WO2011097952A1 - 温差发动机装置 - Google Patents

温差发动机装置 Download PDF

Info

Publication number
WO2011097952A1
WO2011097952A1 PCT/CN2011/000198 CN2011000198W WO2011097952A1 WO 2011097952 A1 WO2011097952 A1 WO 2011097952A1 CN 2011000198 W CN2011000198 W CN 2011000198W WO 2011097952 A1 WO2011097952 A1 WO 2011097952A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
low
heat exchanger
temperature
working fluid
Prior art date
Application number
PCT/CN2011/000198
Other languages
English (en)
French (fr)
Inventor
刘昂峰
Original Assignee
淄博绿能化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RS20210118A priority Critical patent/RS61380B1/sr
Priority to JP2012551480A priority patent/JP5593520B2/ja
Priority to PL11741823T priority patent/PL2535583T3/pl
Priority to SG2012056685A priority patent/SG182815A1/en
Priority to AU2011214821A priority patent/AU2011214821B9/en
Priority to NZ601692A priority patent/NZ601692A/en
Priority to CA2789388A priority patent/CA2789388C/en
Application filed by 淄博绿能化工有限公司 filed Critical 淄博绿能化工有限公司
Priority to DK11741823.6T priority patent/DK2535583T3/da
Priority to BR112012019823-8A priority patent/BR112012019823B1/pt
Priority to MX2012009157A priority patent/MX2012009157A/es
Priority to KR1020127022973A priority patent/KR101464351B1/ko
Priority to ES11741823T priority patent/ES2847881T3/es
Priority to UAA201210583A priority patent/UA101795C2/ru
Priority to EP11741823.6A priority patent/EP2535583B1/en
Priority to EA201290763A priority patent/EA023220B1/ru
Priority to US13/577,644 priority patent/US9140242B2/en
Priority to AP2012006436A priority patent/AP3418A/xx
Publication of WO2011097952A1 publication Critical patent/WO2011097952A1/zh
Priority to IL221347A priority patent/IL221347A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/10Cooling exhaust steam other than by condenser; Rendering exhaust steam invisible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/02Other methods of steam generation; Steam boilers not provided for in other groups of this subclass involving the use of working media other than water

Definitions

  • the invention is a novel temperature difference engine device. It belongs to the device that converts thermal energy into mechanical work. Background technique
  • the object of the present invention is to avoid the above-mentioned deficiencies in the prior art, and to provide a method for directly converting the energy of thermal motion of molecules into mechanical work while avoiding the step of boosting during the conversion of thermal energy into mechanical work.
  • Engine unit
  • the object of the present invention can be achieved by the following measures:
  • the novel temperature difference engine device of the present invention is a closed circulation system in which a low boiling point working fluid steam turbine 1, a heat absorber 2, a heat preservation type low temperature countercurrent heat exchanger 3, a circulation pump 4, and a refrigeration system 5 are connected and combined with each other.
  • the system is filled with low boiling point working fluid;
  • a low-boiling working fluid turbine 1 and a heat absorber 2 constitute a low-density working fluid heat absorption work system
  • the circulation pump 4 and the refrigeration system 5 constitute a high-density working fluid refrigeration cycle system.
  • the transverse heat transfer between the fluids is realized by the heat preservation type low temperature countercurrent heat exchanger 3; b.
  • the heat preservation type low temperature countercurrent heat exchanger 3 is divided into a high temperature end A and a low temperature end B, and in the heat exchanger, the longitudinal direction of the heat exchanger wall passes The heat insulation layer is insulated, and the temperature of the fluid gradually gradually gradually changes from the high temperature end to the low temperature end, and the fluid exchanges heat with each other laterally through the heat exchange wall;
  • the low boiling point working fluid flows into the heat preservation type low temperature countercurrent heat exchanger 3, from the high temperature end A to the low temperature end B, from the gaseous state to the liquid state or the high density state; flowing through the refrigeration cycle system, and then When the low temperature end B flows to the high temperature end A, it changes from a liquid state or a high density state to a gaseous state; the two are countercurrent heat exchange in the heat preservation type low temperature countercurrent heat exchanger 3;
  • the heat absorber 2 can be installed before or after the low boiling point working fluid turbine 1 to compensate the heat energy consumption of the system after the low-boiling working fluid turbine 1 performs the functional output, and maintain the energy balance of the system.
  • the low boiling point working fluid turbine 1 is a device that outputs mechanical energy to the outside.
  • the external heat is absorbed by the heat absorber 2.
  • One of the main functions of the heat preservation type low temperature countercurrent heat exchanger 3 is to block the working fluid flowing to the low temperature zone B as much as possible to bring heat into the low temperature zone B, to ensure that the working medium in the low temperature zone is in a liquid or high density state, and reduce the load of the refrigeration cycle system.
  • the main function of the circulation pump 4 is to ensure that the working fluid can circulate in the direction of the design in the system. Because the system pressure difference is small, the working fluid has a low flow rate in the liquid state, so the power consumption is small.
  • the main function of the refrigeration system 5 is to transfer the heat brought in by the fluid, the heat introduced by the insulation is not complete, and the confirmation of the follow-up The heat generated by the work of the ring pump 4 is taken away to ensure that the low temperature of the working medium is constant.
  • the insulated low-temperature countercurrent heat exchanger 3 divides the system into a low temperature portion of the refrigeration cycle and a high temperature portion of the heat absorption work, 'whether the low temperature portion or the high temperature portion, the temperature is higher than the temperature of the external fluid that supplies heat to the heat absorber 2 low.
  • the high-density fluid refrigerant refrigeration cycle system is maintained by a refrigeration system and an insulation layer; the high temperature portion is composed of a low-boiling working fluid turbine 1 and a heat absorber 2, and the heat absorber 2 absorbs heat from the external fluid for low
  • the boiling point working fluid turbine 1 works; after the low boiling point working steam turbine 1 works, the heat absorber 2 absorbs heat from the external fluid to compensate the system heat consumption and maintain the system energy balance.
  • the object of the invention can also be achieved by the following measures:
  • the heat-insulated low-temperature countercurrent heat exchanger 3 is selected from the group consisting of a plate heat exchanger, a tubular heat exchanger, and a finned heat exchanger, or a combination of any two or more thereof.
  • the heat-insulated low-temperature countercurrent heat exchanger 3 is composed of a plurality of stages along the fluid direction, and a thermal insulation layer is added between the stages.
  • the inflow and outflow (countercurrent) fluids exchange heat with each other through the heat exchanger wall.
  • the heat absorber 2 and the low boiling point working fluid turbine 1 can be assembled in series by a plurality of sets of continuous cycles. The more it is connected in series, the more mechanical energy is outputted to the outside, but it does not increase the burden on the refrigeration system 5 and the circulation pump 4 in the low temperature portion.
  • the heat insulating type low temperature countercurrent heat exchanger 3 can be omitted.
  • the heat-insulated low-temperature countercurrent heat exchanger 3 of the present invention can be omitted because of the large amount of mechanical output work.
  • the task of low temperature conditions can be fully undertaken by the refrigeration system 5.
  • the cooling system 5 and the circulating pump 4 consume less energy than the sum of the output energy of the plurality of turbines 1.
  • the flow rate of the working fluid flow that drives the rotation of the low boiling point working turbine 1 can be adjusted by the change of the inlet diameter of the turbine. To meet the technical conditions of the engine of various needs.
  • the novel differential temperature engine device of the present invention is suitable for any space having a heat source fluid environment in nature. Includes air heat source and water body heat source.
  • the novel differential temperature engine unit of the present invention is suitable for use in engines for automobiles, ships, aircraft, and engines for thermal power generation systems.
  • An engine device that can directly convert the thermal energy of the molecule into mechanical work while avoiding the boosting process in the process of converting thermal energy into mechanical work.
  • FIG. 1 is a schematic view of the principle of a temperature difference engine device of the present invention
  • a novel temperature difference engine device of the present invention is a novel temperature difference engine device of the present invention.
  • a low-boiling working fluid turbine 1 and a heat absorber 2 constitute a low-density working fluid heat absorption work system
  • the circulation pump 4 and the refrigeration system 5 constitute a high-density working fluid refrigeration cycle system.
  • the transverse heat transfer between the fluids is realized by the heat preservation type low temperature countercurrent heat exchanger 3; b.
  • the heat preservation type low temperature countercurrent heat exchanger 3 is divided into a high temperature end A and a low temperature end B, and in the heat exchanger, the longitudinal direction of the heat exchanger wall passes The heat insulation layer is insulated, and the temperature of the fluid gradually gradually gradually changes from the high temperature end to the low temperature end, and the fluid exchanges heat with each other laterally through the heat exchange wall;
  • the low boiling point working fluid flows into the heat preservation type low temperature countercurrent heat exchanger 3, from the high temperature end A to the low temperature end B, from the gaseous state to the liquid state or the high density state (liquefaction); flowing through the refrigeration cycle system , when flowing from the low temperature end B to the high temperature end A, changing from a liquid or high density state to a gaseous state (evaporation); the two are countercurrent heat exchange in the heat preservation type low temperature countercurrent heat exchanger 3;
  • the heat absorber 2 can be installed before or after the low boiling point working fluid turbine 1 to compensate the heat energy consumption of the system after the low-boiling working fluid turbine 1 performs the functional output, and maintain the energy balance of the system.
  • the insulated low temperature countercurrent heat exchanger 3 is a finned heat exchanger.
  • the insulated low-temperature countercurrent heat exchanger 3 is composed of a plurality of stages along the fluid direction, and a thermal insulation layer is added between the stages.
  • the heat absorber 2 and the low boiling point working fluid turbine 1 are assembled in series by a plurality of sets of continuous cycles.
  • the working fluid used for heat absorption, transmission and conversion of thermal energy into mechanical energy is the refrigerant R22.
  • the engine unit is suitable for use in automobiles, ships, aircraft engines, and engines for power generation systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

温差发动机装置 技术领域
本发明是一种新型温差发动机装置。 属于将热能转化为机械功的装置。 背景技术
将热能转化为机械功, 是人类利用能源最主要的方式。 传统的转化方式是首先将热能转 化为压力势能, 然后再对外做功, 这样会形成能量损失, 还会额外消耗化石能源。 发明内容
本发明的目的在于避免上述现有技 中的不足之处, 而提供一种能在热能转化为机械功 的过程中, 尽量避开升压过程, 直接将分子的热运动的能量转换为机械功的发动机装置。
本发明的目的还在于通过本发明的新型发动机装置, 将自然界存在的流体携带的热能高 效率地转化为机械功。
本发明的目的可以通过如下措施来达到:
本发明的新型温差发动机装置, 是由低沸点工质汽轮机 1, 吸热器 2, 保温式低温逆流换 热器 3, 循环泵 4, 制冷*** 5相互连接、 组合而成的密闭的循环***, ***中充满低沸点工 质流体; 其中:
a. 低沸点工质汽轮机 1与吸热器 2构成低密度的工质吸热做功***, 循环泵 4与制冷系 统 5构成高密度工质制冷循环***。通过保温式低温逆流换热器 3实现流体间的横向热传递; b. 保温式低温逆流换热器 3分为高温端 A与低温端 B, 在换热器内, 换热器壁间纵向通 过隔热层隔热, 流体的温度从高温端向低温端纵向缓慢渐变, 而且, 流体通过换热壁横向之 间相互换热;
c 低沸点工质离开吸热做功***以后, 流入保温式低温逆流换热器 3, 从高温端 A流向 低温端 B时, 由气态变为液态或者高密度态; 流经制冷循环***, 再从低温端 B流向高温端 A时, 由液态或者高密度态变为气态; 二者在保温式低温逆流换热器 3中逆流换热;
d. 吸热器 2可装在低沸点工质汽轮机 1之前或之后, 用以补偿低沸点工质汽轮机 1对外 做功能量输出后体系的热能消耗, 维持***能量平衡。
低沸点工质汽轮机 1是向外输出机械能的装置。 通过吸热器 2吸收外部热量。 保温式低 温逆流换热器 3的主要功能之一是尽量阻断流向低温区 B的工质将热量带进低温区 B, 确保 低温区工质处于液态或者高密度状态, 降低冷冻循环***的负荷。 循环泵 4的主要功能是确 保工质能在***中按照设计的方向循环, 因为***压差很小, 工质在液态时流速较低, 所以 功耗很小。 制冷*** 5主要功能是将由流体带入的热量、 因隔热不彻底而导入的热量及因循 确 认 本 环泵 4做功而产生的热量带走, 确保工质的低温恒定。
保温式低温逆流换热器 3将***分割成制冷循环的低温部分与吸热做功的高温部分,'无 论是低温部分还是高温部分, 其温度都比为吸热器 2提供热量的外部流体的温度低。 高密度 流体工质制冷循环***, 其低温环境由制冷***及保温层来维持; 高温部分由低沸点工质汽 轮机 1与吸热器 2组成, 由吸热器 2从外部流体吸收热量, 供低沸点工质汽轮机 1做功; 低 沸点工质汽轮机 1做功后, 再由吸热器 2从外部流体中吸热, 以补偿***热量消耗, 维持系 统能量平衡。
本发明的目的还可以通过如下措施来达到:
本发明的新型温差发动机装置,
所述之保温式低温逆流换热器 3是'从板式换热器、 管式换热器、 翅片式换热器中选择 来的一种或其任意两种以上组合。
本发明的新型温差发动机装置,所述之保温式低温逆流换热器 3沿流体方向由多级组成, 级与级之间加隔热垫层.。 以防热量通过换热器壁沿流体方向低温区传热; 进入与流出 (逆流) 流体横向间通过换热器壁相互换热。
本发明的温差发动机装置, 所述之吸热器 2与低沸点工质汽轮机 1可由多组连续循环串 联装配而成。 其串连的越多, 对外输出的机械能也越多, 但并不增加低温部分中制冷*** 5 与循环泵 4的负担。
本发明的温差发动机装置, 所述保温式低温逆流换热器 3可以省去不用。 在采用多组吸 热器 2与低沸点工质汽轮机 1进行串联的情况下, 由于机械输.出功较多, 本发明中的保温式 低温逆流换热器 3也可以省去不用, 其保持低温条件的任务可以完全由制冷*** 5承担。 制 冷*** 5及循环泵 4所消耗的能源将小于多个汽轮机 1的输出能源总和。
本发明的新型温差发动机装置, 驱动所述低沸点工质汽轮机 1转动的工质气流的流速可 通过汽轮机入口管径变化进行调节。 以适应各种不同需求的发动机的技术条件。
本发明的新型温差发动机装置, 适用于自然界具备热源流体环境的任何空间。 包括空气 热源和水体热源。
本发明的新型温差发动机装置适用于汽车、 轮船、 飞机的发动机以及热发电***的发动 机。
本发明公开的温差发动机装置及其应用的技术方案, 相比现有技术具有突出的实质性特 点和显著的技术进步:
1.提供了一种能在热能转化为机械功的过程中, 尽量避开升压过程, 直接将分子的热运 动的能量转换为机械功的发动机装置。
2.能够将自然界存在的流体携带的热能高效率地转化为机械功。 3.提供了一种不受自然环境温度与光照限制的发动机装置。 附图说明
' 本发明下面将结合附图作进一步说明:
图 1是本发明的温差发动机装置原理示意图
图中
1一低沸点工质汽轮发动机
2—吸热器
3—保温式低温逆流换热器
4一循环泵
5—制冷***。 具体实施方式
本发明下面将结合实施例作进一步详述:
实施例 1
一种本发明的新型温差发动机装置,
是由低沸点工质汽轮机 1, 吸热器 2, 保温式低温逆流换热器 3, 循环泵 4, 制冷*** 5 相互连接、 组合而成的密闭的循环***, ***中充满低沸点工质流体; 其中:
a. 低沸点工质汽轮机 1与吸热器 2构成低密度的工质吸热做功***, 循环泵 4与制冷系 统 5构成高密度工质制冷循环***。通过保温式低温逆流换热器 3实现流体间的横向热传递; b. 保温式低温逆流换热器 3分为高温端 A与低温端 B, 在换热器内, 换热器壁间纵向通 过隔热层隔热, 流体的温度从高温端向低温端纵向缓慢渐变, 而且, 流体通过换热壁横向之 间相互换热;
c 低沸点工质离开吸热做功***以后, 流入保温式低温逆流换热器 3, 从高温端 A流向 低温端 B时, 由气态变为液态或者高密度态(液化); 流经制冷循环***, 再从低温端 B流向 高温端 A时, 由液态或者高密度态变为气态(蒸发); 二者在保温式低温逆流换热器 3中逆流 换热;
d. 吸热器 2可装在低沸点工质汽轮机 1之前或之后, 用以补偿低沸点工质汽轮机 1对外 做功能量输出后体系的热能消耗, 维持***能量平衡。
所述之保温式低温逆流换热器 3是翅片式换热器。
所述之保温式低温逆流换热器 3沿流体方向由多级组成, 级与级之间加隔热垫层。
所述之吸热器 2与低沸点工质汽轮机 1由多组连续循环串联装配。 用于热量吸收、 传递及将热能转换为机械能的工质是制冷工质 R22。 该发动机装置, 适用于汽车、 轮船、 飞机的发动机以及发电***的发动机。

Claims

WO 2011/097952 权 利 要 求 书 PCT/CN2011/000198
1. 一种新型温差发动机装置,其特征在于该装置是由低沸点工质汽轮机(1 ),吸热器(2), 保温式低温逆流换热器 (3 ), 循环泵 (4), 制冷*** (5) 相互连接、 组合而成的密闭的循环 ***, ***中充满低沸点工质流体; 其中:
a. 低沸点工质汽轮机 (1 ) 与吸热器 (2 ) 构成低密度的工质吸热做功***, 循环泵 (4 ) 与制冷*** (5 ) 构成高密度工质制冷循环***, 通过保温式低温逆流换热器 (3 ) 实现流体 间的横向热传递;
b. 保温式低温逆流换热器 (3 ) 分为高温端 A与低温端 B, 在换热器内, 换热器壁间纵 向通过隔热层隔热, 流体的温度从高温端向低温端纵向缓慢渐变, 而且, 流体通过换热壁横 向之间相互换热;
c 低沸点工质离开吸热做功***以后, 流入保温式低温逆流换热器 (3), 从高温端 A流 向低温端 B时, 由气态变为液态或者高密度态; 流经制冷循环***, 再从低温端 B流向高温 端 A时, 由液态或者高密度态变为气态; 二者在保温式低温逆流换热器 (3) 中逆流换热; d. 吸热器 (2 ) 可装在低沸点工质汽轮机 (1 ) 之前或之后, 用以补偿低沸点工质汽轮机 (1)对外做功能量输出后体系的热能消耗, 维持***能量平衡。
2. 按照权利要求 1的温差发动机装置, 其特征在于所述之保温式低温逆流换热器 (3 ) 是从板式换热器、 管式换热器、 翅片式换热器中选择出来的一种或其任意两种以上组合。
3. 权利要求 1的新型温差发动机装置, 其特征在于所述之保温式低温逆流换热器 (3) 沿流体方向由多级组成, 级与级之间加隔热垫层。
4. 根据权利要求 1的新型温差发动机装置, 其特征在于所述之吸热器 (2)与低沸点工质 汽轮机( 1)可由多组连续循环串联装配而成。
5.根据权利要求 1的温差发动机装置, 其特征在于保温式低温逆流换热器(3 )可以省去 不用。
6. 根据权利要求 1的新型温差发动机装置, 其特征在于驱动所述低沸点工质汽轮机 (1 ) 转动的工质气流的流速可通过汽轮机入口管径变化进行调节。
7 .权利要求 1的新型温差发动机装置的应用, 其特征在于适用于自然界具备热源流体环 境的任何空间。
PCT/CN2011/000198 2010-02-09 2011-02-09 温差发动机装置 WO2011097952A1 (zh)

Priority Applications (18)

Application Number Priority Date Filing Date Title
BR112012019823-8A BR112012019823B1 (pt) 2010-02-09 2011-02-09 Dispositivo de mecanismo de diferencial de temperatura e uso do mesmo
PL11741823T PL2535583T3 (pl) 2010-02-09 2011-02-09 Urządzenie stanowiące silnik wykorzystujący różnicętemperatur
SG2012056685A SG182815A1 (en) 2010-02-09 2011-02-09 Temperature differential engine device
AU2011214821A AU2011214821B9 (en) 2010-02-09 2011-02-09 Temperature differential engine device
NZ601692A NZ601692A (en) 2010-02-09 2011-02-09 Temperature differential engine device
CA2789388A CA2789388C (en) 2010-02-09 2011-02-09 A temperature differential engine device
MX2012009157A MX2012009157A (es) 2010-02-09 2011-02-09 Dispositivo de maquina de diferencial de temperatura.
DK11741823.6T DK2535583T3 (da) 2010-02-09 2011-02-09 Motorindretning med temperaturforskel
AP2012006436A AP3418A (en) 2010-02-09 2011-02-09 Temperature differential enginge device
RS20210118A RS61380B1 (sr) 2010-02-09 2011-02-09 Diferencijalni temperaturni uređaj motora
KR1020127022973A KR101464351B1 (ko) 2010-02-09 2011-02-09 온도차 엔진 장치
ES11741823T ES2847881T3 (es) 2010-02-09 2011-02-09 Dispositivo de motor diferencial de temperatura
UAA201210583A UA101795C2 (ru) 2010-02-09 2011-02-09 Двигательное устройство температурного перепада
EP11741823.6A EP2535583B1 (en) 2010-02-09 2011-02-09 Temperature differential engine device
EA201290763A EA023220B1 (ru) 2010-02-09 2011-02-09 Двигательное устройство температурного перепада
US13/577,644 US9140242B2 (en) 2010-02-09 2011-02-09 Temperature differential engine device
JP2012551480A JP5593520B2 (ja) 2010-02-09 2011-02-09 温度差エンジン装置
IL221347A IL221347A (en) 2010-02-09 2012-08-08 Install differential temperature motors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010111209 2010-02-09
CN201010111209.7 2010-02-09

Publications (1)

Publication Number Publication Date
WO2011097952A1 true WO2011097952A1 (zh) 2011-08-18

Family

ID=44155581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000198 WO2011097952A1 (zh) 2010-02-09 2011-02-09 温差发动机装置

Country Status (23)

Country Link
US (1) US9140242B2 (zh)
EP (1) EP2535583B1 (zh)
JP (1) JP5593520B2 (zh)
KR (1) KR101464351B1 (zh)
CN (2) CN202031792U (zh)
AP (1) AP3418A (zh)
AU (1) AU2011214821B9 (zh)
BR (1) BR112012019823B1 (zh)
CA (1) CA2789388C (zh)
DK (1) DK2535583T3 (zh)
EA (1) EA023220B1 (zh)
ES (1) ES2847881T3 (zh)
HU (1) HUE053285T2 (zh)
IL (1) IL221347A (zh)
MX (1) MX2012009157A (zh)
MY (1) MY160759A (zh)
NZ (1) NZ601692A (zh)
PL (1) PL2535583T3 (zh)
PT (1) PT2535583T (zh)
RS (1) RS61380B1 (zh)
SG (1) SG182815A1 (zh)
UA (1) UA101795C2 (zh)
WO (1) WO2011097952A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2535583T3 (pl) 2010-02-09 2021-05-17 Shandong Natergy Energy Technology Co., Ltd. Urządzenie stanowiące silnik wykorzystujący różnicętemperatur
CN103670979A (zh) * 2012-09-20 2014-03-26 上海尚实能源科技有限公司 温差发电装置
CN104632460A (zh) * 2015-01-12 2015-05-20 上海领势新能源科技有限公司 液化空气辅助废热回收装置
CN104747315A (zh) * 2015-01-28 2015-07-01 上海领势新能源科技有限公司 液化空气辅助储能发电装置
US9809083B2 (en) * 2015-02-27 2017-11-07 Mahle International Gmbh HVAC system for electric vehicle with driving range extension
US20190003750A1 (en) * 2015-12-17 2019-01-03 Mahmoud Tharwat Hafez AHMED Device for absorbing thermal energy from the surrounding environment and using same (generator)
CN106089614B (zh) * 2016-06-14 2018-12-11 华南理工大学 一种温差驱动涡轮
CN106523057A (zh) * 2016-11-24 2017-03-22 华北电力大学 一种大气低温源的利用装置
WO2018119545A1 (zh) * 2016-12-29 2018-07-05 华北电力大学 一种大气低温源的利用装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041705A (en) * 1976-04-07 1977-08-16 Israel Siegel Low temperature engine
CN2177815Y (zh) * 1993-12-19 1994-09-21 熊福达 温差能动机
CN201045334Y (zh) * 2007-06-18 2008-04-09 葆光(大连)节能技术研究所有限公司 温差发电与供热联合装置
CN101270737A (zh) * 2008-05-11 2008-09-24 殷红波 低热温差发电机

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB294882A (en) * 1927-07-30 1929-09-12 Gen Electric Improvements in and relating to vapour engines
US2182098A (en) * 1934-09-29 1939-12-05 Mallory & Co Inc P R Duplex solution thermo-compression process
US3175953A (en) * 1962-02-27 1965-03-30 Nettel Frederick Steam-cooled nuclear reactor power plant
ES423536A1 (es) * 1973-02-23 1977-11-01 Westinghouse Electric Corp Un metodo de simulacion de la operacion dinamica nuclear.
US4573321A (en) * 1984-11-06 1986-03-04 Ecoenergy I, Ltd. Power generating cycle
DE19545668A1 (de) * 1995-12-07 1997-06-12 Asea Brown Boveri Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
CN1160819A (zh) * 1996-03-29 1997-10-01 郭先全 温差发动机
RU2116465C1 (ru) 1996-08-21 1998-07-27 Станислав Андреевич Понятовский Энергетическая установка
WO1998051975A1 (fr) * 1997-05-12 1998-11-19 Toshiyasu Indo Convertisseur d'energie et procede de conversion d'energie
TW432192B (en) * 1998-03-27 2001-05-01 Exxon Production Research Co Producing power from pressurized liquefied natural gas
US6170263B1 (en) * 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US6598397B2 (en) * 2001-08-10 2003-07-29 Energetix Micropower Limited Integrated micro combined heat and power system
CN2506787Y (zh) * 2001-11-12 2002-08-21 宝陆科技有限公司 温差式发动机的动力机构
US6981377B2 (en) * 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
CN2591265Y (zh) * 2002-12-10 2003-12-10 沈超然 温差发动机组
DE10335143B4 (de) * 2003-07-31 2010-04-08 Siemens Ag Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
AT414268B (de) * 2004-06-08 2006-10-15 Int Innovations Ltd Wärmekraftmaschine
US7398651B2 (en) * 2004-11-08 2008-07-15 Kalex, Llc Cascade power system
US7458218B2 (en) 2004-11-08 2008-12-02 Kalex, Llc Cascade power system
JP2006138288A (ja) 2004-11-15 2006-06-01 Sanden Corp 熱機関
GB0609349D0 (en) 2006-05-11 2006-06-21 Rm Energy As Method and apparatus
DE102009010020B4 (de) * 2009-02-21 2016-07-07 Flagsol Gmbh Speisewasserentgaser eines solarthermischen Kraftwerks
GB0919934D0 (en) * 2009-11-16 2009-12-30 Sunamp Ltd Energy storage systems
US8418466B1 (en) * 2009-12-23 2013-04-16 David Hardgrave Thermodynamic amplifier cycle system and method
PL2535583T3 (pl) 2010-02-09 2021-05-17 Shandong Natergy Energy Technology Co., Ltd. Urządzenie stanowiące silnik wykorzystujący różnicętemperatur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041705A (en) * 1976-04-07 1977-08-16 Israel Siegel Low temperature engine
CN2177815Y (zh) * 1993-12-19 1994-09-21 熊福达 温差能动机
CN201045334Y (zh) * 2007-06-18 2008-04-09 葆光(大连)节能技术研究所有限公司 温差发电与供热联合装置
CN101270737A (zh) * 2008-05-11 2008-09-24 殷红波 低热温差发电机

Also Published As

Publication number Publication date
HUE053285T2 (hu) 2021-06-28
JP5593520B2 (ja) 2014-09-24
RS61380B1 (sr) 2021-02-26
IL221347A (en) 2015-07-30
ES2847881T3 (es) 2021-08-04
DK2535583T3 (da) 2021-03-01
EA201290763A1 (ru) 2013-01-30
KR20120117919A (ko) 2012-10-24
EP2535583A4 (en) 2016-02-24
JP2013519024A (ja) 2013-05-23
UA101795C2 (ru) 2013-04-25
SG182815A1 (en) 2012-09-27
PT2535583T (pt) 2021-02-15
NZ601692A (en) 2014-03-28
AP2012006436A0 (en) 2012-08-31
EP2535583A1 (en) 2012-12-19
US9140242B2 (en) 2015-09-22
PL2535583T3 (pl) 2021-05-17
IL221347A0 (en) 2012-10-31
AU2011214821B2 (en) 2013-08-22
CA2789388C (en) 2015-02-03
AP3418A (en) 2015-09-30
MX2012009157A (es) 2013-01-28
CN202031792U (zh) 2011-11-09
AU2011214821A1 (en) 2012-09-13
KR101464351B1 (ko) 2014-11-24
BR112012019823B1 (pt) 2021-09-28
MY160759A (en) 2017-03-15
AU2011214821B9 (en) 2014-10-02
CA2789388A1 (en) 2011-08-18
EA023220B1 (ru) 2016-05-31
BR112012019823A2 (pt) 2020-08-18
CN102102550A (zh) 2011-06-22
CN102102550B (zh) 2015-03-04
EP2535583B1 (en) 2020-12-23
US20120304638A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2011097952A1 (zh) 温差发动机装置
Wang et al. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
WO2022166381A1 (zh) 基于补充外部能量的co2气液相变的储能装置与方法
CN100425925C (zh) 利用天然工质以及太阳能或废热的发电、空调及供暖装置
US9677546B2 (en) Solar energy driven system for heating, cooling, and electrical power generation incorporating combined solar thermal and photovoltaic arrangements
WO2022166392A1 (zh) 基于二氧化碳气液相变的多级压缩储能装置及方法
Jiang et al. Experimental study on a resorption system for power and refrigeration cogeneration
JP5904351B2 (ja) 吸収冷却器、熱交換器
CN102094772B (zh) 一种太阳能驱动的联供装置
CN105401988B (zh) 利用涡流管的高效热力循环***
Hu et al. Thermodynamic and exergy analysis of a S-CO2 Brayton cycle with various of cooling modes
CN202501677U (zh) 有机朗肯循环驱动的蒸气压缩制冷装置
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电***
CN102162397A (zh) 压水堆核动力燃汽轮机循环发电***
CN205330748U (zh) 利用涡流管的高效热力循环***
KR101358309B1 (ko) 랭킨 사이클 시스템 및 이를 구비한 선박
CN110821584A (zh) 一种超临界二氧化碳朗肯循环***及联合循环***
CN203223259U (zh) 一种低温热源发电***
Lei et al. The performance of a novel solar cooling and power system with different working fluids
CN108895716B (zh) 多端供热吸收式热泵
BR112013028781B1 (pt) Método para gerar um fluxo de gás de velocidade alta e aplicação do mesmo
Mali et al. Design architecture for direct application of geothermal energy
CN112460829A (zh) 单工质联合循环热泵装置
CN102562196A (zh) 热泵式发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011741823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012551480

Country of ref document: JP

Ref document number: 13577644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 221347

Country of ref document: IL

Ref document number: MX/A/2012/009157

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2789388

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004010

Country of ref document: TH

Ref document number: 12012501606

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2011214821

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2415/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127022973

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201210583

Country of ref document: UA

Ref document number: 201290763

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2011214821

Country of ref document: AU

Date of ref document: 20110209

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019823

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019823

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120808