WO2011102049A1 - 弾性波デバイス - Google Patents

弾性波デバイス Download PDF

Info

Publication number
WO2011102049A1
WO2011102049A1 PCT/JP2010/072222 JP2010072222W WO2011102049A1 WO 2011102049 A1 WO2011102049 A1 WO 2011102049A1 JP 2010072222 W JP2010072222 W JP 2010072222W WO 2011102049 A1 WO2011102049 A1 WO 2011102049A1
Authority
WO
WIPO (PCT)
Prior art keywords
filters
piezoelectric substrate
filter
wave device
gap
Prior art date
Application number
PCT/JP2010/072222
Other languages
English (en)
French (fr)
Inventor
英雄 木藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201080064133.5A priority Critical patent/CN102763327B/zh
Priority to DE112010005279.4T priority patent/DE112010005279B4/de
Priority to JP2012500467A priority patent/JP5327378B2/ja
Publication of WO2011102049A1 publication Critical patent/WO2011102049A1/ja
Priority to US13/570,273 priority patent/US8723621B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices

Definitions

  • the present invention relates to an acoustic wave device, and more particularly, to an acoustic wave device such as a multiband filter or a duplexer provided with piezoelectric substrates facing each other through a gap.
  • two piezoelectric substrates 112 and 114 on which comb-shaped IDT (interdigital transducer) electrodes 121 and 123 for surface acoustic wave excitation are formed are opposed to each other.
  • IDT interdigital transducer
  • an elastic wave device dual filter in which a gap 118 is formed between piezoelectric substrates 112 and 114 by bonding via an intermediate layer 113 has been proposed (see, for example, Patent Document 1).
  • a Tx (transmission) side filter is formed on one piezoelectric substrate, and Rx is formed on the other piezoelectric substrate. It is conceivable that the (receiving) side filter is formed and the piezoelectric substrates are arranged so that the surface on which the Tx side filter is formed and the surface on which the Rx side filter is formed face each other. With this configuration, the size can be reduced as compared with a configuration in which both the Tx-side filter and the Rx-side filter are formed on one surface of one piezoelectric substrate.
  • the Tx side filter 21 and the Rx-side filter 23 formed on the piezoelectric substrates 12 and 14, respectively, are coupled via a joint 13. It is necessary to arrange them so as not to face each other with the gap 18 formed between the substrates 12 and 14 interposed therebetween. If the arrangement of the Tx-side filter 21 and the Rx-side filter 23 is shifted, the merit of miniaturization obtained with a structure in which the two piezoelectric substrates 12 and 14 are opposed to each other through the gap 18 is diminished.
  • the center frequency is a frequency defined as an arithmetic average of the lower cut-off frequency and the upper cut-off frequency in the band rejection filter, and in the band-pass filter, the center pass frequency is defined as the lower pass frequency and the upper pass frequency.
  • the present invention provides an acoustic wave device that can be reduced in size while improving isolation characteristics and out-of-band attenuation even when a piezoelectric substrate is disposed so as to face each other through a gap. To do.
  • the present invention provides an acoustic wave device configured as follows.
  • the acoustic wave device includes (a) a first piezoelectric substrate, (b) a second piezoelectric substrate, (c) the first piezoelectric substrate and the second piezoelectric substrate facing each other, and the first piezoelectric substrate.
  • a bonding portion for bonding the first piezoelectric substrate and the second piezoelectric substrate so that a gap is formed between the piezoelectric substrate and the second piezoelectric substrate; and (d) via the gap.
  • a first pair of filters formed on one main surface of the first piezoelectric substrate facing the second piezoelectric substrate, and (e) facing the first piezoelectric substrate via the gap.
  • a second set of filters formed on one main surface of the second piezoelectric substrate.
  • the first set of filters and the second set of filters are opposed to each other through the gap as a plurality of pairs.
  • the absolute value of the difference in center frequency between the first set of filters and the second set of filters in each pair is selected from the group consisting of the first set of filters and the second set of filters.
  • the absolute value of the difference between the center frequencies of the two filters is larger than the minimum value.
  • the absolute value of the difference between the center frequencies of the first set of filters and the second set of filters is minimum for the pair of the first set of filters and the second set of filters that are opposed to each other with a gap. Combinations that result in values are excluded. That is, the filters having the closest center frequencies do not face each other. As a result, filters with close center frequencies can be arranged spatially apart, electromagnetic coupling between filters can be suppressed, out-of-band attenuation and isolation can be improved, and miniaturization and multi-band compatibility can be achieved. it can.
  • a combination in which the first set of filters and the second set of filters form a plurality of pairs and face each other through the gap is the first set of filters and the second set of each pair.
  • the first set of filters and the second set of filters are reception filters and transmission filters for two or more bands.
  • the elastic wave device is a multiband duplexer.
  • the first set of filters and the second set of filters in the gap are disposed between regions facing each other. It further includes a connection member that is bonded to the first piezoelectric substrate and the second piezoelectric substrate, has conductivity, and is electrically connected to the ground.
  • connection member electromagnetic coupling between different pairs of filters arranged on both sides of the connection member is suppressed by providing the ground by the connection member.
  • the out-of-band attenuation and the isolation can be further improved.
  • by transferring heat through the connecting member it is possible to improve the heat dissipation effect of the self-heating of the filter when power is applied, and it is possible to suppress the deterioration of power durability performance due to the integration of elements. Become.
  • the distance between the first and second piezoelectric substrates can be maintained by the connecting member, the strength of the acoustic wave device is improved.
  • the joint and the connection member are formed of the same material.
  • the manufacturing cost can be reduced by forming the joint portion and the connection member with the same material.
  • the thickness of the second piezoelectric substrate is smaller than the thickness of the first substrate.
  • the center frequency of the second set of filters is higher than the center frequency of the first filter.
  • the acoustic wave device of the present invention can be reduced in size while improving isolation characteristics and out-of-band attenuation even if the piezoelectric substrate is disposed so as to face each other with a gap.
  • Example 1-1 The acoustic wave device 10 of Example 1-1 will be described with reference to the cross-sectional view of FIG.
  • the acoustic wave device 10 includes a first piezoelectric substrate 12 and a second piezoelectric substrate 14 facing each other, and a gap between the first piezoelectric substrate 12 and the second piezoelectric substrate 14.
  • the first piezoelectric substrate 12 and the second piezoelectric substrate 14 are bonded via the bonding portion 13 so that 18 is formed.
  • the first piezoelectric substrate 12 has a first filter 22 (also referred to as “filter 1”) on one main surface (also referred to as “opposing surface”) 12 s that faces the second piezoelectric substrate 14 via a gap 18. And the second filter 24 (also referred to as “filter 2”) and the connection electrode 12a.
  • a third filter 26 (also referred to as “filter 3”) is provided on one main surface (also referred to as “opposing surface”) 14 s facing the first piezoelectric substrate 12 via the gap 18. )
  • a fourth filter 28 (also referred to as “filter 4”) and a connection electrode 14a.
  • connection electrode 12a of the first piezoelectric substrate 12 and the connection electrode 14a of the second piezoelectric substrate 14 are electrically connected by a bump or the like.
  • a via-hole conductor 14b penetrating the second piezoelectric substrate 14 is formed in the second piezoelectric substrate 14.
  • One end of the via-hole conductor 14b is connected to the connection electrode 14a.
  • a terminal electrode 14 c exposed to the outside is formed on the other main surface of the second piezoelectric substrate 14.
  • the terminal electrode 14c is connected to the other end of the via hole conductor 14b.
  • the first piezoelectric substrate 12 and the second piezoelectric substrate 14 are substrates made of a piezoelectric material such as lithium tantalate (LiTaO 3 ) or lithium niobate (LiNbO 3 ).
  • the joint portion 13 is formed using a solder alloy, resin, or the like.
  • First and second filters 22 and 24 formed on the facing surface 12s of the first piezoelectric substrate 12, and third and fourth filters 26 and 28 formed on the facing surface 14s of the second piezoelectric substrate 14 Is a filter including a comb-shaped IDT electrode that excites an elastic wave such as a surface acoustic wave (SAW) or a boundary wave.
  • SAW surface acoustic wave
  • the first and second filters 22 and 24 formed on the facing surface 12s of the first piezoelectric substrate 12 are a first set of filters.
  • the third and fourth filters 26 and 28 formed on the facing surface 14s of the second piezoelectric substrate 14 are a second set of filters.
  • the first filter 22 and the third filter 26 form a first pair, and are opposed to each other through the gap 18.
  • the second filter 24 and the fourth filter 28 form a second pair and face each other through the gap 18.
  • the absolute value of the difference between the center frequencies of the first pair of filters is
  • the absolute value of the difference between the center frequencies of the second pair of filters is
  • the center frequencies f1 to f4 of the filters 1 to 4 are the absolute values
  • the second set of filters that is, filters 1 to 4 are determined so as to be larger than the minimum value of the absolute values of the differences between the center frequencies of the two filters.
  • the center frequencies f1 to f4 of the filters 1 to 4 are among the combinations shown in Table 1-1 below.
  • “ ⁇ ” in the table is a case that can be selected in Example 1-1.
  • “X” in the table indicates a case where the selection is not made in Example 1-1.
  • the acoustic wave device 10 including the plurality of filters 22, 24, 26, and 28 can be reduced in size.
  • the filters 22, 26; 24, 28 facing each other with the gap 18 therebetween are close to each other in space, so that electromagnetic coupling tends to be strong. However, as shown in cases 1 to 4 in Table 1-1, If the center frequency is far from that of cases 5 and 6, electromagnetic coupling can be suppressed, so that the out-of-band attenuation can be improved.
  • Cases 1 and 3 which are combinations that maximize the minimum absolute value of the difference in center frequency (950 MHz in case 1, 900 MHz in case 2, 950 MHz in case 3, 900 MHz in case 4), Compared to Case 4, it is preferable because the amount of out-of-band attenuation and isolation can be improved.
  • Example 1-2 has substantially the same configuration as the acoustic wave device 10 of Example 1-1. Hereinafter, the difference will be mainly described with reference to FIG.
  • Example 1-2 as shown in FIG. 1, the thickness of the second piezoelectric substrate 14 is smaller than the thickness of the first piezoelectric substrate 12.
  • the center frequencies f1 to f4 of the first to fourth filters 22, 24, 26, and 28 are the center of the filter in each pair facing each other through the air gap 16 as in the case of Example 1-1.
  • are both selected from the group consisting of the first set of filters and the second set of filters (ie, filters 1 to 4). The difference between the center frequencies of the two filters is set to be larger than the minimum value.
  • Example 1-2 in addition to satisfying the same conditions as in Example 1-1 above, a second set of pairs formed on the opposing surface 14s of the relatively thin second piezoelectric substrate 14 in each pair is also provided.
  • the center frequency of the filters 26 and 28 is set to be higher than the center frequency of the first set of filters 22 and 24 formed on the opposed surface 12s of the relatively thick first piezoelectric substrate 12. That is, a combination is selected in which the center frequency of the filter 3 is higher than the center frequency of the filter 1 in the first pair and the center frequency of the filter 4 is higher than the center frequency of the filter 2 in the second pair.
  • the center frequencies f1 to f4 of the filters 1 to 4 are expressed in the following Table 1-
  • the center frequency of the filter 3 is the center frequency of the filter 1 out of cases 1 to 4 excluding cases 5 and 6 including the minimum value of the absolute value of the center frequency difference between the two filters of 50 MHz.
  • the case 1 or 2 in which the center frequency of the filter 4 is higher than the center frequency of the filter 2 is selected.
  • “ ⁇ ” in the table indicates a case that can be selected in Example 1-2.
  • “X” in the table indicates a case where the selection is not made in Example 1-2.
  • Example 2-1 is a dual DPX (duplexer) for two bands by using the four filters 22, 24, 26, and 28 (filters 1 to 4) shown in Example 1-1. ) Is configured.
  • the filters 22, 24, 26, and 28 formed on the opposing surfaces 12s and 14s of the first and second piezoelectric substrates 12 and 14 are Tx (transmission) side filters or Rx (reception) side filters of different bands. Configure to face each other.
  • the center frequencies of Tx and Rx of each band are Band2 Tx: 1880MHz Band2 Rx: 1960MHz Band8 Tx: 897.5MHz Band8 Rx: 942.5MHz It becomes.
  • the center frequencies f1 to f4 of the filters 1 to 4 are two filters selected from the group consisting of filters of 1880 MHz, 1960 MHz, 897.5 MHz, and 942.5 MHz among the combinations shown in the following Table 2-1.
  • cases 5 and 6 including 45 MHz, which is the minimum absolute value of the difference between the center frequencies any combination of cases 1 to 4 is selected.
  • “ ⁇ ” in the table indicates a case that can be selected in Example 2-1.
  • “X” in the table indicates a case where the selection is not performed in the example 2-1.
  • Example 2-1 is arranged such that the filters having close center frequencies are not opposed to each other via the air gap 18, so that electromagnetic coupling between the filters is suppressed, and the isolation characteristics are reduced. Can be improved.
  • Example 2-2 has substantially the same configuration as the DPX of Example 2-1. Hereinafter, the difference will be mainly described with reference to FIG.
  • Example 2-2 as shown in FIG. 1, the thickness of the second piezoelectric substrate 14 is smaller than the thickness of the first piezoelectric substrate 12.
  • the center frequencies f1 to f4 of the first to fourth filters 22, 24, 26, and 28 are the center of the filter in each pair facing each other through the air gap 18 as in the case of Example 2-1.
  • are both selected from the group consisting of the first set of filters and the second set of filters (ie, filters 1 to 4).
  • the absolute value of the difference between the center frequencies of the two filters is set to be larger than the minimum value.
  • Example 2-2 the same conditions as in Example 2-1 were satisfied, and in each pair, a second set of pairs formed on the opposed surface 14s of the relatively thin second piezoelectric substrate 14 was further provided.
  • the center frequency of the filters 26 and 28 is set to be higher than the center frequency of the first set of filters 22 and 24 formed on the opposed surface 12 s of the relatively thick first piezoelectric substrate 12. That is, a combination is selected in which the center frequency of the filter 3 is higher than the center frequency of the filter 1 in the first pair and the center frequency of the filter 4 is higher than the center frequency of the filter 2 in the second pair.
  • the center frequencies f1 to f4 of the filters 1 to 4 are the center between the two filters as shown in Table 2-2 below.
  • the center frequency of filter 3 is higher than the center frequency of filter 1 and the center frequency of filter 4 is Case 1 or 2 that is higher than the center frequency of the filter 2 is selected.
  • “ ⁇ ” in the table indicates a case that can be selected in Example 2-2.
  • “X” in the table indicates a case where no selection is made in Example 2-2.
  • the unnecessary response due to the bulk wave radiated in the depth direction of the piezoelectric substrate increases as the thickness of the piezoelectric substrate normalized by the IDT electrode pitch decreases.
  • a first set of filters 22 formed on the opposed surface 14s of the relatively thin second piezoelectric substrate 14 and the opposed surface 12s of the relatively thick first piezoelectric substrate 12 By arranging the second set of filters 26 and 28 whose center frequency is higher than the center frequency of 24, unnecessary responses due to bulk waves can be effectively suppressed.
  • Example 3 The acoustic wave device 10a of Example 3 will be described with reference to a cross-sectional view of FIG.
  • the elastic wave device 10a of the third embodiment further includes a connecting member 16 in addition to the configuration of the elastic wave device 10 of the first embodiment 1-1.
  • the connecting member 16 is a columnar or wall-like metal structure joined to the facing surface 12s of the first piezoelectric substrate 12 and the facing surface 14s of the second piezoelectric substrate 14, and has conductivity.
  • the connecting member 16 includes a region 15 where the first pair of filters 22 and 26 face each other, and a second pair of filters 24 and 28. Are disposed between the regions 17 facing each other.
  • the connection member 16 is electrically connected to the ground electrode via a wiring pattern or a via hole conductor.
  • connection member 16 be formed of the same material as the joint portion 13 (for example, a solder alloy or a conductive paste) because the manufacturing cost can be reduced.
  • the elastic wave device 10a according to the third embodiment can improve the isolation characteristics and the number of out-of-band sources even if the elastic device 10a is downsized.
  • connection member 16 disposed between the region 15 where the first pair of filters 22 and 26 face each other and the region 17 where the second pair of filters 24 and 28 face each other is provided. It becomes a shield electrode, and electromagnetic coupling between the first pair of filters 22 and 26 and the second pair of filters 24 and 28 is suppressed. Thereby, the out-of-band attenuation and the isolation can be further improved.
  • connection member 16 becomes a heat dissipation path, and heat generated when power is applied to the filters 22, 24, 26, and 28 is easily released, so that the temperature rise of the filters 22, 24, 26, and 28 when power is applied is suppressed. be able to. As a result, it is possible to suppress deterioration of the power durability performance due to the integration of elements.
  • the connecting member 16 By providing the connecting member 16, the distance between the first and second piezoelectric substrates 12 and 14 facing each other through the gap 18 can be maintained, so that the strength of the acoustic wave device 10a is improved. Thereby, for example, the mold resistance of the acoustic wave device 10a is improved.
  • the connecting member 16 is preferably capable of completely shielding (separating) the gap 18 into the gaps 15 and 17 over the paper surface (FIG. 2) in the depth direction. However, the connecting member 16 is partly connected to the opposing faces 12s and 14s. Even with this structure, a certain shielding effect and improved mold resistance can be expected.
  • the present invention is not limited to the case where the band-pass filter is formed on the first and second piezoelectric substrates, but is also applied to the case where the band-stop filter is formed on the first and second piezoelectric substrates. be able to.
  • the present invention can also be applied to a multiband filter having a larger number of bands than a quad band and a multiband duplexer having a larger number of bands than a dual band.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 空隙を介して対向するように圧電基板を配置しても、アイソレーション特性や帯域外減衰量を改善しつつ小型化することができる弾性波デバイスを提供する。 弾性波デバイス10は、第1の圧電基板12と第2の圧電基板14とが、空隙18を介して対向するように、接合部13により接合されている。第1の圧電基板12の対向面12sに形成された第1組の複数のフィルタ22,24と、第2の圧電基板14の対向面14sに形成された第2組の複数のフィルタ26,28とは、複数の対22,26;24,28となって空隙18を介して対向する。各対の第1組のフィルタと第2組のフィルタとの中心周波数の差の絶対値は、いずれも、第1組のフィルタと第2組のフィルタとからなる群22,24,26,28から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きい。

Description

弾性波デバイス
 本発明は、弾性波デバイスに関し、詳しくは、空隙を介して対向する圧電基板を備えたマルチバンドのフィルタやデュプレクサなどの弾性波デバイスに関する。
 例えば図4の断面図に示すように、弾性表面波励振用の櫛型のIDT(interdigital transducer)電極121,123が形成された2枚の圧電基板112,114を、電極形成面同士が対向するように中間層113を介して接合することにより、圧電基板112,114間に空隙118を形成した弾性波デバイス(デュアルフィルタ)が提案されている(例えば、特許文献1参照)。
特表2008-546207号公報
 このように圧電基板が空隙を介して対向する構成を、SAW-DPX(弾性表面波デュプレクサ)に適用する場合、一方の圧電基板にTx(送信)側フィルタを形成し、他方の圧電基板にRx(受信)側フィルタを形成し、Tx側フィルタが形成された面とRx側フィルタが形成された面とが対向するように圧電基板同士を配置することが考えられる。このように構成すると、1つの圧電基板の片側表面にTx側フィルタとRx側フィルタの両方を形成する構成と比べると、小型化が図れる。
 しかしながら、Tx側フィルタとRx側フィルタとが僅かな空隙を挟んで対向すると、電磁的な結合によりアイソレーションが悪化する。これを改善するためには、例えば図3の断面図に示すように、圧電基板12,14にそれぞれ形成されるTx側フィルタ21とRx側フィルタ23は、接合部13を介して結合される圧電基板12,14間に形成される空隙18を挟んで対向しないように、ずらして配置する必要がある。Tx側フィルタ21とRx側フィルタ23の配置をずらすと、2つの圧電基板12,14が空隙18を介して対向する構造で得られる小型化のメリットが薄れてしまう。
 そのため、圧電基板が空隙を介して対向する構成をSAW-DPXに適用する場合、アイソレーション特性の確保と小型化とは、両立が困難である。
 圧電基板が空隙を介して対向する構成をデュアルフィルタに適用する場合でも、2つのフィルタの中心周波数が近い場合は、2つのフィルタの電磁的な結合により、帯域外減衰量が悪化する。そのため、帯域外減衰量の確保と小型化とは、両立が困難になる。
 なお、中心周波数とは、帯域阻止フィルタにおいては下側の遮断周波数と上側の遮断周波数の相加平均として定義される周波数であり、帯域通過フィルタにおいては下側の通過周波数と上側の通過周波数の相加平均として定義される周波数である。
 本発明は、かかる実情に鑑み、空隙を介して対向するように圧電基板を配置しても、アイソレーション特性や帯域外減衰量を改善しつつ小型化することができる弾性波デバイスを提供しようとするものである。
 本発明は、上記課題を解決するために、以下のように構成した弾性波デバイスを提供する。
 弾性波デバイスは、(a)第1の圧電基板と、(b)第2の圧電基板と、(c)前記第1の圧電基板と前記第2の圧電基板とが対向し、かつ前記第1の圧電基板と前記第2の圧電基板との間に空隙が形成されるように、前記第1の圧電基板と前記第2の圧電基板とを接合する接合部と、(d)前記空隙を介して前記第2の圧電基板に対向する前記第1の圧電基板の一方主面に形成された第1組の複数のフィルタと、(e)前記空隙を介して前記第1の圧電基板に対向する前記第2の圧電基板の一方主面に形成された第2組の複数のフィルタとを備える。前記第1組のフィルタと前記第2組のフィルタとは、複数の対となって前記空隙を介して対向する。前記各対の前記第1組のフィルタと前記第2組のフィルタとの中心周波数の差の絶対値は、いずれも、前記第1組のフィルタと前記第2組のフィルタとからなる群から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きい。
 上記構成によれば、第1組のフィルタと第2組のフィルタとが空隙を介して対向する対には、第1組のフィルタと第2組のフィルタの中心周波数の差の絶対値が最小値になる組み合わせが除かれる。すなわち、中心周波数の最も近いフィルタ同士は対向しない。これにより、中心周波数の近いフィルタ同士を空間的に離して配置することができ、フィルタ間の電磁結合が抑制され、帯域外減衰量やアイソレーションを改善できるとともに、小型化とマルチバンド対応を実現できる。
 好ましくは、前記第1組のフィルタと前記第2組のフィルタとが複数の前記対となって前記空隙を介して対向する組み合わせは、前記各対の前記第1組のフィルタと前記第2組のフィルタとの中心周波数の差の絶対値の最小値が最大となる組み合わせである。
 この場合、空隙を介して対向する第1のフィルタと第2のフィルタとの中心周波数の差の絶対値をできるだけ大きくすることができるので、帯域外減衰量やアイソレーションをより改善できる。
 好ましい一態様において、前記第1組のフィルタ及び前記第2組のフィルタは、2以上のバンドの受信側フィルタ及び送信側フィルタである。
 この場合、弾性波デバイスは、マルチバンドデュプレクサである。
 好ましくは、弾性波デバイスは、(f)前記空隙内において、前記対となる前記第1組のフィルタと前記第2組のフィルタとが互いに対向する領域の間に配置されるように、前記第1の圧電基板と前記第2の圧電基板とに接合され、導電性を有し、グランドに電気的に接続される接続部材をさらに備える。
 この場合、接続部材によるグランドを備えることにより、接続部材の両側に配置された異なる対のフィルタ間の電磁的な結合が抑制される。これにより、帯域外減衰量やアイソレーションをさらに改善できる。また、接続部材を介して熱を伝えることにより、電力印加時のフィルタの自己発熱の放熱効果を向上させることが可能になり、素子の集積にともなう耐電力性能の劣化を抑制することが可能になる。また、接続部材によって第1及び第2の圧電基板の間隔を保持することができるので、弾性波デバイスの強度が向上する。
 好ましくは、前記接合部と前記接続部材とが同一材料で形成される。
 この場合、接合部と接続部材とを同一材料で形成することにより、製造コストを抑えることができる。
 好ましくは、前記第2の圧電基板の厚みは、前記第1基板の厚みよりも小さい。前記第1組のフィルタと前記第2組のフィルタとの前記各対において、前記第2組のフィルタの中心周波数が前記第1のフィルタの中心周波数よりも高い。
 この場合、相対的に薄い第2の圧電基板に、相対的に中心周波数が高いフィルタを形成することにより、バルク波による不要レスポンスを効果的に抑えることができる。
 本発明の弾性波デバイスは、空隙を介して対向するように圧電基板を配置しても、アイソレーション特性や帯域外減衰量を改善しつつ小型化することができる。
弾性波デバイスの断面図である。(実施例1-1、1-2、2-1,2-2) 弾性波デバイスの断面図である。(実施例3) 弾性波デバイスの断面図である。(比較例) 弾性波デバイスの断面図である。(従来例)
 以下、本発明の実施の形態について、図1及び図2を参照しながら説明する。
 <実施例1-1> 実施例1-1の弾性波デバイス10について、図1の断面図を参照しながら説明する。
 図1に示すように、弾性波デバイス10は、第1の圧電基板12と第2の圧電基板14とが対向し、かつ第1の圧電基板12と第2の圧電基板14との間に空隙18が形成されるように、第1の圧電基板12と第2の圧電基板14とが、接合部13を介して接合されている。
 第1の圧電基板12には、空隙18を介して第2の圧電基板14に対向する一方主面(「対向面」ともいう。)12sに、第1のフィルタ22(「フィルタ1」ともいう。)及び第2のフィルタ24(「フィルタ2」ともいう。)と、接続電極12aとが形成されている。
 第2の圧電基板14には、空隙18を介して第1の圧電基板12に対向する一方主面(「対向面」ともいう。)14sに、第3のフィルタ26(「フィルタ3」ともいう。)及び第4のフィルタ28(「フィルタ4」ともいう。)と、接続電極14aとが形成されている。
 第1の圧電基板12の接続電極12aと第2の圧電基板14の接続電極14aとは、バンプ等により電気的に接続されている。
 第2の圧電基板14には、第2の圧電基板14を貫通するビアホール導体14bが形成されている。ビアホール導体14bの一端は、接続電極14aに接続されている。第2の圧電基板14の他方主面には、外部に露出する端子電極14cが形成されている。端子電極14cは、ビアホール導体14bの他端に接続されている。
 第1の圧電基板12及び第2の圧電基板14は、タンタル酸リチウム(LiTaO)やニオブ酸リチウム(LiNbO)などの圧電材料からなる基板である。接合部13は、はんだ合金や樹脂等を用いて形成する。
 第1の圧電基板12の対向面12sに形成された第1及び第2のフィルタ22,24と、第2の圧電基板14の対向面14sに形成された第3及び第4のフィルタ26,28とは、弾性表面波(SAW)や境界波などの弾性波を励振する櫛型のIDT電極を含むフィルタである。
 第1の圧電基板12の対向面12sに形成された第1及び第2のフィルタ22,24は、第1組のフィルタである。第2の圧電基板14の対向面14sに形成された第3及び第4のフィルタ26,28は、第2組のフィルタである。
 第1のフィルタ22と第3のフィルタ26とは第1の対となっており、空隙18を介して互いに対向している。第2のフィルタ24と第4のフィルタ28とは第2の対となっており、空隙18を介して互いに対向している。
 第1乃至第4のフィルタ22,24,26,28(フィルタ1~4)の中心周波数をf1,f2,f3,f4とすると、第1対のフィルタの中心周波数の差の絶対値は|f1-f3|、第2対のフィルタの中心周波数の差の絶対値は|f2-f4|である。
 実施例1-1では、フィルタ1~4の中心周波数f1~f4は、各対の中心周波数の差の絶対値|f1-f3|、|f2-f4|が、いずれも、第1組のフィルタと第2組のフィルタとからなる群(すなわち、フィルタ1~4)から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きくなるように、決定されている。
 例えば、GSM4波(中心周波数:850MHz,900MHz,1800MHz,1900MHz)のクワッドバンドフィルタを例に取ると、フィルタ1~4の中心周波数f1~f4は、次の表1-1に示す組み合わせのうち、850MHz,900MHz,1800MHz,1900MHzのフィルタからなる群から選択された2つのフィルタの中心周波数の差の絶対値の最小値である50MHzを含むケース5、6以外、すなわちケース1~4のいずれかの組み合わせを選択する。
Figure JPOXMLDOC01-appb-T000001
表中の「○」は、実施例1-1において選択可能なケースである。表中の「×」は、実施例1-1において選択しないケースである。
 これにより、複数のフィルタ22,24,26,28を含む弾性波デバイス10を小型化することができる。あるいは、同じ大きさのパッケージにより多くのフィルタを組み込み、より多くのバンドに対応できる弾性波デバイスを提供し、部品点数の削減及び実装面積削減によるコストダウンに寄与することが可能となる。
 空隙18を挟んで対向するフィルタ22,26;24,28は、空間的に最も近接しているため電磁的な結合が強くなりやすいが、表1-1のケース1~4のように、互いの中心周波数がケース5,6に比べ離れていると、電磁的な結合が抑えられるため、帯域外減衰量を向上させることが可能となる。
 なお、対となるフィルタの中心周波数の差の絶対値が大きいほど、対となるフィルタ間の電磁的な結合が弱くなるので、表1-1のケース1~4の中でも、各対のフィルタの中心周波数の差の絶対値の最小値(ケース1では950MHz、ケース2では900MHz、ケース3では950MHz、ケース4では900MHz)が最大になる組み合わせであるケース1及びケース3の方が、ケース2及びケース4に比べ、帯域外減衰量やアイソレーションをより改善でき、好ましい。
 <実施例1-2> 実施例1-2は、実施例1-1の弾性波デバイス10と略同じ構成である。以下では、図1を参照しながら相違点を中心に説明する。
 実施例1-2では、図1に示されているように、第2の圧電基板14の厚みが第1の圧電基板12の厚みよりも小さい。
 第1乃至第4のフィルタ22,24,26,28(フィルタ1~4)の中心周波数f1~f4は、実施例1-1と同様に、空隙16を介して対向する各対におけるフィルタの中心周波数の差の絶対値|f1-f3|、|f2-f4|が、いずれも、第1組のフィルタと第2組のフィルタとからなる群(すなわち、フィルタ1~4)から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きくなるようにする。
 実施例1-2では、上記の実施例1-1と同じ条件を満たした上、さらに、各対において、相対的に薄い第2の圧電基板14の対向面14sに形成される第2組のフィルタ26,28の中心周波数の方が、相対的に厚い第1の圧電基板12の対向面12sに形成される第1組のフィルタ22,24の中心周波数よりも高くなるようにする。つまり、第1対においてフィルタ3の中心周波数がフィルタ1の中心周波数よりも高く、かつ、第2対においてフィルタ4の中心周波数がフィルタ2の中心周波数よりも高くなる組み合わせを選択する。
 例えば、実施例1-1と同じGSM4波(中心周波数:850MHz,900MHz,1800MHz,1900MHz)のクワッドバンドフィルタを例に取ると、フィルタ1~4の中心周波数f1~f4は、次の表1-2に示すように、2つのフィルタ間の中心周波数の差の絶対値の最小値である50MHzを含むケース5、6を除くケース1~4のうち、フィルタ3の中心周波数がフィルタ1の中心周波数よりも高く、かつ、フィルタ4の中心周波数がフィルタ2の中心周波数よりも高くなるケース1又は2を選択する。
Figure JPOXMLDOC01-appb-T000002
表中の「○」は実施例1-2において選択可能なケースである。表中の「×」は実施例1-2において選択しないケースである。
 IDT電極によって励振される弾性波のうちの圧電基板の深さ方向に放射されるバルク波による不要レスポンスは、IDT電極のピッチで規格化した圧電基板の厚みが小さいほど大きくなってくる。フィルタ同士が対向する各対において、相対的に薄い第2の圧電基板14の対向面14sに、相対的に厚い第1の圧電基板12の対向面12sに形成された第1組のフィルタ22,24の中心周波数によりも中心周波数が高い第2組のフィルタ26,28を配することにより、バルク波による不要レスポンスを効果的に抑えることができる。
 <実施例2-1> 実施例2-1は、実施例1-1で示した4個のフィルタ22,24,26,28(フィルタ1~4)によって、2つのバンド用のデュアルDPX(デュプレクサ)が構成される。第1及び第2の圧電基板12,14の対向面12s,14sに形成されるフィルタ22,24,26,28は、別のバンドのTx(送信)側フィルタあるいはRx(受信)側フィルタが互いに対向するように構成する。
 例えばBand2とBand8のデュアルDPXの場合、各バンドのTx及びRxの中心周波数は、
  Band2 Tx :1880MHz
  Band2 Rx :1960MHz
  Band8 Tx :897.5MHz
  Band8 Rx :942.5MHz
となる。
 この場合、フィルタ1~4の中心周波数f1~f4は、次の表2-1に示す組み合わせのうち、1880MHz,1960MHz,897.5MHz,942.5MHzのフィルタからなる群から選択された2つのフィルタの中心周波数の差の絶対値の最小値である45MHzを含むケース5、6以外、すなわちケース1~4のいずれかの組み合わせを選択する。
Figure JPOXMLDOC01-appb-T000003
表中の「○」は、実施例2-1において選択可能なケースである。表中の「×」は、実施例2-1において選択しないケースである。
 実施例2-1は、実施例1-1と同じく、中心周波数が近いフィルタ同士が空隙18を介して対向しないように配置することにより、フィルタ間の電磁的な結合が抑制され、アイソレーション特性を改善できる。
 なお、対となるフィルタの中心周波数の差の絶対値が大きいほどフィルタ間の電磁的な結合が弱くなるので、表2-1のケース1~4の中でも、各対のフィルタの中心周波数の差の絶対値の最小値(ケース1では982.5MHz、ケース2では937.5MHz、ケース3では982.5MHz、ケース4では937.5MHz)が最大になる組み合わせであるケース1及びケース3の方が、ケース2及びケース4に比べ、帯域外減衰量やアイソレーションをより改善でき、好ましい。
 <実施例2-2> 実施例2-2は、実施例2-1のDPXと略同じ構成である。以下では、図1を参照しながら相違点を中心に説明する。
 実施例2-2では、図1に示されているように、第2の圧電基板14の厚みが第1の圧電基板12の厚みよりも小さい。
 第1乃至第4のフィルタ22,24,26,28(フィルタ1~4)の中心周波数f1~f4は、実施例2-1と同様に、空隙18を介して対向する各対におけるフィルタの中心周波数の差の絶対値|f1-f3|、|f2-f4|が、いずれも、第1組のフィルタと第2組のフィルタとからなる群(すなわち、フィルタ1~4)から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きくなるようする。
 実施例2-2では、上記の実施例2-1と同じ条件を満たした上、さらに、各対において、相対的に薄い第2の圧電基板14の対向面14sに形成される第2組のフィルタ26,28の中心周波数が、相対的に厚い第1の圧電基板12の対向面12sに形成される第1組のフィルタ22,24の中心周波数よりも高くなるようにする。つまり、第1対においてフィルタ3の中心周波数がフィルタ1の中心周波数よりも高く、かつ、第2対においてフィルタ4の中心周波数がフィルタ2の中心周波数よりも高くなる組み合わせを選択する。
 例えば、実施例2-1と同じBand2とBand8のデュアルDPXを例に取ると、フィルタ1~4の中心周波数f1~f4は、次の表2-2に示すように、2つのフィルタ間の中心周波数の差の絶対値の最小値である45MHzを含むケース5、6を除くケース1~4のうち、フィルタ3の中心周波数がフィルタ1の中心周波数よりも高く、かつ、フィルタ4の中心周波数がフィルタ2の中心周波数よりも高くなるケース1又は2を選択する。
Figure JPOXMLDOC01-appb-T000004
表中の「○」は、実施例2-2において選択可能なケースである。表中の「×」は、実施例2-2において選択しないケースである。
 IDT電極によって励振される弾性波のうちの圧電基板の深さ方向に放射されるバルク波による不要レスポンスは、IDT電極のピッチで規格化した圧電基板の厚みが小さいほど大きくなってくる。フィルタ同士が対向する各対において、相対的に薄い第2の圧電基板14の対向面14sに、相対的に厚い第1の圧電基板12の対向面12sに形成された第1組のフィルタ22,24の中心周波数によりも中心周波数が高い第2組のフィルタ26,28を配することにより、バルク波による不要レスポンスを効果的に抑えることができる。
 <実施例3> 実施例3の弾性波デバイス10aについて、図2の断面図を参照しながら説明する。
 図2に示すように、実施例3の弾性波デバイス10aは、実施例1-1の弾性波デバイス10の構成に、接続部材16をさらに備えている。
 接続部材16は、第1の圧電基板12の対向面12sと第2の圧電基板14の対向面14sとに接合された柱状あるいは壁状の金属製の構造物であり、導電性を有する。接続部材16は、第1の圧電基板12と第2の圧電基板14との間の空隙18において、第1対のフィルタ22,26が互いに対向する領域15と、第2対のフィルタ24,28が互いに対向する領域17との間に配置されている。図示していないが、接続部材16は、配線パターンやビアホール導体を介して、グランド電極に電気的に接続される。
 接続部材16は、接合部13と同一材料(例えば、はんだ合金や導電性ペースト)で形成すると、製造コストを抑えることができるので、好ましい。
 実施例3の弾性波デバイス10aは、実施例1-1等と同様に、小型化してもアイソレーション特性や帯域外源数量を改善することができる。
 実施例3の弾性波デバイス10aは、第1対のフィルタ22,26が互いに対向する領域15と第2対のフィルタ24,28が互いに対向する領域17との間に配置された接続部材16がシールド電極となり、第1対のフィルタ22,26と第2対のフィルタ24,28との間の電磁的な結合が抑制される。これにより、帯域外減衰量やアイソレーションをさらに改善できる。
 接続部材16は放熱経路となり、フィルタ22,24,26,28に電力が印加されることによって発生する熱を逃がしやすくなるため、電力印加時のフィルタ22,24,26,28の温度上昇を抑えることができる。これにより、素子の集積にともなう耐電力性能の劣化を抑制することが可能になる。
 接続部材16を設けることにより、第1及び第2の圧電基板12,14のうち空隙18を介して対向する部分の間隔を保持することができるので、弾性波デバイス10aの強度が向上する。これにより、例えば、弾性波デバイス10aは、モールド耐性が向上する。
 なお、接続部材16は、紙面(図2)奥行き方向に渡って空隙18を空隙15,17に完全に遮蔽(分離)できることが望ましいが、部分的に対向面12sと14sに接続された支柱状の構造であっても、一定のシールド効果とモールド耐性の向上は期待できる。
 <まとめ> 以上に説明したように、空隙を介して対向する圧電基板の対向面に形成するフィルタについて、空隙を介して対向し対となるフィルタ同士の中心周波数の差の絶対値に着目して、各フィルタの中心周波数を決定することにより、マルチ(クワッド)バンドフィルタの帯域外減衰量を改善したり、デュアルバンドデュプレクサのアイソレーション特性を改善したりすることができる。
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
 例えば、本発明は、第1及び第2の圧電基板に帯域通過フィルタが形成されている場合に限らず、第1及び第2の圧電基板に帯域阻止フィルタが形成されている場合にも適用することができる。また、本発明は、クワッドバンドよりもバンド数が多いマルチバンドフィルタやデュアルバンドよりバンド数が多いマルチバンドデュプレクサにも適用することができる。
 10,10a 弾性波デバイス
 12 第1の圧電基板
 12s 一方主面(対向面)
 13 接合部
 14 第2の圧電基板
 14s 一方主面(対向面)
 16 接続部材
 18 空隙
 22 第1のフィルタ(第1組のフィルタ、第1対のフィルタ、フィルタ1)
 24 第2のフィルタ(第1組のフィルタ、第2対のフィルタ、フィルタ2)
 26 第3のフィルタ(第2組のフィルタ、第1対のフィルタ、フィルタ3)
 28 第4のフィルタ(第2組のフィルタ、第2対のフィルタ、フィルタ4)

Claims (6)

  1.  第1の圧電基板と、
     第2の圧電基板と、
     前記第1の圧電基板と前記第2の圧電基板とが対向し、かつ前記第1の圧電基板と前記第2の圧電基板との間に空隙が形成されるように、前記第1の圧電基板と前記第2の圧電基板とを接合する接合部と、
     前記空隙を介して前記第2の圧電基板に対向する前記第1の圧電基板の一方主面に形成された第1組の複数のフィルタと、
     前記空隙を介して前記第1の圧電基板に対向する前記第2の圧電基板の一方主面に形成された第2組の複数のフィルタと、
    を備え、
     前記第1組のフィルタと前記第2組のフィルタとは、複数の対となって前記空隙を介して対向し、
     前記各対の前記第1組のフィルタと前記第2組のフィルタとの中心周波数の差の絶対値は、いずれも、前記第1組のフィルタと前記第2組のフィルタとからなる群から選択された2つのフィルタの中心周波数の差の絶対値のうちの最小値よりも大きいことを特徴とする、弾性波デバイス。
  2.  前記第1組のフィルタと前記第2組のフィルタとが複数の前記対となって前記空隙を介して対向する組み合わせは、
     前記各対の前記第1組のフィルタと前記第2組のフィルタとの中心周波数の差の絶対値の最小値が最大となる組み合わせであること特徴とする、請求項1に記載の弾性波デバイス。
  3.  前記第1組のフィルタ及び前記第2組のフィルタは、2以上のバンドの受信側フィルタ及び送信側フィルタであることを特徴とする、請求項1又は2に記載の弾性波デバイス。
  4.  前記空隙内において、前記対となる前記第1組のフィルタと前記第2組のフィルタとが互いに対向する領域の間に配置されるように、前記第1の圧電基板と前記第2の圧電基板とに接合され、導電性を有し、グランドに電気的に接続される接続部材をさらに備えることを特徴とする、請求項1乃至3のいずれか一つに記載の弾性波デバイス。
  5.  前記接合部と前記接続部材とが同一材料で形成されることを特徴とする、請求項4に記載の弾性波デバイス。
  6.  前記第2の圧電基板の厚みは、前記第1基板の厚みよりも小さく、
     前記第1組のフィルタと前記第2組のフィルタとの前記各対において、前記第2組のフィルタの中心周波数が前記第1のフィルタの中心周波数よりも高いことを特徴とする、請求項1乃至5のいずれか一つに記載の弾性波デバイス。
PCT/JP2010/072222 2010-02-17 2010-12-10 弾性波デバイス WO2011102049A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080064133.5A CN102763327B (zh) 2010-02-17 2010-12-10 弹性波设备
DE112010005279.4T DE112010005279B4 (de) 2010-02-17 2010-12-10 Vorrichtung für elastische Wellen
JP2012500467A JP5327378B2 (ja) 2010-02-17 2010-12-10 弾性波デバイス
US13/570,273 US8723621B2 (en) 2010-02-17 2012-08-09 Elastic wave device having pairs of filters that face each other

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-032921 2010-02-17
JP2010032921 2010-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/570,273 Continuation US8723621B2 (en) 2010-02-17 2012-08-09 Elastic wave device having pairs of filters that face each other

Publications (1)

Publication Number Publication Date
WO2011102049A1 true WO2011102049A1 (ja) 2011-08-25

Family

ID=44482658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072222 WO2011102049A1 (ja) 2010-02-17 2010-12-10 弾性波デバイス

Country Status (5)

Country Link
US (1) US8723621B2 (ja)
JP (1) JP5327378B2 (ja)
CN (1) CN102763327B (ja)
DE (1) DE112010005279B4 (ja)
WO (1) WO2011102049A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034326A1 (ja) * 2012-08-29 2014-03-06 株式会社村田製作所 弾性波装置
JP2015091065A (ja) * 2013-11-06 2015-05-11 太陽誘電株式会社 電子部品およびモジュール
JP2015091066A (ja) * 2013-11-06 2015-05-11 太陽誘電株式会社 モジュール
WO2016067873A1 (ja) * 2014-10-31 2016-05-06 株式会社村田製作所 弾性波装置及び弾性波モジュール
JP2018157510A (ja) * 2017-03-21 2018-10-04 太陽誘電株式会社 マルチプレクサ
JP2019146025A (ja) * 2018-02-21 2019-08-29 太陽誘電株式会社 マルチプレクサ
JP2019161408A (ja) * 2018-03-12 2019-09-19 太陽誘電株式会社 弾性波デバイス、モジュールおよびマルチプレクサ
JP2019186726A (ja) * 2018-04-09 2019-10-24 太陽誘電株式会社 マルチプレクサ
JP2020014094A (ja) * 2018-07-17 2020-01-23 太陽誘電株式会社 通信用モジュール
US20210152151A1 (en) * 2019-09-27 2021-05-20 Skyworks Solutions, Inc. Method of making stacked acoustic wave resonator package with laser-drilled vias
US11177788B2 (en) 2016-12-26 2021-11-16 Murata Manufacturing Co., Ltd. Acoustic wave device, radio frequency front-end module, and communication device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634641B2 (en) * 2013-11-06 2017-04-25 Taiyo Yuden Co., Ltd. Electronic module having an interconnection substrate with a buried electronic device therein
CN105814796B (zh) * 2013-12-25 2019-04-19 株式会社村田制作所 弹性波滤波器设备
JP5999295B1 (ja) * 2015-04-01 2016-09-28 株式会社村田製作所 デュプレクサ
WO2017110993A1 (ja) * 2015-12-25 2017-06-29 株式会社村田製作所 高周波モジュール
JP6454299B2 (ja) * 2016-05-13 2019-01-16 太陽誘電株式会社 弾性波デバイス
KR102348617B1 (ko) * 2017-11-30 2022-01-06 가부시키가이샤 무라타 세이사쿠쇼 무선 통신 장치
WO2020090230A1 (ja) * 2018-11-01 2020-05-07 株式会社村田製作所 高周波モジュールおよび通信装置
CN112994638B (zh) * 2019-12-13 2024-06-07 芯知微(上海)电子科技有限公司 一种薄膜压电声波谐振器及其制造方法
CN111327296B (zh) * 2020-02-27 2020-12-22 诺思(天津)微***有限责任公司 体声波滤波器元件及其形成方法、多工器及通讯设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345673A (ja) * 2000-05-31 2001-12-14 Kyocera Corp 弾性表面波装置
JP2002043890A (ja) * 2000-07-31 2002-02-08 Kyocera Corp 弾性表面波装置
JP2004297633A (ja) * 2003-03-28 2004-10-21 Hitachi Ltd アンテナ共用器およびそれを用いた無線端末
WO2006008940A1 (ja) * 2004-07-20 2006-01-26 Murata Manufacturing Co., Ltd. 圧電フィルタ
JP2006186747A (ja) * 2004-12-28 2006-07-13 Nec Corp 弾性波デバイスおよび携帯電話
JP2007060465A (ja) * 2005-08-26 2007-03-08 Seiko Epson Corp 薄膜弾性表面波デバイス
JP2008113178A (ja) * 2006-10-30 2008-05-15 Hitachi Media Electoronics Co Ltd 中空封止素子およびその製造方法
JP2008546207A (ja) * 2005-06-07 2008-12-18 エプコス アクチエンゲゼルシャフト 電気的素子および製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295102A (en) * 1979-09-28 1981-10-13 Texas Instruments Incorporated Surface acoustic wave sensor sensing circuits
US4622855A (en) * 1984-12-31 1986-11-18 Schlumberger Technology Corporation Low thermal response time surface acoustic wave sensors
JP3088189B2 (ja) 1992-02-25 2000-09-18 三菱電機株式会社 弾性表面波装置
TW488044B (en) * 2001-02-09 2002-05-21 Asia Pacific Microsystems Inc Bulk acoustic filter and its package
JP3648462B2 (ja) 2001-04-27 2005-05-18 沖電気工業株式会社 弾性表面波分波器
TW200520201A (en) * 2003-10-08 2005-06-16 Kyocera Corp High-frequency module and communication apparatus
JP4587732B2 (ja) * 2004-07-28 2010-11-24 京セラ株式会社 弾性表面波装置
US7591415B2 (en) 2004-09-28 2009-09-22 3M Innovative Properties Company Passport reader for processing a passport having an RFID element
JP4423210B2 (ja) * 2005-01-21 2010-03-03 京セラ株式会社 高周波モジュール及びそれを用いた通信機器
US7804384B2 (en) 2005-07-13 2010-09-28 Murata Manufacturing Co., Ltd Acoustic wave filter device utilizing filters having different acoustic wave propagation directions
KR100629498B1 (ko) * 2005-07-15 2006-09-28 삼성전자주식회사 마이크로 패키지, 멀티―스택 마이크로 패키지 및 이들의제조방법
KR101302132B1 (ko) * 2006-02-06 2013-09-03 삼성전자주식회사 멀티 밴드용 필터 모듈 및 그의 제작 방법
JP4937605B2 (ja) * 2006-03-07 2012-05-23 太陽誘電株式会社 弾性境界波デバイス
JP5125728B2 (ja) * 2008-04-28 2013-01-23 パナソニック株式会社 弾性波素子と、これを用いた共振器、フィルタ、及び電子機器
US7863699B2 (en) * 2008-05-21 2011-01-04 Triquint Semiconductor, Inc. Bonded wafer package module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345673A (ja) * 2000-05-31 2001-12-14 Kyocera Corp 弾性表面波装置
JP2002043890A (ja) * 2000-07-31 2002-02-08 Kyocera Corp 弾性表面波装置
JP2004297633A (ja) * 2003-03-28 2004-10-21 Hitachi Ltd アンテナ共用器およびそれを用いた無線端末
WO2006008940A1 (ja) * 2004-07-20 2006-01-26 Murata Manufacturing Co., Ltd. 圧電フィルタ
JP2006186747A (ja) * 2004-12-28 2006-07-13 Nec Corp 弾性波デバイスおよび携帯電話
JP2008546207A (ja) * 2005-06-07 2008-12-18 エプコス アクチエンゲゼルシャフト 電気的素子および製造方法
JP2007060465A (ja) * 2005-08-26 2007-03-08 Seiko Epson Corp 薄膜弾性表面波デバイス
JP2008113178A (ja) * 2006-10-30 2008-05-15 Hitachi Media Electoronics Co Ltd 中空封止素子およびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034326A1 (ja) * 2012-08-29 2014-03-06 株式会社村田製作所 弾性波装置
CN104321966A (zh) * 2012-08-29 2015-01-28 株式会社村田制作所 弹性波装置
US9130539B2 (en) 2012-08-29 2015-09-08 Murata Manufacturing Co. Ltd. Elastic wave device with stacked piezoelectric substrates
JP2015091065A (ja) * 2013-11-06 2015-05-11 太陽誘電株式会社 電子部品およびモジュール
JP2015091066A (ja) * 2013-11-06 2015-05-11 太陽誘電株式会社 モジュール
US10171064B2 (en) 2014-10-31 2019-01-01 Murata Manufacturing Co., Ltd. Elastic wave device and elastic wave module
WO2016067873A1 (ja) * 2014-10-31 2016-05-06 株式会社村田製作所 弾性波装置及び弾性波モジュール
JP5983907B1 (ja) * 2014-10-31 2016-09-06 株式会社村田製作所 弾性波装置及び弾性波モジュール
US11177788B2 (en) 2016-12-26 2021-11-16 Murata Manufacturing Co., Ltd. Acoustic wave device, radio frequency front-end module, and communication device
JP2018157510A (ja) * 2017-03-21 2018-10-04 太陽誘電株式会社 マルチプレクサ
JP2019146025A (ja) * 2018-02-21 2019-08-29 太陽誘電株式会社 マルチプレクサ
JP7084739B2 (ja) 2018-02-21 2022-06-15 太陽誘電株式会社 マルチプレクサ
JP2019161408A (ja) * 2018-03-12 2019-09-19 太陽誘電株式会社 弾性波デバイス、モジュールおよびマルチプレクサ
JP7084744B2 (ja) 2018-03-12 2022-06-15 太陽誘電株式会社 弾性波デバイス、モジュールおよびマルチプレクサ
JP7068902B2 (ja) 2018-04-09 2022-05-17 太陽誘電株式会社 マルチプレクサ
JP2019186726A (ja) * 2018-04-09 2019-10-24 太陽誘電株式会社 マルチプレクサ
JP2020014094A (ja) * 2018-07-17 2020-01-23 太陽誘電株式会社 通信用モジュール
JP7093694B2 (ja) 2018-07-17 2022-06-30 太陽誘電株式会社 通信用モジュール
US20210152151A1 (en) * 2019-09-27 2021-05-20 Skyworks Solutions, Inc. Method of making stacked acoustic wave resonator package with laser-drilled vias

Also Published As

Publication number Publication date
JPWO2011102049A1 (ja) 2013-06-17
DE112010005279B4 (de) 2017-03-30
CN102763327B (zh) 2015-07-29
CN102763327A (zh) 2012-10-31
US20120306593A1 (en) 2012-12-06
DE112010005279T5 (de) 2013-01-24
JP5327378B2 (ja) 2013-10-30
US8723621B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP5327378B2 (ja) 弾性波デバイス
US11831300B2 (en) Elastic wave filter apparatus
US10469055B2 (en) Filter device including longitudinally coupled resonator elastic wave filter and elastic wave resonator
US9231557B2 (en) Duplexer
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
CN107070428B (zh) 电子部件
US9385686B2 (en) Acoustic wave device
US9722576B2 (en) Elastic wave filter and duplexer using same
JP2003332885A (ja) 弾性表面波分波器およびそれを有する通信装置
JPWO2013061694A1 (ja) 弾性波分波器
US7915972B2 (en) Balance filter and duplexer
JPWO2014168161A1 (ja) 高周波モジュール
JP2011087282A (ja) 弾性境界波フィルタ及びそれを備える分波器
US10177740B2 (en) Ladder filter and duplexer
JP4535286B2 (ja) 弾性表面波素子および当該素子を備えた弾性表面波装置
US8791774B2 (en) Branching filter
JP7103420B2 (ja) フィルタ装置およびマルチプレクサ
JP5029704B2 (ja) 弾性波デュプレクサ
WO2018142812A1 (ja) 弾性波装置、デュプレクサ及びフィルタ装置
JP2011199810A (ja) 弾性波分波器
JP2006129057A (ja) 弾性表面波装置
JPWO2018174064A1 (ja) 弾性波装置、分波器および通信装置
WO2012132093A1 (ja) 弾性波装置
JP2024057347A (ja) フィルタ装置
JP2011171848A (ja) 弾性波デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064133.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500467

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100052794

Country of ref document: DE

Ref document number: 112010005279

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846180

Country of ref document: EP

Kind code of ref document: A1