JP4905991B2 - High refractive index material with high Abbe number - Google Patents

High refractive index material with high Abbe number Download PDF

Info

Publication number
JP4905991B2
JP4905991B2 JP2008054389A JP2008054389A JP4905991B2 JP 4905991 B2 JP4905991 B2 JP 4905991B2 JP 2008054389 A JP2008054389 A JP 2008054389A JP 2008054389 A JP2008054389 A JP 2008054389A JP 4905991 B2 JP4905991 B2 JP 4905991B2
Authority
JP
Japan
Prior art keywords
polymer
refractive index
abbe number
cis
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008054389A
Other languages
Japanese (ja)
Other versions
JP2009209277A (en
Inventor
理恵 奥津
充 上田
慎治 安藤
周一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Tokyo Institute of Technology NUC
Original Assignee
JSR Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Tokyo Institute of Technology NUC filed Critical JSR Corp
Priority to JP2008054389A priority Critical patent/JP4905991B2/en
Publication of JP2009209277A publication Critical patent/JP2009209277A/en
Application granted granted Critical
Publication of JP4905991B2 publication Critical patent/JP4905991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明は、高屈折率と高アッベ数を同時に有する重合体に関する。   The present invention relates to a polymer having a high refractive index and a high Abbe number simultaneously.

近年、レンズ材料として無機ガラスに代わり、軽量で耐衝撃性が高く大量生産が可能なプラスチックレンズが多く用いられるようになっている。眼鏡レンズの分野においてはプラスチックレンズの割合が9割にも達している。このような光学レンズの分野において、レンズのさらなる軽薄化を目的とし、高屈折率化が進められている。一方、重要な光学特性の一つとしてアッベ数がある。これは光の波長による屈折率差の度合いを表すものであり、アッベ数が高いほど差が小さく良いレンズであると言える。しかしながら、有機材料で屈折率とアッベ数は二律背反の関係にあり、これらを同時に向上させることは困難であった。   In recent years, plastic lenses that are light in weight, have high impact resistance, and can be mass-produced are increasingly used instead of inorganic glass. In the field of spectacle lenses, the proportion of plastic lenses has reached 90%. In the field of such optical lenses, a higher refractive index is being promoted for the purpose of further reducing the thickness of the lens. On the other hand, an Abbe number is one of important optical characteristics. This represents the degree of refractive index difference depending on the wavelength of light, and the higher the Abbe number, the smaller the difference and the better the lens. However, the refractive index and Abbe number of organic materials are in a trade-off relationship, and it has been difficult to improve these simultaneously.

また、プロジェクションテレビ等に使用されるフレネルレンズ、レンチキュラーレンズ等の光学レンズは、プレス法、キャスト法等の方法により製造されてきた。しかし、これらの方法では、製造時の加熱及び冷却に長時間を必要とするため、生産性が低いという問題があった。   In addition, optical lenses such as Fresnel lenses and lenticular lenses used in projection televisions have been manufactured by methods such as pressing and casting. However, these methods have a problem of low productivity because they require a long time for heating and cooling during production.

このような問題点を解決するために、近年、紫外線硬化性樹脂組成物を用いてレンズを製作することが検討されている。具体的には、レンズ形状の付いた金型と透明樹脂基板との間に紫外線硬化性樹脂組成物を流し込んだ後、透明樹脂基板の側から紫外線を照射し、該組成物を硬化させることによって、短時間でレンズを製造することができる。
近年のプロジェクションテレビやビデオプロジェクターの薄型化及び大型化に伴い、光学レンズを形成するための紫外線硬化性樹脂組成物に対して、高い屈折率を有することや、いわゆる青色抜け(画面が青みを帯びる現象)を防止することや、優れた力学特性を有することや、硬化前に適当な粘度(薄型化及び大型化に適する小さな粘度)を有すること等が要求されている。
In order to solve such problems, in recent years, it has been studied to manufacture a lens using an ultraviolet curable resin composition. Specifically, by pouring an ultraviolet curable resin composition between a lens-shaped mold and a transparent resin substrate, by irradiating ultraviolet rays from the transparent resin substrate side and curing the composition A lens can be manufactured in a short time.
With the recent thinning and enlargement of projection televisions and video projectors, the ultraviolet curable resin composition for forming an optical lens has a high refractive index and a so-called blue loss (the screen is bluish). Phenomenon), having excellent mechanical properties, and having an appropriate viscosity (small viscosity suitable for thinning and enlargement) before curing.

ここで、光学レンズを形成するための樹脂組成物として、例えば、特定の構造を有するジオール(a)と芳香族有機ポリイソシアネート(b)と水酸基含有(メタ)アクリレート(c)との反応物であるウレタン(メタ)アクリレート(A)、該(A)成分以外のエチレン性不飽和基含有化合物(B)、及び光重合開始剤(C)を含むことを特徴とする樹脂組成物が提案されている(特許文献1)。   Here, as a resin composition for forming an optical lens, for example, a reaction product of a diol (a) having a specific structure, an aromatic organic polyisocyanate (b), and a hydroxyl group-containing (meth) acrylate (c). There has been proposed a resin composition comprising a urethane (meth) acrylate (A), an ethylenically unsaturated group-containing compound (B) other than the component (A), and a photopolymerization initiator (C). (Patent Document 1).

また、A成分:特定の一般式で表わされるビス(アクリロキシメチル又はメタクリロキシメチル)トリシクロデカン40〜80重量%、B成分:ペンタエリスリトールテトラキス(β−チオプロピオネート)又はペンタエリスリトールテトラキス(チオグリコレート)10〜50重量%、C成分:ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート又はジビニルベンゼン10〜40重量%、からなる混合物を重合硬化して得た、屈折率(N20℃)が1.53以上、アッベ数(ν20℃)が40以上である高アッベ数レンズ(特に、眼鏡用レンズ)が提案されている(特許文献2)。 A component: bis (acryloxymethyl or methacryloxymethyl) tricyclodecane represented by a specific general formula 40 to 80% by weight, B component: pentaerythritol tetrakis (β-thiopropionate) or pentaerythritol tetrakis ( thioglycolate) 10 to 50 wt%, C component: pentaerythritol triacrylate, trimethylolpropane triacrylate or divinyl benzene 10 to 40 wt%, obtained by polymerizing and curing a mixture of, the refractive index (N D 20 ° C. ) Is 1.53 or more and an Abbe number (ν D 20 ° C.) is 40 or more, a high Abbe number lens (particularly a spectacle lens) has been proposed (Patent Document 2).

しかし、特許文献1、2等の技術を用いても、プロジェクションテレビ等の光学レンズに対する近年の要求、即ち、光学レンズの薄型化による高屈折率の要求と、高アッベ数の要求を共に十分満足させることは困難である。   However, even with the technologies disclosed in Patent Documents 1 and 2 and the like, both the recent demand for optical lenses such as projection televisions, that is, the demand for a high refractive index due to the thinning of the optical lens and the demand for a high Abbe number are sufficiently satisfied. It is difficult to make it.

特に、プロジェクションテレビ等の光学レンズを形成するための有機系材料は、一般的に、長波長光よりも短波長光に対する屈折率が高いため、アッベ数が小さいと、長波長光(赤色)に比べ、短波長光(青色光)をより大きく屈折させ、テレビ画面で青色抜け(画面が青みを帯びる現象)が起きるという問題がある。近年主流になりつつある薄型のリアプロジェクションテレビ等においては、光源からフレネルレンズへの光の入射角が鋭角となり、短波長光がさらに顕著に屈折されるため、この青色抜けが大きな問題となっている。
尚、この青色抜けの問題を解消するためにアッベ数を大きくすると、屈折率が急に小さくなり、プロジェクションテレビ等における薄型化を実現することができなくなる。
In particular, organic materials for forming optical lenses such as projection televisions generally have a higher refractive index for short-wavelength light than long-wavelength light. Therefore, if the Abbe number is small, long-wavelength light (red) is produced. In comparison, there is a problem in that short wavelength light (blue light) is refracted more greatly, and blue loss (a phenomenon in which the screen becomes bluish) occurs on a television screen. In thin rear projection televisions and the like that are becoming mainstream in recent years, the incident angle of light from the light source to the Fresnel lens becomes an acute angle, and short wavelength light is refracted more remarkably. Yes.
Note that if the Abbe number is increased in order to eliminate the problem of blue loss, the refractive index suddenly decreases, making it impossible to achieve a reduction in thickness in a projection television or the like.

特開平5−255464号公報JP-A-5-255464 特開平2−141702号公報JP-A-2-141702

本発明は上述の問題に鑑みなされたものであり、高い屈折率と高いアッベ数とを同時に有する重合体を提供することを目的とする。   This invention is made | formed in view of the above-mentioned problem, and it aims at providing the polymer which has a high refractive index and a high Abbe number simultaneously.

上記目的を達成するため、本発明者らは鋭意研究を行い、1,4−ジチアン−2,5−ジチオールとジビニルスルホンとをマイケル付加重合させて得られる新規重合体が、高屈折率かつ高アッベ数を有することを見出し、本発明を完成させた。   In order to achieve the above object, the present inventors have intensively studied and a novel polymer obtained by Michael addition polymerization of 1,4-dithian-2,5-dithiol and divinylsulfone has a high refractive index and a high refractive index. The inventors have found that it has an Abbe number and have completed the present invention.

即ち、本発明は下記の重合体及び重合体の製造方法を提供する。
1.下記式(1)

Figure 0004905991
で示される構造単位を有する重合体。
2. 2,5−ジメルカプト−1,4−ジチアンとジビニルスルホンとを、重合させる1に記載の重合体の製造方法。
3. 前記2,5−ジメルカプト−1,4−ジチアンが、40モル%以上がシス異性体からなる2に記載の製造方法。 That is, this invention provides the following polymer and the manufacturing method of a polymer.
1. Following formula (1)
Figure 0004905991
A polymer having a structural unit represented by
2. 2. The method for producing a polymer according to 1, wherein 2,5-dimercapto-1,4-dithiane and divinyl sulfone are polymerized.
3. 3. The production method according to 2, wherein the 2,5-dimercapto-1,4-dithiane comprises 40 mol% or more of a cis isomer.

本発明によれば、高屈折率と高アッベ数とを同時に有する重合体を提供することができる。
本発明によれば、透明性に優れ、高屈折率と高アッベ数とを同時に有する硬化膜を提供することができる。
According to the present invention, a polymer having a high refractive index and a high Abbe number at the same time can be provided.
According to the present invention, it is possible to provide a cured film having excellent transparency and having a high refractive index and a high Abbe number at the same time.

以下、本発明の重合体について詳細に説明する。
本発明の重合体は下記式(1)で示される構造単位を有することを特徴とする。

Figure 0004905991
Hereinafter, the polymer of the present invention will be described in detail.
The polymer of the present invention is characterized by having a structural unit represented by the following formula (1).
Figure 0004905991

また、本発明の重合体の製造方法(以下、本発明の製造方法という)は、2,5−ジメルカプト−1,4−ジチアン(以下、DT−DTということがある)とジビニルスルホン(以下、DVSということがある)とを、マイケル付加重合させることを特徴とする。
下記に本発明の製造方法を反応式で示す。
The polymer production method of the present invention (hereinafter referred to as the production method of the present invention) includes 2,5-dimercapto-1,4-dithiane (hereinafter also referred to as DT-DT) and divinyl sulfone (hereinafter referred to as “the production method of the present invention”). DVS), and Michael addition polymerization.
The production method of the present invention is shown in the following reaction formula.

Figure 0004905991
Figure 0004905991

本発明の重合体の一方の原料モノマーであるDT−DTは公知化合物であり、その製造方法については、後述する合成例において具体的に説明する。
本発明の製造方法で用いるDT−DTには、シス異性体及びトランス異性体が存在し、シス−リッチなDT−DTを用いると、各種溶剤(熱ジメチルホフムアミド(DMF)、N−メチル−ピロリドン(NMP)、γ−ブチロラクトン等)に対する溶解性が高く、一方、トランス異性体のみ若しくはトランス−リッチなDT−DTを用いた場合には、溶剤に殆ど溶解しない(実施例1及び2を参照)。このように、DT−DTのシス−トランス異性体は得られる重合体の溶剤溶解性に影響を与える。本発明の重合体から薄膜を形成する場合には、溶剤に溶解可能な塗布性に優れるシス−リッチなDT−DTを用いることが好ましい。
DT-DT, which is one raw material monomer of the polymer of the present invention, is a known compound, and its production method will be specifically described in the synthesis examples described later.
DT-DT used in the production method of the present invention has cis isomer and trans isomer. When cis-rich DT-DT is used, various solvents (thermal dimethylformamide (DMF), N-methyl) are used. -Pyrrolidone (NMP), γ-butyrolactone, etc.) are highly soluble. On the other hand, when only the trans isomer or trans-rich DT-DT is used, it hardly dissolves in the solvent (Examples 1 and 2). reference). Thus, the cis-trans isomer of DT-DT affects the solvent solubility of the resulting polymer. When forming a thin film from the polymer of this invention, it is preferable to use cis-rich DT-DT excellent in the applicability | paintability which can be melt | dissolved in a solvent.

DT−DTのシス及びトランス異性体の割合(モル比)は、シス異性体の割合が40モル%以上が好ましく、50モル%以上であることがより好ましい。シス異性体の割合が上記範囲より少ないと、生成物が有機溶剤に不要化するおそれがある。   As for the ratio (molar ratio) of the cis-trans isomer of DT-DT, the ratio of the cis isomer is preferably 40 mol% or more, and more preferably 50 mol% or more. When the ratio of the cis isomer is less than the above range, the product may be unnecessary in the organic solvent.

シス−リッチなDT−DTを製造するには、シス及びトランスの混合物を過剰のクロロホルムに溶解させ、その後クロロホルムを減圧留去又は−40℃まで冷却し、析出した固体(トランス体)を濾別すればよい。   In order to produce cis-rich DT-DT, a mixture of cis and trans is dissolved in excess chloroform, and then chloroform is distilled off under reduced pressure or cooled to −40 ° C., and the precipitated solid (trans form) is filtered off. do it.

他方の原料モノマーであるDVSは、例えば試薬として市販されているものを使用することができる。   As the other raw material monomer DVS, for example, a commercially available reagent can be used.

DT−DTとDVSの重合反応の反応条件は、特に限定されないが、下記条件を用いることができる。
ジビニルスルホン(DVS)(1mmol)とDT−DT(0.9〜1.1mmol)を入れ、窒素置換する。脱水クロロホルムやTHF(2〜5mL)を加えて、モノマーを完全に溶解させた後、トリエチルアミン等の有機塩基を触媒量を加え、常温〜80℃で1〜12時間攪拌する。
The reaction conditions for the polymerization reaction of DT-DT and DVS are not particularly limited, but the following conditions can be used.
Divinyl sulfone (DVS) (1 mmol) and DT-DT (0.9 to 1.1 mmol) are added, and nitrogen substitution is performed. Dehydrated chloroform and THF (2 to 5 mL) are added to completely dissolve the monomer, and then a catalytic amount of an organic base such as triethylamine is added, followed by stirring at room temperature to 80 ° C. for 1 to 12 hours.

本発明の重合体の数平均分子量(Mn)は、1,000〜100,000であることが好ましく、5,000〜50,000であることがより好ましい。数平均分子量が1,000未満であると、硬化膜が脆いおそれがあり、100,000を超えると、有機溶剤に不溶化するおそれがある。
数平均分子量は、ゲルパーミエーションクロマトグラフィーで測定した、ポリスチレン換算の数平均分子量を表す。
The number average molecular weight (Mn) of the polymer of the present invention is preferably 1,000 to 100,000, and more preferably 5,000 to 50,000. If the number average molecular weight is less than 1,000, the cured film may be brittle, and if it exceeds 100,000, it may be insolubilized in an organic solvent.
The number average molecular weight represents the number average molecular weight in terms of polystyrene measured by gel permeation chromatography.

本発明の重合体の分子量分布(Mw/Mn)は、1〜2の範囲内であることが好ましく、1〜1.5の範囲内であることがより好ましい。
ここで、重量平均分子量(Mw)も、ゲルパーミエーションクロマトグラフィーによって測定する。
The molecular weight distribution (Mw / Mn) of the polymer of the present invention is preferably in the range of 1 to 2, more preferably in the range of 1 to 1.5.
Here, the weight average molecular weight (Mw) is also measured by gel permeation chromatography.

本発明の重合体を、例えば、フィルム状に成形する方法は特に制限されないが、目的とするフィルムの厚さ等に応じて適宜選択すればよい。例えば、重合体の溶剤溶液を石英基板等の基材上に塗布(キャスト)し、通常40〜120℃、好ましくは80〜100℃の温度範囲のホットプレート上で、通常1〜5時間、好ましくは1〜2時間乾燥させた後、真空炉(Vacuum oven)中、減圧下(圧力0.1〜0.5Torr)、通常40〜200℃、好ましくは80〜100℃の温度範囲で、通常1〜12時間、好ましくは3〜6時間乾燥させればよい。   The method for forming the polymer of the present invention into, for example, a film is not particularly limited, and may be appropriately selected depending on the thickness of the target film. For example, a polymer solvent solution is coated (cast) on a base material such as a quartz substrate, and is usually 40 to 120 ° C., preferably 80 to 100 ° C. on a hot plate, usually 1 to 5 hours, preferably Is dried for 1 to 2 hours and then in a vacuum oven under reduced pressure (pressure 0.1 to 0.5 Torr), usually 40 to 200 ° C., preferably 80 to 100 ° C., usually 1 The drying may be performed for -12 hours, preferably 3-6 hours.

本発明の重合体は、硫黄含量が高く、優れた透明性、高屈折率と高アッベ数とを同時に有するものであるが、これらの物性については、実施例において具体的に説明する。   The polymer of the present invention has a high sulfur content and has excellent transparency, high refractive index and high Abbe number at the same time. These physical properties will be specifically described in Examples.

以下、本発明を合成例及び実施例によってさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to synthesis examples and examples.

合成例1
2,5−ジアセトキシ−1,4−ジチアンの合成

Figure 0004905991
滴下ロートを装着した二口ナスフラスコに2,5−ジヒドロキシ−1,4−ジチアン(10.4g,68.4mmol)とスターラーチップを入れ、窒素置換し、脱水ピリジン(22mL)を加えて、原料を溶解させる。氷冷下、1時間かけて、無水酢酸(15.4g,149.4mmol)を滴下し、氷浴中でさらに1時間攪拌する。白色固体が析出し、スターラーチップが回転できなくなったら、水に再沈した後、濾過する。得られた白色固体をメタノールで再結晶し、白色結晶を得た。 Synthesis example 1
Synthesis of 2,5-diacetoxy-1,4-dithiane
Figure 0004905991
Put 2,5-dihydroxy-1,4-dithiane (10.4 g, 68.4 mmol) and a stirrer chip into a two-necked eggplant flask equipped with a dropping funnel, purge with nitrogen, and add dehydrated pyridine (22 mL). Dissolve. Acetic anhydride (15.4 g, 149.4 mmol) is added dropwise over 1 hour under ice cooling, and the mixture is further stirred for 1 hour in an ice bath. When a white solid precipitates and the stirrer chip cannot be rotated, it is re-precipitated in water and then filtered. The obtained white solid was recrystallized from methanol to obtain white crystals.

収量:9.9g
収率:61%
融点:161℃
IR(KBr,ncm−1):2966,2935(アルキルC−H),1739(エステルC=O),1431(アルキルC−H),1369(アセチルC−H),725(アルキルC−H)
H−NMR(CDCl,δ,ppm):2.18(t,2H,−CH),2.81(dd,2H,CHO−CH−S),3.69(dd,2H,CHO−CH−S),5.83(t,2H,O−CH(CH)-S)
13C−NMR:21.1(−CH),29.0(S−CH−CHS),66.1(S−CH−O),169.7(C=O)
元素分析:
計算値 C12: C;40.66,H;5.12
実測値: C;40.75,H;5.04
Yield: 9.9g
Yield: 61%
Melting point: 161 ° C
IR (KBr, ncm −1 ): 2966, 2935 (alkyl C—H), 1739 (ester C═O), 1431 (alkyl C—H), 1369 (acetyl C—H), 725 (alkyl C—H)
1 H-NMR (CDCl 3 , δ, ppm): 2.18 (t, 2H, —CH 3 ), 2.81 (dd, 2H, CHO—CH 2 —S), 3.69 (dd, 2H, CHO-CH 2 -S), 5.83 (t, 2H, O-CH (CH 2) -S)
13 C-NMR: 21.1 (—CH 3 ), 29.0 (S—CH 2 —CHS), 66.1 (S—CH—O), 169.7 (C═O)
Elemental analysis:
Calculated C 8 H 12 O 4 S 2 : C; 40.66, H; 5.12
Actual value: C; 40.75, H; 5.04

合成例2
2,5−ジチオアセトキシ−1,4−ジチアンの合成

Figure 0004905991
二口ナスフラスコに合成例1で得た2,5−ジアセトキシ−1,4−ジチアン(8.32g,35.2mmol)とスターラーチップを入れ、窒素置換する。脱水塩化メチレン(88mL)とチオ酢酸(6.43g,84.5mmol)を加え、氷冷下攪拌する。フッ化ホウ素エーテラート(0.19mL)を滴下し、0℃で2時間攪拌した後、室温で5時間攪拌する。反応溶液を水で2回洗浄した後に20wt%の炭酸カリウムで洗浄し、さらに水で洗浄し、硫酸マグネシウムを用いて乾燥させる。減圧乾燥後、得られた淡黄色固体をメタノールで再結晶し、白色結晶を得た。 Synthesis example 2
Synthesis of 2,5-dithioacetoxy-1,4-dithiane
Figure 0004905991
Into a two-necked eggplant flask, the 2,5-diacetoxy-1,4-dithiane (8.32 g, 35.2 mmol) obtained in Synthesis Example 1 and a stirrer chip are placed and purged with nitrogen. Add dehydrated methylene chloride (88 mL) and thioacetic acid (6.43 g, 84.5 mmol), and stir under ice cooling. Boron fluoride etherate (0.19 mL) is added dropwise, and the mixture is stirred at 0 ° C. for 2 hours, and then stirred at room temperature for 5 hours. The reaction solution is washed twice with water, then with 20 wt% potassium carbonate, further washed with water, and dried using magnesium sulfate. After drying under reduced pressure, the obtained pale yellow solid was recrystallized from methanol to obtain white crystals.

収量:6.29g
収率:67%
融点:123℃
IR(KBr,ncm−1):2958,2904(アルキルC−H),1693(チオエステルC=O),1353(アセチルC−H)
H−NMR(CDCl,δ,ppm):2.38(s,6H,−CH),2.94(dd,1H,S−CH−CHS),3.12(dd,1H,S−CH-CHS),3.34(dd,1H,S−CH−CHS),3.63(dd,1H,S−CH−CHS),4.87(m,2H,S−CH−S)
13C−NMR:30.4(−CH,シス),30.5(−CH,トランス),33.6(CH−CH−S,トランス),35.6(CH−CH−S,シス),41.9(S−CH−S,トランス),42.6(S−CH−S,シス),192.8(C=O,シス),193.4(C=O,トランス)
元素分析:
計算値:C12: C;35.8,H;4.51
実測値:C;35.79,H;4.34
Yield: 6.29g
Yield: 67%
Melting point: 123 ° C
IR (KBr, ncm −1 ): 2958, 2904 (alkyl C—H), 1693 (thioester C═O), 1353 (acetyl C—H)
1 H-NMR (CDCl 3 , δ, ppm): 2.38 (s, 6H, —CH 3 ), 2.94 (dd, 1H, S—CH 2 —CHS), 3.12 (dd, 1H, S-CH 2 -CHS), 3.34 (dd, 1H, S-CH 2 -CHS), 3.63 (dd, 1H, S-CH 2 -CHS), 4.87 (m, 2H, S- CH 2 -S)
13 C-NMR: 30.4 (—CH 3 , cis), 30.5 (—CH 3 , trans), 33.6 (CH—CH 2 —S, trans), 35.6 (CH—CH 2 —) S, cis), 41.9 (S-CH-S, trans), 42.6 (S-CH-S, cis), 192.8 (C = O, cis), 193.4 (C = O, Trance)
Elemental analysis:
Calculated value: C 8 H 12 O 2 S 4 : C; 35.8, H; 4.51
Found: C; 35.79, H; 4.34

合成例3
2,5−ジメルカプト−1,4−ジチアン(DT−DT)の合成

Figure 0004905991
二口ナスフラスコに合成例2で得た2,5−ジチオアセトキシ−1,4−ジチアン(13.5g,50.3mmol)とスターラーチップを入れ窒素置換する。塩酸/メタノール(3wt%,32.0mL)と脱水クロロホルム(81mL)を入れ、60℃で15時間攪拌する。室温まで冷却した後、減圧下で溶媒が20mL程度になるまで濃縮し、−40℃に冷却すると、トランス体の白色結晶が沈殿するので、これを濾別した(収量:3.0g,収率:32%)。
濾液が中性になるまで水洗し、硫酸マグネシウムを用いて乾燥させ、減圧乾燥すると、黄色オイル状液体が得られる。クーゲル蒸留器を用いて、0.12Torr/180℃で減圧蒸留を行い、得られた黄色結晶をクロロホルムで再結晶して、シス/トランス混合物の白色粉末を得た。 Synthesis example 3
Synthesis of 2,5-dimercapto-1,4-dithiane (DT-DT)
Figure 0004905991
The 2,5-dithioacetoxy-1,4-dithiane (13.5 g, 50.3 mmol) obtained in Synthesis Example 2 and a stirrer chip are placed in a two-necked eggplant flask and purged with nitrogen. Hydrochloric acid / methanol (3 wt%, 32.0 mL) and dehydrated chloroform (81 mL) are added, and the mixture is stirred at 60 ° C. for 15 hours. After cooling to room temperature, the solvent was concentrated to about 20 mL under reduced pressure, and when cooled to −40 ° C., white crystals of the trans isomer precipitated, which was filtered off (yield: 3.0 g, yield). : 32%).
The filtrate is washed with water until neutral, dried with magnesium sulfate, and dried under reduced pressure to give a yellow oily liquid. Using a Kugel distiller, vacuum distillation was performed at 0.12 Torr / 180 ° C., and the resulting yellow crystals were recrystallized from chloroform to obtain a white powder of a cis / trans mixture.

収量:0.75g
収率:8%
融点:52℃
IR(KBr,ncm−1):2934,2897(アルキルC−H),2499(チオールS−H)
H−NMR(CDCl,δ,ppm):2.66(d,2H,−SH(トランス)),2.72(d,2H,−SH(シス)),3.14(dd,2H,S−CH−CH(トランス)),3.14(dd,2H,S−CH−CH(シス)),3.27(dd,2H,S−CH−CH(トランス)),3.41(dd,2H,S−CH−CH(シス)),4.10(td,2H,CH−SH(トランス)),4.20(td,2H,S−CH−SH(シス))
13C−NMR:38.8(S−CH−CH),42.4(S−CH−SH)
元素分析
計算値:C: C;26.06,H;4.37
測定値: C;25.95,H;4.09
Yield: 0.75g
Yield: 8%
Melting point: 52 ° C
IR (KBr, ncm −1 ): 2934, 2897 (alkyl C—H), 2499 (thiol S—H)
1 H-NMR (CDCl 3 , δ, ppm): 2.66 (d, 2H, —SH (trans)), 2.72 (d, 2H, —SH (cis)), 3.14 (dd, 2H) , S-CH 2 -CH (trans)), 3.14 (dd, 2H , S-CH 2 -CH ( cis)), 3.27 (dd, 2H , S-CH 2 -CH ( trans)), 3.41 (dd, 2H, S—CH 2 —CH (cis)), 4.10 (td, 2 H, CH—SH (trans)), 4.20 (td, 2 H, S—CH—SH (cis) ))
13 C-NMR: 38.8 (S—CH 2 —CH), 42.4 (S—CH—SH)
Analysis Calculated: C 4 H 8 S 4: C; 26.06, H; 4.37
Measurement: C; 25.95, H; 4.09

実施例1
式(1)で示される構造単位を有する重合体(DVS/DT−DT)の製造

Figure 0004905991
片方の口にセプタムラバーを装着した二口ナスフラスコに、ジビニルスルホン(DVS)(104.5mg,0.88mmol)とシス−リッチな合成例3で得たDT−DT(シス:トランス=3:1,163.0mg,0.88mmol)を入れ、窒素置換する。脱水クロロホルム(2.9mL)を加えて、モノマーを完全に溶解させた後、トリエチルアミン5滴を加え、常温で3時間攪拌すると、白色沈殿が生じるのでこれを濾過した後、クロロホルムで洗浄する。真空炉(Vacuum oven)中で、60℃、6時間乾燥させ、DVS/DT−DTの重合体を得た(Mn=14400,Mw/Mn=1.5;DMF−GPC)。 Example 1
Production of a polymer (DVS / DT-DT) having a structural unit represented by the formula (1)
Figure 0004905991
In a two-necked eggplant flask equipped with a septum rubber in one neck, divinyl sulfone (DVS) (104.5 mg, 0.88 mmol) and DT-DT obtained in cis-rich synthesis example 3 (cis: trans = 3: 1,163.0 mg, 0.88 mmol) is added and the atmosphere is replaced with nitrogen. Dehydrated chloroform (2.9 mL) is added to completely dissolve the monomer, and then 5 drops of triethylamine are added and stirred at room temperature for 3 hours. A white precipitate is formed, which is filtered and washed with chloroform. The polymer was dried at 60 ° C. for 6 hours in a vacuum oven to obtain a polymer of DVS / DT-DT (Mn = 14400, Mw / Mn = 1.5; DMF-GPC).

得られた重合体は、加熱したジメチルホルムアミド(DMF)、N−メチル−ピロリドン(NMP)及びγ−ブチロラクトンに溶解した。
得られた重合体の硫黄含量は、計算の結果53重量%であった。
得られた重合体のFT−IRチャートを図1に示す。
The obtained polymer was dissolved in heated dimethylformamide (DMF), N-methyl-pyrrolidone (NMP) and γ-butyrolactone.
The sulfur content of the polymer obtained was 53% by weight as a result of calculation.
The FT-IR chart of the obtained polymer is shown in FIG.

実施例2
式(1)で示される構造単位を有する重合体の製造
トランス−リッチなDT−DT(シス:トランス=1:2)を用いた以外は、実施例1と同様にしてDVS/DT−DTを得た。
尚、トランス体のみのDT−DT、若しくはトランス−リッチのDT−DTを用いた場合には、各種溶媒に不溶の白色固体が得られ、DMFに溶解する部分の分子量を測定すると、7000程度であった。
Example 2
Production of polymer having structural unit represented by formula (1) DVS / DT-DT was prepared in the same manner as in Example 1 except that trans-rich DT-DT (cis: trans = 1: 2) was used. Obtained.
In addition, when using DT-DT of a trans form only or trans-rich DT-DT, a white solid insoluble in various solvents is obtained, and when the molecular weight of the portion dissolved in DMF is measured, it is about 7000. there were.

<重合体の特性評価>
上記実施例1で得られた重合体(DVS/DT−DT)の下記特性を下記方法により測定した。得られた結果を表1に示す。
<Characteristic evaluation of polymer>
The following characteristics of the polymer (DVS / DT-DT) obtained in Example 1 were measured by the following method. The obtained results are shown in Table 1.

(硬化膜の調製)
実施例1で製造したDVS/DT−DT(シス−リッチ)の重合体(114mg)を、80℃に加熱したDMF(280μL)に溶解させた後、テフロン(登録商標)テープを貼ったガラス基板上にキャストした。100℃のホットプレート上で5時間乾燥させた後、真空炉(Vacuum oven)中で、減圧下、170℃で3時間乾燥させると、710μm厚の、透明で自立する(フリースタンディングな)フィルムを得た。
(Preparation of cured film)
A glass substrate on which a DVS / DT-DT (cis-rich) polymer (114 mg) produced in Example 1 was dissolved in DMF (280 μL) heated to 80 ° C., and then a Teflon (registered trademark) tape was attached. Cast on top. After drying on a hot plate at 100 ° C. for 5 hours and then drying at 170 ° C. for 3 hours under reduced pressure in a vacuum oven, a transparent, free-standing (free standing) film having a thickness of 710 μm is obtained. Obtained.

(1)屈折率(n 25
JIS K7105に従い、(株)アタゴ製アッベ屈折計を用いて、25℃における波長589nmでの屈折率を測定したところ、1.6859であった。
(1) Refractive index (n D 25 )
In accordance with JIS K7105, the refractive index at a wavelength of 589 nm at 25 ° C. was measured using an Atago Co., Ltd. Abbe refractometer.

(2)アッベ数νの測定
(株)アタゴ製の多波長アッベ屈折計で求めた、F線(486nm)、C線(656nm)の屈折率はそれぞれ1.6961及び1.6820であった。これらと、上記D線(589nm)の屈折率1.6859と合わせてアッベ数を算出したところ、48.6であった。
(2) Measurement of Abbe number ν The refractive indices of the F-line (486 nm) and C-line (656 nm) obtained with a multi-wavelength Abbe refractometer manufactured by Atago Co., Ltd. were 1.6961 and 1.6820, respectively. It was 48.6 when the Abbe number was calculated combining these and the refractive index of the said D line (589 nm) 1.68859.

(3)透過率(%)
日立製作所社製のU−3500型自記分光光度計を使用して、上記で得られた硬化膜の透過率(%)をそれぞれ測定した。得られた重合体フィルムのUV−可視透過率スペクトルを図2に示す。得られた重合体フィルムは硫黄含量が高いため350nm付近では透明性が低かったが、可視領域(>360nm)では透明性に優れていた(透過率>90%)。この高い透明性は可視領域に吸収を有するπ−結合を殆ど有しない分子構造によると考えられる。
(3) Transmittance (%)
Using a U-3500 type self-recording spectrophotometer manufactured by Hitachi, Ltd., the transmittance (%) of the cured film obtained above was measured. The UV-visible transmittance spectrum of the obtained polymer film is shown in FIG. The obtained polymer film had a high sulfur content, so the transparency was low near 350 nm, but it was excellent in the visible region (> 360 nm) (transmittance> 90%). This high transparency is considered to be due to a molecular structure having almost no π-bond having absorption in the visible region.

(4)ガラス転移温度(℃)
DSC分析により、上記で得られた硬化膜のガラス転移温度(Tg)を測定したところ、151℃であった。
(4) Glass transition temperature (° C)
It was 151 degreeC when the glass transition temperature (Tg) of the cured film obtained above was measured by DSC analysis.

(5)5%重量減少温度(5% weightloss temperature(N))(℃)
TGA測定により、上記で得られた硬化膜の熱重量減少率を測定した。5%重量減少率が274.4℃と高い耐熱性を有することがわかる。
(5) 5% weight loss temperature (5% weightloss temperature (N 2 )) (° C.)
The thermogravimetric reduction rate of the cured film obtained above was measured by TGA measurement. It can be seen that the 5% weight reduction rate is as high as 274.4 ° C.

上記の結果から、本発明の重合体は、高い屈折率と高いアッベ数とを両立でき、かつ透明性にも優れていることがわかる。
また、シス−リッチはDT−DTを用いて製造された重合体は、溶剤への溶解性にも優れており、塗工も容易であることがわかる。
From the above results, it can be seen that the polymer of the present invention can achieve both a high refractive index and a high Abbe number and is excellent in transparency.
In addition, it can be seen that the polymer produced using DT-DT is excellent in solubility in a solvent and is easy to apply.

本発明の重合体は、高屈折率と高アッベ数とを同時に有しているため、高屈折率及び高アッベ数のいずれか一方又は両方が求められる分野において有用な材料となる。
本発明の重合体は、さらに透明性に優れているため、光学材料、特にプロジェクションテレビ等に使用されるフレネルレンズ、レンチキュラーレンズ等の光学レンズ材料として好適に用いることができる。
Since the polymer of the present invention has a high refractive index and a high Abbe number at the same time, it is a useful material in a field where one or both of a high refractive index and a high Abbe number are required.
Since the polymer of the present invention is further excellent in transparency, it can be suitably used as an optical material such as an optical material such as a Fresnel lens or a lenticular lens used in a projection television.

実施例1で製造された本発明の重合体のFT−IRチャートである。2 is an FT-IR chart of the polymer of the present invention produced in Example 1. FIG. 実施例1で製造された本発明の重合体溶液及び硬化膜の透過率(%)と波長との関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability (%) of the polymer solution of this invention and the cured film which were manufactured in Example 1, and a wavelength.

Claims (3)

下記式(1)
Figure 0004905991
で示される構造単位を有し、ゲルパーミエーションクロマトグラフィーで測定した、ポリスチレン換算の数平均分子量(Mn)が1,000〜100,000である重合体。
Following formula (1)
Figure 0004905991
Have a structural unit represented in, measured by gel permeation chromatography, the number-average molecular weight in terms of polystyrene (Mn) is a polymer which is 1,000 to 100,000.
2,5−ジメルカプト−1,4−ジチアンとジビニルスルホンとを、重合させる請求項1に記載の重合体の製造方法。   The method for producing a polymer according to claim 1, wherein 2,5-dimercapto-1,4-dithiane and divinylsulfone are polymerized. 前記2,5−ジメルカプト−1,4−ジチアンが、40モル%以上がシス異性体からなる請求項2に記載の製造方法。
The production method according to claim 2, wherein 40 mol% or more of the 2,5-dimercapto-1,4-dithiane comprises a cis isomer.
JP2008054389A 2008-03-05 2008-03-05 High refractive index material with high Abbe number Active JP4905991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054389A JP4905991B2 (en) 2008-03-05 2008-03-05 High refractive index material with high Abbe number

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054389A JP4905991B2 (en) 2008-03-05 2008-03-05 High refractive index material with high Abbe number

Publications (2)

Publication Number Publication Date
JP2009209277A JP2009209277A (en) 2009-09-17
JP4905991B2 true JP4905991B2 (en) 2012-03-28

Family

ID=41182750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054389A Active JP4905991B2 (en) 2008-03-05 2008-03-05 High refractive index material with high Abbe number

Country Status (1)

Country Link
JP (1) JP4905991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084122A (en) * 2008-09-05 2010-04-15 Jsr Corp High refractive index material having high abbe number and excellent heat resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842066B (en) 2011-09-30 2016-08-24 日本化成株式会社 Polymerism inorganic particle dispersion agent, Inorganic whisker particle containing this polymerism inorganic particle dispersion agent and inorganic organic resin composite

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298736A (en) * 2004-04-14 2005-10-27 Idemitsu Kosan Co Ltd Sulfur-containing compound, method for producing the same, sulfur-containing polymer and optical material
JP2005336404A (en) * 2004-05-28 2005-12-08 Sekisui Chem Co Ltd Photocurable resin composition, liquid crystal inlet sealing agent, and liquid crystal display cell
JP2009104087A (en) * 2007-10-25 2009-05-14 Sekisui Chem Co Ltd Liquid crystal inlet sealant and liquid crystal display cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084122A (en) * 2008-09-05 2010-04-15 Jsr Corp High refractive index material having high abbe number and excellent heat resistance

Also Published As

Publication number Publication date
JP2009209277A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
CN102239189B (en) Polymerizable compound, polymerizable composition containing same, and polymer thereof
JP6432156B2 (en) POLYMER COMPOSITION, POLYMER PELLET, MOLDED BODY, AND FILM
US20200369596A1 (en) Polymerizable triptycene derivative compound, and polymer compound including same as constituent component
JP6447228B2 (en) Trifluor orange ester, oligo fluor orange ester composition, resin composition, stretched film, circularly polarizing plate and image display device
JP4126918B2 (en) High refractive index photocurable composition and cured product thereof
JP4174007B2 (en) Optical resin and applications using the same
WO2019216008A1 (en) Optical resin composition and optical lens
JP5578512B2 (en) Novel (meth) acrylate compound and method for producing the same
JP4905991B2 (en) High refractive index material with high Abbe number
JPH1112273A (en) Episulfide compound and its compound
WO2007110387A1 (en) Photo-curable resins and resin compositions with very high refractive indices for application in plasic optics
WO2019176972A1 (en) Cured product, optical member, lens and compound
AU764146B2 (en) Polymerizable sulfur-containing (meth)acrylate, polymerizable composition and optical lens
JP2007308693A (en) High-refractive-index linear polymer and its preparation method
JP5429930B2 (en) High refractive index material with high Abbe number and excellent heat resistance
JP4937515B2 (en) Sulfur atom-containing cyclic compound, method for producing the same, and crosslinkable composition
TW202035633A (en) Curable resin composition and cured product thereof
JP5213100B2 (en) Novel sulfur-containing ethylenically unsaturated group-containing compound and polymer thereof
JP5370892B2 (en) (Meth) acrylate compounds containing sulfur
JP2006169190A (en) Polymerizable compound and its application
JP5366740B2 (en) Ether-containing cyclic structure-containing polymer, resin composition for optical material, molded product thereof, optical component and lens
JP4934278B2 (en) Metal-containing (meth) acrylic compounds and uses thereof
JP6427376B2 (en) Composition, cured product and light transmitting laminate
JP3595615B2 (en) Sulfur-containing (meth) acrylate
JP2009191194A (en) Method for producing polycarbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250