WO2011099052A1 - 冷凍システム - Google Patents

冷凍システム Download PDF

Info

Publication number
WO2011099052A1
WO2011099052A1 PCT/JP2010/000795 JP2010000795W WO2011099052A1 WO 2011099052 A1 WO2011099052 A1 WO 2011099052A1 JP 2010000795 W JP2010000795 W JP 2010000795W WO 2011099052 A1 WO2011099052 A1 WO 2011099052A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
energy
tube
refrigeration system
velocity
Prior art date
Application number
PCT/JP2010/000795
Other languages
English (en)
French (fr)
Inventor
鈴木隆
篠崎 隆
杉山 直樹
Original Assignee
株式会社E・T・L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社E・T・L filed Critical 株式会社E・T・L
Priority to JP2011553610A priority Critical patent/JP5537573B2/ja
Priority to PCT/JP2010/000795 priority patent/WO2011099052A1/ja
Publication of WO2011099052A1 publication Critical patent/WO2011099052A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Definitions

  • the present invention relates to a refrigeration system including a refrigerant liquefying unit that converts pressure energy of refrigerant into velocity energy to liquefy the refrigerant.
  • a heat conversion apparatus for condensation using a high-temperature / high-pressure refrigerant gas discharged from a compressor of a refrigeration system as a low-temperature refrigerant liquid an isobaric cooling unit that cools the high-temperature / high-pressure refrigerant gas by an isobaric change,
  • the remaining gas refrigerant partially liquefied in the cooling section is decompressed by the refrigerant acceleration phenomenon and liquefied with a decrease in enthalpy, and the refrigerant that has passed through the depressurization liquefaction section is depressurized and the enthalpy decreased by a refrigerant acceleration phenomenon.
  • a refrigeration cycle using an ejector that is disposed in a branch flow path to depressurize the refrigerant flow, and an ejector that is disposed downstream of the flow of the refrigerant in the branch flow path and evaporates the refrigerant is proposed. (Patent Document 2).
  • Each of these technologies has a function of converting the pressure energy of the refrigerant into velocity energy to liquefy the refrigerant, and therefore, a high-efficiency refrigeration system can be realized without using a decompression device that generates frictional heat.
  • an object of the present invention is to solve the above-described problems of the prior art and to provide a highly efficient refrigeration system.
  • the present invention relates to a compressor, a radiator, a refrigerant liquefying means for converting the pressure energy of the refrigerant into speed energy to liquefy the refrigerant, and a position where the speed energy of the refrigerant from the refrigerant liquefaction means is maintained in a dry state. It is characterized in that an energy conversion means for converting energy or work energy and a heat absorber are sequentially connected in an annular manner by a refrigerant pipe.
  • the refrigerant liquefying means that liquefies the refrigerant by converting the pressure energy of the refrigerant into velocity energy is provided, a highly efficient refrigeration system can be realized without using a decompression device that generates frictional heat.
  • the energy conversion means for converting the velocity energy of the refrigerant from the liquefaction means into potential energy or work energy while maintaining the dryness is provided, the velocity energy of the refrigerant is converted into potential energy or work energy, the flow velocity decreases, and the downstream Friction heat is less likely to be generated in the refrigerant pipe, the dryness of the refrigerant is maintained, the amount of heat absorbed in the heat absorbing portion is increased, and the efficiency can be improved accordingly.
  • the refrigerant liquefying means may be a spiral tube that liquefies the refrigerant with reduced pressure and enthalpy reduction by utilizing a choke phenomenon due to the acceleration of the refrigerant.
  • the energy conversion means may include a tube body that contains a resistor, and the velocity energy of the refrigerant may be converted into work energy when the refrigerant exceeds the resistor in the tube body.
  • the resistor in the tubular body may be spring-biased toward the inlet side of the tubular body.
  • the energy conversion means may include a tube body containing a rotating body, and the velocity energy of the refrigerant may be converted into work energy when the refrigerant rotates the rotating body in the tube body.
  • the refrigerant liquefying means may be provided vertically so that the refrigerant flows from the bottom to the top, and the energy conversion means may convert the velocity energy of the refrigerant into potential energy.
  • the refrigerant liquefying means may be an ejector for converting the pressure energy of the refrigerant into velocity energy.
  • the refrigerant liquefying means that liquefies the refrigerant by converting the pressure energy of the refrigerant into velocity energy
  • a highly efficient refrigeration system can be realized without using a decompression device that generates frictional heat. Since the energy conversion means for converting the velocity energy of the refrigerant from the liquefaction means into potential energy or work energy while maintaining the dryness is provided, the velocity energy of the refrigerant is converted into potential energy or work energy, the flow velocity decreases, and the downstream Thus, frictional heat is not generated in the refrigerant piping, the dryness of the refrigerant is maintained, the amount of heat absorbed in the heat absorbing portion is increased, and the efficiency can be improved accordingly.
  • FIG. 1 is a Ph diagram of a refrigeration system according to an embodiment of the present invention.
  • FIG. a to e are plan views of main components constituting the heat conversion apparatus for condensation. It is a block diagram which shows a tubular body. It is a block diagram which shows another pipe body.
  • a to C are Ph diagrams, respectively. It is a block diagram which shows another embodiment.
  • the refrigeration system includes a compressor 1, a mini heat exchange device (isostatic cooling unit) 3, a helical tube (decompressed liquefaction unit) 6, a helical thin tube (decompressed cooling unit) 8, a tube body 10, and an evaporator 11.
  • a compressor 1 a mini heat exchange device (isostatic cooling unit) 3
  • a helical tube decompressed liquefaction unit
  • a helical thin tube decompressed cooling unit
  • evaporator 11 are connected to each other by refrigerant pipes 2, 4, 13, suction pipe 12, large and short pipes (expansion part) 5, branch pipe (expansion part) 7, and collecting pipe (expansion part) 9.
  • the refrigeration function is realized by circulating the refrigerant in the direction of the arrow 21.
  • mini of the mini heat exchanger 3 or the mini fan 3-1 described later means “small”, and is used to clarify the feature of the present invention in which the condenser can be made smaller than before. Yes.
  • each apparatus group 3, 6, 7, 8, 9, and 10 from the mini heat exchange apparatus 3 to the pipe body 10 is collectively called the heat conversion apparatus 30 for condensation below.
  • the compressor 1 and the evaporator 11 are basically the same in structure and function as those used in the current refrigeration system, detailed description thereof is omitted here, and heat of condensation that is a feature of the present embodiment is omitted.
  • the conversion device 30 will be described in detail.
  • FIG. 2 is a Ph diagram of the refrigeration cycle of the refrigeration system using the condensing heat conversion device 30 according to the present embodiment.
  • a broken line indicates a conventional cycle, and a solid line indicates a cycle according to the present embodiment.
  • adiabatic compression by the compressor points a to b
  • condensation due to heat release from the isobaric change by the condenser points b to c
  • isoenthalpy changes due to the expansion valve throttling phenomenon points throttling phenomenon
  • the cycle is completed by evaporation (point d to point a) due to endothermic heat of isothermal expansion and isothermal expansion by the evaporator.
  • a high-temperature (40 ° C. or higher) and high-pressure (0.6 MPa or higher) gaseous refrigerant is discharged from the compressor 1 (point h to point i), and the mini heat constituting the condensation heat conversion device 30 is discharged.
  • Part of the refrigerant (5 to 50% by weight) is liquefied by the exchange device 3 (point i to point j).
  • the mini heat exchange device 3 is a normal air-cooling type in which a heat dissipation fan is provided in a pipe through which the refrigerant passes.
  • the mini heat exchange device 3 is not limited to this type, and may be a water-cooling type or the like.
  • the mini heat exchange device 3 In the condenser of the conventional refrigeration system, almost all of the high temperature / high pressure gas discharged from the compressor is liquefied, but the mini heat exchange device 3 is only required to liquefy a part of the high temperature / high pressure gas. Small size is possible.
  • the mini heat exchange device of the present embodiment can be about 1/10 that of a conventional condenser.
  • the mini heat exchanging device 3 is provided with a mini fan 3-1, which can be operated when a predetermined operating state is reached, as will be described later, to increase the heat exchanging capacity.
  • the refrigerant partially liquefied by the mini heat exchange device 3 enters the spiral pipe 6 through the refrigerant pipe 4 and the large and short pipes 5.
  • the large and short tubes 5 once become larger with respect to the mini heat exchange device 3, and the spiral tube 6 becomes smaller than the cross sectional area of the mini heat exchange device 3.
  • FIG. 3 is a plan view showing the shapes of the large and short tubes 5, the helical tube 6, the branch tube 7, the helical thin tube 8, and the collecting tube 9.
  • the large and short tubes 5 have a cylindrical shape with a central thick portion having a length L1 of 10 to 50 mm and an inner diameter D1 of 8 to 20 mm. Since both ends thereof are connected to the refrigerant pipe 4 and the spiral pipe 6, the shapes thereof are cylindrical shapes that can be connected by inserting the refrigerant pipe 4 and the spiral pipe 6, respectively.
  • the inner diameter D1 of the central thick portion is preferably set larger than the inner diameter of either the refrigerant pipe 4 or the helical pipe 6. As shown in FIG.
  • the helical tube 6 has a form in which a thin tube is spirally wound.
  • the inner diameter and the number of windings are determined from various specifications such as the refrigeration capacity of the refrigeration system, but the inner diameter is allowed to be 2 to 150 mm, preferably 2 to 50 mm, and most preferably the inner diameter is 3 to 8 mm. is there.
  • the inner diameter of the thin tube is 5 mm
  • the number of turns is 23
  • the diameter of the spiral is 30 mm
  • the length of the thin tube is 2.3 m.
  • the refrigerant pipes 2 and 4 have an inner diameter of 7.7 mm
  • the refrigerant pipe 13 and the suction pipe 12 have an inner diameter of 10.7 mm.
  • the refrigerant When the partially liquefied refrigerant enters the spiral tube 6, the refrigerant is accelerated by the suction action of the compressor 1 (referred to as an acceleration phenomenon of the refrigerant), and the amount of liquefaction is increased with reduced pressure and enthalpy reduction.
  • the liquid is almost liquefied and becomes a medium pressure (0.4 to 0.6 MPa) liquid refrigerant at the outlet of the spiral tube 6 (point j to point k in FIG. 2).
  • the conventional general cupilary tube is quite a thin tube, and the kinetic energy of the refrigerant is lost due to the contracted flow and vortex generated by constricting the high-pressure liquid refrigerant, causing a pressure drop.
  • the helical tube 6 has a very small constriction loss due to contraction / vortex and a small loss of kinetic energy of the refrigerant.
  • the gas-liquid separation of the refrigerant is promoted by the centrifugal force in the spiral tube. Specifically, the liquid phase part is concentrated and attached to the inner wall of the pipe, and the gas phase part flows through the central part of the pipe. A choke phenomenon due to the acceleration of the refrigerant appears, and the refrigerant is liquefied with a reduced pressure and a decrease in enthalpy.
  • the main cause of the temperature drop in the spiral tube 6 is that the enthalpy of the refrigerant, which is thermal energy, is converted into velocity energy in the spiral tube 6 and the enthalpy of the refrigerant is reduced, leading to the phenomenon of a decrease in static temperature.
  • the helical tube 6 constitutes an energy conversion device that converts enthalpy into velocity energy.
  • the flow rate of the refrigerant in the spiral tube 6 is preferably set to be twice or more the flow rate in the mini heat exchange device 3.
  • the decompression liquefaction part is a spiral tube 6 wound spirally, but as shown in FIG. 2, as long as the gas refrigerant can be substantially liquefied with decompression and enthalpy reduction, It is not limited to a spiral tube, but may be a meandering tube or a straight tube. In this case, it is desirable to provide appropriate throttle means at the inlet of the meandering pipe or straight pipe, or at a plurality of locations in the middle of the pipe. In either case, in the reduced pressure liquefaction unit, the gas refrigerant is almost liquefied by means other than heat dissipation, that is, by conversion to enthalpy velocity energy.
  • the spiral tubule 8 has a form in which the tubule is spirally wound in the same manner as the spiral tube 6.
  • the inner diameter of the spiral tube 8 is set to be smaller than the inner diameter of the spiral tube 6.
  • the inner diameter of the spiral tube 8 is desirably 1.2 to 3 mm.
  • two spirally wound pieces are connected in parallel, but three or more pieces may be connected in parallel, or even one.
  • two spiral tubules with different winding directions connected in series, or a configuration in which they are further connected in parallel may be used. It is preferable that the cross-sectional area of the portion through which the refrigerant passes through the helical thin tube 8 (the sum of the plurality of cross-sectional areas connected in parallel) is smaller than the cross-sectional area of the threaded tube 6. By reducing the cross-sectional area, as described later, the refrigerant spins through the spiral tubule 8 and is accelerated to reduce the pressure, so that the cooling effect is enhanced.
  • the inner diameter of the thin tube is 2.5 mm
  • the winding number is 19 turns
  • the spiral diameter is 15 mm
  • the length of the thin tube is 0.72 m. Configured.
  • the branch pipe 7 branches the refrigerant exiting from one spiral pipe 6 into two spiral narrow pipes 8.
  • the main portion (thick portion) of the branch pipe 7 has a substantially cylindrical shape with a length L2 of 10 to 50 mm and an inner diameter D2 of 10 to 20 mm. Both ends connected to the helical tube 6 and the helical thin tube 8 are in the shape of a cylinder that can be connected by inserting the helical tube 6 and the helical thin tube 8 respectively.
  • the connection side of the branch tube 7 has two connection holes.
  • the number of connection holes is as follows.
  • the number of tubules constituting the spiral tubule 8 is matched.
  • the inner diameter D2 is preferably set larger than the inner diameter of either the spiral tube 6 or the spiral capillary tube 8.
  • the refrigerant When the substantially liquefied refrigerant enters the spiral tubule 8, the refrigerant is accelerated by the suction action of the compressor 1 or the like (referred to as an acceleration phenomenon of the refrigerant), and the liquefied refrigerant is cooled with reduced pressure and enthalpy reduction. .
  • the pressure At the outlet of the helical thin tube 8, the pressure is reduced and cooled to become a low-temperature liquid, and the pressure is lowered to become a low-pressure (0.4 MPa or less) liquid (point k to point l in FIG. 2).
  • the refrigerant in the spiral capillary 8 changes in a state substantially along the saturated liquid line L, as shown in FIG.
  • the helical thin tube 8 also has a very small throttle loss due to contraction and vortex and a small loss of kinetic energy of the refrigerant.
  • the gas-liquid separation of the refrigerant is promoted by the centrifugal force in the spiral tubule 8, specifically, the liquid phase part is concentrated and attached to the inner wall of the pipe, and the gas phase part flows through the central part of the pipe.
  • a choke phenomenon due to the acceleration of the refrigerant appears in the phase portion, and the refrigerant is liquefied with a reduced pressure and a decrease in enthalpy. Note that the position where the choke phenomenon appears varies depending on the configuration of each device or the change in the flow rate, flow rate, etc.
  • the spiral capillary 8 also constitutes an energy conversion device that converts the enthalpy of the refrigerant into velocity energy.
  • the flow rate of the refrigerant in the spiral capillary 8 is preferably at least twice the flow rate in the mini heat exchanger 3 and higher than the flow rate in the spiral tube 6.
  • the spiral tubule 8 is used.
  • the configuration is not limited to a spiral shape and may be a meandering tube or a straight tube as long as the liquid refrigerant can be cooled with reduced pressure and enthalpy reduction.
  • the liquid refrigerant is cooled by means other than heat dissipation, that is, by conversion to enthalpy velocity energy.
  • the helical tubule 8, the collecting tube 9 and the tubular body 10 are arranged vertically along the vertical line, and the tubular body 10 is connected to the outlet of the collecting tube 9. .
  • the tube body 10 has a substantially cylindrical tube body 10A having an enlarged diameter.
  • the tube body 10A is formed with an inlet 10B and an outlet 10C to which a refrigerant pipe is connected, respectively.
  • a resistor 10D that resists the flow of the refrigerant is accommodated.
  • the resistor 10D is supported by a spring 10E, and when the refrigerant flows, the resistor 10D is pressed toward the outlet 10C against the spring force of the spring 10E.
  • the spring force of the spring 10 ⁇ / b> E, the weight of the resistor 10 ⁇ / b> D, and the like are set so that the resistor 10 ⁇ / b> D becomes resistant to the flow of the refrigerant and the flow rate of the refrigerant becomes substantially zero at the outlet 10 ⁇ / b> C.
  • the refrigerant has a large velocity energy at the outlet of the spiral capillary 8, and if the refrigerant flows into the downstream refrigerant pipe 13 while maintaining this large velocity energy, Frictional heat is generated in the refrigerant pipe 13, and the dryness of the refrigerant is increased accordingly.
  • the refrigerant in the spiral capillary 8 reaches from the state of point k shown in FIG. 2 to the state of point l.
  • the degree of dryness of the refrigerant is increased, After passing through l, it moves to the state of the point m, and the heat absorption amount in the evaporator (heat absorption part) 11 is lowered from Q1 to Q2, and the efficiency is lowered by the difference.
  • the refrigerant that has become a low-temperature liquid by the helical thin tube 8 flows from below into the tubular bodies (energy conversion means) 10 that are arranged vertically along the vertical line, and in this tubular body 10 against the spring force of the spring 10E, the resistor 10D is pushed away and flows out from above. During this time, the velocity energy of the refrigerant is converted into work energy (or potential energy). That is, the velocity energy is released as work energy (or potential energy), and the flow velocity becomes substantially zero at the outlet 10 ⁇ / b> C of the tube body 10.
  • the refrigerant evaporates due to the endothermic heat of isobaric and isothermal expansion (point l to point h in FIG. 2), thereby completing the cycle in FIG.
  • the helical tube 6 and the helical tube 8 are connected in series, but the capacity of the mini heat exchange device 3 is increased, and the helical tube 6 is omitted at the outlet of the heat exchange device 3.
  • the efficiency can be improved by connecting the tubular body 10 to the outlet of the helical thin tube 8.
  • the configuration of the tube body 10 is not limited to the above configuration, and any configuration may be adopted as long as the configuration can convert the velocity energy of the refrigerant into work energy (or potential energy).
  • the form of the resistor 10D may be any form such as a sphere, a flat plate, a polygon, or a polygonal cone, and the spring 10E may be omitted.
  • the tubular bodies 10 are arranged vertically and vertically, but may be arranged in a horizontal arrangement, an oblique arrangement, or the like.
  • the resistor 10D and the spring 10E may be omitted, and the tubes 10 may be arranged vertically. In this case, the velocity energy is converted into potential energy in the process in which the refrigerant having velocity rises in the tube body 10.
  • FIG. 5 shows another form.
  • An impeller 25 is disposed in the tube body 10, and a generator 27 is connected to a rotating shaft 26 of the impeller 25.
  • the generator 27 is, for example, a power supply circuit for a driving motor of the compressor 1 shown in FIG. (Not shown).
  • the energy efficiency is further improved by rotating the impeller 25 with the velocity energy of the refrigerant, converting the energy into work energy, and collecting the electric power of the generator 27 in the power supply circuit.
  • FIG. 6A to 6C Ph diagrams, respectively.
  • the change from point 3 to point 4 is an isentropic change, and the flow rate is small due to pipe friction, so the energy equation is expressed as follows.
  • dh (enthalpy change) dq (heat quantity from outside) ⁇ dwt (work quantity to outside) Therefore, the changes of points 3 to 4 are as follows.
  • h 4 ⁇ h 3 q 34 (friction heat) ⁇ wt 34 (pressure loss) Since the heat generated by friction is equal to the pressure loss, it is expressed by a change in isenthalpy as shown in the following equation.
  • h 4 -h 3 0
  • z is the height in the vertical direction.
  • l is the displacement of the spring
  • k is the spring constant.
  • I is the moment of inertia of the rotating body
  • is the angular velocity of the rotating body.
  • the refrigerant is liquefied (point i to point j) in the isobaric cooling section (mini heat exchange apparatus 3), and the reduced pressure liquefying section.
  • the refrigerant is accelerated, and the remaining gas refrigerant partially liquefied is substantially liquefied (point j to point k) with decompression and refrigerant enthalpy reduction.
  • the narrow tube 8 the refrigerant is accelerated and the liquefied refrigerant is supercooled (point k to point l) with decompression and refrigerant enthalpy reduction, so that the COP of the refrigeration cycle is improved.
  • the refrigerant is depressurized by the condensing heat conversion device 30, there is no need for a depressurization mechanism such as a narrow tube (generally, a capillary tube having an inner diameter of about 0.8 mm) or an expansion valve as in the prior art.
  • a depressurization mechanism such as a narrow tube (generally, a capillary tube having an inner diameter of about 0.8 mm) or an expansion valve as in the prior art.
  • the cycle can be simplified.
  • the reduced pressure liquefaction part (spiral tube 6) and the reduced pressure cooling part (spiral capillary 8) the refrigerant enthalpy, which is thermal energy, is converted into velocity energy, the refrigerant enthalpy is reduced, and the phenomenon of a decrease in static temperature occurs. Therefore, the heat exchange device can be downsized as compared with the case of heat dissipation.
  • the heat conversion device 30 for condensation is composed of an isobaric cooling unit (mini heat exchange device 3), a reduced pressure liquefying unit (spiral tube 6), and a reduced pressure cooling unit (spiral tubule 8).
  • the decompression liquefaction section (spiral tube 6) may be configured by connecting a plurality of spiral tubes in series. In this case, at points j to k in FIG. Become.
  • the reduced-pressure cooling unit (spiral thin tube 8) may also be configured by connecting a plurality of spiral tubes in series. In this case, points k to l in FIG. 2 are cycle lines having a plurality of bending points. .
  • FIG. 7 shows another embodiment.
  • This cycle is a refrigeration cycle using a so-called ejector that converts pressure energy of refrigerant into velocity energy.
  • Reference numeral 61 denotes a compressor.
  • a radiator 62 is connected to the compressor 61, and a receiver tank 63 is connected to the radiator 62.
  • An ejector 64 is connected to the receiver tank 63, and the ejector 64 decompresses and expands the refrigerant flowing out of the radiator 62, sucks the gas-phase refrigerant evaporated in the evaporator 65 described later from the suction part 64 ⁇ / b> A, and expands energy. Is converted into pressure energy to increase the suction pressure of the compressor 61.
  • the refrigerant flowing out from the ejector 64 is sucked into the compressor 61, thereby forming a refrigerant circulation path.
  • a branch channel 66 for guiding the branched refrigerant flow to the suction section 64A, and an evaporator 65 is provided in the branch channel 66.
  • a fixed throttle 67 such as a capillary tube is provided as a throttle means for adjusting the flow rate (cooling capacity generated in the evaporator 65).
  • the ejector 64 sucks the gas-phase refrigerant evaporated by the nozzle 64B and the evaporator 65 that convert the pressure energy (pressure head) of the high-pressure refrigerant flowing out of the radiator 62 into velocity energy (speed head) to decompress and expand the refrigerant.
  • the tube body 10 is connected to the outlet of the diffuser portion 64 ⁇ / b> C, and the compressor 61 is connected to the tube body 10 via an accumulator 68.
  • the tubular body 10 has substantially the same structure as that of the above embodiment, and the description thereof is omitted.
  • the diffuser portion 64C and the tube body 10 are arranged vertically along a vertical line.
  • the refrigerant has a large velocity energy. If the refrigerant flows into the downstream refrigerant pipe 69 while maintaining this large velocity energy, friction heat is generated in the refrigerant pipe 69, and accordingly, The dryness of the refrigerant is increased, the amount of heat absorbed in the evaporator 65 is reduced, and the efficiency is reduced accordingly.
  • the outlet refrigerant of the diffuser portion 64C flows from below into the tubular bodies (energy conversion means) 10 arranged vertically along the vertical line, and the spring of the spring 10E is within the tubular body 10.
  • the resistor 10D is pushed away and flows out from above, during which the velocity energy of the refrigerant is converted into work energy (or potential energy). That is, the velocity energy is released as work energy (or potential energy), and the flow velocity becomes substantially zero at the outlet 10 ⁇ / b> C of the tube body 10.
  • the flow velocity of the refrigerant becomes substantially zero at the outlet 10C of the tube body 10
  • frictional heat is not generated in the refrigerant pipe 69, and the dryness of the refrigerant is maintained.
  • the heat absorption amount at 65 can be maintained, and the efficiency can be maintained.
  • the configuration of the tube body 10 is not limited to the above configuration, and it is sufficient that the velocity energy of the refrigerant can be converted into work energy (or potential energy).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 高効率の冷凍システムを提供する。 圧縮機と、放熱器と、冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段と、前記冷媒液化手段からの冷媒の速度エネルギを乾き度を維持したまま位置エネルギ又は仕事エネルギに変換するエネルギ変換手段と、吸熱器とを順に環状に冷媒配管で接続したものである。

Description

冷凍システム
 本発明は、冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段を備えた冷凍システムに関する。
 従来、冷凍システムの圧縮機から吐出する高温・高圧冷媒ガスを低温冷媒液とする凝縮用熱変換装置であって、高温・高圧冷媒ガスを等圧変化により冷却する等圧冷却部と、等圧冷却部で一部液化した残りのガス冷媒を冷媒の加速現象によって減圧、及びエンタルピ減少を伴って液化する螺旋管と、減圧液化部を経た冷媒を冷媒の加速現象によって減圧、及びエンタルピ減少を伴って冷却する螺旋管と、を含んで構成される凝縮用熱変換装置が提案されている(特許文献1)。また、冷媒を吸入し圧縮する圧縮機と、圧縮機から吐出される高圧冷媒の放熱を行う放熱器と、放熱器下流側の高圧冷媒の圧力エネルギを速度エネルギに変換して冷媒を減圧膨張させるとともに、冷媒を吸引するエジェクタと、圧縮機と放熱器とエジェクタとを含み冷媒が循環する冷媒循環路の放熱器とエジェクタとの間から分岐させた冷媒流れをエジェクタに導き吸引させる分岐流路と、分岐流路に配置されて冷媒流れを減圧する絞り手段と、分岐流路において絞り手段の冷媒流れ下流側に配置され、冷媒を蒸発させる蒸発器とを備えるエジェクタを用いた冷凍サイクルが提案されている(特許文献2)。これら技術は、いずれも冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する機能を有し、したがって、摩擦熱の発生を伴う減圧装置を用いることなく、高効率の冷凍システムを実現できる。
特許第4,411,349号公報 特開2008-8572号公報
 しかし、上述した従来の螺旋管やエジェクタを使用した場合、冷媒が大きな速度エネルギを有するため、下流の冷媒配管内で摩擦熱を生じさせ、冷媒の乾き度が大きくなり、吸熱部での吸熱量が低下し、その分だけ効率が低下する問題があった。
 そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、さらに高効率の冷凍システムを提供することにある。
 本発明は、圧縮機と、放熱器と、冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段と、前記冷媒液化手段からの冷媒の速度エネルギを乾き度を維持したまま位置エネルギ又は仕事エネルギに変換するエネルギ変換手段と、吸熱器とを順に環状に冷媒配管で接続したことを特徴とする。
 この発明では、冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段を備えるため、摩擦熱の発生を伴う減圧装置を用いることなく、高効率の冷凍システムを実現できると共に、冷媒液化手段からの冷媒の速度エネルギを乾き度を維持したまま位置エネルギ又は仕事エネルギに変換するエネルギ変換手段を備えたから、冷媒の速度エネルギが位置エネルギ又は仕事エネルギに変換され、流速が低下し、下流の冷媒配管内で摩擦熱を生じさせることが少なくなり、冷媒の乾き度が維持され、吸熱部での吸熱量が増加し、その分だけ効率を向上させることができる。
 この場合において、前記冷媒液化手段が冷媒の加速によるチョーク現象を利用して冷媒を減圧、及びエンタルピ減少を伴って液化する螺旋管であってもよい。
 前記エネルギ変換手段が抵抗体を収容した管体を備え、冷媒の速度エネルギを冷媒が管体内で抵抗体を越える際の仕事エネルギに変換してもよい。
 前記管体内の抵抗体が当該管体の入口側に向けてばね付勢されていてもよい。
 前記エネルギ変換手段が回転体を収容した管体を備え、冷媒の速度エネルギを冷媒が管体内の回転体を回転させる際の仕事エネルギに変換してもよい。
 前記冷媒液化手段が下から上に冷媒を流すように鉛直に設けられ、前記エネルギ変換手段が冷媒の速度エネルギを位置エネルギに変換してもよい。
 この場合において、前記冷媒液化手段が冷媒の圧力エネルギを速度エネルギに変換するためのエジェクタであってもよい。
 本発明では、冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段を備えるため、摩擦熱の発生を伴う減圧装置を用いることなく、高効率の冷凍システムを実現できると共に、冷媒液化手段からの冷媒の速度エネルギを乾き度を維持したまま位置エネルギ又は仕事エネルギに変換するエネルギ変換手段を備えたから、冷媒の速度エネルギが位置エネルギ又は仕事エネルギに変換され、流速が低下し、下流の冷媒配管内で摩擦熱を生じさせることがなく、冷媒の乾き度が維持されて、吸熱部での吸熱量が増加し、その分だけ効率を向上させることができる。
本発明の一実施の形態を示す構成図である。 本発明の一実施の形態による冷凍システムのP-h線図である。 a~eは凝縮用熱変換装置を構成する主要構成要素の平面図である。 管体を示す構成図である。 別の管体を示す構成図である。 A~Cは、夫々Ph線図である。 別の実施の形態を示す構成図である。
 以下、本発明の一実施の形態を添付の図面を参照して説明する。
 図1において、冷凍システムは圧縮機1とミニ熱交換装置(等圧冷却部)3と螺旋状管(減圧液化部)6と螺旋状細管(減圧冷却部)8と管体10と蒸発器11とを要素機器として備え、それらの機器を冷媒配管2、4、13、サクション管12、大短管(膨張部)5、分岐管(膨張部)7、集合管(膨張部)9によって接続し、冷媒を矢印21の方向に循環させる事によって冷凍機能が具現されている。なお、ミニ熱交換装置3、或いは後述するミニファン3-1の「ミニ」は「小型」の意味であり、従来に比べて凝縮器が小さくできる本発明の特徴を明確にするために用いている。また、この明細書では、以下において、ミニ熱交換装置3から管体10に至るまでの各機器群3,6,7,8,9,10を纏めて凝縮用熱変換装置30と呼称する。
 圧縮機1、蒸発器11は、現行の冷凍システムに使用される物と構造・機能が基本的に変わらないので、ここでは詳細な説明を省略し、本実施の形態の特徴である凝縮用熱変換装置30について詳細に説明する。
 図2は、本実施の形態に係る凝縮用熱変換装置30を用いた冷凍システムの冷凍サイクルのP-h線図である。破線は、従来のサイクルを示し、実線は、本実施の形態のサイクルを示している。従来のサイクルでは、圧縮機による断熱圧縮(点a~点b)、凝縮器による等圧変化の放熱による凝縮(点b~点c)、膨張弁の絞り現象による等エンタルピ変化(点c~点d)、蒸発器による等圧、等温膨張の吸熱による蒸発(点d~点a)によりサイクルが完了している。
 本実施の形態では、圧縮機1から高温(40℃以上)・高圧(0.6MPa以上)ガス状の冷媒が吐出され(点h~点i)、凝縮用熱変換装置30を構成するミニ熱交換装置3で冷媒の一部(5~50重量%)が液化する(点i~点j)。
 図1ではミニ熱交換装置3は冷媒の通るパイプに放熱ファンを設けた通常の空冷タイプを示したが、ミニ熱交換装置3はこのタイプに限らず、水冷タイプその他でもよいことは言うまでもない。従来の冷凍システムの凝縮器では圧縮機から吐出される高温・高圧ガスをほぼ全部液化するが、それに比べてミニ熱交換装置3は高温・高圧ガスの一部を液化すればよいので、非常に小型が可能である。同じタイプの熱交換装置(凝縮器)を有する同じ冷却能力の冷凍システムと比較した場合、本実施の形態のミニ熱交換装置は従来の凝縮器の1/10程度にすることが可能である。なお、ミニ熱交換装置3には、ミニファン3-1が備えられており、後述するように、所定の運転状態になった場合に稼働して、熱交換能力を高めることができる。
 ミニ熱交換装置3で一部液化された冷媒は、冷媒配管4、大短管5を経て螺旋状管6に入る。冷媒流路の断面積で見ると、ミニ熱交換装置3を基準にして、一旦、大短管5で大きくなり、螺旋状管6では、ミニ熱交換装置3の断面積よりも小さくなる。
 図3は大短管5、螺旋状管6、分岐管7、螺旋状細管8、及び、集合管9の形状を示す平面図である。
 大短管5の寸法は図3(a)に示すように中央の太い部分の長さL1が10~50mm、内径D1が8~20mmの円筒状である。その両端は冷媒配管4と螺旋状管6に接続されるので、その形状はそれぞれ冷媒配管4と螺旋状管6を挿入して、接続できる寸法の円筒状になっている。中央の太い部分の内径D1は冷媒配管4と螺旋状管6のいずれの内径よりも大きく設定されるのが好ましい。
 螺旋状管6は図3(b)に示すように細管を螺旋伏に巻いた形態である。その内径や巻き数は、冷凍システムの冷凍能力等、様々な仕様から決定されるが、内径で2~150mmまで許容し、望ましくは内径2~50mm、実質的に最も望ましくは内径3~8mmである。例えば、フロン冷媒R134aを用いた2000cal/h程度の冷凍機の揚合、細管の内径5mm、巻き数は23巻き、螺旋の径30mmで、細管の長さは2.3mである。なお、冷媒配管2、4の内径は7.7mm、冷媒配管13およびサクション管12の内径は10.7mmである。
 一部液化した冷媒が螺旋状管6に入ると、圧縮機1の吸引作用等により、冷媒が加速されて(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、液化量を増してほぼ液化し、螺旋状管6の出口では中圧(0.4~0.6MPa)液冷媒となる(図2の点j~点k)。従来の一般的なキュピラリチューブはかなり細管であり、高圧の液体冷媒を絞ることにより発生する縮流・渦により冷媒の運動エネルギを損失し、圧力低下を生じさせるが、これと比較した場合に、螺旋状管6は縮流・渦による絞り損失が極めて小さく、冷媒の運動エネルギの損失が小さい。また、螺旋管内の遠心力により冷媒の気液分離が促進されて、具体的には管内壁に液相部が集約されて付着し、気相部が管中央部を流れ、この気相部では冷媒の加速によるチョーク現象が出現し、減圧及びエンタルピ減少を伴って冷媒が液化される。螺旋状管6内での温度低下の主因は、螺旋状管6内において熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、冷媒のエンタルピが減少し、静温度低下の現象の生起に至ったものと判断される。すなわち螺旋状管6はエンタルピを速度エネルギに変換するエネルギ変換デバイスを構成する。
 上記螺旋状管6内の冷媒の流速は、本冷凍システムの設計において、ミニ熱交換装置3内の流速の2倍以上の設定が望ましい。
 本構成では、上記減圧液化部を、螺旋状に巻いた螺旋状管6としたが、図2に示すように、減圧、及びエンタルピ減少を伴って、ガス冷媒をほぼ液化できる構成であれば、螺旋状管に限定されず、蛇行管や直管等でもよい。この場合には、蛇行管や直管の入口、或いは管の途中の複数箇所等に適宜の絞り手段を介装することが望ましい。いずれも減圧液化部では、放熱以外の手段によって、すなわちエンタルピの速度エネルギへの変換により、ガス冷媒がほぼ液化される。
 螺旋状管6で中圧液冷媒となった冷媒は、分岐管7を経て螺旋状細管8に入る。螺旋状細管8は、図3(d)に示すように、螺旋状管6と同様に細管を螺旋状に巻いた形態である。螺旋状細管8の内径は螺旋状管6の内径よりも細く設定される。例えば、螺旋状管6の内径が、3~8mmに設定された場合、螺旋状細管8の内径は、1.2~3mmが望ましい。本実施の形態では、螺旋状に巻いたものを2本並列に接続しているが、3本以上を並列に接続してもよいし、1本でも可能である。また、巻き方向が異なる螺旋状細管の2本の直列に接続したもの、あるいは、それを更に並列に接続した形態でもよい。螺旋状細管8の冷媒の通る部分の断面積(複数本が並列に接続されている揚合は、複数本の断面積の合計)が螺施状管6の断面積より小さいことが好ましい。断面積を小さくすることによって、後述のように、冷媒は螺旋状細管8中をスピン回転し加速され、圧力が下がるため、冷却効果が高くなる。
 例えば、2000cal/h程度の冷凍機の場合、細管の内径2.5mm、巻き数は19巻き、螺旋の径は15mmで、細管の長さは0.72mのものを2本で並列に接続して構成される。
 図3(c)に示すように、分岐管7は1本の螺旋状管6から出る冷媒を2本の螺旋状細管8に分岐させる。分岐管7の主要部(太い部分)の長さL2は10~50mm、内径D2は10~20mmのほぼ円筒状である。螺旋状管6、螺旋状細管8に接続される両端はそれぞれ螺旋状管6、螺旋状細管8を挿入して、接続できる寸法の円筒状になっている。本実施の形態では、螺旋状細管8は2本の細管から形成されているので、分岐管7の螺旋状細管8接続側は2本の接続孔を有しているが、接続孔の数は螺旋状細管8を構成する細管の本数と一致させる。
 例えば、内径D2は螺旋状管6と螺旋状細管8のいずれの内径よりも大きく設定されるのが好ましい。
 ほぼ液化した冷媒が螺旋状細管8に入ると、圧縮機1の吸引作用等により、冷媒が加速されて(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、液化冷媒が冷却される。螺旋状細管8出口では、減圧され、冷却されて低温の液体となり、圧力も下がり低圧(0.4MPa以下)液となる(図2の点k~点l)。螺旋状細管8内の冷媒は、図2に示すように、飽和液線Lにほぼ沿った状態で変化する。従来のキュピラリチューブと比較すると、螺旋状細管8も縮流・渦による絞り損失が極めて小さく、冷媒の運動エネルギの損失が小さい。また、螺旋状細管8内の遠心力により冷媒の気液分離が促進されて、具体的には管内壁に液相部が集約されて付着し、気相部が管中央部を流れ、この気相部では同様に冷媒の加速によるチョーク現象が出現し、減圧及びエンタルピ減少を伴って冷媒が液化される。なお、各機器の構成、或いは冷媒の流量、流速などの変化により、チョーク現象が出現する位置は異なる。たとえば螺旋状管6内では出現せず、螺旋状細管8内に至って初めて出現することも考えられる。
 この螺旋状細管8内での温度低下の主因も、螺旋状管6内での温度低下と同様に、熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、エンタルピが減少し、静温度低下の現象の生起に至ったものと判断される。
 すなわち、螺旋状細管8も、螺旋状管6同様に、冷媒のエンタルピを速度エネルギに変換するエネルギ変換デバイスを構成している。
 上記螺旋状細管8内の冷媒の流速は、本冷凍システムの設計において、ミニ熱交換装置3内の流速の2倍以上で、螺旋状管6内の流速以上であることが望ましい。
 本構成では、螺旋状細管8としたが、減圧、及びエンタルピ減少を伴って、液冷媒を冷却できる構成であれば、螺旋状に限定されず、蛇行管や直管等でもよい。この場合、蛇行管や直管の入口、或いは管の途中の複数箇所等に適宜の絞り手段を介装することが望ましい。いずれも本構成では、放熱以外の手段によって、すなわちエンタルピの速度エネルギへの変換により、液冷媒が冷却される。
 本実施の形態では、図4に示すように、螺旋状細管8、集合管9及び管体10が鉛直線に沿って上下に配列され、集合管9の出口に管体10が接続されている。
 この管体10は、拡径した略円筒状の管本体10Aを有し、管本体10Aには、夫々冷媒配管が接続される入口10B及び出口10Cが形成され、管本体10Aの内部には、冷媒の流れに抵抗となる抵抗体10Dが収容されている。この抵抗体10Dは、ばね10Eで支持され、冷媒が流れると抵抗体10Dは、ばね10Eのばね力に抗して、出口10C側に押圧される。この管体10では、抵抗体10Dが冷媒の流れに対し抵抗となり、出口10Cでは冷媒の流速がほぼゼロとなるように、ばね10Eのばね力や抵抗体10Dの重量などが設定されている。
 本構成では、上述したように、螺旋状細管8の出口で冷媒が大きな速度エネルギを有しており、仮にこの大きな速度エネルギを維持したまま、冷媒が、下流の冷媒配管13内に流入すると、冷媒配管13内で摩擦熱を生じさせ、その分、冷媒の乾き度を大きくすることとなる。すなわち、螺旋状細管8内の冷媒は、図2に示す点kの状態から点lの状態に至るが、冷媒配管13内で摩擦熱を生じさせると、冷媒の乾き度を大きくして、点lを経たのちに点mの状態に移動し、蒸発器(吸熱部)11での吸熱量をQ1からQ2に低下させ、その差分だけ効率を低下させる。
 本実施の形態では、螺旋状細管8により低温液体となった冷媒は、鉛直線に沿って上下に配列された管体(エネルギ変換手段)10内に下方から流入し、この管体10内で、ばね10Eのばね力に抗して、抵抗体10Dを押し退けて上方から流出し、この間、冷媒の速度エネルギを仕事エネルギ(又は位置エネルギ)に変換する。
 すなわち、速度エネルギを仕事エネルギ(又は位置エネルギ)として放出し、管体10の出口10Cでは、流速がほぼゼロとなる。
 この構成によれば、管体10の出口10Cで、冷媒の流速がほぼゼロとなるため、冷媒配管13内で摩擦熱を生じさせることがなく、従って、冷媒の乾き度は維持されるため、点lを経たのち点mの状態に移動はせず、蒸発器(吸熱部)11での吸熱量をQ1に維持でき、効率を維持することができる。
 また、管本体10A内に液冷媒が存在すると、この液冷媒は管本体10A内を自重により落下する。この落下する液冷媒に、管本体10A内を上昇する冷媒が衝突すると、この衝突によっても、上昇する冷媒の速度エネルギが仕事エネルギに変換される。従って、実証試験を通じ、この衝突により消費するエネルギ分を求め、このエネルギ分を加味して、出口10Cで冷媒の流速がほぼゼロとなるように、ばね10Eのばね力や抵抗体10Dの重量などを設定することが望ましい。
 蒸発器11では、等圧、等温膨張の吸熱により、冷媒が蒸発し(図2の点l~点h)、これにより図2のサイクルが完了する。
 上記実施の形態では、螺旋状管6、及び螺旋状細管8を直列に接続しているが、ミニ熱交換装置3の容量を大型化し、該熱交換装置3の出口に螺旋状管6を省略して螺旋状細管8を直接接続することは可能である。この場合も螺旋状細管8の出口に管体10を接続することで効率向上が図られる。
 管体10の構成は、上記の構成に限定されず、冷媒の速度エネルギを仕事エネルギ(又は位置エネルギ)に変換できる構成であれば、任意の構成が採用される。
 例えば、抵抗体10Dの形態は、球体、平板、多角形体、多角錐体など何れの形態でもよく、ばね10Eの省略も可能である。また、管体10は鉛直上下に配列したが、水平配列、斜め配列などの配列であってもよい。冷媒の速度エネルギを仕事エネルギに変換せず、位置エネルギだけに変換する場合、抵抗体10D及びばね10Eを省略して、この管体10を鉛直上下に配列するだけでよい。この場合、速度を持った冷媒が管体10内を上昇する過程で速度エネルギが位置エネルギに変換される。
 図5は、別の形態を示す。管体10内には羽根車25が配置され、羽根車25の回転軸26には発電機27が接続され、発電機27は、例えば図1に示す圧縮機1の駆動用モータの電源回路(不図示)に結線される。この構成では、冷媒の速度エネルギで羽根車25を回転し、該エネルギを仕事エネルギに変換し、発電機27の電力を電源回路に回収することで、エネルギ効率がさらに向上する。
 図6A~図6Cは、夫々Ph線図である。
 図6A(従来の冷凍サイクル)では、点3~点4の変化が、等エントロピ変化であり、管摩擦により流速が小さいので、エネルギ式は、次のように表される。
 dh(エンタルピ変化)=dq(外部からの熱量)-dwt(外部への仕事量)
 従って、点3~点4の変化は次のようになる。
 h4-h3=q34(摩擦熱)-wt34(圧力損失)
 摩擦による発熱と圧力損失は等しいので、次式のように等エンタルピ変化で表される。
 h4-h3=0
 図6B(螺旋状細管6,8を使用。)では、管摩擦の影響が小さく運動エネルギの変化が無視できないので、エネルギ式は、次のように表される。
 dh(エンタルピ変化)+wdw(運動エネルギ)=dq(外部からの熱量)-dwt(外部への仕事量)
 従って、点3~点3’の変化は次のようになる。
 h3'-h3+{(w3'2-(w32}/2=q33'(摩擦熱)-wt33'(圧力損失)
 ここで、点3~点3’の変化は断熱変化(q33'=0)で、速度は音速(w3'=wC)とすると、
 h3'-h3+{(wC2-(w32}/2=0-wt33'
 次に、点3’~点4では速度は変化しないので、次式のように表される。
 h4-h3'+{(wC2-(wC2}/2=0-wt3'4
 最後に、点4~点4’の変化では摩擦により流速がゼロ、断熱変化、圧力変化がないので、次式のように表される。
 h4'-h4+{0-(wc)2}/2=q4'4-wt4'4=0+v(P4'-P4)=0
 また、摩擦による運動エネルギは熱エネルギに変化するので、
 qf=(wc)2/2(摩擦熱)
 従って、h4'=h4+qf
 となり、摩擦熱qfにより冷凍効果が減少することが分かる。
 これに対し、図6C(螺旋状細管6,8と管体10の組み合わせ。)では、点3~点3’の変化は、次のように表される。
 h3'-h3+{(w3'2-(w32}/2=q33'-wt33'
 ここで、点3~点3’の変化は断熱変化(q33'=0)で、速度は音速(w3'=wC)とすると、
 h3'-h3+{(wC2-(w32}/2=0-wt33'
 次に、点3’~点4では、管体10で外部仕事を行い、速度がゼロとなるので、次式のように表される。
 h4-h3'+{0-(wC2}/2=0-wt3'4-wtout
 ここで、外部への仕事は運動エネルギと等価であると考えると、
 wtout=(wC2/2
 従って、エネルギ式は次のようになり、摩擦熱により冷凍能力が低下することはない。
 h4=h3'-wt3'4=h3+v(P4-P3'
 外部への仕事は、次式のように位置エネルギに変換する方法がある。
 wtout=(wC2/2=gz
 ここで、zは鉛直方向の高さである。
 また、次式のようにばね仕事に変換する方法がある。
 wtout=(wC2/2=k(l2/2)
 ここで、lはばねの変位、kはばね定数とする。
 また、次式のように位置エネルギとばね仕事に変換する方法がある。
 wtout=(wC2/2=k(l2/2)+gz
 また、次式のように回転仕事に変換する方法がある。
 wtout=(wC2/2=I(ω2/2)
 ここで、Iは回転体の慣性モーメント、ωは回転体の角速度とする。
 本サイクル中の凝縮用熱変換装置30では、等圧冷却部(ミニ熱交換装置3)で、冷媒の一部(5~50重量%)を液化し(点i~点j)、減圧液化部(螺旋状管6)で、冷媒が加速されて、減圧、及び冷媒エンタルピ減少を伴って、一部液化した残りのガス冷媒がほぼ液化し(点j~点k)、減圧冷却部(螺旋状細管8)で、冷媒が加速されて、減圧、及び冷媒エンタルピ減少を伴って、ほぼ液化した冷媒が過冷却(点k~点l)するため、冷凍サイクルのCOPが向上する。また、凝縮用熱変換装置30で冷媒を減圧するため、従来のように、細管(一般的には、内径0.8mm程度のキャピラリーチューブ)や、膨張弁等の減圧機構が不要になり、冷凍サイクルを簡素化できる。さらに、減圧液化部(螺旋状管6)、及び減圧冷却部(螺旋状細管8)では、熱エネルギである冷媒エンタルピを速度エネルギへ変換し、冷媒エンタルピを減少し、静温度低下の現象の生起に至らせるため、放熱による場合に比べ、熱交換装置の小型化が図られる。
 本実施の形態では、凝縮用熱変換装置30を、等圧冷却部(ミニ熱交換装置3)、減圧液化部(螺旋状管6)、及び減圧冷却部(螺旋状細管8)で構成したが、減圧液化部(螺旋状管6)は、複数の螺旋状の管を直列接続して構成してもよく、この場合、図2の点j~点kでは、複数屈曲点を持つサイクル線となる。減圧冷却部(螺旋状細管8)も、複数の螺旋状の管を直列接続して構成してもよく、この場合、図2の点k~点lでは、複数屈曲点を持つサイクル線となる。
 図7は、別の実施の形態を示す。このサイクルは、冷媒の圧力エネルギを速度エネルギに変換するいわゆるエジェクタを利用した冷凍サイクルである。
 61は圧縮機を示し、圧縮機61には放熱器62が接続され、放熱器62にはレシーバタンク63が接続されている。レシーバタンク63にはエジェクタ64が接続され、エジェクタ64は、放熱器62から流出する冷媒を減圧膨張させ、後述する蒸発器65にて蒸発した気相冷媒を吸引部64Aから吸引するとともに、膨張エネルギを圧力エネルギに変換して圧縮機61の吸入圧を上昇させる。
 エジェクタ64から流出する冷媒は圧縮機61に吸入され、これによって冷媒循環路を形成している。レシーバタンク63とエジェクタ64の後述するノズル64Bとの間には、分岐させた冷媒流れを先の吸引部64Aに導く分岐流路66を設けるとともに、この分岐流路66には蒸発器65を設けている。
 また、この蒸発器65の冷媒流れ上流側には、蒸発器65に吸引される冷媒を減圧して蒸発器65内の圧力(蒸発圧力)を確実に低下させるとともに、蒸発器65に流入する冷媒流量(蒸発器65で発生する冷却能力)を調節する絞り手段として、キャピラリーチューブなどの固定絞り67を設けている。
 エジェクタ64は、放熱器62から流出した高圧冷媒の圧力エネルギ(圧力ヘッド)を速度エネルギ(速度ヘッド)に変換して冷媒を減圧膨張させるノズル64B、蒸発器65にて蒸発した気相冷媒を吸引する吸引部64A、ノズル64Bから噴射する高い速度の冷媒流(ジェット流)により吸引部64Aから冷媒を吸引しながら、ノズル64Bから噴射する冷媒と蒸発器65から吸引した冷媒とを混合させる混合部、及び混合部から流出する冷媒の速度エネルギを圧力エネルギに変換して、この冷媒の圧力を昇圧させるディフューザ部64Cなどからなる。
 ディフューザ部64Cの出口には管体10が接続され、管体10にはアキュムレータ68を介して圧縮機61が接続される。管体10は、上記実施の形態とほぼ同様構造であり、その説明は省略する。なお、ディフューザ部64C、及び管体10は、鉛直線に沿って上下に配列することが望ましい。
 ディフューザ部64Cの出口では、冷媒が大きな速度エネルギを有し、仮にこの大きな速度エネルギを維持したまま、下流の冷媒配管69内に流入すると、冷媒配管69内で摩擦熱を生じさせ、その分、冷媒の乾き度を大きくし、蒸発器65での吸熱量を低下させ、その分だけ効率を低下させる。
 本実施の形態では、ディフューザ部64Cの出口冷媒は、鉛直線に沿って上下に配列された管体(エネルギ変換手段)10内に下方から流入し、この管体10内で、ばね10Eのばね力に抗して、抵抗体10Dを押し退けて上方から流出し、この間、冷媒の速度エネルギを仕事エネルギ(又は位置エネルギ)に変換する。
 すなわち、速度エネルギを仕事エネルギ(又は位置エネルギ)として放出し、管体10の出口10Cでは、流速がほぼゼロとなる。
 この構成によれば、管体10の出口10Cで、冷媒の流速がほぼゼロとなるため、冷媒配管69内で摩擦熱を生じさせることがなく、冷媒の乾き度は維持されるため、蒸発器65での吸熱量を維持し、効率を維持できる。
 管体10の構成は、上記の構成に限定されず、冷媒の速度エネルギを仕事エネルギ(又は位置エネルギ)に変換できればよい。
 1、61 圧縮機
 2、4、10 冷媒配管
 3 ミニ熱交換装置
 3-1 ミニファン
 6 螺旋状管
 8 螺旋状細管
 10 管体
 11、65 蒸発器
 13、62 凝縮器
 64 エジェクタ

Claims (7)

  1.  圧縮機と、
     放熱器と、
     冷媒の圧力エネルギを速度エネルギに変換して冷媒を液化する冷媒液化手段と、
     前記冷媒液化手段からの冷媒の速度エネルギを乾き度を維持したまま位置エネルギ又は仕事エネルギに変換するエネルギ変換手段と、
     吸熱器とを順に環状に冷媒配管で接続した
     ことを特徴とする冷凍システム。
  2.  請求項1に記載の冷凍システムにおいて、
     前記冷媒液化手段が冷媒の加速によるチョーク現象を利用して冷媒を減圧、及びエンタルピ減少を伴って液化する螺旋管である
     ことを特徴とする冷凍システム。
  3.  請求項1又は2に記載の冷凍システムにおいて、
     前記エネルギ変換手段が抵抗体を収容した管体を備え、冷媒の速度エネルギを冷媒が管体内で抵抗体を越える際の仕事エネルギに変換することを特徴とする冷凍システム。
  4.  請求項3に記載の冷凍システムにおいて、
     前記管体内の抵抗体が当該管体の入口側に向けてばね付勢されていることを特徴とする冷凍システム。
  5.  請求項1又は2に記載の冷凍システムにおいて、
     前記エネルギ変換手段が回転体を収容した管体を備え、冷媒の速度エネルギを冷媒が管体内の回転体を回転させる際の仕事エネルギに変換することを特徴とする冷凍システム。
  6.  請求項1に記載の冷凍システムにおいて、
     前記冷媒液化手段が下から上に冷媒を流すように鉛直に設けられ、
     前記エネルギ変換手段が冷媒の速度エネルギを位置エネルギに変換することを特徴とする冷凍システム。
  7.  請求項1に記載の冷凍システムにおいて、
     前記冷媒液化手段が冷媒の圧力エネルギを速度エネルギに変換するエジェクタであることを特徴とする冷凍システム。
PCT/JP2010/000795 2010-02-09 2010-02-09 冷凍システム WO2011099052A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011553610A JP5537573B2 (ja) 2010-02-09 2010-02-09 冷凍システム
PCT/JP2010/000795 WO2011099052A1 (ja) 2010-02-09 2010-02-09 冷凍システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000795 WO2011099052A1 (ja) 2010-02-09 2010-02-09 冷凍システム

Publications (1)

Publication Number Publication Date
WO2011099052A1 true WO2011099052A1 (ja) 2011-08-18

Family

ID=44367366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000795 WO2011099052A1 (ja) 2010-02-09 2010-02-09 冷凍システム

Country Status (2)

Country Link
JP (1) JP5537573B2 (ja)
WO (1) WO2011099052A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044661A1 (ja) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 マルチタイプ空調システムおよび室内ユニット
JP7496046B2 (ja) 2020-11-17 2024-06-06 株式会社E・T・L 冷凍装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200800A (ja) * 2000-11-22 2001-07-27 Denso Corp エジェクタ
JP2006248338A (ja) * 2005-03-09 2006-09-21 Denso Corp エジェクタを備えた蓄冷熱交換器、膨張弁および車両用空調装置
WO2007034939A1 (ja) * 2005-09-26 2007-03-29 Hara Tech Corporation 凝縮用熱変換装置及びそれを用いた冷凍システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200800A (ja) * 2000-11-22 2001-07-27 Denso Corp エジェクタ
JP2006248338A (ja) * 2005-03-09 2006-09-21 Denso Corp エジェクタを備えた蓄冷熱交換器、膨張弁および車両用空調装置
WO2007034939A1 (ja) * 2005-09-26 2007-03-29 Hara Tech Corporation 凝縮用熱変換装置及びそれを用いた冷凍システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044661A1 (ja) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 マルチタイプ空調システムおよび室内ユニット
JPWO2019044661A1 (ja) * 2017-08-29 2020-05-28 東芝キヤリア株式会社 マルチタイプ空調システムおよび室内ユニット
JP7496046B2 (ja) 2020-11-17 2024-06-06 株式会社E・T・L 冷凍装置

Also Published As

Publication number Publication date
JPWO2011099052A1 (ja) 2013-06-13
JP5537573B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5413393B2 (ja) 冷媒分配器および冷凍サイクル
JP4832563B2 (ja) 冷凍システム
US6430937B2 (en) Vortex generator to recover performance loss of a refrigeration system
US6389818B2 (en) Method and apparatus for increasing the efficiency of a refrigeration system
JP2007162988A (ja) 蒸気圧縮式冷凍サイクル
JP2010116927A (ja) エジェクタ
JP5018725B2 (ja) エジェクタ式冷凍サイクル
KR20130142180A (ko) 감압 장치 및 냉동 사이클 장치
JP5452367B2 (ja) 気液分離器および冷凍サイクル装置
JP2006292229A (ja) Co2冷凍サイクル装置及びその超臨界冷凍運転方法
JP6406485B1 (ja) 冷暖房システム
JP5537573B2 (ja) 冷凍システム
JP2008304077A (ja) エジェクタ式冷凍サイクル
JP5485602B2 (ja) 冷凍システム
JP4888050B2 (ja) 冷凍サイクル装置
JP2010002169A (ja) エジェクタ
JP5018756B2 (ja) エジェクタ式冷凍サイクル
JP6458918B1 (ja) 冷暖房システム
WO2016051646A1 (ja) エジェクタ式冷凍サイクル装置
JP2009293848A (ja) 冷媒回路装置
JP2006258413A (ja) 混合流体分離装置
WO2021117254A1 (ja) スポットクーラー装置
KR20230071189A (ko) 냉동 장치
JP2010281567A (ja) エジェクタ式冷凍サイクル
JP2007309544A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845658

Country of ref document: EP

Kind code of ref document: A1