WO2022166392A1 - 基于二氧化碳气液相变的多级压缩储能装置及方法 - Google Patents

基于二氧化碳气液相变的多级压缩储能装置及方法 Download PDF

Info

Publication number
WO2022166392A1
WO2022166392A1 PCT/CN2021/136504 CN2021136504W WO2022166392A1 WO 2022166392 A1 WO2022166392 A1 WO 2022166392A1 CN 2021136504 W CN2021136504 W CN 2021136504W WO 2022166392 A1 WO2022166392 A1 WO 2022166392A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
heat
carbon dioxide
storage
energy storage
Prior art date
Application number
PCT/CN2021/136504
Other languages
English (en)
French (fr)
Other versions
WO2022166392A8 (zh
Inventor
谢永慧
王秦
孙磊
王雨琦
张荻
郭永亮
汪晓勇
杨锋
Original Assignee
百穰新能源科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百穰新能源科技(深圳)有限公司 filed Critical 百穰新能源科技(深圳)有限公司
Priority to CA3201526A priority Critical patent/CA3201526A1/en
Priority to US18/039,760 priority patent/US20240003272A1/en
Publication of WO2022166392A1 publication Critical patent/WO2022166392A1/zh
Publication of WO2022166392A8 publication Critical patent/WO2022166392A8/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/14Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having both steam accumulator and heater, e.g. superheating accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of energy storage, in particular to a multi-stage compression energy storage device and method based on carbon dioxide gas-liquid phase transition.
  • Energy storage systems usually use media or equipment to store electrical energy and release it when needed.
  • Compression energy storage devices based on carbon dioxide gas-liquid phase transition use carbon dioxide as the energy storage medium to store electrical energy.
  • the main principle is that when storing energy, the compressor is used to compress carbon dioxide, and then liquefy, and the electrical energy is stored in the form of high-pressure liquid carbon dioxide and thermal energy; when releasing energy, the high-pressure liquid carbon dioxide is released and gasified and then stored during compression. The heat energy is heated into the expander to do work, which drives the generator to output electric energy.
  • the energy utilization rate is low.
  • the present invention proposes a multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition.
  • energy waste during storage and release can be reduced and energy utilization can be improved.
  • Multistage compression energy storage devices based on carbon dioxide gas-liquid phase transition including:
  • the gas storage is used for storing gaseous carbon dioxide, and the volume of the gas storage can be changed;
  • liquid storage tank is used for storing liquid carbon dioxide
  • the energy storage assembly is used for storing energy
  • the energy storage assembly is arranged between the gas storage and the liquid storage tank
  • the energy storage assembly includes a condenser and at least two compression energy storages part
  • the compression energy storage part includes a compressor and an energy storage heat exchanger
  • the compressor is used for compressing carbon dioxide
  • the condenser is used for condensing carbon dioxide
  • An energy release component the energy release component is arranged between the gas storage and the liquid storage tank, the energy release component includes an evaporator, an energy release cooler, and at least one expansion energy release part, the expansion release
  • the energy part includes an expander and an energy releasing heat exchanger, the evaporator is used for evaporating carbon dioxide, the expander is used for releasing energy, and the energy releasing cooler is used for cooling the carbon dioxide entering the gas storage;
  • a heat exchange assembly the heat exchange assembly includes a cold storage tank, a heat storage tank and a heat recovery heat exchanger, and a heat exchange medium is arranged in the cold storage tank and the heat storage tank, and the cold storage tank, the The heat storage tank forms a heat exchange circuit between the energy storage heat exchanger and the energy release heat exchanger, and the heat exchange medium can flow in the heat exchange circuit;
  • At least one of the condenser, the energy releasing cooler and the heat recovery heat exchanger is connected to the evaporator to provide energy to the evaporator.
  • the condenser, the energy release cooler, and the heat recovery heat exchanger are all connected to the evaporator.
  • the energy release assembly further includes a throttle expansion valve, the throttle expansion valve is located between the liquid storage tank and the evaporator, and the throttle expansion valve is used for The carbon dioxide flowing out of the liquid storage tank is depressurized.
  • the evaporator and the condenser can be combined to form a phase change heat exchanger.
  • the energy storage heat exchanger in each compression energy storage part is connected to the compressor, and the energy storage heat exchanger in each compression energy storage part is connected to a phase
  • the compressor in the adjacent compression energy storage part is connected, the compressor in the compression energy storage part at the beginning end is connected with the gas storage, and the compression energy storage part at the end
  • the energy storage heat exchanger is connected to the condenser, the liquid storage tank is connected to the condenser, and the heat exchange component is connected to the energy storage heat exchanger.
  • the expander in each of the expansion energy release parts is connected to the energy release heat exchanger, and the expander in each of the expansion energy release parts is connected to the adjacent one.
  • the energy release heat exchanger in the expansion energy release part is connected, the evaporator is connected with the liquid storage tank, and the energy release heat exchanger in the expansion energy release part at the beginning end is connected with the evaporator
  • the expansion machine in the expansion energy release part at the end is connected with the energy release cooler, the gas storage is connected with the energy release cooler, and the heat exchange component is connected with the energy release cooler. Heater connection.
  • an auxiliary heating element is provided between the cold storage tank and the heat storage tank, and part of the heat exchange medium can flow into the heat storage tank after being heated by the auxiliary heating element.
  • an external heat source is further included, the external heat source is connected to the evaporator.
  • a heat recovery component is further included, and at least one of the condenser, the energy release cooler, and the heat recovery heat exchanger is connected to the evaporator through the heat recovery component.
  • the heat recovery assembly includes an intermediate storage part and a recovery pipeline, the intermediate storage part and the evaporator are connected through a part of the recovery pipeline, the condenser, the evaporator At least one of the energy cooler and the heat recovery heat exchanger can reach the intermediate storage part through a part of the recovery line.
  • the gas storage is a flexible membrane gas storage.
  • the gaseous carbon dioxide in the gas storage tank flows through the energy storage component to the liquid storage tank to complete the energy storage, and the liquid carbon dioxide in the liquid storage tank is released through the energy release component.
  • the release of energy is completed.
  • the energy storage component when the carbon dioxide is compressed by the compressor, the temperature of the carbon dioxide will rise, and a part of the energy will be converted into heat energy.
  • the heat exchange medium flows from the cold storage tank to the heat storage tank, the energy storage heat exchanger absorbs this part thermal energy.
  • the energy release heat exchanger transfers this part of the heat energy to the carbon dioxide flowing through the energy release heat exchanger, and then releases it through the expander.
  • the heat recovery heat exchanger temporarily stores the excess heat in the heat exchange medium, the heat released by the energy cooler when it cools the carbon dioxide entering the gas storage, and the heat released by the condenser when condensing. At least one heat is supplied to the liquid state Carbon dioxide is used when the evaporator is evaporating. Therefore, the excess energy generated in the process of energy storage and energy release can be recycled, reducing energy waste and improving energy utilization.
  • the invention also proposes a multi-stage compression energy storage method based on carbon dioxide gas-liquid phase transition, which can reduce energy waste in the process of storage and release and improve energy utilization.
  • a multi-stage compression energy storage method based on carbon dioxide gas-liquid transition including an energy storage step and an energy release step,
  • the carbon dioxide is compressed multiple times, and the carbon dioxide is condensed into a liquid state, and part of the energy generated when the carbon dioxide is compressed is temporarily stored through the heat exchange medium;
  • At least one energy is used for the evaporation of carbon dioxide.
  • the energy release step and the energy storage step are performed simultaneously.
  • FIG. 1 is a schematic structural diagram of a multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition in another embodiment of the present invention.
  • the energy storage assembly 300 The energy storage assembly 300, the first compressor 310, the first energy storage heat exchanger 320, the second compressor 330, the second energy storage heat exchanger 340, the condenser 350, the first energy storage pipeline 361, the second energy storage heat exchanger pipeline 362, third pipeline 363 for energy storage, fourth pipeline 364 for energy storage, fifth pipeline 365 for energy storage, sixth pipeline 366 for energy storage, first motor 371, second motor 372;
  • Energy release assembly 400 evaporator 410, first energy release heat exchanger 420, first expander 430, second energy release heat exchanger 440, second expander 450, energy release cooler 460, energy release first pipeline 471.
  • Heat exchange assembly 500 cold storage tank 510, heat storage tank 520, heat exchange medium cooler 530, first heat recovery heat exchanger 540, second heat recovery heat exchanger 550, first heat exchange pipeline 561, heat exchange first heat exchanger The second pipe 562, the third heat exchange pipe 563, the fourth heat exchange pipe 564, the fifth heat exchange pipe 565, the sixth heat exchange pipe 566, the seventh heat exchange pipe 567, the eighth heat exchange pipe 568, the first heat exchange medium A circulating pump 570, a second circulating pump 571 for heat exchange medium;
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1 shows a schematic structural diagram of a multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition in an embodiment of the present invention.
  • the multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition provided by an embodiment of the present invention includes a gas storage 100, a liquid storage tank 200, an energy storage assembly 300, an energy release assembly 400, a heat exchange assembly 500 and other components.
  • the multi-stage compression energy storage device based on the gas-liquid phase transition of carbon dioxide in this embodiment can realize the transition of carbon dioxide from gaseous state to liquid state through excess power during the low electricity consumption period, and store energy. During the peak period of electricity consumption, this part of the energy is released to drive the generator to generate electricity. In this way, it can not only reduce energy waste, but also earn the electricity price difference between the valley period of electricity consumption and the peak period of electricity consumption, and the economic benefits are considerable.
  • Liquid carbon dioxide in a high pressure state is stored in the liquid storage tank 200 .
  • the gas storage 100 stores gaseous carbon dioxide at normal temperature and pressure, and the pressure and temperature inside the gas storage 100 are maintained within a certain range to meet the energy storage requirements.
  • a heat preservation device is provided to heat the gas storage 100, so that the temperature inside the gas storage tank 100 is maintained within a required range.
  • the pressure in the gas storage 100 can be kept constant. It should be noted that the pressure and temperature inside the gas storage 100 are maintained within a certain range, and in the above analysis, they are approximately regarded as constant values.
  • the temperature T1 in the gas storage 100 is in the range of 15 °C ⁇ T1 ⁇ 35°C, and the difference between the air pressure in the gas storage 100 and the outside atmosphere is less than 1000Pa.
  • the energy storage assembly 300 is located between the gas storage 100 and the liquid storage tank 200.
  • the gaseous carbon dioxide flowing out of the gas storage 100 is converted into a liquid state through the energy storage assembly 300 and flows into the liquid storage tank 200, completing energy storage in the process.
  • the energy storage assembly 300 includes a condenser 350, at least two compression energy storage parts, and the compression energy storage part includes a compressor and an energy storage heat exchanger.
  • the energy storage heat exchanger in each compression energy storage part is connected to the compressor in the adjacent compression energy storage part, the compressor in the compression energy storage part at the beginning is connected with the gas storage 100, and the compression energy storage part at the end
  • the energy storage heat exchanger in is connected to the condenser 350 .
  • the start and end are defined by the direction from the gas storage 100 through the energy storage assembly 300 to the liquid storage tank 200 .
  • the condenser 350 is used for condensing the compressed carbon dioxide to convert it into a liquid state for storage in the liquid storage tank 200 . During condensation, heat is released.
  • the condenser 350 may be connected with the evaporator 410 to supply the heat released during condensation to the evaporator 410 .
  • the energy release component 400 is also located between the gas storage 100 and the liquid storage tank 200.
  • the liquid carbon dioxide flowing out from the liquid storage tank 200 is transformed into a gaseous state through the energy release component 400 and flows into the gas storage 100.
  • the energy stored in the energy process is released.
  • the energy release assembly 400 includes an evaporator 410, an energy release cooler 460 and at least one expansion energy release part
  • the expansion energy release part includes an expander and an energy release heat exchanger.
  • the expander in each expansion energy release part is connected with the energy release heat exchanger in the adjacent expansion energy release part
  • the energy release heat exchanger in the expansion energy release part at the beginning end is connected with the evaporator 410
  • the expansion energy release part at the end is connected with the evaporator 410.
  • the expander in the energy section is connected to the energy release cooler 460 .
  • the start and end here are defined by the direction from the liquid storage tank 200 through the energy release assembly 400 to the gas storage 100 . If there is only one group of expansion energy release parts, the beginning and the end are the only group of expansion energy release parts.
  • the liquid carbon dioxide flows through the evaporator 410, it evaporates and turns into a gaseous state. After that, when it flows through the energy releasing heat exchanger, it can absorb the energy temporarily stored in the heat exchange component 500 and release it through the expander. After the energy release is completed, the temperature and pressure of the carbon dioxide are reduced, but the temperature is still higher than the requirement of the gas storage 100. Therefore, it needs to be cooled by the energy release cooler 460, and heat will be released during cooling.
  • the exothermic cooler 460 may be connected to the evaporator 410 to supply the heat released by cooling to the evaporator 410 .
  • the heat exchange component 500 is disposed between the energy storage component 300 and the energy release component 400 .
  • a part of the stored energy is stored in the high-pressure liquid carbon dioxide in the form of pressure energy, and the other part is stored in the heat exchange component 500 in the form of thermal energy.
  • this part of the energy is transferred by the heat exchange component 500 to the energy release component 400, and all the stored energy is released through the expander.
  • the heat exchange assembly 500 includes components such as a cold storage tank 510, a heat storage tank 520, a heat recovery heat exchanger, and the like.
  • Heat exchange medium is stored in the cold storage tank 510 and the heat storage tank 520 .
  • the cold storage tank 510 and the heat storage tank 520 form a heat exchange circuit between the energy storage heat exchanger and the energy release heat exchanger, and the heat exchange medium can circulate in the heat exchange circuit to realize energy transfer.
  • the above-mentioned heat exchange medium can be selected according to specific conditions. For example, molten salt or saturated water can be used.
  • the heat exchange loop includes a first section of the heat exchange loop and a second section of the heat exchange loop.
  • the energy storage heat exchanger is arranged on the first section of the heat exchange loop, and the energy release heat exchanger and the heat recovery heat exchanger are arranged on the second section of the heat exchange loop.
  • the heat exchange medium flows from the cold storage tank 510 through the energy storage heat exchanger to the heat storage tank 520, it can absorb the heat generated during the energy storage process.
  • the heat exchange medium flows from the heat storage tank 520 through the energy release heat exchanger to the cold storage tank 510, part of the energy absorbed by the heat exchange medium is released into the carbon dioxide flowing through the energy release heat exchanger, and part of the energy flows to the heat recovery heat exchange.
  • the evaporator can be transferred to the evaporator 410 through the heat recovery heat exchanger for use in evaporation.
  • carbon dioxide In the multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition in this embodiment, carbon dioxide only changes between gaseous state and liquid state. Before energy storage, carbon dioxide is in a gaseous state and is at normal temperature and pressure. Using supercritical carbon dioxide to store energy and release energy, in this embodiment, the requirements for the gas storage 100 are lower, and there is no need to provide storage components with complex structures, which can reduce costs to a certain extent.
  • the condenser 350, the energy release cooler 460 and the heat recovery heat exchanger all generate For the heat, at least one of these components is connected to the evaporator 410 to recover the heat, so that the heat can be used for the evaporation of carbon dioxide. In this way, energy waste in the process of energy storage and energy release can be reduced, energy utilization can be improved, and costs can be reduced.
  • the condenser 350, the energy releasing cooler 460 and the heat recovery heat exchanger can all be connected to the evaporator 410 to provide heat for evaporation.
  • the energy storage assembly 300 includes components such as a first compressor 310 , a first energy storage heat exchanger 320 , a second compressor 330 , a second energy storage heat exchanger 340 , and a condenser 350 .
  • the first compressor 310 and the gas storage 100 are connected through a first energy storage pipeline 361, and the first energy storage heat exchanger 320 and the first compressor 310 are connected through an energy storage second pipeline 362, and the second compressor 330 and the first energy storage heat exchanger 320 are connected through the energy storage third pipeline 363, the second energy storage heat exchanger 340 and the second compressor 330 are connected through the energy storage fourth pipeline 364, and the condenser 350 is connected to
  • the second energy storage heat exchangers 340 are connected through a fifth energy storage pipeline 365
  • the liquid storage tank 200 and the condenser 350 are connected through a sixth energy storage pipeline 366 .
  • the heat exchange assembly 500 is connected to both the first energy storage heat exchanger 320 and the second energy storage heat exchanger 340, and part of the energy generated when the first compressor 310 and the second compressor 330 compress carbon dioxide is stored in the form of pressure energy in the form of pressure energy. In the high-pressure carbon dioxide, part of the energy in the form of heat energy is transferred to the heat exchange medium through the first energy storage heat exchanger 320 and the second energy storage heat exchanger 340 for temporary storage.
  • the compressor with a smaller compression ratio can be selected during the two-time compression, and the cost of the compressor is lower.
  • the number of compressors can also be more than two, as long as the compressor and the energy storage heat exchanger are increased as a complete set.
  • the energy release assembly 400 includes an evaporator 410 , a first energy release heat exchanger 420 , a first expander 430 , a second energy release heat exchanger 440 , a second expander 450 , an energy release cooler 460 and other components.
  • the evaporator 410 and the liquid storage tank 200 are connected by the first energy releasing pipeline 471, the first energy releasing heat exchanger 420 and the evaporator 410 are connected by the energy releasing second pipeline 472, and the first expander 430 is connected with the first energy releasing pipeline 472.
  • the energy releasing heat exchangers 420 are connected by a third energy releasing pipeline 473, the second energy releasing heat exchanger 440 and the first expander 430 are connected by an energy releasing fourth pipeline 474, and the second expander 450 is connected with the second energy releasing pipeline 474.
  • the energy releasing heat exchangers 440 are connected by the energy releasing fifth pipeline 475, the energy releasing cooler 460 and the second expander 450 are connected by the energy releasing sixth pipeline 476, and the gas storage 100 and the energy releasing cooler 460 are connected. It is connected through the seventh pipeline 477 for releasing energy.
  • the heat exchange component 500 is connected to the first energy release heat exchanger 420 and the second energy release heat exchanger 440. During the energy release process, the energy temporarily stored in the heat exchange component 500 passes through the first energy release heat exchanger 420. and the second energy release heat exchanger 440 is transferred to the carbon dioxide flowing through the first energy release heat exchanger 420 and the second energy release heat exchanger 440, the carbon dioxide absorbs this part of the energy, and passes through the first expander 430 and the second energy release heat exchanger 440. The expander 450 releases the energy.
  • the energy release assembly 400 the energy is released by the first expander 430 and the second expander 450, and the generator is driven to generate electricity.
  • the gaseous carbon dioxide flows through the first expander 430 and the second expander 450, it impacts the blades and pushes the rotor to rotate, so as to achieve energy output.
  • the number of expanders can also be one, or more than two, as long as the expander and the energy releasing heat exchanger can be increased or decreased as a complete set.
  • the heat exchange assembly 500 includes a cold storage tank 510, a heat storage tank 520, a heat exchange medium cooler 530, a first heat recovery heat exchanger 540, a second heat recovery heat exchanger 550 and other components.
  • the temperature of the heat exchange medium in the cold storage tank 510 is lower, and the temperature of the heat exchange medium in the heat storage tank 520 is higher.
  • the heat exchange medium flows between the cold storage tank 510 and the heat storage tank 520, the collection and release of heat can be realized.
  • the heat exchange medium flows from the cold storage tank 510 to the heat storage tank 520, it absorbs part of the heat in the energy storage process, and when the heat exchange medium flows from the heat storage tank 520 to the cold storage tank 510, the previously absorbed heat is released again, When the heat exchange medium flows from the heat storage tank 520 to the cold storage tank 510 , it flows through the heat exchange medium cooler 530 for cooling, so as to meet the temperature requirement of the heat exchange medium stored in the cold storage tank 510 .
  • components such as circulating pumps are arranged on each of the above-mentioned pipelines to realize the directional flow of carbon dioxide and heat exchange medium.
  • the first valve 610 and the third valve 630 are opened, and the second valve 620 and the fourth valve 640 are closed.
  • the gaseous carbon dioxide at normal temperature and pressure flows out of the gas storage 100 and flows to the first compressor 310 through the first energy storage pipeline 361 .
  • the gaseous carbon dioxide is first compressed by the first compressor 310 to increase its pressure. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide After being compressed by the first compressor 310 , the carbon dioxide flows to the first energy storage heat exchanger 320 through the energy storage second pipeline 362 , and transfers the heat generated during compression to the first energy storage heat exchanger 320 .
  • the first energy storage heat exchanger 320 transfers heat to the heat exchange medium.
  • the carbon dioxide flowing out from the first energy storage heat exchanger 320 flows to the second compressor 330 through the energy storage third pipeline 363, and the excess power output from the grid drives the second compressor 330 to work through the second motor 372, and the second compressor 330 works through the second compressor.
  • the 330 compresses it a second time, increasing its pressure even further. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide flows to the second energy storage heat exchanger 340 through the fourth energy storage pipeline 364 , and transfers the heat generated during compression to the second energy storage heat exchanger 340 .
  • the second energy storage heat exchanger 340 transfers heat to the heat exchange medium.
  • the high-pressure gaseous carbon dioxide flows to the condenser 350 through the fifth energy storage pipeline 365, and is condensed by the condenser 350 to be converted into liquid carbon dioxide.
  • the liquid carbon dioxide flows into the liquid storage tank 200 through the sixth energy storage pipeline 366 to complete the energy storage process.
  • the first compressor 310 and the second compressor 330 are driven to work by the surplus power output from the power grid to realize energy input.
  • the carbon dioxide is compressed twice by the first compressor 310 and the second compressor 330, a part of the input electrical energy is stored in the high-pressure carbon dioxide in the form of pressure energy, and enters the liquid storage tank 200, and a part of the electrical energy is stored in the heat exchange medium in the form of thermal energy. . That is, during the energy storage process, the input electrical energy is stored in the form of pressure energy and thermal energy.
  • the second valve 620 and the fourth valve 640 are opened, and the first valve 610 and the third valve 630 are closed.
  • the high-pressure liquid carbon dioxide flows out from the liquid storage tank 200, and flows to the evaporator 410 through the first energy-discharging pipeline 471, and is evaporated by the evaporator 410 and transformed into a gaseous state.
  • the gaseous carbon dioxide flows to the first energy release heat exchanger 420 via the energy release second conduit 472 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the first energy release heat exchanger 420 through the first energy release heat exchanger 420, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the first expander 430 through the energy release third pipeline 473, expands in the first expander 430 and performs external work to achieve energy output, and drives the first generator 491 to generate electricity.
  • the carbon dioxide flows out from the first expander 430 , it flows to the second energy-releasing heat exchanger 440 via the fourth energy-discharging pipeline 474 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the second energy release heat exchanger 440 through the second energy release heat exchanger 440, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the second expander 450 through the fifth energy release pipeline 475, expands in the second expander 450 and performs external work to achieve energy output, and drives the second generator 492 to generate electricity.
  • the pressure and temperature of carbon dioxide after energy release are both reduced, but the temperature is still higher than the storage temperature required by the gas storage 100 . Therefore, the carbon dioxide flowing from the second expander 450 flows into the energy releasing cooler 460 through the energy releasing sixth pipeline 476 , and the energy releasing cooler 460 cools it down so that its temperature can meet the requirements of the gas storage 100 . The cooled carbon dioxide flows through the seventh energy release pipeline 477 and enters the gas storage 100 to complete the entire energy release process.
  • the thermal energy stored in the heat exchange medium is merged into carbon dioxide, and the carbon dioxide expands in the first expander 430 and the second expander 450 to release the pressure energy together with the thermal energy and convert it into mechanical energy.
  • the first circulation pump 570 of the heat exchange medium is turned on when the energy is stored, and the second circulation pump 571 of the heat exchange medium is turned on when the energy is released. Circulating flow between, realizing the temporary storage and release of energy. Specifically, the energy is temporarily stored in the heat exchange medium in the form of heat.
  • the energy storage process after the low-temperature heat exchange medium flows out of the cold storage tank 510 , a part flows into the first heat exchange pipeline 561 , and a part flows into the third heat exchange pipeline 563 .
  • the heat exchange medium in the first heat exchange pipeline 561 flows to the second energy storage heat exchanger 340 for heat exchange, absorbs the heat in the carbon dioxide compressed for the second time, increases the temperature of this part of the heat exchange medium, and The heat flows into the heat storage tank 520 through the second heat exchange pipe 562 , and the heat is temporarily stored in the heat storage tank 520 .
  • the heat exchange medium in the third heat exchange pipe 563 flows to the first energy storage heat exchanger 320 for heat exchange, absorbs the heat in the carbon dioxide compressed for the first time, increases the temperature of this part of the heat exchange medium, and The heat flows into the heat storage tank 520 through the fourth heat exchange pipe 564 , and the heat is temporarily stored in the heat storage tank 520 .
  • the heat exchange medium in the fifth heat exchange pipe 565 flows to the second energy release heat exchanger 440 for heat exchange, and transfers heat to the carbon dioxide flowing through the second energy release heat exchanger 440 to increase its temperature.
  • the temperature of the heat exchange medium decreases, and the cooled heat exchange medium flows to the second heat recovery heat exchanger 550 through the sixth heat exchange pipeline 566, and the remaining part of the heat passes through the second heat recovery heat exchanger 550. It is passed to the evaporator 410 for use in evaporation.
  • the temperature of the heat exchange medium decreases after two heat exchanges, its temperature is still higher than the temperature range required by the cold storage tank 510 . Therefore, when this part of the heat exchange medium flows through the heat exchange medium cooler 530 , it is cooled again by the heat exchange medium cooler 530 , so that its temperature reaches the requirement of the cold storage tank 510 .
  • the heat exchange medium in the seventh heat exchange pipe 567 flows to the first energy release heat exchanger 420 for heat exchange, and transfers heat to the carbon dioxide flowing through the first energy release heat exchanger 420 to increase its temperature.
  • the temperature of the heat exchange medium decreases, and the cooled heat exchange medium flows to the first heat recovery heat exchanger 540 through the eighth heat exchange pipe 568, and the remaining part of the heat passes through the first heat recovery heat exchanger 540. It is passed to the evaporator 410 for use in evaporation.
  • the temperature of the heat exchange medium decreases after two heat exchanges, its temperature is still higher than the temperature range required by the cold storage tank 510 . Therefore, when this part of the heat exchange medium flows through the heat exchange medium cooler 530 , it is cooled again by the heat exchange medium cooler 530 , so that its temperature reaches the requirement of the cold storage tank 510 .
  • all of the first valve 610 , the second valve 620 , the third valve 630 , and the fourth valve 640 may be opened, and energy storage and energy release are performed simultaneously.
  • the above situation may exist when the low power consumption period is coming to an end and the power consumption peak period is about to come.
  • the gaseous carbon dioxide at normal temperature and pressure flows out of the gas storage 100 and flows to the first compressor 310 through the first energy storage pipeline 361 .
  • the grid power can drive the first compressor 310 to work through the first motor 371 .
  • the gaseous carbon dioxide is first compressed by the first compressor 310 to increase its pressure. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide flows to the first energy storage heat exchanger 320 through the energy storage second pipeline 362 , and transfers the heat generated during compression to the first energy storage heat exchanger 320 .
  • the first energy storage heat exchanger 320 transfers heat to the heat exchange medium.
  • the carbon dioxide flowing out from the first energy storage heat exchanger 320 flows to the second compressor 330 through the energy storage third pipeline 363 , and the electric power drives the second compressor 330 to work through the second motor 372 , and the second compressor 330 operates the second compressor 330 .
  • a second compression further increasing its pressure. During the compression process, heat is generated, raising the temperature of the carbon dioxide.
  • the carbon dioxide flows to the second energy storage heat exchanger 340 through the fourth energy storage pipeline 364 , and transfers the heat generated during compression to the second energy storage heat exchanger 340 .
  • the second energy storage heat exchanger 340 transfers heat to the heat exchange medium.
  • the high-pressure gaseous carbon dioxide flows to the condenser 350 through the fifth energy storage pipeline 365, and is condensed by the condenser 350 to be converted into liquid carbon dioxide.
  • the liquid carbon dioxide flows into the liquid storage tank 200 through the sixth energy storage pipeline 366 to complete the energy storage process.
  • the high-pressure liquid carbon dioxide flows out from the liquid storage tank 200, flows to the evaporator 410 through the first energy release pipeline 471, evaporates through the evaporator 410, and turns into a gaseous state.
  • the gaseous carbon dioxide flows to the first energy release heat exchanger 420 via the energy release second conduit 472 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the first energy release heat exchanger 420 through the first energy release heat exchanger 420, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the first expander 430 through the energy release third pipeline 473, expands in the first expander 430 and performs external work to achieve energy output, and drives the first generator 491 to generate electricity.
  • the carbon dioxide flows out from the first expander 430 , it flows to the second energy-releasing heat exchanger 440 through the fourth energy-discharging pipeline 474 .
  • part of the heat stored in the heat exchange medium is transferred to the carbon dioxide flowing through the second energy release heat exchanger 440 through the second energy release heat exchanger 440, and the carbon dioxide absorbs this part of the heat and the temperature increases.
  • the high-temperature gaseous carbon dioxide flows to the second expander 450 through the fifth energy release pipeline 475, expands in the second expander 450 and performs external work to achieve energy output, and drives the second generator 492 to generate electricity.
  • the rotational speed of the power generation turbine is controllable, which can stabilize the output frequency of the power generation, which is beneficial to the frequency regulation of the power grid.
  • the condenser 350, the energy release cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 are all connected to the evaporator 410 to transfer the heat generated at these components to the evaporation
  • the device 410 is used during evaporation to reduce energy waste and improve energy utilization.
  • the energy releasing cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 are connected to the evaporator 410, either directly or indirectly through other components.
  • the condenser 350 is connected to the evaporator 410, either directly or indirectly through other components. If not performed simultaneously, the heat released by the condenser 350 needs to be collected first, and then supplied to the evaporator 410 when the energy is released.
  • a first energy release pipeline 471 and an energy release eighth pipeline 478 are arranged between the evaporator 410 and the liquid storage tank 200 , and a second valve 620 is arranged on the energy release first pipeline 471 .
  • a throttle expansion valve 480 and a tenth valve 6200 are arranged on the eighth pipeline 478 for releasing energy.
  • the eighth energy release pipeline 478 is selected to be turned on, the high-pressure liquid carbon dioxide flowing out of the liquid storage tank 200 is expanded and depressurized through the throttle expansion valve 480 , and then flows into the evaporator 410 .
  • the evaporator 410 and the condenser 350 can be combined, and the two can be combined into one component to form a phase-change heat exchanger.
  • the phase change heat exchanger includes an evaporation part and a condensation part. The evaporation part and the condensation part are connected by pipes. Inside the phase change heat exchanger, the heat released during the condensation of the condensation part is transferred to the evaporation part. After the evaporator 410 and the condenser 350 are combined into one component, the heat transfer is completed inside the phase change heat exchanger, which can reduce the loss during heat transfer and further improve the energy utilization rate. It should be noted that heat transfer can be achieved in the above manner only when energy storage and energy release are performed at the same time. If they cannot operate at the same time, the energy needs to be stored first and then supplied to the evaporator 410 when it is evaporated.
  • a heat recovery component is also provided, and at least one of the condenser 350, the energy releasing cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 is connected to the heat recovery component through the heat recovery component. Evaporator 410 is connected.
  • the aforementioned heat recovery assembly may only include a recovery pipe, and at least one of the condenser 350, the energy release cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 passes through the recovery pipe
  • the road is connected to the evaporator 410 .
  • the condenser 350, the energy releasing cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 there are two or three
  • the condenser 350, the energy releasing cooler 460, the first heat recovery heat exchanger 540, and the second heat recovery heat exchanger 550 are respectively connected to the evaporator 410 through a partial recovery pipeline.
  • the aforementioned heat recovery assembly may include a recovery pipeline and an intermediate storage piece, the evaporator 410 and the intermediate storage piece are connected through a partial recovery pipeline, the condenser 350, the energy release cooler 460, and the first heat recovery heat exchanger 540.
  • the second heat recovery heat exchangers 550 at least one of them is connected to the intermediate storage part through a partial recovery pipeline.
  • a water pool 710 can be selected as an intermediate storage member, and a first recovery pipeline 720 and a second recovery pipeline 730 are provided between the water pool 710 and the energy releasing cooler 460 .
  • a third recovery pipe 740 and a fourth recovery pipe 750 are provided between the water pool 710 and the evaporator 410 .
  • a fifth recovery pipe 760 and a sixth recovery pipe 770 are provided between the pool 710 and the condenser 350 .
  • a seventh recovery pipe 780 and an eighth recovery pipe 790 are provided between the pool 710 and the first heat recovery heat exchanger 540.
  • the pool 710 and each of the above-mentioned pipes are provided with thermal insulation materials to keep the water therein thermally insulated.
  • the fifth valve 650 , the sixth valve 660 , the seventh valve 670 and the eighth valve 680 are opened simultaneously.
  • a part of the water in the pool 710 flows to the energy releasing cooler 460 through the first recovery pipe 720, absorbs the heat released by the energy releasing cooler 460, and then flows into the pool 710 through the second recovery pipe 730 after the water temperature rises.
  • a part of the water in the pool 710 flows to the condenser 350 through the fifth recovery pipe 760 to absorb the heat released by the condenser 350. After the water temperature rises, it flows into the pool 710 through the sixth recovery pipe 770.
  • a part of the water in the pool 710 flows to the first heat recovery heat exchanger 540 through the seventh recovery pipe 780, absorbs the heat released by the first heat recovery heat exchanger 540, and after the water temperature rises, the eighth recovery Pipe 790 flows into pool 710 .
  • the higher temperature water in the pool 710 flows to the evaporator 410 through the third recovery pipe 740 to provide heat for the evaporation of carbon dioxide. After passing through the evaporator 410, the water temperature decreases, and the cooled water passes through the fourth recovery pipe 750. flow into the pool 710 .
  • connection structure and heat transfer method of the first heat recovery heat exchanger 540 and the second heat recovery heat exchanger 550 and the pool 710 are the same, so the connection between the second heat recovery heat exchanger 550 and the pool 710 will not be repeated here. connection structure.
  • components such as a circulating pump are also provided on each of the above-mentioned pipes, so as to realize the circulating flow of the water in the pool 710 .
  • the temperature of the water in the water pool 710 may be continuously increased.
  • the evaporator 410 continuously absorbs the heat in the water pool 710, the temperature of the water in the water pool 710 may be continuously lowered. Therefore, preferably, the pool 710 is in a constant temperature state.
  • the pool 710 is also connected with components such as a thermostat controller, a temperature sensor, a heater and a radiator.
  • the temperature of the water in the pool 710 is monitored by the temperature sensor, and the water temperature is transmitted to the thermostatic controller. If the water temperature rises too much and exceeds the maximum set value, the thermostatic controller controls the radiator to dissipate heat to the pool 710 . If the heat absorbed by the evaporator 410 reduces the water temperature too much and is lower than the minimum set value, the thermostat controller controls the heater to heat the water pool 710 .
  • an external heat source can be used to supplement the heat.
  • FIG. 2 a schematic structural diagram of a multi-stage compression energy storage device based on carbon dioxide gas-liquid phase transition is shown in another embodiment of the present invention.
  • a heating pipe 820 may be provided between the cold storage tank 510 and the heat storage tank 520 , and an auxiliary heating element 810 may be provided on the heating pipe 820 .
  • the heat source at the auxiliary heating element 810 may be some waste heat, for example, the heat released when the castings or forgings of the foundry or forge are cooled.
  • waste heat as an external heat source can reduce energy waste and eliminate the need for additional heating, thereby reducing costs.
  • an external heat source may be directly connected to the evaporator 410 to directly supply heat to the evaporator 410 .
  • each set is arranged in the manner in the foregoing embodiment.
  • each set is arranged in the manner in the foregoing embodiment.
  • an energy storage method based on carbon dioxide gas-liquid phase transition is also provided.
  • the carbon dioxide is pressurized through multiple compressions, and the pressurized carbon dioxide is condensed and converted into a liquid state. , part of the energy generated during compression is temporarily stored through the heat exchange medium.
  • the carbon dioxide evaporates and turns into a gaseous state, and the energy temporarily stored in the heat exchange medium during the energy storage is released through carbon dioxide.
  • at least one of the energy generated during condensation, the energy generated during the cooling of the carbon dioxide that has completed energy release, and the part of the energy stored in the heat exchange medium can be recycled, and this part of the energy can be used when the carbon dioxide evaporates. Therefore, energy waste in the process of energy storage and energy release can be reduced, and energy utilization can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种基于二氧化碳气液相变的储能装置与方法。基于二氧化碳气液相变的储能装置包括:储气库(100);储液罐(200);储能组件(300),设于储气库(100)与储液罐(200)之间,储能组件(300)包括冷凝器(350)与至少两个压缩储能部,压缩储能部包括压缩机(310、330)与储能换热器(320、340);释能组件(400),设于储气库(100)与储液罐(200)之间,释能组件(400)包括蒸发器(410)、释能冷却器(460)、至少一个膨胀释能部,膨胀释能部包括膨胀机(430、450)与释能换热器(420、440);换热组件(500),包括储冷罐(510)、储热罐(520)与热量回收换热器(540、550),储冷罐(510)、储热罐(520)在储能换热器(320、340)与释能换热器(420、440)间形成换热回路,换热介质能在换热回路中流动;冷凝器(350)、释能冷却器(460)、热量回收换热器(540、550)中,至少有一个与蒸发器(410)连接。通过该装置存储与释放能量时,能减少能量浪费,提高能量利用率。

Description

基于二氧化碳气液相变的多级压缩储能装置及方法 技术领域
本发明涉及能源存储技术领域,特别是涉及一种基于二氧化碳气液相变的多级压缩储能装置及方法。
背景技术
随着社会经济的发展,人们对于能源的需求量越来越高,但能源消耗的增加使得环境问题较为严重,且煤炭、石油等不可再生的传统能源日益枯竭,大力开发太阳能、风能等新能源以减缓传统能源消耗成为必然选择。由于新能源的间歇性与波动性特点,直接并网会对电网造成一定的冲击,同时用户使用电能的时间与可再生能源产生电能的时间很难保持一致性。因此电能的存储对于能源***的优化和调节具有重大意义。
储能***通常使用介质或设备把电能存储起来并在需要时进行释放,基于二氧化碳气液相变的压缩储能装置是以二氧化碳为储能介质进行电能的存储。其主要原理是在储能时,利用压缩机将二氧化碳进行压缩,然后液化,电能以高压液态二氧化碳和热能的形式存储起来;释能时,高压的液态二氧化碳被释放气化再采用压缩时存储的热能加热进入膨胀机中做功,带动发电机输出电能。然而,目前的一些储能设备中,在存储与释放能量过程中,存在较多的能量浪费,能量利用率较低。
发明内容
基于此,本发明提出一种基于二氧化碳气液相变的多级压缩储能装置,通过该装置进行存储与释放能量时,能够减少存储与释放过程中的能量浪费,提 高能量利用率。
基于二氧化碳气液相变的多级压缩储能装置,包括:
储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
储液罐,所述储液罐用于存储液态二氧化碳;
储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,所述储能组件包括冷凝器与至少两个压缩储能部,所述压缩储能部包括压缩机与储能换热器,所述压缩机用于压缩二氧化碳,所述冷凝器用于冷凝二氧化碳;
释能组件,所述释能组件设置于所述储气库与所述储液罐之间,所述释能组件包括蒸发器、释能冷却器、至少一个膨胀释能部,所述膨胀释能部包括膨胀机与释能换热器,所述蒸发器用于蒸发二氧化碳,所述膨胀机用于释放能量,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却;
换热组件,所述换热组件包括储冷罐、储热罐与热量回收换热器,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能换热器与所述释能换热器之间形成换热回路,所述换热介质能够在所述换热回路中流动;
所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个与所述蒸发器连接,以向所述蒸发器提供能量。
在其中一个实施例中,所述冷凝器、所述释能冷却器、所述热量回收换热器均与所述蒸发器连接。
在其中一个实施例中,所述释能组件还包括节流膨胀阀,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压。
在其中一个实施例中,所述蒸发器与所述冷凝器能够合并以形成相变换热器。
在其中一个实施例中,每个所述压缩储能部中的所述储能换热器与所述压缩机连接,每个所述压缩储能部中的所述储能换热器与相邻的所述压缩储能部中的所述压缩机连接,始端的所述压缩储能部中的所述压缩机与所述储气库连接,末端的所述压缩储能部中的所述储能换热器与所述冷凝器连接,所述储液罐与所述冷凝器连接,所述换热组件与所述储能换热器连接。
在其中一个实施例中,每个所述膨胀释能部中的所述膨胀机与所述释能换热器连接,每个所述膨胀释能部中的所述膨胀机与相邻的所述膨胀释能部中的所述释能换热器连接,所述蒸发器与所述储液罐连接,始端的所述膨胀释能部中的所述释能换热器与所述蒸发器连接,末端的所述膨胀释能部中的所述膨胀机与所述释能冷却器连接,所述储气库与所述释能冷却器连接,所述换热组件与所述释能换热器连接。
在其中一个实施例中,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
在其中一个实施例中,还包括外部热源,所述外部热源与所述蒸发器连接。
在其中一个实施例中,还包括热量回收组件,所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个通过所述热量回收组件与所述蒸发器连接。
在其中一个实施例中,所述热量回收组件包括中间存储件与回收管路,所述中间存储件与所述蒸发器之间通过部分所述回收管路连接,所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个能够经部分所述回收管路到达所述中间存储件。
在其中一个实施例中,所述储气库为柔性气膜储气库。
上述基于二氧化碳气液相变的多级压缩储能装置,储气库中气态的二氧化碳经储能组件流向储液罐的过程中,完成能量的存储,储液罐中液态的二氧化碳经释能组件流向储气库的过程中,完成能量的释放。在储能组件中,通过压缩机对二氧化碳压缩时,会使二氧化碳温度升高,将一部分能量转变为热能,换热介质从储冷罐流向储热罐时,经储能换热器吸收这部分热能。换热介质从储热罐流向储冷罐时,经释能换热器将这部分热能转移至流经释能换热器的二氧化碳中,进而通过膨胀机释放出去。热量回收换热器将换热介质中暂存的多余的部分热量,释能冷却器对进入储气库的二氧化碳冷却时放出的热量,冷凝器冷凝时放出的热量中,至少有一处热量供给液态二氧化碳在蒸发器蒸发时使用,因此,可以将储能与释能过程中产生的多余能量进行回收利用,减少能量浪费,提高能量利用率。
本发明还提出一种基于二氧化碳气液相变的多级压缩储能方法,能够减少存储与释放过程中的能量浪费,提高能量利用率。
基于二氧化碳气液相变的多级压缩储能方法,包括储能步骤与释能步骤,
所述储能步骤中,多次压缩二氧化碳,并使二氧化碳冷凝为液态,压缩二氧化碳时产生的部分能量通过换热介质暂存;
所述释能步骤中,二氧化碳蒸发为气态后,所述换热介质中暂存的能量通过二氧化碳释放;
存储于换热介质中的部分能量、冷凝时产生的能量、对完成能量释放后的二氧化碳进行冷却时产生的能量中,至少有一处能量供二氧化碳蒸发时使用。
在其中一个实施例中,所述释能步骤和所述储能步骤同时进行。
上述基于二氧化碳气液相变的多级压缩储能方法,二氧化碳冷凝时会放出 热量,存储于换热介质中未在释能步骤中释放出去的部分热量,释能步骤中通过二氧化碳完成能量释放后,要对二氧化碳进行降温冷却,冷却时会放出热量,将前述的三处的热量中,至少一处供二氧化碳蒸发时使用。通过能量回收利用,可以减少能量浪费,提高能量利用率。
附图说明
图1为本发明一实施例中的基于二氧化碳气液相变的多级压缩储能装置的结构示意图;
图2为本发明另一实施例中的基于二氧化碳气液相变的多级压缩储能装置的结构示意图。
附图标记:
储气库100;
储液罐200;
储能组件300、第一压缩机310、第一储能换热器320、第二压缩机330、第二储能换热器340、冷凝器350、储能第一管道361、储能第二管道362、储能第三管道363、储能第四管道364、储能第五管道365、储能第六管道366、第一电动机371、第二电动机372;
释能组件400、蒸发器410、第一释能换热器420、第一膨胀机430、第二释能换热器440、第二膨胀机450、释能冷却器460、释能第一管道471、释能第二管道472、释能第三管道473、释能第四管道474、释能第五管道475、释能第六管道476、释能第七管道477、释能第八管道478、节流膨胀阀480、第一发电机491、第二发电机492;
换热组件500、储冷罐510、储热罐520、换热介质冷却器530、第一热量 回收换热器540、第二热量回收换热器550、换热第一管道561、换热第二管道562、换热第三管道563、换热第四管道564、换热第五管道565、换热第六管道566、换热第七管道567、换热第八管道568、换热介质第一循环泵570、换热介质第二循环泵571;
第一阀门610、第二阀门620、第三阀门630、第四阀门640、第五阀门650、第六阀门660、第七阀门670、第八阀门680、第九阀门690、第十阀门6200;
水池710、第一回收管道720、第二回收管道730、第三回收管道740、第四回收管道750、第五回收管道760、第六回收管道770、第七回收管道780、第八回收管道790;
辅助加热件810、加热管道820。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本发明一实施例中的基于二氧化碳气液相变的多级压缩储能装置的结构示意图。本发明一实施例提供的基于二氧化碳气液相变的多级压缩储能装置包括储气库100、储液罐200、储能组件300、释能组件400、换热组件500等部件。
本实施例中的基于二氧化碳气液相变的多级压缩储能装置,能够在用电低谷期时,通过多余电力实现二氧化碳从气态到液态的转变,将能量存储起来。待用电高峰期时,再将这部分能量释放出去,带动发电机产生电能。如此,不仅可以减少能量浪费,还能赚取用电低谷期与用电高峰期的电费差价,经济效 益可观。
储液罐200内存储有处于高压状态的液态二氧化碳。储气库100内存储有处于常温常压状态的气态二氧化碳,储气库100内部的压力与温度维持在一定范围内,以满足储能要求。具体的,设置保温装置对储气库100进行保温,使其内部的温度维持在所需范围内。根据理想气体状态方程PV=nRT,当温度与压力恒定,体积与物质的量成正比。因此,储气库100采用气膜储气库,其容积能够变化,当有二氧化碳充入时,储气库100的容积增大,当有二氧化碳流出时,储气库100的容积减小,以此来实现储气库100内压力的恒定。需要说明的是,储气库100内部的压力与温度维持在一定范围内,在上述分析中,将其近似看作恒定值。
具体的,储气库100内的温度T 1的范围为15℃≤T 1≤35℃,储气库100内的气压与外界大气的气压差小于1000Pa。
储能组件300位于储气库100与储液罐200之间,从储气库100流出的气态二氧化碳经过储能组件300转变为液态,并流入储液罐200,在该过程中完成能量存储。
具体的,储能组件300包括冷凝器350、至少两个压缩储能部,压缩储能部包括压缩机与储能换热器。每个压缩储能部中的储能换热器与相邻的压缩储能部中的压缩机连接,始端的压缩储能部中的压缩机与储气库100连接,末端的压缩储能部中的储能换热器与冷凝器350连接。此处的始端与末端是以从储气库100经过储能组件300到达储液罐200的方向来定义的。
二氧化碳流经压缩机时,通过压缩机对其进行压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。压缩产生的热量随二氧化碳流经储能换热器时,通过储能换热器将能量转移至换热组件500处。冷凝器350用于对经过压缩后的二氧化碳进行冷凝,使其转变为液态,以存储至储液罐200内。冷凝过程中,会放出热量。冷凝器350可以与蒸发器410连接,以将冷凝时放出的热量供应给蒸发器410。
释能组件400也位于储气库100与储液罐200之间,从储液罐200流出的液态二氧化碳经过释能组件400转变为气态,并流入储气库100,在该过程中, 将储能过程中存储的能量释放出去。
具体的,释能组件400包括蒸发器410、释能冷却器460与至少一个膨胀释能部,膨胀释能部包括膨胀机与释能换热器。每个膨胀释能部中的膨胀机与相邻的膨胀释能部中的释能换热器连接,始端的膨胀释能部中的释能换热器与蒸发器410连接,末端的膨胀释能部中的膨胀机与释能冷却器460连接。此处的始端与末端是以从储液罐200经过释能组件400到达储气库100的方向来定义的。若仅有一组膨胀释能部时,则始端与末端均为仅有的这一组膨胀释能部。
液态二氧化碳流经蒸发器410时进行蒸发,转变为气态,之后,流经释能换热器时,能够吸收换热组件500处暂存的能量,并经膨胀机释放。完成释能后,二氧化碳温度与压力均降低,但其温度仍高于储气库100的要求,因此,需要再通过释能冷却器460对其进行冷却,冷却时会放出热量。释能冷却器460可以与蒸发器410连接,以将冷却放出的热量供应给蒸发器410。
换热组件500设置于储能组件300与释能组件400之间。在储能过程中,存储的能量一部分以压力能的形式存储于高压状态的液态二氧化碳中,另一部分以热能的形式存储于换热组件500中。在释能过程中,这部分能量被换热组件500转移至释能组件400中,并通过膨胀机将存储的所有能量释放出去。
具体的,换热组件500包括储冷罐510、储热罐520与热量回收换热器等部件。储冷罐510与储热罐520内存放有换热介质。储冷罐510、储热罐520在储能换热器与释能换热器之间形成换热回路,换热介质能够在换热回路内循环流动,以实现能量转移。上述的换热介质可以根据具体情况选用。例如,可以选用熔融盐或饱和水等物质。
具体的,换热回路包括换热回路第一段与换热回路第二段。储能换热器设置于换热回路第一段上,释能换热器与热量回收换热器设置于换热回路第二段上。换热介质从储冷罐510流经储能换热器到达储热罐520时,能够吸收储能过程中产生的热量。换热介质从储热罐520流经释能换热器到达储冷罐510时,换热介质吸收的部分能量释放至流经释能换热器的二氧化碳中,部分能量流动至热量回收换热器,可以通过热量回收换热器转移至蒸发器410,供蒸发时使用。
本实施例中的基于二氧化碳气液相变的多级压缩储能装置中,二氧化碳仅 在气态与液态之间转变,在储能之前,二氧化碳处于气态,且为常温常压,相较于常规的通过超临界二氧化碳进行储能释能,本实施例中对于储气库100的要求较低,无需设置结构较为复杂的存储部件,一定程度上能够降低成本。
本实施例中的基于二氧化碳气液相变的多级压缩储能装置中,在上述的储能与释能过程中,冷凝器350、释能冷却器460与热量回收换热器处均会产生热量,这些部件中,至少一处与蒸发器410连接,以将热量回收利用,使这些热量可以供二氧化碳蒸发时使用。通过这种方式,可以减少储能与释能过程中的能量浪费,提高能量利用率,并降低成本。
进一步的,可以将冷凝器350、释能冷却器460与热量回收换热器均与蒸发器410连接,为蒸发时提供热量。
一些实施例中,储能组件300包括第一压缩机310、第一储能换热器320、第二压缩机330、第二储能换热器340与冷凝器350等部件。第一压缩机310与储气库100之间通过储能第一管道361连接,第一储能换热器320与第一压缩机310之间通过储能第二管道362连接,第二压缩机330与第一储能换热器320之间通过储能第三管道363连接,第二储能换热器340与第二压缩机330之间通过储能第四管道364连接,冷凝器350与第二储能换热器340之间通过储能第五管道365连接,储液罐200与冷凝器350之间通过储能第六管道366连接。
换热组件500与第一储能换热器320、第二储能换热器340均连接,第一压缩机310与第二压缩机330压缩二氧化碳时产生的部分能量以压力能的形式存储于高压二氧化碳中,部分能量以热能形式通过第一储能换热器320、第二储能换热器340转移至换热介质中暂存。
上述结构中,设置了两级压缩,通过两级压缩来使二氧化碳逐渐增压。与一次压缩到位相比,两次压缩时,可以选用压缩比更小的压缩机,压缩机的成本更低。当然,压缩机的数量也可以多于两个,只要压缩机与储能换热器成套增加即可。
释能组件400包括蒸发器410、第一释能换热器420、第一膨胀机430、第二释能换热器440、第二膨胀机450、释能冷却器460等部件。蒸发器410与储液罐200之间通过释能第一管道471连接,第一释能换热器420与蒸发器410 之间通过释能第二管道472连接,第一膨胀机430与第一释能换热器420之间通过释能第三管道473连接,第二释能换热器440与第一膨胀机430之间通过释能第四管道474连接,第二膨胀机450与第二释能换热器440之间通过释能第五管道475连接,释能冷却器460与第二膨胀机450之间通过释能第六管道476连接,储气库100与释能冷却器460之间通过释能第七管道477连接。
换热组件500与第一释能换热器420、第二释能换热器440均连接,在释能过程中,暂存于换热组件500中的能量通过第一释能换热器420与第二释能换热器440转移至流经第一释能换热器420与第二释能换热器440的二氧化碳中,二氧化碳吸收这部分能量,并通过第一膨胀机430与第二膨胀机450将能量释放出去。
释能组件400中,通过第一膨胀机430与第二膨胀机450将能量释放出去,带动发电机进行发电。气态二氧化碳流过第一膨胀机430与第二膨胀机450时冲击叶片,推动转子转动,以实现能量输出。
上述结构中,设置了两个膨胀机,进行两次能量释放。设置两个膨胀机一起释能时,对于膨胀机的叶片制造要求更低,相应的,成本也更低。当然,膨胀机的数量也可以是一个,或者多于两个,只要膨胀机与释能换热器成套增减即可。
换热组件500包括储冷罐510、储热罐520、换热介质冷却器530、第一热量回收换热器540、第二热量回收换热器550等部件。储冷罐510内的换热介质的温度较低,储热罐520内的换热介质的温度较高。换热介质在储冷罐510与储热罐520之间流动时,能够实现热量的收集与释放。
换热介质从储冷罐510流动至储热罐520时,吸收储能过程中的部分热量,换热介质从储热罐520流动至储冷罐510时,将此前吸收的热量再释放出去,换热介质从储热罐520流动至储冷罐510时,流经换热介质冷却器530进行冷却,以达到储冷罐510内存储的换热介质的温度要求。
此外,在上述的各个管路上均设有循环泵等部件,用以实现二氧化碳、换热介质的定向流动。
进行储能时,打开第一阀门610与第三阀门630,关闭第二阀门620与第四 阀门640。处于常温常压状态的气态二氧化碳从储气库100中流出,经储能第一管道361流动至第一压缩机310,电网输出的多余电力通过第一电动机371带动第一压缩机310工作。通过第一压缩机310对气态二氧化碳进行第一次压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第一压缩机310压缩后,经储能第二管道362流动至第一储能换热器320,将压缩时产生的热量传递给第一储能换热器320。第一储能换热器320将热量传递至换热介质。从第一储能换热器320流出的二氧化碳经储能第三管道363流动至第二压缩机330,电网输出的多余电力通过第二电动机372带动第二压缩机330工作,通过第二压缩机330对其进行第二次压缩,进一步增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第二压缩机330压缩后,经储能第四管道364流动至第二储能换热器340,将压缩时产生的热量传递给第二储能换热器340。第二储能换热器340将热量传递至换热介质。实现换热后,高压的气态二氧化碳经储能第五管道365流动至冷凝器350,经冷凝器350进行冷凝,转变为液态二氧化碳。液态二氧化碳经储能第六管道366流入储液罐200中,完成储能流程。
上述过程中,通过电网输出的多余电力带动第一压缩机310与第二压缩机330工作,实现能量输入。通过第一压缩机310与第二压缩机330两次压缩二氧化碳之后,输入的电能一部分以压力能形式存储于高压二氧化碳中,并进入储液罐200,一部分电能以热能形式存储于换热介质中。即储能过程中,输入的电能以压力能与热能形式存储。
进行释能时,打开第二阀门620与第四阀门640,关闭第一阀门610与第三阀门630。高压的液态二氧化碳从储液罐200中流出,经释能第一管道471流动至蒸发器410,经蒸发器410蒸发,转变为气态。气态二氧化碳经释能第二管道472流动至第一释能换热器420。储能过程中存储于换热介质中的部分热量经第一释能换热器420转移至流经第一释能换热器420的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第三管道473流动至第一膨胀机430,在第一膨胀机430内膨胀并对外做功,实现能量输出,带动第一发电机491进行发电。二氧化碳从第一膨胀机430流出后,经释能第四管道474 流动至第二释能换热器440。储能过程中存储于换热介质中的部分热量经第二释能换热器440转移至流经第二释能换热器440的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第五管道475流动至第二膨胀机450,在第二膨胀机450内膨胀并对外做功,实现能量输出,带动第二发电机492进行发电。
释能后的二氧化碳压力与温度均降低,但其温度仍高于储气库100所要求的存储温度。因此,从第二膨胀机450流出的二氧化碳经释能第六管道476流入释能冷却器460,通过释能冷却器460对其进行降温,使其温度能够达到储气库100的要求。降温后的二氧化碳流经释能第七管道477进入储气库100,完成整个释能流程。
在上述过程中,存储于换热介质中的热能汇入二氧化碳中,二氧化碳在第一膨胀机430与第二膨胀机450内膨胀,将压力能与热能一起释放出去,转变为机械能。
在上述储能与释能过程中,储能时打开换热介质第一循环泵570,释能时打开换热介质第二循环泵571,换热介质在储冷罐510与储热罐520之间循环流动,实现能量的暂存与释放。具体的,能量以热量的形式暂存于换热介质中。在储能过程中,低温的换热介质从储冷罐510流出后,一部分流入换热第一管道561,一部分流入换热第三管道563。换热第一管道561内的换热介质流动至第二储能换热器340进行换热,吸收被第二次压缩后的二氧化碳中的热量,使这部分换热介质的温度升高,并经换热第二管道562流入储热罐520,热量被暂存于储热罐520内。换热第三管道563内的换热介质流动至第一储能换热器320进行换热,吸收被第一次压缩后的二氧化碳中的热量,使这部分换热介质的温度升高,并经换热第四管道564流入储热罐520,热量被暂存于储热罐520内。
释能时,高温换热介质从储热罐520内流出后,一部分流入换热第五管道565,一部分流入换热第七管道567。换热第五管道565内的换热介质流动至第二释能换热器440进行换热,将热量传递给流经第二释能换热器440的二氧化碳,使其温度升高。完成换热后,换热介质的温度降低,降温后的换热介质经换热第六管道566流动至第二热量回收换热器550,将剩余的部分热量通过第二 热量回收换热器550传递至蒸发器410,供蒸发时使用。虽然经过两次换热后,换热介质的温度降低,但其温度仍高于储冷罐510所要求的温度范围。因此,这部分换热介质流经换热介质冷却器530时,通过换热介质冷却器530对其再次进行降温,使其温度达到储冷罐510的要求。
换热第七管道567内的换热介质流动至第一释能换热器420进行换热,将热量传递给流经第一释能换热器420的二氧化碳,使其温度升高。完成换热后,换热介质的温度降低,降温后的换热介质经换热第八管道568流动至第一热量回收换热器540,将剩余的部分热量通过第一热量回收换热器540传递至蒸发器410,供蒸发时使用。虽然经过两次换热后,换热介质的温度降低,但其温度仍高于储冷罐510所要求的温度范围。因此,这部分换热介质流经换热介质冷却器530时,通过换热介质冷却器530对其再次进行降温,使其温度达到储冷罐510的要求。
另外,在一些实施例中,也可以将第一阀门610、第二阀门620、第三阀门630、第四阀门640全部打开,储能与释能同时进行。在用电低谷期即将结束,用电高峰期即将来临时,可能会存在上述情况。处于常温常压状态的气态二氧化碳从储气库100中流出,经储能第一管道361流动至第一压缩机310,电网电力可通过第一电动机371带动第一压缩机310工作。通过第一压缩机310对气态二氧化碳进行第一次压缩,增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第一压缩机310压缩后,经储能第二管道362流动至第一储能换热器320,将压缩时产生的热量传递给第一储能换热器320。第一储能换热器320将热量传递至换热介质。从第一储能换热器320流出的二氧化碳经储能第三管道363流动至第二压缩机330,电力通过第二电动机372带动第二压缩机330工作,通过第二压缩机330对其进行第二次压缩,进一步增加其压力。在压缩过程中,会产生热量,使二氧化碳的温度升高。二氧化碳经第二压缩机330压缩后,经储能第四管道364流动至第二储能换热器340,将压缩时产生的热量传递给第二储能换热器340。第二储能换热器340将热量传递至换热介质。实现换热后,高压的气态二氧化碳经储能第五管道365流动至冷凝器350,经冷凝器350进行冷凝,转变为液态二氧化碳。液态二氧化碳经储能第 六管道366流入储液罐200中,完成储能流程。同时,高压的液态二氧化碳从储液罐200中流出,经释能第一管道471流动至蒸发器410,经蒸发器410蒸发,转变为气态。气态二氧化碳经释能第二管道472流动至第一释能换热器420。储能过程中存储于换热介质中的部分热量经第一释能换热器420转移至流经第一释能换热器420的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第三管道473流动至第一膨胀机430,在第一膨胀机430内膨胀并对外做功,实现能量输出,带动第一发电机491进行发电。二氧化碳从第一膨胀机430流出后,经释能第四管道474流动至第二释能换热器440。储能过程中存储于换热介质中的部分热量经第二释能换热器440转移至流经第二释能换热器440的二氧化碳,二氧化碳吸收这部分热量,温度升高。高温的气态二氧化碳经释能第五管道475流动至第二膨胀机450,在第二膨胀机450内膨胀并对外做功,实现能量输出,带动第二发电机492进行发电。此过程中发电透平的转速可控,能够稳定发电输出频率,有利于电网调频。
如前所述,冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550均与蒸发器410连接,将这些部件处产生的热量均转移至蒸发器410,供蒸发时使用,以减少能量浪费,提高能量利用率。
需要说明的是,释能冷却器460、第一热量回收换热器540、第二热量回收换热器550与蒸发器410连接,可以是直接连接,也可以通过其他部件间接连接。当释能与储能同时进行时,冷凝器350与蒸发器410连接,可以是直接连接,也可以通过其他部件间接连接。若不同时进行,则需要先将冷凝器350放出的热量收集,待释能时,再供给蒸发器410。
优选的,在一些实施例中,在蒸发器410与储液罐200之间设置有释能第一管道471与释能第八管道478,释能第一管道471上设有第二阀门620,释能第八管道478上设有节流膨胀阀480与第十阀门6200。打开第二阀门620,关闭第十阀门6200时,释能第一管道471导通,打开第十阀门6200,关闭第二阀门620时,释能第八管道478导通。释能过程中,若选择导通释能第八管道478,从储液罐200流出的高压液态二氧化碳经过节流膨胀阀480进行膨胀降压,然后再流入蒸发器410中。
与仅通过升温来使二氧化碳从液态转变为气态相比,设置节流膨胀阀480进行降压有利于二氧化碳从液态转变为气态。
优选的,在使用节流膨胀阀480时可以将蒸发器410与冷凝器350结合,将二者合并为一个部件,形成相变换热器。相变换热器中,包括蒸发部与冷凝部两部分,蒸发部与冷凝部之间通过管道连接,在相变换热器内部,将冷凝部冷凝时放出的热量转移至蒸发部。将蒸发器410与冷凝器350合并为一个部件后,热量转移在相变换热器内部完成,能够减少在热量转移时的损失,进一步提高能量利用率。需要说明的是,当储能与释能同时进行时,才能以上述方式实现热量转移,若不能同时运行,需要先将能量存储,待蒸发时再供给蒸发器410。
在一些实施例中,还设有热量回收组件,冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550中,至少有一个通过热量回收组件与蒸发器410连接。
具体的,前述的热量回收组件可以仅包括回收管路,冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550中,至少有一个通过回收管路与蒸发器410连接。需要说明的是,回收管路可以有多个,当上述冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550中,有两个或三个的热量均被回收时,冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550分别通过部分回收管路与蒸发器410连接。
或者,前述的热量回收组件可以包括回收管路与中间存储件,蒸发器410与中间存储件之间通过部分回收管路连接,冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550中,至少有一个通过部分回收管路与中间存储件连接。
具体的,可以选用水池710作为中间存储件,水池710与释能冷却器460之间设有第一回收管道720与第二回收管道730。水池710与蒸发器410之间设有第三回收管道740与第四回收管道750。水池710与冷凝器350之间设有第五回收管道760与第六回收管道770。水池710与第一热量回收换热器540之间设 有第七回收管道780与第八回收管道790。水池710以及上述各个管道处设有保温材质,对其中的水进行保温。
若储能与释能同时进行,同时打开第五阀门650、第六阀门660、第七阀门670与第八阀门680。水池710内的一部分水经第一回收管道720流动至释能冷却器460处,吸收释能冷却器460放出的热量,水温升高后,再经第二回收管道730流动至水池710内。同时,水池710内的一部分水经第五回收管道760流动至冷凝器350处,吸收冷凝器350放出的热量,水温升高后,再经第六回收管道770流动至水池710内。同时,水池710内的一部分水经第七回收管道780流动至第一热量回收换热器540处,吸收第一热量回收换热器540放出的热量,水温升高后,再经第八回收管道790流动至水池710内。水池710内的温度较高的水经第三回收管道740流动至蒸发器410处,为二氧化碳的蒸发提供热量,流经蒸发器410后,水温降低,降温后的水再经第四回收管道750流动至水池710内。
在上述过程中,除了使用水进行热量收集,也可以使用其他物质。
第一热量回收换热器540、第二热量回收换热器550这两处与水池710的连接结构及热量转移方式均相同,故此处不再赘述第二热量回收换热器550与水池710的连接结构。
此外,在上述各个管道上还设有循环泵等部件,用以实现水池710内水的循环流动。
在释能冷却器460与冷凝器350放出的热量不断传递至水池710中时,可能会使水池710内的水温不断增高。在蒸发器410不断吸收水池710内的热量时,可能会使水池710的水温不断降低。因此,优选的,水池710为恒温状态。
具体的,水池710处还连接有恒温控制器、温度传感器、加热器与散热器等部件。通过温度传感器监测水池710内的水温,并将水温传至恒温控制器,若冷凝器350、释能冷却器460、第一热量回收换热器540、第二热量回收换热器550放出的热量使水温升高过多,超过最高设定值,则恒温控制器控制散热器对水池710进行散热。若蒸发器410吸收的热量使水温降低过多,低于最低设定值,则恒温控制器控制加热器对水池710进行加热。
若将上述四处的热量均供应给蒸发器410后仍存在不足,可以使用外部热源补充热量。
参阅图2,示出了本发明另一实施例中的基于二氧化碳气液相变的多级压缩储能装置的结构示意图。若将热量补充至换热回路的换热介质中,可以在储冷罐510与储热罐520之间设置加热管道820,加热管道820上设置辅助加热件810。打开第九阀门690,从储冷罐510中流出的一部分换热介质经加热管道820流动至辅助加热件810,辅助加热件810对这部分换热介质进行加热,使其吸收外部热量,可以使到达第一热量回收换热器540、第二热量回收换热器550处的热量增加,即能够提供给蒸发器410的热量增加。
优选的,辅助加热件810处的热量来源可以是一些废热,例如,铸造厂或锻造厂的铸件或锻件冷却时放出的热量。使用废热作为外部热源,可以减少能量浪费,且无需另外进行加热,能降低成本。
或者,一些实施例中,也可以使外部热源与蒸发器410直接连接,直接对蒸发器410补充供热。
优选的,可以在储气库100与储液罐200之间设置多组上述的储能组件300、释能组件400与换热组件500,每组均按照前述实施例中的方式设置。在使用时,若其中一组中的部件出现故障,还有其他组可以工作,可以降低该装置的故障停机率,提高其工作可靠性。
另外,在一些实施例中,还提供了一种基于二氧化碳气液相变的储能方法,在储能时,经过多次压缩使二氧化碳增压,并使增压后的二氧化碳冷凝,转变为液态,压缩时产生的部分能量通过换热介质进行暂存。待释能时,二氧化碳蒸发,转变为气态,此前储能时暂存于换热介质中的能量通过二氧化碳进行释放。其中,冷凝时产生的能量、对完成释能的二氧化碳冷却时产生的能量,以及存储于换热介质中的部分能量中,至少有一处能回收利用,二氧化碳蒸发时,可以利用这部分能量。因此,可以减少储能与释能过程中的能量浪费,提高能量利用率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 基于二氧化碳气液相变的多级压缩储能装置,其特征在于,包括:
    储气库,所述储气库用于存储气态二氧化碳,所述储气库的容积能够变化;
    储液罐,所述储液罐用于存储液态二氧化碳;
    储能组件,所述储能组件用于存储能量,所述储能组件设置于所述储气库与所述储液罐之间,所述储能组件包括冷凝器与至少两个压缩储能部,所述压缩储能部包括压缩机与储能换热器,所述压缩机用于压缩二氧化碳,所述冷凝器用于冷凝二氧化碳;
    释能组件,所述释能组件设置于所述储气库与所述储液罐之间,所述释能组件包括蒸发器、释能冷却器、至少一个膨胀释能部,所述膨胀释能部包括膨胀机与释能换热器,所述蒸发器用于蒸发二氧化碳,所述膨胀机用于释放能量,所述释能冷却器用于对进入所述储气库的二氧化碳进行冷却;
    换热组件,所述换热组件包括储冷罐、储热罐与热量回收换热器,所述储冷罐与所述储热罐内设有换热介质,所述储冷罐、所述储热罐在所述储能换热器与所述释能换热器之间形成换热回路,所述换热介质能够在所述换热回路中流动;
    所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个与所述蒸发器连接,以向所述蒸发器提供能量。
  2. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述冷凝器、所述释能冷却器、所述热量回收换热器均与所述蒸发器连接。
  3. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述释能组件还包括节流膨胀阀,所述节流膨胀阀位于所述储液罐与所述蒸发器之间,所述节流膨胀阀用于使经所述储液罐流出的二氧化碳降压。
  4. 根据权利要求3所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述蒸发器与所述冷凝器能够合并以形成相变换热器。
  5. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,每个所述压缩储能部中的所述储能换热器与所述压缩机连接,每个所述压缩储能部中的所述储能换热器与相邻的所述压缩储能部中的所述压缩机连接,始端的所述压缩储能部中的所述压缩机与所述储气库连接,末端的所述压缩储能部中的所述储能换热器与所述冷凝器连接,所述储液罐与所述冷凝器连接,所述换热组件与所述储能换热器连接。
  6. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,每个所述膨胀释能部中的所述膨胀机与所述释能换热器连接,每个所述膨胀释能部中的所述膨胀机与相邻的所述膨胀释能部中的所述释能换热器连接,所述蒸发器与所述储液罐连接,始端的所述膨胀释能部中的所述释能换热器与所述蒸发器连接,末端的所述膨胀释能部中的所述膨胀机与所述释能冷却器连接,所述储气库与所述释能冷却器连接,所述换热组件与所述释能换热器连接。
  7. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述储冷罐与所述储热罐之间设有辅助加热件,部分所述换热介质能够经所述辅助加热件加热后流入所述储热罐。
  8. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,还包括外部热源,所述外部热源与所述蒸发器连接。
  9. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,还包括热量回收组件,所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个通过所述热量回收组件与所述蒸发器连接。
  10. 根据权利要求9所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述热量回收组件包括中间存储件与回收管路,所述中间存储件与所述蒸发器之间通过部分所述回收管路连接,所述冷凝器、所述释能冷却器、所述热量回收换热器中,至少有一个能够经部分所述回收管路到达所述中间存储件。
  11. 根据权利要求1所述的基于二氧化碳气液相变的多级压缩储能装置,其特征在于,所述储气库为柔性气膜储气库。
  12. 基于二氧化碳气液相变的多级压缩储能方法,其特征在于,包括储能步骤与释能步骤,
    所述储能步骤中,多次压缩二氧化碳,并使二氧化碳冷凝为液态,压缩二氧化碳时产生的部分能量通过换热介质暂存;
    所述释能步骤中,二氧化碳蒸发为气态后,所述换热介质中暂存的能量通过二氧化碳释放;
    存储于换热介质中的部分能量、冷凝时产生的能量、对完成能量释放后的二氧化碳进行冷却时产生的能量中,至少有一处能量供二氧化碳蒸发时使用。
  13. 根据权利要求12所述的基于二氧化碳气液相变的多级压缩储能方法,其特征在于,所述释能步骤和所述储能步骤同时进行。
PCT/CN2021/136504 2021-02-07 2021-12-08 基于二氧化碳气液相变的多级压缩储能装置及方法 WO2022166392A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3201526A CA3201526A1 (en) 2021-02-07 2021-12-08 Multistage-compression energy storage apparatus and method based on carbon dioxide gas-liquid phase change
US18/039,760 US20240003272A1 (en) 2021-02-07 2021-12-08 Multistage-compression energy storage apparatus and method based on carbon dioxide gas-liquid phase change

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169197.1 2021-02-07
CN202110169197.1A CN112985144B (zh) 2021-02-07 2021-02-07 基于二氧化碳气液相变的多级压缩储能装置及方法

Publications (2)

Publication Number Publication Date
WO2022166392A1 true WO2022166392A1 (zh) 2022-08-11
WO2022166392A8 WO2022166392A8 (zh) 2023-06-15

Family

ID=76349039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136504 WO2022166392A1 (zh) 2021-02-07 2021-12-08 基于二氧化碳气液相变的多级压缩储能装置及方法

Country Status (4)

Country Link
US (1) US20240003272A1 (zh)
CN (1) CN112985144B (zh)
CA (1) CA3201526A1 (zh)
WO (1) WO2022166392A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115610635A (zh) * 2022-10-24 2023-01-17 大连海事大学 一种用于低温液货产品生产储存及碳捕获的能量管理***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000003680A1 (it) * 2020-02-21 2021-08-21 Energy Dome S P A Impianto e processo per l’accumulo di energia
CN112985144B (zh) * 2021-02-07 2022-04-01 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985143B (zh) * 2021-02-07 2022-01-14 百穰新能源科技(深圳)有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置
CN112985145B (zh) * 2021-02-07 2022-03-11 百穰新能源科技(深圳)有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN115406287B (zh) * 2022-08-18 2023-09-29 百穰新能源科技(深圳)有限公司 二氧化碳气液相变储能***的存储单元、控制方法与***
CN116447769B (zh) * 2023-06-16 2023-09-29 百穰新能源科技(深圳)有限公司 二氧化碳储能***
CN116952046A (zh) * 2023-08-24 2023-10-27 百穰新能源科技(深圳)有限公司 基于工质气液相变的储能***

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452612A (zh) * 2013-08-28 2013-12-18 中国科学院工程热物理研究所 一种以二氧化碳为工质的压缩气体储能***
CN104533556A (zh) * 2014-12-17 2015-04-22 中国科学院广州能源研究所 一种二氧化碳气液相变储能的方法和实现该方法的装置
CN108562081A (zh) * 2018-04-23 2018-09-21 Edf(中国)投资有限公司 一种用于超临界二氧化碳发电循环的冷却***及冷却装置
US20190063685A1 (en) * 2017-08-28 2019-02-28 Newpolygen Technologies Ltd. Method for Liquid Air and Gas Energy Storage
CN109826682A (zh) * 2019-01-03 2019-05-31 上海海事大学 一种可实现冷热电联供的集成型供能***
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能***及方法
CN111648833A (zh) * 2020-06-05 2020-09-11 全球能源互联网研究院有限公司 一种液化空气储能***
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能***
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2381249A1 (fr) * 1977-02-18 1978-09-15 Commissariat Energie Atomique Dispositif de transfert thermique permettant l'utilisation de cavites creusees dans le sous-sol comme silos a chaleur
NL1005459C2 (nl) * 1997-03-06 1998-09-08 Mij Tot Gasvoorziening Gelders Geïntegreerd systeem voor energievoorziening en energiegebruik in de glastuinbouw.
JP2002081829A (ja) * 2000-08-31 2002-03-22 Sanyo Electric Co Ltd ダクト式貯冷システム
CN107461227A (zh) * 2017-07-26 2017-12-12 西安交通大学 一种超临界二氧化碳离心压缩机与向心透平同轴结构
CN108561293B (zh) * 2018-03-29 2019-08-06 华北电力大学 一种提高laes***效率和响应速度的方法和***
US11435146B2 (en) * 2019-03-07 2022-09-06 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN111075671B (zh) * 2019-11-26 2022-05-10 东方电气集团东方汽轮机有限公司 一种耦合集成太阳能、超临界二氧化碳和压缩空气储能的发电***

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452612A (zh) * 2013-08-28 2013-12-18 中国科学院工程热物理研究所 一种以二氧化碳为工质的压缩气体储能***
CN104533556A (zh) * 2014-12-17 2015-04-22 中国科学院广州能源研究所 一种二氧化碳气液相变储能的方法和实现该方法的装置
US20190063685A1 (en) * 2017-08-28 2019-02-28 Newpolygen Technologies Ltd. Method for Liquid Air and Gas Energy Storage
CN108562081A (zh) * 2018-04-23 2018-09-21 Edf(中国)投资有限公司 一种用于超临界二氧化碳发电循环的冷却***及冷却装置
CN109826682A (zh) * 2019-01-03 2019-05-31 上海海事大学 一种可实现冷热电联供的集成型供能***
CN110374838A (zh) * 2019-06-14 2019-10-25 西安交通大学 一种基于lng冷量利用的跨临界二氧化碳储能***及方法
CN111648833A (zh) * 2020-06-05 2020-09-11 全球能源互联网研究院有限公司 一种液化空气储能***
CN111749743A (zh) * 2020-07-06 2020-10-09 全球能源互联网研究院有限公司 一种灵敏适于调频的压缩空气储能***
CN112880451A (zh) * 2021-02-07 2021-06-01 深圳市博德维环境技术股份有限公司 基于补充外部能量的co2气液相变的储能装置与方法
CN112985142A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的热能转化机械能储能装置
CN112985144A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的多级压缩储能装置及方法
CN112985145A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于二氧化碳气液相变的储能装置与方法
CN112985143A (zh) * 2021-02-07 2021-06-18 深圳市博德维环境技术股份有限公司 基于co2气液相变的热能转化机械能多级压缩储能装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115610635A (zh) * 2022-10-24 2023-01-17 大连海事大学 一种用于低温液货产品生产储存及碳捕获的能量管理***
CN115610635B (zh) * 2022-10-24 2023-11-17 大连海事大学 一种用于低温液货产品生产储存及碳捕获的能量管理***

Also Published As

Publication number Publication date
CA3201526A1 (en) 2022-08-11
CN112985144B (zh) 2022-04-01
CN112985144A (zh) 2021-06-18
WO2022166392A8 (zh) 2023-06-15
US20240003272A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2022166392A1 (zh) 基于二氧化碳气液相变的多级压缩储能装置及方法
WO2022166387A1 (zh) 基于二氧化碳气液相变的储能装置与方法
WO2022166381A1 (zh) 基于补充外部能量的co2气液相变的储能装置与方法
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
CN110374838B (zh) 一种基于lng冷量利用的跨临界二氧化碳储能***及方法
WO2022166391A1 (zh) 基于co2气液相变的热能转化机械能多级压缩储能装置
CN101368767B (zh) 采用并联正、逆制冷循环的工质的间接空气冷却方法和***
WO2011045282A2 (en) Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
WO2010118915A1 (en) Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy
WO2020164255A1 (zh) 换能方法和***
US20140007577A1 (en) Method and System for the Utilization of an Energy Source of Relatively Low Temperature
CN109026243A (zh) 能量转换***
WO2021248289A1 (zh) 换能方法和***
CN101988397A (zh) 一种低品位热流原动机、发电***及其方法
CN116641769A (zh) 基于二氧化碳工质的储能利用***
KR20150022311A (ko) 히트펌프 발전 시스템
CN113540504B (zh) 热泵式-氢能复合储能发电方法及装置
CN113036932B (zh) 一种co2跨临界热力循环储电***和方法
CN116857027B (zh) 二氧化碳气液两相储能***及其控制方法
CN206801634U (zh) 热能利用***及发电站
CN109630309A (zh) Lng冷能斯特林发电***
CN116591794A (zh) 液态二氧化碳储能发电***
CN114622960A (zh) 一种跨临界二氧化碳储能***
CN210033735U (zh) 一种模拟地热发电的高温和低温热水自循环***
CN221223040U (zh) 基于二氧化碳气液两相循环的储能***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3201526

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18039760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.12.2024)