WO2011098020A1 - 驻波检测方法、驻波检测装置及基站 - Google Patents

驻波检测方法、驻波检测装置及基站 Download PDF

Info

Publication number
WO2011098020A1
WO2011098020A1 PCT/CN2011/070846 CN2011070846W WO2011098020A1 WO 2011098020 A1 WO2011098020 A1 WO 2011098020A1 CN 2011070846 W CN2011070846 W CN 2011070846W WO 2011098020 A1 WO2011098020 A1 WO 2011098020A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
standing wave
feedback
feedback signal
calibration
Prior art date
Application number
PCT/CN2011/070846
Other languages
English (en)
French (fr)
Inventor
许少峰
马正翔
叶四清
王伟
罗鹏飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011098020A1 publication Critical patent/WO2011098020A1/zh
Priority to US13/572,595 priority Critical patent/US9002291B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0466Fault detection or indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a standing wave detection method, a standing wave detection apparatus, and a base station. Background technique
  • wireless communication products such as base stations need to check the quality of products through standing wave detection to ensure signal quality during communication.
  • the standing wave detection is implemented by a Frequency Domain Reflectome-try (FDR) method or a hase-detection frequency-domain re-flectometry (PDFDR) method.
  • FDR Frequency Domain Reflectome-try
  • PDFDR hase-detection frequency-domain re-flectometry
  • FDR is also called swept reflectometer, which is used to transmit continuous, stepped sine wave, discontinuous reflection through transmission cable, and receive step continuous wave of discontinuous point reflection; by detecting transmitted signal and feedback
  • the difference of the signals is processed and analyzed, and the standing wave ratio and the position information of the fault point are obtained.
  • 1 is a schematic diagram of the PDFDR method. As shown in FIG.
  • the base station transmits a frequency sweep signal
  • the directional coupler distinguishes the incident wave and the reflected wave, and compares the difference between the phase of the incident wave and the reflected wave (equivalent to the delay).
  • the analog voltage sequence is subjected to the inverse Fourier Fast Fourier Transform (IFFT) to know the position of the reflection point and the strength of the feedback signal, that is, the connection condition and the fault condition of the antenna feeder cable.
  • IFFT inverse Fourier Fast Fourier Transform
  • the embodiment of the invention provides a standing wave detecting method, a standing wave detecting device and a base station.
  • Embodiments of the present invention provide a standing wave detection method, including:
  • a baseband multi-tone signal as a feedback signal of the transmission signal from the feedback channel of the base station; performing calibration processing on the feedback signal by using the stored calibration data to obtain a reflected signal in the feedback signal; the calibration data is separately calibrated Baseband multi-tone signals collected at open points, short circuits, and matched load conditions, and corresponding feedback signals;
  • a standing wave detection value is obtained according to the transmitted signal and the reflected signal in the feedback signal.
  • the embodiment of the invention further provides a standing wave detecting device, comprising:
  • An acquisition module configured to collect, from a feedback channel of the base station, a baseband multi-tone signal as a feedback signal of the transmission signal;
  • a calibration module configured to perform calibration processing on the feedback signal by using the stored calibration data to obtain a reflected signal in the feedback signal;
  • the calibration data is a baseband collected under an open circuit, a short circuit, and a matched load respectively at a calibration point a multi-tone signal and a corresponding feedback signal;
  • a detecting module configured to obtain a standing wave detection value according to the transmitted signal and the reflected signal in the feedback signal.
  • the embodiment of the invention further provides a base station, comprising the standing wave detecting device.
  • the technical solution provided by the foregoing embodiment adopts a baseband multi-tone signal as a baseband signal used for testing, and receives a feedback signal through a feedback channel, and obtains a time domain system transmission function by using the transmitted signal and the feedback signal, thereby eliminating the need for hardware cost increase.
  • standing wave detection is realized, making standing wave detection more convenient.
  • the feedback signal is calibrated by using the stored calibration data, and the reflected signal in the feedback signal is obtained, thereby eliminating the error caused by the coupled device leakage in the feedback signal and detecting the standing wave, thereby improving the error.
  • the accuracy of standing wave detection is DRAWINGS
  • FIG. 1 is a schematic diagram of standing wave detection using the PDFDR method in the prior art
  • FIG. 2 is a flowchart of a standing wave detecting method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a base station to be tested applied to a standing wave detection method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of data analysis of a base station shown in FIG.
  • FIG. 5 is a schematic diagram showing the position of a break point obtained by using the existing open circuit in the case where the circulator isolation is 15 dB;
  • FIG. 6 is a schematic diagram showing the position of a break point obtained by measuring a short circuit in a case where the circulator isolation is 15 dB by using the prior art;
  • FIG. 7 is a schematic diagram showing accuracy of standing wave ratio obtained in a simulation environment of a standing wave detecting method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the accuracy of a fault point position obtained in a simulation environment of a standing wave detection method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a standing wave detecting apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • FIG. 2 is a flowchart of a standing wave detecting method according to an embodiment of the present invention.
  • the method includes: Step 21: Acquire a baseband multi-tone signal as a feedback signal of a transmit signal from a feedback channel of the base station.
  • the transmitted signal is the signal transmitted by the base station.
  • a baseband signal whose signal is a baseband multitone signal, that is, the signal is a multi-tone signal, can be generated and transmitted by the base station.
  • the base station converts the baseband multi-tone signal to the radio frequency, that is, the signal source sent by the base station selects the baseband multi-tone signal source to replace the traditional FDR swept signal source.
  • the form of the baseband multi-tone signal may not be limited, that is, the parameters such as the frequency interval and the number of frequency points may be completely determined according to the capabilities of the actual system and the requirements for the detection accuracy.
  • Step 22 Perform calibration processing on the feedback signal by using the stored calibration data to obtain a reflected signal in the feedback signal; the calibration data is a baseband multi-tone collected under the conditions of open circuit, short circuit, and matched load at the calibration point respectively. Signal and corresponding feedback signal;
  • Step 23 Obtain a standing wave detection value according to the transmitted signal and the reflected signal in the feedback signal.
  • the concept of the standing wave detection value may include a standing wave ratio, and may also include a fault point position.
  • this step may include at least one of the following operations:
  • a first operation obtaining a modified time domain system transmission function h(t) using the transmitted signal and the reflected signal; obtaining a peak value of the reflected signal through the h(t) curve;
  • the second operation averaging the amplitudes of the feedback signals collected in the open circuit and short circuit at the calibration point to obtain the maximum value of the feedback signal; comparing the reflected signals in the feedback signal with the maximum value of the feedback signals to obtain a reflection Coefficient; the standing wave ratio is obtained by using the reflection coefficient and the standing wave ratio calculation formula.
  • the technical solution provided by the embodiment adopts a baseband multi-tone signal as a baseband signal used for testing, and receives a feedback signal through a feedback channel, and obtains a time domain system transmission function by using the transmitted signal and the feedback signal, thereby eliminating the need to increase hardware cost.
  • hardware circuits such as coupler loads, mixers, op amps, analog-to-digital converters, etc. can be saved. With a small amount of calculation, standing wave detection is achieved, making standing wave detection more convenient.
  • the feedback signal is calibrated by using the stored calibration data, and the reflected signal is obtained, which eliminates the error caused by the coupler leakage of the doped feedback signal in the feedback signal, and improves the standing wave detection. Precision.
  • FIG. 3 is a schematic diagram of a base station to be tested applied to a standing wave detection method according to an embodiment of the present invention.
  • the base station to be tested shown in FIG. 3 is taken as an example for description.
  • Baseband multitone signal x(t) via amplifier (PA) and The following 10 dB (dB) attenuator (Attenuator, ATT), 20 dB coupler (Ccoupler),
  • DUP standing wave ratio tester (stationary wave ratio tester), calibration point, to adjustable attenuator.
  • the reflected signal is reversed to the feedback channel at the coupler, and the feedback channel outputs a feedback signal y(t).
  • Only the filter used to transmit the signal is used here in the Coupler Duplexer (DUP).
  • the amplifier (PA) is followed by a 10 dB (dB) attenuator to prevent damage to the calibration point (ie, an open circuit key, a short circuit key, and a meter or device that matches the load) because the amplifier outputs a signal with a minimum output of about 30 dBm. , thus increasing the 10dB attenuation to protect the calibration piece.
  • the attenuator does not affect the test results and therefore does not need to be replaced during the test. Adjusting the adjustable attenuator behind the standing wave ratio tester can change the standing wave at the test point.
  • the standing wave ratio tester can accurately measure the actual standing wave ratio of the test point. The accuracy of detecting the standing wave ratio in the embodiment of the present invention can be verified by comparing the standing wave ratio obtained by the technical solution provided by the embodiment of the present invention with the actual standing wave ratio measured by the standing wave ratio tester.
  • FIG. 4 is a schematic diagram of data analysis of the base station shown in FIG. 3.
  • x(t) is the baseband multitone signal transmitted by the base station
  • y(t) is the feedback signal received through the feedback channel
  • X(w) is the frequency domain signal obtained by FFT transform of x(t)
  • Y(w) ) is the frequency domain signal obtained by the FFT transform of the feedback signal y(t)
  • H(w) is the frequency domain system transfer function within a finite bandwidth
  • Xl(w) is the forward signal of the duplexer exit, ie X(w) )
  • X2(w) is the reflected signal at the exit of the duplexer.
  • the embodiment of the present invention focuses on obtaining X2(w) by the calibration processing of the calibration data Y(w) and X(w) to realize high-precision standing wave detection.
  • the actual calculation process of the standing wave detection of the base station includes the following steps:
  • Step 1 Send data x3(t), x4(t), x5(t) at the open, short and matched load of the calibration point respectively, and accordingly, collect the feedback data y3(t), y4 in the feedback channel. (t), y5(t). Perform fast Fourier transform (FFT) on x3(t), x4(t), x5(t), y3(t), y4(t), y5(t) to obtain X3(w), X4(w), X5(w), Y3(w), Y4(w), Y5(w).
  • FFT fast Fourier transform
  • Step 2 In the case where the calibration point is removed, the baseband multi-tone signal x(t) is transmitted, and the feedback signal y(t) is acquired through the feedback channel; FFT is performed on x(t) and y(t), respectively. Obtain X(w), Y(w). The digital phase discrimination processing is performed on X(w) and Y(w) to obtain the frequency domain system transfer function H(w); the H(w) is IFFT transformed to obtain the time domain system transfer function h(t).
  • Step 3 Obtain the amplitudes of the feedback signals y3(t:) and y4(t) by using the h3(t) and h4(t) curves obtained by open circuit and short circuit at the calibration point, and average the two to obtain the average.
  • the value is the maximum value of the reflected signal of x3(t:), x4(t). Since the amplitudes of y3(t) and y4(t) are very close, even coincident, it is also possible to not average, and the maximum peaks of y3(t) and y4(t) are taken as x3(t), x4(t) The maximum value of the reflected signal.
  • the precision reflected signal obtained above is compared with the maximum reflected value to obtain a reflection coefficient, thereby obtaining a very accurate standing wave size.
  • Step 4 Correct the h(t) obtained in the second step by using Y3(w), Y4(w), Y5(w), that is, perform phase adjustment to eliminate the circulator (or coupler) and duplex
  • the effect of the front-end transmission is to eliminate the interference X2(w) data and correct the error to obtain the accurate reflected signal X2(w).
  • Y3(w), Y4(w), Y5(w), and Y(w) can be correlated to obtain a reflected signal X2(w).
  • the corrected H(w) is obtained by using the ratio of X2(w) and X(w), and the corrected H(w) is IFFT-transformed to obtain the corrected h(t). Use the corrected h(t) curve to get an accurate inverse
  • Step 5 Using the accurate reflected signal X2(w) obtained in the fourth step above and the third Compared with the maximum value of the reflected signal obtained in the step, a reflection coefficient is obtained, thereby obtaining a standing wave ratio.
  • the technical solution provided by the embodiment corrects the error of the circulator or the coupler due to the isolation by using the calibration data, and obtains a very accurate standing wave value. And if the cable has a fault point, the position of the cable fault point can be obtained more accurately.
  • the technology provided by the above embodiment of the present invention is utilized.
  • the solution uses digital phase discrimination completely at the baseband to achieve high-precision standing wave detection and cable fault point location.
  • the simulation data is shown in Table 1.
  • FIG. 5 is a schematic diagram of the position of the breakpoint obtained by using the existing open circuit in the case where the circulator isolation is 15 dB;
  • the fault point and the standing wave ratio of the cable can be known.
  • the VSWR obtained by the above embodiment of the present invention is more accurate, as shown in Fig. 7, wherein * represents the VSWR obtained by the compensation, and the slanted line is the ideal data, that is, the VSWR tester.
  • Standing wave ratio, * The more coincident with the diagonal line, the higher the accuracy.
  • the standing wave ratio error can be controlled to be 0.05 or less. It can be seen from FIG. 7 that the standing wave ratio obtained by the compensation of the above embodiment of the present invention is very close to the standing wave ratio measured by the standing wave ratio tester, so that the standing wave detection can be measured without carrying the standing wave ratio tester.
  • the positional accuracy of the fault point detected by the above method embodiment in the simulation environment is as shown in FIG. 8.
  • the h(t) curve includes the h(t) curve when the calibration point is open, shorted, and the matched load is 50 ohms, and the standing wave ratio is 1.08, 1.19, 1.36, 1.62, 1.81, 2.08, 3.06, respectively.
  • the maximum peak value of the h(t) curve is the position of the cable fault point; as can be seen from Figure 8, the test result of the standing wave detection is higher.
  • FIG. 9 is a schematic structural diagram of a standing wave detecting apparatus according to an embodiment of the present invention.
  • the device comprises: an acquisition module 91, a calibration module 92 and a detection module 93.
  • the acquisition module 91 is configured to collect a baseband multi-tone signal as a feedback signal of the transmission signal from the feedback channel of the base station.
  • the calibration module 92 is configured to perform calibration processing on the feedback signal by using the stored calibration data to obtain a reflected signal in the feedback signal; the calibration data is a baseband collected under an open circuit, a short circuit, and a matched load at a calibration point, respectively. Multi-tone signal and corresponding feedback signal, specific operation See the description of step 22 above for details.
  • the detecting module 93 is configured to obtain a standing wave detection value according to the transmitted signal and the reflected signal in the feedback signal. For details, refer to the description of step 23 above.
  • the detection module 93 can include: a correction sub-module 931, a peak acquisition sub-module 932, and a fault point location acquisition sub-module 933.
  • the correction sub-module 931 obtains the modified time domain system transfer function by using the transmit signal and the reflected signal;
  • the peak acquisition sub-module 932 is configured to obtain the peak value of the reflected signal through the curve of the time domain system transfer function;
  • the fault point position acquisition sub-module 933 A position for obtaining a cable fault point by the peak and cable fault point calculation formula.
  • the detection module 93 can also include or separately include: an average sub-module 934, a comparison sub-module 935, and a standing wave ratio acquisition sub-module 936.
  • the averaging sub-module 934 is used to average the amplitudes of the feedback signals acquired in the case of an open circuit or a short circuit at the calibration point to obtain a maximum value of the feedback signal.
  • the comparison sub-module 935 is for comparing the reflected signal in the feedback signal with the maximum value of the feedback signal to obtain a reflection coefficient.
  • the standing wave ratio acquisition sub-module 936 is configured to obtain the standing wave ratio using the reflection coefficient.
  • the standing wave detecting device described above may also be a meter.
  • the standing wave detecting device uses the baseband multi-tone signal as the baseband signal used in the test, and receives the feedback signal through the feedback channel, and obtains the time domain system transmission function by using the transmitted signal and the feedback signal, thereby eliminating the need to increase
  • the hardware cost with a small amount of calculation, enables standing wave detection, making standing wave detection easier.
  • the feedback signal is calibrated by using the stored calibration data, and the reflected signal is obtained, which eliminates the error caused by the coupler leakage of the doped feedback signal in the feedback signal, and improves the standing wave detection. Precision.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: a standing wave detecting device 101.
  • the standing wave detecting device 101 is for performing standing wave detection on the base station.
  • the standing wave detecting device 101 may be any standing wave detecting device provided in the above device embodiment.
  • the base station uses a standing wave detecting device, and uses a baseband multi-tone signal as a baseband signal used for testing, and receives a feedback signal through a feedback channel, and obtains a time domain system transmission function by using the transmitted signal and the feedback signal. Therefore, it is not necessary to increase the hardware cost, and only a small amount of calculation is needed to realize the standing wave detection, which makes the standing wave detection easier. Further, using storage The calibration data is calibrated to the feedback signal, and the reflected signal is obtained, which eliminates the error caused by the coupler leakage of the doped feedback signal in the feedback signal, and improves the accuracy of the standing wave detection.
  • the technical solution provided by the foregoing embodiment collects the reflected signal of the baseband multi-tone signal through the existing feedback channel of the base station, and performs calculation with the baseband multi-tone signal to obtain the result of the standing wave detection, that is, the high-precision standing wave detection and the antenna are realized.
  • the breakpoint positioning of the port cable eliminates the need to add hardware circuits. Many existing wireless products can implement this function by updating the software, which reduces the cost of standing wave detection. Moreover, maintenance and inspection personnel do not need to carry bulky and expensive instruments, and do not need to open the cable connector to achieve standing wave detection, making standing wave detection easier to implement.
  • the device eliminates the error caused by the directionality of the directional coupler.
  • the data sent by the calibration is FFT-transformed, and the data of the received feedback path is also subjected to FFT transformation. After calculation in the frequency domain, the frequency domain transfer function of the system can be obtained. The time for collecting data does not need to be strictly aligned, which reduces the system's requirement for data acquisition at the same time.
  • the system's time domain transfer function can be obtained by IFFT transform, and the breakpoint of the antenna port and the external cable can be obtained.
  • the calibration data is exactly the same as the actual test data processed in the digital domain.
  • the calibration data is pre-stored for reference to the actual test data.
  • the calibration data is not required for real-time performance. Once the production calibration is performed, the data can be collected and calculated at any time to realize the detection and is not affected by the environment. Moreover, calibration and testing are performed at the same output power. Once the open-circuit and matched load are calibrated at a certain power, the calibration data can be called to achieve high-precision standing wave detection and cable failure at any time. Positioning.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

驻波检测方法、 驻波检测装置及基站 本申请要求于 2010年 2月 11 日提交中国专利局、 申请号为
201010111622.3、 发明名称为 "驻波检测方法、 驻波检测装置及基站" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通讯技术领域, 尤其涉及一种驻波检测方法、 驻波检测 装置及基站。 背景技术
无线通讯技术领域中, 基站等无线通信产品需要通过驻波检测检验产品 的质量, 以保证通信过程中的信号质量。
现有技术中, 驻波检测采用频域反射计(Frequency Domain Reflectome- try, FDR ) 法或相位检测频域反射计 ( hase-detection frequency-domain re- flectometry, PDFDR ) 法实现。 其中, FDR也称扫频反射计, 用来发送连续 的、 步进的正弦波, 经过传输线缆的不连续的反射, 并接收不连续点反射的 步进连续波; 通过检测发射信号和反馈信号的不同来进行处理分析, 获得驻 波比、 故障点位置信息。 图 1为 PDFDR法的示意图, 如图 1所示, 基站发 送扫频信号, 通过定向耦合器来区分入射波和反射波, 比较入射波和反射波 相位的差异(等效为时延) , 得到的模拟电压序列经过快速傅里叶反变换(I nverse Fast Fourier Transform, IFFT ) , 获知反射点的位置和反馈信号的强 度, 即得到天馈线缆的连接情况和故障情况。
现有技术中, 由于驻波检测需要额外增加耦合器、 负载、 混频器、 运放、 模数转换器( Analog to Digital Converter, ADC )等硬件电路, 导致链路复杂, 成本较高。 发明内容
本发明实施例提出一种驻波检测方法、 驻波检测装置及基站。
本发明实施例提供了一种驻波检测方法, 包括:
从基站的反馈通道采集以基带多音信号作为发射信号的反馈信号; 利用存储的校准数据对所述反馈信号进行校准处理, 获得所述反馈信号 中的反射信号; 所述校准数据为分别在校准点处开路、 短路及匹配负载情况 下采集的基带多音信号以及相应的反馈信号;
根据所述发射信号与所述反馈信号中的反射信号获得驻波检测值。
本发明实施例还提供了一种驻波检测装置, 包括:
采集模块, 用于从基站的反馈通道采集以基带多音信号作为发射信号的 反馈信号;
校准模块, 用于利用存储的校准数据对所述反馈信号进行校准处理, 获 得所述反馈信号中的反射信号; 所述校准数据为分别在校准点处开路、 短路 及匹配负载情况下采集的基带多音信号以及相应的反馈信号;
检测模块, 用于根据所述发射信号与所述反馈信号中的反射信号获得驻 波检测值。
本发明实施例还提供了一种基站, 包括上述驻波检测装置。
上述实施例提供的技术方案通过采用基带多音信号作为测试时使用的发 射信号即基带信号, 并通过反馈通道接收反馈信号, 利用发射信号与反馈信 号获得时域***传输函数, 从而无需增加硬件成本, 只需增加少量计算, 便 实现了驻波检测, 使得驻波检测更为便捷。 进一步地, 利用存储的校准数据 对所述反馈信号进行校准处理, 获得了反馈信号中的反射信号, 排除了反馈 信号中掺杂的耦合器泄露对驻波检测所带来的误差问题, 提高了驻波检测的 精度。 附图说明
图 1为现有技术中利用 PDFDR法进行驻波检测的示意图;
图 2为本发明实施例提供的驻波检测方法的流程图;
图 3为本发明实施例提供的驻波检测方法所应用的待测基站的示意图; 图 4为图 3所示基站的数据分析示意图;
图 5为采用现有技术在环行器隔离度为 15dB的情况下实测开路得到的断 点位置示意图;
图 6为采用现有技术在环行器隔离度为 15dB的情况下实测短路得到的断 点位置示意图;
图 7为本发明实施例提供的驻波检测方法仿真环境下得到的驻波比精度 示意图;
图 8为本发明实施例提供的驻波检测方法仿真环境下得到的故障点位置 精度示意图;
图 9为本发明实施例提供的驻波检测装置的结构示意图;
图 10为本发明实施例提供的基站的结构示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 图 2为本发明实施例提供的驻波检测方法的流程图。 该方法包括: 步骤 21、 从基站的反馈通道采集以基带多音信号作为发射信号的反馈信 号。 发射信号即基站发射的信号。 为了进行驻波检测, 可生成信号为基带多 音信号即信号为多音信号的基带信号, 由基站发射出去。 基站将基带多音信 号变频到射频, 即基站发送的信号源选用基带多音信号源来代替传统 FDR的 扫频信号源。 基带多音信号的形式可不做限定, 即频点间隔、 频点数量等参 数可完全根据实际***的能力和对检测精度的要求而定。 步骤 22、 利用存储的校准数据对所述反馈信号进行校准处理, 获得所述 反馈信号中的反射信号; 所述校准数据为分别在校准点处开路、 短路及匹配 负载情况下采集的基带多音信号以及相应的反馈信号;
步骤 23、 根据所述发射信号与所述反馈信号中的反射信号获得驻波检测 值。 其中, 驻波检测值的概念可包括驻波比, 也可包括故障点位置。 具体地, 本步骤至少可包括下面的一个操作:
第一个操作: 利用所述发射信号与反射信号获得修正后的时域***传输 函数 h(t); 通过 h(t)曲线获得反射信号的峰值; 通过所述峰值与线缆故障点计
, Peak - 1 ^ l \
算公式 ' ' . 即可得到发射点的位置, 也即获得线缆 故障点如断点的位置。 其中, 为通过 h(t)曲线获得的反射信号的峰值点; /;为扫频的起始频点; /2为扫频的终止频点; 为扫频点数; NffT为 FFT变 换的点数; 为信号在线缆中的传播速度, 接近光速。
第二个操作: 对在所述校准点处开路、 短路情况下采集的反馈信号的幅 度进行平均, 得到反馈信号的最大值; 反馈信号中的反射信号与反馈信号的 最大值进行比较, 得到反射系数; 利用所述反射系数与驻波比计算公式获得 驻波比。
本实施例提供的技术方案通过采用基带多音信号作为测试时使用的发射 信号即基带信号, 并通过反馈通道接收反馈信号, 利用发射信号与反馈信号 获得时域***传输函数, 从而无需增加硬件成本, 例如可以节省耦合器负载、 混频器、 运放、 模数转换器等硬件电路。 只需增加少量计算, 便实现了驻波 检测, 使得驻波检测更为便捷。 进一步地, 利用存储的校准数据对所述反馈 信号进行校准处理, 获得了反射信号, 排除了反馈信号中掺杂的耦合器泄露 对驻波检测所带来的误差问题, 提高了驻波检测的精度。
图 3为本发明实施例提供的驻波检测方法所应用的待测基站的示意图。 以图 3所示待测基站为例进行说明。 基带多音信号 x(t)经放大器 (PA )及其 后接的 10分贝( dB )衰减器( Attenuator, ATT ) 、 20dB的耦合器( Coupler ) 、
DUP、 驻波比测试仪(驻波比测试仪) 、 校准点, 到可调衰减器。 反射信号 在耦合器反向到反馈通道, 反馈通道输出反馈信号 y(t)。 在耦合器双工器 ( DUP )这里只使用其用于发射信号的滤波器。 放大器 (PA )后接 10分贝 ( dB )衰减器是为了防止打坏校准点出的校准件(即设置有开路键、 短路键 及匹配负载的仪表或设备), 因为放大器最低输出 30dBm左右的信号, 因而 增加 10dB衰减, 以保护校准件。 衰减器不影响测试结果, 因而测试过程中无 需更换。 调节驻波比测试仪后面的可调衰减器可以改变测试点的驻波, 驻波 比测试仪可以准确测得测试点的实际驻波比。 利用本发明实施例提供的技术 方案检测获得的驻波比与驻波比测试仪测得的实际驻波比相比较, 可验证本 发明实施例检测驻波比的准确度。
图 4为图 3所示基站的数据分析示意图。 其中, x(t)是基站发送的基带多 音信号, y(t)是通过反馈通道接收到的反馈信号, X(w)是 x(t)经过 FFT变换得 到的频域信号, Y(w)是反馈信号 y(t) 经过 FFT 变换得到的频域信号, H(w) 是在有限带宽内的频域***传输函数, Xl(w)为双工器出口的前向信号即 X(w), X2(w)为双工器出口的反射信号。 为了得到高精度的反射系数, 只需 要精确获得反射信号 X2(w)。 但是实际的***由于耦合器处存在信号泄漏, 因而从反馈通道采集的 y(t)通过计算得到的 Y(w)与 X2(w)之间存在误差, 即 Xl(w)和 X2(w)这两个信号都是夹杂在 Y(w)中, 因而, X2(w)很难精确获得。 本发明实施例就是着重通过校准数据 Y(w)和 X(w)的校准处理获取 X2(w),以 实现高精度的驻波检测。
对基站的驻波检测的实际计算过程包括如下步骤:
第一步: 分别在校准点的开路、 短路和匹配负载情况下发送数据 x3(t)、 x4(t)、 x5(t),相应地,在反馈通道采集反馈的数据 y3(t)、 y4(t)、 y5(t)。对 x3(t)、 x4(t)、 x5(t)、 y3(t)、 y4(t)、 y5(t)分别进行快速傅立叶变换( FFT ),得到 X3(w)、 X4(w) 、 X5(w)、 Y3(w)、 Y4(w)、 Y5(w)。 再对 (X3(w), Y3(w) ) 、 (X4(w), Y4(w))、 (X5(w), Y5(w))分别利用公式 H(w)=Y(w)/X(w), 得到从发送端到反 馈接收端的频域***传输函数 H3(w) H4(w) H5(w), 分别对频域***传输 函数 H3(w)、 H4(w)、 H5(w)做快速傅立叶逆变换( IFFT ) , 得到时域***传 输函数 h3(t)、 h4(t)、 h5(t)。
第二步: 在校准点去除校准件的情况下,发送基带多音信号 x(t), 通过反 馈通道采集反馈信号 y(t); 分别对 x(t)、 y(t)进行 FFT变换,得到 X(w)、 Y(w)。 对 X(w)、 Y(w)进行数字鉴相处理, 得到频域***传输函数 H(w); 对 H(w)做 IFFT变换, 得到时域***传输函数 h(t)。
第三步: 利用校准点开路、 短路情况下得到的 h3(t)、 h4(t)曲线分别得到 反馈信号 y3(t:)、 y4(t)的幅度,将二者进行平均,得到的平均值作为 x3(t:)、 x4(t) 的反射信号的最大值。 由于 y3(t)、 y4(t)的幅度非常接近, 甚至是重合, 因此, 也可以不做平均, 以 y3(t)、 y4(t)的最大峰值作为 x3(t)、 x4(t)的反射信号的最 大值。 上述得到的精确度反射信号同最大反射值相比较得到反射系数, 进而 得到非常精确的驻波大小。 一一 _
第四步: 利用 Y3(w)、 Y4(w)、 Y5(w)对上述第二步获得的 h(t)进行修正, 即进行相位调整, 以消除环行器 (或耦合器)及双工器前端发射的影响, 即 消除干扰 X2(w)的数据, 实现误差的修正, 得到精确的反射信号 X2(w)。 具 体地, 可将 Y3(w)、 Y4(w)、 Y5(w)与 Y(w)做相关运算, 获得反射信号 X2(w)。 进而利用 X2(w)与 X(w)的比值得到经过修正的 H(w), 对经过修正的 H(w)进 行 IFFT变换, 得到经过修正的 h(t)。 利用经过修正的 h(t)曲线得到精确的反
Figure imgf000008_0001
射信号的峰值, 代入线缆故障点的计算公式
可得到精确的线缆故障点的位置。 利用上述公式可检测的线缆故障点的最远 位置为£ =
Figure imgf000008_0002
第五步: 利用得到上述第四步获得的精确的反射信号 X2(w)与上述第三 步获得的反射信号的最大值相比, 得到反射系数, 进而得到驻波比。
本实施例提供的技术方案通过校准数据, 对环行器或者耦合器因隔离度 的产生的误差进行修正, 得到了非常精确的驻波值。 并且若线缆存在故障点, 则能够较为准确地获得线缆故障点的位置。
对于理想的硬件链路环境, 当发射数据、 采集反馈数据、 链路时钟同步 等情况都理想,且耦合器或者环行器方向性大于 30dB等非常理想的场景, 利 用本发明上述实施例提供的技术方案采用完全在基带进行的数字鉴相, 即可 实现高精度的驻波检测和线缆故障点的定位。 仿真数据如表 1所示。
表 1
Figure imgf000009_0001
理想的环境***对实时性要求很高, 需要进行实时校正和测试, 因而采 用现有技术对实际的***进行驻波检测, 只有对硬件和同步要求很高, 才能 达到理想的这些数据。 否则, 检测结果如图 5、 图 6所示, 图 5为采用现有 技术在环行器隔离度为 15dB的情况下实测开路得到的断点位置示意图; 图 6 为采用现有技术在环行器隔离度为 15dB 的情况下实测短路得到的断点位置 示意图。 可以看到实际的***如果不进行校正, 则得到的断点位置的误差相 对较大。 采用本发明上述实施例提供的技术方案, 则可以完全取消这些限制, 即不要求采集数据时的时间上的同步, 也不要求硬件耦合器或者环行器的方 向性很好; 还不要求数据计算的实时性。 即, 上述实施例选用匹配负载、 开 路键、 短路键分别存储校准数据 X(w)、 Y(w) , 实际***测试时, 仅需要随 时调出已存储的校准数据 X(w)、 Y(w), 对实时采集到的数据做相位、 采集时 间、 同步等的补偿和修正, 实现了高精度的计算, 得到了高精度的反射系数。 得到准确的反射系数后, 加上已知的线缆特性, 即可得知线缆的故障点和驻 波比大小。 经过本发明上述实施例补偿后得到的驻波比精度较高, 如图 7所 示, 其中, *表示经过补偿得到的驻波比, 斜线是理想的数据即驻波比测试仪 检测得到的驻波比, *与斜线越重合, 则表示精度越高。 利用上述实施例提供 的技术方案能够将驻波比误差控制在 0.05以下。 从图 7可见, 采用本发明上 述实施例补偿后得到的驻波比非常接近驻波比测试仪测得的驻波比, 这样, 进行驻波检测时不用携带驻波比测试仪也能够测得较为准确的驻波比。 同时 仿真环境下采用上述方法实施例检测得到的故障点位置精度如图 8所示。 其 中, h(t)曲线包括分别在校准点为开路、 短路、 匹配负载为 50欧姆情况下的 h(t)曲线, 以及驻波比分别为 1.08、 1.19、 1.36、 1.62、 1.81、 2.08、 3.06、 4.03、 5.14时的 h(t)曲线。 h(t)曲线的最大峰值即为线缆故障点位置; 从图 8可以看 到, 驻波检测的测试结果精度较高。
图 9为本发明实施例提供的驻波检测装置的结构示意图。 该装置包括: 采集模块 91、校准模块 92及检测模块 93。 采集模块 91用于从基站的反馈通 道采集以基带多音信号作为发射信号的反馈信号, 具体操作详见上述步骤 21 的说明。 校准模块 92 用于利用存储的校准数据对所述反馈信号进行校准处 理, 获得所述反馈信号中的反射信号; 所述校准数据为分别在校准点处开路、 短路及匹配负载情况下采集的基带多音信号以及相应的反馈信号, 具体操作 详见上述步骤 22的说明。 检测模块 93用于根据所述发射信号与所述反馈信 号中的反射信号获得驻波检测值, 具体操作详见上述步骤 23的说明。
所述检测模块 93可包括: 修正子模块 931、 峰值获取子模块 932及故障 点位置获取子模块 933。 修正子模块 931 利用所述发射信号与反射信号获得 修正后的时域***传输函数; 峰值获取子模块 932用于通过时域***传输函 数的曲线获得反射信号的峰值; 故障点位置获取子模块 933用于通过所述峰 值与线缆故障点计算公式获得线缆故障点的位置。
所述检测模块 93也可单独或进一步包括: 平均子模块 934、 比较子模块 935及驻波比获取子模块 936。 平均子模块 934用于对在所述校准点处开路、 短路情况下采集的反馈信号的幅度进行平均, 得到反馈信号的最大值。 比较 子模块 935用于对反馈信号中的反射信号与反馈信号的最大值进行比较, 得 到反射系数。 驻波比获取子模块 936用于利用所述反射系数获得驻波比。 上 述驻波检测装置也可为仪表。
本实施例中, 驻波检测装置通过采用基带多音信号作为测试时使用的发 射信号即基带信号, 并通过反馈通道接收反馈信号, 利用发射信号与反馈信 号获得时域***传输函数, 从而无需增加硬件成本, 只需增加少量计算, 便 实现了驻波检测, 使得驻波检测更为简便。 进一步地, 利用存储的校准数据 对所述反馈信号进行校准处理, 获得了反射信号, 排除了反馈信号中掺杂的 耦合器泄露对驻波检测所带来的误差问题, 提高了驻波检测的精度。
图 10为本发明实施例提供的基站的结构示意图。 该基站包括: 驻波检测 装置 101。 驻波检测装置 101 用于对基站进行驻波检测。 驻波检测装置 101 可为上述装置实施例中提供的任一种驻波检测装置。
本实施例中, 基站采用驻波检测装置, 通过采用基带多音信号作为测试 时使用的发射信号即基带信号, 并通过反馈通道接收反馈信号, 利用发射信 号与反馈信号获得时域***传输函数, 从而无需增加硬件成本, 只需增加少 量计算, 便实现了驻波检测, 使得驻波检测更为简便。 进一步地, 利用存储 的校准数据对所述反馈信号进行校准处理, 获得了反射信号, 排除了反馈信 号中掺杂的耦合器泄露对驻波检测所带来的误差问题, 提高了驻波检测的精 度。
上述实施例提供的技术方案通过基站已有的反馈通道采集基带多音信号 的反射信号, 并与基带多音信号进行运算, 得到驻波检测的结果, 即实现了 高精度的驻波检测和天线口线缆的断点定位, 使得不需要增加硬件电路, 现 有多种无线产品均可通过更新软件实现此功能, 降低了驻波检测的成本。 并 且, 维护和检测人员不需要带笨重和昂贵的仪表, 也不用拆开线缆接头便可 实现驻波检测, 使得驻波检测更易于实现。 并且, 实施开路键、 短路键、 匹 配负载的校准, 开路键、 短路键校准寻找最大的反射值, 获取归一化的反射 系数, 匹配负载校准进一步实现高精度的校准和补偿, 补偿了因环行器即消 除定向耦合器的方向性带来的误差。 校准发送的数据经 FFT变换, 接收到的 反馈通路的数据也做 FFT变换, 经过在频域进行的函数计算, 即可得到*** 的频域传输函数。 这里对采集数据的时间不需要严格对齐, 减少了***对同 时采集数据的要求。 有了***的频域传输函数, 即可通过 IFFT变换, 得到系 统的时域传输函数, 从而得到天线端口和外界线缆的断点情况。 校准数据同 实际测试数据在数字域处理完全一样, 校准数据做预存储, 给实际测试数据 做参考。 校准数据对实时性要求不高, 生产校准一次即可, 后续随时可以进 行数据的采集和计算, 实现检测, 不受环境的影响。 并且, 校准和测试在同 样的输出功率下进行, 一旦在一定的功率下实现了开短路、 匹配负载的校准, 在任何时候测试时, 可以调用校准数据实现高精度的驻波检测和线缆故障的 定位。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种驻波检测方法, 其特征在于, 包括:
从基站的反馈通道采集以基带多音信号作为发射信号的反馈信号; 利用存储的校准数据对所述反馈信号进行校准处理, 获得所述反馈信号 中的反射信号; 所述校准数据为分别在校准点处开路、 短路及匹配负载情况 下采集的基带多音信号以及相应的反馈信号;
根据所述发射信号与所述反馈信号中的反射信号获得驻波检测值。
2、 根据权利要求 1所述的驻波检测方法, 其特征在于, 根据所述发射信 号与所述反馈信号中的反射信号获得驻波检测值包括:
利用所述发射信号与反射信号获得修正后的时域***传输函数; 通过时域***传输函数的曲线获得反射信号的峰值;
通过所述峰值与线缆故障点计算公式获得线缆故障点的位置。
3、 根据权利要求 1或 2所述的驻波检测方法, 其特征在于, 根据所述发 射信号与所述反馈信号中的反射信号获得驻波检测值包括:
对在所述校准点处开路、 短路情况下采集的反馈信号的幅度进行平均, 得到反馈信号的最大值;
对反馈信号中的反射信号与反馈信号的最大值进行比较,得到反射系数; 利用所述反射系数获得驻波比。
4、 一种驻波检测装置, 其特征在于, 包括:
采集模块, 用于从基站的反馈通道采集以基带多音信号作为发射信号的 反馈信号;
校准模块, 用于利用存储的校准数据对所述反馈信号进行校准处理, 获 得所述反馈信号中的反射信号; 所述校准数据为分别在校准点处开路、 短路 及匹配负载情况下采集的基带多音信号以及相应的反馈信号; 检测模块, 用于根据所述发射信号与所述反馈信号中的反射信号获得驻 波检测值。
5、 根据权利要求 4所述的驻波检测装置, 其特征在于, 所述检测模块包 括:
修正子模块, 用于利用所述发射信号与反射信号获得修正后的时域*** 传输函数;
峰值获取子模块, 用于通过时域***传输函数的曲线获得反射信号的峰 值;
故障点位置获取子模块, 用于通过所述峰值获得线缆故障点的位置。
6、 根据权利要求 4或 5所述的驻波检测装置, 其特征在于, 所述检测模 块包括:
平均子模块, 用于对在所述校准点处开路、 短路情况下采集的反馈信号 的幅度进行平均, 得到反馈信号的最大值;
比较子模块, 用于对反馈信号中的反射信号与反馈信号的最大值进行比 较, 得到反射系数;
驻波比获取子模块, 用于利用所述反射系数获得驻波比。
7、 根据权利要求 4或 5所述的驻波检测装置, 其特征在于, 所述驻波检 测装置为仪表。
8、 一种基站, 其特征在于, 包括上述权利要求 4-6中任一项所述的驻波 检测装置。
PCT/CN2011/070846 2010-02-11 2011-01-31 驻波检测方法、驻波检测装置及基站 WO2011098020A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/572,595 US9002291B2 (en) 2010-02-11 2012-08-10 Standing wave detection method, standing wave detection apparatus and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010111622.3 2010-02-11
CN2010101116223A CN101958756B (zh) 2010-02-11 2010-02-11 驻波检测方法、驻波检测装置及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/572,595 Continuation US9002291B2 (en) 2010-02-11 2012-08-10 Standing wave detection method, standing wave detection apparatus and base station

Publications (1)

Publication Number Publication Date
WO2011098020A1 true WO2011098020A1 (zh) 2011-08-18

Family

ID=43485884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070846 WO2011098020A1 (zh) 2010-02-11 2011-01-31 驻波检测方法、驻波检测装置及基站

Country Status (3)

Country Link
US (1) US9002291B2 (zh)
CN (1) CN101958756B (zh)
WO (1) WO2011098020A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037217A1 (zh) * 2011-09-13 2013-03-21 中兴通讯股份有限公司 驻波比获取方法及装置
US20160197745A1 (en) * 2013-09-13 2016-07-07 Huawei Technologies Co., Ltd. Method, apparatus, and system for correcting channel of remote radio unit

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958756B (zh) * 2010-02-11 2013-04-24 华为技术有限公司 驻波检测方法、驻波检测装置及基站
CN102685039B (zh) * 2011-03-18 2015-01-14 鼎桥通信技术有限公司 一种驻波比检测方法
US20120250527A1 (en) * 2011-03-28 2012-10-04 International Business Machines Corporation Determining Connectivity Of A High Speed Link That Includes An AC-Coupling Capacitor
CN102325339B (zh) * 2011-07-22 2014-08-13 京信通信***(中国)有限公司 驻波检测方法、装置及射频拉远单元
CN102510311B (zh) * 2011-09-21 2016-01-20 中兴通讯股份有限公司 一种检测驻波比的方法和装置
CN102511139B (zh) * 2011-11-28 2014-06-04 华为技术有限公司 一种驻波检测方法和装置
CN103427915B (zh) * 2012-05-25 2016-08-31 南京中兴软件有限责任公司 一种射频设备驻波比检测中的去干扰方法和装置
CN103592565B (zh) * 2012-08-16 2017-02-15 中兴通讯股份有限公司 一种线缆故障位置检测方法及装置
CN104756420A (zh) * 2012-10-25 2015-07-01 诺基亚通信公司 距vswr故障的距离的测量
CN103905080B (zh) * 2012-12-28 2016-03-30 联想(北京)有限公司 一种调整发射信号的方法以及一种手持移动终端
US9429463B2 (en) * 2013-03-04 2016-08-30 International Road Dynamics, Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US9654233B2 (en) * 2013-04-04 2017-05-16 Nokia Solutions And Networks Oy VSWR estimation using spectral analysis to suppress external interference
CN104254093A (zh) * 2013-06-27 2014-12-31 中兴通讯股份有限公司 一种驻波反射点的检测方法及装置
US9791490B2 (en) 2014-06-09 2017-10-17 Apple Inc. Electronic device having coupler for tapping antenna signals
CN104243065B (zh) 2014-09-01 2017-07-04 大唐移动通信设备有限公司 驻波比检测的方法及设备
US9594147B2 (en) 2014-10-03 2017-03-14 Apple Inc. Wireless electronic device with calibrated reflectometer
CN104270209B (zh) * 2014-10-14 2016-11-23 大唐移动通信设备有限公司 基于不同校准平面的rru驻波比的检测方法和装置
CN104270208B (zh) * 2014-10-14 2017-01-11 大唐移动通信设备有限公司 一种远端射频单元rru驻波比检测的方法及装置
CN104579516B (zh) * 2014-12-04 2017-11-14 大唐移动通信设备有限公司 一种驻波比检测方法和设备
JP6386410B2 (ja) * 2015-03-31 2018-09-05 新明和工業株式会社 動体検知装置
CN106549721A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 一种驻波比检测方法和装置及基站
CN106771845B (zh) * 2015-11-19 2021-03-30 中兴通讯股份有限公司 一种确定第一反射点距离射频单元的距离的方法和装置
CN106488484A (zh) * 2016-12-23 2017-03-08 江苏中利电子信息科技有限公司 智能自组网数据终端通信基站的测试方法
WO2019165601A1 (zh) * 2018-02-28 2019-09-06 海能达通信股份有限公司 一种驻波检测方法、装置及具有存储功能的装置
CN108601045B (zh) * 2018-02-28 2021-06-18 海能达通信股份有限公司 一种驻波检测方法、装置及具有存储功能的装置
CN110581741B (zh) * 2019-08-28 2021-06-29 三维通信股份有限公司 驻波异常位置检测方法、设备及介质
CN111193556B (zh) * 2019-12-18 2022-05-17 上海麦腾物联网技术有限公司 一种具有天线脱离检测功能的天线及其检测方法
CN113473512B (zh) * 2021-07-30 2024-02-09 深圳市广和通无线股份有限公司 干扰定位方法
CN113765601B (zh) * 2021-09-18 2024-03-26 中电防务科技有限公司 一种短波发射机驻波检测校准装置和方法
CN114325239B (zh) * 2021-12-30 2024-01-19 成都高斯电子技术有限公司 故障定位模拟装置及故障定位精度校验方法
WO2024081228A1 (en) * 2022-10-10 2024-04-18 Ohio State Innovation Foundation Methods and systems for monitoring wireless sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925348A (zh) * 2006-10-10 2007-03-07 华为技术有限公司 驻波比检测方法及装置
CN101146314A (zh) * 2007-10-22 2008-03-19 中兴通讯股份有限公司 一种时分双工通信***的驻波比检测装置及方法
CN101557601A (zh) * 2009-05-07 2009-10-14 上海华为技术有限公司 驻波检测方法、驻波检测装置和基站
CN101958756A (zh) * 2010-02-11 2011-01-26 华为技术有限公司 驻波检测方法、驻波检测装置及基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083086A (en) * 1990-07-12 1992-01-21 James G. Biddle Co. Differential arc reflectometry
US5913154A (en) * 1997-04-18 1999-06-15 Ericsson, Inc. VSWR control technique for terminal products with linear modulation
US6798211B1 (en) * 1997-10-30 2004-09-28 Remote Monitoring Systems, Inc. Power line fault detector and analyzer
US6937944B2 (en) * 2001-07-07 2005-08-30 Cynthia M. Furse Frequency domain reflectometry system for baselining and mapping of wires and cables
US7477876B2 (en) * 2001-11-02 2009-01-13 Alcatel-Lucent Usa Inc. Variable rate channel quality feedback in a wireless communication system
KR100486972B1 (ko) * 2002-07-09 2005-05-03 신용준 시간-주파수 영역 반사파 처리 방법
CN1863244B (zh) 2005-10-28 2013-10-02 华为技术有限公司 传输线路的时域反射测试方法及装置
US8478344B2 (en) * 2006-06-21 2013-07-02 Broadcom Corporation Power recovery circuit based on partial standing waves
JP5105889B2 (ja) * 2007-02-06 2012-12-26 サンデン株式会社 Rfidタグ読取装置及びその調整方法
US8351874B2 (en) * 2008-04-08 2013-01-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for adaptive antenna impedance matching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925348A (zh) * 2006-10-10 2007-03-07 华为技术有限公司 驻波比检测方法及装置
CN101146314A (zh) * 2007-10-22 2008-03-19 中兴通讯股份有限公司 一种时分双工通信***的驻波比检测装置及方法
CN101557601A (zh) * 2009-05-07 2009-10-14 上海华为技术有限公司 驻波检测方法、驻波检测装置和基站
CN101958756A (zh) * 2010-02-11 2011-01-26 华为技术有限公司 驻波检测方法、驻波检测装置及基站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037217A1 (zh) * 2011-09-13 2013-03-21 中兴通讯股份有限公司 驻波比获取方法及装置
US20160197745A1 (en) * 2013-09-13 2016-07-07 Huawei Technologies Co., Ltd. Method, apparatus, and system for correcting channel of remote radio unit
US10164799B2 (en) * 2013-09-13 2018-12-25 Huawei Technologies Co., Ltd. Method, apparatus, and system for correcting channel of remote radio unit

Also Published As

Publication number Publication date
US20120309322A1 (en) 2012-12-06
US9002291B2 (en) 2015-04-07
CN101958756A (zh) 2011-01-26
CN101958756B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2011098020A1 (zh) 驻波检测方法、驻波检测装置及基站
WO2011098021A1 (zh) 驻波检测方法、驻波检测装置及基站
US10164334B2 (en) Antenna system calibration
CN102325339B (zh) 驻波检测方法、装置及射频拉远单元
US9755673B2 (en) Distance to VSWR fault measurement
CN107994959B (zh) 远端射频单元rru驻波比的检测方法及装置
JP2016026459A (ja) 無線通信システム及び処理方法
TWI437242B (zh) 隔離度偵測裝置及其方法、射頻電路
KR20120072111A (ko) 벡터 네트워크 분석기를 이용한 칼리브레이션 방법 및 이를 이용한 지연시간 측정 방법
WO2012151939A1 (zh) 一种驻波比检测方法、装置和基站
CN113671273B (zh) 一种片上天线测量用探针馈电去嵌入方法
JP5583854B2 (ja) 無線通信装置の電力を較正する方法、および電力較正のために無線通信装置により実行される方法
WO2012142976A1 (zh) 检测通道质量的方法、装置及***
TW202301821A (zh) 用於補償導因於導電信號測試中的射頻(rf)信號探針失配的功率損失的系統及方法
CN101227211B (zh) 接收总宽带功率校准方法和装置
TWI429922B (zh) 非接觸式之電磁干擾量測方法
JP2019068166A (ja) Rfidリーダライタ装置、インピーダンス調整方法、プログラム
US20120002559A1 (en) Apparatus and method for detecting transmission power of terminal having heterogenerous modem chips
TW201105056A (en) System and method for testing signal reception sensitivity of a communication device
CN103905080B (zh) 一种调整发射信号的方法以及一种手持移动终端
CN113193325A (zh) 一种提高定向耦合器方向性的方法和装置
TW200939729A (en) System and method for auto calibrating power of a mobile phone
WO2013040907A1 (zh) 一种检测驻波比的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11741891

Country of ref document: EP

Kind code of ref document: A1