 4-anisyl group-substituted polygermane compound by conventional method>
The same operation was carried out except that bromobenzene was changed to 5.4 g (28 mmol) of 4-bromoanisole (Tokyo Chemical Industry Co., Ltd.) in Comparative Example 1, and a 4-anisyl group-substituted polygermane compound (hereinafter referred to as PGe) was used. 0.8g was abbreviated as -A * . Assuming that germanium atoms in the polygermane compound: 4-anisyl group = 1: 1 (mol ratio), the yield was 25%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-A * is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,300, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.12.
[比較例4]<従来法によるtert-ブチル基置換ポリゲルマン化合物の合成>
 比較例1において、ブロモベンゼンを2-ブロモ-2-メチルプロパン(東京化成工業(株)製)3.9g(28mmol)に変更した以外は同様の操作を行い、tert-ブチル基置換ポリゲルマン化合物(以下、PGe-tB*と略す)1.2gを得た。ポリゲルマン化合物中のゲルマニウム原子:tert-ブチル基=1:1(mol比)と仮定すると、収率は42%であった。
 得られたPGe-tB*1H NMRスペクトルの測定結果を図11に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは4,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は2.27であった。
[Comparative Example 4] <Synthesis of tert-butyl group-substituted polygermane compound by conventional method>
The same procedure as in Comparative Example 1, except that bromobenzene was changed to 3.9 g (28 mmol) of 2-bromo-2-methylpropane (manufactured by Tokyo Chemical Industry Co., Ltd.), and a tert-butyl group-substituted polygermane compound 1.2 g (hereinafter abbreviated as PGe-tB * ) was obtained. Assuming that germanium atoms: tert-butyl groups in the polygermane compound = 1: 1 (mol ratio), the yield was 42%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-tB * is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 4,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 2.27.
[比較例5]<従来法による2-チエニル基置換ポリゲルマン化合物の合成>
 比較例1において、ブロモベンゼンを2-ブロモチオフェン(東京化成工業(株)製)4.7g(28mmol)に変更した以外は同様の操作を行い、2-チエニル基置換ポリゲルマン化合物(以下、PGe-Th*と略す)0.9gを得た。ポリゲルマン化合物中のゲルマニウム原子:2-チエニル基=1:1(mol比)と仮定すると、収率は31%であった。
 得られたPGe-Th*1H NMRスペクトルの測定結果を図12に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは800、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.14であった。
Comparative Example 5 <Synthesis of 2-thienyl group-substituted polygermane compound by a conventional method>
The same operation was performed except that bromobenzene was changed to 4.7 g (28 mmol) of 2-bromothiophene (Tokyo Chemical Industry Co., Ltd.) in Comparative Example 1, and a 2-thienyl group-substituted polygermane compound (hereinafter referred to as PGe) 0.9g was abbreviated as -Th * . Assuming that germanium atoms: 2-thienyl groups in the polygermane compound = 1: 1 (mol ratio), the yield was 31%.
The measurement result of the 1 H NMR spectrum of the obtained PGe-Th * is shown in FIG. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.14.
[比較例6]<従来法による5-メチルチオフェン-2-イル基置換ポリゲルマン化合物の合成>
 比較例1において、ブロモベンゼンを2-ブロモ-5-メチルチオフェン(東京化成工業(株)製)5.0g(28mmol)に変更した以外は同様の操作を行い、5-メチルチオフェン-2-イル基置換ポリゲルマン化合物(以下、PGe-ThM*と略す)1.3gを得た。ポリゲルマン化合物中のゲルマニウム原子:5-メチルチオフェン-2-イル基=1:1(mol比)と仮定すると、収率は41%であった。
 得られたPGe-ThM*1H NMRスペクトルの測定結果を図13に示す。GPCによるポリスチレン換算で測定される重量平均分子量Mwは900、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.23であった。
[Comparative Example 6] <Synthesis of 5-methylthiophen-2-yl group-substituted polygermane compound by a conventional method>
The same operation as in Comparative Example 1 was carried out except that bromobenzene was changed to 5.0 g (28 mmol) of 2-bromo-5-methylthiophene (manufactured by Tokyo Chemical Industry Co., Ltd.), and 5-methylthiophen-2-yl 1.3 g of a group-substituted polygermane compound (hereinafter abbreviated as PGe-ThM * ) was obtained. Assuming that the germanium atom in the polygermane compound: 5-methylthiophen-2-yl group = 1: 1 (mol ratio), the yield was 41%.
FIG. 13 shows the measurement results of the 1 H NMR spectrum of the obtained PGe-ThM * . The weight average molecular weight Mw measured in terms of polystyrene by GPC was 900, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.23.
 実施例1乃至実施例7及び比較例1乃至比較例6で得られた有機置換ポリゲルマン化合物の収率、GPCによるポリスチレン換算で測定される重量平均分子量Mw、及び分散度:Mw(重量平均分子量)/Mn(数平均分子量)を表1に示す。 Yield of organic substituted polygermane compounds obtained in Examples 1 to 7 and Comparative Examples 1 to 6, weight average molecular weight Mw measured in terms of polystyrene by GPC, and dispersity: Mw (weight average molecular weight ) / Mn (number average molecular weight) is shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、本発明の製造方法によれば、特に芳香族炭化水素基置換のポリゲルマン化合物の製造において明らかな収率の向上が確認され、本発明の優位性が示された。 As shown in Table 1, according to the production method of the present invention, a clear improvement in yield was confirmed particularly in the production of a polygermane compound substituted with an aromatic hydrocarbon group, and the superiority of the present invention was shown.
[実施例8]<有機置換ポリゲルマン化合物からなる薄膜の作製>
 実施例1乃至7及び比較例1乃至6において合成した有機置換ポリゲルマン化合物を、それぞれトルエン(PGe-Th(*)及びPGe-ThM(*)についてはγ-ブチロラクトン)に溶解させ、有機置換ポリゲルマン化合物濃度が3質量%のワニスを調製した。このワニスをガラス基板上にスピンコート法(回転数1,500rpm×30秒間(PGe-Th(*)及びPGe-ThM(*)については回転数300rpm×5秒間+回転数1,500rpm×30秒間))によって塗布した。この塗布膜を、100℃のホットプレートで10分間加熱処理することで薄膜中の溶媒を除去し、それぞれの薄膜を得た。
 得られたそれぞれの薄膜の、波長633nmにおける屈折率をエリプソメーターにより測定した。結果を表2に示す。
[Example 8] <Preparation of thin film composed of organic substituted polygermane compound>
The organic substituted polygermane compounds synthesized in Examples 1 to 7 and Comparative Examples 1 to 6 were dissolved in toluene (γ-butyrolactone for PGe-Th (*) and PGe-ThM (*) , respectively ) A varnish having a germane compound concentration of 3% by mass was prepared. This varnish is spin coated on a glass substrate (rotation speed 1,500 rpm × 30 seconds (for PGe-Th (*) and PGe-ThM (*) , rotation speed 300 rpm × 5 seconds + rotation speed 1,500 rpm × 30 seconds) )). This coating film was heat-treated for 10 minutes on a hot plate at 100 ° C. to remove the solvent in the thin film and obtain each thin film.
The refractive index at a wavelength of 633 nm of each obtained thin film was measured by an ellipsometer. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、本発明の製造方法によれば、従来法で得られる有機置換ポリゲルマン化合物に比べ、より屈折率の高い有機置換ポリゲルマン化合物からなる薄膜が得られることが確認され、本発明の優位性が示された。 As shown in Table 2, according to the production method of the present invention, it is confirmed that a thin film made of an organic substituted polygermane compound having a higher refractive index can be obtained than the organic substituted polygermane compound obtained by the conventional method. The superiority of the present invention was demonstrated.
[実施例9]<有機置換ポリゲルマン化合物含有アクリル樹脂膜の作製>
 実施例1において合成したポリゲルマン化合物PGe-P、重合性アクリレート化合物であるA-DCP(商品名)(新中村化学工業(株)製、トリシクロデカンジメタノールジアクリレート)、及びトルエン2mLを表3に示す分量で混合した。得られた混合溶液のトルエンをエバポレーターにより留去した後、過酸化物系熱ラジカル重合開始剤カヤエステルO-50E(商品名)(化薬アグゾ(株)製)をA-DCP100質量部に対して2質量部加え撹拌することで、PGe-PとA-DCPの樹脂組成物を調製した。
 調製した樹脂組成物を、それぞれスライドガラス中央に滴下し、上からスライドガラスを被せた後、120℃のホットプレートで10分間加熱し、樹脂組成物を熱硬化(熱重合)させた。室温(およそ25℃)に冷却後、上部のスライドガラスを剥離することで、スライドガラス上にポリゲルマン化合物含有アクリル樹脂膜(熱硬化膜)を作製した。
 また、A-DCP0.50gとカヤエステルO-50E0.010gを混合した、ポリゲルマン化合物を含まない樹脂組成物を調製し、同様の操作によりポリゲルマン化合物を含まないアクリル樹脂膜(熱硬化膜)を作製した。
 それぞれの熱硬化膜の波長633nmにおける屈折率をプリズムカプラにより測定した。また、各熱硬化膜の透明性を目視により評価した。評価は、○:透明、×:濁りあり、の二段階で行った。それぞれの結果を表3に合わせて示す。
[Example 9] <Production of organic substituted polygermane compound-containing acrylic resin film>
Table 1 shows the polygermane compound PGe-P synthesized in Example 1, A-DCP (trade name) which is a polymerizable acrylate compound (manufactured by Shin-Nakamura Chemical Co., Ltd., tricyclodecane dimethanol diacrylate), and 2 mL of toluene. Mix in the amount shown in 3. After toluene in the obtained mixed solution was distilled off with an evaporator, peroxide-based thermal radical polymerization initiator Kayaester O-50E (trade name) (manufactured by Kayaku Azo Co., Ltd.) was added to 100 parts by mass of A-DCP. A resin composition of PGe-P and A-DCP was prepared by adding 2 parts by mass and stirring.
The prepared resin compositions were respectively dropped onto the center of the slide glass and covered with the slide glass from above, and then heated on a hot plate at 120 ° C. for 10 minutes to thermally cure (thermopolymerize) the resin composition. After cooling to room temperature (approximately 25 ° C.), the upper slide glass was peeled off to produce a polygermane compound-containing acrylic resin film (thermosetting film) on the slide glass.
In addition, a resin composition containing no polygerman compound prepared by mixing 0.50 g of A-DCP and 0.010 g of Kayaester O-50E was prepared, and an acrylic resin film (thermosetting film) containing no polygerman compound was prepared in the same manner. Was made.
The refractive index at a wavelength of 633 nm of each thermosetting film was measured with a prism coupler. Moreover, the transparency of each thermosetting film was visually evaluated. The evaluation was performed in two stages: ○: transparent, x: cloudy. Each result is shown in Table 3 together.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、本発明により得られた有機置換ポリゲルマン化合物はアクリル樹脂との高い相溶性を有し、かつ有機置換ポリゲルマン化合物を含有させることで、アクリル樹脂膜の屈折率を上昇させ得ることが確認された。 As shown in Table 3, the organic substituted polygermane compound obtained by the present invention has high compatibility with the acrylic resin and increases the refractive index of the acrylic resin film by containing the organic substituted polygermane compound. It was confirmed that it could be
[実施例10]<有機置換ポリゲルマン化合物含有アクリル樹脂膜の作製>
 実施例1において合成したポリゲルマン化合物PGe-P0.10g、重合性アクリレート化合物であるA-BPEF(商品名)(新中村化学工業(株)製、9,9-ビス(4-(2-アクリロイルオキシエトキシ)フェニル)フルオレン)0.20g、ベンジルメタクリレート(以下、BzMAと略す)(アルドリッチ社製)0.20g、及びトルエン2mLを混合した。得られた混合溶液のトルエンをエバポレーターにより留去した後、過酸化物系熱ラジカル重合開始剤カヤエステルO-50E(商品名)(化薬アグゾ(株)製)0.008gを加え撹拌することで、PGe-P、A-BPEF及びBzMAの樹脂組成物を調製した(PGe-P濃度20質量%)。
 調製した樹脂組成物を、スライドガラス中央に滴下し、500μmのスペーサーを介してスライドガラスを被せた後、120℃のホットプレートで30分間加熱し、樹脂組成物を熱硬化(熱重合)させた。室温(およそ25℃)に冷却後、上下のスライドガラスを剥離することで、膜厚約500μmのポリゲルマン化合物含有アクリル樹脂膜(熱硬化膜)を作製した。
 また、A-BPEF0.25g、BzMA0.25g、及びカヤエステルO-50E0.01gを混合した、ポリゲルマン化合物を含まない樹脂組成物を調製し、同様の操作によりポリゲルマン化合物を含まないアクリル樹脂膜(熱硬化膜)を作製した。
 それぞれの熱硬化膜の透過率を紫外可視近赤外分光光度計により測定した。得られたスペクトルを図14に示す。その結果、ポリゲルマン化合物含有アクリル樹脂膜が近赤外領域において高い透明性を示すことが確認された。
[Example 10] <Production of organic substituted polygermane compound-containing acrylic resin film>
Polygerman compound PGe-P 0.10 g synthesized in Example 1, A-BPEF (trade name) which is a polymerizable acrylate compound (manufactured by Shin-Nakamura Chemical Co., Ltd., 9,9-bis (4- (2-acryloyl) Oxyethoxy) phenyl) fluorene) 0.20 g, benzyl methacrylate (hereinafter abbreviated as BzMA) (manufactured by Aldrich) 0.20 g, and toluene 2 mL were mixed. Toluene in the obtained mixed solution is distilled off by an evaporator, and then 0.008 g of a peroxide-based thermal radical polymerization initiator Kayaester O-50E (trade name) (manufactured by Kayaku Aguso Co., Ltd.) is added and stirred. Thus, a resin composition of PGe-P, A-BPEF and BzMA was prepared (PGe-P concentration 20 mass%).
The prepared resin composition was dropped on the center of the slide glass, covered with a slide glass through a 500 μm spacer, and then heated on a 120 ° C. hot plate for 30 minutes to thermally cure (thermopolymerize) the resin composition. . After cooling to room temperature (approximately 25 ° C.), the upper and lower slide glasses were peeled off to produce a polygermane compound-containing acrylic resin film (thermosetting film) having a film thickness of about 500 μm.
Also, a resin composition containing no polygerman compound prepared by mixing 0.25 g of A-BPEF, 0.25 g of BzMA, and 0.01 g of Kaya ester O-50E was prepared, and an acrylic resin film containing no polygerman compound was prepared in the same manner. (Thermosetting film) was produced.
The transmittance of each thermosetting film was measured with an ultraviolet-visible near-infrared spectrophotometer. The obtained spectrum is shown in FIG. As a result, it was confirmed that the polygermane compound-containing acrylic resin film exhibits high transparency in the near infrared region.
 本発明の製造方法によって得られる有機置換ポリゲルマン化合物は高屈折率材料として、光学レンズ、光導波路、反射防止膜などへの利用が期待される。従って、本発明の製造方法は工業的に非常に有利なものである。 The organic substituted polygermane compound obtained by the production method of the present invention is expected to be used as a high refractive index material for optical lenses, optical waveguides, antireflection films and the like. Therefore, the production method of the present invention is very advantageous industrially.

Claims (13)

  1.  下記式[1]で表される有機ハロゲン化物と、ゲルマニウム四ハロゲン化物と、アルカリ金属又はアルカリ土類金属とを共存下反応させることを特徴とする、有機基Rで置換されたポリゲルマン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Rは置換されていてもよい炭素原子数1乃至20の脂肪族炭化水素基、置換されていてもよい炭素原子数1乃至20の脂環式炭化水素基、又は置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基を表し、Xはハロゲン原子を表す。)
    An organic halide represented by the following formula [1], a germanium tetrahalide, and an alkali metal or alkaline earth metal are reacted in the coexistence of a polygermane compound substituted with an organic group R, Production method.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a substituted group. Represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms, and X represents a halogen atom.)
  2.  前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物と前記式[1]で表される有機ハロゲン化物とを同時に加えることを特徴とする、請求項1に記載のポリゲルマン化合物の製造方法。 2. The production of the polygermane compound according to claim 1, wherein the germanium tetrahalide and the organic halide represented by the formula [1] are simultaneously added to the alkali metal or the alkaline earth metal. Method.
  3.  前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物及び前記式[1]で表される有機ハロゲン化物の混合物を加えることを特徴とする、請求項2に記載のポリゲルマン化合物の製造方法。 3. The production of the polygermane compound according to claim 2, wherein a mixture of the germanium tetrahalide and the organic halide represented by the formula [1] is added to the alkali metal or the alkaline earth metal. Method.
  4.  前記アルカリ金属又は前記アルカリ土類金属に、前記ゲルマニウム四ハロゲン化物と前記ゲルマニウム四ハロゲン化物に対する化学量論量の一部の量の前記式[1]で表される有機ハロゲン化物とを同時に加え、その後化学量論量となる残りの量の前記式[1]で表される有機ハロゲン化物を更に加えることを特徴とする、請求項1に記載のポリゲルマン化合物の製造方法。 To the alkali metal or the alkaline earth metal, the germanium tetrahalide and the organic halide represented by the formula [1] in a stoichiometric amount with respect to the germanium tetrahalide are simultaneously added, 2. The method for producing a polygermane compound according to claim 1, further comprising adding a remaining amount of the organic halide represented by the formula [1] to be a stoichiometric amount.
  5.  前記アルカリ金属又は前記アルカリ土類金属がマグネシウムである、請求項1乃至請求項4の何れか一項に記載のポリゲルマン化合物の製造方法。 The method for producing a polygermane compound according to any one of claims 1 to 4, wherein the alkali metal or the alkaline earth metal is magnesium.
  6.  前記Xが塩素原子、臭素原子又はヨウ素原子を表す、請求項1乃至請求項5の何れか一項に記載のポリゲルマン化合物の製造方法。 The method for producing a polygermane compound according to any one of claims 1 to 5, wherein X represents a chlorine atom, a bromine atom or an iodine atom.
  7.  前記Rが置換されていてもよい炭素原子数4乃至20の芳香族炭化水素基を表す、請求項1乃至請求項6の何れか一項に記載のポリゲルマン化合物の製造方法。 The method for producing a polygermane compound according to any one of claims 1 to 6, wherein the R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms.
  8.  請求項1乃至請求項7に記載の方法に従い製造される、有機基R(Rは請求項1に記載の定義と同義である。)で置換されたポリゲルマン化合物。 A polygermane compound substituted by an organic group R (R is as defined in claim 1) produced according to the method of claim 1.
  9.  ゲル浸透クロマトグラフィー(GPC)のポリスチレン換算による重量平均分子量が500乃至100,000である、請求項8に記載のポリゲルマン化合物。 The polygermane compound according to claim 8, which has a weight average molecular weight in terms of polystyrene of gel permeation chromatography (GPC) of 500 to 100,000.
  10.  請求項8又は請求項9に記載のポリゲルマン化合物を含むワニス。 A varnish containing the polygermane compound according to claim 8 or 9.
  11.  請求項8又は請求項9に記載のポリゲルマン化合物からなる薄膜。 A thin film comprising the polygermane compound according to claim 8 or 9.
  12.  請求項8又は請求項9に記載のポリゲルマン化合物、並びに熱可塑性樹脂及び/又は硬化性樹脂を含む、樹脂組成物。 A resin composition comprising the polygermane compound according to claim 8 or 9, and a thermoplastic resin and / or a curable resin.
  13.  請求項12に記載の樹脂組成物から作られる、樹脂成形体。 A resin molded body made from the resin composition according to claim 12.
PCT/JP2011/053272 2010-02-16 2011-02-16 Production method for organopolygermane compound WO2011102380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500621A JP5762392B2 (en) 2010-02-16 2011-02-16 Method for producing organic substituted polygermane compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-031876 2010-02-16
JP2010031876 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011102380A1 true WO2011102380A1 (en) 2011-08-25

Family

ID=44482965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053272 WO2011102380A1 (en) 2010-02-16 2011-02-16 Production method for organopolygermane compound

Country Status (3)

Country Link
JP (1) JP5762392B2 (en)
TW (1) TW201211115A (en)
WO (1) WO2011102380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060257A1 (en) * 2018-09-20 2020-03-26 주식회사 엘지화학 High-refractive-index composition, high-refractive-index film, and method for manufacturing high-refractive-index film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543067B1 (en) * 2018-09-20 2023-06-14 주식회사 엘지화학 High refractive composition, high refractive film and method for manufacturing high refractive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254593A (en) * 2006-03-23 2007-10-04 Jsr Corp Germanium polymer, process for producing the same and method for forming germanium film
JP2009145872A (en) * 2007-11-22 2009-07-02 Tohoku Univ Germanium containing photosensitive resin composition and refractive index control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254593A (en) * 2006-03-23 2007-10-04 Jsr Corp Germanium polymer, process for producing the same and method for forming germanium film
JP2009145872A (en) * 2007-11-22 2009-07-02 Tohoku Univ Germanium containing photosensitive resin composition and refractive index control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.WATANABE ET AL.: "Field-effect transistor based on organosoluble germanium nanoclusters", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 19, no. 4, 2005, pages 530 - 537 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060257A1 (en) * 2018-09-20 2020-03-26 주식회사 엘지화학 High-refractive-index composition, high-refractive-index film, and method for manufacturing high-refractive-index film
JP2021515822A (en) * 2018-09-20 2021-06-24 エルジー・ケム・リミテッド Method for producing high-refractive composition, high-refractive film and high-refractive film
JP7110538B2 (en) 2018-09-20 2022-08-02 エルジー・ケム・リミテッド High refractive composition, high refractive film, and method for producing high refractive film
US11866584B2 (en) 2018-09-20 2024-01-09 Lg Chem, Ltd. High-refractive-index composition, high-refractive-index film, and method for manufacturing high-refractive-index film

Also Published As

Publication number Publication date
JPWO2011102380A1 (en) 2013-06-17
TW201211115A (en) 2012-03-16
JP5762392B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
CN102245662B (en) Curable composition comprising inorganic oxide microparticles that are surface-modified with maleimide groups
JP6368240B2 (en) Metal oxide dispersion, polymerizable composition containing metal oxide dispersion, and polymer thereof
CN102770465A (en) Macro-photoinitiators and curable compositions thereof
KR101555410B1 (en) Photosensitive alkali-soluble resin, method of preparing the same, and color photosensitive resist containing the same
CN101466741B (en) Polymerization accelerator, curable composition, cured product and method for producing thiol compound
JP5654050B2 (en) NOVEL FLUORINE COMPOUND, COMPOSITION CONTAINING THE SAME, MOLDED BODY USING THE SAME, AND METHOD FOR PRODUCING MOLDED BODY
JP5762392B2 (en) Method for producing organic substituted polygermane compound
JP5792070B2 (en) Oxetane ring-containing (meth) acrylic acid ester compounds
CN107849425A (en) No-solvent type Photocurable adhesive agent composition
JP5578512B2 (en) Novel (meth) acrylate compound and method for producing the same
JP5872484B2 (en) Fluorine-containing hyperbranched polymer and method for producing the same
Palanisamy et al. Tetrafunctional acrylates based on β-hydroxy alkyl amides as crosslinkers for UV curable coatings
TWI470004B (en) Curable resin composition and cured article
US10400070B2 (en) Self-healing polysilsesquioxanes and hybrid film using the same
JP5762391B2 (en) High heat resistance sulfur-containing organic substituted polygermane compound
JP6069645B2 (en) Comb copolymer of methacrylic acid ester having thiocarbonate and sulfide skeleton, process for producing the same, and UV cured product thereof
JP2012158720A (en) (meth)acrylate copolymer having perfluoroadamantane skeleton, and resin composition including the (meth)acrylate copolymer having perfluoroadamantane skeleton
JP2007231227A (en) Vinyl ether copolymer
JP4905991B2 (en) High refractive index material with high Abbe number
CN113396169A (en) Photocurable silicone resin composition, silicone resin molded article obtained by curing the same, and method for producing the molded article
JP5759302B2 (en) Polymer comprising alicyclic structure and triazine structure, and transparent material comprising said polymer
JPH07145138A (en) Acrylic acid derivative
JP5429930B2 (en) High refractive index material with high Abbe number and excellent heat resistance
JP6924373B2 (en) Poly (oxyalkylene oxynaphthylene) compounds, their production methods and their uses.
KR101701175B1 (en) UV crosslinkable high refractive index polymer and the method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500621

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744666

Country of ref document: EP

Kind code of ref document: A1